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PREFACE TO THE FIRST EDITION,

THi1S book is intended for the use of Engineering students
in schools and colleges, and as a text-book for examinations
in which a knowledge of Practical Geometry and Machine
Drawing is required.

The chief reason which has led to its preparation is that
during the time I was engaged in teaching on the Engineer-
ing side of Dulwich College, and had charge of the classes in
Geometrica} and Mechanical Drawing, I found it impossible
to obtain a book wherein the problems, or examples, were
not accompanied by diagrams which the student could
easily copy, without in the least knowing to what they
referred. In Plane and Solid Geometry there was a lack
of properly graduated questions, and such important parts
of the subject as problems on loci, the construction of the
useful plane curves and their practical application to cams
and wheel-teeth, the interpenetration and development of
simple solids, and isometric projection were only to be
found in advanced books—although really more suited for
elementary students than the troublesome problems on
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“ points, lines, and planes” which usually precede them.
In Machine Drawing and Design, again, the deficiency was
still greater, there being no choice between sheets of
Diagrams and Text-Books which, although they produce
admirable copyists, are utterly devoid of any utility as
regards education in design. The well-known treatise by
Prof. Unwin is, of course, most excellent as an aid to
design, but it does not profess to teach drawing, and is
certainly not intended for elementary students.

Under these conditions, I found myself obliged to
arrange questions so graduated in regard to sequence and
difficulty as to be really helpful in “teaching” the subject,
by bringing out important principles, by making clear
mathematical relations, and by requiring the application
of real thought and the knowledge gained in other classes
and subjects. The setting of the questions was always
preceded by a lesson in which, for geometrical drawing,
typical problems were worked upon the blackboard and
explained ; and for machine drawing, the parts concerned
were drawn separately or together, or illustrated by models,
and the relations of, and reasons for, the shape and size
of the different parts made clear. The book, then, has
grown out of my own felt wants, and the effort to supply
them by the questions and lecture-notes mentioned.

In Part 1,1 have included chapters on those parts of
Practical Geometry already referred to as usually taken
later, because 1 believe them to be essential to a good
elementary course of Practical Geometry, and admirably
suited for the ordinary engineering or technical student
commencing without previous knowledge, and desiring
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to go on to an intelligent study of Machine Drawing
and Design. I have also included some special cases of
intersection, such as occur in metal plate work and in the
drawing of some engine parts, in order that students may
have no excuse for putting in the necessary curves by
“guess work.,” Thus, in preparing Part I, I have steadily
kept in view the work of Part II., from the conviction that
Plane and Solid Geometry should always precede Machine
Drawing, just as Arithmetic precedes Algebra.

In Part IL, T have avoided dimensioning the illustrations
except in rare cases, and have endeavoured to build up the
subjects so that all primary and common parts are first
explained and understood, such explanations not being
repeated when the parts occur in connection with larger
or complete designs. Such a method will, I am sure,
commend itself to all true teachers. A studeni ought not
to be told the sizes of bolts and nuts, or the diameter of
flanges, or the details of stufling boxes in drawing an
engine cylinder, any more than we should expect to have
to prove to him the truth of the triang’e of forces, at each
step in the graphical determination of the stresses in a
roof-truss. But such an arrangement obviously requires
that the examples be worked through in the order given,
and especially is this so in the Sections on Engine Design,
the examples in which have been intentionally arranged to
show the interdependence of the different parts. I have
throughout endeavoured to give the reasons for all features
of the designs; when these are purely empirical or for
workshop convenience, this is stated. My object will have
been attained if I have made it impossible for a student to
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draw any part without having an intelligent reason for
all he does.

It has certainly been my desire to make the book
suitable for beginners, believing that the sizes and arrange-
ments of simple common parts cannot be acquired too early,
and I have therefore endeavoured to teach the principle of
“drawing ” as well as of “design.” 1 have found some
difficulty in deciding what terms and definitions to employ
in order to make the book acceptable to the ordinary
student and teacher, and yet free from unscientific and
ambiguous expressions. Workshop terms are not fully
satisfactory, for they vary with different localities, while
scientific terms are often misused. I have restricted the
word “compression” to represent a strain or change of
form, and in other ways have adhered to the following
notation :—

StrEse STRAIN
Pressure or Thrust od Compression.
Tension produces Extension.
Shearing Stress Shear.

My thanks are especially due to Mr. F. W. Sanderson,
M.A., Head-Master of Oundle Grammar Schools, who,
during my association with him at Dulwich College, gave
me much assistance in preparing the Examples, and who
has been good enough to read the proof-sheets and to
make many valuable suggestions, and to Professor Good-
man, M.I. Mech. E., Assoc. M.Inst.C.E. of the Yorkshire
College, Leeds, for much helpful counsel as to the arrange-
ment of Part. II. I am indebted also to Mr. J. H.
Wicksteed, M.I.C.E., M.T.Mech.E,, for useful suggestions and
drawings, and to Messrs. Allan & Co., Lambeth; Messrs.
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Marshall & Sons, Gainsborough; Mr. W. Allchin, Globe
Works, Northampton; The Kirkstall Forge Co.; The
Globe Engincering Co.; Messrs. Schaffer & Budenberg of
Manchester; and the Atkinson Gas Engine Co., for kindly
supplying drawings for insertion in the text. Finally, I
have to acknowledge the assistance received from the works
of Professors Unwin and Ripper, and Mr. Henry Angel.

I shall be grateful to teachers and others who may use
the book for information as to any errors which may have
been overlooked.

SIDNEY H. WELLS.

BarrErsEA PonvrechNic, S.\W.,
September, 1893.

NOTE TO THE ELEVENTH EDITION.

EpucaTioN IN DESIGN was a chief factor in the preparation
of this text-book for elementary students,and this Part I.
on Practical Geometry has proved to be of the greatest
value in leading up to an intelligent study of Machine
Drawing and Design It has been adopted by teachers
throughout the British Empire as well as in other countries.
Many thousands of students have benefitted through its use
and this further printing is offered in much confidence as
the Work has established itself as a standard for examination
purposes,
C. G. & Co, Ln.
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ENGINEERING

DRAWING AND DE SIGN.

PART 1

PRACTICAL, PLANE, AND SOLID GEOMETRY.

SECTION 1

INTRODUCTION.

Tae following Exercises are intended for students using drawing
instruments for the first time. All lines should be drawn with
the T-square and set squares, and all divisions made with the
dividers. Lines parallel to the long edges of the board should
be drawn with the T-square, and lines at right angles with the
set squares :(—

EX. 1.—Draw a square of 3}° side, and divide it into small
squares each of §” side.

(Two adjacent sides of the square should be divided into seven equal
parts, and lLines drawn through the points parallel to the sides of the
square. )

EX. 2.—Draw an oblong, sides 4" and 24", and bisect each of
the sides. Join the middle points of the sides to form a
rhombus. Bisect the sides of this figure, and join the middle
points, to form a second oblong. Again, bisect the sides of this
oblong, and join the middle points to form a second rhombus.
Try if the similar sides of the oblongs are parallel to each other,
and also the sides of the rhombuses.

(A rhombus is a four-sided figure, having all its sides equal, but its
angles not right angles.) !
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EX. 3.—Draw a circle of 34" diameter. With the radius of
the circle as distance, start from any point on the circumference,
and step off distances round the circumference. The radius
should just step round the circumference sixz times. Join the
points together forming an equal six-sided polygon, known as a
hexzagon.

EX. 4 —Draw a line, A B, 3}"long. With A and B as centre,
and the length of A B as radius, draw arcs cutting in C. Join
C to A and B, then A B O will be an equilateral triangle. Find
the middle point of each of the sides, and join to the opposite
corner. These three lines will meet in a point Show, by draw-
ing the circles, that this point is the centre of the inscribed and
circumscribed circles of the triangle.*

(The inscribed circle 18 the circle touching the three sides, the circum-
scribed circle passes through the three corners.)

EX. 5.—Draw a circle 3}" diameter, and divide the circum-
ference into eight equal parts. Join the points, forming a
polygon having eight equal sides, known as an octagon.

(This is best done by drawing two diameters at right angles, and then two
other diameters with the 45° set square, sloping right and left.)

EX. 6.—Draw a square of 2}" side. On each side of the
square and outside it, construct an equilateral triangle. Draw
the inscribed circle of each triangle, and also the inscribed circle
of the square (find its centre by drawing the diagonals). Test
your work by seeing if a circle drawn from the centre of the
square passes through the centres of the triangles.

EX. 7.—Oonstruct a square when the length of its diagonal
is 43"

(Draw a circle of this diameter and inscribe the square within it.)

EX. 8.—Draw a hexagon inside a circle of 24" diameter.
With each corner of the hexagon as centre, draw a circle of
radius equal to half the side of the hexagon. Test your work
by seeing if a circle drawn from the centre of the hexagon can
be made to touch and include the six small circles.

(Find the centre of the hexagon by drawing two of its longest diagonals.)

EX. 9.—Using the 45° and 60° set squares, draw (a) a triangle,
base 3", base angles 46° and 60°; (b) an isosceles triangle, base
31", base angles 45°; (c) a rhombus, sides 33", acute angles 60°;
(@) a parallelogram, sides 4" and 2}", acute angles 45°.

* This point is only the centre of both circles when the triangle is equi-
lateral po glo 18 eq
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SECTION IL

GEOMETRICAL CONSTRUCTIONS FOR LINES
AND ANGLES.

THERE are a large number of simple problems which constantly
occur in all kinds of mechanical drawing, such as the division of
lines, arcs, and angles, the drawing of parallels and perpen-
diculars, which can generally be worked with the usual instru-
ments, and without adopting any geometrical construction. But
it often happens that such methods arc not as convenient, or
likely to be as accurate, as certain constructive methods based
upon Euclid’s Elements, of which the following are the most
useful and important. They should, therefore, be remembered
by the student, and adopted whenever special accuracy is
desired :—

PROBLEM 1. (Figs. 1, 2).—T0 bisect a line, arc, or angle.

Fig. 1.—Let A B be the given line or arc. With one end, A,
a8 centre, and radius greater than half, A B, draw arcs on opposite

N
/ “‘ c
] " X
) E.
4 e ? F s
v ' Vo
VS AV
NS \ ‘:'
Xo Yo
Fig. 1.

sides of A B. With the other end, B, as centre, and the same
radius, draw arcs cutting the first arcs in Cand D. Then the line
joining C D will cut A B in its middle point, E, and will there-
fore bisect it.

(Note that only small arcs need he drawn, and that it is enough to simply
mark the line or arc in the point, E, and not draw the whole line joining
CD. Itisevident that the radius of the arcs must exceed half A B, or the
arcs will not cut.)

If the line or arc is to be divided into four, eight, or a greater
number of equal parts, the same construction has simply to be
repeated, treating the equal parts A E, E B, each in the same
way as A DB
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Fig. 2.—Let A BO be any angle. With the meeting point or
vertex, B, as centre, and any radius, draw an arc cutting the lines
of the angle in D and E.  Then, as before, with D and E as centres
and radius greater than half D E, draw arcs to cut, as shown
at F. Join BF. This line will bisect the angles, and any point
on it will be equidistant from BD and BE. A repetition of
this method will divide the angle into four, or eight equal parts.

(Note that this construction is only applicable when the required number
of psx;:slié e;en), and equal to some integral power of 2, as 2%, 23, 2¢ , . , ,
= 4, 8, 1€, &c.

The following points should be carefully observed in connec-
tion with the division of lines, arcs, and angles :—

The exact point at which two lines meet is more accurately
found when the angle between them is not less than about 10*
or greater than 130°. This will be seen on reference to Fig. 3,

A A7ZB
(]
E
6, o

B/
N\

Fig. 2. Fig. 3.

where the lines A B, CD give a bad meeting point, and the
iines EF, G H a good one. It will be seen that, except when
the angle is 90°, the lines are in contact for a length greater
than their thickness; hence they do not give a decided point of
intersection. The same remark applies to the intersection of
arcs.

In bisecting angles it is necessary to obtain the bisecting
point (F in Fig. 2) a good distance from the vertex, B, of the
angle. If B and F are near together then the line drawn
through them will most probably not fulfil the condition that
any point in it shall be equidistant from the lines of the angle,
except near the vertex. A little practice will soon convince
the student of observing this and similar facts. Exactly in
the same way, the bisection of a line, by the method just
deacribed, is likely to be more accurate when the radius of the
arcs is considerably greater than half the line, than when it
only slightly exceeds the half, as the former gives a clearly
defined intersection point, and the latter a bad one. Other
facts of this kind will be referred to in connection with later
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problems, but their intelligent study cannot be too soon, or too
much, insisted upon.

EXAMPLES.

EX. 1.—Divide a line 3" long into four equal parts by con-
tinued bisection.

EX. 2.—Draw an arc of 3}” radius and bisect it.

EX. 3.—Draw two lines meeting at any angle, and divide the
angle into four equal parts by continued bisection.

EX. 4.—Oonstruct a triangle, sides 56, 4", and 3", and bisect
each of its angles. The bisecting lines will meet at a point.
Show, by drawing the circle, that this point is the centre of the
inscribed circle of the triangle.

(Obtain the radius of the circle by drawing a perpendicular with set
squares from its centre to one of the sides.)

EX. 5.—Draw an arc of 4}" radius, and divide it into four

equal parts by continued bisection. Produce the bisecting lines
and notice that they pass through the centre of the arc.

Perpendiculars to lines —PROBLEM II. (Figs. 44, b, ¢, d).—
T'o draw a perpendicular to a given line, A B, from a given point, C.
(a) (Fig. 4a).— When the peint is in the line and not near either
end.
With the given point C as centre, and any radius less than the
shorter of O A or CB, cut the line A B in the points D and E, on

C

- E a

B
Fig. 4a. Fig. 4b.
opposite sides of C. With' D and E as centre, and radius greater
than half D E, draw arcs meeting on either side of the line, as
shown in F. The line through F C is perpendicular to A B.
s.l:)r(Fig. 4b).— When the point is outside the line and not over
esther end.
With the given point C as centre, describe an arc cutting the
line in two points, D and E. With these points as centres, and
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with the same radius, draw arcs on the other side of A B, meet-
ing in F. The line through CF is perpendicular to A B.

(Euclid i. 8, and Def. 10, for CD =CE, and FD =FE, and CF is
common, therefore the angles made by A B and CF are right angles).

(c) (Fig. 4c).—When the point i8 tn the line, and near to, or at
one end.

‘With the given point C as centre, and any radius less than C A,
draw an arc as shown, cutting CA in D. From D step off the
same radius from D to E,and E to F. With E and F as oentre,
and any radius (for convenience the same as before), draw arcs
cutting at G. The line through C G is perpendicular to A B.

(The angle D C E = 60°, also the angle ECF. But CG bisects the angle
E C F making angle ACG = 60° + 30° = 90°).

(d) Fig. 4d).—When the point is outside the line and over cither
end.

G

Fig. 4e. Fig. 4d.

Join the given point C to any convenient point D, near the
further end of AB. Bisect C D in E, and with E as centre draw
a semicircle passing through C and D, and cutting A B in F.
The line through O F is perpendicular to A B.

(The angle in a semicircle is a right angle (Euclid iii., 31), and as CF D 1s
an angle in a semicircle, C F is perpendicular to A B).

This construction can also be applied to Case C, Fig. 4c, by
drawing any semicircle with centre E passing through the given
point C, and cutting the line A B in a point D. Then by joining
the points D E, and producing the line to cut the semicircle at a
second point, G, a diameter will be drawn, and G will be the
required point to join to C.

Notice that what has already been said about choosing the
radii of the arcs 80 as to obtain sharp points of interscction
applies equally to these problems, and that it is only necessary
to draw part of the arcs through where the cutting point is
likely to come. Also that in such an example as Fig. 45, time
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is saved by using the same radius for the arcs, cutting at F as
for the arc described from centre 0, thus avoiding an alteration
of the compasses.

EXAMPLES.

The following Examples are to be constructed geometrically :—

EX. 6.—Construct a square of 21" side.

EX. 7.—Construct an oblong, sides 3" and 2".

EX. 8.—Construct a triangle, sides 5", 4", 3}", and draw
from each corner a perpendicular to the opposite side.

EX. 9.—Construct a triangle, sides 5", 43", 23". Bisect each
of its sides, and through the points draw perpendiculars to the
sides. These three lines will meet at a point. Show, by draw-
ing the circle, that this point is the centre of the circle circum-
seribing the triangle.

EX. 10.—Mark any three points A, B, and C, not in the same
straight line, and draw the circle passing through then.

(Find the centre by joining A to B and B to C, and bisect these lines by
lines perpendicular to them ; they will meet at the centre.)

EX. 11.—Draw any irregular triangle, and mark any point
within it. From this point draw lines perpendicular to each of
the sides.

Parallels to Lines—PROBLEM ITL (Fig. 5)—70 draw o
line parallel to the given line 4 B at a given distance away.
Construct perpendiculars, AD,
B O, from the ends of the line, or % N
from any convenient points with- =
in it, and cut off a length on each _j— RN
equal to the given distance. Then /(
through the two points draw a f
line which will be paralleltoA B; A ' B
or— Fig. 5.
Draw a perpendicular from one end of the line as B 0, cut off
a length equal to the given distance, as B E, and through point
E draw another perpendicular to BC, which will be parallel to A B.
As both these methods require the construction of two perpen-

diculars, there is no reason why they should not be equally
accurate.

EXAMPLE.

EX. 12—Draw a rhombus, sides 3}", acute angles 45°. Then
draw a second rhombus, parallel to and surrounding it, and }*
away.

(Obtain the 45° by bisecting a right angle.)

Copying and Addition of Angles.—Similar straight-lined
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figures are those which have their several angles equal, each to
each, and the sides about the equal angles proportional to each
other. Hence to draw one figure similar to another, it is neces-
sary to know how to copy an angle, or, in other words, how to
make an angle at a given point equal to a given angle. It is also
convenient to be able, geometrically, to add angles together, as,
for example, an angle of 135° can be found by adding angles of
90° and 45°; and 75°, by adding 60° and the fourth part of 60°.

PROBLEM 1IV. (Fig. 6).—On a given line to draw a triangle
kaving angles equal to those of a given triangle.
Let A B C be the given triangle and D E the given line.

A
F
sjs; c D Hh E

Fig. 6.

With centre B, draw an arc cutting BA, BO,in Fand G. Draw
a similar arc with the same radius, with centre D, cutting D E
in H. Measure the chord, F G, in the compasses, and with H as
centre set off the length of F G along the arc to K. Join D K
and produce. Then the angle KDE is equal to the angle
A BQ. At E, make an angle equal to the angle at C or A in
the same way, and the triangle will be complete. (Euclid vi., 4.)

(Equal angles in equal circles are subtended by equal chords.—Euclid
iii., 26 and 29.)

Note.—1If the triangles are large, accuracy will only be obtained
by drawing arcs of large radius.

PROBLEM V. (Fig. 7).—70 add or subtract angles.
Let A and B be two angles.
It is required to make with
M the line O D an angle equal
L to A and B.
With A, B, and C as centres,

draw arcs of the same radius,
8 é KI D cutting the arms of A in EF
; and the arms of B in G H,

Fig 7. and cutting the line CD in
‘8 1 K. Takethelength of the arc,
EF, in the compasses and set it up from K to L. Similarly,
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measure the arc G H, and set it up from L to M. Join OM.
Then the angle D C M is equal to the angles A and B.

EXAMPLES.

EX. 13.—Draw any irregular four-sided figure, no side less
than 1{", and draw a second figure having equal angles and two
of its sides 3" and 2}".

EX. 14.—Draw any irregular triangle and show, by adding the
three angles together, that the three angles of a triangle together
equal two right angles.

(Add two of the angles to the third angle, and the first and last lines
should form one straight line.)

EX. 15.—Draw an isosceles triangle, base 3, vertical angle 45°.
(The sum of the base angles will be 180° - 45° = 135°, .*. draw a line
and a perpendicular to it, %iving two right angles, bisect one of these rght
angles, thus giving an angle of 90° + 45° = 135°, then bisect this angle for
one of the base angles.)
EX. 16.—Draw any line, A B, and mark a point, C, outside
it. Through C draw a line parallel to A B.
(Join C by a line to any point D in A B, and from C draw a line making
the same angle with C D as C D makes with A B.—Euclid i., 23.)
Construction of Angles and Protractors.—Lines may be
readily drawn at different angles to a given line, by drawing a
semicircle upon the line, and knowing that a semicircle contains
180°, dividing the semicircumference to obtain the desired
angles. This method of setting off angles is much facilitated
by remembering that the radius of a circle steps round the
arcumference exactly sir times, and that if any two of these
points next oue another are joined to the centre by lines, the
angle between the lines is 60°, for the whole angle at the centre
is four right angles, or 360°, and the con-
struction gives exactly one-sixth, or 60°. E
Hence a line may be quickly and accurately !
drawn at 60° to any given line as follows :— |
Let A B be the given line, and let a line |
be required at 60° to A B, starting from the !
]
]
A

end A. With A as centre and any radius,
draw an arc cutting A B in C, and from C
set up tho same radius to the point D, and Fig. 8.

join AD. Then theangle BADis 60° (Fig.8).

This construction suggests an ecasy method of trisecting a
right angle; for if in Fig. 8 the lines A B, AE are at right
angles, then the angle E A D is one third of a right angle, and
by setting off the same radius as before from the point E to F,
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the angle BAF is made one-third of a right angle. Hence
the lines A D and A F trisect the right angle.

The following angles are thus easily obtained :—30° by
bisecting 60°; 75° = 60° + half of 30°; 120° by setting off two
60° and 135° =90" + 45° (half a right angle). Also 108° = 2 of
180°, and is therefore found by drawing any semicircle, dividing
it into five equal parts and joining the centre to the second
division point from one end; the two angles thus formed will
be 72° and 108°. To obtain 135° which = § of 180°, divide the
semicircle into four equal parts, and join to the first division
from one end. These angles are important as being those of
certain useful regular polygons, the construction of which will be
described further on.

Protractors.—An extension of this method is employed to
construct protractors, which enable angles of any degree of
measurement to be set off. A semicircle of 6" diameter is drawn
and its semicircumference is accurately divided into 180 equal

Fig. 9.

parts called degrees, any further subdivision into minutes and
seconds not being possible on so small a scale. The most
co.nmon protractor * is of oblong form, 6” long and 1§” wide,
and is shown in its finished form in Fig. 9 (divided to show
2° only), which also clearly shows the method of construction.
Notice that the divisions are marked both ways to allow of
using from either end, and that the lines showing each 10® are
longer than the lines showing the smaller divisions. In con-
structing a protractor, the semicircumference should be divided
by continual bisection as in Fig. 2, as repeatedly as possible, and
then the dividers used to obtain the small divisions.
* This protractor is made of boxwood and its divisions are not usuall

very reliahle. A more accurate instrument is the horn protractor, whic!
in generally of semicircular form.
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The protractor is used by placing the edge A B to coincide
with the line from which the angle is to be drawn, and the
middle point C against the point in the line from which the

angle is to start.
EXAMPLES,

EX, 17.—Draw lines meeting at the following angles:—
éa) 60° (b) 75° (c) 90° (d) 105° (e) 108°, (f) 120°, (g) 135°,
k) 140°,

EX. 18.—Oonstruct a triangle base 2}", one base angle 60°,
verticle angle 45°. .

EX. 19.—Construct a protractor 6" x 24", to show divisions
of 5°.

MISCELLANEOUS EXAMPLES.

(1) Draw a line, A B, 3" long, and find three points beyond
B through which A B would pass if produced.

(2) Draw a parallelogram, base 3", diagonals 4}” and 63".

(The base, and half of each diagonal form a triangle.)

(3) Draw a line, A B, 31" long, and produce it to a point C, so
that B C shall be § of AB.
(Divide A B into four by bisection, and add one piece on.)

(4) Draw two lines meeting at a point A at 135°, and bisect
the angle, using only the parallel edges of a rule and pencil.

(Place one edge of rule coinciding with one arm of angle, and draw line
along other edge, do the same with other arm of angle, the two lines drawn
will meet in a point, which when joined to vertex bisects the angle.)

(5) Draw a circle of any diameter between 4" and 6", and find
its centre (as though unknown) using only the parallel edge of a
rule, a measuring rule and a pencil.

SECTION IIL

DIVISION OF LINES AND CONSTRUCTION
OF SCALES.

Division of Lines,—In the division of lines and angles by
the method of bisection as explained in the preceding section, it
was seen that the construction only applied to obtaining division
into certain numbers of parts, and did not admit of general
application. There are, however, other methods by which lines
can be accurately divided into any desired number of equal
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parts, with which it is very necessary for the student to be.
come familiar.

The most common method of division in practical mechanical
drawing is known as “division by trial, or with dividers.” Thus
to divide a given line into any number of equal parts, the
dividers are set to what the draughtsman considers to be ap-
proximately the right distance, and then, starting from one end
this distance is stepped oft along the line the required number
of times. If the last step just reaches to the line end, the
division is accurate, but 1t not, the dividers must be opened or
closed until the equal division is obtained. Circles, arcs, and
angles can be divided in the same way since although the
dividers then really measure the length of chords, yet the arcs
are proportional to them (Euclid iii., 28). For accuracy in
division the use of dividers in a practised hand is more reliable
than geometrical methods. It is, however, necessary to use some
form of spring dividers, and to avoid making holes through the
paper at each step.

The following is the geometrical construction for the division
of lines into any required number of parts. It is based upon
the properties of similar triangles, and is particularly useful,
83 permitting of division into fractional parts, or into parts
proportional to a given ratio, or to the divisions of a given line.

PROBLEM VI. (Fig. 10a, b).—To divide a line into any
number of equal parts.

A B

Fizg. 104, Fig. 10b.

Fig. 10a.—Let A L Le the line to be divided 1nto five equal
parts. From one end, A, diaw a line, A C, of any length, and
at any angle to A B. Mark off upon this line five equal parts,
asat 1,2, 3,4,5. Join 5 to the end B, and through the points
1, 2, 3, 4, draw lines parallel to B35, meeting A B as shown.
Then A B is divided iuto five equal parts.

(The five triangles thus formed, each having A for a vertex, are similar;
therefore, since A 5 1s divided into five equal parts, A B is similarly divided
(&uclid vi., 4). The equal parts set off down the line A5 may be of any
convenient length, but a hittle practice will show that the greatest accuracy
is obtained when the angle B A C is small, as drawn, and the length is
approximately equal to the fraction required of the given line.)
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In order to divide a given line A B into three and a-half equal
parts, it is only necessary to set off down the line corresponding
to AQ. 3% x 2 =17 equal parts, and then draw parallels to
B7, through every other one to the given line.

By the same method a line can be divided into parts having
a desired proportion to each other, or similarly to another
divided line which may be either longer or shorter. Suppose we
require to divide a given line A B (Fig. 105) in the proportion
of 3 :2 : 1. Setoff down the line AC, 3 + 2 + 1 = 6 equal
parts of convenient length, and draw parallels as before from the
points 3 and 5 to the line 6 B, then A B is divided into three
parts in the required proportion. When the given line A B is
to be divided proportionately to the divisions of another given
line, it should be drawn from one end of the divided line, at an
angle to it as before. Then by joining the ends of the two lines,
and drawing parallels through the points in the divided line, the
line will be divided similarly to the given divided line. Num-
erous useful problems in proportion can be worked in this way ;
the method is in fact a part of graphic arithmetic.

EXAMPLES.

EX. 1.—Divide a line 5" long into four equal parws in three
different ways.

EX. 2.—Draw a circle 43" diameter, and draw any diameter.
Divide half the circle by continued bisection, and the other
half with dividers, each into eight equal parts. Mark the points
1, 2,3, .... to16,and join the points 2 and 10; 7 and 15;
12 and 4. If accurate, these lines should pass through the
centre of the circle.

EX. 3.—Draw two lines at any angle to each other and
meeting, and divide the angle into three equal parts.

fEX. 4,—Divide a line 7" long into two parts, in the proportion
of 14 : 2.

EX. 5.—Divide a iine 6" long into three parts, in the propor-
tionof 2 : 3 : 4.

EX. 6.—Find by construction the eighth part of 2-5".

EX. 7.—Draw two lines at any angle, meeting at point A,
and find a point, P, 2§” from A, its distance from one line of
the angle being twice its distance from the other line.

EX. 8.—Draw any angle and bisect it by using only a parallel
rule and pencil.

EX. 9.—Draw a line, A B, 3" long. Find by construction
three points through which A B would pass if produced in a
straight line.

EX. 10.—Draw any irregular five-sided figure, no side less
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than 1°. From it draw a second similar figure haring its sidea
one and a-half times as long (see pp. 7, 8).

EX. 11.—Draw a line, A B, 4" long, and mark three points in
it, CDE. Then draw a second line 33" long, and divide it
proportionately to the divisions of the line A B.

Scales.—In most mechanical drawings, the objects represented
are too large to be drawn full size, and are, therefore, drawn so
that all parts are proportionately smaller. When this is done
the drawing is said to be to scale. The ratio of the drawing to
the object is decided beforehand, and generally varies with the
size and nature of the object and the size of the paper. In
machine drawings details of complicated parts are drawn to a
larger scale than simple parts, while structures, such as roofs
and bridges, plans of fields and buildings, are drawn to a small
scale. The fraction which expresses the ratio of the drawing to
the object it represents is called the  representative fraction.”
Thus, suppose a drawing be made where a length of 13" repre-
sents a length of 1 foot on the ohject. This is shown on the
drawing by writing upon it, “Scale 1} inches = 1 joot,” and as

14" = 12°, the ratio is 1o = é, therefore, the representative frac-

tion is . Hence the drawing might be marked, * Scale § of full
size.” The former method is, however, generally adopted, but
the student should notice that the results are the same, and that
a scale is described when either its representative fraction is
given, or when the number of inches representing 1’ is stated.
In a scale whose ratio is a fraction—that is, one where the
drawing is made smaller than the object, the scale is said to be
a “reducing scale ;” but in the case of physical apparatus, clocks
and watches, and other small mechanisms, the drawing requires
to be larger than the object—that is, a length of 1° on the
object, is shown in the drawing by a Jength of probably 3" or 6”.
Hence, in the latter case, the drawing would be marked, ¢ Scals
1 foot = 2 inches,” and the ratio would be % = 6, therefore the
representative fraction is a whole number, and the scale is
called an “1increasing scale.” It is important to notice the
different ways of statit:g an increasing or a decreasing scale.

Scales are constructed for the draughtsman’s use, by dividing
the edges of boxwood or ivory strips in a machine capable of
working with great accuracy, and any ordinary scale is easily
obtained. But it is necessary to be able to construct a scale, as
a drawing has sometimes to be made to an unusual scale, or a
wachine-made scale may be unobtainable.
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Before constructing a scale, it is necessary to know—1sb, its
size, or representative fraction ; 2nd, the longest length it has te
represent ; 3rd, the different units of length it must show, as feet
and inches, yards and feet, miles and furlongs.

It does not follow that in drawing a field 300’ long, say to
a scale of (1 the scale must be 3’ long, as that would be
absurd. Scales are generally made 12" or 18" long, and longer
lengths are taken off by marking off successive lengths.

The method of constructing a simple or plain scale is as
follows : —

PROBLEM VIL (Fig. 11).—7To construct a scale where
13" = 1’ long enough for 6', to show feet and inches.
Draw a straight line upon the paper of indefinite length, and

9 , : s T

9 3

1 1
ws. [T
A [ B

Fig, 11,

from one end, A, mark off a length, A B, equal to 13" x 6" = 9,
since 11" show 1’, and 6’ are to be shown.

Divide A B into six equal parts, then each part will represent
1’, a8 the whole length shows 6'.

Divide the first of these divisions, A C, into twelve equal
parts, then each part will represent 1.

Oomplete the scale in the manner shown in the figure. Notice
that the divisions representing feet are carried to near the top
line, that the 6" division is somewhat shorter, the 3" and 9"
divisions still shorter, the other inch divisions being shortest.
This is done to better distinguish the different divisions and to
make the important ones clearly seen. Notice also that a line
is drawn through the top of the inch divisions, and repeated in
alternate foot divisions. This is done to help in counting, a
lined division and a plain division representing 2. The bottom
line A B is generally made dark as a finish.

Marking the scale is very important, and is generally wrongly
done by beginners. What is desired is that the marking shall
agree with the length taken off the scale, and this is only
accomplished by marking as shown in the figure. The zero
point i8 at C where the inch and foot divisions begin, and from
that point inches are marked to the left, and feet to the right.

It is a common fault to mark the point O as 1’, this means
that a length on the scale marked 2’ 3" is really only 1'3".  An
equally wrong result follows when the inch divisions are
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marked from A to O, beginning at A, then a length marked as
2’ 3" is really only 1’ 9",

It should be noticed that it is not necessary to further divide
the scale. It is, therefore, waste labour to divide up the whole
of the foot divisions into equal parts, although this is sometimes
done in machine-made scales. The scale as drawn shows any
length between 17 and 6'.

The importance of accuracy in constructing a scale cannot be
too strongly insisted upon. The same length taken from different
parts of the scale should agree, otherwise the drawing made with
the scales will be wrong, and all scales should be tested in this
way. In showing inch divisions for a small scale this is very
difficult, and the student will find that such small divisions can
be made quite as accurately with the eye, as by using dividers.
But accuracy is only obtainable with great care, and by using
good instruments and hard pencils with fine points.

In setting off the total length of the scale, do not take a distance
of say 17 in the dividers and set this distance off repeatedly along
the line until the right length is obtained. This cannot be
accurate, as suppose the 17 to be taken off the rule 35" too short
or too long, a very probable error, then the whole line in the
example given would be yJ; x 9 = *09” short or long.

EXAMPLES.

EX. 12.—A line 25" Jong is drawn to represent a length ot
1. What fraction is the line of the length it represents, and
what length of line should be drawn to show lengths of 1” and 5”1
Divide the line to show inches and mark the divisions.

EX. 13.—Construct a scale, the representative fraction of
which is 3, reading yards and feet, long enough for 3 yards.

EX. 14.—The plan of a room, 41’ long and 28’ wide outside,
is to be drawn upon a sheet of paper 22° x 16", leaving about
ll:; bor:iler all round. Construct and mark the scale that should

used.

EX. 18.—Construct carefully the following scales, writing
above each, its representative fraction, and marking clearly
what the divisions represent :—

Sa) Scale of 13" = 1 foot, long enough for 6 feet, showing feet
and inches.

(b) Bcale of " = 1 foot, long enough for 8 feet, showing feet
and inches.

(¢) Scale of 17 = 1 yard, long enough for 10 yards, showing
yards and feet.

(d) Scale of §” = 1 chain, long enough for 10 chains, showing
chains and poles.
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(¢) Scale of 1 em. = 10 cms., long enough for 1 metre, showing
divisions of 10 cms. and c.metres (1 cm. =0-39").

EX. 16.—On a map 2'5 chains is represented by 1'5 inches.
Draw a scale of feet for the map showing 500 feet, and divide it
to show distances of 20 feet. What is the representative frac-
tion of the scale

EX. 17.—Construct a scale of g, long enough for 15 feet,
showing feet and inches.

Diagonal Division and Diagonal Scales.—The number of
equal parts into which it is possible to accurately divide a line
by the methods previously described soon reaches a limit. It
is, for example, difficult to show lengths of 1 inch on a scale
where } or § inch = 1 foot, yet much smaller divisions than
these are constantly required in scales for land measure, and on

rules designed for measuring very small fractions of an inch such
Y 5ig

a8 y3y OF 53y -

R-g principle of diagonal division by which such small divi-
sions may be accurately obtained, is as follows:—Suppose we
require to show lengths of y&; of the line A B (Fig. 12).

At one end, A, of the line draw a perpendicular of indefinite
length, and mark along the perpendicular any
ten equal lengths, starting from A, and ending
at C. Join the last point to B, mark the points
1...9 as shown, and through the points
1...9 draw lines parallel to A B. Then all
the small triangles,as C3F, OS5 E, and C8D
are similar; and, therefore, since O3 is J; of
O A, 50 also is 3F % of AB, and s0 on with Fig. 12,
each of the triangles. Consequently the dis- '8
tance, 1 G, is 0-1 of AB, and if AB be 05" long, then the
length of 1 G = 0-05” or 4"

b Saughs Wy C
|

PROBLEM VIIL. (Fig. 13).—T0 construct a diagonal full size
scale, 6" long, to show inches, tenths of an tnch, and hundre.iths of
an inch.

Draw the line A B 6" long, and divide it into six equal parts
to show inches, and divide the first of these divisions, A C, into
ten equal parts to show yys'inches. From the end, A, draw a per-
pendicular, and starting from A, mark off any ten equal lengths to
the point E. Complete the oblong, E A BD, and through the

oints 1 . . . 9, draw lines parallel to A B, terminated by B D.

rom each of the points marking the inch division draw lines

perpendicular to A B, and mark them 17, 2”. . . 5", the division

at O being 0. Join the points E. 9, and draw parallels to E.9
]
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vhrough the points C. 1,2, 3, . . . 8,in A C. The scale is now
complete and can be used to measure any length between 0-01°
and 67; as, for example, the length between the two points, z y,
is 426", and between the points, m n, is 3:14".

A scale of this construction is usually marked on one side of
the common 6" boxwood protractor, and should form a part of
every student’s drawing outfit, as it is the only convenient and
accurate method of measuring to the second place of decimals.

E 7 2* 3° o+ D

FHH

A¥ 6+ 2¢C B
Fig. 13.

Diagonal scales, which are chiefly required for drawings of
land and buildings, are constructed in this way. For example,
if 13" = 1 furlong, and a scale is required to show poles, the
construction should be as follows:—(Fig. 13) Make A O 1%
long, and erect an indefinite perpendicular, A E, from the
point A. Now as 10 chains = 1 furlong, and 4 poles = 1 chain,
it will be best to divide A C into ten equal parts to show
chains and to set four equal divisions up A E, and then finish
as before.

Comparative Scales.— Comparative scales are those which
enable different standards of length to be compared. Suppose a
drawing is made in France to a scale of 2 cm. = 1 metre, or §;
of full size, then it is convenient to be able to know what
measure of yards and inches in the English standard corresponds
to any given length on the French drawing, which has been
drawn in metres and centimetres. To accomplish this a scale to
English measure should be drawn having the same * represen-
tative fraction.” The usual method is to draw the English scale
along one edge of the scale, and the French scale along the
other edge. The comparison and conversion is then easily
made.

EXAMPLES.

EX. 18.—Construct a full size diagonal scale 6" long, showing
Inches, % inches, and y} inches.

EX. 10.—A distance of 11 miles 3 furlongs is shown on a
map by 44". Draw a scale for the map, showing furlongs by
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diagonal division. The scale to be long enough to measure
15 miles.

EX. 20.—A scale of yards and feet is drawn to a representa-
tive fraction of . Construct a comparative scale of yards and
metres, long enough for 2 metres, showing divisions of yards and
feet, and of 10 centimetres.

SECTION 1V.

CONSTRUCTION OF TRIANGLES—
QUADRILATERALS—POLYGONS AND ELLIPSES.

Tae working of the following problems will present no great
difficulty to the student possessing a fair knowledge of Euclid’s
Elements, as they are simply a direct application of the
principles of pure geometry. The questions on triangles and
quadrilaterals are inserted because of their frequent occurrence in
examination papers, and their general educational value, rather
than for their practical use, which is somewhat limited, except
in such work as plotting surveys of lands. The construction of
the regular polygons and of ellipses is, however, of much
importance, as polygonal and elliptical outlines are very common
in engineering construction.

PROBLEM IX. (Fig. 14).—7To construct a triangle, knowing
the perimeter, base, and one base angle.

The perimeter of a figure is the total length of its sides or of
its boundary. Thus the perimeter of a square
of 2" side is 8", and of a circle is the length
of its circumference.

Let the perimeter be 74", base 3", one base
angle 45°. Draw the line A B 3" long to
represent the base and from the end, A,
draw an indefinite line at 45° to A B. From
this line cut off a part, A C, cqual to the
perimeter less the base—that is, 74" - 3 = 41",
Join C to B, and from B draw the line
BD, cutting AC in D, so that the angle
DBC=angle DCB. Then D AB is the Fig. 14.
required triangle.

(BA + AC =given perimeter and DB=DC (Fuclid i, 6), .. BA+
A D + D B =given verimeter. )
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PROBLEM X. (Fig. 15).— 7o construct a triangle, knowing the
base, altituds, and vertical angle.

The altitude of a triangle is the perpendicular distance from the
vertex to the base.

Let the base be 33", altitude 23", and vertical angle 40°.

Draw the line A B 3" long to represent the base, bisect it at
C, and draw a perpendicular, 0 D. Draw a line, E F, parallel to
the base 2}" away, then the
vertex of the triangle must be
in this line.

We now use the proof of
Euclid iii., 20, which says “ the
angle at the centrs of a circle is
double the angle at the circumfer-
ence on the same base,” and we
see that we ought to be able to
draw a circle having A B for a
chord, so that all angles con-
tained in it shall be 40° (Euclid
iii, 21), and to do this the
aggle at the centre must be
8

Therefore, from one end, A, of the base, draw a line making an
angle with the base equal to one right angle less the required
vertical angle—that is, 90° ~ 40° = 50°. Let this line cut CD in
D. Then the angle A D C is 40°, and D is the centre of the
required circle. With D as centre draw a circle passing through
A and B, and cutting the line EF in E and F. Then either
the triangle E A B or F A B is the required triangle, 4

EXAMPLES.

EX. 1.—Oonstruct a triangle, sides 3}", 2§, and 2".

EX. 2.—Construct an isosceles triangle, base 23", vertical
angle 40°.

(Find the measure of the base angles, knowing that the three angles equal
two right angles.)

EX. 3.—Oonstruct the following right angled triangles—(a
hypotenuse 5°, one side 2}"; () hwtenuse 4}", ome ncutz

angle 35°.

(The angle in a semicircle is a right angle, therefore draw ioircle
with the hypotenuse as diameter.) "8 e, . e
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EX. 4.—The distance from the centre of an equilateral triangle
to the sides is 1}". Construct the triangle.

(Draw a circle of 1}* radius, and divide it into three equal parts, the
sides of the triangle will be tangents to the circle through these points.)
EX. 5.—Construct a triangle, base 3}", anglesas 2 : 4 : 3.

(Draw a semicircle, and divide it into 2 + 4 + 3 = 9 equal parts, then
joining the 3rd point from one end to centre, will give one angle, and the
2nd point will give another angle.)

EX. 6.—Construct a triangle with base, A B, 2%, angle,
BA O = 50° and side, BO, 2}". (S. & A. E,, 1892.)

(Two) triangles are possible, this being the ambiguous case of Trigono-
metry.

EX. 7. Construct a triangle whose sides, a b, b¢, ca, are 3}",
23", and 2" respectively. On ac construct a second triangle

a d ¢, whose vertical angle ad ¢ is equal to the angle ab¢, and
thesidead 1§". (8. & A. E, 1887.)

(T‘te angles upon the same base and in the same segment of a circle are
equal)

EX. 8.—Two points, A B, are 33 miles apart. Find the posi-
tion of a point, P, so that P A is 13§ miles, and the angle AP B
is 73°. (Scale 1" = 1 mile.) (8. & A. E., 1886.)

(Use method of Prob. X.)

EX. 9.—Construct a triangle, perimeter 7%, one base angle 42°,
altitude 2}".

(Adopt method of Prob. IX.)

EX. 10.—Construct an oblong, diagonal 6%, short sides 2{".

(Half the oblong is a right angled triangle, the diagonal being the hypo-
tenuse.)

EX. 11.—Construct an oblong, diagonal 43", sides as 3 : 2.

(Draw any oblong sides as 3 . 2, and then a similar oblong having
diagonals 4{".)

EX. 12.—The line joining one corner of a square to the
middle point of the opposite side is 4}". Draw the square.

(Draw any square and join one corner to centre of ogposibe side, make
this line 4}” long, and draw a second square parallel to the first.)

EX. 13,—Draw a rhombus, longest diagonal 53", acute angles
50°.

(Diagonal is base of triangle of which each base angle is known. )

EX. 14.—Draw a quadrilateral ABOD, A B = 4}", angle
ABCwm= 30, BO= 5" angle BOD = 95°, angle BA D = 110°
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EX. 15.—The diagonals of a parallelogram are 23" and 4}*
long, they contain an angle of 61°. Construct the parallelo-
gram.

(Half of each diagonal makes the sides of a triangle of which the vertical
angle is known.)

Regular Polygons.—The geometrical construction of regular
polygons depends upon Corollary I. of Auclid i., 32, which says
that ¢ the interior angles of any straight lined figure together wnth
Jour right angles are equal to twice as many riyht angles as the
JSigure has sides.”

The most common of the regular polygons used in engineerin,
designs are the pentagon (five-sided), hexagon (six-sided), an
octagon (eight-sided).

Pentagon.—Suppose we require to construct a pentagon of
2}" side. All the interior angles together with four right angles
will equal 2 x 5 x 90 = 900°, and, therefore, the interior angles
will equal 900 — 360 = 540°, and each interior angle will be

5%9 = 108°. Hence we could draw two lines 2}" long, meeting

at an angle of 108°, and they would be two sides of the pentagon,
and we could complete the pentagon by drawing other lines at
108° and 2}" long, until the figure closed. But this is a cumber-
some method and would scarcely be accurate. The geometrical
construction is as follows :—

PROBLEM XI. (Ihg. 16).—70 construct u regular polygon on
a given line.

Let the polygon be a pentagon, and the given line be A B.

Produce A B, and with A, as centre, draw a semicircle of
radius equal to the given line, A B.

Divide this semicircle into the
same number of equal parts as
the sides in the required figure,
in this case 5, and mark the
points as shown. Join the cen-
tre, A, to the point, 2. Then
A 2 is a second side of the pen-
tagon. For A2 = A B, and the
angle 2 A B is 3 of 180° = 108°,
and hence, by always joining to

Fig. 16. the second point, counting from

the opposite end of A B, we ob-

tain for six divisions, 3 of 180° = 120°, the angle of a hexagon;
for nine divisions, } o? 130° = 140°, the angle of a nonagon.

Now a regular polygon can always be circumscribed by a
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circle, and hence, if we draw a circle containing the two sides,
2 A and A B, it will just contain the required polygon.

Draw the circle passing through 2 A B, having its centre at C
(see Ex. 10, p. 7). With A B as distance start from B or 2, and
step round the circle, marking the points 6 and 7, and complete
the figure as shown.

It is difficult for beginners to finish these polygons accurately,
the fault generally lies in a bad division of the semicircle, where
a very small error makes a large difference in the result. This
is the reason why polygons are seldom accurate when the angle
2 A B is set off with a protractor, a8 a slight error becomes
multiplied as the polygon approaches completion.

Heoxagon and Octagon.—Since the interior angles of the
hexagon and octagon are respectively 120° and 135° it is un-
necessary in constructing
either of these figures to
divide the semicircle into
either 6 or 8 equal parts. !
For the exterior angle i
242 AD of Fig. 16) is i

]
]
|
H

>

0° for a hexagon and 45°
for an octagon, it can,
therefore, be easily found
in the first case by taking
the radius of the semi-
circle as distance and
marking off from the point
D to the point 2, thus
making the angle 2A D
= 60°; and in the second
case by bisecting the right
angle, thus obtaining an
angle of 45°.

The two set squares most
commonly used are made
with angles of 60° and 45°,
and this enables a hexagon
or an octagon to be very
easily and accurately con-
structed, if the set squares are true. The method of using the
set squares to draw these figures is shown in Fig. 17a, b.

In Fig. 17a, the hexagon is to be drawn on the line A B, and
the set square is shown in position for drawing two other sides
In Fig. 175, the 45° set square is shown in position for obtaining
two of the sloping sides of an octagon. It is easy to see how

.- -

......... — AP 8‘:'.-“’
]

——— ——————_—_— . = - - — A -

Fig. 17a.
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the figures may be completed in each case, and remembering that
the hexagon is the most common of all plane figures drawn by
the mechanical engineer, as nuts and bolt heads are hexagonal,
it is very necessary for the student to know to what extent
set squares may be used to assist in its construction,

EXAMPLES.

EX. 16.—Draw two lines 2 long meeting at an angle of
108°, and consider them as two sides of a regular polygon.
Complete the figure.

EX. 17.—Construct the following regular polygons:—(a) pen-
tagon, 2" side ; (b) hexagon, 2" side ; (¢) heptagon, 175" side ; (d)
octagon, 1'5” side; (e) nonagon, 1-5” side.

EX. 18.—Draw a line A B, and take a point, P, outside it,
31" away. Construct a pentagon to have one side in A B, and
the opposite corner in P.

Construct any pentagon, then copy this pentagon b: allels having its
toI() corner in P,yanll); magrk the side c!v)gpositepl‘;, t(?gl(; J{ul;:‘[" throughlggand

D to meet A B, the length they cut off on A B is the side of the required
pentagon, then finish by drawing parallels.)

EX. 19.—Construct the regular polygon whose perimeter is
10", and interior angles 135°.

(To do this by construction, a polygon of any length of side having
interior angles of 135° should be drawn first, as this will tell the number of
sides, then draw a similar polygon such that perimeter = 10",

The following should be drawn, using set squares :—

EX. 20.—Draw a hexagon 2" side and an octagon 1§ side,

EX. 21.—Draw a hexagon and octagon, outside and inside
circles of 3” diameter.

EX. 22.—The longest diagonal of a hexagon is 4” .ud of an
octagon 6”. Draw the figures.

EX. 23.—The distance between the parallel side of a hexagon
is 43", and of an octagon 5". Draw the tigures.

PROBLEM XII (Fig. 18).—To construct a regular polygon
tnside a given circle.

Let the circle have the diameter, A B, and the required polygon
be a heptagon. Divide the diameter of the given circle, A B, into
the same number of equal parts as the sides in the required
polygon ; for a heptagon = 7, and mark as shown. With A
and B, as centre, radius A B, describe arcs meceting in 0. Join
C through the point 2 to meet the circle on the other side of the
diameter A B in the point D. Then the line A D is one side of
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the heptagon, and the figure can be completed by stepping off the
length A D around the circle.

For this construction to be
correct, in the case of a hep-
tagon, the arc A D must
evidently be } of the circum-
ference—that is, the semicir-
curoference A B must be 3}
times A D, or D B = 2} times
DA. Now ACBisan equi-
lateral triangle, therefore C A
=0 B, and the part A2 is } of
A B the diameter,

.A20_B2D arcDB_ 23
*"B2C A2D arcDA ¥
The manner in which set
squares may be used to draw
a hexagon or octagon inside or

outside & circle will be easily Fig. 13.1
seen.

EXAMPLES.

EX. 24.—Construct an equilateral triangle, A BC, base A B,
divide the base into 5 equal parts, and on the side ot the base
remote from C describe a semicircle. Draw a line from C through
the second division point 2 counting from A, and meeting the
semicircle in D. Measure the angles, B2D and A 2D, and
the chords, B D and A D, and show that

—=B2D BD B2
—=A2DTADT A2

EX. 25.—Construct the following polygons in circles of 47
diameter :—(a) pentagon, (b) hexagon, (c) heptagon, (d) octagon,
(¢) nonagon.

EX. 26.—Construct two hexagons having the same centre,

length of sides 2}”, the sides of one hexagon to make an angle of
30° with the sides of the other.

Construction of Ellipses.—The ellipse is the most common
of a series of useful mathomatical curves, often employed in
architectural and engineering construction, many of which will
be referred to in detail in Section VIT. But its geometrical con-
struction is given at this stage, because of its occurrence in other
work, and the desirability that students should obtain an early
knowledge of how it may be practicallv drawn.
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The general method of construction adopted with all these
curves, is to find a number of points through which it is known
the curve must pass, and then to draw, by freehand or with the
aid of “French curves,” the curve passing through these
points.

Arecs of circles cannot be used with any degree of accuracy.

The greater the number of points found, the more accurate
the curve is likely to be, but the student should learn to exercise
a wise discretion as to the exact number of points in particular
cases.

As the curves are symmetrical, any error in drawing is easily
detected.

The ellipse may be defined in many ways, but for the present
we will take the following definition :—

“ An ellipse is a closed curve traced out by & point moving in
such a way, that the sum of its distances from two fixed points,
called the foci, is always the same.”

Thus, in Fig. 19, if F and F' are the two fixed points or foci,
and P the moving point, then if P moves so that at all times
PF + PF = a constant, then the path of P is an ellipse.

Major Axis.—The line passing through the foci, and termi-
nated by the curve, is called the * major axis” (AB in Fig.
19).

Minor Axis.—The line bisecting the major axis at right
angles to it, and terminated by the curve, is called the *minor
axis” (O D in Fig. 19).

The intersection of the axes is called the centre of the ellipse
(O in Fig. 19).

Ordinates.—Lines parallel to the minor axis and terminated
by the curve are called ¢ ordinates.”

Since A and O (Fig. 19) are points in the ellipse, it follows that
AF + AF =0F + CF; but AF + A F' = major axiy, A E;
therefore, as C F and C I’ are equal, we have C F = half major
axis. Therefore,

The sum of the distances of any point in an ellipse from the focs
¥ equal to the major aris.

The distance from either end of the minor axis, to either focus,
18 equal to half the major axis.

A circle may be regarded as an ellipse with its axes equal,
and a straight linc as an ellipse with its minor axis infinitely
reduced.

There are several means of constructing an ellipse wken the
axes are known (or one axis and the foci, since the other axis is
then easily found), the first of which is suggested by the above
definition.
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PROBLEM XIIL (Fig. 19).—T0 construct an ellipse when
the ares A B and C D are given.

Method 1. by “arcs of circles.”—Find the foci, F and F', by
taking half the major axis as distance, either end of the minor

Fig. 19.

axis as centre, and cutting the major axis in these points. Mark
any point 2 in the major axis A B, between the foci.

With A 2 as distance, F as centre, draw an are.

With B2 as distance, F’' as centre, draw an are, cutting the
first arc in P.

Then PF + PF = A2 + B2 = major axis; therefore P is
a point in the ellipse.

In the same way by taking other points, 1, 3, &c., additional
points can be tound, and the curve drawn through them.

The points may be taken anywhere between the focus and
centre, but are better when closest together nearest the focus.

Arcs can be drawn with the same radii on both sides of the
major axis, and with both foci as centre, thus giving four points
in the curve for each of the points, 1, 2, 3, . .

This is a quick and accurate way of constructmg an ellipse.
It can also be applied for constructing other curves of a similar
character, such as, for instance, where 2PF + P F'= a con-
stant.

It is evident that the curve could be drawn mechanically.

For let F P, P F' be a continuous string, its ends being fixed at
the foci Then a pencil guided by the string, and keeping it
tight, will describe an ellipse.

Method 1. by “two circles” (Fig. 20).—Draw circles with
centre, O, having the major and minor axes for diameter.

Take any point, 3, on the major axis circle, and join to the
ceutre, cutting the minor axis circle in point 4.
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Through the point (3) on the major axis circle, draw a line
parallel to the minor axis.

Through the point (4) on the minor axis circle, draw a line
parallel to the major axis, meeting the first line in e.

Fig. 20.

Then e is a point in the curve.

Repeating the construction with other points will enable the
ellipse to be drawn.

Since the curve is symmetrical about its axes, points in it can

~be_found, when one quarter has been constructed, by drawing
ordinates from points in that quarter, and making them of equal
length on both sides of the major axis. Thus, in the figure
¢ f = fg, and similarly by drawing lines parallel to the major
axis, so that mn = gm, the ellipse can be completed. It is
better to draw one complete half of the ellipse before adopting
this method.

Method III. by an “oblong” (Fig. 21).—Draw an oblong,
A BCD, having the axes for diameters.

Divide half the major axis, A O, into any number ; say, six
equal parts and mark from A towards O, 1', 2, .". . 5",

Divide the distance, A E (equals half minor axis), into the
same number of equal parts, and mark from A towards E,
1,2,3,...5. Join these points to the end, C, of the minnp
axis,
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From the other end, D, of the minor axis, draw a line through
point 3’ in A O, to meet the line O 3 in P,
Then P is a point in the curve, and by drawing other lines

€ C 3
S
+ [
3
2
P2
2 \2 4’ \s
A (o] B
7.
D
Fig. 21.

from D to meet the lines from C, the remaining points can be
found.
(Note D 4’ meets C 4, D 5’ meets C 5, and so on.)

The ellipse is best completed by repeating this construction
for the portion in C O B F, and then using the ordinate method,
as described at the end of Method IL

Medhod IV. by “ trammels ” (Fig. 22).—A very convenient way

Fig. 22, Y
(known as the trammel method) of finding points in the ;ﬁ\m
an ellipse, is as follows :—Mark off along the edge of a strip of
paper, card, or wood, a distance, EF, equal to half the minor

axis, and from the same end, a distance, E G, equal to half the
major axis.
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Place the strip in such a way that the minor axis point, F, is
always on the major axis, and the major axis point, G, always on
the minor axis, then the end, E, of the strip will be a point in
the curve.

The strip is shown in position for two different points.

This is & common drawing office and workshop method, and
as it readily gives any number of points, is very useful.

Tangents and Normals.—It is necessary to be able to draw
the tangent and normal to an ellipse. A tangent to a curve is
often of use as showing the direction of the curve. In an
elliptical arch, the ends of the stones, or the radial members,
would be normals to the curve.

« The normal to an ellipse at any point in the curve bisects the
angle between the lines joining that point to the foci. (These
lines are called the focal distances.)

“The tangent at any point is at right angles to the normal at
that point.”

Thus to draw a normal and tangent at any point, P (Fig. 19),
it is only necessary to join the point to the foci and bisect the
angle FPF between the joining lines. This bisecting line
M N is the normal, and a line at right angles, T T, is the tangent.

Or, produce FP to Q, then the tangent bisects the angle
Q P’ F, and the normal is perpendicular to it.

“If two tangents are drawn to sn elipse from a point outside
the curve, and the contact points are jnined to a focus, then the
angles between these lines and the line joining the focus to the
point are equal.”

Thus in (Fig. 20) the angles P FG and P F H are equal.

Hence to draw a tangent from a point outside the ellipse, it is
necessary to adopt a construction making these angles equal.
This can be done as follows :—

With the point P as centre, draw an arc passing through a
focus, F. With the other focus, F, as centre, and the major
axi; ba.s distance, describe an arc, cutting the first arc in a
and b.

Join a and & to the focus F', cutting the curve in the points
G and H. These are the contact points of the tangents from P.

In the triangles Pa F' and P b F the three similar sides are
respectively equal, therefore the angles P F'G and PF' H are
equal (Fuclid i., 8), and, therefore, G and H must be the con-
tact points of the tangents.

Parallels to an Ellipse.—A parallel to a curve is equidistant
from it at all points. It has not necessarily the same mathe-
matical properties as the curve to which it is parallel.

The curve used in constructing the arches of bridges is
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frequently a parallel to an ellipse, as this gives greater vertical
clearance near the abutments than the true ellipse.

The parallel to an ellipse is most conveniently drawn by
describing a large number of small radii of the required
distance from points on the curve as centre; or it can be
obtained by drawing a number of normals to the curve of the
required length, and drawing the parallel curve through the
ends of the normals.

The parallel curve, the curve, N N, to an ellipse, is shown
partly constructed in Fig. 20. It is drawn touching the small
arcs, described from points on the ellipse as centre, but might
have been drawn by constructing a number of equal normals
and drawing the curve through the ends.

A convenient practical way of finding whether a given curve
is a true ellipse, is to draw lines representing the two axes, and
mark the focl, supposing the curve to be an ellipse. Then measure
the focal distances of a number of points and find if the sum is
constant ; or partly construct a true ellipse about the assumed
axes and foci, when its difference from the given curve will
show the error of the curve.

EXAMPLES.

EX 27.—Construct an ellipse, major axis 77, minor axis 4",
by the following methods:—(a) *arcs of circles;” (b) “two
circles;” (c¢) “oblong;” (d) “trammels.” In each case draw
a tangent and normal to the curve, from a point in the curve
and from & point outside the curve.

EX. 28.—Work the following by drawing :—(a) major axis of
an ellipse is 67, minor axis 24", find the foci ; (b) major axis 63",
foci are 17 from each end, find the minor axis ; (c) minor axis is
31", foci are 4" from the ends of the minor axis, tind the major
axis.

EX. 29.—Carefully draw an ellipse by two circles method,
major axis 7%, minor axis 4".  Rub out all lines except the curve
and the axis, and find the foci. Then take six different points
in the curve and find the sum of the distances of each point from
the foci.

EX. 30.—Construct a semi-ellipse, axis 4" and 2. Then draw
a second parallel curve 2}” away, and find if this curve is a true
ellipse.

EX. 31.—Draw an ellipse, the distance between the foci being
21", and the major axis 3" long. (8. & A. E,, 1891.)

EX. 32.—Two points, F and I, 2" apart, are the foci of, and
P (2" from F and 4" from F') is a point on, an ellipse. Draw the
curve. (S8 & A. A, 1892.) ’
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EX. 33.—Draw an ellipse inscribed in a parallelogram the
sides of which are 4" and 5" long, and are inclined at 60° to one
another. (V. U. Hon., 1889.)

SECTION V.

OIRCLES AND TANGENTS—AREAS—MISCEL-
LANEOUS PROBLEMS.

THE practical draughtsman does not usually adopt a geometrical
construction to enable him to draw such circles and lines
tangentially to each other as are required in ordinary mechanical
drawings, since his own skill in draughtsmanship ensures suffi-
cient accuracy. But instances often occur in solid geometry
problems, as well as in mechanical drawings, where it is very
advantageous, if not absolutely necessary, to be able to accurately
determine the contact points of lines and circles, hence the
student should render himself familiar with the chief geometrical
constructions.

PROBLEM XIV. (Fig. 23).—To draw a tangent to a circle, (a)

JSrom a point in the circumfer-
P’ ence, (b) from a point outside
the circle.

A tangent to a circle is a
line which touches the circle,
without cutting it. A tangent
is at right angles to the radius
passing through the point of
contact.— Fuclid iii., 18.

(a) Let P be the point in the
circumference of the circle.
0 Join P to the centre O, then

the required tangent, 8T, is
the line drawn at right angles
to the radius, P O.
(5) Let P’ be the point out-
Fig. 23. side the circlee In order to
draw the tangent correctly,
we require to find its contact point, and knowing that the
tangent is at right angles to the radius, we remember that
“ the amgle in a semicircle is a right angle.” Therefore join the




CIRCLES AND TANGENTS. 33

point P’ to the centre 0, and on P'0 describe a semicircle
cutting the given circle in D. Then P'D is the required
tangent, for it touches the circle at D, and is perpendicular to
the radius, D 0.

Notice that a second tangent can be drawn from P’ to touch
the circle, as shown in the figure by dotted lines. It is casy to
see that “the two tangents are equal in length,” a fact which
should be remembered.

PROBLEM XYV. (Fig. 24).—In a given angle to inscribe a circle
of given radius, and also to inscribe a second circle tangent to the
Jirst circle and to the angle.

Let B A C be the given angle. The circle must evidently have
its centre on the line bisecting
the angle, therefore first bisect
the angle BA C by the line
AD. .

Draw a line parallel to A B,
at a distance from it equal to
the radius of the required circle
cutting A D in E. (This is best Fig. 24. ©
done by first drawing a perpen-
dicular to A B from any point in it, and making its length equal
to the given radius.) E is the centre of the circle, and in order
to accurately draw the circle, it is best to first draw a line from E
perpendicular to A B or A C, to obtain the point of contact, F.

Next to draw a second circle touching the first and the sides
of the angle. Draw the line G H from the point G, where the
circle cuts A D, and perpendicular to AD. Then HG and HB
will both be tangents to the required circle when it is drawn;
therefore, if H B is made equal to H G, the point B so found
will be the contact point of the required circle. A perpendicular,
B K to A B, through the point B, will cut A D in K, which will
be the centre of the required second circle.

PROBLEM XVI. (Fig. 25).—To draw three circles of given
radius tn contact with each other. (The method of this construc-
tion is useful in problems on spheres in contact.)

Let the circles be of 2", 13", and 1" radius.

Draw any straight line and draw any two of the circles (say
of 2" and 1}" radius) touching each other, having their centres at
A and B in the line.

Set off the radius of the third circle along the line, beyond the
two circles, A and B to O and D, as shown. With A as centre,
draw an arc passing through C, and with B as centre, draw an arc
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passing through D, meeting the first arc in E. Then E is centre
of the third circle tangent to A and B, the contact points being
found by joining E to A and B.

Fig. 25.

PROBLEM XVII. (Fig. 26).—70 draw all the tangents common
to two circles of uncqual size.

(This problem is practically useful as representing the condi-
tions of open and crossed driving belts connecting two pulleys.)

Let the circles have their centres at A and B, the larger circle
having the centre, A.

Mark the radius of the smaller circle, B, inside the larger circle,
A, as from the point C in the circumference to the point D

Fig. 26.

Then A D is the difference between the radii of the two circles.
Describe a circle of radius, A D, centre A, and draw a semicircle
on A B, cutting this circle in E.  Join A E and produce to meet
circle A at F, and from B draw a line parallel to A F, cutting
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circle B at G. Then I and G are the contact points of the com-
mon tangent to the two circles. The similar tangent, H K, on
the opposite side is easily drawn by making arc CH = O F, and
arc MK = MG.

The principle of this construction is that both the circles, A
and B, have been equally reduced in size, the smaller, B, to a
point, and the larger, A, to the circle A D E. Then the tangent
from the point to the circle (tangent B E not drawn) is evidently
parallel to the required tangent, F G.

A similar consiruction applies for the cross tangeuts, except
that the larger circle, A, is to increase by an amount equal to the
rudius of the smaller circle, B, while the smaller circle, B, is reduced
as before to a point. The dotted circle of radius, AP (OP =
radius of circle B), cuts the semicircle on A B in R. Join A R,
cutting the circle in 8, and draw B T parallel to it. Then 8 and
T are the contact points of one of the cross tangents, which tan-
gent is evidently parallel to B R. The drawing of the other cross
tangent will present no ditliculty.

PROBLEM XVIII. (Fig. 27).—7T0 draw a continuous curve
made up of circulur arcs through a number of given points.

Let the points be as marked, 1 . . . 7, the curve to be drawn
through the points in the order of figuring.

Fig. 27.

Draw the arc passing through the first three points, 1, 2, 3
(see Ex. 10, p. 7), the point C being the centre. The arc passing
through the points 3 and 4 is to touch this arc at the point 3,
and, therefore, the line joining C 3 must pass through the centre
of the required circle. (£iclid iii.,, 11, 12. When two circles touch,
the line joining their centres passes through the point of contact)
Draw the line, O 3, and produce.

Next join the points 3, 4, and bisect the line 3, 4 by a per-
pendicular line cutting the line through O3 in D. Then D is
the centre of the arc passing through the points 3, 4.

Proceed in the same way for the remaining arcs, taking two

,pomnts at a time. The construction for the centre of the arc
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through 4 and 5 is shown, the first step being to join the points
4 and D.

PROBLEM XIX. (Fig. 28).—To inscribe a circle in a quadri-
lateral having two pairs of equal sides.

Let ABOD be the
given figure, having
AB=AD and BC
=DO.

The line A C will bi-
sect the angles BAD
and BCD, and the
centre of the required
circle will, therefore, be
upon this line.

To find the centre

Fig. 28. bisect either of the

angles, A BC, by a line

cutting A Cin E. Then Eis the centre of the circle touching the

four sides of the figure, and its radius is best found by drawing
a perpendicular, E F, from E, to either of the sides, as to B C.

PROBLEM XX. (Fig. 29).—70 describe a number of equal
circles outside a given circle,
each towching two of the

circles and the given circle,
Let the given circle have
the centre C, and let six

equal circles be required.
Divide the circle into six
cqual parts, and draw radial
lines as shown. Draw the
line C B, bisecting the angle
between U1 and 0 2. Then
if the centres of the two
circles are on the lines C 1
and 02, the line OB will
be tangent to both circles.
Draw a line through point
1 perpendicular to C1,
meeting CB in A. Then
Fig. 29 A1l and AB are tangents

g. 29, :

to the same circle, and must,
therefore, be equal. Make A B equal to A 1 and B will be the
contact point of the required circle with the line CB. Draw
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B D perpendicular to CB, to meet C1 in D. Then D is the
required centre. The centres for the other circles are best found
by drawing a circle centre C, radius, C D, to cut the radial lines.

EXAMPLES,

The following examples should be worked by geometrical
constructions, and not guess work :—

EX. 1.-—Draw a circle passing any three points, g, b, ¢, not in
the same straight line.

EX. 2.—Draw an isosceles triangle, base 2}”, height ", and
draw a circle passing through the three corners.

EX. 3—Draw a circle 4” diameter, and from a point in the
circumference, and a point 11" away, draw tangents to the circle.

EX. 4.—Draw two lines of indefinite length, meeting at 30°,
and draw two circles each touching each other and the two lines,
the smaller circle to be 3" radius.

EX. 5.—Draw three circles of radii, 1°, 1}”, and 2}”, in contact
with each other.

EX. G.—Draw all the tangents common to the following
circles :—(a) Circles, diameters 3" and 24", centres 2" apart ; (b)
circles 33" and 2}” diameters, centres 6” apart.

EX. 7.—Mark any nine points, 1, 2, 3, 4, 5, 6, 7, §, 9, ar-
ranged irregularly, as in Fig. 27, and draw a continuous curve
passing through the points in the order 1 . . . 9.

EX. 8.—Draw a quadrilateral having two pairs of equal sides,
long sides 47, included angle 35°, short sides 13", and inscribe a
circle within the fizure.

EX. 9.—Draw two equilateral triangles, sides 4” long, in one
describe three equal circles, each touching two sides and two of
the circles, and in the other three equal circles, each touching
one side and two circles.

(In the first case the triangle should be divided into three equal quadri-

laterals having two pairs of equal sides, and in the second into three equal
triangles.)

EX. 10.—Draw two parallel lines 3" apart, and take any
puint, P, between them. Draw a circle to touch each of the
lines and to pass through P.

EX. 11.—Describe a circle, A, of 1}” diameter, touching in-
ternally a circle, B, of 3}" diamcter, Describe a circle of 2"
diameter, touching both circles, A and B, the latter internally.
(8. & A. E, 1892)

iX. 12.—Draw a tangent to a circle from a point in the cir-
cumierence, without using the centre of the circle.

EX. 13.—Describe a circle of {” radius, and about it describe



38 PRACTICAL, PLANE, AND SOLID GEOMETRY.

five equal circles, each touching two others and the original
circle. (Woods & Forest, 1885.)

EX. 14.—Draw a line, A B, of indefinite length, and describe
a circle of 4" radius touching it at A. Describe a second circle
of 17 radius touching A B, and the first circle externally, and a
third circle of 1}” radius touching A B, and the second circle
externally. All three circles to be on the same side of A B.
(Sandhurst, 1386.)

EX. 15.—Describe a circle in a quadrant of 21" radius. In
the circle describe an equilateral tilangle.  (Woolwich, 1881).

EX. 16.—Describe a series of circles, diameters 17, 147, 147,
14", touching cach other successively, and all touching a given
line. (Woolwich, 1878.)

EX. 17.—Draw a circle 5" diameter, and in it describe four
equal circles, each touching the first circle and two others.

Areas of Planc Figures.—The following typical examples
of practical geometry problems on areas are inserted because of
their educational value and general usefulness. Tt is often
necessary to divide the plans of fields by fences into certain
definite parts, or to compate the areas of irrcgular figures, or to
construct certain figures of a requited area, and as these all
admit of an easy and accurate solution with the help of the
drawing board, it is advisable for the student to become familiar
with the methods employed

PROBLEM XXI.—70 construct an oblong equal in area to a
given triangle.

Construct the oblong on the same base as the triangle, and
half the height, or on half the base and the same height. Then
the oblong will contain an area equal to that of the triangle.
(Buclid i., 41.)

PROBLEM XXII (Fig. 30).— 7' construct a square equal in
area to a yiven vblung.

(If two lines, AC, DE,

~D_ cut one another at right

/-\ angles in a circle at a point

B, the lines being terminated

/ by the circumference, then
the rectangle, AB, BC, made

up of the segments of one

A s < is equal to the rectangle,
Fiz. 30. D B, BE, made up of the

) segments of the other.—

Euclid iii, 35.) DBut if one of the two lines, AC, pusses
through the centre of the circle, then it will bisect the other
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line, D E, and thus make the segments, D B, BE, equal to one
another, and the rectangle becomes a square on DB or BE.
Therefore, DB or BE is the side of the square equal in area
to the rectangle, having sides equal to AB and BC. This
construction is adopted for the present problem, although 1t
is obvious that only half the circle need be drawn. Notice
that the side of the required square is the “ mean proportional”
between the sides of the oblong—that is, DB = /A B.BOC.

Let the oblong have the sides, A B, BC. Draw the two sides
end for end, making a continuous line, A B C, as shown. Bisect
A C, the sum of the sides in the point E, and draw a semicircle,
ADC. At B, the point where the two sides of the oblong join,
draw a line, B D, perpendicular to A C, meeting the circle in D.
Then the line BD 1s the side of the square, equal in area to
the rectangle, A BB, BO.

Notice that if any two of the three lines, AB, BC, or BD
are known, the third can be found; hence, if one side of an
oblong is known and the side of its equal square, the oblong can
be constructed.

EXAMPLES.

EX. 18.—Draw any irregular triangle, no side less than 2}7,
and construct a square equal to it in arca.

(First reduce to an equal oblong and afterwards to a square.)

EX. 19.—Compare the areas of two triangles, each of 7”
perimeter, one equilateral, the other isosceles with a base 13"
long, by drawing lines to represent the side of a square equal in
area to each.

EX. 20.—A square of 3" side is equal in area to an oblong,
one side of which is 23" long. Construct the oblong.

PROBLEM XXITI. (Fig. 31).—70 reduce a given irregular
Sfigure to a triangle of equal area.

The principle of this reducticn depends upon the fact that
triangles upon the same base and between the same parvallels
are equal (Fuclid, i., 37), and the method consists of converting
certain triangles, obtained from the figure, into other equal
triangles, having one side in the same line as a side of the given
figure—that is, parts are cut off the figure in some places while
equal parts are added on in other places.

Let A BOD E F be the given figure. Produce A F to be the
base of the required triangle. Then starting at the point A,
join A O, and through B draw a parallel, B G, meeting F A in
G. Join OG. Then ABO and A GO are equal triangles,
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being on the same base, A C, and between the same parallels,
A O, BG, but the part H A O is common to both, therefore
the part BH O (taken off the figure) is equal to the part
GHA (added to the
figure), and thus the five-
sided figure, GCDEF,
is equal to the six-sided
figure, ABCDEF. Pro-
ceed in the same way, by
B joining DF, and drawing a
H parallel through E to K
and joining DK, the
figure has now only four
G A Kk F _m sides. The construction
Fig 31. is shown for the other
sides, CD, DK, but notice
that as D EF is a “1e-entrant angle,” the joining of D and F
adds on a triangle to the original figure, the result is that
the point K falls within the point F. Then the triangle
C G M is equal to the figure ABODEF.

PROBLEM XXIV. (Fig. 32) —To construct a triangle equal
tn area to the sum or difference of two given triangles.

Let ABC and DEF be the two given triangles. Draw a
line, A G, in the triangle A B O perpendicular to BC to give

n
[V

B G C E F
Fig. 32.

the altitude of the triangle. With D as centre radius, A G,
draw an arc, and draw a line, EH, from E tangent to this are,
as shown Through F draw a line parallel to D E, meeting the
line EH at K. Join DK. Then the triangle DEK is
equal to the triangle D E F, because it is on the same base, D E,
and between the same parallels, D E and F K, and its altitude
is equal to the radius of the arc, which was made equal to
the altitude of the triangle ABC. The triangles A BC and
DEK can, therefore, be added together. Produce E K so that
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K H = BO and join H to D, then the triangle D EH is equal
to the sum of the two given triangles,

Similarly the triangle D EM 1is equal to the difference of the
two triangles ; K M being equal to B C.

Another way of working this problem is to draw the two
triangles together, forming an irregular polygon, and reducing
this to an equal triangle, as in Prob. xxiii

It is clear from the above that the areas of different figures
can be compared either by reducing each to an oblong, and
finding the side of the square equal to each figure, or by redue-
ing the figures to triangles, each lhaving the same altitude,
when the bases of the triangle will represent the area of the
figures. These methods of geometrically comparing areas should
be remembered.

EXAMPLES.

EX. 21—Draw an irregular five-sided and an irregular nine-
sided figure, no side less than 1}", and reduce each figure to
a triangle of equal area

EX. 22.—Construct triangles equal in area to the sum, and
the difference, of the areas of an isosceles triangle base 437,
height 2, and an equilateral triangle of 3" side.

EX. 23.—Draw an irregular six-sided figure, no side less than
1{", and anywhere inside it, draw an irregular four-sided figure,
no side greater than 1". Then reduce the space between the two
figures to a triangle of equal area.

EX. 24.—Construct the following figures, each having a peri-
meter of 9”:—Equilateral triangle; isosceles triangle, base 2°;
irregular triangle; square; oblong, short sides 13"; irregular
quadrilateral ; pentagon ; irregular five-sided figure; hexagon;
irregular six-sided figure. Reduce each to a triangle of the
same altitude, and draw lines the length of which shall represent
the areas of the several figures.

(This exercise should show that with figures of equal perimeter, the
greatest area 13 contained by the figure having the greatest number of
equal sides.)

EX. 25.—Draw a triangle, sides, A B, 4", BO, 3", and OA, 3}".
Then construct a second triangle, A B D, equal in area to A B0,
hagxg; one side in A B, and the angle A BD twice the angle
ABOC. '

EX. 26.—Draw an equilateral triangle 3" side, and construct
a s((lacond triangle equal to it in area, having two of its sides 2"
and 2}".

(First draw a triangle etﬁua.l to the equilateral triangle, having one side
29", and then draw a triangle equal to this, having one side 2}", and the 23*
side commeon.)
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Division of Areas.—The geometrical division of plane areas
generally depends upon the practical application of two of
Euclid's Theorems, the first being that of equal triangles already
referred to, and the second that ¢ the areas of similar fiqures are
to one another as the squares on their similar sides” (Euclid vi., 20).

PROBLEM XXV (Fig. 33).—7o divide a triangle into a
number of equal parts by lines drawn through a given point in
one of s sides.

Let A BC be the triangle,
and P the given point, and
let the triangle require divid-
ing into three equal parts.

Divido the base, B C, into
three equal parts at the points
EF. Join F to P, and through
A draw a line A G parallel to
F P, meeting the base, BC, in
G. Join P G,then PG O is

5 F s onc-third of the whole tri-
Fig. 33. angle. Repeat the construc
tion for the second division.

(If A E be joined, then A E B is one-third of the triangle, but the triancles
HAE and HAP are equal, and have the part H A K common, therefore
K H E, the pait added on, 13 equal to K A P, the part taken away.)

PROBLEM XXVI. (Fig. 34).—7o divide a given irregular
quadrilateral into two or more equal parts by lines drawn from
one corner.

Let A BCD be the given fizure, and let it be required to
divide it into two equal parts by
lines drawn from A.

Join D B, aud bisect it at E,
and join E A, E C. Then the
lines A E, E C divide the figure
into two equal parts, for triangle
D A E equals triangle B A E,
also triangle DCE equals tri-
angle BCE. Join AC, and
through the point E draw E F
parallel to AC, meeting BCin F.
Join A F. Then AF divides
the figure into two equal parts.
For the triangles ECA and
I C A are equal, being on same base and between same parallels,
and the part G C A is common, therefore the triangle GCF
scded on is equal to the triangle G A L taken away.

Fig. 34.
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By repeating the construction for the quadrilateral, A F C D,
the figure can be further divided. The triangle A F B is divided
by simply joining the point A to the division points on F B.

PROBLEM XXVII (Fig. 35).—7o divide a triangle into two
or more equal parts by lines parallel
to one side.

Let A BC be the triangle to be
divided into two equal parts by
lines parallel to B C.

On ecither of the other sides as
A B, construct a semicircle and
bisect it at D. With A as the
centre, radius A D, draw an arc \\

the line E F parallel to B C divides

the triangle into two equal parts. s
(For DA = DB, andangle BDAisa Fig. 35.

right ongle, therefore square on AB

equals twice the square on AD (EBulid i., 47), but A K (which equals

A D) and A B are similar sides of sumlar triangles, and their areas are as
the squares on these sides—that 1s, the tilanczle A EF is half the whole

triangle ABC.)
EXAMPLES.

EX. 27 —Construct a square of 2}” side, and through one
corner draw a line cutting oft’ one-third of i*s area. (8. and
A. E, 1886.)

EX. 23.—Construct a triangle ABC. AB=2},BC = 1§/
O A = 2}". Mark a point D on the side A B, 13" from A, and
through D draw a lhine dividing the triangle 1uto two equal
parts. (S.and A. E, 1891)

EX. 29.—The four sides of a quadrilateral, A BOD, are as
follows:—A B = 45", BC = 3", CD = 4". D A = 5", and the
diagonal A O = ¢". Draw the figure and divide it into five
equal parts by lines drawn from A. (Woolwich, 1385.)

EX. 30.—Describe a circle of 2" radius, and a second circle
of two-thirds its area. (Woolwich, 1881.)

(Areas of circles are to vne another as the squaies on their diameters.)

EX. 31.—Qonstruct an oblong, sides 4" and 11", and through
the middle point of one long side draw lines dividing the obloug
into three parts of equal area.

EX. 32.—Qonstruct a triangle, sides 437, 3", 3}", and divide
it into three parts of equal area by lines parallel to the shortest
side.

EX. 33.—Draw any irregular six-sided figure, and divide it
into five parts of equal area by lines drawn from the top corner.

)
1
|
1
cutting the side AB in E, then !
i
\I
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(Reduce the figure to an equal triangle, vertex at the top corner, then
divide base of triangle into seven equal parts, and join to vertex, transfer
the points to the figure that falls outside it, by the principle of similar
triangles.)

Miscellaneous Problems.—The following problems are in-
serted owing to their frequent occurrence in engineering drawing,
and the value of the methods employed in admitting of extension
to similar questions. It is not at all uncommon to require the
meeting points of lines whicli meet off the paper, or to draw an
arc of a circle when the centre is inaccessible.

PROBLEM XXVIIL (Fig. 36) —70 draw an arc of a circle
through three given puints, when the centre is inaccessible

Let A B0 be the three given points. Join A C, A B,and BO.
With A and C as cen-
tres, and radius A C,
draw arcs as shown,
and produce A B and
CB to meet the arcs
in D and E respec-
tively. Mark a num-
ber of small distances,
E1,12, 23, &c.,alony
the are, below E, and

Fue. 36. equal distances, D 1’

° 1'2, 2’3, &e., above D.

Join A to D2, and C to E2 by lines cutting at the point I.

Then F is a point in the required arc. Continue the construc-

tion for finding other points between A and B, and for points

between B and O in a similar way by taking equal distances
below D and alove E.

(This method depends upon the fact that all angles in the same segment
of a circle are equal (Kuchd m., 21). Smce K2 and D2’ are equal arcs of
equal circles, the angles D A2 and E C2 are equal (Kuclid iii., 27), also
the angles A G F and C G B are equal, being opposite angles (Bucli/ i , 15),
and, therefore, the third angle in each triangle, the angles AFC aund

A BC are equal )
EXAMPLES.

EX. 34.—Draw a tangent to a circle from a point in the
circumference without using the centre of the circle.

EX. 35.—Three points, A B C, are on the circumference of a
circle, and are thus situated, A B=3-25", BC=275", AC=55".
Draw the arc of the circle passing through the points without
using the centre. (Woods and Forest, 1886).

EX. 36.—Draw an arc of a circle of large radius, and then
find points in continuation of the arc in one direction without
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using the centre of the circle. In the same circle, equal angles
are contained by equal segments.

(On the given arc draw any chord, A B, and draw an angle, A BC, in the
segment. At any other point, D, in the arc, et off the length A C to E, and
then set off the angle ACB at E, and the angle C A B at D, these two
lines will meet at F, which will be a point in the arc, for the triangle
D E F will be equal to triangle C A B.)

PROBLEM XXIX.—70 bisect the angle between two straight
lines without using their meeting points.

Draw a parallel to each line inside the angle at an equal
distance from each. These two parallels will meet at a point if
drawn at a sufficient distance from the given lines, and will
make an angle equal to that between the given lines. Bisect
this angle in the usual way, and the line will bisect the given
angle.

EXAMPLES.

EX. 37.—Draw any two lines inclined to each other but not
meeting, and bisect the angle between them, assuming the
meeting point to be inaccessible.

EX. 38.—Draw any two lines at an angle to each other but
not meeting, and find a point between them, such that its
distance from the two lines shall be as 3 : 5, also a point outside
the lines so that its distance shall be as 1 : 4.

PROBLEM XXX. (Fig. 37).—7To draw a line through a
given point which shall meet at the intersection of two given
wnclined lines, when that intersection point is inaccessible.

These conditions frequently occur in graphical solutions of
roof stresses, when an inclined
wind pressure is taken into
account. In such a case the Q R
inclined resultant, R, of the
downward forces is known, and
the reaction at P which is
vertical, that end being on
rollers, also the point, Q, through D B,
which the other reaction must
pass. Then, knowing that the
directions of the three forces,
P R Q, must pass through the B N
same point, it is required to find Fig. 37.
the direction of the reaction Q.

Let Q be the given point, and P B and R A the given lines.

Draw any triangle, I’ A Q, starting from the given point Q,
and having angular points at A and Q
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Then start from' any other point, B, on the line P B, and draw
a similar triangle, B C D, so that B D is parallel to P Q, BC to
PA,and OD to A Q; thus, obtaining the point D, then the
point D is in the line joining Q to the intersection of P and R.
and the line Q D can therefore be drawn.

EXAMPLES.

EX. 39.—Draw any two lines inclined to each other but not
meeting, and mark a point, P, outside and a point, Q, inside the
lines. Then draw lines through P and Q to meet in the
intersection of the given lines, without using that intersection.

EX. 40.—Draw any two lines approaching each other but not
meeting, and mark a point, P, between them. Then draw a
circle to pass through P, and to touch the two given lines, with-
out using their meeting point.

(First draw the line bisecting the angle, then draw any circle not pass-
ing through P, and touching the lines; next draw the line passing through
P, to meet at the intersection of the lines cutting the circle in A. Join A
to the centre of the circle, and through P draw a parallel to this line,

meeting the hisecting line of the angle 1n a point which 1s the centre of the
required circle.)

SECTION VI,

GENERAL PROBLEMS ON LOCI-—-PATHS OF POINTS
IN LINKWORK—CONSTRUCTION OF CAMS.

THis section deals with what is perhaps the most important
part of practical plane geometry, when regarded as a part of
engineering drawing. There are very few mechanical engineers
who do not frequently require to trace out the paths of certain
points in wmechanisms, such as engine valve gears and straight
line or parallel motions, or to determine the form of grooved or
curved plates called “ cams,” such that a certain desired motion
may be produced. The geometrical constructions employed
consists of finding a number of points in the particular path, or
in the curve of the cam, and then drawing as smooth a freehand
curve as possible through the points, and the student should
remember that the number of points found is entirely a matter
for individual decision, and should be settled by a consideration
of each particular case. As a general rule, there are certain
important parts of the curves, such as where the directions
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change, where it is advisable to find more points than at other
parts. The first set of the following problems on lines and
circles deals with conditions which cannot be met by the
ordinary methods of coustructive geometry, and should, there-
fore, be regarded as important.

It is customary to speak of the “locus ” of a point rather than
of the “path” of the point, locus being a mathematical term for
the path in which any given point travels; as, for example, the
locus of the centre of the crank pin of an ordinary engine is a
circle, while the locus of a point on the piston is a straight line.

PROBLEM XXXI. (Fig. 38a).—T1'o draw the locus of the
centres of curcles, touching a given circle, and passing through a
given point—that is, to draw a curve, every point on which shall
be equidistant from the circumyerence of the given circle and jrom
the given point.

Let A be the given circle, and P the given point outside it.
Join the point P to the centre of the circle by a line cutting
the circle in B, and bi-
sect the distance, B P,
in C. Then C is evi-
dently one point in the
locus. Mark any point,

2, between O and B, and

a point, 2', between C A

and P, so that C 2=C?2",

With P as centre, and

radius, P 2, draw an arc,

and with A as centre

and radius, A 2, draw a Fig. 38a.
second arc cutting the

first arc above and below the line AP at the points D and E,
Then, as P2 = B2/, the poinis D and E are evidently points in
the required locus. Other points in the curve are found by mark-
ing other equal distances, as C3 and C 3, on both sides of C,
and proceeding as before. In drawing any circle from a point
in the curve touching the given circle, and passing through the
point P, the point should be joined tc the centre of the circle
and to P, to give the points of contact.

Notice that it is only necessary to draw the arcs at about
where they intersect, also that it is better to take the first one
or two points very near to C.

PROBLEM XXXII. (Fig. 38b).—To find the centre of the
circles touching a given line and two given circles—that s, to find a
point which shall be equidistant from the line and circles.
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Let the circles have the centres A and B, and let C D be the
given line. It is necessary first to find a curve equidistant from
the circumference of the two circles, and then a second curve
equidistant from one of the circles and the given line. These
two curves will intersect in a point, which will be equidistant
from the line and the circles, and will, therefore, be the centre of
the required circle.

First find points in the curve equidistant from the two circles,
exactly as in the last problem, by drawing arcs centres A and B
through the points on A B as shown. Notice that when the two
circles are of equal diameter, the curve is « straight line, and that
when unequal, the curve bends towards the smaller curcle. A point
8 a circle of indefinitely small radius.

Fig. 38b.

Next draw the curve equidistant from the circle B and the
given line CD. Draw a perpendicular, B C, from the centre of
the circle to the line, and bisect the distance OF in G. Then
G is evidently one point in the curve. Mark equal distances on
either side and procced as before, noticing that the points re-
quired are the intersections of straight lines through 1’, 2, 3',
parallel to the given line, and circles through the points 1, 2, 3.
drawn from the centre of the given circle.

EXAMPLES.

EX. 1.—Draw a straight line of indefinite length, and at any
point, C, in it draw a perpendicular, C D, 14" long. Then draw
a curve, such that all points on it shall be equidistant from the
line and the point D.

(It will be scen later on that this curve is the mathematical curve known
a8 & Parabola.)
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EX. 2.—Describe a circle of 3" diameter, and mark a point,
P, outside the circumference 1” away, and a point, Q, inside the
circumference §” away. Then draw curves equidistant from
point P and the circle, and point Q and the circle.

EX. 3.—Draw two circles of 13” and {" radius, centres 3" apart,
and a line parallel to the line joining the centres of the circles
24" away from the centre of the larger circle. Then find the
centre of the circle touching the given circles and the given line.

EX. 4—Draw any three circles of unequal diameters not
touching or cutting, and find the centre of the circle touching
all three circles externally.

EX. 5.—Draw any three circles of unequal diameters not
touching or cutting, and find the centre of the circle touching all
three circles and including them.

PROBLEM XXXIII. (Fig. 39).—d pendulum of a yiven lengyth
swings uniformly through
a gwen angle. A point
uniformly descends the pen-
dulum from the top to the
bottom during one comlets
swing. 1race the locus of
the point.

Let A B and A C repre-
sent the pendulum at be-
ginning and end of the
swing. Then the travel
of the point from A
towards B is the length
A B, and of the pendulum
bob the arc, B(C, both
uniformly and in the same
time. Divide both travels Fig. 39
into the same number of
equal parts, say eight, and mark as shown. Draw the pendulum
in the different positions, A1, A2,. .. A7, Then when the
pendulum has reached the position A 3’ the point will have
travelled the distance A 3, therefore, with centre A and radius
A 3 draw an arc to meet the line A 3’in the point, P, which will
be one point in the locus of the point. Proceed in the same way
for other points and draw the curve as shown.

PROBLEM XXXIV. (Fig. 40).—T0 draw the path of a point
tn a link, one end of which moves in a circle while the other end
movas in a stratyht line

4
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(This is the combination of crank, connecting-rod, and guide
bars, so common in steam engines.)

Let A B be the link, the end B moving in the circle of centre
C, while the end A (the piston end) moves in the straight line
through A C.

Divide tae circle into any number of equal parts, and mark
1,2 ... 12 asshown. (Twelve is the most convenient num-
ber, as a quadrant can be divided into three by marking off the
radius from each end.) With the length, A B, of the link as
radius, and the points 1, 2, . . . 12 as centres, cut the line A Q
in the points 1/, 2, 3, . . . 12/, and join the points 2, 2; 3,3, ...
thus drawing the link in each of the twelve positions. Then
measure off from either end of the link in each position the
distance from that end of the point, the locus of which is

1R
3

Fig. 40,

required, thus obtaiming the points P% P3, . . . through which
the curve of the complete path is drawn.

It is interesting to note how the path of different points in
the rod changes from a straight line at the guides (the end A),
through oval curves of different degrees of convexity, until it
reaches a circle at the crank end, B. Points in an extension of
the rod beyond B, travel in oval paths, the long axes of which
are at right angles to the line AC. Notice also that the piston
end, A, does not move uniformly with an uniform movement of
the crank.

PROBLEM XXXV. (Fig. 41).—T0 trace the locus of a point
tn the linkwork known as Watt's Simple Parallel Motion.

This linkwork consists of two links, A B and CD, pivoted at
A and D, and having their other ends connected to a shorter
link, BC, to a point P in which the piston-rod is attached.
The link A B is the engine beam, and the link C D the radius
bar. When the links are equal, the point P is in the middle
of the short link, BO, This linkwork is also used on Richard’y
Engine Indicator
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With centres A and D, and radii AB and D O respectively,
draw arcs EBF and GCH. The end B must always move in
the arc EB F and the end C in the arc G O H.

In problems of this kind it is always best to start by finding
the limiting positions of the links. Suppose the link A B is
moving upwards, then its limiting position is AE, when DC
and O B are in one straight line. Find the point E by taking
the sum of the lengths D C and CB as radius, from centre D.
If the line A B now moves down, DC will continue to move
upwards until the end C reaches the position G, where A B and

Fig. 41.

BO are in one straight line. In a similar way the limiting
bottom positions ¥ and H are found.

To find the path of P for the complete movement of the link-
work, draw the links in a convenient number of different posi-
tions, and mark the position of P. For example, if link A B
moves to A1, then, with length of link B C as radius, and
point 1 as centre, cut the locus of C (the arc HCG) in 1, and
join the points 1 and 1’, then mark the point P as P'. Notice
that it is unnecessary to draw the links A B and O D, and that
it is better to find a greater number of points at places where
the curve changes in direction.

A very convenient method of obtaining points in the travel
of the point P is to mark off the points B P C along the straight
edge of a slip of paper, and the correct distances apart, and then if
the paper be moved so that the point B is always on the circle
EBF, and the point C on the circle G CH, the different posi-
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tions of the point P can easily be marked. Care must be taken
to move the points B and O in the right direction, since they
do not both always move in the same direction. This mechanical
method may be very accurate, and admits of useful extension to
similar problems.

In the application of this linkwork to steam engines, the
travel of the point, P, does not exceed that part which approxi-
mates to a straight line.

EXAMPLES.

EX. 6.—A pendulum, 4 feet long, is moved from rest, and
makes one-halt swing to the left and one complete swing (through
40°) to the right, while a fly travels from the top to the bottom.
If the travels are uniform trace the path of the fly. (Scale 1°
= 1 foot.

EX. 7.)——(a) A connecting-rod is 3' 6" long, the crank being 6"
long. Trace the paths of points, 1’ 3", from each end of the rod
during one complete revolution of the crank. (4) Mark on the
line of travel of the piston end of the connecting-rod, the
distances representing the travel of that end, while the crank
pin end travels uniformly. (¢) Work the same problem when
the connecting-rod is 1’6" long, and notice how the motion of
the piston is affected by the length of the connecting-rod.
(Scale 13" =1 foot.)

EX. 8.—A parallel motion consists of two arms, 4" long,
pivoted at their outer ends, and connected by a link 2" long.
In the central position the arms are parallel, and the link is
inclined to them at 60°. Draw the complete path of (a) the
central point of the link, (b) a point }” from one end. (Vict. U.
Hon., 1891.)

EX. 9.—Draw two lines, AP, OP, 23" and lﬁ' long respec-
tively, meeting at a point, P, so that angle APB = 60°. Pro-
duce AP to B, and CP to D, so that AB = 4", and CD = 2"
If AB and OD are links pivoted at A and C respectively, and
P is a saddle which can travel along C D at two-fifths the speed
it can move along A B, trace the locus of P. What is this
curve! (S.& A. A, 1888.)

EX. 10.—Draw a rhombus A BOD, sides 13" long, acute
angles at B and D = 45°, and mark a point, I’, in B C }” from C.
Draw a circle of 113" diameter passing through O, such that the
centre is on A C produced and beyond it. If the rhombus is a
linkwork pivoted at A, trace the locus of the point P, when the
jI%int,)C, moves in the circumference of the circle. (8. & A. A,

87.

EX. 11.-—-A point O is 1§" from she centre of a cirole of "
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radius. Determine the locus of the centres of circles bisecting
the circumference of this circle and passing through the point O.
(8. & A. A, 1891.)

(If the circles bisect the circumference of the given circle, they must pass
through the ends of diameters. 'Therefore, by drawing a diameter in
different positions, the centres of circles can be found, which would pass
through the ends and the given point.)

Pantograph (Fig. 12).—This consists of an arangement of
links in which two ,

points move in simi-
lar paths, and is thus
capable of application y

{’or reducing and en-
argin an ven .
pattcr%. V8 Fig. 42.

A Cisa link pivoted at A, the links BE, E D, and D C form
a parallelogram with the part BC. If aline be drawn from A
through any point, P, in BE and produced to meet a point, I,
in CD or CD produced, then the points P and P’ trace out
similar paths, the locus of P’ being the larger, for all positions of
the linkage.

EX. 12.—Draw a pantograph as in Fig. 42 as follows:—
AO=4}", BC=1}, BE=]", BI’=1{", angle ABE =60,
and trace the locus of P’ when P moves in an equilateral
triangle of 1" side.

Watt’s Double Parallel Motion (Fig. 43).—This consists of
a simple parallel
motion (Fig. 41)
added to a panto-
graph (Fig. 42).
The simple links K
AB BGQ,and CD Fig. 43.
cause the point P
to move for a short distance in a straight line, while the panto-
graph links, A BE,BO, C P, and P’ E, give a similar movement
to the point P'. The link A E is half the engine beam, the
piston-rod being attached to P’, and the pump-rod to P.

EX. 13.—Draw the linkwork of Watt’s double parallel motion
as in Fig. 43 as follows:—A E=3}", AB =2}, BC=§¥", angle
A BC=060". Join the points A P’"to give P, then find length of
O D knowing that 8-3 = gg Trace out the paths of P and P’
for all positions of the links.

Scott-Russell’s Parallel Motion (Fig. 44).—This is the
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linkage applied to the “ Grasshopper” type of side lever engine.
A B is a link pivoted at A, and connected at B to the centre of
the link P C, so that AD =B P =BC. Hence, Bis the centre
of a circle passing through P A O,
v having P C for a diameter, there-
\P  fore if the point C move in the
: line A C, the point P will move in
! the line I’ A perpendicular to A C,
c ' since the angle P A O must always

2 bearight angle (£uclid iii., 31).
In actual practice it is more con-
venient to attach C to the end of a
radius bar, O D, pivoted at D, as
with a small movement the paths
of C and P are sufficiently in
D straight lines for all practical pur-
Fig. 44. poses. The dotted lines show the

travel of the radius bar.

EX. 14.—Draw the linkwork of Scott-Itussell’s parallel motion
(Fig. 44) as follows:—A B = 1}, CD = 27, angle A BP = 457,
and trace out the path of P, while P moves in a line equal in
length to twice P A.

Peaucellier’s Straight Line Motion (Fig. 45).—This was
invented by a French military officer in 1801, and consists of
eight* links, so arranged that a certain point moves in a perfect

Fig. 45.

straight line for all possible positions of the linkwork. The
links A B and A O are equal, and are pivoted together at A,
their other ends are attached to two corners of an equal four-link
frame, BD C P, of which the corner, D, is attached to one end

* In counting the number of links in any linkage, the fixed link, as A K
in Fig. 45, is counted.
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of a short link, D K, having its end, E, pivoted in the line AP,
and such that AE = ED. Under these conditions the point
P moves in a straight line, but if the distance A E is made
greater or less than the length of the link E D, then the point
P draws the arc of a circle having its centre to the right or the
left of P respectively, the radius of which depends upon the
ratio of A E to ED.

EX. 15.—Draw the linkwork of Peaucellier's straight line
motion (Fig. 45) as follows:—AB=AC =4}, AE=ED =
1, DB=DC = CP = PB = 1}, and trace out the path of
the point P for all possible positions of the Jinks.

(Notice that the limiting positions are reached when the links ED, DB
and E D, D C become a straight line.)

EX. 16.—Draw the linkwork of Pecaucellier’s straight line
motion as in Fig. 45, but waking A E = 1” in the first case, and
21" in the second case, and trace the path of P for each case.

Parallel Motions for Engine Indicators.-——~These comprise
some important applications of straight line linkages, and atford
very useful examples in drawing.

Thompson’s Indicator (Fig.
46).—The end, A, of the link A
B is attached to the piston of
the indicator by a ball and socket
joint, so that A moves in the ver-
tical straight line shown dotted.
OD and FE are swinging links
pivoted to the indicator at D and
F respectively. The pencil is
fixed at P, and moves four times
the distance of the piston travel,
which is usually ". The pencil
link P B C is horizontal, and the Fig. 46.
link C D vertical, when the piston
is st mid-stroke; and the points P A D are in one straight line
for all positions of the movement.

EX. 17.—Draw the linkwork of Thompson’s indicator in posi-
tion at bottom-stroke as follows :—P E = 1-81", PC == 315" =
4 times BC, BA =134, CD = 177", EF = 098", pivot D is
0-78" to right of dotted line of piston travel, and pivot F is 1-45"
to left of same line; the pencil point P is 2:24” to the left of the
line and a distance equal to halt the travel of the pencil below
the pivot F. Find at least 6 points in the path of P for a travel
of the point A of §". Scale twice full size.  °

Crosby Indicator (Fig. 47).—The piston-rod is shown by

[
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A B, and moves in a vertical straight line. A short link, B E,
connects the piston-rod to the pencil link, PEF, and is con-
nected at the point C to one end of a short swinging link, D O,
pivoted at D to the indicator.

F  The end, F, of the pencil link

E is attached to one end of a
P D swinging link, F G, pivoted at
: G to the instrument, and the

pencil is fixed at P. The
piston-stroke is §’, and is

) 8 Inultiplied six times.
! EX. 18.—Draw the link
Fig. 47. work of Crosby’s indicator

(Fig. 47) in position at half-
stroke. Pencil link horizontal, fixed point G is §” from piston-
rod centre, fixed point D " from piston-rod centre and 1"
sbove G. BE =%, BC={, GF=1{,DC=4y%", FP
= 33" = six times FE. Then draw path of P for a travel of
the piston rod A B of §”. Scale twice full size.

Tabor Indicator (Fig. 48).—In this instrument the short
link OD or E F of the Thompson or Crosby Indicator (Figs. 46
and 47) is dispensed with and
replaced by a small pin, which
is made to move in a curved
slot cut in a small plate fixed
to the instrument, the shape
of which causes the pencii to
move in a straight line. The

piston-rod is shown by A B
P Iy and is connected at B by a

short link B C to a point C in

the pencil-rod P E, theend K

of the pencil-rod is attached

to the end of a swinging link
Fig. 48. E F, pivoted at F. Theslotted

plate is shown at G, the pin D
moving in the slot. The stroke of the piston is §”, and is mul-
tiplied five times. The points F BP are in the same straight
line at all parts of the stroke.

EX. 19.—Draw the link work of the Tabor indicator as in
Fig. 48, when at bottom of stroke; the line F B P being hori-
zontal. Lengthof EP = 31" = five times EC,CD = EC,EF
= 1}" and F is fixed %" from centre of piston-rod. Links BC
and K F are parallel. Trace out shape of curve in plate G, while
P moves in a vertical straight line for 33", Scale twice full size.
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Link Work for Atkinsons’ Differential Gas Engine (Fig.
49).—The object of this very ingenious arrangement of links to
give two forward and two backward strokes of different lengths
to the piston of the gas engine while the crank makes one
complete revolution, thus giving one explosion per revolution.
The crank shaft is shown at A, A B being the crank, the end
B is connected by a link, BCE, at the point O to the end C
of a swinging arm, O D, longer than the crank, and which,
therefore, swings twice through a certain arc while the crank
makes one revolution. The piston-rod, P E, is connected by a
working joint to the piston at P, the opposite end being attached
to a point E in the link B CE. As a result of this arrangement

.-

S
:‘:’3’.---- >
1

7

Fig. 49.

the piston moves in a horizontal line as follows, supposing it
to start from the back stroke the crank A B being at about the
position B’ :—

1) Outwards for a short stroke while the crank moves through
59°, the link D O moving downwards, the charying stroke ;

(2) Inwards for a shorter stroke, while the crank moves
through 76°, the link D C moving upwards, the compression
stroke ;

(3) Outwards for a much longer stroke, while the crank moves
through 92° the link D O moving upwards, the explosion stroke ;

(4) Inwards for a stroke of the same length as (3), while the
crank moves through 133°, the link D O moving downwards, tke
exhaust stroke ; the crank having thus made one complete revolu-
tion. The connecting-rod, P E, is inclined at 21° to the centre
line of the movement of the piston, when at the limiting top and
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bottom positions. These limiting positions are when the link
B C and the crank A B are in the same straight line.

EX. 20.—Show the travel of the piston in an Atkinson's
differential gas engine for an arrangement of links, as in Fig.
49. Take at least twelve different positions of the crank.
Oonnectingrod, P E = 3/, radius link, DC = 1’ 6", crank 123"
long, 0B = 2’ 2§", CE = 4", angle BCE = 95°. Scale, 3"= 1"

Joy’s Valve Gear (Fig. 50).—This arrangement affords a
very useful example of the paths of points in linkwork, and is
besides of great service in leading up to the drawing of valve
diagrams. The slide valve is worked through a system of rods,
which derive motion from a point in the connecting-rod, thus
dispensing with the usual eccentrics and link motion. In Fig.
50 is shown the arrangement for a large vertical marine engine.
P Cis the piston-rod, CB
the connecting-rod,and BA
the crank. A link, DE, is
attached at one end to a
point D in the connecting-
rod, and at the other end to
the end E of a swinging link
orradius-rod, E F, pivoted
at the top end, F. From
a point G in the link D E,
a long link, G L, is carried
to the front of the engine,
and is connected at its end,
L, through the link LM
to the slide-rod M N, which
moves in a parallel vertical

line to the piston. A point,

H, in this link is connected

J to one end of a radius rod,

8 H K, the upper end of

Fig 50. which is pivoted at K. Re-

versing is effected by attach-

ing the link HK to a moving frame, which can swing about a

pivot below K, so that H K can be moved through a sufficient

arc to move the linkwork for reversing. The locus of the points

E and H are, of course, circular arcs, and in drawing the link-

work it is usual to trace the complete paths of the points D, G,
and L.

EX. 21.—Draw the linkwork of Joy’s valve gear, as in Fig.
50. CQonnecting-rod, CB=72", OD = 31"; crank, AB =
1'8}"; link FE = 4'84"; link DE=2¢"; DG = 8"; link

»

.

€ —~ -7
= = =881




r~ GENERAL PROBLEMS ON LOCL 59

GL=6'2"; LH=1'1"; link LM =4 3"; link HK =
3' 5. Trace out the complete paths of the points D, G, and
L for one revolution of the crank. Scale, 1” = 1'.

Ordinary Link Motion.—An example of the common form
«of link motion as used on locomotives, to enable the engine to
be reversed and the travel of the slide valve to be altered while
ithe parts are in motion, is illustrated in Fig. 50b.

A is the shaft centre, and A B the crank when at one of the
«dead centres. A Cand AD are the centre lines of the two
-eccentric sheaves, and have connected to them in the usual way
the eccentric-rods D E and CF. The ends, E F, of these rods
are attached to the top and bottom of the curved link, EG F,
which is capable of sliding up and down through guides at G,
which guides form part of the slide valve rod, G H. This rod,
‘G H, can only move to and fro along the line H G A, and receives
the motion of the curved link at G. The link, thercfore, swings
about the point G as a centre, although it will be understood

Fig. 500,

that it can be so mo.ed relatively to the valve-rod, as that any
part of it can be brought opposite the rod. In the centre position
shown, the rod H G will not receive any movement from the
link, but if the link be moved down so as to make the points
E and G coincide, then all the motion of the eccentric ED A
will be transmitted to the valve-rod, and similarly for the eccen-
tric, F C A, when the points F and G coincide. The movement
of the link is effected by the rod GJ fixed to the link at its
centre point G, by a connection independent of that which affixes
the link to the valve-rod, the end J, of this rod being connected
to one end of the bellecrank lever J K L, which turns about the
fixed point K as a centre. LM is the reversing rod which
works the lever J KL, and CW is a counter-balance weight,
but these are not material for the purposes of the drawing
required. The eccentrics AD and AC are to be regarded
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simply as cranks, to which they are in every sense identical so
far as the motion they transmit to the rods is concerned.

EX. 22, Draw the link motion in outline as shown in Fig.
505. Scale 11" = 1. Lengths as follows:—A B =1,AD =
AC=3;" =BAO=_-BAD=115" CF=DE=V¥
31", radius of link, EG T = 5' 31", EF = 1’ 6" (this is length of
line joining EF),GJ =1'1",J K = 1'3}". Trace out the paths
of the ends E and F of the link, when in the central position
shown, for one complete revolution of the crank, taking at least
10 points.

Cams,—A cam is usually either a plate with a curved edge,
or containing a curved groove, the shape of which is arranged
to impart a reciprocating linear movement to a given piece,
while the cam itself receives uniform circular motion. Such
pieces of mechanism are very common in general machinery,
especially in sewing, weaving, and printing machines, and it is,
therefore, very desirable for the engineering draughtsman to
understand the principles of their design. The motion trans-
mitted by a cam, although always linear, may be either uni-
form or variable, depending upon the shape of the cam; for
example, a common form of lever punching machine is fitted
with a cam, which gives to the punch an upward movement,
a period of rest, and a downward movement, during each revolu-
tion of the driving shaft. It is important to remember that
cams almost always receive a uniformn circular motion, for on
this fact the construction depends.

It was pointed out in connection with Prob. xxxiv. (Fig.
40) and Ex. 7, p. 52, that the combination of a crank and con-
necting-rod, one end of which moves in a straight line, does not
give a uniform linear movement, for a uniform circular move-
ment of the crank, but gives a motion which varies with the
ratio of the connecting-rod length to the crank length. Hence
any piece attached to this end, such as the piston, does not
receive uniform linear motion. It is, however, easy to shape a
cam which shall transmit a uniform linear motion, and it
happens that the outline of such a cam coincides with a curve
&known in mathematics as the Archimedean Spiral, and we shall,
therefore, first show how to construct such a spiral.

Spiral.—A spiral may be defined as a curve which approaches
to, or recedes from, a certain fixed point called the Pole.” Each
complete revolution of the curve is called a ‘‘convolution,” and
hence a spiral may make any number of convolutions before reach-
ing the pole. The line joining any point on the curve to the pole
is called a ‘‘ radius vector.” .

In an Archimedean Spiral the curve approaches the pole
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uniformly, so that the radii decrease in length uniformly with the

increase of the angle passed through from the starting or initial
line,

PROBLEM XXXVI. (Fig. 51).—To construct an Archimedean
Spiral of 1} convolutions, when the greatest radius ts known.

Let O be the pole and O A the greatest radius. Describe the
circle having the pole as centre and O A as radius, and divide
the circle into any number of equal parts, join each division
point to the pole, and figure as shown. Then A may be
regarded as a point which moves uniformly down the line A O,
while A O rotates uniformly, and which reaches O when A O
has made 1} revolutions. Therefore, divide A O into three
equal parts, and mark
the second division
from O as B, then the
point must reach B
during one revolution.
Divide A B into the
same number of equal
parts as the circle, and
mark as shown. Then
it is evident that when
the line O A reaches
the position O 3, the
point will have moved
down the line three
divisions of A B, and
80 on for each position.
Evidently, then, the
best way of finding the
locus of A is to draw
arcs of circles, with the pole as centre, through each of the
divisions of B A to the corresponding positions of the line O A,
as shown in the figure, The second part of the curve is found
in the same way by dividing the distance, B O, into six equal
parts.

Normal and Tangent.—A normal to an Archimedean spiral
is » tangent to the circle, baving the pole for a centre, and a radius
equal to  the constant of the curve.” This constant is found by
dividing the difference between the lengths of any two radii by
the circular meusure of the angle between them. Therefore, in Fig.
51, measure O A and O C and find O A - O Q0. the angle between

them is 90°, and its circular measure is :n 1-57, therefore
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OA-00
1-57
OM of radius equal to @, then M N a tangent to the circle is
a normal to the curve, and a line, ST, at right angles is a

tangent.

It is evident from the construction, that a cam shaped to the
curve of the spiral would impart linear motion to a point uniform
with the circular motion of the cam. Qams are, therefore, made
to this curve whenever such a motion is desired. Such a cam is
shown in Fig. 52, and is known as the Heart Shape. It consists
of two equal parts of an Archimedean Spiral reversed to each
other, and symmetrical about the diameter, A OB, and thus
gives a uniform rise and fall, through a distance equal to A O -
B O—that is, equal to the greatest radius, minus the least radius,
technically called the “¢ravel.” If a semicircle be drawn with
the pole O as centre, tangeut
to the curves of the cam, and
replacing the lower half of
the spirals as shown in Fig.
52, then it is evident that
the point moved by the cam
will remain at rest, while the
circular part of the cam CDE
is in contact with it, and will
rise and fall uniformly when
in contact with the curved
parts CA and AE. This
form of cam is the one already
referred to as being used in
punching machines, giving,
- as will be seen, a uniform

kg, 52. rise for a quarter revolution

of the shaft, a uniform fall

for a quarter revolution of the shaft, and a period of rest for a
half revolution of the shaft.

So far, cams have been designed to impart motion to a ¢ point,”
but it is obvious such a condition is impossible in practice. Cams
invariably transmit their motion by making contact with a roller
of convenient diameter, thus giving very smooth working. But
the use of a roller necessitates an alteration in the shape of the
cam from that already designed, the desire being that the centre
of the roller shall move in the path of the cam as traced in Fig.
52. To ensure this, a curve must be drawn parallel to the
original curve, inside it, at a distance away equal to the radius
«f the roller. This is best done, as in drawing the parallel to an

the constant of the curve is = a. Draw the circle
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ellipse (Fig. 20), by describing a large number of small arcs, with
points on the original curve as centre, and with radius equal to
the radius of the roller, and then drawing a smoéth freehand
curve, touching the arcs, as shown dotted in Fig. 52. Such a
curve is called a parallel to the original curve, and is not neces-
sarily a similar curve. The necessity for drawing this parallel
curve can be seen in another way by referring to the figure.
Let R and R’ be two positions of the roller, for we may suppose
$he cam fixed, and the roller to be moved around the cam. Then
the travel of the roller is the vertical distance, R F, between the
centres of R and R'. But if the rollers were the points G and
H, the travel would be the distance G K, which is not equal to
R F, as the normals G R and H R’ are not parallel.

In designing cams for practical use it is necessary to know the
diameter of the shaft or rod on which the cam is fixed, the travel,
and conditions of movement, the least amount of material beyond-
the shaft, and the radius of the roller. When these are known,.
the least radius of the original curve will be equal to the shaft.
radius + metal beyond shaft + roller radius, and the greatest.
radius will be equal to the least radius + the travel. Care must
be taken that the curves of the cam do not rise or fall too sud-
denly, or the roller will jamb. Two or more cams can be fixed.
together, and be made to work rods so jointed, that a given point
in the rods shall trace out almost any desired path, such, for ex-
ample, as the outline of letters.

EXAMPLES.

EX. 23.—Draw the curve of an Archimedean Spiral of two
convolutions, greatest radius 5”. Show by three examples that
the length of the radii at different points vary with the angle
passed through by the radius from the initial position.

EX. 24.—Work parts b and ¢ of EX. 7, p. 52, then draw the
curve of & cam to give an uniform rise and fall of 3” to a roller
1”7 diameter, during each revolution of the cam ; least radius 2}".

EX. 25.—Draw the shape of a cam to give the following
motion to a point:—first quarter of a revolution, point raised
uniformly 3}"; second quarter, point falls uniformly 3}°,
remainder of a revolution point remains at rest.

EX. 26.—Draw a cam which has to raise a valve at a uniform
rate 6” in two-fifth revolution, and lower it the same distance
n one-fifth revolution. The valve remains at rest in the upper
position for one-tenth revolution, and in the lower position for
the rest of the revolution. Diameter of shaft 4". Least metal
sround shaft 2° Scale half full size. (Vic. B. Sc. Hon., 1889),
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EX. 27.—Draw a cam to give the following motions. It
revolves uniformly at a rate of two revolutions per minute, a
tappet is to be raised 4" at a uniform rate in b seconds, and
allowed to remain in that position for 5 seconds; then allowed
to drop 17 and remain there another b seconds, again raised to
4" for 10 seconds, and then allowed to drop suddenly to its
original position, and remain there until again required to be
raised. Diameter of shaft 3", of roller on end of tappet 1},
least metal around shaft 2°. Scale half full size.

EX. 28.—Draw a line C A 3" long, and from end A draw a
line AB so that angle CA B = 150°, make A B = 5" and
AD=2}" Cisthe centre of a shaft 13" diameter, and A the
centre of a roller 1}" diameter iu its lowest position. The
roller is moved by a cam on the shaft along the line A B as
follows :—One-third of a revolution raised from A to D uniformly,
one-sixth of revolution remains at rest, one-fourth of revolution
raised uniformly from D to B, one-fourth of revolution falls back
from B to A. Scale half size. (8. & A. H., 1887.)

SECTION VIIL

CONSTRUCTION OF ELLIPSE, PARABOLA, HYPEK-
BOLA, CYOLOIDAL CURVES AND INVOLUTES.

It is very important for the draughtsman to understand the
construction, and some of the more useful properties of certain
well-known mathematical curves, such as are frequently made
use of in practical work.

These curves include the ellipse, parabola, and hyperbola,
known as the conic sections, in consequence of their being
derived from three different plane sections of a cone (see
Figs. 86a, b) and used for the curves of arches, bridges, and
roofs ; the cycloidal curves used in constructing the teeth of
wheels ; and the involute of a circle used for the same purpose,
and for the blades and guides of turbines,

These curves, as in the case of spirals and paths of points
(Section vi.) can only be geometrically constructed by finding
a number of points through which it is known the curve must
pass, and then drawing the curve through these -points by
freehand or with the aid of French curves. Arcs of circles
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cunnot be employed with any degree of accuracy ; and as pointed
out in previous examples, the greater the number of points
found, the more accurate the curve, although for ordinary
purposes it is usually sufficient to find the points not nearer than
from §” to 17 apart.

Ellipse, Parabola, and Hyperbola.*—Given a fixed straight
line, and a fixed point, it is possible for another given point to
move in three different ways with regard to its position from
the fixed line and point. It can move, firstly, so that its dis-
tance from the line is always greater, in a constant ratio, than
its distance from the point; secondly, so that its distance from
the line shall be always equal to its distance from the point;
and thirdly, so that its distance from the line is always less, in
a constant ratio, than its distance from the point.

The three curves traced out under these different conditions
are respectively, the ellipse, parabola, and hyperbola.

Hence we have for definitions of these curves—

Ellipse.—An ellipse is a curve traced out by a point moving in
such a way that its distance from a fixed straight line is always
greater than its distance from a fixed point, in a constant ratio.

Parabola.—A parabola is a curve traced out by a point moving
in such a way that its distance from a fixed straight line is always
equal to its distance from a fixed point.

Hyperbola.—An hyperbola is & curve traced out by a point
moving in such & way that its distance from a fixed straight line
is always less than its distance from a fixed point, in a constant
ratio.

The fixed straight line is called the directrix, the fixed point
the focus, and the line passing through the focus at right angles
to the directrix, the axis. Lines at right angles to the axis ter-
minated by the curve, are ordinates. The vertex of the curve is
the point where the curve cuts the axis.

The ellipse is a closed curve, and has two directrices and
two foci. The parabola is an open curve having one directrix
and one focus. The hyperbola is an open double curve, having
two directrices and foci.

These three curves can be constructed by an almost identical
process, so that one example will suffice.

PROBLEM XXXVII. (Fig. 53a).—To construct an ellipse
when a directriz and a focus are given, also the vertex and axis.

Let XY be the directrix, F the focus, A the vertex, and the
line through O A F the axis. What is required is to find a

* For the common geoinetrical constructions of an ellipse see Section iv.,
Figs. 19, 20, 21, 22. 5
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P F
number of points, P, so tha.t—P—;%= % where P F is the distance

of P from the focus, and P17 its distance from the directrix.-
This is conveniently done by making A O the hypotenuse and
AT the base of a right angled triangle, A BO, where OB = A F
and angle A BO is a right angle. Then produce the line O B,
mark off any points as 1.2.3 . from A along the axis,
and draw lines through each point parallel to A B meeting O B
in the points 1°2° 3 . .  Draw lines through each of the
points in the axis perpendicular to the axis, from F' as centre, with
distance O 1’ cut the line through point 1 in the points 6 and 7,
also from F with distance O 2’ cut the line through point 2 in the
points 8 and 9, and so on for each succeeding line. Then the

R

X X
N
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Se ,’
2 "y E 7 R

3 /
Y Y
Fig 53a.

points 6.7 .8.9 are in the curve of the required ellipse, for
2T _BO_ 2% Shere 6T and 8T are the dis
6T ~ 8T - A0 — AO Vhere an are the distances
of points 6 and 8 from the directrix.

ontinue this method until the curve is completed.

If the ratio of the distances from the focus and directrix is
given (say %, so that AF = 2 and A O = 3), it is unnecessary to
draw the triangles. Any three equal distances can be marked
along the axis from O, as to O3 and two of these distances
taken as radius from F to cut the line drawn through 3 parallel
to the directrix, and so on for each point. Exactly the same
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method is followed for the construction of the parabola and
hyberbola.

The parabola is, however, more easily constructed by the
method shown in Problem xxxi. (Fig. 38a) for drawing a curve
equidistant from a point and a line, as we now know that curve
to be a parabola. The curve which is equidistant from a straight
line and the circumference of a circle (Fig. 38a) is also a parabola.
The curve equidistant from the circumferences of two unequal
circles is a hyperbola.

After completing the ellipse its second focus, F’, and its second
directrix, X' Y’, can be found. In the right hand of Fig. 53a are
shown a parabola, the curve P, and a hyperbola, the curve H,
which are constructed together with the ellipse about the focus,
F', and the directrix, X' Y",

Tangents and Normals.—The usual methods of constructing
tangents to an ellipse from points in the curve or outside it, have
already been given in Section iv. (Figs. 19, 20). The rule which
applies most conveniently to all three curves when constructed
by the method just described, is the following :—# If the tangent
to an ellipse, parabola, or hyperbola be produced to meet the
directrix, and the meeting point be joined to the focus, the angle
made by this line, with the line joining the focus to the point of
contact, is a right angle.” Thus, in Fig. 53a, to draw a tangent
at the point N, join N to the focus F, draw a line from the focus
towards the directrix at right angles to the line N F, meeting
the directrix in M, then the line N M is a tangent to the curve.

Normals.—The normal to & curve at any point is at right
angles to the tangent at that point. Thus, in Fig. 53¢, NR is a
normal at N, being at right angles to the tangent N M.

EXAMPLES.

EX. 1.—A fixed point, F, is 2” from a fixed straight line X Y.
Find eight points in the path of a point P moving as follows :—
(a) distance of P from fixed point to its distance from the fixed
line to be as 3 to 4; (b; Soint P to be equidistant from fixed
point and fixed line; (c) distance of P from fixed point to its
distance from the fixed line to be as 4 to 3. Draw the curves
and name them.

EX. 2.—Thefocus F of an ellipse is 13" from the directrix X Y,
and the vertex of the curve is 4" from the focus. Draw the
ellipse, and draw a tangent and normal at any point in the
curve.

EX. 3.—Construct a parabola (finding, at least, twelve points
in the curve) when the (ﬁﬁtance of the focus from the directrix
is 1", and draw a tangent and normal at any point in the curve.
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EX. 4.—Construct a hyperbola (finding at least twelve points
in the curve), when the focus is 13" from the directrix, and the
vertex 17 from the focus. Draw a tangent and normal at any
point in the curve.

Construction of a Rectangular Hyperbola.—A. special case
of a hyperbola is one in which the point moves in such a way
that the product of its distance from two fixed lines at right
angles is a constant. Such a curve is a rectangular hyperbola
and is exceedingly useful, because it represents graphically the
relation between the pressure and volume of a gas which expands
according to Boyle’s law (pressure x volume = a constant), a
condition often met with in steam diagrams. A simple construc-
tion of such a curve is as follows : —

Fig. 53b. Let OV and O P be two lines at right angles, and
such that distances along O V represent volume, while distances
along O P represent pressure, and let A be a point in the curve,

L ,’,,/
v A 1 =2 3 £ 5 & 7 C
z
E 2l/d
Z
"”F £
b
(e B 7 2z & + 5,6 7 P
Fig. 53b.

which for ordinary practical problems will generally be the point
from which the curve is required to start. Through A draw
lines A Band A O parallel to O V and O P respectively, the line
A O being produced as far as necessary since there is no limit to
the curve. Mark any distances, equal or unequal, as 1, 2, 3

. . along BP, and draw ordinates through each point, parallel
to A B, to meet the line A C in the points 1',2',3’. .. Join each
of the top points 1', 2, 3" . . to the point O, and mark the
points where these lines cut the line A B, 1%, 2, 3*. .. Through
each of these points draw lines parallel to O P to meet the
ordinate through the corresponding top point, thus 1’ meets
ordinate 11’, 3° meets ordinate 3 3, &ec., these points are points
in the required curve. If this curve satisfies the condition
required, then O B x BA = 02 x 2d = Ot x 4, &c., and this
we see is true, for V O 2 2’ is a parallelogram, of which the figures
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VE2'A and 2' B 2d are complements about the diagonal O 2/,
and are, therefore, equal (Euclid i., 43), while EOB2? is
common—that is, the figure VOBA = figure EO2d, and
similarly for each of the remaining points.

The curve can evidently be produced backwards by a similar
construction, so as to approach the line O V. But it will be
evident that however much the curve be produced in either
direction it can never touch the lines O V and O P, hence the
lines may be said to be continually approaching the hyperbola,
yet never touching it. Such lines are called  asymptotes,” and
when the asymptotes, as in this example, are at right angles to
each other the curve is distinguished as a rectangular hyperbola.

EXAMPLES.

EX. 5.—Draw two lines, OV, O P, at right angles, inter-
secting at O, as in Fig. 535, and mark a point A 1” from OV and
24" from OP. Find at least seven points in the rectangular
hyperbola drawn from A.

EX, 6.—Draw two lines, OV, OP, as in Ex. 5, and mark
& point A }" away from O P and 3" from O V. Draw the curve
og 3 vg'_ect,ungultu' hyperbola from A towards OV to within }”
(o) .

Cyoloidal or Rolling Curves.—There are three principal
curves of this class, each being generated by a fixed point on the
circumference of a circle, rolling in contact with a fixed line or
circle in the same plane. These curves are all used in the con-
struction of wheel teeth.

Cyocloids.—A cycloid is the curve traced out by a fixed point
7p the circumference of a circle, rolling along a fixed straight
ine.

Epicyoloids.—An epicycloid is the curve traced out by a fixed
point on the circumference of a circle rolling round another g¢ircle,
and outside it.

Hypooycloids.—A hypocycloid is the curve traced out by a
fixed point on the circumference of a circle, rolling round another
circle, and jnside it.

Trochoids.—A frochoid is the curve traced out by a point
rigidly fixed to a circle, within or without its circumference, as
the circle rolls along a fixed straight line. When the fixed point
i8 without the circumference, the curve is termed superior, and
when jnside the circumference, inferior. When the circle rolls
round another circle, either outside or inside it, the curves are
known as Epitrochoids and Hypvtrochoids respectively.

The rolling circle is called the generating circle.
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The fixed point is called the generating point.

The fixed line or circle is called the directing line or cirole.

Evolutes and Involutes.—An evolute is the curve formed by
the intersection of normals to a curve. An involute is the curve
formed by drawing tangents to a curve, the length of each tan-
gent being equal to the arc of the original curve from its point
of contact to its intersection with the curve. It is the curve
traced out by the end of a flexible thread unwrapped from the
original curve. Tangents to an evolute are normals to an invo-
lute. Thus, in Fig. 54, a number of normals are drawn to the
cycloid PS Q and the curves P R, R Q are drawn tangent to the
normals ; these curves are evolutes. Also, the cycloid PSQ is
an tnvolute, for, as will be seen later, it passes through the ends
of tangents to the curves PR, R Q, each of which fulfils the
condition that, if P be the intersection of the involute with the
original curve, P’ a point in the involute, and E' the contact
point of the tangent with the original curve, then P’ E' = length
of arc P E".

The vertex of the cycloid is at the point S; the points P and Q
are called cusps.

PROBLEM XXXVIIIL. (Fig. 54).—7o construct a cycloid
when the size of the generating circle 8 given.

Let A B be the directing line, and P the generating point.

In one revolution of the circle P will reach a point, Q, on A B,
80 that the distance P Q equals the circumference of the circle

99
=(d x 7 ordx '—'75 where d = diameter).

C D is the locus or path of the centre of the circle for this revolu-
tion.

Divide O D into any number of equal parts, and mark as shown
C C,C% ... C, &c., draw lines from these points to A B.

While O is moving to D, the point P moves round the circum-
ference of the circle, therefore divide the circumference into the
same number of equal parts, and mark the points 1, 2, 3,.. . 7.

To find the position of the generating point, at any position
of the generating circle, proceed as follows :—If the generating
circle move to the position (', the point P will have moved in
the same time through the arc P1. Draw the generating
circle with centre C', and mark its contact point with the
directing line E; from E mark off the distance P 1 along the
circle to the point P, then P’ is a point in the cycloid. Proceed
in the same way for the other points until the curve is completed.
Notice that only parts of the circles need be drawn.

Another way of finding the points is to draw lines.parallel to
the directing line through the division points 1, 2, 3, . .. of
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the generating circle in its first position, to meet the corre-
sponding generating circle drawn from the centres C', C%, C', ...
This is shown in the figure.

Tangents and Normals.—In all rolling curves the normal at
any point passes through the corresponding point of contact of the
generating circle with the directing line or circle. The tangent
is at right angles to the normal.

To draw a tangent and normal at any point, O, in the curve
(Fig. 64). With the point O as centre and the radius of the
%enerating circle as distance, describe an arc cutting the line

D in N, and draw N M perpendicular to the directing line,
meeting it in M. Then N is the centre of the generating circle

Fig. 54,

corresponding to the position O of the generating point, and M
is ita point of contact with the directing line; therefore the line
through M O is a normal, and the line TR at right angles
a tangent.

Evolutes of Cycloid.—Draw normals through each of the
points found in constructing the curve, and produce them below
the directing line. Then draw the curves Q R, R P tangent to
the normals as shown. These curves are the evolutes.

The evolutes of a cycloid together make an equal cycloid.
Thus the curves R Q and 8 Q are identical. This can be proved
by cutting out the curve R Q in paper or card and applying to
the curve S Q.

If a piece of thread be fixed at R, and wound round the curve
of one of the evolutes as R P, so that the other end of the thread
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reaches to P, and then be slowly unwound from the curve, the
end P, if the thread be kept tight, will trace out the cycloid
PSQ Hence the reason for this curve being called an
“involute.” This arrangement forms what is known as an iso-
chronous or equal timed pendulum, the pendulum bob being
at one end of the thread P, the other end being fixed at R,
curved guides being fixed in place of the evolutes. The time
taken by the pendulum to swing through different arcs is then
always the same, whatever be the length of the arc.

The cycloid bas an important property in mechauics in that
the evolutes R P or R Q are the curves of quickest descent from
RtoPorQ

Trochoids.—The method of constructing the inferior and
superior trochoids differs but little from the above, and should
present no difficulty. Having found the new position ot point
P on the generating circles, having centres O;, C;, Oy, . . ., draw
the radius through P in each case.

Then for the superior trochoid these radii must be produced
the given distance, and their ends then represent points in the
eurve.

For the inferior trochoid points in the curve are obtained by
marking along each radius from the centre the given distance.

These two curves are shown on the right hand of Fig. 64, the
full-looped curve, 8 T, being the *superior trochoid,” and the
dotted curve, I T, the “inferior trockoid.”

Tangents and normals to trochoids are drawn in a similar
way a8 to cycloids, and the necessary construction will present
no difficulty.

EXAMPLES.

EX. 7.—Describe a cycloid and its evolutes when the diameter
of the generating circle is 5%, and draw a normal and tangent at
any point in the cycloid, not being one of the points found in
constructing it. Then work the following:—(a) Show by cutting
out a paper pattern that the curve of the evolute is a similar and
equal cycloid ; (b) show that the length of the normals from the
directing line to the cycloid is equal to the length from the
directing line to the evolute (note how this suggests an accurate
way of finding points where the evolutes touch the normals);
(¢) measure the length of the cycloid, and show that it is eight
times the radius of the generating circle; (d) find area between
cycloid and directing line, and show that it is three times the area
of generating circle ; (¢) find area between evolutes and directing
li-nel, and show that it is equal to the area of the generating
circle, .
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EX. 8.—Draw the superior and inferior trochoids, when the
diameter of the generating circle is 4”, the point for the superior
curve being 3" beyond the circumference and for the inferior
curve §” within. Draw a normal and tangent to each curve at
points not found in the construction.

Epicycloids. — PROBLEM XXXIX. (Fig. 55). — To draw
an g:icycloid and it8 evolutes, given the directing and gemerating
circles.

Let the directing and generating circles have centres A and B
respectively, P being the generating point. The construction
is identical in principle with that of the cycloid, allowing only
for the change from a directing line to a directing circle. But

it is necessary to first find the position Q of the point T after
one revolution of the generating circle. This is done bv

knowing that
arc P Q angle PAQ
circ. of directing circle ~ ~ 360° '
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and as the arc P Q equa:ls the circumference of the generating
circle, this becomes o
angle PAQ = 360 x rad. of generating circle

rad. of directing circle

Set off this angle. Draw the arc B C which is the locus of
the centre of the generating circle, and, as before, divide it and
the circle into the same number of equal parts, and then proceed
as with the cycloid. The construction is clearly shown in the
figure.

gl‘l’orma.ls and Tangents are drawn exactly as to a cycloid.
Thus in the figure, N is the centre of the generating circle
corresponding to the position O in the curve of the generating
point, and M is the contact point of the rolling and directing
circles. Then M O is a normal, and TR at right angles a
tangent.

The evolutes are the curves P R, R Q, drawn tangent to the
normals of the curve as before. They are similar curves to the
original curve, P8 Q, and are, therefore, epicycloids, but are not
equal to the original curve. The hypocycloid and its evolutes
are drawn in precisely the same way as the epicycloid, and do
not, therefore, need separate explanation. In Fig. 55 the curve
P'S’ Q' is the hypocycloid, the evolutes not being shown for
want of space. They are, however, drawn touching the normals
to the curve as before. EF is a tangent, and HK a normal.
The generating circle rolls in the direction from P’ towards Q'.

Notice that both the epi- and hypocycloids are traced by the
end of a thread unwound from the evolutes, as with a cycloid.

No difficulty should be experienced in drawing the epi- and
hypotrochoids, as the construction is exactly similar.

EXAMPLES,

EX. 9.—Draw an epicycloid and its evolutes when the
diameters of the directing and generating circles are 10" and
4" respectively, and draw a tangent and normal at any point
in the curve not found in the construction. Show that the
evolute is an epicycloid traced by a point on a circle of diameter
equal to R G (Fig. 55) roiling on a circle of radius, A R.

EX. 10.—Draw a hypocycloid and its evolutes when the
diameters of the directing and generating circles are 10” and 3*
respectively, and draw a tangent and normal at any point in the
curve not found in the construction.

EX. 11.—Bhow that when the diameter of the directing circle
is twico the diameter of the generating circle, the hypocycloid
is a straight line.
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EX. 12.—Draw a hypotrochoid when the diameter of the
directing circle is twice the diameter of the generating circle,
and show that half the curve is a quadrant of an ellipse.

Involute of & Circle.—The involute of a circle is the curve
traced out by the end of a piece of thread unwound from the
circle, the thread being kept tight. The circle is then the evolute
to this curve,

) Plfi.OBLEM XL. (Fig. 56).—To draw the involute of a
circle.

Let the circle have the centre O, and let P be the starting
point of the curve or end of the supposed thread.

Let the thread be partly unwound, so that it assumes the
position P* 3,

It is evident P*3 must be a tangent to the circle, and be,
therefore, at right angles to the radius C3. Also P*3 must
equal the length of the arc P3. Then P® is a point in the
involute.

If the arc P3 be divided into a number of small parts, and the

. Fig. 56.

same number of parts be marked off from 3 to P*, then the length
P*3 may be assumed equal to the chord P 3 and P* be a point in
the curve. But it is better to divide the circumference of the
cirole into, say, twelve equal parts, in which case the length of the
tangent P*3 would be one-quarter of the circumference (which
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can be easily calculated), and each succeeding tangent would
increase by one-twelfth of the circumference, if the circle is
equally divided.

This construction is conveniently effected by drawing the
tangent P, P12, equal in length to the circumference of the circle,
and dividing it into the same number of equal parts as the circle.
The length of each tangent can then be taken from it, as, for
example, P11 =P1,P'2 = P2, &e.

Normals and Tangents.—Normals to the involute are tan-
gents to the evolute, as in the cycloidal curves. Therefore,
to draw a normal at any point O, it is only necessary to draw
from that point a tangent to the circle. This is done by the
method of Fig. 23, the point O is joined to C, and a semicircle
is drawn upon it cutting the circle in the point N. Then the
line N O is a normal, and the line 8T at right angles through
O is a tangent.

If in Fig. 56 we regard P, P" as a straight line having one end
touching the circle at P, then the involute is evidently the path
of the end P, as the line rolls around the circle in an anti-
clockwise direction. But as a line may be regarded as a circle
of infinite radius, an involute is evidently an epicycloid having a
rolling or generating circle of infinite radius. The involute has
also the properties of an archimedean spiral, and if used as a cam
would impart linear motion to & point uniform with the circular
movement of the cam.

EXAMPLES,

EX. 13.—Draw the involute of a circle 2}” diameter, and draw
a normal and tangent at any point in the curve not found when
constructing it. Show that the radius at any point in the curve is
proportional in length to the angle passed through by the radius
from the starting point of the curve.

EX. 14.—Draw the curve traced out by the end of a straight
line 3" long as it rolls round the circumference of a circle 4"
diameter. (The curve is an involute.)

EX. 15.—Draw two circles of 5” diameter in contact at a point
P. From P draw part of an involute to each circle (about 2°
long), the curves for the two circles to be in opposite directions.

EX. 16.—Draw the curve traced by a point on a straight line
which rolls on a semicircle of 3" diameter. (Vict. Hon., 1892.)
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SECTION VIIIL

CONSTRUCTION OF CURVES FOR TEETH
OF WHEELS.

THE most common and useful practical application of cycloidal
and involute curves is to shape the teeth of geared wheels.
The diameter and proportions of wheels for different speeds, and
the number and sizes of the teeth, in order to transmit a
required power is a question not of constructive geometry, but
of machine design, and owing to its difficulty will not be dealt
with in this book. The object of this section is merely to give
the student a sufficient knowledge of the principle and method
of shaping the teeth of wheels, as to fit him better for their
complete design at a later stage. But in order to effect this the
following general principles must be understood : —

When two toothed wheels are in gear it is most important that
their relative velocity shall not vary during the revolution—that
is, one wheel must not at one instant be moving 3 times as fast
as the other, and at another instant only 2% times as fast. This
fact is expressed in mechanics by saying that the velocity ratio
of the wheels must be constant at every part of the revolution.
‘When two simple circular discs transmit motion by the frictional
contact of their rims, without slip, it i8 evident that their velocity

ratio is constant and is equal to g:—,, where R and R’ are the radii
of the two discs. Hence, with two toothed wheels in gear, the dis-
tance from the centre of each wheel to the point of contact with
the tooth of the other wheel measured along the line joining the
wheel centres, must be the same for each pair of teeth, otherwise,
the velocity ratio will not be constant. It follows from this,
that all these points of contact must lie on the circumferences
of circles described from the centres of the wheels, and that if R

and R’ be the radii of these circles, the velocity ratio is %,, and is

precisely the same as if the wheels were replaced by two
friction discs of radii, R .and R'. These circles are called
the pitch circles.* The diameter of a toothed wheel is the
diameter of its pitch circle, and not its diameter outside or
inside the teeth. The teeth must evidently be equally spaced
around the pitch circle, the distance between the centre of one

* The Ritch line or pitch circle in toothed gearing corresponds to the
directing line or circle of the cycloids (pp. 69, 70).
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tooth and the centre of the mext tooth, measuring along the
circumference of the pitch circle or the pitch line, being called the
pitch of the teeth. 1t is easy to see that if any two of the three
sizes, radius of pitch circle, pitch of teeth, and number of teeth
are known, the third can be found. Also that the velocity ratio
of the wheels equals

radius of driver number of teeth in driver
radius of follower °F number of teeth in follower'

revolutions of follower .
revolutions of driver ~

is shown in text-books on mechanics that the conditions of
constant velocity ratio for toothed wheels, as specified above, is
only obtained when the normal to the two teeth at the point of
contact is common to both, and that this condition is met by
shaping the teeth to cycloidal or involute curves. It is also neces-
sary that the teeth should roll smoothly when in contact, and not
fub or grind, a condition which is also satisfied by using these

and that either of these is equal to

curves, for suppose a pinion (which is the name given to a small
toothed wheel) is gearing with a rack as in Fig. 58, then we
m? suppose the rack to be fixed and the pinion to roll along it,
and we see at once that a point on the pinion will describe a
oycloidal path, so that if we wish to make the pinionleave the
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rack smoothly the teeth of the rack should be shaped to a
cycloid which is exactly what is done in practice. A similar
reasoning applies to the use of epi- and hypocycloids for the
teeth of spur wheels.

In Fig. 57 part of two wheels are shown in gear, and sizes
are marked on giving the usual proportions of the teeth, as taken
from Professor Unwin’s Machine Design, and which should be
adhered to by students in working the examples of this section.
They may be stated as follows :—Thickness of tooth along pitch
sircle 0-48 p, height outside pitch circle 03 p, depth inside pitch
circle 0'4 p; where p = pitch of teeth, this gives a clearance be-
tween the teeth of 0-52 p. The pitch circles are marked Q P R
and S P T, P being the pitch point. The fuce of the tooth is the
part marked B A outside the pitch circle, and the flank of the
tooth is the part marked B C inside the pitch circle. It is impor-
tant to remember this distinction, as in working the faces of one
wheel make contact with the flanks of the other wheel, and the
curves of the faces and flanks must be described with rolling circles
of the same radius.

The size of rolling circles used in drawing the curves for wheel
teeth do not bear any fixed ratio to the size of the wheels, and
vary with different makers. The size adopted in any particular
case does not change the conditions of velocity ratio or smooth
rolling, but only affects the thickness of tooth above and below
the pitch circles. The first of the examples at the end of this
section is intended to show the effect on the shape of the teeth
of rolling circles of different diameters.

Rack and Pinion.—PROBLEM XLI. (Fig. 58).—70 draw
the teeth of a rack and pinion in gear, knowing sizes of pitch and
rolling ctrcles and pitch of teeth.

Draw the straight line Q PR to represent the pitch line of
the rack, and from centre C draw the pitch circle S-P T of the
pinion, touching the pitch line of the rack in the point P, called
the “ pitch point.”

The faces of the rack teeth gear with the flanks of the pinion
teeth, and these had better be considered first. If we decide to
have radial flanks for the pinion, a usual construction, we know
that they will be obtained by using a rolling circle of a diameter
equal to the radius of the’ pinion, as this gives a hypocycloid
which is a straight line. Therefore, draw a circle with centre
A, and diameter equal to O P, and this will be the rolling circle
for the faces of the rack teeth, which we know are to be cycloids.
Then draw part of a cycloid, starting from the pitch point P,
taking the pitch line Q P R of the rack for the directing line,
and rolling the circle towards the right hand. The most con-
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venient way of doing this, geometrically, since the complete
curve is not required, is as follows:—Draw the locus of the
rolling circle A 5’, and mark off four or five equal parts of short
length, as 1’, 2',.. b’, and with each of these points as centre
draw arcs of the rolling circle as shown. Mark the contact points
of the rolling circles with the pitch line of the rack, as at 1, 2, 3,
4, 5. Then take the distance of the equal parts A 1', 1’ 2’ (equal
of course to P 1, 12, &c.) in the compasses, and mark off
distances along each of the circles just drawn, from the points
1, 2, 3, 4, 5 to the left—that is, from 1 mark one distance, from
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2 two distances, and so on, thus finding a sufficient number of
points in the cycloid, through which the curve from P can be
drawn. The radial line from P to A is the flank of the pinion
tooth, in contact with the rack tooth at P.

Next consider the flanks of the rack teeth and the faces of the
pinion teeth. Following a usual construction we will also make
the rack teeth flanks radial—that is, they must be drawn per-
pendicular to the rack pitch line, as that may be regarded as the
are of a circle of infinite radius; the line P N, therefore, gives the
flank of the rack tooth. But this line may be regarded as part of a
cycloid traced by a generating or rolling circle of infinite radius,
and we know, therefore, that we must take the rolling circle for
the faces of the pinion teeth of infinite radius—that is, it must
be a straight line. But the epicycloid traced by a line. rolling
round a circle is an involute of the circle, therefore the faces of the
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pinion teeth must be involutes of its pitch circle, SPT. Start
from the point P and draw the part of an involute exactly as
explained in Problem xl. (Fig. 56), and as seen in the figure,
which shows the finding of three points by the tangents from
the points 17 2” 3", | This completes the curves of one side of the
teeth of the pinion and rack in contact at P.

To finish the teeth as in the figure, set off the height of the
tooth (0'3 p) above the pitch line of the rack, and outside the
pitch circle of the pinion, also the depth of the tooth (04 p) below
and inside the pitch line and circle respectively, and draw lines
and circles to give the points and roots of the teeth, as shown
by dotted lines. Next set off the thickness of the tooth (0-48 p)
along the pitch line and circles, as at P4 and P17, draw the
centre lines of the teeth, mark off the pitch of the teeth along
the pitch lines and circle, and draw the centre lines of the
remaining teeth. The teeth are best completed by marking off
distances on both sides of the centre lines at different positions,
as, for example, KL = 0D, MN = G H.

The flanks of the teeth should be slightly rounded at their
junction with the roots.

Notice that the line Q P R is a common normal to the curves
of the teeth in contact at the point P.

Setting off Pitch of Teeth.—It is important to be able to
set off the pitch of the teeth correctly around the pitch circle,
this can be done in one of three ways, as follows :—(a) Divide the
pitch into a number of equal small parts, and set off the required
number of parts from the centre of one tooth along the pitch
circle to the centre of the other. (b)) If N be the number of
teeth in the wheel, then the angle at the centre made by the

radii of two adjacent teeth = S00, that is, in Fig, 58, if z is the

N

. 360°
centre of one tooth, then by setting off the angle z0y = x
gives the centre y of the next tooth. (c) In Fig 58, let mn be
a tangent to the pitch circle at m, make m n = pitch of teeth,
and mark a point o so that m o = } of mn, then with o as centre
radius, o n, describe an arc cutting the circle in p, then arc m p
= mn = pitch. '

Mechanical Method of Drawing Teeth.— A very con-
venient and, if carefully done, an accurate method of obtaining
points in the curves of cycloidal teeth is as follows:—Draw upon
a piece of transparent tracing paper a circle equal to the pitch
circle, and draw a diameter as CA P (Fig. 58). To the right
and left of P set off along the circumference a number of equal

6



82 PRACTICAL, PLANF, AND SOLID GEOMETRY.

parts, and mark 1, 2, 3, . . Set off the same parts from P
along the pitch line towards R, and mark as before 1, 2, 3, . . .
Draw lines through each point perpendicular to the pitch line,
then place the tracing paper over each line, so that the diameter
O A P coincides with the line, and the point P with the point,
and prick through the correspondingly marked point on the
circle to the left. Thus if the tracing paper be placed so that
the diameter C A P covers the line ¢’ 4’4, P coinciding with 4,
then the point in the cycloid is at the point marked 4 on the
circumference of the circle which is shown dotted. Repeat the
process until sufficient points have been found.

This method may be equally well applied for epicycloidal and
hypocycloidal teeth, and should be practised by the student.

Spur Wheels.—In drawing the teeth of spur wheels, the faces
are made to epicycloidal and the flanks to hypocycloidal curves.
Two spur wheels are shown in gear in Fig. 67, the pitch circles
being Q P R and S P T, touching at P, and for convenience the
rolling circles M and N are taken the same size. Start by rolling
the circle M to the right outside the circle Q P R, and trace the
curve for the face of tooth P, then roll the circle N to the left
tnside the same circle for the flank of the tooth. Similarly for
the tooth on the other wheel, roll the circle N to the left outside
the circle S P T for the face, and the circle M to the right inside
the circle QP R for the flank. Then complete the teeth as in the
example of the rack and pinion.

Involute Teeth.—Wheels with involute teeth possess certain
practical advantages as compared with cycloidal teeth due to the
fact that the path of the points of contact of the teeth is a
straight line, and not as with the latter a changing curve. This
results in the angle which the direction of the pressure between
the teeth (called the angle of obliquity) makes with the common
normal at the point of contact being constant and not variable,
as with cycloidal teeth. In consequence of these facts, wheels
with involute teeth will work smoothly and regularly even if the
distance between the centres be slightly altered, and they also
exert a more uniform pressure on the axle bearings. Another
advantage is that all involute teeth of the same pitch will gear
together.

Turning to Fig. 57, the path of the points of contact be-
tween the teeth as the wheels revolve is that portion of the
two rolling circles drawn in dark lines and marked D P F, and
the angle between the tangent to this curve and the common
tangent T' T” is called the angle of obliquity, which alters with
different points of contact. In Fig. 59 are shown some involute
teeth in gear, and here the path of contact is the straight line
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D PF, the angle of obliquity being the angle between this line
of contact and the common normal T T', this angle remaining
constant for all positions of contact. The line of contact is a
normal to the two curves at their point of contact.

The angle of obliquity for involute teeth can be decided before
drawing the teeth, and is generally made equal to 15°.

PROBLEM XLII (Fig. 59).—To draw involute testh for two
spur wheels, knowing the prtch cvrcles and the angle of obliquity.

Draw the pitch circles touching at the point P, and the line

TT' through P at right angles to the line joining the centres.
Next draw a line D P F through the point P making an angle
of 15°, the given angle of o
obliquity with the line T T". - ;
With the centres of the pitch
circles draw circles (shown
dotted in figure and marked
B C) tangent to this line DPF.
These are called “base circles,”
and are the circles of which
involutes must be drawn for
the shape of the teeth, in order
that the path of contact may
be in the line D P F, and the
angle of obliquity 15°.

To draw the teeth of wheel
A we see that D P is a tangent
to the circle, and, therefore, if
8 be the starting point of the
curve, 80 that it passes through
P, then the arc D S must equal
D P. Therefore, from D, the
contact point of the circle BC
with the line of contact D P F, Fiz. 59,
set off DS = D P by either g- O%
method (a) or (c) of setting off the pitch (p. 81). Then start
from S, and draw the involute as before. To draw the tooth of
wheel B, 50 that it shall be in contact at P, we see that F P is
a tangent to B, and thus ‘as before we make arc FO = F P,
and start the involute from the point O. Since contact dues
not take place at any point of the teeth within the base circles,
the flanks of the teeth from within the base circles are made
radial—that is, the points where the curves start from the base
circles are joined to the centres of the circles as shown, thus
giving straight teeth from the base circle to the root circle.
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The teeth are completed as in previous examples.

If the point circle for the tops of the teeth of wheel B cuts
the line of contact D F in D, and the point circle of the teeth of
wheel A cuts it in F, then D F is the length of the line of contact.

EXAMPLES.

EX. 1.—Draw an arc of a circle of 8° radius and consider it
as part of the pitch circle of a toothed wheel. Then draw
corapletely four teeth as follows :—a, b, and ¢ to have epicycloidal
faces and hypocycloidal flanks, rolling circles, (a) 4" diameter,
(0) 24" diameter, (¢) 54" diameter, (d) involute teeth radius of
base circle 7°7". To get sizes of teeth assume them as of
2" pitch. (The object of this example is to show the effect of
using rolling circles of different sizes, hence the teeth had better
be drawn separate from each other, say about 3" centres.)

* EX. 2.—Draw a rack and pinion showing four teeth on each
as follows:—Pitch of teeth 2”, number of teeth in pinion twenty;
pinion teeth to have involute faces and radial flanks, rack teeth
to have cycloidal faces and radial or straight flanks.

*EX, 3.—Draw two equal spur wheels in gear showing five
teeth in each. Pitch of teeth 21", number of teeth ten. %‘nces
of teeth epicycloids, flanks hypocycloids. Rolling circles 1§”
radius.

* EX. 4.—Draw two spur wheels A and B in gear, showing five
teeth in each. Involute teeth 2" pitch, twelve teeth in wheel
A, seventeen in wheel B, angle of obliquity 15°.

EX. 5.—The diameters of two spur wheels are 24" and 36°,
the pitch 2}", and the path of contact a straight line at 75° to
the line of centres. Draw a pair of teeth in contact of such
length that-two pairs of teeth may always be in contact. (Vict.
Hon,, 1891).

(Length of path of contact must pe twice normal pitch, the normal pitch
is distance from face of one tooth to face of next along line of contact ; make
a right angled triangle with hypotenuse equal to pitch, and base angle
equal angle of obliquity—then base is normal pitch.)

¢ After drawing accurately three or four teeth on each wheel of Exs. 2,
3, 4, the student would do well to work as follows :—Cut the paper care-
fully round the teeth, leaving enough for the whole wheel, thus making a
patternof the wheels ; and fix the wheels the right distance apart by sticking
pins through their centres. Then place a sheet of paper beneath the teeth,
and move the wheels as in actual working ; prick through at the point of
contact of the teeth upon the paper below, thus obtaining the of the
points of contact, compare the results with Figs. 57 and 69. Also draw the
normals to the teeth at one or two different points of contact, and see if the
:ggml at the point of contact of any two teeth is common to the curves of
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SECTION IX.
SOLID GEOMETRY.

Projection of Points, Lines, Surfaces, and Simple Solids.—
Solid geometry or orthographical projection, as its name implies,
deals with the drawing of solids, and enables the three
dimensions of a solid length, breadth, and thickness to be shown
upon a flat surface, such as a sheet of drawing paper. It must
not be confounded with perspective, with which it has no
connection, beyond the fact that both use many similar methods
and terms, as perspective geometry depicts a solid as it appears to
the eye to be, and shows its three dimensions in one drawing,
whereas solid geometry depicts a solid as it really is, and
requires at least two separate drawings to show its three
dimensions. If, for example, we look down upon the top of a
table, we see a view of the table which gives no idea of its
height from the floor, but only shows its width and length,
while if we look on one end of the table with our eyes on a
level with the table top, we then see the height of the table, but
cannot form any idea of its length. The principles of solid
geometry recognise these facts, and suppose a solid to be looked
at from different positions, and views to be drawn of its ap-
pearance from each position. These views have distinct names
and are drawn in accordance with certain laws of projection,
which it is very important should be clearly understood.

From the illustration of the table, we see that by looking at it
from two different positions, we are able to show its three
dimensions, length, width (or breadth), and height. * The way in
which solid geometry enables us to draw these two views is by
supposing that the view of the table looking from above is drawn
upon the floor underneath it, and that the view looking on the
table end is drawn upon the wall at the further side of it. The
floor and the wall are flat surfaces, called planes, mutually at
right angles, and the way in which the views are depicted upon
them, is to suppose that lines are drawn from each corner of the
table perpendicular to the floor and wall, meeting these surfaces
in points, which, if joined by lines, will form the two views of
the table. Now, if we suppose the floor and wall to have been
covered with a sheet of paper, and the drawings made upon it,
and then the paper spread out flat, we should possess what is
recognised as a drawing of the table, showing practically all ita
dimensions.
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Plan, Elevation, Projections, Planes of Projection, Pro-
jootors.—The view of the table, and therefore of any solid, as
seen from above is called its plan, and the view as seen from the
end its elevation. The views of objects drawn on the principles
of solid geometry are called its projections, the imaginary planes
on which they are drawn are called the plunes of projection, and
the lines from the object to the planes are called projectors. We
have seen that only two projections are necessary—one on the
floor, a horizontal plane, the other on the wall, a vertical plane,
and as these two planes are always required for the plan and
elevation of a solid, they are termed the horizontal plane of pro-
Jection, usually denoted by the capital letters HP, and the vertical
plane of projection, usually abbreviated to VP. Evidently the
two planes of projection intersect in a line, which, owing to the
horizontal plane being supposed the plane of the ground, is called
geY ground line, and is generally denoted by the capital letters

All this will be clearly understood by reference to the following
example.—In Fig. 60a is shown a representation of a simple

solid, an equal armed cross made of square wood, with the hori-
zontal and vertical planes of projection, having its plan and eleva-
tion drawn upon them Lines perpendicular to the HP are
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drawn through each corner of the solid, meeting the H P in the
points marked a, b, ¢, d . . ., and similarly lines perpendicular ta
the V P are drawn through each corner, meeting the V P in the
points marked @', ¥, ¢, d’. .. To join these points in the right
order we look at the solid, and see that A joins B, and that B
joins 0, and C joins D, and so on, and, therefore, by joining a
to b, and a’ to &', &c., we obtain on the H P and V P a plan and
an elevation of the solid. Notice that the plan really represents
two faces of the cross, the upper and lower, which are similar,
and, therefore, that each point in the plan shows at least two
corners of the cross, and similarly with the elevation.

On the right hand of the cross is shown a point P with its
plan p, and its elevation p', the line P p being its projector to
the H P, and the line Pp’ its projector to the VP. 'The plan
and elevation of these projectors are drawn at p o and p’ o, and
it should be specially noticed that they make two lines, meeting
on the ground line, each being perpendicular to it. The student
should suppose that the plan and elevation of the projectors
of the cross are drawn in this way, although in the figure they
are omitted for the sake of clearness.

Now, imagine the V P to be turned upon the ground line as
a hinge, away from the solid, as shown by the arrow, until it
becomes horizontal and forms a
continuation of the HP. We ]
shall then have the representa-
tion of Fig. 605, which is the
usual solid geometry projection d v oo o
or drawing, showing a plan
and elevation upon a single flat
sheet of paper. With the aid of
these two figures the student
should now verify the following _X o Y
statements, all of which are
important and should be re-
membered :— Pé

(a) The plan is below the
ground line, and the elevation

7’
«4

.

above it. :
(b) The plan and elevation of ‘ e s
the same point are exactly one Fig. 60b.

under the other, in a line perpen-
dicular to the ground line, therefore the plan of a solid should be
directly under the elevation.

(c) Heights above the H P are shown in the elevation.

(d) Distances in front of the V P are shown in the plan.
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¢) The projectors are shown by lines, joining points in the plan
and elevation, and perpendicular to the ground line.

(f) The elevation of a point in the H P, and the plan of a point
in the V P, are shown by a point on the ground line, for if p and p’
be these points, their elevation and plan are both shown by the
point o (Fig. 605). From this it follows that when a solid has
one face or edge in the ground plane or H P, its elevation will
begin from the ground }jne, and similarly if it has a face or edge
in the VP its plan will also begin from the ground line.

We see from Fig. 60b that the plan and elevation are separated
from one another, and’ that the distance between them depends
only on the height of the solid above the HP and its distance
in front of the V P.

In examples of solid geometry these distances may be given
of any desired length, or may be left to the will of the student,
in which case it is convenient to assume the solid, as standing
on the HP and in front of the V P, as this gives an elevation
starting from the ground line and a plan removed from it, thus
separating the two drawings and adding to their clearness.

Marking Plans and Elevations.—It will have been noticed
in Fig. 60a that each point in the solid is denoted by a capital
letter, as A, B, 0, while its plan is marked by the same letter in
small type, as a, b, ¢, and its elevation by a similar letter with
the addition of a dash, as @', 8", ¢. This is a convenient notation,
usually adopted in solid geometry, and will be adhered to in all
following examples,

A solid is bounded by surfaces, a surface by lines, and a line
by points, and we shall, therefore, lead up to the projection
of solids by examples dealing with points, lines, and sur-
faces.

In commencing solid geometry it will be found very helpful
to make up a rough model of the planes of projection, and of
the objects to be drawn. A book or instrument box opened at
right angles very well represents the HP and V P, a drawing
pin may represent a point, a pencil a line, and a set square or
piece of card a surface or plane, while models of simple solida
can be easily made. It is only in this way that the beginner
can hope to gain an intelligent and useful knowledge of the
subject, and be able to proceed with confidence to advanced
problems and to machine drawing, where the objects to be
drawn exist only as a mental picture, and where their positions
relative to, and their projections upon, the planes of projection
have to be vividly imagined before they can be represented upon
the paper. Al engineering draughtsmen use the results of the
principles of solid geometry, although, as the student will see in
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due course, they appear to dispense with the actual use of
projectors, ground line, planes, &c.

It will be seen from Fig. 6la that the HP and VP are
carried on 50 as to extend on both sides of the ground line X Y.
This is evidently correct, as a plane has no limit of either length
or breadth. When thus regarded, the planes of projection are
said to form four dihedral angles (angles formed by surfaces),
and a point may be regarded as being in either one of the angles;
as, for example, a point may be below the HP and behind the
V P, and the position of its plan and elevation relative to the
ground line are affected accordingly ; but as this is a matter of
theoretical rather than of practical importance, it will not be
further considered, and reference will be made to the first
dihedral angle only.

As the position of points, lines, and solids can only be stated
as distances from the planes of projection, which, as we have
seen, resolves itself into distances below and above the ground
line, it is evident that in all examples we must commence by draw-
tng the ground line. It should be noticed that when this is done
the paper above the X Y represents the V P, and the paper
below it the H P, and that if the paper be bent about the X Y,
as a hinge, bringing the V P into a vertical plane, it will repre-
sent a model of the planes of projection.

The following points should be particularly observed :—

All construction lines, such as projectors, should be drawn as
fine light lines, and the projections or plans and elevations of the
line, figure, or solid being drawn, should be shown by dark lines.

Lines to represent the edges of a solid, not actually seen, owing
to some part of the solid being between them and the eye of the
observer, should be shown by dark dotted lines.

Projection of Points.—To show the projections of a point
given its distance above the H P and in front of the V P, first
draw the X Y, then through any point in it draw a perpen-
dicular line to represent the projectors of the point, mark a point
in this line above the X Y, equal to the height of the point
above the H P, and a point in the line below the X Y, equal to
the distance of the point in front of the V P. If the point is
denoted by the letter P, its plan should be marked p and its
elevation . When the distances are given in the question, it
is better that they should be marked on the drawing, using dimen-
sion lines with arrow heads as in Fig. 50. The student should
also aim at writing above the drawing a brief description of
what the drawing represents (not a mere copy of the question),
whether of a point, line, surface, or solid, and its special position
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relative to the planes of projection, as it is just as important to
know exactly what position is indicated by a given drawing as
to be able to make the drawing of a solid in a given position.

EXAMPLES.

EX. 1.—Draw the projections of the following points dis-
tinguishing the plan and elevation of each :—

a) Point A in both planes.

b) Point B in H P, 1§” in front of V P.

¢) Point O in V P, 1§” above H P.

(d) Point D, 1-8” from both planes.

(e) Point E, 26" above H P, 1'7” in front of V P.

(f) Point F, 2:4" below H P, 1:5” behind V P.

(9) Point G, 2" above H P, 1-9” behind V P.

(A) Point H, 2}" below H P, 1'6” in front of V P.

Projection of Lines.—Lines may be parallel to, perpendicular

to, or inclined to either the HP or V P, and in some cases to
both. Lines may also be contained by, or may lie in, either

H.P.

Fig. 6la,

or both of the planes. As the ends of a line are pointas, a line
is spoken of as the line A B or CD, one letter being marked at
each end, its plan is then marked ab or c¢d, and its elevation
a’dorc'd. A line is fixed by stating its position relative to
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the planes of projection, both with regard to its inclination to
them, and its distance from them, hence these conditions must
be known before the projections of the line can be drawn.

Three lines, A B, C D, E F, each differently placed with regard
to the planes of projection, together with their projectors, and
their plans and elevations upon the HP and V P are represented
in Fig. 6la in such a way as to show the principle of projection,
In Fig. 616 the two planes are shown with the V P thrown down,
thus forming one hori-

zontal sheet, and showing « »
the plans and elevations

of the lines exactly as they ¢ &
shouldappear whendrawn J e

upon the paper. The
positions of the lines are X Y
a8 follows :—

A Bis perpendicular to B
the HP and above it, a5 4
parallel to the V P and in ¢ s
front of it. . Fig. 616,

OD is parallel to the
H P and above it, inclined to the V P and in front of it.

EF is inclined to both plaunes, and removed from both.

‘With the help of these figures and of a model of the planes
and a pencil to represent a line, the student should carefully
verify the following statements :—

(a) When a line is parallel to, or is contained by, the HP its
plan is equal in length to the line itself.

(b) When a line is parallel to, or is contained by, the VP its
elevation is equal in length to the line itself.

(c) When a line is parallel to both planes its plan and elevation
are equal in length to the line itself.

Therefore, when a line is parallel to, or is contained by, & plane,
:zs ;l,zojection upon that plane is a line equal in length to the line

86

(<) When a line is inclined to the H P its plan is shorter than
the line itself.

(¢) When a line is inclined to the VP its elevation is shorter
than the line itself. ‘

(f) When a line is inclined to both the HP and VP its plan
and elevation are both shorter than the line itself.

Therefore, when a line is inclined to a plane its projection upon
that plane is a line, the length of which is less than the length of
the line itself.

(9) When a line is perpendicular to the H P its plan is a point.
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(k) When a line is perpendicular to the VP its elevation is a
point.

Therefore, when a line is perpendicular to a plane its projection
upon that plane is a point.

1) When a line is contained by both the HP and VP its plan
and elevation coincide in the ground line.

(7) When a line is inclined to the HP and parallel to the VP
its inclination is shown in the elevation.

(k) When a line is inclined to the VP and parallel to the HP
its inclination is shown in the plan.

Therefore, when & line is inclined to one of the planes of projec-
tion and parallel to the other, its inclination is shown upon the
plane to which it is parallel. It will be seen later that when a line
is inclined to both planes its inclination is not shown either in the
plan or elevation,

The projections of a line should present no difficulty if it is
remembered that the ends of the lines are points, whose projec-
tions can be found as already described. For if the plan and
elevation of the points be joined, the joining lines will be the
plan and elevation of the line having the points for its ends.
Notice also, that when a line s inclined to one of the planes, its
projection upon the other plane must be drawn first.

EXAMPLES.

EX. 2.—Draw the yrojections of a line 33" long, in the follow-
ing positions, mark each end of the line in plan and elevation
with letters, and mark the lengths and inclination of the lines.
Write above each its position with regard to the HP and V P.

a) Parallel to both planes and in both.

b§ Parallel to both planes and 1+6* from each.

Parallel to both planes, 1" above H P, 2:3” in frontof V P,
d) Parallel to both planes, 2" above H P 17" in front of V P,

(¢) Inclined 60° to H P, one end in H P, parallel to V P, 1-3”
in front.

72 Inchned 45° to H P, one end 1'4" above H P; parallel to
V P, 14" in front.

(g) nclined 60° to V P, one end in V P; parallel to H P, 1-3”
above.

(h) Inclined 45° to V P, one end 1" in front of V P; parallel

to HP and in HP.

(#) Parallel to V P and 17 in front, its ends 1" and 2}" above
HP. Show angle of inclination to H P,

(7) Parallel to HP and 13" above, its ends 1:3" and 2- 7' i
front of V P. Show angle of inclination to V P,
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kg Perpendicular to H P and in V P, one end in H P.
1) Perpendicular to H P, one end 13" above, 1" in front of V P.
m) Perpendicular to V P, one end in V P, 1}" above H P.

v n) Perpendicular to V P and in H P, one end 1" in front of
EX. 3.—The projectors of a line are 2}§” apart, measuring
along the XY. The line is parallel to the VP, and 1§” in
front, and is inclined at 60° to the H P, one end being in the
VP. Draw the plan and elevation.

Traces of Lines.—When a line is inclined to a plane, it will
evidently meet that plane if produced far enough. The point
where the line meets the plane is called its trace. The horizon-
tal trace, HT, of a line, is the intersection of the line with the
H P, and the vertical trace, V T, its intersection with the V P.

If this definition is understood, no difficulty should be experi-
enced in finding the traces of a line. 'When a line is parallel to
a plane, it will, of course, have no trace upon that plane, but
when it is inclined to a plane with one end in the plane, that
point is its trace upon that plane, therefore, when a line is
inclined to a plane without meeting it, it has only to be pro-
duced to meet the plane, and its trace will be the meeting point.
Notice that the HT of a line must be in its plan, or the plan
produced, and the V T of a line must be in its elevation, or the
elevation produced. Thus, in Fig. 625, the traces of the doubly
inclined line A B are at the points marked HT and V T, the
manner in which these traces are found being clear from the
construction.

EXAMPLES.

EX. 4.—Draw the projections of a line as in Ex. 2, ¢, f; &, J, and
find the H T of the line.

EX. 5.—Draw the projections of a line as in Ex. 2, g, &, m, n,
and find the V T of the line.

EX. 6.—The end A of a line AB is 1” above the HP and
2#" in front of the V P, the end B is 2}" above the H P and
#" in front of V P, the projectors measuring along the X Y being
24" apart. Draw the projections of the line, and find its H'T
and VT, .

True lengths of Lines.—We have seen that when a line is
inclined to both the HP and V P, its true length and inclina-
tions are not seen, either in the plan or elevation, and we must
now examine a method whereby the true length and inclination
of the line can be ascertained. As there are conditions which
occur in other problems of practical importance besides those of
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solid geometry, the student is advised to study closely the con-
struction employed. Fig. 62a represents the HP and VP in
position, with a line A B inclined to both, and its plan and
elevation a b, a'b’, the traces of the line being shown at HT
and VT. If we fix our attention on A B, the line it.se.lf, and
on a b, its plan, we can suppose that A B is held in position by
the projectors A a and B b, which pass from the ends of the line
itself to the ends of its plan, perpendicular to the plan. Suppose,
further, that the line, its
plan, and its projectors
to the HP form a stiff
frame, whichcanbeturned
about the plan of the line
as a hinge, until it falls
into the H P, as shown
at A'a and B'), then we
have the true length of
the line A B shown upon
the H Pat A’ B/, and we
see at once that this true
length is found by draw-
ing perpendiculars from
each end of the plan of
: the line, and making
Fig. 62a. them equal in length to
. the distance of that end
above the HP. A similar reasoning applies to the line and its
elevation a'd’, together with its projectors to the V P, for if these
be turned about the elevation a’ b’ as a hinge, until they fall into
the V P, we shall have the true length of the line shown in the
elevation exactly as in the plan. The figure also shows that if the
true length of the line in plan be produced, it will meet the H T,
and similarly in the elevation (Fig. 62b), for by this construction
we have produced the line to meet the two planes of projection, and
we know the meeting points are the traces. The figure further
shows that the real inclination of the line to the H P is the angle
between the line itself, A B, and its plan ab, produced to meet
at the H T, and that this is equal to the angle between the true
length of the line A’B’ and the plan ab—that is, the angle
marked ¢ (theta);* and similarly the real inclination of the line
to the V P is the angle between the line A B, and its elevation a’ '
produced to meet at the V T, and that this is equal to the angle
marked ¢ (phi), between the lines A” B” and a' b’ (see Fig. 62b).

* The construction for the true length of the line in the elevation is
omitted in Fig. 62a for the sake of clearness.
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PROBLEM XLIIL (Fig. 62b).—Given the plan and elevation
of a line to find its real length, its traces, and its inclination to the
U Pand VP

Let a b a' b’ be the given plan and elevation. From each end
of the plan draw perpen-
dicular lines equal in length A 8’
to the height of the end above VT
the HP, thus a A’ equals G
height of end A, and B
equals height of end B. Then @

A'B’ is the true length of X Y
the line, and its inclination 5

to the H P is shown by pro-

ducing A’ B’ and a b to meet

in the H T, thus making the o

angle marked 4. Proceed in i g
the same way from the eleva- HT. A

tion a'b’, obtaining the true Fig. 62b.

length A" B”, the inclination
to the V P shown by the angle ¢ and the VT. As a test of
accuracy see that the real lengths in plan and elevation are the

same.
EXAMPLES.

EX. 7.—Draw the projections of a line A B, as in Ex. 6, and
find its real length and its inclination to the H P and V P.

EX. 8.—A is a point in the V P, 1}” above the HP. B is a
point in the H P, 1" from the V P. 'The real distance from A
to Bis 3". Draw the plan and elevation of the line joining A
and B. (S. & A. Elem,, 1887.)

EX. 9.—A point 1'5” from both planes of projection is distant
3:25” from another point, 2:25” from both planes of projection.
Obtain the projections of the two points. (8. & A. E,, 1888.)

EX. 10.—Three equal lines 13" long, A O, BO, C O, meet at
a point O at equal angles with each other. Draw the plan of the
lines when neither of them is parallel to the V P, and consider
them as the plan of three equal rods, 33" long, forming a tripod
stand standing in the H P, then draw the elevation of the rods,
and find their inclination to the H P.

PROBLEM XL1V. (Fig. 63).—T0 draw the projections of a
line of given length inclined to both the H I’ and V P.

Let the line be A B, and its inclination to the HP and V P
be ¢ and ¢ respectively.

From any point, A, in the X Y draw a line A% equal 1n
length to the given line A B, and making an angle with the
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X Y equal to the inclination of the line to the HP. Then A %’
is the elevation and A & the plan of the line, supposing it to be
in the VP. Let the end b’ remain in the V P and the end A
be moved away from it, then so long as the end A moves in the
H P its path must be in the semicircle, having b for centre and
b A for radius, while the further it moves away from the V P
the greater inclination will it have to the V P, and the shorter
will its elevation become. If, then, we can determine what
length its elevation will be, when its inclination to the V P is ¢,
we can draw its elevation, knowing that the position of the end
b has not altered. The last problem enables us -to do this for
we saw then that when a line is inclined to the V P and has
one end in the plane, its elevation, its real length, and the
perpendicular from the end
IR N 1y not in the plane, make a
right angled triangle, of
which the acute angle at
the base is the angle of in-
clination to the VP. In
the present case we know
the hypotenuse of the tri-
angle, the true length A %',
y and the acute base angle,
the inclination @, and we
can, therefore, find the
length of the elevation of
4 the line. This is shown at
b" A’, the angle A ¥ A
Fig. 63. being made equal to ¢ and
the angle at A’ a right
angle (see Prob. xliii.) Make, therefore, 5'a’ equal to b A’
and this will be the elevation of the line, its plan can be found
by making the projector a’a equal to A A’, for this we know is
the distance of the end A in front of the V P, or by dropping
& projector from @’ to meet the semicircle in @, then a b is the
plan of the line.

EXAMPLES.

EX. 11.—Draw the plan and elevation of a line A B 31" long,
1nclined (a) 50° to the H P and 30° to the V P, (3) 25° to H P
and 55°to V P,

EX. 12.—Draw the projections of a line C D 3" long, inclined
60° to the H P and 30° to the V P,

Projection of Plane Figures and Surfaces—Planes and
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Traces of Planes.— Since plane figures and surfaces only
possess two dimensions, length and breadth, it is only possible
to draw their projections according to the principles of solid
geometry, by supposing them to be contained by planes, the
position of which relatively to the HP and V P of projection,
coincides with the position of the figure. But in order that this
principle may be appreciated, it is necessary to understand how
planes are represented, since they are simply flat surfaces
indefinite in extent, without thickness.

Planes.—If the student will take a model of the planes of
projection, such as a book open at right angles, and a set square
to represent a plane, he will see that the plane can be placed in
many different positions relative to the HP and VP. It can,
for example, be placed so that its surface is perpendicular to
both planes and touching both, or touching one and removed
from the other ; or the plane may be inclined to either the H P
or V P, and have its surface at the same time perpendicular to
the other, or the set square can be so placed as that its surface
is inclined to both planes. It does not follow that the set square,
or the supposed plane, will necessarily meet the H P and V P in
the position in which it is placed ; but since a plane is indefinite
in extent, it is evident that if produced far enough it will some-
where intersect the HP and V P, unless parallel to them, and
that the intersections will be /ines, making certain angles with
the ground line, depending upon the position of the plane. These
lines of intersections are called the traces of the plane—that is,
“the trace of a plane 18 its line of tntersection with another plane.”
The line where a plane intersects the H P plane of projection is
termed its “ horizontal trace,” H T, and the line where it inter-
sects the V P, its ““ vertical trace,” V T. Notice the distinction,
that the trace of a lins is a point, and the trace of a plane a line.
From these considerations, as well as from the results of the
little experiments first mentioned with the book and set square,
we learn that a plane can only be shown by its traces.

Fig. 64 represents the traces of four planes in the only way in
which they can be shown upon a flat sheet of paper, and with
the help of a model the student should verify the following
positions for the planes as shown :—

Plane A.—Perpendicular to both the HP and V P.

Plane B.—Perpendicular t6 H P, inclined to V P.

Plane C.—Inclined to H P, perpendicular to V P,

Plane D.—Inclined to both HP and V P.

It will be seen that the traces are produced beyond the X Y ;
this is the usual practice, and serves to show that the plane is
not limited by the HP and VP,

7
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With the help of Fig. 64, and of a model of the HP and VP,
together with pieces of cardboard or set squares, to represent
planes, the student should verify the following :—

(a) A plane parallel to the HP or VP has no HT or VT
respectively ; therefore, when & plane is parallel to another plane,
it has no trace upon that plane. Also, a plane parallel to one of
the planes of projection is perpendicular to the other plane.

A

Fig. 64.

(b) When a plane is perpendicular to the HP its VT is a line
perpendicular to the ground line; and when it is perpendicular to
the VP, its HT is a line perpendicular to the ground line.

(c) When a plane is inclined to the H P, and perpendicular to
the V P, its inclination is shown by the angle which its V T makes
with the ground line ; and similarly when & plane is inclined to the
V P, and perpendicular to the H P, its inclination is shown by the
angle which its H T makes with the ground line.

(d) When a plane is perpendicular to both the HP and V P, its
traces form one straight line, perpendicular to the ground line.

(¢) When a plane is inclined to both the HP and VP, its
traces make angles with the ground line, which are not equal to
the angles of inclination of the plane to the H P and V P,

(f) The HT and VT of a plane intersect in the ground line,
whenever the plane has two traces, except in the case where the
plane is inclined to both the HP and V P, so that the sum of its
}ilﬁlination equals 90°, when its traces are parallel to the ground

e

gg) Parallel planes have parallel traces.

t should be noticed that a number of planes may be arranged
relatively to the HP and VP in such a way as to intersect each
other. In such cases the lines of intersection are represented by
their plans and elevations. .
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EXAMPLES.

EX. 13.—8how the following planes by their traces, and mark
the traces as in Fig. 64 :—
a) Plane perpendicular to both H P and V P.
b) Plane inclined 45° to H P, perpendicular to V P.
¢) Plane perpendicular to H P, inclined 30° to V P.
) Plane perpendicular to H P, parallel to V P 1”7 in front.

éa) Plane parallel to H P 1} above, perpendicular to V P.

(/) Plane inclined at any angle to both planes. (The method
of drawing a plane inclined at given angles to the HP and V P
is too advanced for insertion here.)

EX. 14.—Represent by their traces (a) two planes at right
angles to each other and to the V P, one of them inclined at 40°
to the HP. (b) Two parallel planes not at right angles to either
plane of projection. (8. & A. E., 1886.)

The Projection of Lines contained by Planes.—Before
proceeding to the projection of inclined plane figures or solids,
it is necessary to understand the principles by which lines
contained by given planes are projected. The student should
first verify the following statements by using a pencil; a set
square, or & piece of card to represent a plane, and a model of the

lanes :—

(a) When a line is contained by a plane its inclination cannot be
greater than the inclination of the plane.

(b) When a line contained by a plane has the same inclination
as the plane, it is perpendicular to the trace of the plane, hence
the plan of a line lying in a plane inclined to the H P, and having
the same inclination to the H P as the plane is perpendicular to
the H T of the plane, and similarly the elevation of a line lying in
8 plane inclined to the V P, and having the same inclination to the
V P as the plane is perpendicular to the VT of the plane.

(c) Horizontal lines lying in a plane have their plans parallel
to the HT of the plane.

" (d) Parallel lines lying in the same planes have parallel projec.
ons.

(¢) Aline may be contained by a plane and may be inclined at
any angle between zero and the inclination of the plane.

PROBLEM XLV. (Fig. 65).—Given the traces of a singly
tnclined plane to draw the projections of a line of given length
tontained by the plane, and having an snclination less than the
angle of the plane.

Let HT and V T be the traces of the given plane inclined at
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an angle ¢ to the H P, and let the angle of tl_ne required line
A Bbe «, and be less than 4. At any point 8 in the V T draw
a line 8 T making an angle a with X Y equal to its given inclina-
tion to the HP. If ST is longer than the required length A B,
make 8 W equal to
A B, and through
W draw l: Vlil'i‘e
parallel to the ,
meeting the XY
in B, and from B’
draw a line B'a’
parallel to S T meet-
ing the VT in the
pointa’. Thena'B’
is the elevation of a
line of the required
length, and having
the required incli-
nation a to the H P,
and a B is its plan,
supposing the line
to be in the VP.
But the line a B
Fig. 65. has one end A .as
at o’ in the plane,
since that end is in the V T of the plane, and we know the
length of its plan a B will not be altered so long as we do not
alter itg inclination to the H P.

Therefore, with the point a as centre, and the plan length a B
as radius, draw an arc cutting the HT in the point b and join &
to a, then ba is the plan of the line lying in the plane and &'a’
its elevation, because as the line has one end B in the H T and
the other end A in the V P the line must lie wholly in the plane.
If now the plane be turned into the HP about its HT as a
hinge, the point a’ will travel in the arc ¢’ A drawn from b as a
centre, and the line A b will be the true length of A B, and will,
therefore, of course, be equal to a’ B'.

EXAMPLES.

EX. 15.—Draw the plan and elevation of a line A B 3" long
inclined 30° to the H P lying in a plane inclined 45° to the H P.

EX. 16.—Draw the projections of two lines of any length
meeting in & point and lying in a plane inclined 60, one line
being inclined 30° and the other 40°. Show also the real angle
between the two lines. :

NN

@
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EX. 17.—The HT of a vertical plane makes 35° with the X Y,
Draw the elevation of a line lying in this plane inclined at 25°
snd passing through the XY. (8. & A. E,, 1891.)

Projection of Inclined Plane Figures.—We are now in
a position to use planes in order to obtain the projections of
plane figures, such as make up the faces of solids, when inclined
to either the HP and V P. Their projections when contained
by, or parallel to, either the HP and V P follows too naturally
from the projection of lines to need explanation, as it is evident
that the plan of a plane figure lying in the H P is the figure
itself, its elevation being & line on the X Y, and vice versd when
ocontained by the vertical plane.

‘When a plane figure is inclined to one of the planes, say, a
hexagon inclined at 30° to the H P, we suppose it to be contained
by & plane making the same angle with the H P, and we see at
once that if the plane containing the hexagon be thrown down
into the H P, turning about its HT as a hinge, we shall then
see the hexagon its true shape and size, and can, therefore, draw
it in that position. Now let the plane with the hexagon be
turned up again to its proper angle of inclination, we see that
every corner of the hexagon
describes an arc of a circle
having the H T of the plane
as a centre, and we can thus
obtain the elevations of the
ocorners of the hexagon when
inclined, and from the eleva-
tions obtain the required
plan, which we know will
not be a regular hexagon
because of its inclination.
The modification demanded
by a side of the hexagon
being inclined at an angle
differing from the inclination
of the plane has already been
explained in Problem xlv.,

. 65. .
I‘\li‘B.OBLEl\I XLVI. (Fig.
86).—To draw the plan and
elevation of a hexagon when
sts plane is inclined to the H P, one side being inclined at a given
angle to the V P,

Draw the X Y and the traces of a plane, H T, V T, inclined at

Y

Fig. 66
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the given angle 4 to the HP and perpendicular to the V P,
Draw any line, a b, making an angle ¢ with the X Y equal to the
angle of one side of the hexagon with the V P, and anywhere
on this line construct the hexagon CDEF G H. Find the
elevation of the hexagon (it will come upon the X Y as marked
0,D,. .H') With centre 8 (where the traces cut the ground
line), throw up these points on the plane by drawing arcs
through each reeting the V T in the points ¢, & ¢, f', g', ', then
this is the elevation of the hexagon when inclined. The points
in the plan must evidently be directly underneath, and will also
be in lines parallel to the X Y drawn through each of the points
C,D,. H of the original hexagon. Mark these points,
¢, d, ... h and join them in the right order, thus obtaining the
plan of the hexagon when inclined.

N.B.—The required plan and elevation should be made darker
than the plan and elevation 0, D, ... H; ¢, D',... H as first
drawn. The student will not probably find it necessary to mark
all the points, except in beginning, and for difficult problems

PROBLEM XLVII. (Fig. 67).—70 draw the projeciions of a
circle when its plane is inclined
L to the V P and perpendicular to
) the H P.
7 This problem is identical in
i principle with the last, but
il presents the additional difficulty
that the circle has no corners
which we can project as points,
and thus obtain the boundary
lines of the figure. We can,
however, suppose it to have
Y corners, or rather we can mark
any definite points upon it, and
treat these exactly as we treated
the corner points of the hexagon,
For convenience the points are
taken at equal distances apart—
that is, the circle is divided into
a convenient number, eight or
: twelve equal parts. The pro-
Fig. 67. blem witlll then represent no
difficulty and can easily be
followed from the figure, The elevation of the inclined circle
18 of course an ellipse, and must be drawn by freehand.

V.T.
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EXAMPLES.

EX. 18.—A hexagon of 1}” side is inclined at 40° to the HP,
one side being perpendicular to the VP. Draw its plan and
elevation.

EX. 19.—A circle 3" diameter has its plane inclined at 60° to
the V P, its centre being 2}" above the HP. Draw its plan
and elevation.

EX. 20.—Draw the traces of a plane inclined at 30° to the
HP and perpendicular to the V P, and at any point @ in the
HT draw a line a b 14" long, inclined at 20° to the HT. Con-
sider a b as the plan of one side of an equilateral triangle lying
in the plane, and draw its complete plan and elevation. (8. & A.
E, 1886.)

(Find the plan of a b; when in the H P its length will be side of triangle.
Draw the triangle, and transfer it to the plane.)

EX. 21.—Draw the plan of a hexagon of 1}" side in any
position, such that its plane is neither horizontal nor vertical.
(8. & A. E,, 1886.)

EX. 22.—The plan of a pair of compasses are two lines, each
3" long, meeting at a point A, and including an angle of 30°. If
the compass iegs are actually 57 long, determine the height of
the joint above the H P.

EX. 23.—A regular hexagon of 1-25” side has one side in the
H P. The plane of the hexagon is vertical, and inclined at 43°
to the VP. Draw the elevation of the hexagon. (S. & A. E,,
1891.)

EX. 24.—Draw the traces ot a plane inclined 35° to the H P
and perpendicular to the V P, and draw the plan of an octagon
of 13" side, lying in the given plane, and having one side in each
plane of projection. (8. & A. E,, 1892.)

EX. 25.—Draw two circles having the same centre of radii, §”
and 11", and circumscribe the larger circle by a hexagon. Then
draw an elevation of the figure when its plane is vertical and
inclined at 40° to the V P, two sides of the hexagon to be
vertical,

(This will represent the projection of one face of a hexagonal nut when
its axis is inclined, which is a very common condition in machine drawing.)

Projection of Simple Solids.—Having already considered
the projection of points, lines, and plane figures, which together
make up a solid, we are now able to consider the drawing of
solids themselves. Any difficulty attendant upon such projec-
tion is much simplified if the student will remember that almost
all problems resolve themselves into, firstly, the projection of



104 PRACTICAL, PLANE, AND SOLID GEOMETRY

certain points, secondly, obtaining the projections of lines by
joining the points ; and thsrdly, obtaining the projection of plane
ﬁgiures by joining the lines, thus giving the projections of a
solid.

The simple solids are the Cube, Prism, Pyramid, Sphere,
Cylinder, and Cone, which may be defined as follows :—

Cube.—A cube is a solid having six faces all equal squares
(Fig. 68).

Prism.—A right prism is a solid having two equal and simi-
lar bases, and a number of equal oblong faces perpendicular to

Fig. 68, Fig. 69.

them. Prisms are distinguished according to the shape of their
bases. Fig. 69 represents a hexagonal prism.

Pyramid.—A right pyramid is a solid having one base, and a
number of equal triangular faces meeting in a point over the
centre of the base. This point is called the apex. Pyramids

/.+ beowaaee
P
/’ I
7/

Fig. 70. Fig. 7L Fig. 72,

——————

——

are distinguished according to the shape of their bases. Fig. 70
represents a square pyramid.

Spheres, cylinders, and cones are called solids of revolution,
because they are generated by the revolution of certain plane
figures about a fixed line, a8 an axis.

Spheres.—A sphere is a solid generated by the revolution of
s semicircle about it diameter, as an axis. All points in the
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surface are equidistant from a point within the sphere, called
the centre. elll plane sections of a sphere are circles.

Cylinder.—A cylinder is a solid generated by the revolution
of an oblong about one of its sides, as an axis. It has two equal
circular bases, and may be regarded as a right prism having an
infinite number of faces (Fig 71).

Cone.—A cone is a solid generated by the revolution of a
right angled triangle about its perpendicular, as an axis. It has
a circular base, and may be regarded as a pyramid having an
infinite number of faces. The vertex of the triangle forms the
apex of the cone (Fig. 72).

Axis,—The axis of a solid may be regarded as its central line.
In a cube, the line joining the centre of any face to the centre
of the opposite face, and in a sphere, any diameter may be called
the axis. In a prism and cylinder the axis is the line joining
the centres of the two bases, and in a pyramid and cone it is the
line joining the apex to the centre of the base. The axis is
shown by a dotted line in the figures.

A cube and sphere can be drawn if we know the length of
side and the diameter respectively. In drawing the other four
solids, we require to know the length of the axis, and the shape
and size of the base.

The drawing of these solids may be rendered much easier and
of much greater value to the student if he uses small models,
which can be placed in different positions relative to the planes
of projection. In this way a very complete conception of the
solids may be acquired, which will prove of immense benefit in
more advanced problems and especially in machine design, where
the shape of so many common parts are identical with the simple
solids just defined. .

Very satisfactory models of these solids, except the sphere, can
be made of stout paper, by first developing the surfaces of the
solid then cutting the pattern to the pattern of the figure thus
drawn, and afterwards folding upon the lines representing the
edges of the solid, and gumming together.

Development of Surfaces.—By the development of a surface
is understood the drawing upon a flat plane, such as a sheet of
paper, the true shape of the complete surface, such that when
the paper is cut to the figure thus obtained it would completely
cover the solid of which it is the development. In practical
engineering work, such as the construction of boilers, funnels,
and in other iron and tin plate work, it is necessary to develop
the surfaces of the structures before the plates of which they are
made can be marked off, hence development is a very important
part of engineering drawing.
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Cube.—The development of & cube is a figure made up of six
equal squares, and conveniently drawn as in Fig. 73, where the

6

N e

Fig. 78. Fig. 74.

squares 1 and 3 form the top and bottom, when square 3 is the
base, and squares 2, 4, 5, 6 the sides.

Parts are shown by dotted lines as extensions of squares 3, 4,
and 6. These are merely strips to enable the sides to be joined
together—tbhat is, the slip on 3 is gummed to the top edge of 5,
and the slips on 4 and 6 to the edges of square 3. Further strips

may be added on the other

sidesif desired. Thestudent

should arrange to allow for

similar strips in the de-

velopment of the other
solids.

Prism. — The develop-
ment of a prism is a figure
made up of a number of
equal oblongs and two
equal figures representing
the bases, Fig. 74 shows
a convenient arrangement
of the development of a
hexagonal prism.

Pyramid.—Thedevelop-

5. ment of a pyramid is a

Fg.7 figure made up of a number

of equal triangles, and of ome regular figure to represent
the base. Fig. 76 shows the development of a hexagonal
pyramid, obtained as follows :—Draw the base of the solid and
a diagonal of the base, und then draw a right-angled “triangle
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having the axis of the solid a’ b’ as a perpendicular, and half the
diagonal of the base of the solid a'¢ as a base, then the hypo-
tenuse &’ ¢’ is the length of the sloping edges of the solid. With
the length of the sloping edges as radius, draw an arc of a circle
from any centre as at 0, mark off along this arc (as chords of the
arc) the length of the sides of the base of the solid as a b, be, cd,
d ¢, and join a to b, b to ¢, and ¢ as shown. This is the develop-
ment of the faces of the pyramid. Draw the hexagon of the base
on any of the lines as d ¢ for a side, and the development will be
complete.

Cylinder.—The development of a cylinder is made up of an
oblong, the length of which is equal to the circumference of the
base, and the height of which is equal to the axis, and of two
circles equal in diameter to the bases. It is shown in Fig. 76.

Cone.—The development of a cone is made up of a segment
of a circle, the radius of which is the hypotenuse of a right-

Fig. 76. Fig. 7.

angled triangle, having the axis of the cone as a perpendicular,
and the radius of the base, as a base, and the arc of which is
equal to the circumference of the cone base ; and of a circle, of
diameter equal to the base. It is shown in Fig. 77. To obtain
the radius of the arc drew a right-angled triangle, having the
radius of the cone base &' ¢’ as a base, and the axis of the cone
a'}’ a8 a perpendicular; then the hypotenuse &’ ¢’ is the radius
required. To set off the correct length around the arc (see p. 73).

EXAMPLES.

EX. 26.—Draw the development of the surfaces of the follow-
ing solids :'-(a) a cube, 21" edge; (5) hexagonal prism, 1} edge
of base, axis 3°; (o) square pyramid, 1§" edge of base, axis 3";
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(@) cylinder base, 11" diameter, axis 3{"; (s) cone base, 1}" dia
meter, axis 3}". Make models of the solids.

Plan and Elevations of Simple Solids.—The projections
of the solids just developed, in simple positions, relative to the
HP and VP, are shown in Fig. 78. The student should follow
the drawings by placing the solids represented in the given
positions, using a model of the planes as before.

Fig. 78 (a).—A cube having one edge in H P, ons facs inclined at
30° to H P, and one face parallel to the V P 0-75" in front.

The elevation must be drawn first, as that shows the inclina-
tion and a true shape of one face.

(@ * () (@) (o)
: { 3
3 i ‘I "' 3
s '.. /
@ 1
i ! {
] I3 ] I [}
i " / \
X et U L e R Y /4 \y 4 u vy
A N~ 20" A K
N 7 L}
'»'.: A b/ /< )
| yz L\
-
Fig. 78.

Fig. 78 (8).—A hexagonal prism, having one base in H P, one
JSace inclined at 20° to V P, nearest edge 3" in front.

First draw the lines s¢, and the hexagon having one side b e
in the line. Then draw a second X Y }” from the edge c.

Fig. 78 (c).—4 square pyramid with base in H P, ons edgs at
20" to V P and touching V P.

Fig. 78 (d).—A cylinder with one base in H P.

Draw the plan first, and the diameter a b parallel to X Y, to
give the correct points for the projection to the elevation.

Fig. 78 (¢).—4A cone with one base in H P, axis 2" in front of V P.

Draw the plan first having its centre on the line a b parallel
to the X Y. It is shown dotted in Fig. 78 (d). The projections

of a sphere need no description, they are circles equal in diameter
to the diameter of the sphere in all positions. ’
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EXAMPLES.

Draw the plans and elevations of the following solids, marking
each corner by a letter. Show on the drawings all sizes and
angles given in the questions :—

EX. 27.—A cube, 2" edge, in following positions :—(a) One face
in H P, one face at 30° to V P, nearest edge 1”in front. ; (b) two
cubes, edges 2” and 3", stand one upon the other with their axes
in one straight line, the edges of the base of the top cube mak-
ing angles of 45° with the edges of the lower cube. The bottom
cube stands in the H P, with one face at 45° to V P, nearest
edge 1" in front.

EX, 28,—A square prism, base 2" edge, axis 3-5”, as follows:—
g) One face in H P, one base at 30° to V P, one edge of base in

P ; (b) one long edge in H P and perpendicular to V P, one
face at 25° to H P, nearest base to V P 05" in front.

EX. 29.—A hexagonal prism, base 1" edge, axis 3}", as fol-
lows :—(a) One base in H P, one face parallel to V P, 1" in front ;
() one base in H P, one face perpendicular to V P, nearest
edge 075" in front.

EX. 30.—A pentagonal pyramid, base 1-8” edge, axis 33", as
follows :—(a) Base in H P, one edge at 30° to V P, nearest corncr
0-5” in front ; (b) base in V P, axis 2" above H P, one edge of
base parallel to H P.

EX. 31.—A cylinder, base 2}" diameter, axis 3", with a base
in H P, axis 2° in front of V P.

EX. 32.—A cone, base 2}" diameter, axis 31", with base in
V P, axis 2° above H P,

Projection of Inclined S8olids..—When a solid has a face or
an edge inclined to either the horizontal or vertical planes, it is
convenient to adopt the construction followed for inclined surfaces,
by supposing that face or edge to lie in a plane having the required
inclination. This is really the most important part of our work
in solid geometry up to the present stage, when measured by
the standard of practical usefulness, as it is a frequent ocourrence
in actual engineering drawing, to require the plan or elevation
of singly inclined parts, such as hexagonal nuts and bolts, cir-
cular or elliptical covers, and of cylindrical outlines.

At a later period we shall explain other, and sometimes more
convenient, methods of obtaining the projections of inclined solids,
but as such methods largely involve the same principles as the
following problems, it is very advisable that they should all be
thoroughly understood.
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PROBLEM XLVIII (Fig. 79).—Z' draw the plan and elevation
of a hexagonal prism, when one base is inclined to the ground.
Suppose the base to lie on a plane having the given inclination
étothe HP. Draw the HT and V T of the plane, and obtain
the plan and eleva-
A tion of a hexagon
« equal to the base of
N the prism, when
4 \, lying on this plane
AN N exactly as in Pro-
“ N blem xlvi. Draw
N AN the plan in light
N N lines, as it will evi-
dently not be seen
full. Complete the
elevation of the
prism by drawing a
line perpy;mdicull:;"to
the V T of the plane,

4

Pr—- = - - -

e e - - - -~

'
| !
X, ! : ! : Y and therefore, per-
‘! /é‘ ‘\Ei‘:\ pendicular to the
T INA plane itself, through
D X\ each point in the
' elevation of the base.

PR N
i All the long edges
of the prism are
parallel to the V P,
) since the base is in a
plane ’serpondiculur
Fig. 79. to the V P, thexefore
draw lines parallel
to the XY, through each point in the plan of the base, and
of indefinite length. Then having the elevation of the top
base, ¢, A, ¥, j, ¥, !, its plan i3 obtained by drawing pro-
jectors from each point in the elevation to meet the line in the
plan corresponding to the long edge, meeting at that Point, as
for example, the projector from 4', where the long edge a’ A’ meets
this base, must be drawn to meet the plan of that edge, whioh is
the line through the point a.

L] n
1 J,
'

e, ———— ---‘5_\

PROBLEM XLIX. (Fig. 80).—70 draw the plan and elevation
of a cylinder when its axis 18 inclined to the V P.

If the axis is inclined at an angle ¢, then the base will be in-
clined at an angle of 90°~p ; therefore, draw the traces HT and
V T of a plane perpendicular to the H P, and inclined at an angle
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of 90°—p to the VP. Then proceed exactly as in Problem xlvii,,
Fig. 66, to obtain the plan and elevation of a circle equal to the
base of the solid when lying in the plane. Draw lines through
each point in the plan (only make
the two outside lines dark), of
length equal to the axis of the
cylinder, and complete the plan. >
Draw lines parallel to the XY Y,
through each point, 1, 2, 3, . . .
in the elevation of the base, and
from each of the points a, b, ¢, d,
. . . in the plan of the front base
of the cylinder draw projectors,
to meet the elevation of the line
in the plan which meets in that
point, as, for example, through
the point ¢ where the line 3¢
meets the plan of the front base
of the solid, draw a projector to
meet the elevation of the line in
the point ¢ thus obtaining a point
in the required elevation of the
front base. By this construction
we have really treated the lines )

3¢,5e .. . as though they were g

the long edges of a prism, a method Fig. 80.

that is always adopted for all

circular and curved surfaces. It is convenient to speak of these
imaginary edges or lines as ‘¢ stripes.”

The student should now be able to proceed to the following
examples, which have been specially selected as representing
conditions that commonly occur in practical engineering draw-
ings :—

D
Y

IS

Nl ]

7F’

T e SRS N

EXAMPLES.

EX. 33.—Draw the plan and elevation of a hexagonal prism,
edge of base 14", height 3", when its axis is inclined 60° to the
ground, and two of its faces are perpendicular to the V P.

(The hexagon must be drawn with two sides perpendicular to X Y.)

EX. 34.—Draw the plan and elevation of a cylinder, base
2}” diameter, 3" high, when one base is inclined at 45° to
the v P-

EX. 36.—A hexagonal prism, base 1}" edge, axis 1§", stands
centrally upon a circular block 3" diameter and }" thick, both



113 PRACTIOAL, PLANE, AND S0LID GEOMETRY.

solids being pierced with a hole of 1}" Jiameter. Draw a plan
and elevation of the solids when the plane of the circular block
is inclined at 35° to the ground, two faces of the hexagonal
prism being parallel to the V P.

(This may be compared to an inclined hexagonal nut and washer.)

EX. 36.—An oblong block is 4}" long, 2° wide, and 1" thick.
Two cylinders, 14" diameter, 1° high, are fixed to the upger lar,
face centrally, each }* from the edge. Draw a plan of the soli
when the plane of the lower face is inclined at 40° to the V P,
the sides of the block being vertical.

(This represents the cap and bolt heads for a connecting-rod end.)

EX. 37.—A square bar, 2° square, 5" long, is pushed through
the centre of a cylindrical block 13 thick, 33" diameter, so that
the bar comes equally through the block on each side. Draw
plan and elevation of the solid, when axis of bar is inclined
30° EEOPH P and is parallel to V P, the sides of bar being at 45°
to .

SECTION X.

THE PROJECTION OF ADDITIONAL PLANS
AND ELEVATIONS—SECTIONS.

Up to the present stage we have only been concerned with the
projection of the plan and elevation of solids upon the horizontal
and vertical plans of projection—that is, we have obtained only
one plan and one elevation of any given solid. But when solids
become more complex in shape, as in the case of engine and
machine parts, and most of the parts of practical engineering
construction, it is not possible to show all the details of the
parts in these two views, and it, therefore, becomes necessary
to obtain other and additional views.

The manner of obtaining these views will be understood by
the following illustration :—Suppose we stand looking straight
upon the front end of a locomotive, we shall then see a view of
the locomotive which shows us its height and width, but gives
no idea of its length, but if we now walk round to the front or
side of the locomotive we shall then see a view of it, which
shows its height and length but gives no idea of its width, and
again we could move to a position from which we looked on the
corner of the locomotive, and we should then see a view which
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showed the height, length, and width, but without giving a
correct idea of the real dimensions of the length or width, owing
to their being inclined to the line of sight. If we supposed
vertical planes to be placed behind the locomotive, and the views
we see to be drawn upon them, we should thus obtain three
different elevations, all of which it is important to notice have
been found without altering the position of the solid, but by
simply altering our position of observation with regard to it.
The firss view of the locomotive which we obtained by looking
upon its end is called an end elevation, and the last view, that
looking upon the front, a front elevation. We could of course
have obtained a second end elevation by looking upon the back
end of the locomotive, and for complex machine parts this is

usually done, although in most cases it is suffisient to draw one
end elevation only.

It will be seen that, in order to measure the distance of a point
or line from the ground line, it is necessary to look upon an end
of the planes of projection, and to obtain an end elevation of
them. This end elevation, so far as the planes of projection are
concerned, will simply consist of twolines mutually perpendicular,
meeting in a point which is the end elevation of the ground line.
The end elevation of the point or line can then be drawn and its
distance from the ground line readily obtained.

The principle of obtaining these additional olovntionaawill be
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understood by reference to Fig. 80a, b, which represent the
planes of projection in position with a solid standing in the H P
of which we require to draw a front elevation and two end
elevations. The projection of the front elevation F E nceds no
explanation. To obtain the elevation of end A, we suppose a
vertical plane, M, placed on the other side of the solid, either
touching the end B or removed from it, perpendicular to the
lines of sight, and, therefore, in this case perpendicular to the
V P. The view looking on the end A is then projected on this
plane in the usual way, after which the plane is supposed to be
turned upon its vertical trace, V T, as a hinge in the directior
of the arrow away from the solid until it coincides with the V P,
and the view from end A becomes projected upon the ordinary
V P of projection on the right-hand side of the front elevation,
as at A. For the elevation looking on end B a vertical plane, N,
is placed on the further side of the solid, and then projected as
before into the V P giving the view from end B upon the left-
hand side of the front elevation. Notice that in each case all

VT, v.T.
o p’
e’ d’
B A
x A B. Y,
: |
\VE
4
-
o
HT. HT
Fig. 80b.

points in the projection travel in arcs of circles having the V T
of the planes as centre as the planes turn from their original
pesition into the V P. )

The plan and three elevations thus found are shown in Fig.
805 as they would be drawn upon the paper, and by the help of
Fig. 80a should present no difficulty. With these two drawings
before him the student should very carefully verify the following
statements :—

(a) The end elevation looking upon the right-hand end of the
solid is shown upon the left hand of the front elevation.

(b) The end elevation looking upon the left-hand end of the
solid is shown upon the right hand of the front elevation.
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(¢) In an end elevation, that part of the drawing nearest to the
front elevation represents the back portion of the solid, and that
part of the drawing furthest from the front elevation represents
the front portion of the solid.

These three conditions should be adhered to in all kinds of
mechanical drawing whatsoever. It is remarkable what different
customs prevail with regard to the position of the end elevation;
many draughtsmen use either position without any regard to
uniform methods, and as a result considerable confusion prevails.

At a later stage the student may find it apparently most con-
venient to put an end elevation next the end which it represents,
rather than at the opposite end ; but it is certainly not accurate.

The front elevation shows only height and length; the end
elevation only hetght and width, and the plan only length and
width. Hence we see that the three dimensions of a solid are
shown in any two of the three views, and that if any two views
are given the third can be obtained from them. For example,
in Fig. 800, lines are drawn from the front elevation to the end
elevation, to give its dimensions in a vertical direction, while its
dimensions in the other directions, as a’ &’ and ¢’ d', are obtained
from the plan, and are equal respectively to the sizes marked
aband cd. The drawing of a view from others is a very impor-
tant part of practical projection, and the student should notice
that, although it may be desirable to work one or two problems
by drawing the arcs marked 1, 2, 3, 4 in order to obtain an end
elevation, it is better and quicker to adopt the method of taking
the distance with the dividers direct from the plan.

Since the drawing of additional elevations requires the use of
other vertical planes of projection, we see that other ground
lines will be obtained where these planes intersect the H P.
But this simply amounts to drawing a new ground line, and
then obtaining a new elevation above this XY in the usual
way, knowing that the heights above the ground line are the
same as in the first elevation. Zhis method 18 often referred to as
an alteration of the ground line. By exactly similar methods we
may obtain additional plans from the first elevation, for we may
suppose other horizontal planes to be placed in different posi-
tions relatively to the first elevation meking new ground lines
with the VP. In order to distinguish the different ground
lines, they are marked as X1Y?, X2Y? X3V3 &e.

PROBLEM L. (Fig. 81).—Gsven a plan and elevation of a
solid to obtain a second elevation on a given ground line X1 Y1 and
o second plan on a given ground line X2 Y2,

The plan and elevation of a simple solid are shown at P and E,
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it is required to draw a second elevation on X! Y! and a second
plan on X? Y2,

To obtain an elsvation on X! Y! draw projectors through each
point in the plan P perpendioular to X! Y1, and mark off dis-
tances along each from X! Y! equal to the height of the point
above the H P—that is, equal to the distance of the point above
XY in the first elevation E. The construction for one end is
shown in the figure, the distance ¢®d? being equal to ¢! d’, and
J2ad equal to /! al, and 8o on for each point.

B [
Fig. 8L

Some of the lines in this elevation will be dotted, and as this
generally follows in the projection of inclined solids, it is con-
venient to always draw the parts of the solid shown by full lines
before those parts shown by dotted lines—that is, first draw
thosepram nearest the point of observation, or farthest from
the .

To obtain a plan on X* Y3, draw projectors perpendicular to
X2 Y? through each point of the first elsvation E, and make the
distance of each point in front of X2 Y? equal to its distance in
front of X Y, as, for example, the distance n d® equals the dis-
tance ¢! d, and n A% = ¢l A.

The construction of the last problem shows how the projection
of solids in difficult positions may be simplified, for they can
first be drawn in a simple position, and then by a suitable altera-
tion of the ground line, they can be projected as required.
For example, if we required an elevation of the block in the
last problem, with its long edges inclined at 30° to the VP, we
should first draw a plan and elevation, as at P and E, and then
obtain a second elevation on » ground line X'Y’, drawn at an
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angle of 30° to the long edges of the solid in the plan P—that
is, the angle ¢ would be 30°. But care must be taken to arrange
the first plan and elevation so that they fulfil at least one of the
required conditions; as, for example, suppose we require the
plan and elevation of a hexagonal prism with its axis inclined
60° to the HP, and one face parallel to the V P, we should first
draw a plan and elevation, with a base in the H P, and one edge
of the base parallel to the V P—that is, to the X Y—thus giving
a face parallel to V P, and satisfying one condition of the prob-
lem. The problem would then be completed by drawing a new
ground line X2 Y2, making an angle of 60° with the axis of the
solid in the elevation, and from this elevation obtain the required
plan. If the solid had been first drawn without an edge of the
base, parallel to the V P, no alteration of the X Y would have
satisfied the conditions.

By an extension of this principle we can often obtain the plans
or elevations of inclined solids in a simpler and quicker manner
than by the method described in Problems xlviii and xlix.
An example is given in the following problem, from which it
will be seen that the construction results in the required plan
and elevation being obtained in a better, and in the more usual,
position on the paper, than with the method of Problem 1.

PROBLEM LI. (Fig. 82).—7To draw the plan and elevation
of a solid made up of a square prism and a& cylindrical block, when
the axis of the block is snclined to the ground, and the faces of the
prism make equal angles with the vertical plane.

Draw the X Y and a line &' ¢ inclined to it at the required
inclination, 4, of the axis to the ground. At any part of the line
draw a square A B O D equal to the base of the prism, having a
diagonal A C on the line, and from the centre of the square draw
a circle equal in diameter to the circular block. The square and
circle then represent a view of the solid looking from above it in
the direction of the axis. Draw the elevation of the solid as
shown, commencing with the base of the circular block.

(A little difficulty will be found in making ¢’ /" equal to f*g’, but this
can be avoided by drawing the line at any convenient position on the axis,
and then drawing another X Y to pass through the point ¢'.)

The two drawings now made may represent the plan and
elevation of the solid when the ground line is X'Y'. As the
solid is not stated to be a given distance in front of the vertical
plane, we may draw a line #¢ to represent the plan of the axis
at any convenient distance in front of the X Y. Then, to obtain
the plan, proceed as follows :—Draw a projector from a’ ¢’ to
beyond the plan of the axis, the plan of a and ¢ must be on this
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line, and a distance apart equal to the distance A C in the first
view drawn, or what i8 better still for general application, make
the distance of @ and ¢ on
either side of the plan of the
axis, equal to the distance
&' A or 8 C. Theother points
in the plan of the square
prism can be obtained in the
same way. To obtain the
plan of the circular block, we
must first stripe it as in
Problem xlix., Fig. 80,
therefore divide the circle
centre &' into a convenient
number of equal parts, and
mark as shown 1, 2, 3, 4,
5, . . . 8. Draw the eleva-
tion of the stripes on the
elcvation of the block, and
mark. Then to obtain the
plan, draw projectors
through the elevation of the
points, as 2'4', and, as
before, mark off a distance
along the projector from the point where it cuts the axis plan
equal to the distance ¢ 2 or ¢4 in the first view drawn—that
is, p2 and p4 equal 2 or £4. The completion of the plan
needs no further description.

EXAMPLES.

EX. 1.—Draw the trace of a plane parallel to and 2" above
the H P, and determine the projections of & point in this plane
31" from the ground line. (8. & A. E,, 1886.)

EX. 2.—Two points a b on the ground line are 24" apart. A
point P is 2{" from a, and 23" from b, and 1}" from the V P.
Obtain its projections. (8. & A. Adv., 1886.)

EX. 3.—Draw the plan of a square prism, height 23', side of
base 11", a diagonal being vertical. (8. & A. Adv., 1891))

(By diagonal is meant a diagonal of the solid ; first draw in a simple
position and then alter the X Y.)

EX. 4.—Draw the plan of a cube of 23" edge with a diagonal
of the solid vertical.
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EX. 5.—Draw the projections of a pentagonal pyramid, axis
3’, edge of base 11", with its base in H P, and one edge of base
perpendicular to VP. Then draw a second elevation when one
sloping edge of the solid lies in the H P, and a second plan when
a sloping edge of the solid is vertical.

EX. 6.—Draw the projections of a hexagonal prism, axis 3}”,
edge of base 11" pierced with a central hole 1}” diameter when
standing with a base in the H P, and a face parallel to V P.
Then draw a second plan of the solid upon X Y, making an
angle of 45° with the elevation of the axis.

EX. 7.—A circular block is 3" diamneter and 1” thick, and is
pierced by a central square hole of 1}” side. Draw a plan and
elevation of the solid when the base is inclined 30° to the ground.

EX. 8.—An elliptical block is 34" x 2" and 1” thick, draw its
elevation when the plane of a base is inclined at 45° to the V P,
the longest axis of the ellipse being vertical,

Sections.—Up to the present stage we have dealt only with
solids, the form of which could be clearly seen by one or more
views obtained by looking upon the outside of the solid from
different positions. But it very frequently happens in practical
engineering drawings that the parts to be drawn are hollow,
and of a complex shape, which would not be clearly shown by
dotted lines. In such cases we suppose a cut to be made com-
pletely or partly through the object, and that part of it between
the eye of the observer and the plane of cutting to be taken
away, the view of the remaining part thus showing the details
of internal construction. The cut is termed u section, and the
cutting plane a section plane, so that we speak of drawing sec-
tional views or sections. In order to show what parts of the
solid have been cut by the section plane, we cross-line the parts
by & number of lines near together, conveniently drawn with
the 45° or 60° set square, this cross-lining is called sectioning,
and whenever a solid is made up of several parts, each part cut
by a section is sectioned in a different direction to the part with
which it is in contact, thus distinguishing the separate parts.
Examples of sectioning will be seen in the second part of this
book, although in machine drawings the sectioned parts are
generally coloured, and not cross-lined.

In problems on solid gedmetry, a section plane is shown by
its trace upon the HP or V P, and is usually marked by the
letters 8 T, wmeaning trace of section plane. The following
examples will illustrate the method of obtaining the projection
of sectional views:—

PROBLEM LIIL (Fig. 83)—4 square block stands centrally
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upon a circular block, both solids being pierced by a cylindrical
hole. To show the sections made by a vertical plans passing
through the axis of the solids, and by a horizontal plane passing
shrough the centre of the upper block.

Let 8T be the horizontal trace of the vertical section plane,
and 8' T’ the vertical trace of the horizontal section plane.

The outline of the plan and elevation is not altered in any
way by the fact of the two views being in section, and we,
therefore, draw the outline of the plan and elevation in the
ordinary manner. Dealing first with the vertical section, we see

that its plan will simply be

> that part of the horizontal trace,
8 T, of the section plane between
the boundary of the plan—that
A T is, the line a b; also that the two
lines in the elevation which re-
resent the hole will be full
, ines, because the hole is fully
£ revealed by the section, for in
\\N v obtaining the elevation of the
- section, we are looking from
the position of the arrow P,

\{\& with the part of the solid be-

4 tween the arrow and the section
A plane removed. This is the

4 only alteration in the elevation

% required by its being a section ;
2 but it should be noticed that,

if the solids had formed one

P block, there would be no full
Fig. 83. line from ¢’ to d' in the eleva-

tion, since the edge ¢ d has been
removed, we could, however, show a dotted line joining ¢’ d’ as
representing the back edge e/ All the parts of the solids cut
by the section plane are section-lined in the elevation, the top
block by lines sloping to the right, and the bottom block by
lines sloping to the left.

The elevation of the horizontal section is the line g’ A’ and its
l:l:n, the sectioned plan of the square block, which should be
ined in the same direction as the upper blook in the eleva-
tion.

In practical engineering arawing the draughtsman does not
concern himself with showing section planes, or with both the
lan and elevation of a section. The elevation of Fig. 83 would

termed a sectional elevation on the line 8 T, or simply “q
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section on 8T,” and the Pla.n, a sectional plan on the line 8' T,
or simply “ a section on 8’ T".”

PROBLEM LIII (Fig. 84).—To draw the plan and elevation of
the sections of a hexagonal pyramid, and to find the true shape of
the sections.

Let ST be the HT of a vertical section plane, and 8’ T' the
V T of a section plane inclined to the ground and perpendicular
to the V P,

Mark the vertex of the solid v and the corners of the base
a, b, ¢, d, ¢, f in both plan and
elevation. Then to draw the
vertical section made by the
plane 8 T, draw projectors
from each point 1, 2, 3, 4 of
the section in plan to meet
the elevation of the edges in
the elevation, as, for example,
the section plane cuts the
sloping edge vb at the point
2, and, therefore, it must cut
the elevation v'd’ of the same
edge at the point 2', found by
drawing a projector from 2 to
cut o' 4. Proceeding in this
way, we find the points 1', 2',
3, 4’ in the elevation, and by
joining in the right order we
obtain the elevation of the
section, which should be sec-
tion-lined as shown.

For the plan of the section on
8'T’ we adopt the same method,
as, for example, the section plane cuts the elevation v'b of the
sloping edge vb at the point 6, and, therefore, the plan of this
point must be at the point 6, in the plan vb of the edge. found
by drawing a projector through the point 6. The plan of the
section when completed is the irregmlar hexagon 5, 6, 7.6 9, 10,
and should be section-lined as shown.

True S8hape of Section..—We know from previous examples
that the plan 5, 6, . . . 10 of the section on the line §'T' cannot
be the true shape of the section, because it is the plan of an
inclined figure. We also know that a plane figure ir only shown
its true shape when it is projected upon a plane parallel to its
own plane—that is, it must be looked at in a direction perpen-

dicular to its own plane. The vertical section 1’, 2', 3", 4" is the
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true shape of the section, as the V P of projection is parallel to
the section plane ST. To draw the true shape of the section
made by the inclined plane, we may regard the trace of the
plane 8'T’ as a new X Y, and the line 5’ . . . 8’ as the elevation
of the plane figure marked in plan 5, 6, . . . 10, of which we
require a new plan on §'T' as a ground line. We then proceed
as in the last series of examples, and draw projectors from each
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point 5 . . . 10’ perpendicular to S'T’, and set off along each
its distance in front of the V P; thus 5! 52 is equal to 4’5 and
8182 to p8, and so on. This is exactly the same as supposing
the section plane to be turned into the V P of projection about
its trace S'T" as a hinge, taking with it the outline of the section,
and the projectors from each corner of the outline to the vertical
lane.
P It will be seen that a sectional view of a solid is of no service
for the practical purpose of showing its construction and form,
unless it shows the true shape of the section; hence, we do not
find that engineering drawings generally contain either plans or
elevations of inclined sections, but only the projections'of their
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¢true shapes. The draughtsman chooses the projection of the sec-
tions in the positions most likely to add to the clearness of the
drawing, and as a rule most sections on engineering drawings are
either horizontal or vertical ones. But it often occurs that a sec-
tion is taken through an inclined part, in which case the true shape
of the section is required, and must be obtained on the principle of
the last problem. It will be found that the true shape can often
be drawn without first obtaining the plan or elevation of the
section, but in many cases it is necessary to have either a part or
the whole of the plan or elevation. The following are additional
examples of plans, elevations, and true shapes of sections
obtained in similar ways, of some simple solids which are of
common application in practical construction :—

Cylinder (Fig. 85).—A is the plan and B the true shape of a
section of the cylinder made by the inclined section plane 8' T,
and D the true shape of a section
made by the vertical section plane 5
8T. The view, D, might be % -
termed a sectional end elevation.
The cylinder must be striped as
shown.

Cone (Figs. 86a, b).—Fig. 86a,
A is the plan and B the true
shape of a section of the cone
made by the inclined section
plane ST. In Fig. 86b, O is
the plan and D the true shape
of a section made by the plane
S!T), and E is the plan and F
the true shape of a section made
by the plane S2T2. The true
shapes, B, D, and F, are the
three conic sections—the ellipse,
parabola, and hyperbola. The
section of a cone by a plane, such
a8 ST, which cuts all the posi-
ticns of the genmerating line of
the cone, is an ellipse, and is
shown at B (Fig. 86a); the .sec-
tion by a plane, such as S! T?, parallel to any one position of the
generating line, is a parabola, and is shown at D (Fig. 86b);
while the section by a plane, such as S? T%, parallel to the axis of
the cone, is a hyperbola, and is shown at F (Fig. 86b).

The methods of obtaining the sections of a cone are as follows,
and should be carefully mastered - —

Fig. 86a.
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Sections of Cone by Stripes (Fig 86a).—Divide the plan
of the base into a number of equal parts, and join each point to the-
plan of the vertex. Imagine theselines to bestripes drawn down
the cone, and draw their elevation. The lines representing the
elevation of the stripes will cut the V T of the section plane in
points, which are in the elevation of the section ; therefore, the
plan of each point is directly underneath its elevation, and upon
the plan of the stripe whose elevation cuts the elevation of the
section plane. Thus, in the figure, the dotted linesva, vd, ve, vd,
are the plans of 4 stripes, and v'a’, v'd’ (which fall in the same

Fig. 56b

line), and 'c’, v'd’ (which also fall in the same line) are their
elevations. The stripe v'a’ cuts the line of the section in _front at
¢, and at the back at f’; therefore, a projector from ¢ /" meets the
plan of the stripes va and v in ¢ and f, which are two points
in the plan of the section. The same reasoning applies to the
stripes vc and vd, which give two other points, g and.A, in
the plans. Thus, by taking a sufficient number of stripes the
{)l:: of the section can be drawn, and its true shape found as in

blem liii. But the method evidently fails for the stripes v m
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and vn, and to obtain the points 7 and s we have to proceed as
follows :—

Sections of Cones by Cuts parallel to Base.—All plane
sections of a cons parallel to its base are circles. If, then, we
take any horizontal section of the cone in Fig. 86a, such as at
the line op, its plan will be a circle of diameter o p, and is shown
drawn upon the plan of the cone. But the cut op will pass
through the point ¢’ in the line of the section in front and the
point f” at the back, so that a projector through the point ¢/’
will cut the circle in the two points ¢ and f; which are evidently
points in the plan of the section. Therefore, the distance vr or
vs is equal to +'% or +'/. Any number of other points can be
found by taking additional cuts at different heights. It is un-
necessary to draw the whole of the circles. The sections of Fig.
86b are found in this way, for it is more convenient than the
method of stripes.

It is more convenient to obtain the true shape of the section
by drawing its centre as
shown dotted (Figs. 856
and 86a, b), in any con-

o’

venient position parallel =
to the trace of the section
plane, and then mark off Al

distances on each side of
the centre line, the dis-
tances being taken from
the centre line of the ~—1
plan of the section to the
extreme points of the A,
section. Thus, in Fig,
865, g*e? or g%/ in the
true shape of the section B
D, is equal to ge or gf
in the plan of the seo
tion O.

Sphere (Fig. 87)—A
is the elevation and B 4
tue true shape of the @ )
section of a sphere made ,
by the vertical plane 7
whose horizontal trace is Fig. 81
ST. The true shape of g =
any plane section of a sphere is a circle, and its inclined pro-
jection an ellipse. The method is identical with the method of
sections for a cona.

vl
\
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EXAMPLES.

EX. 9.—Draw a plan and two elevations of your drawing-
instrument box, with the lid open, at an angle of 45° with the
box, the end elevation to be in section. Scale, 6" = 1’

EX. 10.—A hexagonal right pyramid, side of base 1}", height
31", stands on the HP. Draw the plan and make a section by
a vertical plane, the I T of which is a line through one corner of
the base, passing § from the plan of the vertex. (S.& A.E,

1888}.()

EX. 11.—A letter A is made of material " thick, it is 3”
high and 3" wide at the base, the width of the material being §",
and it stands in the H P parallel to the VP. Draw its plan
and make an elevation on a line parallel to a diagonal of the
rectangle at the top, and a sectional elevation on a line through
the plan of a top corner and making 35° with the plan of the
front face.

EX. 12.—A cone, 3" high, where base is 2° in diameter, has
its axis horizontal. Draw an elevation on a plane inclined at
60° to the base, and a section of it by a horizontal plane §” above
the axis. (Vict. Univ. Hon., 1890.)

EX. 13.—A hollow square block, 2” outside edge, 1° inside
edge, 3" long, stands with one base in H P and a vertical face
at 30° to VP. Draw a plan and true shape of the section made
by a plane inclined at 45° to the ground passing through the
centre of the axis of the block.

EX. 14.—A hexagonal pyramid, 3" axis, 1}” edge of base, lies
with one triangular face in the H P, its axis being parallel to the
V P. Draw its plan, and the plan and true shape of a section
made by a plane inclined at 20" to the ground passing through
the centre of the elevation of the axis.

EX. 15.—A cylinder, 2" high, 2} diameter of base, stands
with one base in the HP. Draw plan and true shape of a
section made by a plane inclined 30° degrees to the ground
passing through the elevation of the axis at a poin. 1§ from
the base.

EX. 16.—A cylinder, 3" high, 2}" diameter of base, lies in the
H P with a base at 60° to the V P. Draw its elevation, and the
elevation of a section made by a vertical plane parallel to the
V P cutting the plan of the axis }” from one base.

EX. 17.—Draw the plans and true shapes of the three sections
of a cone made by cutting planes, as in Fig. 86a, 5. The cone
to be drawn in each case 5" high and 3" diameter of base.

EX. 18.—Draw the elevation and true shape of the section
of a sphere of 3}" diameter made by & vertical plane inclined 45°
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to the VP, and passing through the plan of the sphere }” in
front of its centre.

EX. 19.—A sphere of 4” diameter rests'on the HP, and the
top quarter of the sphere is completely removed. Draw a plan
of the remainder.

EX. 20.—A conical vessel open at the top is 43" high, 3}”
diameter outside at the bottom and 3” diameter outside at the
top, the thickness of the shell being §”. Draw its plan and
elevation, the elevation to be in section, and the plan to show
a horizontal section midway up the vessel.

Projection of Solids generated by the Revolution of Sur-
faces.—It has been pointed out that cylinders, cones, and spheres

Fig. 88.
are examples of solids generated by the revolution of certain
surfaces about a fixed axis. But the number of such solids of
revolution is infinite, and as previous constructions do not

apply except to simple cases, it 1s desirable to consider a more
eneral example.

PROBLEM LIV. (Fig. 88).—To draw the projections and sec-
tion of a given solid of revolution.
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Let u v be the plan and u’ v’ the elevation of an axis, and a'b
« « « ¢ be the elevation of a surface revolving about w'v’. Tt
is required to draw the plan of the solid as generated, and of the
section made by a horizontal plane whose vertical trace is 8’ T".

The revolution of the points ¥, ¢, ¢', /' will generate circles
lying in planes perpendicular to the axis u'v/, and, therefore,
their plans can be drawn, as shown, exactly as in Problem xivii.
Find the points A’ d’' m’, so that d' shall be at the point of the
curve furthest from the axis, and A’'m’ at points in the curve
nearest to the axis, then these points will also generate circles of
radii equal to d'1, A’2, and m’'3 respectively, the plans of which
can be found. The complete plan of the solid, so far as its out-
line is concerned, is then shown by the figure a, b, ¢, ¢, £, g, 6. To
obtain points in the plan of the section, we must proceed by
taking cross-sections of the solid perpendicular to the axis, and
then project these cross-sections upon the HP. For example,
the true shape of the cross-section through d'1 is shown in the
figure marked A by the circle r # ¢, the section plane cutting this
circle in the points 6', 7°, the plan of these points is 6, 7, and give
two points in the plan of the section. Other points are found in
the same way, thus completing the sectional plan as shown. It is
necessary to take cross-sections at all points where the direction
of the curve changes.

EXAMPLES.

EX. 21.—A semi-ellipse axes 33" and 2}" revolves about ita
major axis as an axis. The axis is inclined at 45° to H P and is
parallel to VP. Draw the plan of the solid generated by the
revolution of the semi-ellipse, and the plan of a section msge by
8 horizontal plane passing through the centre of the axis.

EX. 22.—A line is parallel to the H P and inclined 35° to VP.
A surface similar to that of Fig. 88 revolves about this line as
an axis. Draw the elevation of the solid thus generated, and
the elevation of the section made by a vertical plane parallel to
the V P passing through the centre of the axis.
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SECTION XL

INTERPENETRATION AND DEVELOPMENTS OF
SURFACES AND SOLIDS- SECTIONS OF SPECIAL
SOLIDS—HELICES AND SCREW THREADS.

THERE are a number of problems of frequent occurrence in
practical draughtsmanship which are best solved by the appli-
cation of methods usually regarded as a pari of solid geometry.
Among such problems may be mentioned the drawing of an
ordinary steam dome upon a cylindrical boiler, or of the semi-
spherical ends of egg-ended boilers, and the finding of the true
shape of the plates for such parts; the drawing of the contact
lines of tbe cylindrical branches of cocks and valves with the
main casing (see Fig. 166), and the drawing of the correct out-
line of such parts as at the junction of the crank-web and crank-
shaft, or the meeting of other flat and curved surfaces, as in
connecting-rod ends and other similar parts.

These problems may generally be regarded as special cases of
the interpenetration and development of surfaces and solids, as,
for example, the steam and boiler may be treated as a case of
the interpenetration of two cylinders, and the cock with its
inlets and outlets as the interpenetration of a cylinder with a
cone.

It will be understood that in the case of the steam dome and
boiler, and of many similar examples, it is necessary to develop
the true shape of surfaces in order that the plates may be so

cut when flat, so that they shall join up correctly when bent to
their required form.

PROBLEM LYV. (Fig. 89).—To draw the projections of the
snterpenetration of a horizontal and vertical cylinder and the develop-
ment of their contact surfaces.

Let A be the plan, B the end elevation, and C the side eleva-
tion of the cylinders.

The line of interpenetration is evidently shown in plan by
the circle 1, 7, and in the end elevation B by the arc d’/. 1In
order to find its side elevation on C, we imagine the vertical
cylinder to have a number of stripes drawn upon it, and we then
find the real length of each stripe from the top base of the
cylinder to the point where it enters the horizontal cylinder.
This is done as follows:—Divide the plan of the vertical cylinder,
the circle on A, into a convenient nuwber of equal parts, say 12,
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and mark as shown, 1,2, ... 12, Draw the elevation of the
stripes in each of the elevations B and C, and mark the stripes
1,2,...120n B, and 1%, 2% ... 12 on 0. Care must be
taken not to confuse the marking of the stripes in the two eleva-
tions, notice that the outside stripes 1’ and 7', on the end
elevation B, are the centre stripes on the side elevation G, while
the centre stripes 4’ and 10’, on the end elevation, are the out-
side stripes on the side elevation. The stripes are correctly
obtained on the end elevation B, by projecting from the plan,
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Fig. 89,

and, on the side elevation O, by drawing and dividing the semi-
circle on the line m n as shown.

The real length of the stripes are shown in the end elevation
B, therefore mark off on each stripe in the elevation_C its real
length as obtained from the end elevation, thus 1 p=1d or
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7'C,and 4"n and 10" m = 4'k’, and so on for each stripe. The
curve mp n drawn through the end of each stripe as thus found
is the side elevation of the interpenetration. It will be noticed
that it also represents the back half of the interpenetration.

To develop the surface of the vertical cylinder draw the oblong
RSTYV, the length of which RV equals the circumference of
the cylinder base, and the height of which R 8 equals the length
of the longest stripe on the cylinder, 1'd’ or 7°/. Divide the
oblong into the same number of equal parts as stripes on the
vertical cylinder, and draw lines through each point. Mark the
lines 1,2,. . . 12, 1, as shown. These lines are the development
of the stripes, the two end lines coinciding to form the stripe 1
when the oblong is bent to form the cylinder. Mark off the real
length of each stripe as found from either of the elevations B or C,
down the lines representing the stripes from the line RV as
4z=4'k, and draw the curve SW T as shown through the
points thus found. The complete figure, RS WTV, is then
the development of the vertical cylinder, supposing it simply to
rest upon the horizontal cylinder, and is the shape to which a
piece of paper must be cut, 8o that when it is bent to bring the
edges RS and T V together, it shall exactly fit the horizontal
cylinder.

We will now suppose the vertical cylinder to penetrate the
horizontal one for a short distance and find the true shape of the
hole of penetration in the surface of the horizontal cylinder. To
do this we must stripe that part of the horizontal cylinder
containing the hole, and then develop it with the stripes, the
length of which between the extremities of the hole will enable
us to find the true shape of the hole. Divide the arc d’l' in the
end elevation B into eight equal parts at the points d',¢,' /", . .. [.
Oonsider these points as the elevation of the stripes, and draw
their plan across the hole in the plan A as shown by the dotted
lines d, ¢, f,. . . l. Develop a part of the surface of the cylinder
containing the hole, as in the Figure D, where the line d"I" is
equal to the real length of the arc d’ /, and is found as shown on
p. 73. Divide the line d" /" into eight equal parts, and draw
the lines marked ¢’, /7, ¢", . . . I” through each as shown dotted,
these lines are the development of the horizontal stripes crossing
the hole. The real lengths of each stripe between the extremities
of the hole are shown by the length of the dotted lines crossing
the hole in the plan A, thus ¢"%" or ¢"c"=gb and g¢, or
measuring from the front of the cylindera” 4" =a b and a"¢" = ac.
The closed curve drawn through the points thus found is the
true shape of the hole.

The conditions ot this problem are similar to the practical
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example of a steam boiler and dome, for the horizontal oylinder
represents the boiler, and the vertical cylinder the dome. Then
the development, RS W T V, is the shape for the plates of the
dome before bending, neglecting the flange, and the development
D shows the shape which the hole should be cut in the plates,
so that when bent it shall be a circle.

EXAMPLES.

EX. 1.—Draw the curves of interpenetration of two cylinders
each 3" diameter and 4" high. Axis of one horizontal, of the
other vertical ; both axes parallel to the V P.

EX. 2.—A horizontal cylinder, 4" diameter, 6" long, is inter-
penetrated by an oblong block 23" wide, 2" thick, the sides of
which are vertical. Draw the correct lines of interpenetration
in the side elevation, and draw a development of the surface
of the oblong block and of the hole in the cylinder. Height of
block immaterial.

EX. 3.—A cylindrical boiler is 6’ in diameter and has a
cylindrical steam dome 2’ 6” in diameter and 2’ high. Draw
three views of the arrangement and show the development ot
the plates of the steam dome and of the hole in the boiler shell
Scale 1" = 1. (See Problem lv.)

EX. 4.—A right circular cylinder of 21" diameter penetrates
another of 3" diameter, the axes being at right angles and passing
}” from each other. Draw the projection of the curves of inter-
section on a plane parallel to the axes of the cylinders. (Vict.
B. Sc. Hon,, 1889.)

EX. 5.—Develop the surface of the cylinders in Ex. 4, the
larger cylinder development to show the holes for the small
cylinder. Cut out the figures and make a model of the cylinders
in the given position.

Interpenetration of Cone and Cylindor.—PROBLEM
LVIL (Fig. 90).—To show the curve of intersection of a wvertical
cone and a horizontal cylinder in plun and elevation and to
develop the surface of the cone.

The cone is shown in the figure having its vertex marked v and
v’ in the plan and elevation respectively. The cylinder has the
axis a b, and its diameter is such that it does not cut completely
through the cone—that is, the diameter of the cylinder is less
than the diameter of the section of the cone a’b’, which contains
the axis of the cylinder. In order to save drawing only one-half
of the cylinder is shown. ~ .

To obtain points in the intersection we take a number of
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horizontal cuts through both solids, and obtain from a plan of
the section two points in the plan of the intersection. For
example, if a horizontal section be taken at the line ¢'d), its
plan will be the circle g ¢ A, equal in diameter to ¢’d’ shown partly
drawn upon the plan of the cone, and the oblong shown by the
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Fig. 90,

lines g f, fe, eh, which represents the section of the cylinder.
The oblong and the circle cut at the two points g and A, which

are evidently two points in the plan of the required interseo-
tion. The elevation of the points coincide at the point marked
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g’ K, which is found by projecting from the plan of the points
to the elevation of the line of section. The plan of the section
of the cylinder is found by drawing its end elevation as shown
by the circle. having the centre p', thus f'¢ in the plan equals
the distance f"¢’ in the end elevation. By proceeding in this
way for a number of horizontal sections sufficient points can be
found through which to draw the curve showing the plan of the
intersection, the lower half of the curve is of course dotted, the
points mn, at which the dotted part begins, being found by
taking a horizontal section through the axis of the cylinder.

Development.—Only one-half of the cone is developed in the
figure to save drawing. Draw the sector v'a’p, centre ¢', and
making the arc length radius v'a’p equal to half the circum-
forence of the cone base, as shown on p. 73. To develop the
hole, we draw a number of stripes down the cone, over that part
of it which contains the hole, then draw the stripes on the develop-
ment v’ @’ p, and mark off on each the length contained between
the extremities of the hole. Draw the lines »1 v9 in the plan,
passing through the extremities of the curve of intersection, and
divide the arc 1,9 into any number—say, eight equal parts,
draw the elevation of the stripes, and mark as shown. Then
taking the stripe v'2’, we see that it crosses the hole at the
points 10, 11, but the length 10 to 11 is not the true length of
the line, because the whole stripe v’ 2’ is not parallel to the V P.
To obtain the true length, draw lines parallel to the base, through
the points to meet the line v'5’in the points |2 and 13, then, as
v'3’is the real length of v’ 2’, 8o the distance 12 to 13 is the real
length of the part 10,11 of the stripe intercepted between the hole.
Now draw the stripes upon the development of the cone surfice,
and figure each stripe; this is best done by drawing the middle
line v'5 and marking off the other stripes on each side of it.
Then an arc drawn through the point 13, with centre ¢’ to cut
the stripes v/ 2 and '8, will give two points, 73, in the develop-
ment of the hole, and an arc drawn through the point 12, to cut
the same stripes, give two other points, ¢ and ». By proceeding
in this way the remaining points can be found, and the true
shape of the hole drawn, as shown.

It is very instructive to develop the whole of the cone surfuce
and then to make paper models of the solids, which will be
found of great assistance in drawing the solids in more diffi-
cult positions, such as when the axis of the cylinder is inclined
to the V P.

The above problem represents the condition ot the casing and
branches of ordinary steam- or water-cocks, as shown in Fig. 166,
with the slight difference that only a frustrum of the cune is
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dealt with. To stripe the frustrum of a cone the circles of its
top and bottom faces must be divided into the same number of
equal parts.

EXAMPLES.

EX. 6.—A cone 3} diameter of base, axis 4}" long, stands on
the H P, and is completely penetrated by a cylinder 2” diameter
and 43" long. The axis of the cylinder is horizontal, parallel to
the V P, and passes through the axis of the cone 13" from the
base. Draw the plan and elevation of both curves of intersec-
tion and the development of the cone surface. Make a paper
model of the solids.

EX. 7.—Draw the plan and elevation of the solids in Ex. 6,
when the cylinder is 3" diameter, and is inclined 30° to the V P,
showing the curves of both intersections.

EX. 8.—A cone frustrum is 5" high, 33" diameter at the bot-
tom, and 4§" diameter at the top, it is completely penetrated by
a horizontal cylinder 3" diameter, 5” long, the axis of which
bisects the axis of the frustrum. Draw the plan and elevation
of the solids, showing the curves of intersection.

Special Cases of Intersection.— The following examples
illustrate problems of frequent occurrence in practical draughts-
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Fig. 91.

manship, and which should be mastered by all students proceed-
ing to machine design:—We will suppose Fig. 91, A and B, to
represent two elevations of & connecting-rod end of large size,
although it equally well represents part of a crank*shaft and
crank web (see Fig. 196). A is a front elevation and B an end
elevation, the conditions Leing that a round rod joins an oblong
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block, the rod increasing in diameter as it approaches the block,
forming what is technically called a “fillet,” and shown clearly
in the view A. But as the width of the block is not as great as
the largest diameter of the rod, the junction of the two solids

roduces a curve of the form shown in the front elevation, and
1t is to obtain this curve that the following geometrical construc-
tion is needed. Make a vertical section of the solids at the line
¢/, and draw the end view of the section on B, this end view
will be the figure ¢’ /7, ¢’ &', made up of the two parallel lines &'/’
and g' 4, and the incomplete circle. The points ¢’ f* are evidently
points on the surface of the oblong block, and by projecting across
to the side elevation, give two points 1,2 on line e¢f in the
required curve. By taking other sections of the rod a sufficient
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number of points are found through which to draw the curve.
To obtain the point v, the vertex of the curve, the section should
be taken at the line va b, 8o that v a is equal to the width of the
block, while the limiting points 3, 4 are found by taking a sec-
tion through the line e¢d, the greatest diameter of the rod. If
the width of the block is equal to the smallest diameter of the
rod, the curve will form a point at v.

A second example is shown in Fig. 92, which represents a
connecting-rod end such as used on the engine of Fig. 178. A
is a front elevation and B a part end elevation, the problem
being to find the inner curve on view A. We are at present
only concerned with the geometry of the problem, so we may
regard the solid as made up of a round rod or cylinder meeting
with an increasing curve, a forked piece, the sides of which are
tiat surfaces, the top and bottom faces being turned cylindrical.
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In the end view B, m,n, 0, is a section at the line 8¢, and as
we know m n is part of a circle struck from w as centre, we
obtain by a projector through m the point z in the curve. To
obtain other points proceed exactly as in the last example, the
same reading and lettering holding good for both.

EXAMPLES.

EX. 9.—Work the problem of Fig. 91 when the rod is 2"
diameter, the block 24” wide and 1}" thick, the radius of the
fillet between the rod and block being £".

EX. 10.—Work problem of Fig. 92 to find the inner curve
when sizes are a8 given in figure. Rod 17 diameter.

EX. 11.—A solid is made up of a cylinder 1}” diameter, 3"
long, which joins a sphere of 24" diameter, by a fillet of 4" radius.
Draw the plan of a horizontal section of the solid made by a
plane parallel to the axis of the cylinder and ” above.

Development of Spherical Surfaces.—A common type of
steam boiler, known as “egg-ended,” is constructed as a circular
shell with spherical ends. Before bending the plates of which
the ends are made they require to be cut to such a shape as that
when bent they shall form part of the spherical end. The end
is generally made up of four or six segments called “ gores,” the
overlap of each required for rivetting together being allowed for
in the development. In the following example the problem is
treated as consisting simply of a cylinder with a spherical end,
the semisphere being divided into six segments, and we shall
show how to find the projection of the dividing or ¢ contour”
lines upon the front elevation of the solid, and the development
of one segment or gore.

Fig. 93, A and B, represents part of the cylinder with a
spherical end, A being the front elevation and B the end eleva-
tion. The semisphere is divided into six segments, as shown by
the radial lines meeting at the centre ¢’ of the end elevation.
To draw the side elevation of the division lines ¢’a’, ¢’ &', we take
a number of vertical sections of the semisphere by planes at
right angles to the axis of the solid. The end elevations of such
sections are circles, and each. one gives by its intersection with
the lines ¢a, ¢b, two points which can be projected across to the
line of the section giving two points in the required curve.
Thus a vertical section through the line de gives for its end
elevation a circle equal in diameter to d ¢, of which a part only, the
arc d' ¢, is shown drawn. This arc cuts the lines ca, ¢ b in the
points marked /"¢, and by drawing horizontal projectors through
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these two points to meet the section line de, the two points f and
g, which are points in the required curve, are obtained. It is
better for the purposes of the development to take the sections,
so that they equally divide the arc ¢n and ¢ m—that is, so that
the parts e 4, A j, &c., are equal.

gt
d
/

T |a
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._!f /

Fig. 93.

To develop one segment draw a line ¢"m® in the figure C
equal in length to the half circumference of the semisphere—
that is, equal to the arc ¢m or ¢n, and divide the length ¢'m*
into the same number of equal parts as the divisions on em or
¢n. Through each part draw arcs of circles with centre c’, for
it is evident that the development of the arcs a'd’ f'¢’' (Fig. B)
will be arcs of circles, since ¢'a’ = ¢'¥, and ¢'f’ = ¢'g’, and 80 on
for all similar contour lines. Make the length of each arc in
Fig. O equal to the real length of the corresponding arc in Fig.
B, thusa”d"=a'b,and s"¢g"= f'g". This is best done by stepping
off the distance as a number of short chords, except for the
outside arc a” ", which can easily be calculated. e figure
¢”a”}" is then the development of one-sixth of the semispherical
surface.
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EXAMPLES.

EX. 12.—A cylinder, 4" diameter, 2" long, has a spherical
end which is divided into six segments. Draw a side and end
elevation, and a development of one segment.

EX. 13.—Draw eight contour lines on a sphere of 4" diameter,

EX. 14.—A sphere 33" diameter is penetrated by a square
prism 2" edge of base and 6" long. The axis of the prism
coincides with an axis of the sphere, the centre of the sphere
being at the centre of the prisms. Draw a plan and elevation
of the solids showing the curves of intersection when the axis of
the prism is horizontal and parallel to the vertical plane, the
sides of the prism being equally inclined to the paper. Develop
one of the holes made in the surface of the sphere, and the
surface of one part of the prism up to its contact with the sphere.

Projection of Helices and Screw Thread.—A helix may
be defined as the curve traced out by a point moving round a
cylindrical surface in such a way that its movement in the
direction of the length of the cylinder shall be uniform with its
movement around the surface of the cylinder. So that if a point
starts from the Lase of a cylinder and moves in an upward
direction and at the same tine moving round the cylinder, so
that when it has moved up, say 1”, it shall have moved one-fourth
the way round, and when it has moved 4" up and 1° up it shall
have moved half round and wholly round, the path of the point
would be a helix. The distance moved in the direction of the
length of the cylinder during the complete revolution is called
the pitch of the helix. Spiral staircases, spiral springs, and screw
threads are generated by helices, but the latter example only
will be explained in consideration of the great practical value of
screw threads.

PROBLEM LVIL (Fig. 94).—Z0 draw a heliz upon a given
cylinder having a given pitch.

Let a', b', ¢, d' be the elevation of the cylinder and the circle
of diameter a b its plan.

Make the distance ' 12’ equal to the given pitch. Then from
the definition of a helix we know the curve must rise from
‘s’ to 12’ uniformly with its travel around the circumference of
the circle which represcnts the plan of the cylinder. Therefore
divide the circle and the pitch distance into the same number of
equal parts, and mark as shown 1, 2,11, and 1,2, .. 6.
Draw projectors through each of the division points on the
circle. Then when the point has moved round to 1, it must
have moved up one-twelfth of its pitch, and it will, therefore, be
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on the horizontal line drawn tnrough 1, and at the point where
this line cuts the projector through the point 1 on the circle,
similarly the second point is where the projector through point 2
on the circle cuts the
¢ horizontal line drawn
7/ through the point 2', and
so on for the remaining
points. The curve a'c
12’ is then a helix of one
convolution.

The figure also repre-
sents the geometrical pro-
jection of a square thread
sorew, for a further de-
scription of which see p.
166. The width of the
thread a’'6’ is half the
pitch, therefore the curves
beginning at 6', 12, and
d’% parallel to
the half helix a’¢’, and
are half the pitch apart,
and can be drawn by
setting off distances of
half the pitch along the
projectors already drawn,
starting from points on
the curve a' ¢' — thus,
mn =mno =op The
depth of the thread is
the distance marked =,
therefore when the thread
is cut, it leaves a cylinder
of the diameter shown by
the smaller circle in the
plan. The inner edge of the thread is a helix of the same pitch
drawn upon a cylinder of the diameter 6” 12, and is constructed
in exactly the same manner as the helix representing the outer
edge, the construction lines being shown dotted. Thus the curve-
starts from 4’ and rises to the line through 1’, while it has moved
round one-twelfth of the circumference, and the first point in the
curve is found by drawing a projector through the point 1" on
the circle to meet the horizontal line through the point 1’ in the
elevation, and so on for the successive points. These inner curves
disappear from sight at the centre of the screw, and are only
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seen on the top part ot the thread from the centre to the limit of
the cylinder, as seen in the figure. As these curves are similar,
it is only necessary to obtain one in the manner just described,
the others being conveniently found by setting off distances
along the projectors. The parts of the curves, such as the one
marked &’ 7, are found by continuing the larger helix.

Helix upon a Conical Surface.—When a helix is traced
upon a vertical cylinder, its plan is a circle, but when it is traced
upon the surface of a cone
ib is continually approach- v’
ing the axis, and, therefore,
its plan is a spiral which
uniformly approaches the
point representing the plan
of the cone vertex. The
curve of a helix upon a
cone is shown in plan and 7=
elevation in Fig. 95, the
distance 4’12’ being the =
pitch. To obtain the curve,
draw a number of stripes
down the cone, and draw
their plan and elevation as
shown. Then after the first
one-twelfth of its travel
the point will be on the
stripe v1, and will have
moved upwards from the
starting point a’ to the
height of the horizontal
line through 1, its eleva-
tion will, therefore, be
where the stripe v’ 1" cuts
the line through 1", and
gimilarly for the second
point, where the stripe v’ 2" Fig. 95.
cuts the line through 2,
and so on for each point. The plans of the points are found by
drawing perpendiculars from - the elevations to meet the plan of
the corresponding stripe. For the stripes v3, v9 the method
of sections must be adopted (see p. 125).

8piral 8prings.— When the material of the spring is of square
section, it can be correctly drawn by adopting the construction
of Fig. 94 for the square threaded screw, allowing for the
absence of the solid cylindrical centre. The outer edge of the
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spring is a helix upon a cylinder equal to the outside diameter,
and the inner edge a helix upon a cylinder equal to the inside
diameter. With springs of circular section, a helix should be
drawn upon a cylinder equal to the mean diameter of the inside
and outside of the spring, which helix will represent the path of
the centre of the material of which the spring is made, then a
number of circles of diameter equal to the section of the spring
should be drawn upon this helix as a centre, to give points for
the lines of the spring

EXAMPLES.

EX. 15.—Draw a helix of one convolution upon a cylinder
3" diameter, and develop the surface of the cylinder with the
helix. Pitch of helix 13",

EX. 16.—Show three threads of a square thread, outside
diameter 3", pitch 17, depth 3".

EX. 17.—A square prism 4" edge of base, 3" high, is bored
with a central hole and screwed internally with a square thread
screw, 21” diameter, §" pitch, \%" deep. Show a vertical section
through the centre of the prism when it stands with one base
upon the paper.

EX. 18.—Draw a helix of one convolution upon a cone of 23"
diameter of base, 4" high, and develop the cone surface with the
helix. Pitch of helix 27

EX. 19.—A spiral spring is 2" outside diameter, and is made
of " round wire. Draw a length of the spring showing six coils,
the pitch being §”. Show the two top coils in section, the section
pmne being vertical and passing through the centre of the
spring.

SECTION XIIL
ISOMETRIC PROJECTION.

The principles of isometric projection enable the three dimen-
sions of a solid to be shown by one drawing, which, in appear
ance, is somewhat similar to a perspective representation, with
the additional advantage that the actual sizes of the solid can be
measured direct from the drawing.

If a cube be made to rest by one corner upon the paper, so
that a diagonal of the solid is vertical, its plan will be repre-
sented by the drawing of Fig. 96. For the three top faces which
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meet in a solid right angle at A, are each equally inclined to the
paper, therefore tieir plans are similar and equal figures, and for
the same reason the length of the plans of all the edges are equal.
Tt is also evident that the three lines A B, A 0, and A D which
represent the threc edges of the solid right angle, make angles

with each other of 360° or 120°, and that all other lines repre-

3
senting edges of the solid are parallel to one of these three lines.
The figure is, therefore, very easily constructed, as the lines A C
and A D make angles of 30° with the horizontal and 60° with
the vertical, and can thus be drawn with the T square and 60°
set square.

The above reasoning only strictly applies to oblong solids
having solid right angles, but, as will be shown later on, the
same construction can be very conveniently applied to irregular
solids and solids with curved surfaces. For example, the draw
ings of the simple solids on pp. 104 and 105 are in isometric pro-
jection.

Referring again to the example of the cube in Fig. 96, it is
evident that the length of the edges in the drawing, should not
be equal to their real length, as they are all inclined to the

Fig. 96. Fig. 97.

plane of the paper. The relation of their projected length to
their real length can be seen on reference to Fig. 97 ; a,b, ¢, d is
a face of the cube, and ac a diagonal of the face; if afand ce
are drawn at right angles to ac, and each made equal to the
length of an edge of the cube, then the oblong a, f ¢, c represents
a section of the cube containing two diagonals of the solid, and
fc is one of these diagonals. But in Fig. 96 this diagonal is
supposed vertical therefore, draw X Y through ¢ at right angles
to f¢, and the length cg is the projected plan of an edge of the
cube. But if the cube edge ad or d¢ = 1, then a¢ = J/3, and

Je¢ = A3 ; also, the triangles ecg and cef are similar, there-
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fore ce:cg: : N3 : V3, hence, by constructing a right-angled
triangle similar to the triangle fae, where the base is &/2 and
the perpendicular is 1, the hypotenuse will be V3, and real
lengths along the hypotenuse, when projected upon the base,
will give the isometric length.

'The practical objection to this correct isometric projection is
that it entails the use of an isometric scale, and that lengths of
the object cannot be measured direct from the drawing. But if
the cube in Fig. 96, or any other solid, is drawn its real size, the
only alteration in the drawing is in its size, and not in its shape,
and hence we see there can be no objection to making isometric
projections the actual size of the objects they represent, thus
dispensing with the use of an isometric scale, and making it
possible to take measurements direct from the drawing. This
arrangement is generally adopted in practice, and is adhered to
in the following examples :—

It has been said, in referring to the drawing of the cube
Fig. 96, that with oblong solids all lines are parallel to one of
the three lines A B, AC, and AD.

These lines are termed the “ISOMETRIC AXES,” and it is
necessary in commencing any isometric projection to first set out
these three lines.

We may now regard Fig. 96 not as the plan of a cube with
a diagonal of the solid vertical, but as a drawing of a cube with
one face lying upon the paper. On such a supposition the figure
A CE D shows the top horizontal face, and the figures ADF B
and A OG B vertical faces, so that in projecting a horizontal
surface isometrically its length and breadth must be set off along
the two sloping isometric axes A O and A D, while for a vertical
surface, its length and breadth must be set off along the vertical
axis A B, and one of the sloping axes AC or AD. Itisim-
portant to remember this distinction.

Either surfaces or solids can be projected isometrically,
and, as before stated, the construction can be extended to
surfaces or solids not of oblong form, the method by which
this is done will be clearly seen in the following examples, but
it will be better understood by remembering that since the
isomnetric axes represent lines at right angles only, the projection
of figures containing other angles requires that they shall be
surrounded by oblong figures, thus a circle is first enclosed in a
square and a hexagon in an oblong.

PROBLEM LVIIL (Fig. 98a, b).— T draw the ssometric projeo
tions of a hollow square prism (a) with its axis vertical, (b) with its
axis horizontal.
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Fig. 98a, draw the isometric axes ad, ac, ad, set off ae along
ac, and af along ad, equal in length to the edge of the prism
base. Draw fg parallel to ac and eg parallel to a d, meeting at
g, then the figure a fy ¢ is the isometric projection of one outside
square base of the prism. Setoff al = a2 =g3 = g4, equal
to the thickness of the sides of block, and draw lines as shown
dotted to obtain the inside square 5, 6,7,8. Set off the length of
the prism down the axis a b from a to &, and draw lines through
JSand e parallel to ab. Through the point 4 draw lines parallel to
the other axes, as shown, thus completing the projection of the
prism. Dotted lines representing the bottom base, can be drawn
if desired.

Fig. 98, to draw the prism with ite axis horizontal, the square

K

4

»
Fig. 98a Fig. 985,

representing its base must be drawn as a vertical face, and is
thus shown at aefg. The completion of the projection needs
no further description.

EXAMPLES.

EX. 1.—Draw the isometric projection of an oblong, sides 3"
and 2", when its plan is horizontal.

EX. 2.—A cube, 24" edge, stands upon a square block 3}"
edge, 1” thick. Draw their isometric projection when the bloc
stands upon the ground. .

EX. 3.—Make an isometric projection of a wooden box 8"
long, 6" deep, 4” broad outside, and having a flat lid opened
through an angle of 120° the thickness of the wood being }"
throughout. Scale, half full size. (Vict. Hon., 1892.) 1o
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EX. 4.—Two square timbers 9” x 9" are joined at right
angles to each other by means of a tenon and mortise joint, the
width of the mortise being 3”. Draw an isometric projection of
the timbers ready for jointing but separate from each other.
Scale, 3" = 1",

EX. 5.—Draw the isometric projection of a headed key 6"
long, taper }” per foot, width §”, least thickness §”, thickness of
head 1}”. Use an isometric scale. (Vict. Hon., 1889.) See
Fig. 133b.

PROBLEM LI1X. (Fig. 99).—To draw the insometric projec-

tion of a hexagonal prism, with its axis vertical.
Draw the hexagon a, b, ¢, d, ¢, /; g (Fig. 99, A) representing the

A

Fig. 99. Fig. 100.

base of the prism, and surround it by the oblong m, n, o, p
Bet off a long side of the oblong n 0 along one of the sloping
ingometric axis, and a short side nm along the other sloping
axis, and complete the insometric projection of the oblong, as at
m, ', o, p'. Make n'b = nb, and o'¢’ = oc, and by Parallell
mark the corresponding points ¢’ /' on the other side m’ p’; the
points g and @ are at the middle of m n and o p, therefore bisect
m’ 7’ and o'p’ at ¢’ and d’, and join as shown, thus obtaining the
isometric projection of the hexagonal base. Draw lines through
each corner of the hexagon parallel to the vertical axis, and



ISOMETRIC PROJECTION. 147

equal in length to the height of tlie solid and complete as
before.

EXAMPLES,

EX. 6.—Draw the isometric projection of a hexagon of 14"
edge, when its plane is vertical.

EX. 7.—Draw the isometric projection of a hexagonal prism,
edge of base 11", height 2", when its axis is vertical.

X. 8.—Draw the isometric projection of a pentagonal pyra-
mid edge of base 1}, axis 33", and horizontal.

PROBLEM LX. (Fig. 100).—Z0 draw the isometric projec-
tion of a cylinder with its axis vertical.

Draw the circle g, b, ¢, d (Fig A) and surround it by a square
m, n, o, p, and project it isometrically as a horizontal surface, as
shown at m', n', o), p’. Bisect the sides of the figure in the
points a’, &', ¢/, d’, thus obtaining four points in the projection of
the circle. To obtain other points tfraw the diagonals of the
square m, n, o, p, cutting the circle in four points, draw lines
through these points parallel to the sides of the square, thus
making four small squares. Draw the isometric ?rojection of
these squares in the corners of large squares, thus n' ¢’ = n ¢ and
w' f' = nf, thus giving the point ¢’ as an additional point in the
curve, and similarly for the other corners. A closed curve can
then be drawn through the eight points, which represent the
isometric projection of the circular base. Through each point
in the curve draw lines parallel to the line ¢’ 4, and make the
length of each equal to the length of the cylinder, and complete
the figure as shown.

The method adopted of finding additional points in the curve
is one that should be carefully noticed, as its application is
required for other curves. We could, of course, find still more
points in the projection, although the figures would not then be
squares, but oblongs, such, for example, as is shown by dotted
lines for the points r and s, which are further from one side of
the square than the other.

EXAMPLES.

EX. 9.—Draw the isometric projection of a circle of 3°
diameter when its plane is horizontal.

EX. 10.—Draw the isometric projection ot a right hexagonal
prism, side of base 27, length 8", with a circular hole 17 in
diameter bored through it at right angles to the axis. (Vict.
Hon., 1890.)

EX. 11.—Draw the isometrical projection of a cross consisting
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of two cylindrical rods 17 in diameter and 6° and 4" long, inter
secting axially and at right angles at the middle of their lengths.
(Vict. Hon., 1891.)

EX. 12.—A bolt consists of a conical part 2" long, 1" diameter
at the end, and increasing to 1}" at the head. The head isa
square block, 2" x 2" and §" thick. Draw an isometric projec-
tion when the axis of the bolt is vertical, the head being at the
top. (S. & A. A, 1887.)

EX. 13.—Draw the isometric projection of a 3" hexagonal nut
and washer, showing the chamfers of the nuts; the washer to
be 6}" diameter and %" thick (see p. 169 and Fig. 117).

PROBLEM LXI. (Fig. 101).—Z' draw the isometric projection
of an irregular block, the plan and elevation of which s given.

Let P be the plan and E the elevation of the block. Surround
the elevation E by an obloug m, n, 0, p, and draw the isometrio

Fig. 101

projection of the oblong in a vertical plane as m/, n', o', p', shown
by dotted lines. Draw the centre line ¢ ¢ and s’ ¢ of the oblong
in each figure. Draw & number of horizontal lines across the
oblong in Fig. E as ae, fk and lg, and project them iso-
metrically as at a’¢, /' ¥, I'q’, 80 that o'¢'mo¢, o' k' =0k, and
o'¢’=0g. Then make ¢'d’and ¢’ 5’ =cd and ¢ b on the elevation,
Fig. E, thus obtaining points d' and b in the isometric
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projection of the curved edges. Take as many lines in this way
as are necessary to give points through which to draw the
curves, and let one line !¢ pass through the centre of the top
curve, and a line vw through the points 2, 3, where the two
curves meet, that is where the direction of the curve changes.
The back curved edge is found by drawing lines sloping to the
right at 30° equal in length to the thickness of the block, thus
d4=56==zy The cylinder and base will present no
difficulty after previous Problems.

EXAMPLE.

EX. 14.—Work Problem Ixi (Fig. 101) taking any convenient
and suitable sizes.

The student who wishes to acquire skill in isometric projection
should work other and more difficult examples than those
already given. Very good practice is gained by drawing the
projection of such parts as an ordinary drawing office stool, a tee
piece with three flanges for pipes, a simple shifting lathe head-
stock, and a simple plummer block bearing (see Fig. 154a).






APPENDIX.

ADDITIONAL EXAMPLES.

Tax following examples are taken by permission of the Board
of Education and H.M. Stationery Office from the Examination
Papers of the Board of Education in Practical, Plane, and
Solid Geometry, 1897 to 1904.

Questions marked * have diagrams attached to them.

SoaLxs.

1. The actnal distance between two points is known to be 60 yards, but
on a map the points are shown 4} inches apart. Draw a scale for the map,
dividing and figuring it so as to be of practical use. Show 100 yards, and
make the smallest division 10 yards. Write the representative fraction
above the scale.

2. Draw a scale of 25 inches to | milo, reading up to 500 yards. No
unit smaller than 10 yards need be shown. Draw a line representing
370 yards.

*3. The given line C represents a length of 11-3 feet. Construct a
decimal scale of feet, and by its use measure and write down, as accurately
as you can, the length represented by the line D.

C
D

CONSTRUCTION oF GEOMETRICAL FiaUmEs,

1. Draw a circle, radius 5 o.m. By stepping off with the dividers or
otherwise, divide its circumference aocurately into seven equal parta.
From cach point of division draw lines to every other point. (This
exercise is to test your power of neat and acourate draughtsmanship),
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*2, Draw the
figure from the
dimensions

iven. Itisnotto
merely copied
the same rize as
in the diagram.

*3. Draw the
figure o the
dimensions ndi-
cated. The
dotted lines and
circles indicate
the construction
and need not be
reproduced. It
will beseen that,
for drawing the
figure, only two
radii are em-
pl(){'ed, namely

of § inch and 14
inches.

N.B.—No marks will be given for a mere reproduction of the figure.
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*4. Construct a figure made up of a trefoil of tangential arcs with the
sircumscribing circle, like the one shown, but to the dimensions given.
Show all the construction lines clearly.

*5. The figure shows a junction of rails for small waggons, the lines
drawn dotted being midway between the rails. Set out the figure to a
scale of 1 centimetre to 1 foot, working to the given dimensions, and not
copying the diagram. Show the construction for determining the centres
of the circular arcs FG, GH which are of equal lengths and radii.
Indicate on the drawing the radii to which the several portions of the
curved rails must be bent.
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*6. Draw a figure
similar to the given
one, but using the
dimensions marked
on it. (No marks
will be given for
reproducing the
diagram the same
size.)

(—9‘ »--—‘-—'-?ﬂ—-—-----

*7. Draw a figure
sumilar to thatshown
in the diagram, but
using the dimensions

ven in figures on
it. (No marks will
be given for mere
reproduction of the
diagram.)
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*8. Describe a circle of § inch radius. Then carefully draw in succession
the series of circumseribing squares, so as to obtain a figure similar to the
one shown. Then measure accurately and write down the lengths of the
four sides 4 B, and the two diagonals A4, BB. N.B.—All the lines may
be drawn by the use of the tee-square and the 45° and 60° set squares,
without the employment of a protractor. (No credit will be given for a
mere copy of the diagram.)

B A

/
< 7;

/

30°

150 15°
150 15" 5

A B

*9. Draw a figure like the one shown, but to the given dimensions.
Show clearly all the construction lines. N.B.—No credit will be given
for a mere copy of the diagram.
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CONSTRUCTION AMD MEASUREMENT OF ANGLES.

1. Tho tangent of an angle is 0°715, construct the angle. Determine
its sine. The use of arithmetio is permitted.

2. The cosine of an angle is 0°610, construct the angle. Measure it
in degrees and in radians. What is the tangent of the angle? The use
of arithmetic is permitted.

3. Draw two lines OX, OY, at right angles. Mark a point P distance
525 inches from OY and 3-81 inches from OX. Join OF and measure
the length of OP. Verify your answer by calculation. Measure the angle

P in degrees; verify this result by first calculating the tangent of
the angle XOP and then referring to a table of tangents of angles.

4. A tower is built on level ground and a flagstaff rises from its top.
A person at a distance observes the angles of elevation of the top of the
tower and the top of the flagstaff to be 18° and 27° respectively above the
horizontal. He then walks 386 yards further off and finds the angle of
elevation of the top of the flagstaff to be 18°. Determine and sta'e the
heights of the tower and flagstaff above the level of the eye of the
observer. Use a scale of } inch to 10 yards

5. A surveyor is making a map on which he wishes to locate two
inaccessible objects J/ and A situated towards the north. He lays off a
base line DE, 20 chains or } mile long, going due east. \When stationed
at D, he measures the angles DK, KDH, by means of a sextant, and
finds them to be 51° and 35°. When stationed at / the angles DE/ and
HEK measure 48° and 62°. Plot the points D, E, Il, K to a scale of
8 inches to the mile. Measure the distance and direetion of /K.

6. P and @ are two distant objects, A person stationed at a place 4,
observes the angle 74 Q subtended by P and Q to be 31°. He then walks
320 yards in a direct line towards 7, to a place B, and finds that the
angle PBQ now subtended by P and Q is 44°. Find and measure the
distance from 4 to @, and the angle .1QB that is subtended by 4 and B
a(t,o Q, ::g four points being in one plane. Draw to a scale of § inch to
1 ards.

7y; There are three places, O, A, B, on a level plane. 4 is 52 feet east
and 263 feet south of 0. B is 138 feet east and 217 feet north of O.
Plot these points to a scale of 1 inch to 100 feet. Measure the distance
apart of A and B. Measure and state the direction from 4 to B in
degrees north of east.

8. A person starting from a place 4 walks 45 yards in a straight line
eastwards. He then turns 60° to the left and walks 37 yards in the
direction which he is now facing. He again turns to the left, through
110°, and goes a distance of 86 yards. ’lghrough what angle to the left
must he turn in order to face his starting place 4, and how far must he
walk in order to get there? Measure the results. Use a scale § inch
to 10 yards.

CoNsTRUCTION OF TRIANGLES, QUADRILATERALS AND PoLYGONS.

1. Construct a triangle 4 BC, having given:—Side BC = 4-2"; angle
ABC = T71° angle BA%': 65'6°. Measure the angle ACB, and the
sides AB, AC.

2. A rectangle has one side 1} inches long, and a diagonal 2§ inches.
Draw the rectangle, and enclose it in a square so tbat an angle of the
rectangle is in each side of the square,
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3. Draw a line AC 3} inches long, Througn a point O in it, 1} inches
from A, draw a line perpendicular to 4C. On this line let two points B
and D be on opposite sides of the line AC. Draw the quadrilateral 4 BCD
of which AC and BD are the diagonals, the angles 4 BC and 4 DC being
65° and 115° respectively.

4. Draw a square ABCD of 2% inches side. }ind a point P inside it,
such that the anglo 4 PB may = 90°, and the angle LD = 70°

*5. Construct the figure accurately to the given data, and not b
copying the diagram. Measure, in centimetres, the length of OB.
Obtain tan 74° from the tables, square and multiply by 3. Compare
this result with your previous measurcment of 0B.

——— Jcm/f-—-l

. "6. You are required to enlarge the given triangle, and also to alter
ita position, 8o that the side 4 B shall ocoupy the position 4 8'.

7. Construct a right-angled triangle 4BC to the following data, 0
being the right angle :—

Base BC = 10 inches, base angle 4 BC = 13°.
Measure the height C4. Obtain tan 13° from the tables.
Calculate the height Cd
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CIRCLES AND TANGENTS,

1. Draw a circle of § inch radius inscribed in a triangle whose sides are
in the proportion of 4, 6, and 7. Indicate a point on the circumference of
the circle, which shall be equi-distant from the two ends of the longest
side of the triangle.

2. Inscribe a square in & circle of 2 inches radius. In the square draw
four circles, each touching two other circles and one side of the square.

3. Draw an isosceles triangle 7'QP; TQ = QP =1 inch; the base
angles, each, equal to 30°. @Q is on the circumference of a cirole to which
P17 is tangent at the point P. Draw the circle.

4. Describe & circle of 1} inches radius, and draw any diameter 4B.
From a point in 4 B produced, draw a tangent 2 inches long to the circle.

5. Draw a circle of 2 1uches radius, and inscribe in it five equal circles
each touching two of the others and also the circumference of the con-
taining circle.

*6. From the point P draw a line cutting the given circle, centre O, so
that the portion of the lhine intercepted within the circle may be 2 inches
long.

DPx

0.%

*7. A board is of the shape and size given, the linear scale being
1 centimetre to 1 inch. It is required to cut from this board the greatest
possible circular disc. Find, by construction, the centre of the disc,
Draw the circle, and measure, to scale, the diameter of the diso.
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AREAS or PLANE Fiaures.

1. From any angle of a regular pentagon of 2-inch sid draw a line
dividing the pentagon into two parts, one of which will be twice as large
as the other.

2. Draw two lines, A B, AC, making an angle of 40°; take a point P
on AB at 2 inches from 4, and draw a line PD meeting AC at a point D,
80 that the triangle 4 PD shall be equal in area to the difference of the
squares of two lines, respectively 2 inches and 2} inches in length.

3. Let ABCD be an irregular quadrilateral figure, and O a point
inside it. Construct the figure according to the fullowing conditions:—

AO =2} inches. BC =3 inches. DO =2} inches. CD=CO0x2,
Angle AOB =60°. 04B =60 BOC=90".
Draw a square equal in area to the quadrilateral.

*4. Having pricked off the given polygon, enlarge it to double size, Ky
becoming EF. Then draw a rectangle with an area equal to that of the
enlarged polygon and having EF for one side. (For figure see next page )
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E ,r &

5. Draw & triangle 4 BC of which the base AB is 5} inches long, the
vertical angle being 100° and the altitude 1 inches. On the base AB
draw an isusoeles triangle of which the area will be double that of the
triangle 4 BC.

6. Draw an irregular pentagon 4 BCDE from the following conditions,
and reduce it to a triangle standing on the side 4 B (produced if necessary)
and with D as vertex.

Side 4B =13"; BC = 2"; CD = 2}"; DE = 2§".
Angles ABC = 120°; BCD = 80°; CDE =125"°.

*7. Determine, in square inches, the area of the given quadrilateral.
Any method may be employed, the use of arithmetic being allowed. Find
also the area m square centimetres. The answers should be correct to
within | per cent.

8. Draw a circle of 37 inches diameter. Divide it into three sectors
which have their areas in the ratios of 4:5:6. Measure the lengths of
the three arcs of thoe sectors.

9. Draw a triangle A BB, base BB=10'8 cm. ; sides 4B, AB=15"7 cm.
and 89 cm. Draw a line parallel to the base so as to bisect the sides
in CC. Find in square inches the areas of the triangles ABB, ACC,
and the area of ‘tlo trapezoid BBCC. What are the ratios of these
areas to one another?

10. Construct a iriangle 4 BC to the following data :—

AB = 38 inches; BC = 33 inches, sin 4 BC = 0-662.

Taking AB as the base draw the perpendicular from the vertex C, and
measure the altitude of the triangle. Verify the result by calculation
using the given line. What is the area of the triangle? What is the
length of the base of a triangle of equal area, but having an altitude of
1'6 iuches?

*11. The given circle is divided into two sectors, the areas of which
represent the relative arcas of land and water on the earth’s surface.
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the Area'. of the land is 52 millions of square miles, what is the area of the
water?

WATER

*12, ThoKplan of & hall is given, scale § inch to 10 feet; L is the plat-
form and X the body of the hall. Find the area of K in square feet.
Calculate the sitting accommodation of K, 30 per cent. of its area bemq
occupied by passages, and allowing one person to every 4 square feet of
the remainder.

11
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PRoOBLEMS ON MEASUREMENT.

*1. Measure, as accurately as you can, the given angle 40B, in
degrees aud decimals of a degree. Measure also OA4 in inches and
decimals of an inch. From draw 4./ perpendicular to OB, and
measurd 0. By ordinary arithmetic divide Odf by OA, and give the
quotient.

A

o B

2. Draw a cirole of 2:25 inches radius. In this circle inscribe a quadri-
lateral 4 BCD, having given

Sides A B = 287 inches ; DC = 2'5 inchea.
Angle BCD = 76°5".

Measure, in degrees, the angle BAD. Draw the tangent to the cirole
at A. Join AC and measure the angles which AC makes with the
tangent. Also measure the angles A B( and 4 DC.

*3. Measure, in degrees, the angle between the two given lines LL, LL.
With what do you consider you can measure a given angle in
degrees by the appliances you possess? That is, state the greatest orror
to which you think your answer may be liable. What is tho magnitude
of the angles in radiaus? You may uso arithmetic if you wish,
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J———

P

L\\

*4. A portion of a triangle is given, base DE, the vertex F being out
of reach. By the aid of construotion, measurement, and arithmetic
determine the length of the side XF, :

& &

Ny <
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*5. A segment of a circle is given. Determine and measure in degrees,
the angle contained by this segment. Mark a point P on the arc distant
02 inch from one end G'; then draw accurately, and proiuce, the chord
GP. Draw the tangent to the arc at the end Q.

Q

/’_\\

*6. In the given figure, P, P represent two points on the floor of a
room. The distance apart of P, P is required; 7 is an obstacle pre-

Nkt

RAMBIMMINSIN

M

AT

P

venting direct measurement. Suppose that
by means of a chalked string and tape
measure, or otherwise, you were able to
draw straight lines and measure lengths
on the floor of the room. Indicate olearly
on your drawing what lines you would
draw, and what measurements you would
make, so that by plotting these to scale,
or by easy calculation, or in any manner,
the required distance between P and P
could be ascet tained.

*7. A, B, C are three points on the floor
of a room. The shape of the triangle 4 BC
is required; K is an obstacle preventing
direct measurement Having the same con-
ditions and materials of the last question,
set out 1n a scale drawing the shape of the
triangle ABC. (A square is not available
for drawing perpendicular lines cn the floor,
nor may you use a protractor),
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8. Draw a circle, diameter 4°2 incher. Mark a point A4 on its cir-
cumference, and with centre 4 draw a cucle, 0°34 inch radius, cutting
the first circle in B, B. Draw and produce the lines A3, 4B. Measure
the angle BAB. Your answer must be correct to within 0'5°, to ensure
which you should employ a special method 1n order to find more accurately
the directions of the lines Ag.e

*9. The given curve is made up of three circular arcs which join tan-
gentially. Plot this figure to the following data:—

Radius of 4B = 1 inch; angle subtended at centre = 80°.
Radius of BC = 225 inches; length of arc BC = 1°5 inches.
Length of arc CD = 4 inches; angle subtended at centre = 1 radian.

Your figure re‘)]resente a path to the scale of 1 inch to 100 yards; measure
tho length of this path.

c
B

A D

*10. The following construction is somctimes used for finding the
ngproximte length of a circular arc:—Let AB be the arc. Draw the
chord 4B and produce 4B to C making BC = tAB. Draw the tangent
at

B, and with centre O, radius C4 cut this tangent in D. on
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BD = arc BA nearly. Apply this construction to the given arc. Measure
BD in centimetres. Also, by means of tracing paper and a pricker, or
otherwise, find the exact length of the arc. Is BD too long or too short,
and by what per cent. ?

’—-‘——"‘"

*11. Draw parallel lines through B, F, G, such that the line through F
is equidistant from the lines through £ and G. Let these parallels cut
the line HH in ¢, f, and g. Measure and write down the lengths of ¢
and fg. .

\

¢
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a ; 8

*12. Draw a line par-
allel to LL to cut the
iven lines 44, BB,
C, in a, b, ¢, 80 that
ac shall be 16 ab. A
locus may be used if

desired. J
A

[
Locr.
*1. Through the given point R draw a straight line to cut the lines Os,

Otin S and 7 so that the ratio RS : RT shallbe 2:3. A locus may be
used if desired,

-
P
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*2, The given triangle ABB moves so that the sides 4B, 4B always
pass through the fixed points P, P. Trace the locus of the point A.
What is this curve? Also plot the locus of one of the points B.

A

B

*3. PQ is a link one end P of which moves in & circular path, centre C,

and the other end Q oscillates in a circular arc, centre 0. The dimensions
are:

CH=60; M0=9; CMO =90
CP =210 PQ =63"; 0Q=30"
P@ = @QQ.

Plot the position of @ when the angle ACP = (°, and also when
ACP = 45°, Scale 1 inch to 1 foot.
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*4. Four strips of
sheet celluloid or
other material are
pinned together at
the ends as shown,
the whole forming a
jointed parallelo-
gram. Suppose the
strip MM to be fixed
tothedrawingboard,
and let the other
strips be turned into
successive positions,
the two sides M.N
thus rotating about
the points M as
centres. Find the
locus of Q, the mid-

dle point of the strip
5

+Q

Lﬁ‘l

PoinTs, Lings, Praxzs.
1. Draw the projections aa’, b’, ¢’ of the points 4, B, and C.

A is 3 inches
B is 2 inches } above the horizontal plane of projection.

C is 1} inches
A is in the vertical plane of projection
ab = be = ac = 3} inches. a’ ¢’ = 2} inches.

Letter each projection distinctly.

2. Show the projections of two points, P and Q, which are situaed as
follows :—P } inch in front of the vertical plane of projection, and 2 inches
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above the horizontal plane ; Q 1% inches in front of the vertical plane, and
4 inch above the horizontal plane. The real distance between the points
P and Q is 3 inches.

3. A small object P is situated in a room at a distance of 17 inches
from a side wall, 24 inches from an end wall, and 33 inches above the
floor. Ascertain and measure the distance of P from the corner O of the
room where these three mutually perpendicular planes meet. Scale, ;th.

4. Draw the projections of a line, inclined at 30° to the horizontal
plano. Its vertical trace is 13 inches above the horizontal plane of pro-
jection, and its horizontal trace is 2} inches from the vertical plane of
projection.

5. Draw two lines ab, ac, forming an angle of 60°. ab is inclined at
45°, ac at 30° to the horizontal plane; and the point a is the plan of
a point 4 14 inches above the horizontal plane. Find, on the two lines,
lengths ab, ac, such that the triangle abc shall be the plan of an isosceles
triangle, in which AB = AC = 2 inches.

*6. a and b are two points in the horizontal plane, and ¢’ a point in the
vertical plane of projection. Draw the projections of the lines 4C and
BC, and determine their real length.

Cc!x

ax

7. A line is 25 inches long, and its plan measures 2 inches ; find and
measure the inclination of the line to the horizontal plane. Find also and
state how much higher one end is than the other. Draw the projections
of this line when one end is in xy, and the plan makes 45° with zy.

8. A person on the top of a tower 80 feet high, which rises from a
horizontal plane, observes the angles of depression (below the horizon) of
two objects H and K on the plane to be 14°3° and 25°6° ; the directions of
H and K from the tower being north and west respectively. Draw a plan,
to a scale of 1 inch to 100 feet, showing the relative positions of the person
uu(; %\o two objects. Measure and state in feet the distance between H
and K,
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*9, The plan d and the elevation @’ of a point D are given, from which
s line DZ is to be drawn making 45° with the horizontal plane. If d'e’is

the elevation of the required line DX, draw and carefully letter the
plan of it.

]
dDd
*10. rs, vt are the plans of two intersecting lines which are each reall

2} inches long. 'Taking &' as the elevation of the point of which s is th{

, draw an elevation of both lines, and find what the real angle is
tween the two lines.

56
!

Y
4
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11. The horizontal and vertical traces
of a plane make 40° and 55° respectively
with the zy line. Find and measure the
inclination of the plane to the horizontal.
x Find also and state in de the true
angle between the traces of the plane.

m *12. The plans mn, mn are shown of
two lines MN, UN which lie in the
jiven plane. Draw the elevations of the
ines.

*13. The figure shows two
lines which meet at a point
Y A in space. Determine and

measure the rea’ angle between

the lines.
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*14. ab is the plan of a line, and & is its horizontal trace when produced.
If the line be inclined at 35° to the horizontal plane, draw its elevation on
the given zy line.

x Y

Ok

ay

*15. The plan pq is given of a line PQ which lies in the given flme
VOH. Draw the elevation of PQ. Also determine the true shape of the
triangle POQ.

4

P

h
16. Assume an g. line, and draw the traces of a vertical J:lm s,

making an angle of 38° with the vertical plane of projection. Find a point
Plying in the plane S, 1} inches frow the vertioal plane of projection,



24 APPENDIX,

and 2 inches above the horizontsl plane. Draw the projections of a lins,
lying in It.)he plane S inclined at 60° to the horizontal plane and passing
through P.

17.g The plan of a line is perpendioular to the xy line, and its vertical
and horizontal traces are, rea}:ectively, distant 1 inch and 2 inches from it.
Draw a plane inclined at 43°, containing this line. Then draw a second
plane, also containing the line, but perpendioular to the first plane.

*18. qu is the horizontal trace of a plane, which intersects another
plane; the line of intersection of the two planes, of which 4 is the plan, is

\ Y

A u

v inclined at 45° to the
horizontal plane. Draw
the vertical trace of the
first - mentioned plane,
and also both traces of
the other plane, when tho
real angle between the
two planes is 110°,

*19. A point in the
lane vok is represented
in plan by p.  From this
point draw (in plan and
ep elevation) two lines con-
tained by the plane, one
to have the same in-
clination to the horizon-
tal plane as the given
plane has, and the other
an inclination of 25° to
the horizontal plane.
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*20. HT is the horizontal trace of a plane. AB is a line in the plane.
Complete the elevation of 4B. Draw the vertical trace of the plane.
Find and measure the inclination of the plane to the horizontal plane.

!

g

NL
o

H

2]1. Draw two parallel planes, inclined at 52° to the horizontal plane.
Their horizontal traces make an angle of 47° with the zy line, and the
planes are  inch apart, the dnh.nce being measured perpendicularly to
their surfaces.

22. A horizontal line 13 inches above the horizontal plane makes an
angle of 60° with the vertical plane of projection. Draw the traces of
a plane containing the line and making an angle of 70° with the vertical
plane,
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*23. Find the point where the line mm’ meeta the plane VOH.,

\4

*24. Find the intersestion between the planes EFG and PQR.

P
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*25. Draw the traces of a plane containing the lines of which the
projections b, b’b”, and ab, a'b’ are given.

v

°s

a

28. Find the real angle between the lines, the projections of which are
given in Question 23.

*27. Draw two plenes perpendicular to one another, and inclined to the
horizontal plane at 45° and 60° respectively. The former plane is to be
perpendicular to the vertical plane of projection, and the horizontal trace
of each plane is to pass through the given point p.

X _y

v

op

*28. In the plane e'dc of Question 29 draw a line inclined at 45° to the
horizontal plane, and on that line as base draw the plan of an equilateral
triangle of 1} inches side. contained in the given plane, its lowest angle
touching the horizontal plane. 12
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*29. ¢'d, dc are the traces of a plane. ab is the horizontal trace of
» vertical plane. Find the elevation of the intersection of the two planes,
supposing the point where the vertical traces meet to be beyond the
limita of the paper,
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#30. ab, a’t’ is a given line, cc’ & given point. Find the projections of
a line drawn through the given point, meeting the given line at a point
4 an inch above the horizontal plane. Determine the traces of the plane
oontaining the two lines.

b'

8
-ﬁ -
e
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Prosecrions oF PLANE FigurEs.

*1. The lines Ik, ik are the plans of two sides LK, LK of a rectangle;
complete the plan of the figure. If the diagonal KK be horizontal, find
the lengths of the sides of the rectangle and the inclinations of its plane,
measuring the results.

k

*2. A quadrilateral 4BCD is cut out in sheet metal, and a model of
a dihedral angle is made by bending the plate along the diagonal BD.
A plan of the model is shown when resting on the face BCD, The original
shape of the quadrilateral was BCDA,. (a) Find the height of the corner
A and index ite plan a in inches. (b) Draw an elevation of the model
.on zy. (c) Find and measure the dihedral angle between the faces
BAD, BOD.

*3. The plan is given of a thin 60" set square resting on its short edge
BC; scale §. (a) Determine the height of the corner 4 and index its
plan a in inohes. (b) Determine the length and inclination to the
horizontal of the edge 4B. (c) Draw an elevation of the set sqnare on my.
Scale § as in the disgram.
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)]

*4. The plan of the roof of a house is given, scale 1 inch to 10 feet.
The surfaces are all inclined at 32° to the horizontal. Find the area
in square feet of each portion of the roof, and state the total arca.
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5. Draw the plan and elevation of a square A BCD of 2'5 inches side
when situated in any position such that no side is g:mllel to either plane
of projection. Letter the corners of the squate in both views.

*6. The triangle igh is the plan of an isosceles right angled triangle
HQH, the hypotenuse HH being mn the horizontal plane.  Determine
and measure : —(a) The length of the side H@. (b) The height of ¢ above
the horizontal plane. (c) The inclination of the sde HG. (d) The in-
clination of the plane HGH.

A

h

7. A vertical circle of 2 inches diameter rests on the ground with the
plane of its surface perpendicular to both planes of projection. Draw the
elevation of the circle when it has been turned about its vertical diameter
through 30°

8. Draw a triangle abc with the following dimensions :—ac = cb =1
inch, ab = 1§ inches. abc is the plan of an equilateral triangle, and ab is
in the horizontal plane. Draw the elevation of the triangle, the zy line
parallel to be. .

*9. abed is the plan of a parallelogram ; be is a horizontal line, and the
plane of the parallelogram is inclined at 25° to the horizontal plane.
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Draw the elevation a'b’c’d’, the horizontal line be being 1 inch above the
horizontal plane, and the xy line parallel to b¢c and ad.

b )

a
S a
*10. The projections of a triangle 4 BC are given (abc in plan, and a'b'c’
in elevation); énd the traces of the plane containing the triangle. Rotate
the plane together with the triangle till they coincide with the vertical
plane of projection, and thus show the true shape of the triangle 4 BC.

)

11. Show the true shape of a figure which lies in a plane inclined at
65°, its {)hn being a cirole of 1} inches diameter.

12. If one side (%bi:ohes long) of & square rest in a horizontal shns,
and an ndi:oent side be inclined at 65° to the horizontal plane, write down,
measured in degrees, the inclination of the diagonal to the horizontal plane.
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P

*13. The figure shows
three views of a circular
icture frame, which
as been tilted off its
foot 7' so that its plane
is vertical. Draw the
plan, and the elevation
on zy, of the frame after
it has been turned back
into position with 1té
foot on the ground.

PROJEOTIONS AND
SECTIONS OF SoLIDS.

1. The lengths of
the edges of a rectan-
gular prism are respec-
tively 4,3,and 2 inches.
Determine and measure
the length of a diagonal
of the solid—that is, a
line joining opposite
sorners.

*2. Three views are shown of a portion of a ‘“hook bolt.” A vertical
section plane SS cuts the bolt into two parts A and B. Draw a sectional
elovation of the part 4 on 2’ i/’, the part /3 being supposed removed. In

n

this view indicate by section

es the metal cut through by SS.
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*3. A hemigphere is shown in plan resting with its flat face on the
ground. Determine the plan of the section of the solid made by a plane
inclined at 40°, which has 7'7 for its horizontal trace.

T

T

4. A tetrahedron, of which the edges are 1} inches long, has one edge
horizontal on the ground, and a face containing that edge inclined at 35°
to the horizontal plane. Draw the projections of the solid. Supposng
the upper portion of the tetrahedron 1s cut off by a horizontal plane § inch
above the ground, draw on the plan the resulting section, the part which
is cut through being cross-lined.

*5. The given figure is the plan of an irregular triangular pyramid
resting with its base on the ground. Its vertex v is 3:9 inches high.
Draw the elevation of the solid on the given zy. Show on the plan the
shape of the section made by a horizontal plane 17 inches high,

- y

*6. abe is the plan of a prism standing upright, height 25 inches. Draw
the plan of the prism after it has been tilted about the edge BC of the



36 APPENDIX.

base until a rectan face rests on the horizontal plane. And draw the
elevation of the prism on zy, after tilting.
x Yy
a

b

*7. The given figure is the plan of a square pyramid mtinﬁ on a tri-
angular face. Draw the elevation of the pyramid on xy. T is the
horizontal trace of a vertical plane cutting tﬂe pyramid. Find the eleva-
tion and also the true shape ot the section.

z y
s r
7
*8. The plan ot a riangular prism is given, the heights of four of its
corners being marked. rite down the heights of the remaining two

corners. The prism is cut by a vertical plane SS. Draw a sectional
elevation on zy, the portion P of the prism in front of the section plane
being supposed to be removed.
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*9. The plan is given of a triangular prism with equilateral ends, which
rests on one face. SS represents a vertical section plane, dividing the
prism into two parts 4 and B. The latter being suppoaed removed, draw
the sectional elevation of the part 4 on zy, indicating by diagonal lines
the shape of the section.

z ’

*10. 4 is the cross-section, and B one elevation of a wooden bench.
Finish the incomplete Flm CD. If the bench is cut into two portions, C
and D, by a vertical plane, of which mn is the horizontal trace, then draw
the sectional elevation of the portion C on a plane taken parallel to mn,
looking in the direction of the arrow. Cross-line the parts actually cut
through. Note.—The elevation B need neither be pricked off from the
diagram, nor drawn, it is given for reference only.

SN SN - » ]

% C
\
N
N
\\
N
N
N
\
~
N
\\
D N
N
\\,‘
~
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*11. The figure fghl represents the plan of a oylinder resting on the
ground. Draw the elevation of the oylinder, and show the projections of
a sphere of 1 inch diameter in contact with it on one side, and also the
projections of a cube with an edge (} inch long) touching the cylinder on
the other side ; both the sphere and cube are to be on the ground. Show
carefully in plan the point and line of contact with the cylinder of the
sphere and cube respectively. In plan the portions of the solids which
are not seen are to be denoted by a dotted boundary line.

X Yy

g n

12. The base (2 inches radius) of a right cone, 2 inches high, rests on
the horizontal plane. A sphere of 1} inches radius touches the cone at a
point 2 inches from the apex. Draw the plan of the solids showing their
point of contact.

13. A pentagonal right pyramid (side of base 1} inches, height 2} inches)
rests with one edge of the base in the horizontal plane, the base being
tilted up till the highest point in it is 1 inch above the horizontal plane.
Draw the elevation of the pyramid on an zy line parallel to the edge of
the base resting on the horizontal plane, so that the base may be visible.



*14. The figure re-
presents in plan and
elevation a pyramid
with a square base
KFGH, and vertex V,
standing on a cylinder,
ABCDin plan, height
AAd,. The solids are
intersected by a verti-
oal plane whose trace
is the shaded line K L.
Show thLe intersection
set up from a ground
line z,y,, parallel to

L, and seen in the
direction of the arrow.
Show, also, the por-
tions of the solids visi-
ble behind the plane
of section. Shade the
outline of the section.

APPENDIX,
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16 Draw the plan of a regular tetra-
hedron, the apex of which 18 2 inches
above the base, which rests on the hori-

zontal plane.

®16. Draw the sections of the given 2
solids made by the vertical plane of
which LA/ is the horizontal trace. Show -
also the elevation of the portions of the )
solids visible beyond the plane of

section,
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*17. The g)rojoctions of a solid
are given. Draw the true form
of the section of it made by a
vertical plane of which mn is
the horizontal trace. Show also
in elevation the portions of the
solid scen behind the plane of
seotion  The e:fu of the
section may be shaded.

18. Draw the projections of
a regular octahedron of 2 inches
edge, resting with one face in
the horizontal plane. The
line makes an angle of 25° wit!
one edge of that face.

19. A right pentagonal prism
(side of pentagon 2 inches) 4
inches long lies with one long
edge in the horizontal plane,
and one face containing that
edge inclined at 30° to the hori-
zontal plane. Draw its plan;
also an elevation on a vertical
plane, which makes an angle of
60° with each of the long edges.

20. Theaxisof aright cylinder

of 1inch radiusis inclined at 40°
to the horizontal plane. Draw
the true form of a horizontal
section through it.
*21. The rectangle ABCD 18 the base of a pyramid, resting on the
horizontal plane. If V be its vertex, the inclinations of the triangular
sides to the horizontal plane are as follows:—d4 VD 50°, AVB 70°,
BVC 55°. Complete the plan of the pyramid.

A B
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HoRrizoNTAL PROJECTION,

*]. A plane is represented by a scale of slogo, the unit for height®
being 0'1 inch. A point 4 in the plane is shown by its plan a :—(a) Uraw
the horizontal trace of the plane. Draw also the plan of a horizontal line
lying in the plane and containing A  (b) Measure the height of 4 and
index its plan @. () If the plane were turned into the horizontal plane
about its horizontal trace, show where the point A would be carried to,
labelling this point 4.

40

50

-

a

*2 The plan of a piece of ground is shown to a scale of } inch to
100 feet. The form of the surface is indicated by horizontal sections or
contour lines, at vertical intervals of 100 feet. A portion of the surface is
seen to be plane. Draw the plan of any path of steepest slope up this plane.
Find and measure in degrees the inclination of this path to the horizontal,
Represent the plane by a scale of glope.

300" 400
10
J
L]
, %0
, 900
200

U
o 300
100
o.
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*3. The diagram shows the plan of a portion of a room drawn to a scale
of 1 inch to 10 feet. O is one corner of the floor. P is a point 73 feet
above the floor, shown by its figured Ighn py.3 (indexed in feet). Determine
and measure in feet the distance of 2 from the corner O of the floor. Find
ulso and measure the distance of P from the line OA on the floor.

o

+P7a

A

4. On the face of a hill a path going North has an upward slope of
1 vertical in 5 horizontal. A path from the same point going East has
an upward slope of 1 in 7. Determine and measure the direction (in
degrees East of North), and the slope, of the steepest path u&the hill.

*5. The figured plans of two lines rs, s are given. termine the
plan of the bisector of the angle rt. Show the point where this bisector
mecets the horizontal plane. Unit = 01 inch.

5 29

.0 \o

t5
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*6. The lines PP, PQ, whose plans are given, intersect one another
The heights of the three points P are indexed. Determine and index the
height of ¢. Unit = 01 inch.

Fio

P20

13









