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PREFACE

During the past thirty years Bell Laboratories has carried out a con-
siderable program of research and development of piezoelectric crystals
and their application to such communication equipment as filters, oscilla-
tors and electromechanical transducers. Starting with the work of
Nicolson on rochelle salt in 1918, continuous effort has been carried on in
investigating quartz, rochelle salt and a large number of water soluble
synthetic piezoelectric crystals. This work has recently culminated in the
discovery of two monoclinic crystals, dipotassium tartrate (DKT) and
ethylene diamine tartrate (EDT) which have such favorable properties
that they are replacing quartz crystals in telephone filters, the largest
application of piezoelectric crystals in the telephone system. Coming at
a time when quartz in large sizes was becoming increasingly difficult to
obtain, they have made possible the continuation and large expansion of
the high-frequency carrier systemswhich carry a large share of the long-
distance conversations.

It is the primary purpose of this book to describe this work, particularly
from the experimental and theoretical side, since the developmental phases
of the quartz work have already been described in the book * Quartz Crys-
tals for Electrical Circuits.” In order to make the work intelligible, chap-
ters have been included on crystallographic systems, stresses, strains,
thermal and electric relations, as well as an appendix showing how tensors
can be applied to calculating the properties of rotated systems. Hence
the book can be regarded as an introduction to the study of piezoelectricity.
However, no attempt has been made to introduce the subject from a his-
torical point of view. Indeed such a development is unnecessary since
Cady’s monumental work ‘‘ Piezoelectricity,” which appeared in 1946,
covers such a development very completely. The emphasis has been
rather on the new subjects that have appeared since that time. These
include the new crystals, ammonium dihydrogen phosphate (ADP), which
was used very extensively during the war as an electromechanical trans-
ducing element in underwater sound work, potassium dihydrogen phosphate
(KDP), a new ferroelectric type of crystal, DKT and EDT mentioned
previously and the ceramic barium titanate which produces an electro-
strictive effect comparable with the largest piezoelectric effect in any
crystal. On the theoretical side a new theory of ferroelectricity in rochelle
salt, KDP and barium titanite, which has been developed by thc writer,

is more completely presented here than in any other place.
v
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Piezoelectric crystals supply the electromechanical transducing element
that makes possible another experimental science, ultrasonics. By means
of the longitudinal and shear waves set up in gases, liquids and solids, con-
siderable information can be obtained about the properties and molecular
processes existing in these forms of matter. The last three chapters of the
book are devoted to a description of the methods of producing and measur-
ing such waves and to a description of the knowledge obtained from such
measurements.

The author wishes to acknowledge many helpful comments and sugges-
tions received from his associates at Bell Laboratories. On the theoretical
side parts of the book have been read by Drs. J. Bardeen, C. Kittel and
J. M. Richardson. Many suggestions for improvement in the order
and readability of various sections have been received from W. L. Bond,
G. C. Danielson, S. O. Morgan, L. C. Peterson, R. A. Sykes, G. W. Willard,
and Mrs. E. A. Wood. In particular, Sykes, who is head of the apparatus
department dealing with the application of piezoelectric crystals, has sug-
gested a chapter ordering system which has improved the readability of
the book. The writer wishes also to thank the members of the out-of-
hours class who listened to a presentation of a preliminary form of the
book and who contributed to the elimination of errors and the more ob-
scure parts of the book.

WARREN P. MASON

Murray HiLr, N.J.
February 1949
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CHAPTER 1
INTRODUCTION

1.1 Nature of Piczoelectric Effect

A plate cut from a piezoelectric crystal with electrodes attached serves
not only as a capacitor for storing electrical energy but also as a motor for
turning electrical into mechanical energy and as a generator for turning
mechanical energy into electrical energy. Piezo is derived from a Greek
word meaning to press, and piezoelectricity is pressure electricity. Piezo-
electricity appears only in insulating solids. Although piezoelectricity can
be generated in waxes which are solidified under an applied field, crystal-
line materials are, by far, the largest group of materials showing piezo-
electricity. Piezoelectricity is distinguished from electrostriction, which
is another effect which causes a solid dielectric to change shape on the
application of a voltage, in that a reversal of the voltage reverses the sign
of the resulting strain, whereas for electrostriction the strain is an even
function of the applied voltage, and the strain does not reverse sign when
the voltage is reversed. Flectrostrictive effects are usually very feeble
compared to piezoelectric effects but in the case of the ferroelectric materi-
als, rochelle salt and barium titanate, they may be quite large.

All crystalline materials are anisotropic and do not have the same
properties in all directions as do isotropic materials. Crystals can be
divided into 32 classes on the basis of the symmetry they possess and, of
these 32 classes, 20 possess the property of piezoelectricity and 12 do not.
The criterion that determines whether a crystal is piezoelectric or not is its
possession of a center of symmetry. A crystal possessing a center of
symmetry cannot be piezoelectric because no combination of uniform
stresses will produce a separation of the centers of gravity of the positive
and negative charges and produce an induced dipole moment which is
necessary for the production of polarization by stresses. Since a crystal
is at once an electrical motor and an electrical generator, we have to
consider the elastic and dielectric constants of the crystal as well as the
piezoelectric constants. A crystal with no symmetry at all will have 21
elastic constants, 18 piezoelettric constants, and 6 dielectric constants.
As the symmetry increases, the number of possible constants decreases,
until the most symmetrical type of crystal, a cubic crystal, has only 3

elastic constants, 1 piezoelectric constant and 1 dielectric constant.
1
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1.2 Historical

The piezoelectric effect was discovered experimentally by the brothers
Pierre and Jacques Curie in the year 1880. By placing a weight on the
surface of a crystal they produced a charge, measurable with an electrom-
eter, which was proportional to the applied weight and hence discovered
the direct effect. They found this effect in a considerable number of
crystals including quartz, rochelle salt and tourmaline—crystals that are
among those most used today. The converse piezoelectric effect, which
deals with the motor property of the crystal, namely, producing a dis-
placement when a voltage is applied, was predicted theoretically by
Lippman in the following year 1881 and was verified by the Curies.
Among the early investigators was Lord Kelvin, who suggested a molecu-
lar theory and produced a mechanical model of piezoelectricity; Pésckels,
who made many determinations and contributed especially to the theory
of the electro-optic effect in crystals; Duhem, whose formulation of
piezoelectric principles was of fundamental importance; and finally
Voigt, who systematized the work of his predecessors and whose monu-
mental work, Lehrbuch der Kristallphysik, contained most of what was
known about piezoelectricity up to World War 1.

The connection of piezoelectricity with atomic structure, while well
established on a general basis, is in its infancy regarding predictions of
magnitudes of piezoelectric constants and their connection with chemical
composition. Among the more important- contributions are those of
R. E. Gibbs and Max Born, who predicted respectively piezoelectric
constants for quartz and zinc blende that are within factors of 10 of the
experimental values.

The piezoelectric effect remained more or less a scientific curiosity up
to the time of World War 1. During the war Prof. Langevin in Paris was
requested by the French government to devise some way of detecting
submarines. After trying several devices he finally found that piezo-
electric quartz plates could be used for this purpose. His device consisted
essentially of a mosaic of quartz glued between steel plates. This device
has the property that, when a voltage is applied, the crystal will expand
and send out a longitudinal wave. Similarly, when a wave strikes it, it
will set the quartz in vibration and generate a voltage which can be de-
tected by vacuum tube devices. Langevin did not get his device perfected
until after the end of the war, but it has been used extensively as a sonic
depth finder, and similar devices were used in the present war for detecting
submarines.

In 1917, A. M. Nicolson at Bell Telephone Laboratories was experi-
menting with rochelle salt and he constructed and demonstrated loud-

speakers, microphones and phonograph pickups using this crystal. He
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also controlled an oscillator by means of a crystal — in this case rochelle
salt — and he has the primary crystal oscillator patent. In 1921, Cady
at Wesleyan University showed that quartz crystals could be used to
control oscillators and that much more stable oscillators can be obtained
in this fashion. This use was a forerunner of the very wide application of
crystals to control the frequency of military communication equipment
which resulted in the use of more than 30,000,000 crystals in a single year.
Quartz crystal oscillators using the GT crystal described in Chapter VI,
produce the most stable oscillators and the best time-keeping systems that
can be obtained. Both the Greenwich Observatory in England and the
Bureau of Standards in Washington use such crystals in their primary
standards.

Another large use for piezoelectric crystals is in producing very selective
filter circuits. On account of the very high O such crystals possess, they
can be incorporated in filter circuits along with coils and condensers to
give very discriminating filters. Such filters are used in all the high-
frequency carrier systems and in the coaxial system for separating the
simultaneous conversations that go over one pair of wires. For this pur-
pose quartz was originally used, but a new synthetic crystal, ethylene
diamine tartrate (EDT), has been developed which has low enough
temperature coefficients and high enough stabilities to replace quartz
for this application.

1.3 Crystal Systems, Crystal Constants, and Motor Generator Effects

Crystals are classified into 7 crystal systems and 32 crystal classes.
The systems, as discussed in Chapter 11, are determined by the shapes and
dimensions of the smallest unit cells that surround a molecular configu-
ration in such a manner that a simple translation of the unit cell along one
of its axes by one unit length will cause it to surround a similar molecular
configuration to that contained by the first cell. The edges of the unit
cell are parallel to the crystallographic axes 4, 4 and ¢, and the relative di-
mensions of the cell are the unit distances along these axes. The 32
crystal classes are determined by the elements of symmetry that are ob-
tained in arranging the molecules within the seven elementary unit cells.

The most unsymmetrical type of system is the triclinic system, all three
of whose crystallographic axes make oblique angles, and the lengths of the
unit cells on the three axes are all unequal. In calculating the elastic
constants of a triclinic crystal, as discussed in the appendix, it is more
convenient to use a right-angled system of coordinates, rather than the
crystallographic axes, and the question arises as to how these coordinates
are to be related to the 4-, 4- and c-axes of the crystallographer. This
question has been discussed by the Piezoelectric Crystal Committee of the
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Institute of Radio Engineers under the chairmanship of Prof. W. G. Cady,
and the system shown by Fig. 2.1 has been adopted. Here the z rectangu-
lar axis lies along the ¢ crystallographic axis, the x rectangular axis lies in
the plane of the @ and ¢ crystallographic axes and at right angles to the
¢ = z axis, while the y-axis is at right angles to the x- and 2z-axes in a
right-handed system of coordinates. All the other systems are special
cases of the most general case, as discussed in detail in Chapter II.

Depending on the crystal symmetries, crystals can have from 3 to 21
elastic constants, 0 to 18 piezoelectric constants and 1 to 6 dielectric
constants. These are the constants referred to the x, y and z rectangular
axes. If we wish to investigate the properties of crystals cut at oblique
angles with respect to these axes, transformation equations, such as those
discussed in the appendix, exist by means of which new elastic, piezo-
electric, and dielectric constants can be calculated in terms of the constants
for the new axes. These new constants are linear combinations of the
fundamental constants. Conversely, in measuring the fundamental
constants, it is often convenient to measure the properties of the oblique
cuts and calculate the fundamental constants from the measured results.
Oblique cuts are often of interest in themselves since special properties,
such as low temperature coefficients, high electromechanical couplings,
and freedom from secondary modes of motion, may often be obtained more
easily in the oblique cuts than in cuts lying along the crystallographic
axes.

Since a crystal is a motor generator, the constants of the crystal are
going to vary depending upon the mechanical load attached to the crystal.
For example, if the dielectric constant of a crystal is measured when it is
clamped so hard that it cannot move, one obtains the so-called clamped
dielectric constant of the crystal. If now the clamp has some compliance,
some additional energy can be stored in the crystal in mechanical form and
this results in an increase in the dielectric constant. The effect is greatest
when the crystal is free to move, and one obtains the so-called * free”
dielectric constant. The difference between the free and the clamped
constant is determined by the electromechanical coupling factor for that
crystal. This is defined as the square root of the ratio of the energy stored
in mechanical form, for a given type of displacement, to the total input
electrical energy obtained from the input battery. It is shown in Chapter
V that this factor for a given mode of motion is equal to

Py (L1)
B

4x
where 4 is the piezoelectric constant measuring the ratio of strain to field,
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e the dielectric constant and s the elastic compliance. In a converse
manner, the elastic constant depends on the electrical condition obtained
when the ratio of strain to stress is measured. If the electrical terminals
are open-circuited, one obtains the elastic constant corresponding to a
zero electric displacement (except for a minor class of crystals for which
the direction of the electric displacement does not lie along the field),
while if the terminals are short-circuited, one measures the constants for
zero field. The ratio of these two constants and also the two dielectric
constants are
sE _ el 1 1.2

PTEST1T R (12)

where ¢” is the constant stress (free) dielectric constant and € the constant
strain (clamped) dielectric constant. For most crystals with couplings,
under 10 per cent, the difference is only about 1 per cent and is not too
important. For ferroelectric crystals such as rochelle salt and potassium
dihydrogen phosphate, however, the coupling may reach 90 per cent and
the difference may be 5 to 1. Under these conditions it is essential to
understand and measure the difference between these two types of
constants.

1.4 The Crystal Resonator and Transducer

All of the applications of the piezoelectric effect depend on this motor
generator action of the crystal. In the crystal resonator, the action drives
the crystal itself in mechanical vibration and the mechanical vibration
reacts back to control the electrical impedance of the crystal. As an
electromechanical transducer the mechanical stress set up by the piezo-
electric effect drives not only the mechanical elements of the crystal but
also any other mechanical elements attached to the crystal surface.
Phonograph pickups, headphones, loudspeakers, and in particular ultra-
sonic transducers are examples of this use. In the frequency range above
about 10 kilocycles, piezoelectric crystals form the best means of trans-
ferring electrical into mechanical energy, and the last three chapters of the
book are devoted to a description of these methods and results that have
been obtained with them.

In analyzing the performance of a crystal for these functions, it is very
convenient to obtain an cquxvalent electrical circuit which represents the
electrical and mechanical properties of the crystal. For a crystal that is
free on one end and drives a load on the other, a circuit which represents
the performance of such a crystal near its resonant frequency is shown by
Fig. 1.1A. Here C, is the static capacity of the crystal, 1 to ¢ is a constant
that measures the force exerted by the crystal for a given applied voltage,
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C; a compliance equal to 8/x times the static compliance of the crystal,
M a mass equal to } the total mass of the crystal, C; a compliance equal
to 3 the static compliance of the crystal, and M, a mass equal to 2/x?
times the total mass of the crystal. With these values the two networks
resonate at the natural resonant frequency of the crystal given by

wl o 1 \/ 1 1
—_— = — == - = 1-3
7= S == NG " wiie (13

where Mj and Cy are the mass and compliance per unit length and M and
C the total mass and compliance of the crystal. Using this simple circuit
the effect of adding mechanical units on the driving end of the crystal is
easily analyzed.

. 110 Cy My é _.ICA La Ra
e i
e g 11
= =éo 2 C; =
(S
I
Q) (e)

Fic. 1.1. Equivalent electromechanical and electrical circuits for a piezoelectric crystal.

If the crystal is free on both ends, the driving end of Fig. 1.1A can be
short-circuited and the equivalent circuit of Fig. 1.1B results. The
performance of a crystal resonator in an oscillator or filter can be analyzed
by inserting this network in the place of the crystal. In quartz resonators
the inductance L, varies from the order of 0.1 henry with crystals vibrat-
ing at 2500 kc to 100 henries or more with low-frequency resonators. The
synthetic crystals ADP and EDT have considerably lower values of
inductance for the same size and frequency crystals, on account of the
much higher electromechanical coupling. The capacitance Cy4 is usually
in the order of a few tenths to 10 micromicrofarads. It is this enormous
ratio of L4 to C4 together with the very low value of R (high Q) that gives
the crystal its ability to control the frequency of an oscillator within
narrow limits. The Q of a crystal in laboratory experiments® has been
measured as high as 6,000,000 and, even in commercially mounted crystals
which have to be securely held in order to stand extraneous knocks,
@'s in the order of several hundred thousand are common.

1Van Dyke, K. S., “ Vibrational Modes of Low Decrement for a Quartz Ring,”
Phys. Rev., Val. 53, p. 943, 1938.
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In every piezoelectric oscillator circuit, the crystal acts fundamentally
as a resonator. It does not generate energy, but by the electrical reactions
of its vibrations it determines the alternating potential on the grid of the
oscillator and controls it over a narrow frequency range. The equivalent
circuit of the crystal has a frequency of resonance for which the impedance
is low and a frequency of anti-resonance for which the impedance is high.

il
®

Fic. 1.2. Pierce-Miller and Pierce circuits for crystal oscillators.

In the more common form of oscillators, such as the Pierce circuits illus-
trated by Fig. 1.2, the frequency of oscillation comes between the resonance
and anti-resonance frequency, although nearer the resonance. In later os-
cillators, such as the Meacham bridge oscillator, the frequency of oscilla-
tion coincides with the natural resonance frequency of the crystal.

1.5 Important Piezoelectric Crystals

In all, probably over five hundred crystals have been tested and a fair
share of them have piezoelectric responses. Of these, however, only a few
have come into practical use. Before World War II the only crystals
that were at all widely used were quartz, rochelle salt and tourmaline.
Quartz was used in all oscillator and filter applications, rochelle salt in
most low-frequency transducer applications and tourmaline was used
solely for measuring hydrostatic pressures. Stimulated by the need for a
piezoelectric transducer for underwater sound applications that was more
stable and less temperature sensitive than rochelle salt, considerable work
was done during World War II in searching for new piezoelectric crystals.
This resulted in the discovery and application of ammonium dihydrogen
phosphate (ADP) to underwater sound transducers. On account of its
freedom from water of crystallization (and hence dehydration), the higher
temperature it will stand (up to 100°C), and the greater mechanical
stability, this crystal largely displaced rochelle salt and even other types of
electromechanical transducers for underwater sound applications. It
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appears likely that it may replace rochelle salt for a number of peace-
time applications as well. '

Up to the present time quartz has been practically the only crystal
suitable for the precise control of frequency in transmitting, monitoring,
and receiving circuits, and in the production of very selective circuits.
Quartz, which is the most abundant of natural crystals, is chemically
stable at all ordinary temperatures and has very low internal losses.
Furthermore, by cutting the crystal at various oblique orientations with
respect to the crystallographic axes, it is possible to make resonators with
very low temperature coefficients of frequency, and freedom from effects
of other modes of motion. These characteristics of quartz have led to its
exclusive use for primary frequency standards and as a means for obtaining
very selective filters.

In the latter use, fairly large-sized crystals up to 5 centimeters in length
are required. As the war progressed and more and more quartz was used
in producing oscillator crystals, large-sized crystals became more difficult
to obtain. With the end of the war the supply of large-sized crystals
became insufficient to satisfy the needs of the telephone systems. Fortu-
nately a study of the properties of synthetic crystals carried out during the
last ten years at Bell Laboratories had resulted in discovering two new
crystals which were capable of meeting the requirements necessary for
filter crystals. These were two monoclinic sphenoidal crystals, ethylene
diamine tartrate (EDT) and dipotassium tartrate (DKT). Low-tempera-
ture cuts in both crystals and higher electromechanical couplings are
possible than exist in quartz. Of these crystals EDT has no water of
crystallization, will stand a temperature of 120°C, and is easier to grow
than DKT. The Western Electric Company has established a growing
and processing plant for this crystal in Allentown, Pa., and it is planned to
incorporate them in the high-frequency carrier and coaxial filters of the
long-distance telephone systems. The properties of these crystals are
described in Chapter IX.

Rochelle salt (NaKCH Og-4H20) is the most strongly piezoelectric
crystal at room temperatures. This is due to the fact that it becomes
ferroelectric in the temperature range from —18°C to +24°C. Its
dielectric properties are strikingly analogous to the ferromagnetic properties
of iron. Below a certain temperature, which is called the Curie tempera-
ture, it exhibits dielectric hysteresis and has a dielectric constant that
becomes very large for weak fields, at the Curie points. Unlike ferro-
magnetic materials, rochelle salt has a lower Curie temperature as well as
an upper one. Potassium dihydrogen phosphate (KDP) is another
ferroelectric type crystal that has only one Curie temperature, 121°K,
above which it is non-ferroelectric and below which it is ferroelectric,
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These two cases are discussed in Chapter XI and it is there suggested that
both effects are due to a hydrogen bond dipole caused by the displacement
of the hydrogen nucleus from the midpoint between the two oxygens.
KDP has a symmetrical bond and, when a factor
N, 2
A= DB (1.4)

4r
k 1 — —
T( 3’)

becomes greater than one, the crystal becomes ferroelectric. In this
equation N is the number of dipoles per cc, u the dipole moment, 8 the
Lorentz factor connecting the polarization with the internal field, &
Boltzmann’s constant, T the absolute temperature, and v the polarizability
in the absence of the hydrogen dipole. Rochelle salt has two sets of
dissymmetrical bonds, and the lower Curie temperature is caused by the
hydrogen nucleus freezing in the lower potential wells as the temperature
is lowered. Although these effects are interesting scientifically, they
detract from the usability of the crystal since the elements are so field and
temperature sensitive. Considering this and the fact that rochelle salt
tends to become dehydrated and that it disintegrates at 55°C, one can
understand the need for a new crystal for transducer use that is free from
these defects. This need is largely filled by ADP (NH,H,PO,), as

mentioned previously.

1.6 Miscellaneous Applications

In addition to the use of piezoelectric crystals in resonators and trans-
ducers, two second-order effects have recently become of importance.
These are the electro-optical and piezo-optical effects which are caused
respectively by the change in dielectric constant due to an applied voltage
and the change in dielectric constant due to an applied stress. These
effects were first investigated theoretically and experimentally by Pockels.
It was not, however, until the advent of ADP and KDP that any crystal
with large enough electro-optical and piezo-optical constants to be of
interest, were available. With these crystals light modulators can be
obtained which work on voltages of 1000 volts or less. Furthermore,
since the electro-optical effect depends on a change in the dielectric constant
with voltage and the dielectric constant is known to be independent of
frequency up to at least 10'° cycles, it appears likely that the electro-
optical constant should also be independent of frequency up to this value.

Billings? has recently proposed the use of the electro-optical effect of an

2 Billings, B. H.,“‘A tunable narrow band optical filter,” J. Opt. Soc. Amer. Vol.
37, No. 10, Oct, 1947.
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ADP crystal to produce a variable band-pass optical filter, the position
of whose band can be controlled by an applied voltage.

1.7 Use of Piezoelectric Crystals in the Production of Power

Since a crystal acts as a motor generator, the question arises as to
whether it can be used in the production of electrical power. In most
oscillator, filter and transducer applications, the amount of power converted
is rather small; however, in underwater sound transducers considerable
amounts of power are converted from electrical into mechanical energy.

For 60-cycle non-resonant operation the efficiency of conversion from
mechanical to electrical power is poor, and the amount of power that can
be converted by a given size structure is small. However, if one operates
at the crystal resonance and tunes out the electrical capacitance of the
crystals by suitable electrical coils, the efficiency of conversion can be
raised to 90 per cent and the amount of power per square centimeter of
area may increase to 5 to 10 watts. Such units require vibration type
motors to drive them and the frequency has to be raised to 10 kc to 100 kc.
Hence it appears possible that piezoelectric crystals could be used in the
production of power.



CHAPTER II
CrystaL SysTEMs, CLASSES AND SYMMETRIES

The type of stresses set up in a crystal by an applied electric field depends
on the symmetries existing in this crystal. As an example, if one wishes to
find a crystal that will produce a voltage when subject to a hydrostatic
pressure, he finds that not every crystal class can be used, but only 10 of
the possible 32 crystal classes. Hence in order to understand the actions
of piezoelectric crystals, it is necessary to consider the crystal systems, the
classes and the symmetries that exist in crystals. It is the purpose of this
chapter to consider briefly such relationships.

Crystals are classified into 7 crystal systems and 32 crystal classes.
The ideal crystal is referred to identical unit cells, any one of which can be
made to coincide with one of its neighbors by a simple translation, and the
ensemble of unit cells forms the crystal lattice. The unit cell is usually
chosen as the smallest parallelepiped out of which the crystal can be
constructed. The edges of the unit cells are parallel to the crystallographic
axes, @, 4 and ¢ and their relative dimensions are the unit distances along
these axes.

Bravais showed that the number of types of polyhedron that will
completely fill all space is seven. He also found that when face-centered
and body-centered polyhedra are considered, the number of space lattices
was increased to 14. [Each polyhedron is a unit cell. From these simple
lattices are evolved the seven crystal systems. The edges of the poly-
hedron are the crystallographic axes and the faces are the pinacoids of the
crystal. The seven crystal systems evolved from the Bravais lattices are
the triclinic system, the monoclinic system, the orthorhombic system, the
tetragonal system, the trigonal system, the hexagonal system and the
cubic (or isometric) system.

All these systems can be specified in terms of the directions of the
crystallographic axes @, & and ¢ with respect to each other and the length
of the unit cell measured along these three axes. For example, for the
most unsymmetrical system, the triclinic, all three axes make oblique
angles and the lengths of the unit cell on the three axes are all unequal.
In calculating the elastic constants pertaining to a general crystal, such as
discussed in Chapter III, it is much more convenient to use a right-angled
system of coordinates and the question arises as to how these coordinates

11
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are to be related to the 4-, 4- and c-axes of the crystallographer. This
question has been discussed by the Piezoelectric Committee of the Institute
of Radio Engineers under the chairmanship of Prof. W. G. Cady, and the
system shown by Fig. 2.1 has been proposed. Here the z rectangular axis
lies along the ¢ crystallographic axis, the x rectangular axis lies in the plane
of the 2 and ¢ crystallographic axes and at right angles to the ¢ = z-axis,
while the y-axis is at right angles to the x- and z-axes in a right-handed

Fi1e. 2.1. Method for relating the crystallographic axes of a triclinic crystal to a set of
rectangular axes.

system of coordinates. Certain conventions have been followed by the
crystallographer in selecting the @-, 4- and c-axes of the unit cell. Although
these have not been universally observed, the following rules are in common
use.

(1) In the triclinic system the choice of axes is based on the lengths of
the sides of the unit cell. The axes are chosen so that ¢ < 2 < 4.

(2) In the monoclinic system the rule is abandoned and 4 is chosen
parallel to the symmetry axis and normal to the symmetry plane,
if any.

(3) In the orthorhombic system the three axes are chosen parallel to the
three symmetry axes or, where there is only one, lying in the two
symmetry planes. The axes are chosen so that ¢ < 4 < 4.

(4) In the tetragonal system the unique symmetry axis (fourfold) is
taken as the ¢c-axis and the two perpendicular equivalent secondary
axes are @; and 4a.
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(5) In the hexagonal system (including the rhombohedral division or
the “ trigonal system ”’) the unique symmetry axis (six- or three-
fold) is chosen as ¢ and the three perpendicular, equivalent secondary
axes are 4, @; and as.

(6) In the isometric or cubic system the three equivalent mutually
perpendicular symmetry axes are called 4, 43 and ag.

The monoclinic system is characterized by having one axis, which the
crystallographer has taken as the -axis, perpendicular to the 4- and c-axes
which do not form a right angle. The positive directions of the 4- and
c-axes are outward from the obtuse angle between them, while the positive
direction of the 4-axis is such as to make a right-handed system with the
a- and c-axes. The lengths of the unit cell on all three axes are unequal.
By referring to the general case of a triclinic crystal shown by Fig. 2.1,
we see that for a monoclinic crystal, the z rectangular axis will lie along ¢,
the y rectangular axis will lie along 4, and the x-axis will lie in the ac-plane
and above a since the angle between 2 and ¢ is an obtuse angle. More
crystals belong to this system than to any other.

The orthorhombic system is characterized by three crystallographic
axes all at right angles and a unit cell that has unequal intercepts along all
three axes. The x, y, z rectangular axes coincide with the &, &, ¢ crys-
tallographic axes.

The tetragonal system is characterized by three crystallographic axes
all at right angles and a unit cell that has equal intercepts along the a-
and d-axes. For this reason the three axes are sometimes designated as
a1, a2 and ¢. The x, y and z rectangular axes coincide with the 4, 4 and ¢
crystallographic axes, respectively, although there is no distinction between
@ and 4 or x and y.

The trigonal system or rhombohedral division of the hexagonal system
may be characterized by three axes that form a rhombohedron. More
often, however, it is referred to the axes of a hexagonal system. The way
of relating the rhombohedral axes to the right-angled x, y, z system is
shown by Fig. 2.2. OZis a line making equal angles with all three equal
crystallographic axes 4, a3, 243. If we extend the axes 4y, 43, 43 down
to a plane perpendicular to OZ, the intersection points M;, Mz, M3 form
an equilateral triangle. If in this triangle we inscribe a hexagon
BCDEFG, the x-axis is taken as OG (or OC or OE). The y-axis being
perpendicular to this, is perpendicular to one of the lines, MoMa, M3M;,
or MiM,. . In quartz terminology, it is more common to refer to the
%, y, z rectangular axes than the 4y, 43, a3 crystallographic axes.

The hexagonal system has a crystallographic axis that is an axis of
sixfold symmetry. Four crystallographic axes are used, the ¢c-axis, which
corresponds to the z-axis of Fig. 2.2, and three axes 4, 42, a3, 120° apart
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which are normal to the ¢c-axis. On Fig. 2.2 these correspond to the three
x-axes OG, OC, and OF. The y-axis is taken at right angles to z and x and

forms a right-handed system.
The cubic or isometric system is characterized by three mutually

perpendicular crystallographic axes with a unit cell having equal intercepts
on all three axes.

Fie. 22. Crystallographic axes of a hexagonal or trigonal crystal,

Crystal faces for these systems are specified in terms of the intercepts
of the face or plane on the three crystallographic axes. If g, 4, ¢ are the
intercepts of the unit cell along the a-, 4- and c-axes, respectively, the unit
plane, or 1, 1, 1 plane, is a plane passing through these three points, or is
one parallel to it. Any plane drawn through three points having the
coordinates a/h, 4/k, c/l, where 4, k, / are integers (including zero), is
parallel to a net plane of the lattice and hence to a geometrically possible
crystal face. The integers (k, &, /) used in specifying a plane or face, are
known as the Miller indices. The symbols 4, k, / are taken in the order of
the 4-, 4., c-axes and they are usually small positive or negative integers
including zero. For example, the 001 face is one perpendicular to the
c-axis at its positive end and the 007 face is the corresponding face at the
negative end of the c-axis. The face 317 has the intercepts —a/3, 4 and
—¢/2. Of great physical significance is the possession by many crystals
of a polar axis, which may be defined as an axis which has different proper-
ties for the two ends of the axis. For the trigonal and hexagonal systems
which can be specified by four Bravais axes of Fig. 2.2, it is common to
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. use the Bravais-Miller symbols 4, , 7, / which are the intercepts of a plane
on all four axes. Since the sum of 2 + # + i = 0, it is common practice
to write the symbol as (k% -/), the dot signifying that i = — (& + k).

In general, the points that form the space lattices do not represent the
positions of the atoms but merely serve to define the unit cell within which
the atoms may be situated in a definite number of configurations. The
space groups define the symmetry of the arrangement of atoms throughout
the unit cell. The evolution of the space groups out of the Bravais space
lattices consists essentially in inserting points in the unit cell of the space
lattice, such that the pattern can be made to repeat itself by a combination
of rotation and translation (screw axes), or of a reflection in a plane and
translation (glide planes), in addition to the cyclic axes of symmetry and
reflection planes that characterize the Bravais lattices. Crystallographers
have shown that there are a total of 230 possible space groups or ways that
the atoms can be arranged in the seven types of unit cells.

In order to determine what elastic or piezoelectric constants a crystal
can have, it is not necessary to know to what space group the crystal
belongs but rather what point group. It has been shown that there are
32 possible point groups which are the same as the 32 classes of the crys-
tallographer. Any property of a body may be symmetrical with respect
to a point, a line, a plane, or any combination of these. If symmetrical
with respect to a point, the body is centrosymmetrical and can possess no
polar properties such as piezoelectricity. With one exception, all classes
devoid of a center of symmetry are piezoelectric. This exception, class 29
(Schénflies symbol 0), although it has no center of symmetry, nevertheless
has other symmetry elements that combine to exclude the piezoelectric
property. Symmetry with respect to a line is called axial symmetry and
the line is an axis of symmetry. A plane of symmetry produces a type of
symmetry seen in a mirror; that is, a plane passed through the crystal
divides the crystal in such a way that to each face on one side of the plane
there corresponds a possible face on the other side which is a mirror image
of the first face.

All these types of symmetry can exist separately or together in the
various crystal classes. A set of symbols was devised by Schonflies to
describe the various types of symmetries and these are shown in Table I.
A later set of symbols has also been devised by Hermann and modified by
Mauguin. In this system two-, three-, four- and sixfold rotation axes of sym-
metry are represented by the numbers 2,3,4 and 6, while three-, four- and six-
fold inversion axes have the symbols 3,4and 6. Asymmetry is represented
in the symbol 1, while a center of symmetry (or inversion through a point)
hasasymbol 1. A plane of symmetry is represented by a letter m (mirror).
The first number denotes the principal axis. If a plane of symmetry is
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TABLE 1
ScHONFLIES SYMBOLS
Symbol Meaning
C. A cyclic axis of symmetry, i.¢., an axis such that rotation about it through

an angle of 2x/n radians results in a repetition of the figure. 7 = 1,2, 3,
4or 6. n =1 means nosymmetry at all.

Cun An n-fold cyclic axis with a plane of symmetry normal to it.
Chri An n-fold cyclic axis with a center of symmetry.
Cho An n-fold cyclic axis to which # planes of symmetry are parallel.

82=C; Every direction is a onefold cyclic axis of rotary inversion. The crystal
has a center of symmetry and nothing else.

Ciu = S§4 A fourfold cyclic axis of rotary inversion. There is no center of symme-
try.

V =D, 3 mutually perpendicular twofold cyclic axes.

V) = Da, Symmetry ¥ with addition of a plane of symmetry normal to each of the
3 axes.

Vi= D3; Symmetry ¥ with 2 planes of symmetry containing the principal axis,
and at 45° to the other 2 axes.

D, Axis C,, (principal axis) with »# twofold axes (secondary axes) normal to
it (n = 3,4 or 6).

Dpa Symmetry D, with » planes of symmetry containing the C, axis and
bisecting the angles between the secondary (twofold) axes.

Do Symmetry D, with a plane of symmetry normal to the C, (principal)

axis and therefore 7 planes of symmetry, each containing the principal
and 1 secondary axis.

T 3 orthogonal twofold axes and 4 threefold axes (the tetrahedral group).

T Symmetry T with a plane of symmetry normal to each of the twofold
axes.

Tq Symmetry T with 6 planes of symmetry each containing 2 of the three-
fold axes.

(0] 3 orthogonal fourfold axes, 6 twofold axes and 4 threefold axes (the
octahedral group).

(o) Symmetry O with the planes of symmetry of both T4 and T's.

perpendicular to an axis, this is represented by #/m. Then follow the
symbols for the secondary axes, if any, and then any other symmetry
planes. The Hermann-Mauguin system is simpler than the Schonflies
system and is largely replacing it.

Although the type of crystal is determined by its symmetries, there are a
number of different systems for naming and numbering such crystal classes.
The name and numbering system followed here is that due to Von Groth
and is followed since Von Groth’s five volumes on synthetic crystals
represent the most comprehensive source of information on the properties
of synthetic crystals, However, the names and class numbers are not as
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fundamental as the symmetry symbols, which are also shown. The 32

classes have been divided into the seven crystallographic systems and are
listed in Table II.

TABLE II
CrystaL CLasses
Class No.
According Symmetry Symbols
to Names of classes according to Von Groth Hermann-
Von Groth Schonflies Mauguin
TRICLINIC SYSTEM
1 Triclinic asymmetric C 1
2 Triclinic pinacoidal S:=C; 1
MONOCLINIC SYSTEM
3 Monoclinic sphenoidal C: 2
4 Monoclinic domatic Cu=C, m=12
2
5 Monoclinic prismatic Con p
ORTHORHOMBIC SYSTEM
6 Orthorhombic disphenoidal V =D, 222
7 Orthorhombic pyramidal Cy 2mm
8 Orthorhombic dipyramidal Vy = Doy 222 = mmm
mmm
TETRAGONAL SYSTEM
9 Tetragonal disphenoidal S 1
10 Tetragonal pyramidal Cy 4
11 Tetragonal scalenohedral Vi= Doy 42m
12 Tetragonal trapezohedral D, 422
4
13 Tetragonal dipyramidal Cun m
14 Ditetragonal-pyramidal Cw 4mm
. . . 4 422
15 Ditetragonal-dipyramidal D mmm g
, TRIGONAL SYSTEM
16 Trigonal pyramidal Cs 3
17 Trigonal rhombohedral Cai 3
18 Trigonal trapezohedral D, 32
20 Ditrigonal-pyramidal Cs 3m
21 Ditrigonal-scalenohedral Dus 32
m
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TABLE II—Continued.

Class No.
According Symmetry Symbols
to Names of classes according to Von Groth Hermann-
Von Groth Schénflies Mauguin
HEXAGONAL SYSTEM
19 Trigonal dipyramidal Csa 6
22 Ditrigonal-dipyramidal Daa ém2
23 Hexagonal pyramidal Cs 6
24 Hexagonal trapezohedral D¢ 622 "
25 Hexagonal dipyramidal Cen s
m
26 Dihexagonal-pyramidal Cer 6mm
27 Dihexagonal-dipyramidal Degn 6 mm = 622
m mmm
CUBIC SYSTEM
28 Cubic tetrahedral-pentagonal-
dodecahedral T 23
29 Cubic pentagonal icosi-tetrahedral 0 432
30 Cubic dyakis-dodecahedral T 2 3=m3
m
31 Cubic hexakis-tetrahedral Ty 43m
32 Cubic hexakis-octahedral On 4 3 2 m3m
m m

When the symmetry of a crystal is known, it follows from Neuman’'s
principle that there is a correspondence between the geometrical form and
the physical properties of the crystal. According to this principle, when
the elements of symmetry that characterize the outward form of the
crystal are known, the symmetry of the physical properties can be pre-
dicted. Any given property such as density, thermal expansion, piezo-
electricity, or elasticity may be of higher symmetry than that of the
crystal form (approaching more closely that of an isotropic body) but it
cannot be of lower symmetry.

The mathematical method for relating the symmetry properties of the
crystal to the physical properties is discussed in Chapter III.



CHAPTER 111
Evrastic, PiezoeLEcTRIC AND DieLecTrRIC RELATIONS IN CRysTALS

Since a piezoelectric crystal is at once a condenser, a motor and a genera-
tor, we have to consider three sets of constants to specify its action com-
pletely. These are the dielectric, the elastic and the piezoelectric constants
if only adiabatic relations are to be used, which is the normal case. As dis-
cussed in detail in this chapter, these are second partial derivatives, respec-
tively, of one of the thermodynamic potentials with respect to the electric
fields, the stresses, and the mixed derivative of the two. Because of the
wide diversity of symbols used for the variables and constants, the I.R.E.
Piezoelectric Committee has proposed a system of nomenclature that is
used throughout this book. A suitable notation for the quantities of
interest in piezoelectricity should provide a single symbol for each quantity
with the various components designated by a subscript to permit the use of
either matrix or tensor methods of writing the equations. This require-
ment prevents the adoption of either of the two most widely used notations
for stresses or strains. Piezoelectric notation is further complicated by the
fact that, in general, the electrical, mechanical and sometimes thermal
conditions of measurement must be specified before a unique meaning can
be given to the constants of the material. It is therefore desirable to
provided a notation where the boundary conditions can be specified in the
symbol.

The fundamental variables specified and the two most widely used
systems of units are shown by the following Table III. The definition of
each unit is given in the cgs electrostatic system and in the rationalized
mks system, and a conversion factor is given for multiplying the number of
units in the cgs system to obtain the number of units in the mks system.

Most of the data on piezoelectricity and practically all the data on
elasticity have been expressed in the cgs system of units and hence this
practice is followed in the present work. The equivalent mks units are
sometimes given and in any case can be obtained by using the conversion
factors of Table III.

3.1 Stress arnd Strain Relations in Aeolotropic Crystals

3.11 Specification of Stress

The stresses exerted on any elementary cube of material with its edges
along the three rectangular axes ¥, y and z can be specified by considering
19
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Variable

Force

Potential

Charge

Electric field

Electric
displacement

Stress

Strain

Elastic
displacement

Elastic
compliance

Elastic stiffness

Permittivity
Dielectric im-

permeability

Piezoelectric
constant

Piezoelectric
constant

Piezoelectric
constant

Piezoelectric
constant

Temperature

Entropy

the stresses on each face of the cube illustrated by Fig. 3.1.

Symbol

oy U moxwy

x

N @«

TABLE III

Definition
in cgs units

dyne
stat-volt
stat-coulomb

stat-volt/cm
47 stat-coulomb

cm?
dyne/cm?
cm/cm

centimeter

cm?/dyne
dyne/cm?
stat-farad
cm
cm
stat-farad
stat-coulomb
dyne
stat-coulomb
cmz
cm?
stat-coulomb
dyne
stat-coulomb
degrees Kelvin,
°K
ergs
cm?® X °K

Conversion
factor

10-8

300

3.33 X 1010

3 X 10
2,65 X 1077

10!
1

102

10
107

8.85 X 10—12
1.13 X 101

3.33 X107

3.33 X 10~

3 X108

3 X 104

10!

Cuar. 3

Definition
in mks units
Newton
volt
coulomb

volt/meter
coulomb/meter?

Newton/meter?
meter/meter

meter

meter?/Newton
Newton/meter?

farad/meter
meter/farad
coulomb/Newton
coulomb/meter?
meter?/Newton

Newton/coulomb
degrees Kelvin,
°K
Joules
meter? X °K

The total stress

acting on the face ABCD normal to the x-axis can be represented by a
resultant force R, with its center of application at the center of the face,
plus a couple which takes account of the variation of the stress across the
face. The force R is directed outward, since a stress is considered posi-
As the face is shrunk in size, the force R will be
proportional to the area of the face, while the couple will vary as the cube of

tive if it exerts a tension.
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the dimension. Hence in the limit the couple can be neglected with
respect to the force R. The stress (force per unit area) due to R .can be
resolved into three components along the three axes to which we give the
designation

Tzz,) Tyzp Tu.- (31)

Here the first letter designates the direction of the stress component and the
second letter x; denotes the second face of the cube normal to the x-axis.

|
]
|
|
Ik P

X

Fic. 3.1. Cube showing method for specifying stresses.

Similarly for the first x face OEFG, the stress resultant can be resolved
into the components Tz, Ty, Tz, which are oppositely directed to
those of the second face. The remaining stress components on the other
four faces have the designation

Face OABE Tuy, Ty T,
CFGD Ty, Ty Tu,
OADG  Tury, Tysy Tioy
BCFE Tetpy Tyspy Teep

(3.2)

The resultant force in the x direction is obtained by summing all the forces
with components in the x direction or

Fz - (ng. + T“‘) dy dz + (Tg,. + Tzvl) dx dz + (ng’ + Tz‘l) dx dy-
3.3)
But

0T,

Togy = =T, +‘5‘;—dx§

oT, 9T
ay” dy;  Tuy= ~Tay +——ds (3.4)

Tzv, - "'Tm +
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and equation (3.3) can be written in the form

F, = + ("T" ey "T“) dx dy d. 3.5)

dx dy 02

Similarly the resultant forces in the other directions are

(3T | 3T, aT,,)
F”"+(ax Ty T JEYE

3.6)
0T, 9T,y 9T
- dz.
F. +(6x T o )dxdy z
We call the components
Tzz) sz) T::z Tll) T12) T13
Tur: Tmu Tuz = T21) T22) T23 (3-7)
Tzz, Tzw Tu T31; T32) T33

the stress components exerted on the elementary cube which tend to deform
it. The rate of change of these stresses determines the resultant force on

r4
1 Tm‘?
I 1= T,
- | 7 4
Tyrz /J— [ SpE S——"
T -
XY,

X

Fie. 3.2. Shearing stresses exerted on a cube.

the cube. The second form of (3.7) is commonly used when the stresses

are considered as a second-rank tensor.
It can be shown that there is a relation between 3 pairs of these compo-

nents, namely
Tgy = Tyz; Tz. = Tzz; Ty‘ = T’y- (3.8)

To show this, consider Fig. 3.2, which shows the stresses tending to rotate
the elementary cube about the z-axis. The stresses Tyz, and Ty, tend to
rotate the cube about the z-axis by producing the couple

Tye dx dy dz

L_E_!__ . (3.9)

The stresses Ty, and T, produce a couple tending to cause a rotation in
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the opposite direction so that .
$(Tyz = Tay) dx dy dz = couple = I, (3.10)

is the total couple tending to produce a rotation around the z-axis. But
from dynamics, it is known that this couple is equal to the product of

" the moment of inertia of the section times the angular acceleration. This
moment of inertia of the section is proportional to the fourth power of the
cube edge and the angular acceleration is finite. Hence as the cube edge
approaches zero, the right-hand side of (3.10) is one order smaller than the
left-hand side and hence

Tye = Toy- (3.11)

The same argument applies to the other terms. Hence the stress com-
ponents of (3.7) can be written in the symmetrical form

Tizy Tryy Tue Ty1, Thay Tis Ty, Te, Ts
Teys Tyys Tye | = | Ta2, Tagy Toz | = | To, To, Ty (3.12)
Tyzy Tysy Ty T3, T23, T33 Tsy Ty, T3

The last form is a short-hand method for reducing the number of indices
in the stress tensor. The reduced indices 1 to 6, correspond to the tensor
indices if we replace

11 by 1; 22 by 2; 33 by 3; 23 by 4; 13 by 5; 12 by 6.
This last method is the most common way for writing the stresses.

3.12 Strain Components

The types of strain present in a body can be
specified by considering two points P and Q of a
medium, and calculating their separation in the
strained condition. Let us consider the point P at
the origin of coordinates and the point Q having
the coordinates x, y and z as shown by Fig. 3.3.
Upon straining the body, the points change to *
the positions P, @' 1In order to specify the Fro. 33. Change in length
strains, we have to calculate the difference in , § position of a line due to
length after straining, or have to evaluate the  strain in a solid body.
distance P'Q'-PQ. After the material has
stretched, the point P’ will have the coordinates &1, 11, {1, while Q' will
have the coordinates x + £2; ¥ + m2; 2z + 2. But the displacement
is a continuous function of the coordinates x, y and z, so that we have
9 § 0t

%
T Ta™

=4+
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Similarly
- on, O O
2 =M +axx+ayy+azz
(3.13)
a¢ a¢ a¢
f2 =0 +axx +ayy + % =

Hence subtracting the two lengths, we find that the increases in separation
in the three directions are

L T S
0 = xax +y8y +zaz
an an an

oy = xax +yay z o 3.14)
a¢ a¢ a¢
b, =x—+y—+z—>
Yty T e

The net elongation of the line in the x direction is x a—j and the elongation

per unit length is (-af which is defined as the linear strain in the x direction.

We have therefore that the linear strains in the %, y and z directions are

o¢ dan a¢
Si=5 S= 3y §s = o (3.15)
The remaining strain coefficients are usually defined as
a I 0t a¢ an d¢
8 "y ta’ Ss=tas 5 oy (3.16)

T RO T s

Hence the relative displacement of any two points can be expressed as

e = w5y +y (S22 42 ()

8 = x(f%) +58 +3 fi—;—“’—) (3.18)

S5 — {Ss + wz
S -x(————"Z w")+y(——-—42w)+z$';
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which represents the most general type of displacement that the line PQ
can undergo.

As discussed in the appendix the definition of the shearing strains given
by equation (3.16) does not allow them to be represented as part of a
tensor. If, however, we defined the shearing strains as

a3 d
2855 = 8, =8 19,

dy 9z’
9 ot o 9t
2813 = S5 Pl Pl 2812 = Ss P + P

they can be expressed in the form of a symmetrical tensor

Se¢ Ss
S S S S — 2
n Sz Sis )
S S
Si2 S22 Saz | = 76 §2 ‘2: (3.19)
Sg Sy
S13 S23 Sss 5 3 S3

For an element suffering a shearing strain Sg = 28,2 only, the displace-
ment along « is proportional to y, while the displacement along y is propor-
tional to the ¥ dimension. A cubic element of volume will be strained into

Fio. 3.4. Distortion due to a shearing strain,

a rhombic form, as shown by Fig. 3.4, and the cosine of the resulting angle 8
measures the shearing deformation. For an element suffering a rotation
w, only, the displacement along x is proportional to y and in the negative
¥ direction, while the displacement along y is in the positive x direction.
Hence, a rectangle has the displacement shown by Fig. 3.5, which is a pure
rotation of the body without change of form, about the z-axis.

In general, §; to §g cannot be given arbitrarily as functions of x, y
and z but are subject to restrictions imposed upon them by the definitions
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of equations (3.15), (3.16) and (3.17). On substitution from these defini-
tions it is found that six equations have to be satisfied identically. These
equations, known as the conditions of compatibility, are
%Sy 883 98, 8 _ (as,, 385 Q@_)
2 ' 9y®  dy oz’ dy 9z 9x dy = a2
8283 928§ %S 828, 88y 985 , 98
3 1 5 . 2 ( 4 5 e) (3.20)

ax? % 9z ax’ ézax-s_;—__.’-“

%8, +62S2 _ 98 983 __(g_g.1 355 ase)
ay? ' ax®  oxady’ ox 3y ax 9y oz

These conditions are necessary and sufficient to insure the existence of the
quantities £ n, { connected with the strains by the defining formulae of
equation (3.15), (3.16) and (3.17).

X
Fie. 3.5. A rotation of a solid body.

The total internal energy stored in a general distortion can be calculated
as the sum of the energies due to the distortion of the various modes. For

. . . .. a
example, in expanding the cube in the x direction by an amount a—i dx =

8, dx, the work done is the force times the displacement. The force will
be the force T} dy dz. Hence the internal energy stored in this distortion is

T] dS]_ dx d)’ dz.

For a shearing stress Ty of the type shown by Fig. 3.4, the displacement

. S, .
486 dx times the force Te dy dz and the displacement a ;dy times the force

Te dx dz equals the stored energy or
AU = %(JSQTQ + ngTg) dx d_y dz = dSaTo dx dy dz.
Hence for all modes of motion the stored internal energy is equal to

= [T14$1 + Ty dSs + T dSs + T dSu + T dSs
+ TedSe)dx dy dz. (3.21)
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3.13 Generalized Hooke’s Law

Having specified stresses and strains, we next consider the relationship
between them. For small displacements, it is a consequence of Hooke’s
Law that the stresses are proportional to the strains. For the most un-
symmetrical medium, this proportionality can be written in the form

Ty = 1181 + 1282 + 1383 + 1454 + ¢1555 + €168
Ty = c2181 + c2282 + 2383 + c2454 + €2585 + 2656
T3 = c3181 + c3282 + 3383 + ¢3484 + ¢3555 + ¢3656
Ty = ca181 + c4282 + 4383 + €444 + 4555 + 4658
Ts = 5181 + ¢5282 + ¢5353 + ¢548s + €555 + ¢56 56
To = c6151 + ca282 + c63S3 + co4Ss + o555 + o656

(3.22)

where ¢;1, for example, is an elastic constant expressing the proportionality
between the §; strain and the T stress in the absence of any other strains.
By employing the Einstein convention that a repeated suffix represents a
summation with respect to this suffix, these equations can be written in the
simple form

T; = ¢;;jS; 4j=1t06 (3.23)

It follows from the fact that the internal energy AU is a perfect differ-
ential that
Cij = Cji
To show this we note that

U aT; *U

T.'=a'—& and Cij = T =

Hence, since the order of the differentiation makes no difference

U 82U .
= 35.98; 88,08

This reduces the number of independent elastic constants for the most
unsymmetrical medium to 21. As shown in section 3.33, any symmetry
existing in the crystal will reduce the possible number of elastic constants
and simplify the stress strain relationship of equation (3.22).

Introducing the values of the stresses from (3.22) in the expression for
the internal energy (3.21), this can be written in the form
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280U = 1181 + 26128182 + 2135183 + 2148154 + 201585155 + 2165156
+ €283 + 2235283 + 2248284 + 2258255 + 226526
+ ¢3353 + 20345384 + 2035535 + 2365356
+ c4aS3 + 245845 + 20465456
+ c5553 + 2656556
+ co8 S = €i; SiS;.

(3.24)

The relations (3.22) thus can be obtained by differentiating the internal
energy according to the relation

aU U
—5—67;’ cecy T6=6—S;' (3.25)

It is sometimes advantageous to express the strains in terms of the
stresses. This can be done by solving the equations (3.22) simultaneously
for the strains, resulting in the equations

S1 =Ty + 12Tz + 513T3 + 514Ts + 515Ts + 51876
So = 591Ty + 52T + 523T3 + 524T4 + 525Ts5 + 526Te
Sz = 51Ty + 532T2 + $33T3 + 534T4 + 5asTs + 53676

Ty

Sq = 5Ty + s42T2 + 543Ts + 544Ts + 545Ts + 54676 (3:26)
S5 = 35111 + 55272 + 55373 + 954 T4 + 55575 + 55676
So = se1T1 + s62T2 + s63Ts + S64 T4 + 56515 + Se6 76
or S; = 5;:T;
where e
Sij = S——I{T:ﬁ (3.27)

for which A° is the determinant of the ¢;; terms of (3.28) and A{; the minor
obtained by suppressing the ith row and jth column

€11 €12 €13 €14 €15 (16
€12 (€22 (€23 (24 C25 (a8
A = | €18 €28 €33 (a4 (35 (36 (3.28)
Cla C24 (€34 C44 C45 (48
€15 C25 €385 C45 CB5 (56
16 €26 (36 €48 (56 Coe

To derive equations (3.26) from a fundamental thermodynamic potential,
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we make use of the Gibbs function G defined as
G=U-TS;
Siqce dU = T; dS;, we have
dG = T;dS; — T;dS; — §;dT; = —8,;dT;

Hence
oG
S,' = — 5—7—,.'
and
oG aG

(3.29)

5T T aTieT; - T aTjer;  H
Using equations (3.26), the internal energy can be expressed in the form
20U = s Ty + 25121 Ty + 25131 T3 + 2514 Th Ty + 2515T1 Ts + 2516 T1 T
+ 520T5 + 2523 T2 Ts + 2524 To Ty + 25252 Ts + 2526 T2 T
+ 5333 + 2534 T3 Ty + 2535 T5Ts + 2536 T3 Ts
+ 504T§ + 2545 T4 Ts + 2546 T4 T
+ 5555 + 2556 T5 T
+ se6Tg = si; T T;.

(3.30)

3.14 Isothermal and Adiabatic Elastic Constants

We have so far considered only the elastic relations that can be measured
statically at a constant temperature. The elastic constants are then the
isothermal constants. For a rapidly vibrating body, however, there is no
chance for heat to equalize and consequently the elastic constants operative
are the adiabatic constants determined by the fact that no heat is added
or subtracted from any elemental volume. For gases there is a marked
difference between the adiabatic and the isothermal constants, but for
piezoelectric crystals the difference is small and can usually be neglected.

To investigate the relation existing we can write from the first and
second laws of thermodynamics, the relations

dU ="iT1 dSy + TadSe: + T3dSs
+ T4 dSq, + T5 dS5 + Te dSe] + edd (3.31)

which expresses the fact that the change in the total energy U is equal to
the change in the potential energy plus the added heat energy dQ = 0 do
where O is the temperature and ¢ the entropy.

To express the strains in terms of the stresses and temperature, we make
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use of the Gibbs function defined for this case as
G=U-T:8—-—66 or dG = —8;dT; — ¢ dO

Then

aG aG
Si=—_ a'=—a—e

Developing the strains and entropy in terms of the partial differentials
of the stresses and temperature, we have

s =:;—%JT1 +§%4T2 +%de
+:—;14T4 +§—2—de +g—2dTe +%d9
dSe =%dn +§—%de +g—f§dT3
+ Z—;:dn + :,:—;Za'Ta + g—f,:dn + %‘;—“de (3.32)
da=58—;;dTl +:—;2dT2+5‘3—;;dT3
+%dﬂ+%dﬁ+§%d%+%d&

The partial derivatives of the strains with regard to the stresses are readily
seen to be the isothermal elastic compliances. The partial derivatives of
the strains by the temperatures are the six temperature coefficients of
expansion, or

a8y EAY
30 o e 30 o (3.33)

To evaluate the partial derivatives of the entropy with respect to the
stresses, we make use of the fact that G is a perfect differential so that

38; ’°G G o

90 90 9T} aT; 00 3T;

= ay 3.34)

Finally multiplying the last of equations (3.32) by ©, and noting that since
there are no residual strains or stresses
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.
&
|

= 8,dT; = T;
St = STy + s%Ts + sS5Ts + s54Ts + s3T5 + s5Te + a1 dO

...................................................

Se = s36T1 + 53Tz + s3T5 + s5%6T4 + s3T5 + s66Te + a0 (3.35)

0do = B[ay Ty + asTe + azT3 + a3Ty + asTs + agTe)
+ pC, dO

N,
QS
I

. do . . .
since © 76 the total heat capacity of the unit volume at constant stress,

which is equal to pC,, where p is the density and C, the heat capacity at
constant stress per gram of the material.

To get the adiabatic elastic constants which correspond to no heat loss
from the element, or 40 = 0, d6 can be eliminated from (3.35) giving

81 = 11Ty + 12Tz + 51373 + 514 Ty + 515 T5 + 516 Te + (a1/pCp) dQ

................................................... (3.36)
S = 51611 + 526 T2 + 536 T3 + 536 Ts + 556 Ts + 586 Te + (a6/pC5) 4Q
where
o o a;a,‘B
s = 8 - 249, 3.37
2 Y PCp ( )

For example for quartz, the expansion coefficients are
o =143 X 107%/°C;  ap = 143 X 107%/°C; a3 = 7.8 X 107%/°C;
oy =as =ag =0
The density and specific heat at constant pressure are
p = 2.65 grams/cm®;  C, = 7.37 X 10® ergs/gram.
Hence the only constants that differ for adiabatic and isothermal values are
S11 = S225 5123 9133 Sa3.
Taking these values as’
s§y = 1279 X 107 cm?/dyne; 5§z = —15.35 X 10714;
sf3 = 11.0 X 107M; 533 = 95.6 X 10714,
We find that the corresponding isothermal values are
L8 = 1282 X 10715 % = —15.04 X 10714,
5% =10.83 X 1071; &% = 95.7 X 107 cm?/dyne

! Mason, W. P., “ Quartz Crystal Applications,” B.S.T.]., Vol. 22, No. 2, July,
1943; Quartz Crystals for Electyical Circuits, Chapter I1, D. Van Nostrand Company,
Inc., 1946, or Chapter VI of this book.
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at 25°C or 298° absolute. These differences are probably smaller than
the accuracy of the measured constants.

If we express the stresses in terms of the strains by solving equation (3.35)
simultaneously, we find for the stresses

Ty = 181 + 3582 + c5Ss + 24 8s + 5555 + cfeSe — A1 46

To = 1681 + 3652 + 5653 + %S4 + 5555 + 6656 — Mg 40

where
o o o o o o
M o= oy + gy + a3ciz + aqciy + agcrs + aglle

----------------------------------------

(2] () (2] (2] (:] o
Ne = ajl1g + aacas + a3cag + aacss + asczs + aglos.

The N’s represent the temperature coefficients of stress when all the strains
arezero. The negative sign indicates that a negative stress (a compression)
has to be applied to keep the strains zero. If we substitute equations
(3.38) in the last of equations (3.35), the relation between increments of
heat and temperature, we have

dQ = 0do = B[\ 81 + NSz + A3z + NaSa + N5 S5 + NeSel
+ [pCp — B(a1\ + agh2 + ashs + ashs + ashs + aghe)] 46.  (3.39)

If we set the strains equal to zero, the size of the element does not change,
and hence the ratio between 40 and 46 should equal p times the specific
heat at constant volume C,. We have therefore the relation

plCp — Cy] = 6lar\ + azhs + aghg + aghs + ashs + aghg]. (3.40)

The relation between the adiabatic and isothermal elastic constants ¢;;

thus becomes
A0
= += 3.41
L v pC., ( )
Since the difference between the adiabatic and isothermal constants is so
small, no differentiation will be made between them in the following

sections.

3.2 Expression for The Elastic, Piexoelectric, Pyroelectric and Dielectric
Relations of a Piezoelectric Crystal

When a crystal is piezoelectric, an internal energy is stored in the
crystal when a voltage is applied to the crystal. Hence the energy ex-
pressions of (3.31) requires additional terms to represent the increment of
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energy dU. If we employ cgs units which have so far been most widely
used, as applied to piezoelectric crystals, the energy stored in any unit
volume of the crystal is

AU = Ty dSy + T dSs + T5dS3 + T4 dSy + TsdSs + Te dSe

+E1€&+E2@3+E3@+9d6 (3.42)
4x 4r 4r

where Ey, E; and Ej are the components of the field existing in the crystal
and D;, D; and D3 the components of the electric displacement. In
order to avoid using the factor 1/4x we make the substitution

D
4—; = 6. (3.43)

The normal component of & at any bounding surface is &, the surface
charge. On the other hand if we employ the mks system of units, the
energy of any component is given by E,dD, directly and in the following
formulation & can be replaced by D.

There are two logical methods of writing the elastic, piezoelectric, pyro-
electric and dielectric relations. One considers the independent variables
as the stresses, fields, and temperature, and the dependent variables as the
strains, displacements and entropy. The other system considers the
strains, displacements and entropy as the fundamental independent
variables, and the stresses, fields and temperature as the dependent vari-
ables. The second system appears to be more fundamental for ferro-
electric types of crystals.

As first pointed out by Mueller,? these systems and any others involving
three sets of the six variables, can be derived by using the eight thermo-
dynamic potentials given in the following Table IV.

For the second system described above, the proper function is the internal
energy function U. From Table IV

dU = T;dS; + Enbm + 0 do

Then
- oU aU oU
T‘=5—S,~; E,.=5'8—m, de='5; (3.44)

If we develop the stresses, fields and temperature in terms of their

3 Letter to Piezoelectric Committee.
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TABLE IV
Independent
Thermodynamic Function Variables Differential Relations
Energy, U Si, Doy dU=T.-dS;+E...%+eda
Free energy, 4 = U — ¢© Siy Doy © dA=T¢dS;+Em%-ad6

Enthalpy,

H=U- ST, - E, 2 Ty Emo dH = —8;dTi — 2" 4k, + 6 do
4r 4r
Elastic enthalpy,
Hy=U-— 8T; T:,Dn,0 dH,= —S.-dT;+Em%+9da
Electric enthalpy,
Dm Dm
Hz= U—Em; S,‘,Em,d dH2= T;dS;——l;—rdEmﬁ-edd
Gibbs function,
G = U-—S.‘T.‘—'-E—m&‘—-de T.',E,,,,e dG=—S.'dT.-—P—"'dE,,‘—-cra’6
4 4r
Elastic Gibbs function,
Gx=U—S,'T;—0’9 T.-,D.,.,G dGl= -S;dT;+E,,.%-—ad6
Electric Gibbs function,
D, Dn
G,=U—-E,..T:-06 S Em, © dGz=TedS.‘—z;dEm-—ad6

On occasion all eight sets are of value.

partial derivatives, we can write

Tr = 35 1 550, 45 55y, 25+ 55,),, 4

+ gi)b.v 4% + g%)o,. 45 + a_a%})s,c . + % S 92

+ %5]—;1. 80 s + i',‘;zf;l‘)s.z) o
................................................... (3.45A)
Tg = g%f),,’, a8, +3—:§§)D" dé'z +§_§§ D’d 3 +%§E)Dw ds8, |
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oT, T, T,
+ —-—°) dSs + —9) dSs + 9——9) ds, + a—T—") dss
Do D,o S,0 8,0

0Ss LAY a4, b4
o)+ ),

E= B =35),, 45 450, 450 4 55), 45+ 55), 45
30y, M+ 30),, 0+ )+ ),
o) )

Eo= B =30), 4 5),, 49+ 55), 4%+ 50, s
+ %Eé)o iS5 + ‘;ﬁz)b dSs + %)S dby + %%)s by
+ %%)S.v % + %%)s,o do G438)

9 = 3505, 45+ 35, 9 5T), A+ 35, dss
o S 5R), A ), Bt ),
+ g—g)&’ doz + %?)S.D do.

The subscripts under the partial derivatives indicate the quantities kept
constant. Subscript D indicates that the electric displacement is held
constant, subscript ¢ indicates that the entropy is held constant, while
subscript § indicates that the strains are held constant.

Examining the first equation, we see that the partial derivatives of the
stress T by the strains are the elastic constants ¢;; which determine the
ratios between the stress T; and the appropriate strain with all other
strains equal to zero. To indicate the conditions for the partial derivatives,
the superscripts D and o are given to the elastic constants and they are
written ¢2. The partial derivatives of the stresses by & = D/4r are the
piezoelectric constants A;; which measure the increases in stress necessary
to hold the crystal free from strain in the presence of a displacement.
Since if the crystal tends to expand on the application of a displacement,
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the stress to keep it from expanding has to be a compression or negative
stress, the negative sign is given to the A constants. -As the only meaning
of the % constants is obtained by measuring the ratio of the stress to
8 = D/4x at constant strains, no superscript § is added. However,
there is a difference between isothermal and adiabatic piezoelectric
constants in general, so that these piezoelectric constants are written Aj;.
Finally the last partial derivatives of the stresses by the entropy ¢ can be
written -

oT, 10T, 19T,
T) do = — T) 0de = — T) dQ = =3P dQ
S,D 8,D 8,D

do 0 ds¢ 0 Jdo

where 40 is the added heat. We designate 1/06 times the partial derivative
as —v5P and note that it determines the negative stress (compression)
necessary to put on the crystal to keep it from expanding when an incre-
ment of heat 4Q is added to the crystal. The electric displacement is held
constant, and hence the superscripts § and D are used. The first six
equations then can be written in the form

i =181 + RS2 + R°Ss + "Sa + 3 S5 + 3" Se
- }l:jal - h§j52 - h;,‘63 - 7;9.0 dQ. (3.46)
To evaluate the next three equations involving the fields, we make use of

the fact that the expression for dU in equation (3.44) is a perfect differ-
ential. As a consequence there are relations between the partial deriva-

tives, namely

oT; OE, aT; 96 3E, 40
3, 98S8;’ 9o 88;° do 35, (347)

We note also that

35,,

where B8 is the so-called “ impermeability ”” matrix obtained from the
dielectric matrix enm by means of the equation

_ (_l)u+nAm.-

aE"') - dngSs (3.48)
8,¢

Bmn n (3.49)
where A is the determinant
€11y €12, €13 .
A = | €3, €33, €23 (3.50)

€13, €28, €33

and A™" the minor obtained by suppressing the mth row and nth column,
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The partial derivatives of the fields by the entropy can be written

dE,, 10E, 1 0En

—_—m = - — = o —— = - D .
e )S.D do o 79 s,Dﬂ&r 6 s Jsp dQ modQ  (3.51)

where ¢32 is a pyroelectric constant measuring the increase in field required
to produce a zero charge on the surface when a heat 4Q is added to the
crystal. Since the voltage will be of opposite sign to the charge generated
on the surface of the crystal in the absence of this counter voltage, a nega-
tive sign is given to g2,

Finally the last partial derivative

30 140 190 40
— = e— = e e— = 3. 2
30)3.0 do 6 aﬂ)s.p 6do e 36)3,0 49 pC? (3-52)

represents the ratio of the increase in temperature due to the added amount
of heat dQ when the strains and electric displacements are held constant.
It is therefore the inverse of the specific heat at constant volume and
constant electric displacement per gram of material times the density p.
Hence the ten equations of equation (3.45) can be written in the generalized
forms

Tj = i"S1 + 5" Sa + @S5 + R7Sy + S5 + R Se
—_ 11‘{,-8, - h§,62 - }l§j53 - ‘Y;'S'DdQ

En = —hmS1 — Kn2S2 — hn3S3 — FnaSs — hms S5 — FmeSe

+ 4wB578; + 4nB556, + 4nBS58s — 5040 (3.53)
46 = —O[vyPS1 + 13082 + 18083 + 1828y + 8P Ss + 18P Sel

40
_ D D S.D .
Olai"®81 + g% + ¢"7%] +

n =1 to6; m=1to3

If, as is usually the case with vibrating crystals, the vibration occurs
with no interchange of heat between adjacent elements, dQ = 0 and the
ten equations reduce to the usual nine given by the general forms

Tj = AS1 + c3Ss + RSa + cRSs + 4S5 + c3Se
— h1d1 — hojby — hgjbs
. (3.54)
Ep = —hu:S1 — hm2S2 = hnsS3 — hmaSs — hmsSs — AmeSe
+ 4xB5151 + 4xBagds + 4xBsds.

In these equations the superscript o has been dropped since the ordinary
constants are adiabatic. The tenth equation of (3.53) determines the
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increase in temperature caused by the strains and displacements in the
absence of any flow of heat.

The other form for writing the elastic, piezoelectric, pyroelectric and
dielectric relations is to take the strains, displacements, and entropy as the
fundamental variables and the stresses, fields and temperature increments
as the dependent variables. These can be developed from the thermo-
dynamic variable G of Table IV by employing the relation

G aG G
Si=——7=3 Emw=——7; da'=—£

AT} Py (3.55)

If we develop S, Ey, and do in terms of their partial derivatives, and use the
relations between the partial derivatives shown by equation (3.56) (which
follow from the fact that G is a perfect differential)

Bm 9S;  8S; @ a 3
2 ad bn _ 9 (3.56)

= —— e __—-_..

aT; oEn' 80 oT;° 906  9Em

and substitute for the partial derivatives their equivalent elastic, piezo-
electric, pyroelectric, temperature expansions, dielectric and specific heat
constants, there are 10 equations of the form

S = sBOT, + BT, + sB°Ts + s59T, + sB°Ts + sB°Ts + dﬁEl
+ d5E; + daEs +0’s dae

on = doyT1 + dogTe + da3Ts + daaTs + dasTs + dosTe

TO T,0 TO

+ L E, +7= En2 " Es + Smb E3 + pT do (3.57)

dQ =0ds = Glale + asz + afTa + afn + a5 Ty + of Tel
+ O[p{Ey + piEs + p3 Es] + oC3 de.

= 1to 6, m=1to3J

The superscripts E, 6, and T indicate respectively constant field, constant
temperature and constant stress for the measurements of the respective
constants. It will be noted that the elastic compliance and the piezo-
electric constants dmn are for isothermal conditions. The o® constants are
the temperature expansion constants measured at constant field, while the
27 constants are the pyroelectric constants relating the ratio of § = D/4r
to increase in temperature 40, measured at constant stress. Since there is
constant stress, these constants take into account not only the * true”
pyroelectric effect which is the ratio of § = D/4x to the temperature at
constant volume, but also the so-called “ false "’ pyroelectric effect of the
first kind which is the polarization caused by the temperature expansion of
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the crystal. This appears to be a misnomer. A better designation for the
two effects is the pyroelectric effect at constant strain and the pyroelectric
effect at constant stress. CJ is the specific heat at constant pressure and
constant field.

The adiabatic equations holding for a rapidly vibrating crystal can be
obtained by setting dQ equal to zero in the last of equations (3.57) and
eliminating 46 from the other nine equations. The resulting equations are

Si =iy + 55Ty + s5Ts + sET,

+ siTs + s Te + diiEr + daiEz + daaEa
(3.58)

Om = dmiT1 + dmoT2 + dm3Ts + dma Ty
+ dmsTs + dmaTs +——E1 +""2E +‘"‘3E3

where the symbol ¢ for adiabatic is understood and where the relations
between the isothermal and adiabatic constants are given by

Ee E,8 a'Ea’E'e Fo= - o pmO . fz.: _ SZT:‘Z _ P,,.P,T.'e.
= pC'l’7 m o Tim pCE 4r  4x pCE
) P

(3.59)

Hence the piezoelectric and dielectric constants are identical for isothermal
and adiabatic conditions provided the crystal is not pyroelectric, but differ
if the crystal is pyroelectric. The difference between the adiabatic and
isothermal elastic compliances was discussed in section (3.14) and was
shown to be small. Hence the equations in the form (3.58) are generally
used in discussing piezoelectric crystals.

Two other forms of the piezoelectric equations are also used. For
adiabatic conditions they can be developed by employing the thermo-
dynamic potentials H, and H1 of Table IV and can be written in the form

cES — em;E
K] (3.60)
%= 'l=emS +emnE"

Si = JgT, +gm'5n
= 4‘"’53';» n — &miTj

The four piezoelectric constants 4, ¢, g and 4 thus defined are all related,
but each represents a different aspect of the piezoelectric relationship and is
useful for a particular set of conditions. For example, 4 measures the
strain in a free crystal for a given applied field, e the stress developed by a
given field when the crystal is clamped, g the open-circuit voltage for a

(3.61)
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given stress, and % the open-circuit voltage for a given strain, As shown
in the appendix, there are relationships between them that can be written
in the form
T
¢ E
dnj = ﬁgmj = €niSyj

& myn =1to3
bnj = —‘gr hmj = d,.icﬁ 1] =1to6 (3'62)
] =

gni = 4TBrndmi = hnisi)
hnj = 4'"'5§memi = gnifg

where as before a repeated suffix indicates a summation.

In general, equations of the form (3.58) and (3.60) are more convenient
for nonferroelectric type crystals, while equations of the form (3.54) and
(3.61) are more convenient for ferroelectric types of crystals.

3.3 Effect of Symmetry on the Dielectric Piezoelectric and Elastic Constants
of Crystals

All crystals can be divided into 32 classes depending on the type of
symmetry. These groups can be divided into seven general classifications
depending on how the axes are related and furthermore all 32 classes can
be built out of symmetries based on twofold (binary) axes, threefold
(trigonal) axes, fourfold axes of symmetry, sixfold axes of symmetry,
planes of reflection symmetry and combinations of axis reflection sym-
metry besides a simple symmetry through the center. Each of these
_types of symmetry result in a reduction of the number of dielectric, piezo-
electric, and elastic constants.

Since the tensor method discussed in the appendix lends itself most
easily to a transformation from one system of axes to another, the effect
of symmetries in reducing the number of fundamental constants and
providing relationships between others is dealt with there. The results
of these transformations for the various crystal classes are given in the
following equations.

3.31 Second Rank Tensors for Crystal Classes .

The symmetry relations have been calculated for all classes of crystals,
For a second-rank tensor such as ¢;;, the following forms are required
Triclinic €11, €12, €13

€12, €22, €93 | (3.63)
€13, €28, €33
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Monoclinic

Orthorhombic

Tetragonal, Trigonal
Hexagonal

Cubic

Transverse isotropy
2 an axis of rotary
symmetry C, = n
whete n =

€11, 0 ) €13
0 s €22 0
€13, 0 ) €33

‘lbo 30
0 )522)0
0 )O » €33

€11, 0 ,0
0 3 é11:0
0 ) 0 > €33

511)0 )0
0 )511)0
0 )O > €11

1,0 ,0
0 ’611)0
0 )O ) €33

41

(3.63)

3.32 Third Rank Tensors of the Piezoelectric Type for the Crystal Classes

Triclinic asymmetric (Class 1) No
Symmetry
C =1

hi1y Pr, Pas, Buigy Pus, s
h21y haz, ho3, hogy h2sy hos
h31, h3gy b33, has, h3s, has

Triclinic pinacoidal (center of symmetry) 2 = 0 (Class 2) Sz = C;or T

Monoclinic sphenoidal (Class 3) y is
binary axis
Cy =2

Monoclinic domatic (Class 4) y plane
is plane of symmetry
Co=m=72

Monoclinic prismatic (center of symmetry) 2 = 0 (Class 5) Cap =

Orthorhombic disphenoidal (Class 6)
%, y, z binary axes

V = D2 or 222

Orthorhombic pyramidal (Class 7) z
binary, x, y, planes of symmetry
Csy = 2mm

0,0 ,0 ,A4,0 ;54
1121, }‘22) h2310 )h25)0
0 sO 90 ’}‘34:0 ,}‘36

hll, }‘12) hla) 0 ) hlS, 0
0 ’0 :0 ah24)0 )h26
h3y, ka2, b33, O, h3s, O

,}214,0 )O

0,0,0

0 )0 ’0 ’0 )h25:0
0 )0 30 )O )O )h36
0 ’0 )0 )0 ;hlﬁ)o
0 )0 ,0 :1124»0 )0
hah haa, h33>0 ’0 »0

2

m

(3.64)
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Orthorhombic dipyramidal (center of symmetry) %2 =0 (Class 8)

1 4 =D2;,or—2-—2——2—=mmm
mmm

Tetragonal disphenoidal (Class9)| 0 , 0 ,0 , Ay, 415, 0
2 is quaternary alternating 0, 0,0, —hs 54,0
Sy =4 hs1, —h31,0 , 0 ,0 , Az
Tetragonal pyramidal (Class 10)z |0 ,0 ,0 , A4, A5 0
is quaternary 0,0 ,0,Ms —h40
Ci=4 hs1, k31, 33,0, 0 ,0

0 ,O ;0 :}’14)0 )O
0 ’O :O so )blbo
0 ’0 )O ’0 )0 ’h36

Tetragonal scalenohedral (Class 11) z

quaternary, x and y binary
V. d = Dzd = 42m

Tetragonal trapezohedral (Class 12){ 0 ,0 ,0 , 44 O ,0
2 quaternary, x and y binary 0,0 ,0,0, <440
Dy = 422 0,0,0,0, 0,0

Tetragonal dipyramidal (center of symmetry) 4 = 0 (Class 13)

0 ’O ’O ’0 )}215:0
0 90 ,0 ’hl5)0 ’0

Ditetragonal pyramidal (Class 14) 2
quaternary, x and y planes of

4
Can = —
m

(3.64)

Cy =3

symmetry k31, k31, b33, 0 ,0 ,0
04,, = 4mm
Ditetragonal dipyramidal (center of symmetry) 42 =0 (Class 15)
4 422
Dyp =— mm = ———
m mmm
Trigonal pyramidal (Class his —=m1, 0, Ay Aisy, —hos
16) z trigonal axis —haa, k22, 0, iy —hray —hna
C3 =3 ’131, h31: h339 0 ’ 0 ’ 0
Trigonal rhombohedral (Class 17) center of symmetry, 4 =0,
Trigonal trapezohedral ki, =511,0 by O, O
(Class 18), z trigonal, 0, 0,0 ,0, —Ay —hn
x binary o, 0,0,0, 0, O
D3 =32
Trigonal dipyramidal (Class A, =m1,0 ,0 , 0, —hg
19), z trigonal, plane of —hoa, A, 0 ,0 , 0, —hy
symmetry o, 0,0,0, 0, O

Cap =
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Ditrigonal pyramidal (Class 0, 0,0 ,0, MAg —ha

20) z trigonal, y plane of —hoa, A2, 0 A5, 0, O
symmetry k31,  hsi, A3, 0, 0, O
Cap = 3m

Ditrigonal scalenohedral (Class 21) center of symmetry, 2 = 0, 3% = Djq

Ditrigonal dipyramidal (Class | 411, —#1;,0 ,0 , 0, O
22) z trigonal, z planeof sym- (0 , 0 ,0 ,0 , O , —Ay
metry and y plane of symmetry |0 , 0 ,0 ,0, 0, O
D3h = 3m2
Hexagonal pyramidal 0, 0,0 ,Ahyy ks O
(Class 23) z hexagonal 0, 0,0 ,hyg —hy, O
Ce =6 hai, k31, A3, 0, O, O
Hexagonal trapezohedral 0, 0,0,k O, O
(Class 24) z hexagonal, 0, 0,0 ,0, Ay O
x binary o, o,0,0, O, O
Dg = 622 (3.69)

Hexagonal dipyramidal (Class 25) center of symmetry, 2 =0, Cgj = —6”-‘

0,0,0,0,HAsO
0,0 ,0,ks0,0
ka1, a1, h33, 0 ,0 ,0

Dihexagonal pyramidal (Class 26)
x hexagonal y plane of symmetry
Cgy = 6mm

Dihexagonal dipyramidal (Class 27) center of symmetry, 4 =0, Dgj, = -f;mm

Cubic tetrahedral-pentagonal-dodeca- | 0 ,0 ,0 , 44,0 ,0

hedral (Class 28) x, y, z binary 0,0 ,0,0,4,0
T“23 0,0 ,0 ,0 ,0 ,h14

Cubic pentagonal-icosi-tetrahedral (Class 29) 2 = 0; 0 = 432
Cubic, dyakis-dodecahedral (Class 30) center of symmetry, 4 = 0;
Ty = 23 = m3

m

Cubic, hexakis-tetrahedral (Class 31)
X, ¥, Z Quaternary alternating
T‘ = lSm
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Cubic, hexakis-octahedral (Class 32) center of symmetry, & = 0;

O = igz(mSm)
m m

Transverse isotropy 0,0,0,0,#A;,,0
2z an axis of rotary symmetry 0,0 ,0,#4s50,0
C, = nwheren = h31, A3, A33, 0 ,0 ,0

These matrices hold for the ¢ and 4 piezoelectric constants. Because of
the definition of shearing strain adopted, the 4 and g relations for classes
16, 18, 19 and 22 will be somewhat different than for the A symbols given
above. In these classes, the 4 and g matrices will be

diy —du 0 dy dis  —2dg

Class 16 -dzz dzz 0 415 —du -—2(111
d31 ds; dsz O 0 0
diy —du 0 dy O 0

Class 18 0 0 00 —dis 2411

0 0 0 0 0 0 (3.65)

dn —-diiy 0 0 0 =24y

Class 19 —d22 dzz 0 0 O —-211'11
0 0 0 0 0 0
dy —-dy 0 0 O 0

Class 22 0 0 0 0 0 —-24
0 0 0 0O 0

3.33 Fourth Rank Tensors of the Elastic Type for the Crystal Classes

Triclinic 1 c12 as C14 15 cise | The s tensor
system 12 Caa C23 Ca4 C25 c26 | is entirely
(Classes 1 13 C23 €33 €34 €35 cse | analogous
and 2) 21 C14 €24 €34 €44 €45 C46
moduli €15 €5 €35 €45 Cs5 cs6

‘18 C28 €36 [71.) Cse Ces (3.66)
Monoclinic ‘11 €12 €13 0 15 0 The s tensor
system 12 Cag Co3 0 35 0 is entirely
(Classes 3, 4 €13 Coa €33 0 €35 0 analogous
and 5 ) 13 0 0 0 C44 0 48
moduli s c5 ¢ O css 0

0 0 0 (77 0 (4.7}




Rhombic
system
(Classes 6, 7
and 8)

9 moduli

Tetragonal
system, 2 a
fourfold axis
(Classes 9, 10,
13) 7 moduli

Tetragonal
system, z a
fourfold axis,
x a twofold
axis (Classes
11, 12, 14, 15)
6 moduli

Trigonal
system, z a
twofold axis,
(Classes 16,
17) 7 moduli

Trigonal
system, z a
trigonal axis,
x a binary axis
(Classes 18,
20,21) 6
moduli

Hexagonal
system, z a
sixfold axis, ¥
a twofold

axis (Classes
19, 22, 23, 24,
25, 26, 27) §
moduli

‘11
€12
€13

11
€12
€13

€16

€11
c12
€13

‘11
12
€13
€14
—C€25

11
€12
13
€14

3§1
€12
€13

0
0
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€12
C22
¢a3
0
0
0

12
11
€13

—Ci6

€12
€11
€13

12
€11
€13
—C14
€25

€12
€11
€13
—C14

€12
‘11
€13
0
0

0

€13
€23
€33
0
0
0

€13
€13
€33

€13
€13
€33

13
13
€33

€13
€13
€33

€13
€13
€33

0

S oo0o0

S

E COC OO

cop o000 o0
-»

€14

Ca4

C25

C14
—C14

© opooo © opo
» =

onp coocoo
(=]

-

©Op 0000 opooco0O
-

—€35

€25

Caq

€14

(=N =)

Caq

€14

COo0OCO0O

€44

[=NeNoNeNo)

[=NeNe

C25
C14
€11 —C12

[\

[=NeNoNe)

€14
€11 —C12

[\*]

[=N NN

€11~ C13]

45

The s tensor
is entirely
analogous

The s tensor
is entirely
analogous

The s tensor
is entirely
analogous

(3.66)

The s tensor
is analogous
except that

S46 = 2525,
Ss6 = 2514,
Sgg = 2

(511 — s12)

The s tensor
is analogous
except that

556 = 2514,
Jge = 2
(511 — $12)

The s tensor
is analogous
except See =
2(s11 = $12)
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Cubic system
(Classes 28,
29, 30, 31, 32)
3 moduli

Isotropic
bodies, 2
moduli

Transverse
isotropy

C, = n where
7n =

i
12
C13

0
0
0

‘11
€12
€12

‘11
€12

13
0
0

0

12
€11
C12
0
0
0

€12
€11
€12

€12
€11

€13
0
0

0

€12
€12
‘1
0
0
0

‘12
€12
‘11

€13
€13

€33
0
0

0

ocooc oopooco
S

€1y —C€12
2

0

(=

© opoo0o0

0 0

0 0

0 0

0 0
C44 0

0 C44
0 0

0 0

0 0

0 0

€11 —C12
2 0
‘11 —C(12

0 2

0 0

0 0

0 0

0 0
C44 0

0 €11 — (12
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The s tensor
is entirely
analogous

(3.66)

The s tensor
analogous ex-
cept last three
diagonal
terms are
2(snn —512)

The s tensor
is analogous
except sgp =
2(s11—512)



CHAPTER 1V
PropeERTIES OF CRYSTALS DETERMINABLE FROM SMALL S1zES

A program for measuring the properties of synthetic piezoelectric crystals
has been under way at the Bell Laboratories for the last ten years or more
and has resulted in a number of publications and produced crystals of
interest for the war effort. This search also resulted in the ethylene
diamine tartrate (EDT) and di potassium tartrate (DKT) crystals
described in Chapter IX. These crystals are finding considerable use in
electrical wave filters in place of quartz crystals. It is the purpose of this
chapter to describe the methods used for the search and to present data on
a number of crystals that have been investigated. While these crystals
have not been completely measured, the data for them may find use in
predicting the chemical and atomic properties necessary for obtaining the
best crystals for meeting definite requirements.

4.1 Methods for Measuring Small-Sized Crystals

Since the time and effort necessary to measure and grow large-sized
piezoelectric crystals are very considerable, and since special growing
techniques are often required for specific crystals, it is a matter of some
importance to obtain a method for eliminating non-promising crystals in
the small-grain size state, since these are rather easily grown in beakers by
spontaneous seeding. Two methods have been used for this purpose, the
Giebe and Scheibe click method and a balanced-bridge method first pro-
posed by the writer.

For the Giebe and Scheibe method, a number of grains of the substance
are inserted between two electrodes which are placed across the plates of
an oscillator, constructed as shown by Fig. 4.1. The frequency of the
oscillator is changed by changing the tuning condenser C; and if a resonance
of one of the piezoelectric crystals occurs near the oscillator frequency, the
frequency of the oscillator will be briefly controlled by the crystal reso-
nance. As the condenser is turned further, the natural frequency of the
oscillator becomes far enough away from the crystal resonance so that it
cannot control the oscillator frequency, and a jump occurs from the crystal
frequency to a different frequency controlled by the oscillator constants,
This jump in frequency is accompanied by a change in the plate current,
so that if a pair of headphones or a loud speaker is attached to the plate

47
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circuit of the oscillator, a click is heard. By changing the oscillator
frequency over a wide range, a number of possible resonances will be
crossed and a series of clicks obtained. This is entirely a qualitative

so ?‘ uf 10,000 A |
1 6C5 AN\ jf—
0028
. : o

Mg

We AUDIO
X'Tl LN é AmP
< —

A/

bl -}
F1c. 4.1. Giebe-Scheibe type oscillator for obtaining indications of piezoelectricity from a
crystalline powder.

method since the loudness of the clicks cannot be related to the coupling
in the crystal or the crystal Q. It will, however, determine whether a

R,
Cy C ]
osc 3 ! DETECTOR ::@mema
Ca
A
Zg3le y
Z4 22
B8

Fic. 4.2. Bridge circuit for obtaining semi-quantitative measurements of piezoelectricity,

crystal is piezoelectric, or not, down to a very small coupling for the
crystal.

The bridge method on the other hand is semiquantitative, even for very
small-sized crystals. The circuit for the bridge is shown by Fig. 4.2.
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Here crystal grains are placed between two electrodes which are placed in
one arm of a capacity bridge. An oscillator is connected to the input and
a sensitive detector to the output of the bridge. The capacity C; is
balanced outside the crystal resonance range so that a minimum of current
occurs in the detector. As the frequency is changed, the bridge becomes
unbalanced as a crystal resonance is approached and the amount of un-
balance determines the ratio of the crystal Q to the ratio of capacitances
existing for the crystal. For a bridge as shown by Fig. 4.2B, the current
in the output is given in terms of the input voltage by the equation

EyZyZ3 — Z,Z4)

fo = T where H = (21 + 23)232,4
+ (Zs + Z24) 2,2, 4.1)
+ Zs[(Zy + Z5)(Z5 + Z4))
+ Zol(Zy + Z3)(Z2 + Zy)]
+ Z5Z6lZy + 22 + Z3 + Z4]
If we let
J J
Zl=—;CTI; Z2=Zs=—;5;;
=J [ fRQ]
A=lGr o [-L+ L] @2
fAQ
wherefp,=———l—'—; f4=—_—"’ 0= 1 !
2rV'L,C, 2wl CoC: 2nfrR
Co + C;

we have the equations for a capacity bridge with a crystal in one arm.
Suppose now that Cy, C3 and (Cy + C2) are approximately equal and that
the input and output impedances Zs and Zg are low compared to the
impedances of the bridge. Then the current in the detector will be

- % 51|
—+——-5—
[l " fa fifQ:I

- |, [1 ffan]

w(Co + Cy) [1 ;2 f.ifQ]

fo = Eo| 1-

(4.3)

-1
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LA - £ —j’Q—'m — falfafn
= jEw(Co + C2) 7
25 /% — 3% - Fal + ’Q [3f4 —fR]f&fA

S
3% -4 (44)

the denominator nearly vanishes, if the value of Q for the crystal is high,
and a large current results. The value of this current at resonance is equal

very nearly to

io = Run(Cy + ) [ 4 fﬂf R] 0 = Ewn(Co+ C) 2 (45)

Tl

FREQUENCY

When 2=

CURRENT =1

Fic. 4.3. Current in bridge circuit as a function of frequency.

where r is the ratio of capacitances existing for the crystal, which ratio is
related to the electromechanical coupling & by the equation

rez (‘—-‘k-,f) 46)

The current will vary over a frequency range as shown by Fig. 4.3.
The maximum current is proportional to Q/2r, and the rapidity with which
it decreases from the maximum value is determined by the value of Q
for the crystal. This can be measured by determining the frequency
separation of the two frequencies 3 db down (or a current ratio of 1/v/2)
from the maximum value, with the Q being

Sr
= of . 47
Hence both the Q and the electromechanical coupling could be obtained
from this measurement if the orientation and field applied to the crystal
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were known. Since small grains are commonly used, these last two factors
are not known, and only a qualitative measure of the coupling is possible.
If a number of grains of different orientation are present, it is thought that
the coupling can be judged within a factor of 3 to 1.

It has become customary to rate the coupling in four categories: zero,
weak, moderately strong and strong. From measurements on larger-
sized crystals, it has been determined that these categories correspond
approximately to the coupling ranges

Zero Weak Moderately Strong Strong
<1% 1t07% 5to0 15% 8% to 309,
or higher

A program of selecting and growing promising chemical materials into
crystal form has been carried out by A. N. Holden. These have been
measured and classified into coupling groups by the writer. The following
tables show these classifications for a large number of materials for which
the measurements have been completed.

TABLE V

StronG CoupLiNG

Acetamide d-tartrate
Aminoethyl-ethanolamine hydrogen tartrate
Ammonium hydrogen tartrate

Ammonium hydrogen d/-malate
Ammonium hydrogen d-tartrate-/-malate
Ammonium arsonyl d-tartrate hemihydrate
Ammonium lithium d-tartrate monohydrate
Ammonium oxalate hydrate

Benzil

1, 3-diaminobutane arsonyl tartrate
Dextrose sodium iodide

Ethylene diamine arsonyl tartrate
Ethylene diamine chromate

Ethylenie diamine tartrate

Ethylene diamine d-tartrate

Ethylene diamine antimonyl J-tartrate
Ethylene diamine hydrogen /-malate

Iodic acid

Ityrosine hydrobromide

l-propylene diamine arsonyl tartrate
J-tyrosine hydrochloride

Lhystidine dihydrochloride

s 2
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No.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
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TABLE V—Continued.
StroNG CouPLING

Lithium thallium tartrate hydrate
Lithium rubidium tartrate

Methylamine arsonyl tartrate
Methylamine hydrogen tartrate

Nickel hydrogen /malate dihydrate
Nickel selenate hexahydrate

Potassium bromate

Potassium lithium 4-tartrate monohydrate
Potassium thiochromate :
Piperidine-acetic acid hydrate

Rubidium dihydrogen arsenate

Rubidium dihydrogen phosphate

Sodium ammonium tartrate

Sodium tartrate dihydrate

Sodium dihydrogen phosphate dihydrate
Sodium rubidium tartrate tetrahydrate
Sucrose sodium iodide

Tartaric acid

Thallium hydrogen tartrate

TABLE VI

MoDERATELY STRONG COUPLING

Ammonium tartrate

Ammonium pentaborate

d-mandelic acid

d-propylene diamine arsonyl tartrate
Dextrose sodium chloride

Ethylene diamine antimonyl tartrate
Ethanolymine hydrogen tartrate
Isopropylamine arsonyl tartrate
l-benzoylalamine

l-asparagine

Ltyrosine hydroiodide
Methylalamine

Morpholine acetic acid

Methyl morpholine antimonyl tartrate
Potassium pentaborate

Rubidium tartrate

Silver tartrate thiourea

Sodium hydrogen tartrate

Urea

CHar. 4
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TABLE VII

Weak CoupLING

Aminoacetic acid

~ Acetamide hydrogen tartrate

Ammonium hydrogen /~malate
Ammonium dimolybdomalate
Aminoethyl morpholine arsonyl tartrate
Aminocethyl ethanolamine arsonyl tartrate
Ammonium iodate

Benzophenone

Barium nitrate

Coumarin

Calcium hydrogen Zmalate hexahydrate
Diethylamine hydrogen tartrate
Diphenylguanidine tartrate
dl-alpha-phenylethylamine hydrogen d/-malate
d-alpha-phenylethylamine /malate

2, 3-dibromopropylamine hydrogen tartrate
Diethylamine arsonyl! tartrate

1, 3-diaminobutane arsonyl tartrate
Dimethylamine hydroiodide

Ethylene diamine sulphate

Ethanolamine arsonyl tartrate

Ethyl propyl piperidinium iodide
Guanidine carbonate

Hexamethylene tetramine

Hippuric acid

Hexamethylene tetramine mandelate
Hydroxyethyl morpholine arsony! tartrate
Isobutylamine antimonyl tartrate
[leucine

Lhistidine monohydrochloride

[tyrosine sulphate

m-nitrobromobenzene

Morpholine hydrogen tartrate
Morpholine antimony! tartrate
Methylmorpholine hydrogen tartrate
Magnesium lead propinate
m-nitrochlorbenzene

Morpholine mandelate

Magnesium /malate

Morpholine piperidine arsonyl tartrate
n-butylamine arsonyl tartrate

Phthalic anhydride

53



54

No.

43

45
46
47
48
49
50
51
52
53
54
55
56

58
59

61
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TABLE VII—Continued.

Weak CoupLING

Potassium antimonyl tartrate-sodium sulphate
Potassium antimonyl tartrate-lithium nitrate
Piperidine hydrogen tartrate

Piperazine tartrate

Potassium hydrogen tartrate

Piperazine antimonyl tartrate

Piperazine hydrogen tartrate
Phenyl-n-propylamine hydrogen tartrate
Propylene diamine hydrogen tartrate
Potassium hydrogen d-saccharate

Piperazine arsonyl tartrate

Rubidium hydrogen tartrate

Resorcin

Silver nitrate succinononitrile
Tribenzylamine nitrate

Triethylene tetramine hydrobromide
Tetramethyl-pyrazine hydrogen tartrate
Trans-dimethyl piperazine tartrate

Xylose

TABLE VIII
Zero CourLING

Aminoethyl-morpholine tartrate
Aminoethyl-morpholine mandelate
Ammonium antimony]! tartrate hydrate
Ammonium hydrogen o-sulfobenzoate
Acetamide oxalate

Acetylphenyl hydrazine

Barium thiosulfate-acetate dihydrate
Calcium tartrate tetrahydrate
Diammonium citrate

Diphenyl trisiloxane

Diphenyl iodonium chloride

d-6-6"-dinitro diphenic acid

Dimethylamine antimonyl tartrate
Dimethylamine arsonyl tartrate

d-arginine monohydrochloride

Dimethyl piperazine

Dimethyl piperazine mercurichloride

1, 2-Dimorpholino propane dihydrobromide
1, 3-Dimoarpholino propane dihydrobromide
1, 3-Dipperidino propane dihydrobromide

Cuar. 4
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TABLE VIII—Continued.
Zero CoupLING

Dimethyl morpolinium iodide

Ethylene diamine thiosulphate acetate

Ethyl morpholine hydrogen tartrate

Ethylene diamine ethylene diamine tetra acetate
Ethylene diamine selanate

Ethylene diamine iodate

Ethylene diamine primary arsenate

Ethylene diamine tetracetic acid hydrochloride
Ethyl morpholine arsonyl tartrate
Ethyl-a-picolinium iodide

Ethylene diamine succinate

Ethylene diamine hydrogen d/malate

Glycine hydrochloride

Glycine tartrate

Guanidine aluminum sulphate hexahydrate
Hexamethylene tetramine hydrobromide
Hydroxyethyl morpholine hydrogen tartrate
Hydrazine sulphate

Isobutylamine arsonyl tartrate

Methylethyl morpholinium iodide
Methylamine antimonyl tartrate
Methyl-a-picolinium iodide
Methylhydroxyethyl morpholinium iodide
Methylhydroxyethyl morpholinium arsonyl tartrate
Magnesium tartrate pentahydrate

Magnesium 2, 5 dichlorbenzol sulfonate octohydrate
5-Nitrosalicylic acid

5-Nitro 2, 3 di(trichloromethyl) dihydrocoumarone
Potassium zinc cyanide

Potassium tetraoxalate dihydrate

Potassium hydrogen succinate dihydrate
P-Toluidine hydrochloride

P-Aminohippuric acid

P_Chloroacetanilide

Phenylthiosemicarbazide

Propylene diamine mandelate

Piperidine mandelate

Potassium amino acetate

Phenyltrimethyl ammonium iodide

Potassium dibromoacetate

Propylene diamine arsonyl racemate
Potassium iodate

Phenolphthalein diacetate

P-Nitrobenzoyl piperidine

55
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TABLE VIII—Continued.
Zero CoupLING
No.
65 Sodium dihydrogen arsenate dihydrate
66 Strontium nitrate-acetate hemitrihydrate
67 Thiomalic acid
68 Triphenyl guanidine hydrogen tartrate
69 Trimethyl sulfonium iodide
70 Tetracthanolammonium hydrogen arsenate perchlorate
71 Tetraethanolammonium hydrogen sulphate
72 Tetra-p-tolyl silane
73 Triphenyl methanone
74 Urea nitrate
75 Zinc 2, 5 dichlorbenzolsulfonate octohydrate

4.2 Properties Determined from Three Small Oriented Plates

It has been thought worth-while to investigate the properties of all
piezoelectric crystals having an electromechanical coupling of 12 to 15 per
cent or higher. This is a rather arbitrary division point which was chosen
on the basis that since quartz has a 10 per cent coupling, it would require
unusually good mechanical properties for a synthetic crystal to compete
with quartz; whereas a coupling of 15 per cent or higher would be of interest
for types of applications other than these usually satisfied by quartz.

Since the powder method has a probable spread of 3 to 1 in the indicated
coupling, it was thought worth-while to interpose an intermediate screening
test between the powder test and the measurement of properties of large-
scale crystals. This test consists in growing crystals from the powder
size up to a size of 3 to 4 millimeters for all dimensions. This size is
large enough to cut and handle in a practical manner. W. L. Bond has
devised a method of determining the orientation of crystal cuts by means
of the optic axes of the crystals. Triclinic, monoclinic, and orthorhombic
crystals have two optic axes making an acute angle with respect to each
other. By taking three plates perpendicular to the bisectrix of these two
axes, parallel to the bisectrix and perpendicular to the plane of the optic
axes, three mutually perpendicular sets of plates can be obtained, from
which more accurate coupling data can be obtained. For crystals of
tetragonal, hexagonal, and trigonal classes, there is one optic axis and
crystals cut parallel to this and two other orientations perpendicular to the
optic axis at directions determined by the crystal faces, will provide a set
of three mutually perpendicular plates which can be used for coupling
measurements. While no assurance exists that by measuring the couplings
of these mutually perpendicular plates, one obtains the maximum coupling,
experience has shown that couplings measured in this way will usually be
within 50 per cent of the couplings measured for larger-sized crystals.
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TABLE IX
APPROXIMATE MEASURE OF STRONGEST COUPLING
Strongest
Material Crystal System Coupling
Per cent
1 Ammonium tartrate monoclinic 11.3
2 Ammonium pentaborate orthorhombic 7.0
3 Ammonium hydrogen-d/-malate orthorhombic 6.1
4 Ammonium hydrogen-d-tartrate-/malate monoclinic 8.6
5 Ammonium oxalate monohydrate orthorhombic 10.25
6 Ammonium arsonyl-d-tartrate hemihydrate orthorhombic 9.0
7 Aminoethyl ethanolamine hydrogen tartrate triclinic 16.0
8 d-propylene diamine arsonyl tartrate monoclinic 7.1
9 1, 3-diamine butane arsonyl tartrate orthorhombic 7.0
0 Dextrose sodium chloride trigonal
trapezohedral
11 Ethylene diamine antimonyl d-tartrate orthorhombic

9.0
8.0
12 Ethylene diamine arsonyl tartrate orthorhombic 15.4
13 Iodic acid orthorhombic 25.0
14 Isopropylamine arsonyl tartrate orthorhombic 11.7
15 Lithium rubidium tartrate orthorhombic 11.7
16 /asparagine orthorhombic 12.5
17 /-tyrosene hydrochloride monoclinic 13.2
18 /-tyrosene hydrobromide monoclinic 16.0
19 Lithium thallium tartrate hydrate orthorhombic 15.8
20 Methylalamine orthorhombic 6.0
21 Methyl morpholine antimonyl tartrate orthorhombic 16.0
22 Neutral acetamide tartrate orthorhombic 8.4
23 Potassium pentaborate orthorhombic 11.8
24 Piperidine acetic acid hydrate orthorhombic 9.0
25 Rubidium tartrate trigonal
trapezohedral 6.5
26 Rubidium dihydrogen arsenate tetragonal 16.4
27 Rubidium dihydrogen phosphate tetragonal 16.0
28 Sodium dihydrogen phosphate orthorhombic 5.5
29 Sodium rubidium tartrate orthorhombic 19.5
30 Sodium ammonium tartrate orthorhombic 22.7
31 Silver tartrate thiourea monoclinic 6.2
32 Sodium hydrogen tartrate monoclinic 11.5
33 Tartaric acid monoclinic 17.5
34 Thallium hydrogen tartrate orthorhombic  24.0
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For monoclinic and triclinic crystals, measurements of thickness modes are
made as well as those for contour modes measured for the other crystal
classes.

These measurements have been made by cutting square slabs, evaporat-
ing gold over the surface, putting the crystals in a well-shielded holder with
all the stray capacitances tied to ground across a low input and output
impedance circuit. The resonance and anti-resonance, the static capac-
itance, and the equivalent resistance of the crystal at resonance, are all
measured. From these, the dielectric constant, the ratio of capacitances
and the electromechanical coupling can be obtained from the formula

_ 4nCo X 9 X 10V, 1 1

’ r=< H k=
e 4 <4 -1 1+_8_.
fr -\/— =i

where Cp is the measured capacitance in farads, /. the thickness, 4 the
cross-sectional area of the crystal, fg the resonance frequency, and f4 the
anti-resonant frequency. Table IX on page 57 shows measurements of the
value of the strongest coupling found for the three mutually perpendicular
plates for a number of the strong coupling materials of Tables IV and V.




CHAPTER V

RESONANT MEASUREMENT OF THE PROPERTIES
or LArGe-S1ze CrystaLs

When crystals of a large size are available, the elastic, piezoelectric and
dielectric constants can be determined by measuring the electrical imped-
ances of the crystal over a wide frequency range. These constants are
measured by cutting out a specified number of crystal plates at various
orientations with respect to the natural crystal and measuring the capaci-
tance of the plates at low frequencies, the resonant, and the anti-resonant
frequencies. These determine the “ free” dielectric constant, the fre-
quency constant and the ratio of capacitances of the crystal. Knowing
the density of the crystal, one can calculate the elastic constant pertaining
to the mode of motion. By measuring the resistance of the crystal at
resonance, a measure of the “ Q" is obtained. This is an indication of
the internal dissipation of a crystal, if this is high enough to override
other sources of dissipation. For most crystals measured, however, it is
the mounting losses and the acoustic radiation losses that predominate
and determine the crystal Q. Since the application of a crystal depends
to quite an extent on the temperature coefficient of frequency and the
temperature coefficient of the piezoelectric and dielectric constants, these
properties are usually measured over a wide temperature range. Such
measurements also provide an indication of the type of dipole operative
in the piezoelectric effect, as discussed in section 10.6, Chapter X.

The mode of motion that can be related most easily to the fundamental
elastic and piezoelectric constants of the crystal is the longitudinal mode
of motion. This follows from the fact that the resonant frequency of a
long, thin bar is controlled by the Young’s modulus of the bar, and the ratio
of capacitances is simply related to the piezoelectric constant, the dielectric
constant and the elastic constant. Other simple modes that can be related
to the elastic constants are flexure modes and torsional modes, but these
require complicated plating arrangements for driving them and hence can-
not be used for measuring piezoelectric and dielectric constants. As

-shown in section 5.2, longitudinal-mode crystals can be used to evaluate

all the elastic constants except the shear constants and can be used to

evaluate all of the dielectric constants and all of the piezoelectric con-

stants. For evaluating the shear elastic constants, we have a choice of
59
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using face-shear modes or thickness-shear modes. The face-shear mode
has been used exclusively for these measurements on account of the greater
ease of dimensioning such crystals and because no corrections have to be
made for piezoelectric coupling effects. An alternate method for measuring
the elastic constants is by using harmonics of thickness modes. This
method has been made the basis of an optical method for measuring elastic
constants, which consists in using the standing-wave pattern as an optical
diffraction grating. From the position of the diffracted light spots, taken
for three orientations of the crystal, all of the elastic constants can be
determined.

Another method? used recently for measuring crystal elasticities is the
pulsing ultrasonic method discussed in section 16.3. By sending shear and
longitudinal waves down various oriented crystal cuts, all of the elastic
constants of a crystal can be calculated. As shown by Huntington,?
these measurements result in the constant field elastic constants, which, for
a ferroelectric type of crystal, vary considerably near the Curie tempera-
ture. By means of this method, an indication of the size of a domain
can be obtained for a ferroelectric type crystal, such as rochelle salt. This
follows from the fact that when a crystal becomes ferroelectric, it breaks
up into domains of definite sizes that act as sound-scattering centers; for
example, just as metal grains do in aluminum. The data of Fig. A.4 taken
at 100 kilocycles, show that the @ of a 45° X-cut rochelle salt crystal drops
from 9,000 to 3,000 in the Curie region, due to the sound-scattering power
of the domain. This corresponds to an attenuation of 2.5 X 10™* nepers
per centimeter due to sound scattering. From equation (16.49), assuming
that the non-homogeneity constant is within the limits 0.001 to 0.1, this
results in a domain size within the limits of 0.01 to 1 cubic centimeter.
This is about the same size as found by Mueller by an electrostatic method.

The last two methods, the optical diffraction method and the ultrasonic
pulse method, give only the elastic constants and do not evaluate the
piezoelectric and the dielectric constant. Hence the measurement of the
resonant and anti-resonant frequencies of specially oriented crystals still
appears to be the best method for obtaining the constants of a piezoelec-
tric crystal, although it may be supplemented by other methods.

5.1 Calculation of the Resonance and Anti-Resonance Frequencies of a
Piezoelectric Crystal in Terms of the Fundamental Constants

In order to determine the fundamental elastic, piezoelectric and dielec-
tric constants from measurements of capacitances, and the resonance and

! Bergman, L., Dr. Ultraschall, J. W. Edwards, 1942.
2 Huntington, H. B., “ Measurements of Crystal Elasticities by a Pulse Method,”
Phys. Rev., Vol. 72, No. 4, pp. 321-332, August 15, 1947.
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anti-resonance frequencies, a calculation of these quantities is made from
the fundamental relationships given in Chapter III. For a plated crystal,
the type of equation that satisfies the boundary conditions best is the
Voigt type expressed in terms of the electrical field. This follows because
for a plated crystal the tangential electric fields vanish and the only com-
ponent left is the normal component. It is the purpose of this section to
calculate these quantities for longitudinal and face-shear modes.

5.11 Longitudinally Vibrating Piezoelectric Crystals

In obtaining the elastic and piezoelectric constants of a crystal, it is
necessary to vibrate the crystal in a simple mode of motion and determine
the constants, from the measured resonant and anti-resonant frequencies
and the capacitance of the crystal measured at low frequencies. The
simplest mode of motion, and the one most easily related to the crystal
constants, is the simple longitudinal mode. According to a recent con-
vention in specifying crystal cuts, the thickness is taken along the z- or
x3-axis of the crystal, the length along the x- or x;-axis, while the width
lies along the y- or xg-axis. If we take z as the thickness direction and
apply plating to the surfaces normal to this axis, the only value of surface
charge different from zero will be 83, since no electric connections are made
to the other surfaces. Since z is assumed small, the voltage gradient
9dE3/9z will be a constant throughout the thickness of the crystal. Also,
since the plating is an equipotential surface, E3 will not vary with x or
 directions and

— =— =0 (5.1

For sides normal to the thickness, the stresses on the surface are zero.
Using the matrix notation of Chapter III, this is expressed by setting

the stresses
Ts =Ty =T5 =0 (5.2)

Since the thickness is taken as small and ,all the stresses are zero on the
two surfaces normal to z, these stresses cannot differ appreciably from
zero in the interior and hence we can set

Ts =Ty =Ts =0 ' (5.3)

for all elements of the crystal. Similarly, since the width is considered
very small, the stresses
. To=Ty =Tg =0 (5.4)
For the length, the only finite dimension, the stresses on the surface are
Ty, Ts, Te (5.5)
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of these T and Tg have already been found to be zero so that the only
stress different from zero in the interior is T}.
The equation of motion for such a bar can be derived from Newton’s

law of motion, and the piezoelectric relation of equation (3.1). In vector
form, Newton’s law can be written
8%
P ‘5.; dx dy dz = Fk (5.6)

where £, are the displacements of the elementary cube dx dy 4z in the
directions ¥, y and z, Fj are the components of force in these directions
exerted on the elementary cube, and p is the density of the material in
the cube. From elastic theory as discussed in Chapter III, equations
(3.5) and (3.6), we have that the total resultant force along the x direction
is the partial derivative of the stresses or

[T, 9Te¢ 0Ts
F, = e 3 o dx dy dz (5.7)
Similarly, for the other two directions,
0T 08T, 9T,
Fy = | o ™ % | dx dy dz,
(5.8)
[0Ts 08Ty 0Ts]
F; = | o % % | dx dy dz
These can be expressed in the general tensor form
9Ty
Fy = ™, dxy, (5.9)
Hence the equations of motion become
%, 9T
P EY) = axy (5.10)

For the longitudinal bar with its length along ¥, the only stress different
from zero is Ty, and hence the only equation of motion for this bar is

(5.11)

Since T is the only stress, the corresponding strains are given by equation
(3.58), the first part. For the case of interest here j = 1 and since a charge
is developed only in the z direction, » = 3. Hence we have

Sy = ATy + duFEs
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In particular, the stress T} can be specified by a single strain, all the other
strains being related dependently on this one. Taking the strain S,
since it is simply related to the displacement &, we can write

S1 = si Ty + dsyEs

or (5.13)
S ds1Es
Ty =% -
! Jﬁ -"lEl

The electrical relations of equation (3.58) reduce to the form

T T
€n3 €3 dnida dn1
6" = - E n = — — ———— — .
st dn1Th (41 o )Ea + £ S, (5.14)
The only charge of interest is the one in the z direction, which is the
direction of the applied field. Hence

T 2
& d d.
8 = [a - _;1] E; + ——;},‘ 8 (5.15)

1 11
Finally, we call the expression

T 2 c .8
€3 d3 €3 €33

G _Jda W _ %8 (5.16)

indicating that it is the longitudinally clamped dielectric constant which
relates the potential and surface charge when the crystal is clamped so
that §, disappears.
In terms of the two index symbols, the two piezoelectric and elastic
relations can be written
% 1 8% | dyy 9E;

Parr T & 9 T SE ox

e (5.17)
_as g 0k
63 = 4r E3 + 51El %

To solve this equation, we note that E3 is a constant independent of
since the plating forms an equipotential surface. Hence the equation of

motion becomes
¥ _ 1%
Por T o o
For simple harmonic motion, the variation of § with time can be
written in the usual form

(5.18)

g o= g7 . (5.19)
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so that for simple harmonic motion equation (5.18) becomes

& & o
(—1;—5 —otsfit = 5 -5t =0 (5.20)

where v, the velocity of a plated crystal, is given by the formula
v® = 1/psh) (5.21)

A solution of equation (5.20) with two arbitrary boundary conditions is
¢ = A cos ‘—? + B sin w_: (5.22)

To determine the constants 4 and B, use is made of equation (5.13).
Differentiating equation (5.22)

f =8 = ‘—:[-A sin “—’;—‘ + B cos ‘”—;"] = BTy + daEs  (5.23)

When x = 0 and x =/ the crystal length, for a free crystal, the stress
Ty =0 (5.24)

Under these conditions
%B = d31E3 and ‘;"[—/1 sinw—v—l + B cos “’;’] = dg1Es (5.25)

Solving for the constants 4 and B and substituting in equation (5.23),

{- WX (1 s %I)

Sl = d31E3 cos — + e S111 w—x

v . owl v
sin —
L ]
(5.26
l- . ol - x) . X
sin ” 4+ sin -;-
= da1 E3 ”;
sin —
0

The electrical impedance measured at the terminals of the plated crystal
is then determined by substituting the value of §; = 9%;/dx in the last
of equations (5.17). This gives 83 = D3/4x, where Dj is the electric dis-
placement in the z direction. Since the normal component of the dis-
placement /4x equals the surface charge, 83 then represents the charge on
the surface of the crystal. The current into the crystal is the rate of change
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of the surface charge with time, and for a simple harmonic voltage is given
by

z=;wf63dS=]wlf63dx—jwl f’[ E3+d‘;‘ S,]dx (5.27)

Introducing the value of §; from (5.26) and integrating from O to /, we
have

tan —
L d2, 2y
= joll| = E 5.28)
’ jw 4 tE 511 w/ s (

2v

The admittance of the free crystal is then

l i i Jololess I: 1+ 4rd? (tan a)l/2v>]

E Eid LCE \ ™ wl/20

Z~ E Ed, 4x/, €33'511

(5.29)

At very low frequencies this admittance reduces to the capacitative react-
ance

ol 4ordi ol ules;
£ [“’ + ”d“] - e _ e (5.30)

41’1 t €3 5 IE'; 41!'1 t

so that the low-frequency measurement of the capacitance C determines
the free dielectric constant el3. When the tangent

w
tan—- = ® or — =7
2 v 2 (5.31)
ot 1
21 UV ps1y

A resonant frequency is obtained whose value is determined by the elastic
compliance s, the density p, and the length of the crystal.

The anti-resonance occurs when the expression in brackets of equation
(5.29) equals zero or when

dxd3; (tan wal/20
1+ ﬁ’f.rﬁ( wal/20 =0
or u (5.32)

wad  wdl __ dwdsy
20 pY) &8
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Defining the coefficient of electromechanical coupling as

B = d;‘ (5.33)
@ B
&
and substituting in the value of e from equation (5.19), equation(5.32)
becomes
wAl wAl k2
2 cot Y = (1 — kz) (5.34)

Defined in this way, the electromechanical coupling factor represents the
percentage of the total electrical energy applied to the crystal at zero fre-
quency, that is stored in mechanical form.

We wish now to obtain an expression for evaluating the coupling factor
k in terms of the measured resonant and anti-resonant frequencies fg and
Sa. Their difference is usually small so that we can write

fa=/fr+Af; wa1=uwp+2xAf (5.35)
Inserting these values in (5.34) and noting that
cot (4 + B) =cotzicotB -1

cot 4 + cot B

wR 1
we have, since — = T for the lowest resonance

2

(1+/1{)(°°t 2fRAf1)_ (”X)_ (k’

cot — +cot )_— cotI-Al N-#
2fr 2fr
Expanding tan — 5 ffmto the power series
GH .
can Af - 1 _T Af \2 fr/_
2 fr T Af 2 f —3

2/z

and solving for #* we have

L (LRI ] o

Hence, when the frequency difference between resonance and anti-resonance
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is measured, the coupling coefficient k can be obtained by substituting in
the above formula. Usually the first term is sufficient. Having the cou-
pling the elastic constant s§j, which can be calculated from the resonant
frequency, and els, which is obtained from low-frequency capacitance
measurements, the piezoelectric constant 4s; can be evaluated. By using
these constants for rotated cuts, all the independent elastic constants not
involving pure shear, all of the piezoelectric constants, and all of the
dielectric constants can be evaluated.

~ TN\ - w
¥
P o— —o < FREQUENCY
< TR
—} «
Co
(@ ®)

Fic. 5.1. Equivalent electrical circuit of a piezoelectric crystal and a plot of its reactance
against the frequency.

The equivalent circuit of the crystal® can be evaluated from equations
(5.33) and (5.36) and is shown by Fig. 5.1. From network equations,
the resonant frequency and the separation of resonance and anti-resonance
frequencies are given in terms of the elements of Fig. 5.1 by the equations

L, - _G 1 (5.37)

- 21r\/L1C1 ’ fR 200 2r

Sr

From equation (5.29), the capacity Cp is given by

LC ' . 1 —12
Co = aslha X ;:1 x 10 farads

7
Hence € = 2Co [f“f——;—fﬁ] - 26, (%)
8

¥ 8 dyi U
= ? (l_—k‘é) CO = x2 ;Fl. 7“ X (5.38A)

(1.11 X 107'2) farads

3 The equivalent electrical circuit of a crystal was first derived by K. S. Van Dyke,
Phys. Rev., Vol. 25, p. 895, 1925; Proc. I.R.E., Vol. 16, pp. 742-764, 1928.
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From the resonant-frequency equation
1 -9 X 101

R (RRICE12)
4120551 r? -"fl 1/

It is interesting to note that if the same process is carried out for an over-
tone mode, the same value of Cp and L, result but C; has to be multiplied
by a factor 1/n® where 7 is the order of the overtone.

(5.38B)

5.12 Evaluation of Shearing Constants From Face-Shear Vibrations

A measurement of various orientations of the crystal in longitudinal
vibration will evaluate all of the elastic constants except the shear con-
stants. To measure the shearing elastic constants requires setting up a
vibration in which a pure shear is the predominant motion. A choice can
be made of a thickness-shear mode or a face-shear mode and the latter was
chosen since the mode is simpler and is more easily dimensioned and be-
cause the fundamental constants can be measured directly by a single
orientation. Also, with a face-shear mode the motion is normal to the
direction of the applied field and hence no correction has to be made for
field distortion due to piezoelectric displacements, as will occur when the
motion is along the direction of the applied field.

The face-shear mode is a more complicated contour mode than the
longitudinal mode and involves satisfying boundary conditions along four
edges. We consider crystals cut normal to the 2- or x3-axis and assume
that the thickness is so small that the stresses determined by the x3 direc-
tion can be set equal to zero. Hence

T3 = T4 = T5 =0 (5.39)

The remaining stresses, T1, T2 and Tg, are all finite throughout the
crystal but vanish at the edges. The vanishing of the stresses in equation
(5.39) simplifies the equation of motion for it results in only three inde-
pendent strains, i.e. the other three strains have a definite ratio to the in-
dependent strains. Since the field E is parallel to the z-axis at the sur-
face, and the thickness is assumed small, the only component of the field
will be Eg. Then equation (3.58) can be written

Sy = 8 = sPTy + sBT2 + s16Te + da1Es
2812 = So = 5Ty + 55Tz + 586Te + dzeEs

Sag = Sy = sHTy + B T2 + 53T + daoFEs (5.40)

T
o3 = %Ea + dsiTy + dsaTs + d3eTe
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All the other stresses disappear by virtue of (5.39). While the other com-
ponents of the electric displacement do not disappear, the only one of
interest is &3 since the surface charge is equal to the normal component of
the electric displacement divided by 4= and this is given by 8s.

For inserting in the equation of motion, it is desirable to express the
stress in terms of the strain. This can be done by solving equations (5.40)
simultaneously, giving

Ty = §FS) + ¢§3S2 + 5o S — ¢51Fa

To = c§3S1 + 5282 + 55 Se — ¢52F3 (5.41)
Te = c§a 81 + 5o Sa + cif Se — ehoEs

7
03 = F3 [%: — (165, + da2e3 + dse’?s«)] + 65,51 + 3252 + €565

In these equations ¢;¥ designates the field, contour, elastic constants that
apply when a contour mode occurs for a very thin crystal. These con-
stants are given in terms of the elastic compliances at constant field by
the formula

_\kHIARD
=" k=123 (5.42)

where A is the determinant
E E _E
5115 5125 S18
E E .E
A = | 512, S22, S28 (5.43)

E E E
516y 5265 Y66
ltb

and A*! is the minor obtained by suppressing the #** row and /** column,
The piezoelectric moduli applying to a contour mode of motion are given by
e = daicif + dazciy’ + daecis
the = da1c§y + dsocss + dsecss (5.44)
€5e = daicSs + daachs + daecis
while the contour clamped dielectric constant is given by the equation
&5 = e33 — (da1esy + daache + daeche)dr (5.45)
The superscripts ¢,S indicate that this is the dielectric constant if the

crystal is free from contour strain, but not from thickness strain.
Inserting equation (5.41) in the equations of motion (5.10), noting that
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since the plating is an equipotential surface, the equations of motion
become

_!?__E_l - ,g_a__zf_l_ B 3251 1a£1 gaEz
P T gt Gt o e 5
+ (F + ) 2‘2+c° 7% (5.46)
ax dy i ay? )
¥ 2 8%, x 9%
PoE = I8 37 + (c57 + céa 66y+(c Py
82 0°kp 8%k, 3%,
ok
+ i 5y + 20 o 5+ 5 )
For simple harmonic motion, equations (5.46) reduce to the form
0%t %t o% 9? 9’
‘1 W“’l + 20108 al + cee 6y21 + c16 =5 Eg + (a2 + t'oo) Ez
8 E
+ 2 0w 2 + ooty =0 (5.47)

% %% 3%, 8%,
€16 53 +(€12+t‘ea)axa +2saz+€seaz+ axay

92
+€22 E > +w?pts =0

where the elastic constants are understood to be the contour, field con-
stants.

For experimental purposes it is found that the best measurements are
obtained when the crystal is long compared to its width or thickness.
This is further accentuated by taking a high harmonic of the mode which
in effect makes the unit cell longer compared to its width. Hence the
solution is one where the crystal is infinitely long in the x direction and
with a finite width in the y direction. For an infinitely long crystal, there
should be no variation of the displacements §; and ¢; along the length of
the crystal and hence

2 2 2 2
Fa _2h Ik _Jb _, (5.48)
x>  dxdy dy® oxay

This leaves only the terms

a2 a 82 62
cesa;;+cze £+wpfx=0 Czea;.,,+¢'22 E'l"‘“’&'o (5.49)
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The solution of these equations represents two coupled modes controlled
by the y dimension, i.e. the width. If ¢3¢ = 0, these two motions are a
shear vibration and a longitudinal vibration existing independently, but
with cgg finite, the shear and the longitudinal motions are coupled so that
there is no pure shear or pure longitudinal motion. To show this we elimi-
nate £ from the above equation and obtain one fourth-order equation

o't 22 + fee%] Qfﬁ ot

2
T twp [ 2 P}
dy caaces — o5l 9y® ' cooces — C3g

A solution of this equation is
& = Acosay + Bsinay + Ccos By + D sin By

=0 (5.50)

where
o= f (c22 + ces)p Jl + \/(622 — ces)? + 4cks
2(czoce8 — C36) (co2 + ca6)?
(5.51)
(c22 + ces)p . (c22 — ca6)® + 4c3s
B=wqls 341 — 5
2(cazce6 — €26) (c22 + ce6)
If C28 = 0

P [4
a=w"—; B=w\’—-
Ce6 €22

and the two vibrations would exist independently.
The value of £; is obtained by a substitution of the value of £ in the last
of equations (5.49) and is

a’cze .
£ = I P [A4 cos ay + B sin ay]

p — a’cag
+ (——-2 ﬁzc”z )[C cos By + D sin gy) (5.52)
wp — %2
The boundary conditions to be satisfied are
0 a
T,-c,,g;- +cgg—§—;—e§1E3 =0 when y =0 and y =/, (5.53)
a¢ a
T“"”Sf-l"“:a% — ¢3¢Es =0 when y =0 and y =/,

where /,, is the width of the crystal. These conditions determine the four
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independent constants 4, B, Cand D. In terms of E3, these constants are

A= — [(wzp - aztzz) tan a/w/2] x

a(B® — a®)(cazce6 — 36
2 _ a2 _
{ tioEs — ¢ Es [w a6 32(022566 f%e)]}
W pcag

(wPp — ocgp) ]
B =
[01(132 — a?)(ca2ce6 — €36) x
w?pcgs — B2 (caacen — C%a):”
(5.54)

et - culin | s
26

_ [ (e — B;s) tan Blu/ 2]

~ LB(B® — a®)(cazces — c36)
{€§GE3 — e32F3 [
(w?p — BPc22) ]
D= - [ X
BB — a®)(cazces — c36)

{t’:czeEa — e50F;3 [

c

2 2 2

w ptge — a”(czace8 — 626):”

2
w'pc2e

2 2 2
w’pcgs — a’(c22c66 — fze):”
2
w’pcag

To obtain the electrical admittance of the crystal, we make use of the
last of equations (5.40), which for this limiting case becomes

Es§d | . 9k |, Ok
= 4r + €22 ay + €3¢ 3}' (5.55)
Integrating this equation over the length and width of the crystal, noting
that E; does not vary over the surface of the crystal, and £; and ¢, are not

functions of x, we have
0 Egl lés
4r
where the displacements are the displacements at the two edges and Q is
the total charge on the surface. Introducing the displacements from

(5.51), (5.52) and (5.54), and noting that the current to enter the crystal
is jwQ, the admittance of the crystal becomes '

- Joollo€ss [1 _ ol [azlwzpfee — B%(c2ace8 — C36)) (tan aly/ 2) '

]
E 4zl &5 L (8 — o®)(caaces — c3g)wp’ aly/2

wpces — o (cazces — C36) | tan Blw/2 e e
a4 l:(ﬂ2 — a®)(¢az¢e8 — tge)wzp] Blu/2 ] (5.57)

3

+ e3llEz, — £2,] + caellEr, — £1) (5.56)
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2 9 tan alw/Z)
Py (w’p — acg) (—_al,,, 72
3 (B% — a®)(cazce0 — C36)

tan 8/,,/2
(wp — B%c22) (“*“_“—Blw/z )

(B — a?)(caztes — c36) (5.57)
_ 4mesaess [[Cﬁﬁ(wzp — a®eg;) (w?p — B%a2) — a232€22€§a]
€5 (B — o®)(coce6 — c36)w’pcag

[tan aly/?2 _ tan Blw/2]
aly/2 Blw/2

+ [ 26 ][tan aly/2 + tan Blw/2:|]}
€226 — C36 aly/2 Blw/2

At low frequencies

tan aly,/2 _, tan Blw/2
a w/2 6110/2

—1 (5.58)

and the admittance is a capacitance

,S 2 2
C - Uyess 1 4mey Ces + 4mede 22
- 4x/ + ¢,8 2 ¢S 2
it €33 C22C66 — (26 €33 C22C66 — (26

47egqes 2c
T (Em )] o)

€33 C22C66 — (26

This capacitance is determined by the free dielectric constant of the crystal.
If co6 = 0, the impedance reduces to that for two uncoupled modes, and is

[0 4 b !
. . o8 aftanwyf L o [tanwyf2 2
! __]wl[w63'3 1+ 47egq Cog 2 4dxelq cge 2

= v +—==5
E 4xl, 22633 . , o L CB6€33 . f o
c22 2 cop 2

Forsuch a case a measurement of the resonant and anti-resonant frequencies
of the shear mode will determine the contour elastic constant cgg and the
contour piezoelectric constant e3g. Since the shear piezoelectric constant
is more easily determined from longitudinal crystals, the elastic constant
cee, determined by the resonant frequency, is the usual objective for shear
measurements. ‘

For the general case when ¢g4 is not zero, equation (5.57) is the admit-

(5.60)
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tance of two coupled modes. The resonant frequencies occur when the
admittance is infinite (impedance zero) and hence occur when

tan a/,/2 = or tan f/y,/2 = » (5.61)

These are satisfied for the first modes when

fi = __1_\/(022 + ce) — V (c32 — ces)® + 4cas
1= 2

f = _l_\/(t'zz + Cﬁe) + ‘\/([22 - ‘:68)2 + 4‘%6
T, 2p

(5.62)

Since the frequency f is equal to the velocity of propagation v/2/,, we find
that the two values of the velocity satisfy the determinant

P02 — €22y, (26
(5.63)

€26 Pf'2 — Ce6

Measurements of the two resonant frequencies will give two relations for
calculating cgq, ¢22 and cgg. Other relations are obtainable from longi-
tudinal measurements. In all crystals except monoclinic and triclinic
crystals, the longitudinal and the shear mode occur without coupling and
can be used directly to determine ¢a2 and cge.

5.2 Elastic, Piezoelectric, and Dielectric Constants of Rotated Crystals

We have so far calculated the resonant and anti-resonant frequencies of
longitudinal and shear crystals cut normal to the z-axis, with their lengths
along the x-axis and their widths along the y-axis. To measure all the
properties of a crystal requires a number of different orientations for both
longitudinal and shear vibrations. To make the solutions given previously
hold for any of these oriented cuts, we use a system of rotated axes which
are rotated from the reference axes by three rotations for the most general
case.

Starting with the x, y and z rectangular axes as defined in Chapter II as
the reference axes, the elastic constants for any rotated cuts are given by
the general tensor formula

8x$ dx; dxh oxl
G 2 =2 — (5.64)

as shown by the Appendix Section A—4, where the partial derivatives are
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the direction cosines defined by the equation

dxy 9x1 o) ,

oy Owp oxs |
ol _|od o 2| 5569
0Xp 0xy Oxg Oxg

dx; Oxg dx3

In a similar manner the piezoelectric and dielectric tensors are given by
the formulae
’ Bx.- ax,- ax;,

ik = Imn
T 8% O%m O%n

(5.66)

’ ’
’ 6x,- ax,-

i = . . €kl

Oxp 0xy

The constants of interest for longitudinal vibrations are the si;;; elastic
constant, the ds;; piezoelectric constant, and the e dielectric constant.
Applying the tensor transformation formulae and expressing in terms of
two index symbols, these quantities become for any orientation

sho= B + (5% + 8 fEm + (2T + s55) i

+ (2% + 280 imumy + 25Tsliny + 2sTelimy + sipmy

+ (2fs + sf)mint + Lming + (2535 + 2s)miling + 2gemily

+ signt + 2sganimy + 2s5snih + 2(s5s + sis)nihm (5.67)
dyy = duhal} + dialsml + dislsni + dialsminy + dislslim

+ dielshmy + dumsli + dagmami + desmani + daumgmyny

+ dasmahmy + dagmahmy + dginsli + dsanami+ dssngni

+ dagnamimy + dygnzhiny + dzenshim
ey = elifi + 2ellsma + 2elplang + elmi + 2efymang + e
For shear vibrations in order to calculate the contour elastic constants in
terms of the fundamental elastic compliances, we need to know s%, 5%

55, 5B, & and s& as a function of a general orientation. sy is given by
(5.67). The other five equations are
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5B = SR + B} + ) + st + find)
+ stlmiml5 + Bmany) + shllambh + Linglh)]
+ sfallmily + lilama) + siomim} + sylnimy + mind)
+ spilmymmy + mimansg] + syslmilymy + minagl)
E 2 2 Er22 | E 2 2 (5.68)
+ sqelliming + milomg] + szalming] + szalmiming + nimany]
+ shslmbhns + ninaby) + sgellhmin + nilams] + s§ilminymans)
+ sislmhmany + minynals] + sigllymymany + mynyloms)

+ sBlmblingls) + sklliminaly + nililams) + sSsllymylams)

ste = 23l + Lhlmly(mily + mah)] + Tahmlleny + hng]
+ stal2mymbhly + B(mang + mms)] + stsl30kny + i)
+ s16l38myly + Bms) + 2s5omimy + 2sislmymant + nyngm)
+ s5al3mining + ming] + sps[2mymemily + mi(lina + mly)]
+ szal3milymy + mily] + 2ganing + ssyl3myning + nims] (5.69)
+ s35l3nthny + n3l] + szal2hmimng + ni(hmy + myb)]
+ sggmny (ming + mymg) + sg[2mbhming + ni(hmy + myby))
+ siollimy (mang + nymg) + myny (hmy + myly)]
+ sgslmby (hne + mby)] + sgl2hmibemy + B(mimg + miny)]

+ sghimy(himg + myly)

B = BB+ (2% + 8 Bmd + (% + s5)i5nd
+ (255 + 255 Bmong + 255l3ns + 2sTel3mg + siym}
+ (255 + si)ming + 2shymiang + (235 + 2545)lamiany

+ 2golomy + sian + 2sigmany + 2s§sloany + 2(s35 + 54 )leman

(5.70)

she = ST12h83 + 2shalama(hmg + myly) + 2sialanglhing + mibs]
+ stal2hlamans + B (myny + mima)] + st5(3hlang + lim)
+ s[3hBmy + Bm) + 2sfomyml + 2gamanglming + mmy]  (5.71)
+ sqal3myming + mini) + sG2mimanaly + mi(hng + mib)]

+ s36(3lamimy + m3h] + 2sBymin + sgl3mimdmy + mynj]
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+ s5s(3mmdla + hnd] + sia[2minalamy + nh(hmg + myly)]

+ sgamany(ming + nymy)

+ sislnolo(miny + myms) + mony(hing + nily))

+ sisllama(myng + mima) + mang(hmy + mily)) (5.71)
+ sssnalalling + mb)

+ sgellamy(hny + mly) + naly(hmy + myly)]

+ Stalama(limg + mylz)

58 = asE 2 + 8550 lomymy 48551 an 0,
+ 4stihla(many + nymy) + 4stshily (1ing +lany)
+ 4sEhl (hhmg + myly) + AsEmimi + 8sEmymonyng
+ dszgmymy(ming + mamy) + dsgsmymy(lny + lymy)
+ dsggmima(hmg + mily) + 4sining + dsiymng (myng + mymg) - (5.72)
+ dsfmnglling + mb) + 4szgmna(himy + myly)
+ s§i(mna + mma)? + 2si5(hny + bny) (myng + nyms)
+ 2§ (lima + myle) (mang + mims) + sgs(hne + mb)?
+ 25 (hmg + myby) (hne + mle) + sea(lma + mle)?.

From these rotational equations and the relations of Chapter III, all
the elastic, piezoelectric and dielectric constants can be determined as
illustrated by specific crystals discussed in Chapter X.

Equations (5.67) show that all of the piezoelectric and dielectric con-
stants can be evaluated from measurements on longitudinal crystals,
while 9 elastic constants and 6 relations between the other 12 elastic
constants can be evaluated from measurements for longitudinal crystals.
For the most general case, the triclinic crystal, all of these measurements
can be obtained from 18 oriented cuts. To obtain the remaining 6
independent relations, 6 face-shear crystals cut for various orientations can
be used. Alternately, all the elastic constants can be obtained from 21
independently oriented crystal cuts vibrating in a face-shear mode, but
this is not as easily done as for the longitudinal modes.

The data of Chapter X illustrate the cuts required for particular crystal
classes.



CHAPTER VI
ProrerTiES AND Usks or Quartz CrysTaLs

Quartz crystals were the first piezoelectric crystals to receive wide
application and because of their excellent mechanical properties they are
still the most widely applied piezoelectric crystals. Although they were
originally used in underwater sound transducers, quartz crystals are now
almost restricted to uses for which their very stable mechanical properties
are essential. These uses are principally in the control of the frequency of
oscillators and in the production of very selective filters.

Stable quartz crystal oscillators grew out of the original work of Pro-
fessor W. G. Cady of Wesleyan University. These have been applied to
controlling the frequency of broadcasting stations and radio transmitters in
general. Quartz-crystal units, using some one of the low-temperature
coefficient crystals described in this chapter, produce the most stable
oscillators and the best time-keeping systems that can be obtained. The
use of crystals to stabilize oscillators was so prevalent during World
War II that over 30,000,000 crystals were produced in a single year for
this purpose.

Another use of quartz crystals has been in producing very selective
filters. Because of the high Q existing in crystals they can practically
eliminate the effect of dissipation in filter structures. Such filters have
been applied widely in the long-distance telephone lines and in single
side-band transatlantic radio telephone systems. Narrow-band crystal
filters have been used in picking off single frequencies and narrow bands of
frequencies for control and analyzing purposes. For this application
quartz crystals have been most widely used. However, it appears that the
requirements are lenient enough to allow some of the synthetic crystals,
such as dipotassium tartrate (DKT) and ethylene diamine tartrate (EDT),
to be employed, and their use is discussed in Chapter IX.

Besides producing and detecting sound in liquids, quartz crystals have
been used to produce and detect vibrations in gases and solids. Because
of their high mechanical and electrical impedances, crystals are somewhat
at a disadvantage in coupling to low mechanical impedance air waves,
However, for solids and liquids, they are well-suited to generate and measure
sound waves and are largely used in ultra-sonic interferometers and in
generating shear and longitudinal waves in solids. Uses and results of

_employing such devices are discussed in Chapters XIII, XIV, and
8
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XV. For most of these high-frequency applications quartz crystals are
employed since they can be ground very thin and can be used to produce
high frequencies. X-cut quartz is used to set up longitudinal vibrations
and Y-cut quartz to produce shear vibrations. Such high-frequency
sound waves have been used for testing steel castings and other solid
materials for flaws.!

It is the purpose of this chapter to describe the properties of quartz
crystals and the special orientations that have found applications in the
oscillator, filter and ultra-sonic applications.

6.1 Physical Properties of Quartz

Quartz is described by the chemist as silicon dioxide SiO;, and crystal-
lizes in the trigonal trapezohedral class. The z or optic axis is an axis of
threefold symmetry, i.e., if one measures any property of the crystal at a_
definite position in the crystal, this property will be repeated at angles of
=+120° rotation about the z-axis. The melting point of quartz is 1750°C,
the density 2.65, and the hardness is 7 on the Mohs’ scale. Under
atmospheric pressure, a or low-temperature quartz transforms into 8 or
high-temperature quartz at 573°C. Under stress, this transformation
temperature is lowered. « quartz is insoluble in ordinary acids, but is
decomposed in hydrofluoric acid and in hot alkalis. Quartz is soluble to
some extent in water at high pressures and temperatures and to a much
larger extent if sodium hydroxide is present.

Quartz is mined principally in Brazil in several different types of
deposits.? The preponderance of the crystals mined is in the lower
weight class as shown by Table X on page 80. Most of the clear quartz
has recognizable natural faces, but some, particularly river quartz, has
no natural faces.

Quartz occurs in optical, right-hand and left-hand forms, i.., the
crystals will rotate the plane of polarization of polarized light passing along
the z or optic axis counterclockwise (left-handed) or clockwise (right-
handed) from the point of view of the observer facing the source of light.
Most crystals have sections with both handedness. In general, the middle
section is likely to be all of one hand while the outside sections may have
parts of each handedness. A conoscope® may be used to locate the optic

1 Firestone, F. A., “* The Supersonic Reflectoscope,” J.4.8.4., Vol. 17, No. 3, Jan.,
1946. :

2 Stoiber, Tolman and Butler, “ Geology of Quartz Crystal Deposits,” Amer. Min.,
Vol. 30; pp. 245-268, 1945.

3Bond, W. L., “ Method for Specifying Quartz Crystal Orientations and Their
Determinations by Optical Means,” B.5.T. /., July, 1943; Quartz Crystals for Elec-
trical Circuits, Chapter II, D. Van Nostrand Company, Inc., 1946.
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TABLE X
Percentage of the Total Number

Cr);;ta:l We.xg}g Groups of Crystals which were

eight in Grams in Each Weight Group
200- 300 55.5
300- 500 29.5
500- 700 10.4
700~ 1,000 2.1
1,000- 2,000 1.8
2,000~ 3,000 0.5
3,000- 4,000 0.2
4,000~ 5,000 <0.1
5,000~ 7,000 <0.1
7,000-10,000 <0.1

axis and will also show the handedness and position of any optical twinning.
The principle of the conoscope is shown by Fig. 6.1. Light from the
source is sent through a polarizer and through the converging lens L,.
This lens sends converging or conical beams through the crystal, which are
gathered by the second lens, focused, and sent through the analyzer. In

LIGHT o .~
50URCE
-
<< Pid ~
~ .
POLARIZER™~\/-~ CRYSTAL

LENS
(8}

Fia. 6.1. Principle of coniscope.

practice, the lenses and crystal are immersed in a liquid which has the
same index of refraction as does the crystal along its optic axis. Such
liquids may be mixtures of Decalin and Dowtherm or dimethylphthalate
and a-monochlornaphthalene. The crystal breaks up all rays not parallel
to the optic axis into two components which travel with different velocities.
Hence the analyzer is not able to extinguish the light that has traversed
the crystal except at angles for which the two rays are in opposite phase,
and one sees a series of rings in the conoscope when the direction of the
z-axis is along the line between the source and the eye. Due to the rotation
of the plane of polarization in the crystal, one finds that the rings either
expand or contract for a right- or left-handed crystal, respectively, for a
clockwise rotation of the analyzer. This gives a method of determining the
handedness of the crystal. Optical twinning also shows up in a viewing
system of this type for it deforms the ring pattern. If plane rays rather
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than conical rays are used and a source of white light is used, color effects
also show the position of the optical twinning.

Another type of twinning exists in quartz, the Dauphine or electrical
type of twinning. This results from a 180° change in the direction of the
crystal atomic arrangements. As shown by Fig. 6.2, bottom figure, the
silicon atoms normal to the z-axis are arranged in near hexagons all pointing

NORMAL ALPHA QUARTZ

BETA OR HIGH- TEMPERATURE
QUARTZ

\ TWIN LINE
"Q S ?.?O?D
KR XV

TWINNED ALPHA QUARTZ

F1c. 6.2. Arrangement of Silicon Atoms in planes Normal to z. Top-normal untwinned «
quartz. Middle-high temperature 8 quartz. Bottom-electrically twinned a quartz.

in one direction. If the temperature is raised above 573°C, a change in
the arrangement to the hexagonal pattern shown in the middle occurs.
As the temperature is decreased below 573° the crystal may return to the
form at the bottom, or part of it may return to this form and part to the
form in which the near hexagons point in the opposite direction. If both
forms exist, the crystal is said to have electrical twinning. The best
method of detecting electrical twinning is by etching the surface with hy-
drofluoric acid.* This dissolves the crystal at rates which depend on the
orientation of the crystal surface. Since the two twinned areas will develop
etch pits that are different in orientation or shape, grazing light will cause
one part to reflect brightly while the other reflects diffusely, and hence one
can see the parts that have different regions of electrical twinning. Since

‘Willard, G. W., “ Raw Quartz, Its Imperfections and Inspection,” B.S.T.J.,
Oct., 1943; Quartz Crystals for Electrical Circuits, Chapter 1V, D. Van Nostrand
Company, Inc., 1946.
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the piezoelectric effect is opposite for the two twinned areas, it is neces-
sary to have only one region in a useful crystal. Electrical twinning
usually occurs in an untwinned plate, if it is taken above the inversion
point. It may also occur at lower temperatures, if stress is applied. Such
twinning has been observed when a hot soldering iron is pressed against a
crystal and may even occur when it is sawed. The Woosters® have re-
cently found that the electrical twinning can be removed by exerting a
definite stress on the crystal and taking it up in temperature nearly to
the inversion temperature. Under this condition, the two twinned areas
will store different amounts of potential energy and under high-temperature
conditions the crystal tends to change in the direction of the twin which
will store the larger energy. For a torque applied to the crystal, the
twin cut in the direction of the BT cut will have the highest shear com-
pliance and hence a BT crystal can be detwinned by applying a torque.
An AT, on the other hand, tends to detwin in the BT directions and
hence cannot be detwinned by using a torque. However, since the si3
elastic compliance is larger for the AT cut at +35° than for a cut at —35°,
the AT can be detwinned by applying an elongation along 2z’ or a bending
which excites the same elastic constant.
Other defects* in quartz crystals are:

(1) “ Bubbles ’: bubble-like cavities that can be fine or large.

(2) Veils, heavy or fine, which are more or less continuous sheets of
small, bubble-like cavities.

(3) Clouds or haze: aggregates of fine bubble-like cavities.

(4) Ghosts or phantoms: outlines of eatlier growths within the crystal,
usually marking what were once edges of adjoining faces which
become visible when a beam of light is reflected from the minute
fractures or parting planes which outline them.

(5) Fractures.

These imperfections can be observed by directing a strong light through the
crystal at right angles to the direction of observation. The crystal is
usually immersed in an inspection tank, which is filled with a liquid having
the same index of refraction as the crystal. Opinions differ on how many
inclusions or bubbles of a small size can be tolerated in the finished crystal.

Inspectlon and orienting instruments, as well as the method of sawmg
and preparing crystals, are well-described in a recent book® and in the
May-June 1945 issue of the American Mineralogist.?

5 Nature, Vol. 157, No. 3987, March 30, 1946. This criterion also derived inde-
pendently by Dr. C. J. Davisson and Mrs. E. A. Wood.
8 Heising, R. A., Quartz Crystals for Electrical Circuits, D. Van Nostrand Company,

Inc., 1946.
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6.2 Elastic, Piezoelectric and Dielectric Equations for Quartz

The modes of motion and the properties of these modes depend markedly
on how crystal plates are oriented with respect to the natural crystal
structure. Fig. 6.3 shows a quartz crystal with idealized natural faces,

ZERO
TEMPERATURE - COEFFICIENT
OSCILLATORS AND FILTERS

HIGH-FREQ: | LOW-FREQ:
AT (+35°15") | CT (+38°)
BT (-49°) | DT (-52
1 ET (+66°)
vy FT (-57°
AT ZERO COUPLING (S24=0)
SPTT P cT -18° FILTERS
BT ~A2” 2 1-3-5-7 HARMONICS

(A) MT t.g:cnuomm.
B) NT FLEXURE CRYSTAL
~

LOW .TEMPERATURE - COEFFICIENT

.
[} OSCluATOR +5° FILTERS

AL AND X GT oscnu.ATons
secommmom AND FILTERS __ DOUGHNUT

ZERO TEMPERATURE COEFFICIENT

F1a. 6.3. Quartz crystal and principal cuts.

the three crystallographic axes, and some of the more important special
cuts that have found use in the radio and telephone art. The axes as
shown are in accordance with the 1945 IRE standard. In order to agree
with general crystallographic nomenclature, the signs of the positive
x- and y-axes have recently been reversed by the IRE piezoelectric com-
mittee. At the same time the sign of a counterclockwise angle is made
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positive so that the angles for the new standard are the same as for Fig. 6.3.
The z or optic axis of the crystal is parallel to the long direction of the
crystal, the x-axis lies through one of the apexes of the hexagon, and the
y-axis is normal to the other two in a right-handed system. The piezo-
electric, elastic and dielectric constants of quartz take the form

81 = [Ty + s2eTe + 513Ts + s Ty + duiE,
Sy = sBpTy + s Ts + 513Ts — s§4Ty — dnE,
S3 = 51371 + 513T2 + 33T

Sq = styTy — staTe + siaTy — diuE,

S5 = suTs + 25T — duuE,

Sﬁ = %ﬁT5 + 2(51E; - JIE2)T6 - ullEu (6 1)
Dz T
O =— =duTy —duTs + dTy +il'Ez
T 4r
D, &
8, = o ~d1aTs — 2411 Te +41r E,
D, €3
5 = 4r  4rx E,

where 8y, S2, S3 are the three elongation strains along the &, y and z-axis,
respectively, 84, S5 and Sg the three shearing strains, Ty, Ty, T3 the three
tensional stresses, Ty, T5 and Tg the three shearing stresses, E,, E,, E, the
three fields, D;, Dy, D, the three electrical displacements which at the
outer surfaces are equal to the surface charges 4wd,, 478, and 4#8,. The
method of defining these quantities is discussed in Chapter III. In
cgs units, the elastic, piezoelectric and dielectric constants have the

values.”

5% =127.9 x 107 X cm?/dyne % = 86.05 x 10'° dyne/cm?
5B = —15.35 % =485

& = —110 & = 10.45

&= 446 % = 1825

538 = 95.6 & = 107.1 6.2)
55 =197.8 ¢k = 58.65

7 Mason, W. P., “ Quartz Crystal Applications,” B.8.T.J., Vol. 22, No. 2, July,
1943.
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x ol — cly
she = 2(s% — 5B) = 286.5 x 1074 = 2 405
—8 T 47 statcoulombs
diy = —6.76 X 107 statcoulombs/dyne ¢ = 4.58 ( ————
stat volt

dys = 2.56 x 1078 e =470

For the mks system, the elastic compliances are multiplied by 10, the
piezoelectric constants divided by 30,000, and the dielectric constants
multiplied by the factor 8.85 X 10712,

6.3 Modes of Motion Excited in Quartz Crystals

The various modes of motion that can be excited in quartz crystals can
be obtained from equation 6.1. It is the purpose of this section to
describe the simplest modes of motion and the methods for exciting them.
Formulae for their frequency are given when these can be obtained in
simple form,

6.31 Longitudinal Mode

The simplest mode of motion which can be produced in quartz is the
longitudinal. This can be produced by cutting a bar out of the crystal
in such a direction that a ds, piezoelectric constant exists for the cut, and
covering both of the major faces with metal electrodes. In practice,® such
crystals are usually supported by soldering headed wires to the surface
and these wires also serve as electrical contacts to the crystal surfaces.
When the crystal is long and thin, it is shown in Chapter V that the
frequency of such a crystal is given by

y 1
BT P11

where / is the length of the crystal, p the density, and 5%, the inverse of
Young’s modulus along the length of the crystal. The resonant frequency
is the frequency of lowest impedance. It is shown in Chapter V that the
impedance of such a crystal is similar to that of two condensers, a coil
and a resistance, as shown by Fig. 5.1A. The impedance of such a network,
neglecting the resistance, is a reactance as shown in Fig. 5.1B having a
resonant frequency fg, an anti-resonant frequency f4, and ending up as a
capacitative reactance. The resonant frequency and the anti-resonant

8Heising, R. A., Quariz Crystals for Electrical Circuits, Chapter VIII, D. Van
Nostrand Company, Inc., 1946.

(6.3)
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frequency are given by the formulae

1 1 Co + Cy
- ——— = ,—-——— 6.4
% 2xrV LG i Ja 2r N L,GiGy 64
Taking the ratio
fa _Co+GC fa-fk _C _1
a2 =  or = - 6.5
I Co fze Co r (6.5)

where r is the ratio of Cy the capacitance due to the longitudinally clamped
dielectric constant to the capacitance C; due to the motional capacitance.
A measurement at low frequencies gives the sum of the capacitances
Co + C,. From the solution for Af = f4 — fg given in equations (5.36)
and (5.33), we can evaluate all the constants of the equivalent circuit in
terms of the piezoelectric constant ds;, the free dielectric constant ez,
and the inverse of Young’s modulus along the lengths of the crystal si.
In terms of these quantities

KU, x 111 x 10712

Co = = o farads
t

;.
G = 82 dx'(ll ) X 1.11 X 1072 farads (6.6)

t

. £ \2
L = (psz/) (ﬁ) X 9 X 10! henries
where
4xdsy 12

(6.7

633 —633(1 __kZ) =533
51 11
/ = length of crystal in centimeters, /,, width of crystal, and /; the thickness
of the crystal, p is the density.

As the width of the crystal gets larger, the frequency gets lower due to a
sidewise coupling to a width motion through the Poisson’s ratio of the
crystal, For a crystalline material such as quartz, a coupling to a face-
shear mode can also occur through the elastic constant sy (for an x-cut
crystal with its length along y), for a stress along the length produces a
shear which distorts the face of the crystal from a rectangle to a rhombus.
This face-shear mode is coupled to a flexure mode as shown by the resonant
frequency of an x-cut crystal with its length along the y-axis, published in a
former paper® and shown in Fig. 6.4. The width of the cross-hatched

? Mason, W. P., “Electrical Wave Filters Employing Quartz Crystals as Ele-
ments,” B.S.T. J., July, 1934.
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region is proportional to the separation of resonance and anti-resonance
frequency, while the lower part of the curve is the frequency of resonance.
The main longitudinal resonance is the one marked C. A is the width
mode and B the face-shear mode. At a ratio of width to length of 0.8
to 1.0, the face-shear mode is split into two parts due to coupling with some
other mode, probably a thickness flexure. The curve labeled D shows
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Fic. 6.4. Resonances of an X-cut quartz crystal with its length along the y-axis.

that the face-shear mode can drive the second flexural mode weakly, but
when the frequency coincides with that of the longitudinal mode it is
relatively strongly coupled and makes the crystal useless for that ratio
of width to length. By orienting the crystal so that its length comes at an
angle of 18.5° from y in the direction of the minimum value of Young’s
modulus, it can be shown that the s3, elastic constant disappears. The
resulting frequency spectrum for this crystal known as the —18.5° X-cut
is shown by Fig. 6.5. As can be seen, the shear and second flexure are
very weakly driven and are of such a small order of magnitude that they
do not interfere with the use of the crystal in a filter.

Longitudinal crystals are usually mounted at their nodal lines by
soldering headed wires to silver spots baked on the surface, and these heads
serve both as a support and as the electrically conducting connection. The
details of these mountings are described in reference 8.
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6.32 Flexure Crystals

Another simple mode of motion which has received use in the low-
frequency range is the flexure crystal. Two varieties are in use, the width
flexure mode and the thickness flexure or bimorph type.

Fio. 6.6. Method for plating a longitudinal crystal to obtain a flexure mode.

The width mode is driven by putting on two sets of electrodes, as shown
by Fig. 6.6. The frequency of a long, thin bar is given by the equation

. B 6.8
212 PV i €
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where /,, is the width of the crystal, / its length in centimeters, s3, the
inverse of Young’s modulus along the length, p the density and m a root
of a transcendental equation. For a long, narrow crystal plate free on
both ends, as is usually the case, the values of m for the successive overtones
are

m; = 4.37; mg = 7.85; mz = 11.00 (6.9)
As the ratio of width to length becomes larger, rotary inertia plays a more
important part and changes the value of 7. It was shown in a former!®

a8
a.7 PN
WEN
as A
s \]rirs Fexune
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F1c. 6.7. Values of m for a flexure crystal as a ratio of width to length.

paper that the effect of rotary inertia is to change the value of m according
to the curves of Fig. 6.7. Figure 6.8 shows the frequency constant of
an NT-cut crystal as described in the next section plotted as a ratio of
width to length. As the ratio gets large, the frequency becomes asymptotic
to that of a shear crystal.

Flexure crystals are mounted by four wires attached to the nodal
points, which occur at a distance of 0.224 times the length from each end

10 Magon, W. P., “The Motion of a Bar Vibrating in Flexure, Including the
Effects of Rotary and Lateral Inertia,” J.4.8.4., Vol. 6, 1935; W. P. Mason,
Electromechanical Transducers and Wave Filters, Appendix A, D. Van Nostrand Com-
pany, Inc., 1942, 2nd edition, 1948,
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of the crystal. The ratio of capacitances'! is somewhat larger than that
for the same crystal driven longitudinally by a factor of 128/9x%. They
are used in the frequency range from 10 kc to 50 kc for narrow-band
pilot filters and other similar filters.
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Fic. 6.8. Frequency constant and ratio of capacitances of an MT flexure crystal.

Thickness flexure crystals'?> are used in the form of two thin plates
soldered together to produce a bimorph-type crystal. These have been
made as low in frequency as 900 cycles and have been used to control
rotating devices. By constructing them from +5° X-cut crystals, their
temperature coefficient can be made low and such crystals produce stable
low-frequency oscillators.

6.33 Torsional Crystals
Another simple mode that can be excited in quartz is a torsional mode
whose frequency is controlled by the shear elastic constant of the crystal.

11 Magon, W. P., Electromechanical Transducers and Wave Filters, p. 215, D. Van
Nostrand Company, Inc., 1942, 2nd edition, 1948.
12 Lane, C. E., “ Duplex Crystals,” Bell Lab. Rec., Vol. 24, No. 2, pp. 59-62, Feb.,

1946.
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By using a cylindrical crystal, as shown by Fig. 6.9, its length along the
x-axis and with 4 electrodes whose central lines make angles of 45° with
respect to the y-axis, with opposite pairs connected together, a torsional
mode can be generated in the crystal. The field in one direction along the
y-axis as shown, generates an x, or §g face shear, which moves the top

Fie. 6.9. Method for obtaining a torsional crystal from quartz.

plane with respect to the bottom plane. The other set of electrodes has
the reverse field and hence the reverse shear is generated in the other half
of the crystal. This combination rotates the top plane with respect to a
plane lower in the crystal and produces a torsional motion. The frequency
of such a crystal is given by the expression

1\ﬁ 1 Jees
f =35 =\, (6.10)

where u is the shear elastic constant for an isotropic body and cge is the
corresponding shear elastic constant for shears around the z-axis. In-
serting the value given by equation (6.2)

Cgg = 40.5 X 10“’
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the resonant frequency for a crystal 1 centimeter long is
fr =195 X 10° cycles (6.11)

This mode has not been used appreciably except to measure the shear
constants of solid materials, but may be of importance in measuring shear
viscosities and shear elasticities of liquids, as described in Chapter XIV.

6.34 Face-Shear Mode of Motion

A more complicated mode of motion which has received considerable
use, is the face-shear mode. The CT and DT crystals described in section
6.42 have this mode of motion. This is a complicated contour mode and
no exact solution has been obtained for its frequency. When the crystal
is long compared to its width, it is shown in Chapter V that the frequency

is given by
1 !
fa= 2,—\/‘;‘1 (6.12)

for a crystal cut normal to the z or 2z’ rotated axis, where /,, is the width of
the crystal and cgg is the contour elastic constant of the crystal. This
mode has been used in evaluating the shear elastic constants of many
crystals. Figure 6.10 shows a measurement of the frequency spectrum
of a Y-cut quartz crystal plotted as a ratio of width to length. It is
evident that the principal shear mode is coupled to even-order flexures.
By dimensioning the crystal so that the main shear mode lies half way
between two coupled flexure modes, a good agreement is obtained with the
frequency of equation (6.12).

An approximate formula derived by the writer!3 for an uncoupled face-
shear mode takes the form

1 fon P
foaNE R+ (6.13)

where m and 7 are integers, a the length along the x-axis, and 4 the length
along the y-axis, assuming that the field is applied along z. The principal
mode is given by m = 1, n = 1, and as shown by the dotted line of Fig.
6.10, this agrees reasonably well with the ““ uncoupled " frequency of the
shear mode. The shear mode is coupled to even-order flexures, as shown
by the coupled mode frequencies. This coupling probably occurs through
the stress conditions at the boundary.

13 Mason, W. P., “ Electrical Wave Filters Employing Quartz Crystals as Ele-
ments,” B.S.T.]., Vol. 13, pp. 405-452, July, 1934.
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6.35 Thickness-Shear Modes

The thickness-shear mode is used very extensively for obtaining high-
frequency vibrating crystals of the AT and BT type, as described in
section 6.42. Here again the only exact solution obtained is for a plate
with infinitely large widths and lengths compared with the thickness.
This theory is due to Christoffel,'* who showed that if /, m and 7 are the
direction cosines between the direction of propagation and the -, y- and
z-axes, that there are in general three different waves that can be propa-
gated, whose velocities of propagation can be obtained from the

W Love, A. E. H., Theory of Elasticity, fourth edition, p. 298.
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determinant
N1 — IW2 A2 M3
A1z N2 — o0 g3 =0 (6.14)
M3 Ae3 Naa — pt?

where p = the density, v the velocity and the N’s are related to the elastic
constants of the crystal by the formulae

M1 = c1l? + ceem® + cssn® + Lsemn + 2ysnl + Liglm
Mz = c16l? + coem? + casn® + (cag + ca5)mn + (c14 + cse)n!
+ (c12 + ces)im
Mz = 15 + caem® + c35n® + (cas + cag)mn + (c13 + cs5)n!
+ (c14 + c56)im (6.15)
Mz = csel? + coam® + c35m® + (cas + c23)mn + (c36 + Cas)nl
+ (c25 + cap)im
oz = caal? + coam® + caann® + 2oamn + 2qqn! + 2c26lm
Nz = ¢s5l% + caam® + c3an® + 2zamn + 2zgnl + 2q5im

For quartz
. (c11 = €12)

€22 = (115 C24 = —Cl435 C55 = C445 €56 = €145 C66 = — 2
and

C15 = Cl6 = C25 = C26 = (34 = C35 = (36 = (45 = C46 = 0
For the rotated crystals containing the AT and BT crystals, which occur
for a rotation about the x-axis, / = 0, m = cos §; #» = —sin §. Then for
these crystals

M1 = Cgp COsZ 0 + cqq sin2 0 —2¢14 sin 6 cos § = cog

Aoz = —c14 COSZ 0 — (Cgq + ¢23) Sin 6 cos 0

Nz = Cag c0s? 0 + c44 5in% 0 + 2c14 Sin 0 cos O (6.16)
sz = €44 COs2 0 + ¢33 sin? 0

Mz =Mz =0

With these values of A, the three solutions of equation (6.14) become

P\u
0 = -_
P
1M A A Nas\2 4D
,,,,3,,\[5[_24,_3&:,:\/(,2_2.__&) +____;s]
[ P [ P [

(6.17)
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The first solution corresponds to the high-frequency shear mode and hence
the frequency of such a plate is given by

f = v l\/ceocos20 + ¢4 5in? 8 — 214 sin 8 cos 0
T, P

1 ng

=5 (6.18)

where ¢ is the thickness of the plate.

This solution for the infinite plate agrees fairly well with the most
prominent frequency but does not show any of the other shear modes or the
coupled flexure modes. An approximate solution for the finite plate has
been made by McSkimin'® which results in the formula

P A A T
2N p /2 P

7 o (6.19)
where #, m and p are integers and /, ¢ and w the length, width and thickness
of the crystal. If / and w are infinite, this reduces to (6.18). Experi-
mentally, the upper modes predicted by (6.19) are present, but the elastic
constants used do not give too good an agreement with experiment and
Sykes!® has proposed a formula

_ \/c'ee \/,2 br? R 1)? 6.20)

where k and &, are experimentally determined constants.

In addition to these shear modes, coupling is found to all the even-order
flexure modes. A number of experimental results are shown by Sykes.!®
The dimensioning of a crystal to avoid all of these resonances is a complex
study and has to be carried out largely by experimental techniques.

6.4 Useful Orientations for Quartz Crystals

By cutting out crystals at specified orientations with respect to the
crystallographic axes, these modes can be excited with such desirable
characteristics as low temperature coefficients of frequency, freedom from
coupling to secondary modes of motion and high electromechanical coupling
factors. It is the purpose of this section to describe these specific cuts.

16 Heising, R. A., Quartz Crystals for Electrical Circuits, Chapter VII, D. Van

Nostrand Company, Inc., 1946.
18 Heising, R. A., Quartz Crystals for Electrical Circuits, Chapter VI, D. Van
Nostrand Company, Inc., 1946.
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6.41 X-cut Plates

Equations (6.1) are useful in predicting the type of motion that will be
generated in a given type of cut and the magnitude of the electromechanical
coupling. For example, the first equation of equations (6.1) shows that a
strain §;, which is an elongation along the x-axis, will be generated by
a field applied along the x-axis. The applied field will then generate a
thickness longitudinal mode since the motion is in the same direction as the
applied field. If the thickness is made small, this type of crystal can
produce a very high frequency and it was originally used to control oscil-
lators. Due to the poor temperature coefficient of the X-cut plates, they
have largely been replaced in the control of oscillators by AT and BT
thickness shear-mode cuts, which have much better properties. X-cut
plates are used, however, in producing ultra-sonic vibrations in solids,
liquids and gases. Such waves have been used to study the properties
of these materials and have also been used in flaw detectors! which deter-
mine whether any cracks or irregularities occur in metal castings. For this
purpose it is desirable to transform as much input electrical energy as
possible into mechanical energy. A measure of the efficiency of this
conversion for statically or slowly varying applied fields is the electro-
mechanical coupling factor k, which is defined by the equation

E
k=dy 4’;;“ =.095 (6.21)

where ¢¥, is the effective elastic constant for a thickness mode. This is

equal to
e = 8.60 X 10" dynes/cm? (6.22)

Inserting the values given in equation (6.21), we find that the coupling
is about 9.5 per cent. This means that for a static field, the square of k is
about 1 per cent, and about 1 per cent of the input energy is stored in
mechanical form. For alternating fields near the resonance of the crystal,
a considerably larger part, in fact nearly all, can be converted into mechani-
cal energy if the shunt capacity is tuned by a coil, but nevertheless, the
coupling is a measure of the width of the frequency range for which this
conversion can be done efficiently. If fg is the highest frequency and f4
the lowest frequency for which the loss is not more than 50 per cent, it
has been shown that!?

T+ k
%- f:-t-'i O (6)

17 Mason, W. P., Electromechanical Transducers and Wave Filters, Chapter VI,
Equation 6, D. Van Nostrand Company, Inc., 1942.
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Some synthetic crystals such as lithium sulphate and L-cut rochelle salt
have coupling factors of .35 to .4 and are to be preferred when it is desired
to radiate a wide band of frequencies, but for high frequencies, X-cut
quartz is commonly used because of its excellent mechanical properties.

The second equation of (6.1) shows that a strain Ss, which is an elonga-
tion along the y-axis, is excited when a field is applied along the x-axis.
Since the length of the crystal is taken along this direction, this mode of
motion is called a length longitudinal mode. It has been used to some
extent to produce low-frequency oscillations in gases, liquids and solids.
Two modifications of this cut have received considerable use in the con-
struction of quartz crystal filters. These cuts are the —18° X-cut crystal
and the +5° X-cut crystal, shown by Fig. 6.3. The —18° cut is used
because it produces a very pure frequency spectrum giving only a single
resonance over a frequency range of three to one.!® The +5° X-cut
crystal is used because it is the best orientation of the X-cuts for giving a
low temperature coefficient of frequency. By putting a divided plating
on the crystal as shown by Fig. 6.6, this crystal can be driven in a flexure
mode at much lower frequencies than can be realized with a longitudinal
mode. It has been used for selecting single-frequency pilot channels for
controlling the gain of a carrier system.

The temperature coefficient of the +5° X-cut used for both longitudinal
and flexure modes, can be improved by rotating the thickness around the
length of the crystal. This results in the MT and NT crystals, shown by
Fig. 6.3. These have temperature coeficients under one part in a million
per degree centigrade, but a smaller coupling than the equivalent +5°
X-cut crystals.1®

6.42 Y-Cut Crystals

When a field E, is applied along the y-axis, equations (6.1) show that
there are two types of strain generated, S5 and Sg. Both of these strains
are shearing strains which distort a square in the crystal into a rhombus, as
shown by Fig. 6.11. The S5 strain, which is shown in Fig. 6.11, distorts
the crystal in the xz-plane, while the §g strain distorts the crystal in the
xy-plane. Since the field is applied along the thickness, which is the y
direction, the first strain S5 is called a face-shear strain and Sg a thickness-
shear strain. The frequency of a face-shear mode is controlled by the
contour dimensions and hence will be relatively low. The frequency of the

18 Mason, W. P., * Electrical Wave Filters Employing Quartz Crystals as Ele-
ments,” B.S.T.J., Vol. 13, July, 1934.

19 Mason, W. P. and R. A. Sykes, ““ Low Frequency Quartz Crystal Cuts Having
Low Temperature Coefficients,” Proc. I.R.E., Vol, 32, No. 4, April, 1944, This also
appears in reference 6, Chapter XVII.



98  PIEZOELECTRIC CRYSTALS AND ULTRASONICS Cuar.6

thickness-shear mode is controlled by the thickness dimension, which can
be made very small, resulting in a high frequency.

The Y-cut crystal was first used in the control of high-frequency oscil-
lators but because of its high temperature coefficient, has largely been
displaced by the AT and BT crystals, which are modified Y-cut crystals.
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R

Fic. 6.11. Distortion for a shear crystal and method for obtaining a longitudinal mode.

The Y-cut crystal is still used to generate shear vibrations in solids. For
this purpose it has a higher coupling than does the X-cut, since the coupling
for the shear thickness mode is

4#(53
k =2y, T = 142 (6.24)
1

Rotations of the thickness direction around the x-axis have resulted in
rotated Y-cuts that have very favorable properties. Investigations made
by Lack, Willard, Fair, Mason, Sykes, Koga, Bechmann, and Straubel have
shown how the properties of the thickness-shear mode varied with angle of
cut. As shown by Fig. 6.3, all the orientations resulting in useful crystals
have their length along the x-axis and their thickness makes an angle 6
with the y-axis. Figure 6.12 shows the frequency constant (kilocycles for a
crystal one millimeter thick) as a function of the angle of rotation. At an
angle of rotation of +31° and —59° the frequency is minimum and
maximum respectively. At these two angles the mechanical coupling
between the thickness-shear mode and the face-shear mode and its over-
tones becomes zero, and a crystal is obtained which is much freer from
extraneous modes of motion than is the Y-cut. Figure 6.13 shows a plot
of temperature coefficient against the orientation angle and at 35° — 15’
and —49° crystals are obtained which have zero temperature coefficients.
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These cuts are known as the 4T and BT crystals respectively, and they
have been very widely used to control high-frequency oscillators. Fre-
quencies as high as 15 megacycles are used for fundamental control and by
using mechanical harmonics, frequencies as high as 197 megacycles have
been obtained.2°
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Since the AT and BT are relatively near in angle to the 4C and BC cuts,
they have a good frequency spectrum. Strong couplings still exist to
flexure modes of motion. By measuring the modes of motion as a function
of the length, width and thickness, dimensional ratios can be obtained for
which only the main mode exists for a large frequency range on either side

20 Mason, W. P. and I. E. Fair, “ A New Direct Crystal Controlled Oscillator,”
Proc. I.R.E., Vol. 30, pp. 464472, Oct., 1942.
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of the main frequency.?! By maintaining these ratios fixed as the thick-
ness is changed, a good crystal free from resonances over a wide temperature
range is obtained. Crystals produced by the process of grinding to a set
of predetermined dimensions are called predimensioned crystals and
usually result in a higher activity crystal and one which has a smooth
temperature-frequency curve over a wide temperature range. Another
manufacturing process called the edge-grinding process, is sometimes
employed. This consists in controlling the thickness dimension only, and
removing troublesome couplings by grinding the edges of the crystal until
the crystal has a high activity over a specified temperature range. This
process has been used for crystals that do not have to satisfy stringent
activity and temperature requirements, but is not likely to produce as
satisfactory crystals as the predimensioning process.

Thickness-vibrating crystals may either be ground or etched to fre-
quency. On account of an aging which appears to be due to loosely
bound and misoriented layers of quartz on the surface caused by sawing
and lapping processes, it has become customary to etch crystal surfaces to
frequency since this process removes the loosely bound material and leaves
a surface that does not age appreciably. Aging appears to be caused by
the effects of water vapor on the strained surface which results in either
loosening or removing the strained material. The first process causes a
lowering of the Q of the crystal (ratio of reactance to resistance) and a
consequent lowering of the activity of the oscillator controlled by the
crystal, while the second process causes an increase in the frequency of the
crystal. Aging can be prevented by etching the crystal surface or by
hermetically sealing the crystal.

Two other methods of adjusting the frequency of crystals have recently
been employed. One?? uses a crystal whose frequency is etched above the
desired frequency by a predetermined number of kilocycles and then
lowered by plating of a metal by an evaporation process. The metal is
evaporated by an amount necessary to load the crystal down to its desired
frequency. By this method the frequency can be very accurately con-
trolled in the final mounting that the crystal uses. The other method
employs the recently discovered fact that exposure to X-ray irradiation
lowers the elastic constant of BT and AT crystals and hence lowers their
frequency of oscillation.?® The effect is produced by electrons being

21 Sykes, R. A., “ Modes of Motion in Quartz Crystals,” B.S.T. J., Vol. 23, No. 1,
Jan., 1944. This also appears in reference 6, Chapter VI.

22 Sykes, R. A., “ High Frequency Plated Quartz Crystal Units for Control of
Communications Equipment,” Proc. I.R.E., Vol. 34, No. 2, p. 92W Feb., 1946; Proc.
LR.E.,Vol. 36, No. 1, pp. 4-7, Jan., 1948,

2 Frondel, C., * Effect of Radiation on the Elasticity of Quartz,” Amer. Min.,
Vol. 30, Mav, 1945.
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expelled from orbits around silicon atoms in the quartz and causing a
lower energy of binding between molecules and hence a slightly lower
elastic constant. This effect amounts to one-tenth of one per cent fre-
quency change at the most and varies by considerable factors from crystal
to crystal, presumably due to the amount of their impurity content.
Exposure to X-rays causes a darkening of the crystal and the amount of
darkening appears to be correlated with the amount of frequency change.
Because of the variability of the effect, this process has not had a wide use.

Two other rotated Y-cut crystals that have a zero temperature coefficient
are the CT and DT face-shear cuts.?* These are nearly at right angles to
the AT and BT cuts and use the same shearing moduli in the face-shear
mode that the 4T and BT do in the thickness-shear mode. The CT cut
at +38° orientation, as shown by Fig. 6.3, has a frequency constant of 308
kilocycles centimeters for a square crystal and has been used in frequency-
modulated oscillators in the frequency range from 300 kc to 1000 kc.
The DT crystal is smaller for the same frequency and is used in the fre-
quency range from 200 to 500 kilocycles. The CT crystal received wide
use in frequency-modulated oscillators for tank and artillery radio circuits
during the past war.

The final rotated Y-cut crystal that has been used considerably for
controlling very precise oscillators for time standards and for use in the
Loran navigation system, is the GT crystal.? This crystal is produced, as
shown by Fig. 6.3, by rotating the plane by 51° — 7.5’ from y and by
rotating the length 45° from the x-axis. It has been found that the
frequencies of all the zero coefficient crystals can be represented by an
equation of the type

S =foll + a2(T — To)® + as(T — To)*- - -] (6.25)

where the successive constants decrease very rapidly and Ty is the tempera-
ture of the zero coefficient. Most zero temperature coefficient crystals
have a parabolic temperature variation about Tp with a curvature deter-
mined by the constant a3, as shown by Fig. 6.14. An exception to this
rule is the AT cut for which 4, is zero and the frequency change is deter-
mined by @3. To obtain the value plotted, the angle of orientation has
to be very closely 35° — 17’. If the angle is 3 minutes smaller, a positive
temperature coefficient of 1 part in a million per degree centigrade is
superposed on this characteristic, while a 3 minute increase in orientation
introduces a negative coefficient of the same order of magnitude. This
characteristic is much more favorable for a wide temperature range than

24 Willard, G. W. and S. C. Hight, Proc. I.R.E., Vol. 25, pp. 549-563, 1937.
25 Mason, W. P., “ A New Crystal Plate Designated the ‘GT’,” Proc. I.R.E.,
Vol. 28, pp. 220-223, May, 1940.
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Fig. 6.14. Temperature frequency characteristics of zero temperature coefficient quartz
crystals.

the BT; hence AT crystals are used where close tolerances over a wide
temperature range are required.

The GT crystal has a similar freedom from a parabolic variation of
frequency with temperature. The GT is a coupled-mode type of vibration
and by adjusting the ratio of width to length, a positive or negative
temperature coefficient can be superposed on the temperature curve of
Fig. 6.14. Using a crystal mounted by means of several wires soldered to
the crystal surface,?® a very stable unit is obtained which is little-affected
by shocks and which ages very little over a long period of time. This has
resulted in an oscillator that maintains its frequency to 1 part in 10° or
better, over long periods of time and has made possible the precise timing
necessary in the Loran system and in very stable time standards.?’

6.43 Generalized Low-Temperature Coefficient Crystals

In addition to the single- and double-orientation crystals described
previously, whole families of triple-orientation crystals can be obtained

26 Greenidge, R. M. C., *“ Mounting and Fabrication of Plated Quartz Crystal
Units,” B.S.T.J., Vol. 23, p. 234, July, 1944. This also appears in reference 6,

Chapter XII.
27 Jones, H. Spencer, Endeavor, Vol. 4, No. 16, Oct., 1945.
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with zero temperature coefficients. While none of these have come into
practical use, it appears worth-while to point out their existence and
method for analyzing their location. By knowing the elastic constants of
the crystal, their temperature coeflicients, and how these vary with
orientation, regions of low coefficients can be analyzed by calculation.

Several measurements have been made of the temperature coefficients
of quartz. The latest determination®® of the writer’s, which agrees within
a few per cent with determinations of Bechmann and Atanasoff and Hart,
are given in equation (6.26) expressed in terms of changes in parts per
million per degree centigrade.

TsE = + 11.8 TsE = + 195 TE = + 90

Ts% = —1350 Ts& = — 134 Tezs = — 205

Tst = — 295 T = — 465 Tch, = — 166 (6.26)
Tsh = 4+ 120 Tct, = —3300 Tcgs = + 164

Ts33 = + 182 Tk = — 700

These coefficients, with the elastic constants of quartz given by equations
(6.2) and the temperature coefficients of expansion which are

a3 =78 X 1075 o =ap =143 X 1078 (6.27)
are sufficient to determine the temperature coefficient of any mode of
motion whose frequency can be given in terms of the elastic constants.

For example, the temperature coefficient of frequency of a longitudinal
mode can be calculated from the frequency equation
1
f

2 \/pJ‘u

(6.3)

The equation fits the elastic compliance of a rotated cut and the above
temperature coefficients. The variation of sfi, which is the inverse of
Young’s modulus, as a function of orientation is investigated in Chapter V,
and in terms of the IRE orientation system shown by Fig. 6.15, the
oriented modulus is

5T = 5E (cos? 8 cos® ¢ + sin? ¥)?
+ (2513 + 55) sin? 6 cos® ¢ (cos? 6 cos? ¥ + sin? ¢)
+ s33 sin* 0 cos? ¢ — 25%, sin 6 sin ¢ cos ¢
X [3 (cos ¢ cos 6 cos ¢ — sin ¢ sin ¥)?
— (sin ¢ cos 8 cos ¢ — cos ¢ sin ¥)?] (6.28)
% Mason, W. P., “ Quartz Crystal Applications,” B.S.T. J., July, 1943.
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Differentiating equation (6.3) with respect to 8, the temperature, we have
dl dp  ds¥

g__L [1)d 1| b
- " uUNpE|T T2\p T E

or (6.29)
4
d6 1 ,
7= Ty = - —3I(T, + Ts¥]

where T4, the temperature coeflicient of the quantity A is defined as the
rate of change of 4 with temperature divided by the value of 4. Fora

z
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Y/= WIDTH

\
\
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¢
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x

Fic. 6.15. LR.E. orientation system.
general orientation, the temperature coeficient of the length aof varies as
o) = 143 — 6.5 (sin® 0 cos? ¢) (6.30)

Since the total mass is the same when the crystal expands, the temperature
coefficient of the density is the negative of the sum of the coefficients of the

three axes or

T, = —36.4 : (6.31)
Hence the temperature coefficient of frequency becomes
ds¥
c9a g, 11 do
Ty = 3.9 + 6.5 sin” § cos* ¢ ~2 :lglr (6.32)
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Differentiating equations (6.28), we have the temperature coefficient for a
general orientation

Ty = 3.9 + 6.5 sin? 9 cos? ¢

B sETSE (cos® 6 cos? ¢ + sin? ¢)?
+ (2513 Ts13 + sETsE) sin® 0 cos? ¢ (cos? 0 cos? ¢ + sin? ¢)
+ 533 Ts33 sin* 6 cos* ¢ — 255, TsE, sin 9
X sin ¥ cos Y[3 (cos 6 cos ¢ cos ¢ — sin ¢ sin ¢)?
— (sin ¢ cos 8 cos ¥ + cos ¢ sin ¢)?]
st (cos? 0 cos? ¢ + sin? ¢)? + (2613 + 55) sin? 0 cos? ¢
X (cos? 0 cos® ¢ + sin® ) + s33 sin® 6 cos* ¥

— 252 sin 6 sin ¢ cos (3 (cos ¢ cos O cos ¢ — sin ¢ sin )2

— (sin ¢ cos 8 cos Y + cos ¢ sin )]

(6.33)

[T

Introducing the values of the elastic constants from (6.2) and the tempera-
ture coefficients from (6.26), equation (6.34) takes the numerical values

T; = 3.9 + 6.5 sin?  cos® y

755 (cos? 8 cos? ¢ + sin? y)? + 22,565 sin? 0 cos? ¢
X (cos® 8 cos? ¢ + sin® ) + 8700 sin* 6 cos* ¢
+ 5310 sin 6 sin ¢ cos Y[3 (cos ¢ cos B cos ¢ — sin ¢ sin )2

— (sin ¢ cos 8 cos ¥ + cos ¢ sin ¥)?] (6.34)
127.9 (cos® 6 cos? ¢ + sin? ¢)? + 175.8 sin% 0 cos® ¢ )

X (cos? 8 cos® ¢ + sin® ¢) + 95.6 sin® 6 cos* ¢
+ 89.2 sin 6 sin ¥ cos ¥[3 (cos ¢ cos @ cos ¢ — sin ¢ sin ¥)?
— (sin ¢ cos @ cos ¥ + cos ¢ sin ¥)?]

b -

The only regions of low-temperature coefficients are the regions for
which the two, big middle terms are small, which requires that § —» 0,
or ¢y —90° The first region would be a Z-cut crystal with its length
somewhere in the xy-plane and would result in a temperature coefficient
of two parts per million negative. Such a crystal is not of much interest
since there is no piezoelectric constant for driving it. The other region
¥ — 90° also results in the length being near the xy crystallographic plane,
but would allow the major surface to be made perpendicular to the x-axis
and hence would allow the crystal to be driven piezoelectrically. By
allowing ¢ to be slightly greater than 90°, the fourth term in the numerator
can be made slightly negative and of a value greater than the two positive
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terms. This results in the +5° X-cut crystal having nearly a zero coeffi-
cient and this is the most favorable one for a low coefficient longitudinal
mode of motion. All other directions have a negative temperature
coefficient.

The temperature coefficients of many other modes of motions can be
derived in a similar manner, but since none of them have come into practi-
cal use, they will not be considered further.

6.5 Quartz Crystal Applications

As mentioned in the introduction, the principal uses for quartz crystals
are in the control of radio-frequency oscillators, the production of very
selective filters, and as high-frequency electromechanical transducers for
producing and measuring mechanical vibrations in gases, liquids and
solids. It is the purpose of this section to discuss briefly the uses of quartz
crystals in oscillators and filters. The last three chapters are devoted to the
use of crystal transducers in measuring the properties of gases, liquids and
solids.

6.51 Use of Quartz Crystals in the Control of Oscillators of the Pierce Type

A vacuum-tube oscillator is a device for producing and maintaining a
source of power having a definite frequency of oscillation. It involves the
use of a vacuum-tube amplifier for producing a gain and a feedback circuit
which produces a phase shift of 2nx radians (7 an integer, usually one) at
the frequency of oscillation. Hence, when the oscillator is started, a
transient in the circuit (which will have a wide range of frequencies) will
be amplified, but it is only the frequency that comes back in the same
phase that will continue to build up. This frequency will build up until
it is limited by the non-linear elements of the vacuum-tube amplifier.
Hence, the condition for determining the frequency and amplitude of
oscillation are that the gain through the complete feedback path must be
equal to zero and the phase shift through the feedback loop must be equal
to 2r radians or some integral multiple of this. This criterion is often
written in the form

ug = 1 (6.35)

where u is the complex amplification factor of the tube (i.c., the ratio of the
output plate voltage to the input grid voltage) and B is the same factor for

the feedback path. _

Since non-linear parameters are involved in the vacuum-tube amplifier,
the solution for the stability is rather complex. The general conditions
for determining the frequency stability of an oscillator has been given by
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Llewellyn®® and solutions for crystal oscillators have been given by Terry,
Wright, Vigoureux, Koga, Heegner, Boella and Fair.3® Since these are
summarized by I. E. Fair in Chapter XII of the book Quartz Crystals for
Electrical Circuits, they will not be discussed further. It is there shown
that an approximate idea of the conditions for frequency stability can be
obtained by representing the feedback circuit by the three reactances
X1, X3 and X3 of Fig. 6.16 and the tube parameter by a plate resistance
Ry, a grid resistance Rg and a source of voltage u#, where ¥, is the voltage
across the grid resistance Ry, and u is the amplification factor of the tube.
For circuits of the Pierce type, shown by Fig. 1.2, X, is the reactance of the
tuning condenser and coil in the plate of the tube, X3 the reactance feedback

Rp

A ' e 1
éuvg "t% Xa% RQ% ‘19

Fic. 6.16. Equivalent circuit for analyzing performance of an oscillator.

from plate to grid, and X, the reactance from grid to cathode. For a
single tube, the sign of the amplification factor u is negative, since a positive
grid voltage will produce a reduction in the voltage across the plate.

Crystal oscillators can be divided into two classes, those in which the
oscillator frequency is modified by the presence of the crystal, and those
in which the oscillator will not oscillate unless the crystal is present. An
example of the first class is shown by the Giebe, Scheibe click oscillator of
Fig. 4.1, for which the oscillator frequency is controlled by the crystal, if
the adjustment of the coil and condenser is such that the oscillator fre-
quency, as controlled by them, is in the neighborhood of the crystal
frequency. If the frequency of the coil condenser oscillator alone is far
from the crystal frequency, the crystal acts as a simple capacitance and
has no effect on the oscillator frequency. Examples of the crystal-
controlled oscillator are the Pierce-Miller circuits of Fig. 1.2A and the
Pierce circuit of Fig. 1.2B. If the crystal of either of these circuits becomes
broken or loses its activity, the oscillator will stop oscillating.

These two circuits are probably the most widely used crystal-oscillator
circuits. In the Pierce-Miller circuit of Fig. 1.2A, the crystal is in the grid
circuit and feedback is obtained through the grid-plate capacitance or

29 Llewellyn, F. B., “ Constant Frequency Oscillators,” Proc. I.R.E., Vol. 19,

p. 2063, Dec., 1931.
80 These solutions are discussed by I. E. Fair in Chapter XII of Quartz Crystals for

Electrical Circuits, D. Van Nostrand Company, Inc., 1946.
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through an external capacitance sometimes added. For the Pierce circuit,
feedback is obtained through the crystal itself and the grid-cathode
capacitance is the source of the reactance X,. If the oscillator is not driven
so hard that the grid goes positive and grid current is drawn, the grid
resistance R, becomes very high and can be neglected. Under these
circumstances it can be shown that the frequency occurs very nearly when

X1+4Xe+Xs=4=0 (6.36)

where 4 is a small quantity, determined by the tube constants, and is
nearly zero for a high-gain tube. This condition is determined by the fact
that the three reactances have to produce a 180°-phase shift and if the
amplification factor u is high, their sum is nearly zero to produce a zero
gain. Furthermore, it can be shown3! that the conditions of oscillation are
not satisfied unless the crystal reactance is positive. Hence, in these
circuits, the oscillating frequency is always between the resonant and anti-
resonant frequencies of the crystal.

By tuning the plate circuit by the variable condenser, X; will vary and
hence in order to satisfy equation (6.36), the frequency of the oscillator
will vary. However, since the change in reactance with frequency (as
shown by Fig. 5.1) is so sharp, the amount of frequency change that can be
obtained by tuning is small and can be made smaller by letting f4 approach
fr. This can be accomplished by using a crystal with small coupling or
by shunting capacitance around the crystal. Due, however, to the fact
that the crystal has some dissipation, this process cannot be carried too
far or the loss in the feedback circuit will become too large for the tube
amplification to overcome. As shown by Mason and Fair¥! a figure
of merit M for such crystals is given by

1%

= (6.37)
where r is the ratio of capacitances (Co/C) of Fig. 5.1) for the crystal and
where Q is the ratio of reactance of one of the series elements L; or C; of
Fig. 5.1 to the resistance R;. If this figure of merit is greater than 2, the
reactance of the crystal becomes positive and by employing enough gain
the crystal can always be made to oscillate. To maintain oscillations
within a narrow limit of frequency, the ratio of capacitances of the crystal
must be high, and to maintain oscillations for a high ratio of capacitances,
the Q of the crystal must be high. The same considerations apply to the
change of frequency due to change in tube parameters caused by fluctuation
of plate current, change of tubes, etc. These change the factor A of

31 Mason, W. P. and I. E. Fair, “ A New Direct Crystal-Controlled Oscillator for
Ultra-Short Wave Frequencies,” Proc. I.R.E., Vol. 30, p. 464, Oct., 1943. :
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equation (6.36) and cause a slight change in frequency in order that the
reactances shall balance (6.36). However, if the ratio of capacitances and
the Q of the crystal are high, this results in a very small change of frequency.
It has been shown by Fair®® that a quantity which determines the
activity and frequency stability of a given crystal in a definite oscillator
circuit, is the performance index PI of the crystal and circuit. When this
factor is known, the frequency stability and the oscillator activity can be
uniquely determined. In terms of the figure of merit M, the static
capacitance of the crystal Cy and Cy, the total input grid capacitance of the
circuit, PI is
—_—M
C\?
wCo (1 + Co)

Methods for measuring the PI of a crystal for a given circuit are discussed
by C. W. Harrison in Chapter XV of “ Quartz Crystals for Electrical
Circuits.”

Circuits of the Pierce and Pierce-Miller type are capable of maintaining
the frequency of a crystal oscillator within a few parts in a million and can
be changed in frequency by about 200 parts in a million by a tuning of the
plate condenser. They are the most widely used oscillator circuits.

Pl = (6.38)

6.52 Qscillators of the Bridge Type

Oscillators of the Pierce type satisfy the requirements for most crystal
oscillators where a moderate amount of frequency stability is satisfactory.
For very precise oscillators, however, the Pierce type is not the most stable
type. This is obvious from Fig. 6.16, for if the coupling circuit between
plate and grid can be made of pure resistances, then a change in the plate
and grid resistances due to voltage fluctuation will not involve any fre-
quency change. Also in the Pierce circuits there is no way to limit or
control the amplitude of the crystal, which is an important matter if very
precise frequencies are to be obtained.

Both of these limitations are removed in the resistance bridge circuit
devised by Meacham,3 which is shown schematically by Fig. 6.17. With
this circuit a transformer is used to reverse the phase of the output voltage
and the feedback circuit has to produce a zero phase shift in order to
establish the conditions for oscillation. The crystal is one arm of a
resistance bridge and in order to produce a zero phase shift in the bridge,
the crystal has to work at its resonance frequency. The control of ampli-
tude is obtained by using a small resistance lamp or thermistor as another

8 Meacham, L. A., “ The Bridge Stabilized Oscillator,” Proc. I.R.E., Vol. 26,
Pp- 1278-1294, 1938; B.S.T.J., Vol. 17, pp. 574-591, 1938. .
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arm of the bridge. As the amplitude builds up, the resistance of this
element gets less and the bridge tends to become balanced. This increases
the loss of the bridge circuit and cuts down the amplitude. Hence, a
stable amplitude is quickly reached which depends on the thermal element
rather than the non-linear tube parameters. The thermal element is
usually chosen so that the crystal amplitude is very small, and since the
amplitude is maintained at a constant value, no frequency fluctuation due
to amplitude variations occur. The Meacham bridge oscillator is used in
all of the very constant frequency oscillators of the Bell System, Bureau of
Standards and the Greenwich Observatory.

_.éé % w3 2o
;kc‘ (ol A ce <

Fic. 6.17. Meacham bridge oscillator.

Another limitation of the Pierce type circuit is that the crystal has to
have a positive reactance in order that oscillation can be produced. This
limits the use of the Pierce oscillator circuit in driving the crystal at a high
overtone frequency. To obtain a positive reactance the figure of merit
M has to be greater than 2. It can be shown from equation (5.34) that the
ratio of capacitances of a crystal increases as the square of the overtone
order. For example, a BT crystal having a ratio of capacitances of 1000
for the fundamental and a Q of 100,000, will have a figure of merit M = 4
for the fifth overtone frequency, that is, five times the fundamental. In
practice it is found that the fifth overtone frequency is as high as can be
consistently driven by an oscillator circuit of the Pierce type.

To get around this difficulty, the writer and Fair®! proposed the use of a
bridge-type circuit in the feedback path, the arms of which are the crystal
and three capacitances. Various forms of the circuit are possible and a
self-contained bridge was also constructed. The capacitance of the
crystal is balanced out by the bridge capacitances and the limitation that
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the crystal has to have a positive reactance is removed. With this
arrangement, the 23rd overtone of an 8.56-megacycle AT crystal was
driven and frequencies as high as 197 megacycles were controlled. The
crystals had to be ground very flat to be active in this high-frequency range
and commercially the 9th overtone of a 10-megacycle plate is about as
high as has been used.

6.53 Use of Crystals in Filters

The largest use of crystals in the telephone industry is their use in the
very selective band-pass filters of the broad-band carrier frequency systems.
For this purpose quartz crystals have been largely used, but as discussed
in Chapter IX, they are being replaced by a new synthetic crystal, ethylene
diamine tartrate. Since the use of crystals in filters is fully discussed in
Chapter VIII of “ Electromechanical Transducers and Wave Filters ”
by the writer, only a brief summary will be given here.

The crystal element of Fig. 5.1 is equivalent to a combination of coils
and condensers of high Q having the reactance characteristic of Fig. 5.1B.
Due to the fundamental limitation of about 10 per cent electromechanical
coupling obtainable in a quartz crystal, the separation of resonance and
anti-resonance is from equation (5.36) equal to

N
}f = 5K = 004 (6.39)

or about 0.4 per cent of the resonant frequency fr. Hence, if we deal only
with combinations of crystals, it can be shown that the widest pass bands
obtainable are twice this or 0.8 per cent. This is too narrow for most
communication bands, but narrow band filters of this type have been used
for essentially single-frequency pilot channel filters and for analyzing the
spectrum of noise and speech. Such crystals can be combined into T
and 7 networks and in lattice networks. The filter circuits and their
design formulae are discussed in the above reference.

For the wider band filters needed for passing voice channels, it is necessary
to employ coils as well as condensers and crystals. Since the ratio of
reactance to resistance of the best coils mounted in a reasonable space does
not exceed 400, attention must be given to the effect of dissipation.

In a filter the effect of dissipation is twofold. It may add a constant
loss to the insertion loss characteristic of the filter, and it may cause a loss
varying with frequency in the transmitting band of the filter. The second
effect is much more serious since the additive loss can be overcome by the
use of vacuum-tube amplifiers, whereas the second effect limits the slope
of the insertion-loss frequency curve. Hence, if the dissipation in the coils
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needed to widen the band of the filter produce only an additive loss, a
satisfactory result is obtained.

By using only series or shunt coils on the ends of the filters, this result
can be accomplished, for the coil resistances can be made part of the
terminating resistances and add only a constant loss independent of fre-
quency. Figure 6.18 shows the most common filter configuration®?
employing coils, crystals and condensers. In this configuration two divided
plate crystals form the four arms of the lattice. The two halves of the
crystal Oy form the series arms of the lattice while the two sets of plates on
(0> form the crossarms. The two small condensers Cg are used for the
adjustment of the frequencies of the attenuation peaks. The condensers
C4 on the ends of the bridge serve to adjust the band width of the filters
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Fic. 6.18. Crystal filter using a lattice of crystals and series coils.

together with the coils Ly. Each end coil consists of two balanced wind-
ings, each of which form the two coils Ly/2. The equivalent electrical
circuit for the divided plate crystals are shown on the right side of the figure,
where 20Q; and 20, indicate the equivalent electrical circuit of a crystal
(shown by Fig. 5.1) of twice the impedance of the fully plated crystal.

It is shown®* that the attenuation of such a filter section is equal to the
sum of three “m ” derived type band, filter sections. With the coils on
the end of the sections, one of these sections is of the type having an infinite
loss at an infinite frequency. The frequency of infinite loss of the other
two sections is adjustable and is controlled by the relative impedances and
frequencies of the two crystals 0y and Q2. The formulae for designing these
crystals are discussed in reference.

This filter section can be generalized by the addition of crystals to the
series or crossarms of the lattice. If one crystal is taken out and a con-
denser substituted, the attenuation corresponds to two simple filter sec-

33°This configuration is covered in U. S. Pat. No. 2,045,991, issued to the writer,
8 Mason, W. P., Electromechanical Transducers and Wave Filters, Chapter VIII,
D. Van Nostrand Company, Inc., 1942, 2nd edition, 1948.
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tions. The addition of a crystal in either the series or crossarms adds the
equivalent of a simple filter section. The use of two divided plate crystals
in both the series and the crossarms forms the basis of the 219-type quartz
crystal filters®® and in this filter the equivalent of five simple band-pass
filters is obtained in a single lattice configuration. This filter provides
sufficient attenuation to meet the requirements of the broad-band carrier
filters. By using other configurations® of coils, crystals and condensers
low-pass, high-pass, band-elimination filters, and all pass-phase networks
are possible.

8 Willis, E. S., ““ A New Crystal Channel Filter for Broad Band Carrier System,”
Elec. Eng. Trans. Sec., March, 1946.



CHAPTER VII

ProPERTIES AND Uses oF RocHELLE SaLt

7.1 Introduction

Rochelle salt was first produced in 1672 by an apothecary of LaRochelle
by the name of Pierre de la Seignette. While the medical and chemical
properties of rochelle salt became well-known, it was not until 1880 that
anything remarkable was discovered about its physical properties. In
that year the Curie brothers included it in their pioneer researches on the
piezoelectric effect and found it to be strongly piezoelectric.

The first quantitative measurements of the piezoelectric effect in rochelle
salt were made by Pockels in 1894. In the course of his experiments,
Pockels also discovered the Kerr effect in rochelle salt as well as the
anomalous dielectric behavior in the directions of the @ or x crystallo-
graphic axis.

The first descriptions of technical applications of rochelle salt crystals
were made by A. M. Nicolson! in 1919. Nicolson described the applica-
tion of rochelle salt in obtaining piezoelectric microphones, receivers,
loudspeakers, etc., and also used rochelle salt crystals in controlling the
frequency of the first piezoelectric crystal-controlled oscillator.?

These early investigations were followed a few years later by a series
of important papers by J. Valesek, in which the piezoelectric and dielectric
properties of the crystal were thoroughly investigated. His most important
work was on the analogy between the dielectric properties of rochelle salt
and ferromagnetism, which is the source of the description of the properties
of rochelle salt as being ferroelectric.

Widespread interest in the structural theory of rochelle salt started in
1929 with the work of the Russians, Shulvas-Sorokina and I. Kurchatov
and his collaborators. This has been followed by many investigations,
both theoretical and experimental, outstanding among which are those
of Scherrer and his associates in Zurich; Fowler, Beevers and Hughes, and
Ubbelohde and Woodward in England; and Cady, Mueller and the writer
in this country. Theories of the action of rochelle salt have been given

1 Nicolson, A. M., “The Piezoelectric Effect in the Composite Rochelle Salt
Crystal,” Trans. ALE.E., Vol. 38, pp. 1467-1485, 1919; Proc. A.I.E.E., Vol. 38,
pp. 1315-1333, 1919.

2. S. Pat. No. 2,212,845, filed April 10, 1918, issued August 27, 1940.
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by Fowler, Cady, Mueller and Busch. Since they are described in detail
in Cady’s ““ Piezoelectricity,” they are not discussed here. A theoretical
treatment of the ferroelectric effect for rochelle salt and KDP due to the
writer, is given in Chapter XI. This is similar in structure to Mueller’s
“internal field ” theory, but an attempt has been made to associate the
theory with the hydrogen bonds occurring in the structures. It is the
purpose of the present chapter to describe briefly some of the physical and
chemical properties of the crystal.
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Fie. 7.1. Rochelle salt crystal and principal cuts.

7.11 General Properties of Rochelle Salt

Rochelle salt is sodium potassium tartrate with four molecules of water
of crystallization (NaKC4H406—4H20) and forms in the orthorhombic
bisphenoidal class. The usual form of the crystal is shown by Fig. 7.1A,
which shows the direction of the x-, y- and z-axes which coincide with the
a, b and ¢ crystallographic axes of the crystal. Although this crystal
can occur in enantiomorphic forms, it is generally true that all the tartaric
acid obtained from the grape industry is of the dextro form and only dextro
or d-rochelle salt crystals are found. The molecular weight of rochelle
salt is 282.184 and the density, as measured by W. L. Bond, is 1.775 +
0.003 at 25°C. This determination agrees very well with that determined
from the X-ray structure of the cell which, as shown by Beevers and
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Hughes,? has a cell dimension of 11934 along the x-axis, 14.34 along y
and 6.17A along z. Since there are four molecules per unit cell, this gives
3.81 X 10?! molecules per cubic centimeter. Dividing this number by
Avogadro’s number 6.06 X 10%® and multiplying by the molecular weight
282.184, one obtains a density of 1.77. The solubility, per liter of water, at
0°C is 1.50 moles (420 g.) and at 30°C it is 4.90 moles (1,390 g.). The most
common method for growing rochelle salt, and in fact most water soluble
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Fic. 7.2. Stable humidity limits for rochelle salt.

crystals, makes use of this solubility temperature relation. Seed bars are
placed in a rocking or rotating tank which contains a supersaturated solu-
tion at about 40°C. Salt comes out of solution and is deposited on the
seed bar surface, thus reducing the degree of supersaturation. To main-
tain it in a growing condition, the temperature is reduced a certain fraction
of a degree per day, the degree of supersaturation is maintained and the
crystal continues to grow. When it has reached room temperature or
some convenient temperature it is removed from the tank and the process
is repeated. The Brush Company of Cleveland, Ohio, are the largest
growers of rochelle salt.

Since the crystal has water of crystallization, it has an appreciable vapor
pressure. As shown in Fig. 7.2 lower line, if the humidity of the surround-

3 Beevers, C. A. and W. Hughes, “ The Crystal Structure of Rochelle Salt (Sodium
Potassium Tartrate Tetrahydrate NaKCHOs—4H0),” Proc. Roy. Soc., Vol.
177, pp. 251-259, 1941.
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ing atmosphere is below 35 per cent at 25°C, the water vapor pressure of
the crystal is greater than the vapor pressure of water in the surrounding
atmosphere and the crystal will lose water and dehydrate. This causes
a white powder of dehydrated material to form on the outside of the crystal,
which will ruin the operation of the crystal if it becomes too large. The
crystal is stable between 35 and 85 per cent relative humidity at room
temperature. Above 85 per cent humidity, the crystal will absorb water
from the atmosphere on its surface and will slowly dissolve if kept in such
an atmosphere. To minimize these humidity effects, the crystals are
often coated with waxes. These retard rather than prevent the dehydra-
tion of the crystal. If the crystal can be hermetically sealed in a con-
tainer, it can be made to last indefinitely by putting powdered crystalline
rochelle salt and dehydrated rochelle salt in the container. The former
will give up water if the temperature rises, while the latter will take up
water if the temperature lowers, and the two will maintain a humidity
that approximates the lower curve as a function of temperature.

At a temperature of 55°C (130°F) the crystal breaks up into sodium
tartrate and potassium tartrate with the evolution of one mole of water,
which dissolves the two crystals in a liquid solution. If the solution
is rapidly supercooled, it remains quite fluid for a number of minutes before
it crystallizes and hardens. This ““ melted ” rochelle salt forms a very
stiff glue that has been used to glue together pieces of rochelle salt.

Rochelle salt crystals are commonly cut either with a band saw or a
wet string technique. They are most easily surfaced by a milling technique
using a sharp high-speed cutting tool. They can also be surfaced with a
sanding belt cooled with a saturated solution of the material. The most
recent and satisfactory method of applying metal electrodes to their surface
is by evaporating gold in a relatively high vacuum. This process has to
be completed quite rapidly, since the crystal will give off moisture in a
vacuum. However, if done quickly, the loss of water is negligible and very
satisfactory electrodes result.

7.2 Physical Properties of Rochelle Salt \

7.21 Dielectric Properties of Rochelle Salt

Between the temperature of —18°C and +24°C, rochelle salt has ferro-
electric properties. - By this is meant that the salt becomes spontaneously
polarized in the =x-direction, and polarization-field curves show hysteresis
loops just as B-H curves do for a ferromagnetic material. The magnitudes
of the spontaneous polarization has been measured by Mueller* and by

4 Mueller, H., “ The Dielectric Anomalies of Rochelle Salt,” Ann. N. Y. Acad.
Sci., Vol. 40, p. 34, 1940.
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Hablutzal® by measuring the remanent polarization of the hysteresis loop
and the results are shown by Fig. 7.3 plotted as a function of temperature.
The polarization rises to a value of 740 esu/cm? at 3°C, the optimum tem-
perature. The figure also shows the spontaneous polarization of heavy
water rochelle salt for which the hydrogens in the water of crystallization
and the hydrogens in the OH groups are replaced by heavy hydrogens.
The two Curie temperatures (the temperatures for which spontaneous
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Fie. 7.3. Spontaneous polarization for rochelle and heavy water rochelle salt.

polarization occurs) are changed to —22°C and +35°C, and the spontaneous
polarization increases to 1,120 esu/cm? at about 6°C. The Curie tem-
peratures can also be changed by pressure. Figure 7.4 shows measure-
ments by Bancroft® of the Curie temperatures of rochelle salt as a function
of hydrostatic pressure. Hydrostatic pressure can raise the upper and
lower Curie temperatures and cause them to separate. On the hydrogen
bond theory of Chapter XI this is a result of the change with pressure of
the factor

Nu’8

4r
kT(l - —:3—7)

where the meaning of the terms is given in Chapter XI.

§ Habliitzal, J., “ Dielectric Investigations of Heavy Water Rochelle Salt,” Hel,
Phys. Acta, Vol. 12, pp. 489-510, 1931.

8 Bancroft, D., “The Effect of Hydrostatic Pressure on the Susceptibility of
Rochelle Salt,” Phys. Rev., Vol. 53, pp. 587-590, 1938.

(1 — tanh® A/kT)
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A typical set of hysteresis loops showing polarization versus field strength
(volts per cm) for a free crystal are shown by Fig. 7.5. These are due to
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Fia. 7.5. Hysteresis loop for rochelle salt as a function of the applied voltage (after David).

David” and were measured at 50 cycles with the field applied along the
x-axis. The curves labeled a, 4, ¢ and 4 are respectively for maximum

7David, R., “ The Dependence of the Dielectric Properties of Rochelle Salt on
Mechanical Conditions,” Helv. Phys. Acta, Vol. 8, pp. 431-484, 1935.
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field strengths of 30.7, 61.4, 123 and 384 volts per cm. It is obvious from
these curves that the average and the instantaneous dielectric constants
(which for these curves are nearly 4r'times the ratio of the polarizations to
the field), vary markedly depending on the field strength. The rounding
off of the hysteresis loops is usually ascribed to domain structure in rochelle
salt. Other evidence is the existence of a Barhausen effect,® the pyro-
electric tests? with Burker’s powders, and the scattering of sound from an
ultrasonic wave. From his tests Mueller concluded that the domain sizes
were around 1 cm in diameter. On account of the difficulty of observing
twinning in rochelle salt and KDP optically or with X-rays, not much is
known about the type of twinning responsible for domain structure in
these crystals. For barium titanate, on the other hand, where a 90°
change in orientation of the ferroelectric axis can occur, it is definitely
known that domain structure can be the result of a twinning along the
101 plane.

At low field strengths, the dielectric constant is much smaller than at
high field strengths. Figures 7.6 and 7.7 show measurements'® of the
“ free ” dielectric constant along the x-axis plotted as a function of tempera-
ture for field strengths in the order of 5 volts per cm. The dielectric
constant is about 200 midway between the Curie temperatures of ~18°C
and +24°C, and increases to nearly 2000 at the Curie temperatures.
Outside of the Curie region the dielectric constant falls off and at a tempera-
ture of —157°C, the dielectric constant decreases to a value of 7 and does
not decrease farther with a lowering of the temperature. For high field
strengths, the dielectric constant, as shown by Fig. 7.6, measured by the
average slope of the hysteresis loop, becomes larger between the Curie
points than it is at the Curie temperatures. The differential dielectric
constant, represented by the instantaneous slope of the curve, may be as
high as 200,000.

The dielectric constants of rochelle salt along the y- and z-axes are en-
tirely normal and do not depend appreciably on the field strength. The
dielectric constant along the y-axis €, f.e. the *“ free ”’ dielectric constant
under constant stress is

e = 11.1 from —10°C to +24°C

and increases linearly from 11.1 to 12.5 at 45°C. The dielectric constant

8 Mueller, H., ““ Properties of Rochelle Salt,” Phys. Rev., Vol. 47, pp. 175-191, 1935.

9 Mueller, H., “ The Dielectric Anomalies of Rochelle Salt,” Ann. N. Y. Acad.
Sei., Vol. 40, pp. 321-356, 1940.

10 Mason, W. P., “ A Dynamic Measurement of the Elastic, Electric and Piezo-
electric Constants of Rochelle Salt,” Phys. Reuv., Vol. 55, pp. 775-789, 1939; H.
Mueller, “ Properties of Rochelle Salt,” Phys. Rev., Vol. 47, pp. 175-191, 1935.
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Fic. 7.6. Free dielectric constant for rochelle salt for fields of 5 and 500 volts per centimeter.
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normal to the z-axis is
7 =92

The “ free ” or constant stress dielectric constant determines not only
the energy stored in electrical form but also that stored for a static or low-
frequency voltage in mechanical form. The mechanical energy stored
results from a distortion of the crystal due to the piezoelectric effect. If
we clamp the crystal so that it cannot be distorted, then the only energy
stored is the electrical energy and the dielectric constant corresponding to
this is the clamped dielectric constant. It is difficult to clamp a crystal
hard enough to prevent any mechanical distortion, but a similar result can
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Fia. 7.8. Clamped dielectric constant for rochelle salt at low field strengths.

be obtained by measuring the crystal at a frequency so high that almost all
of the natural resonances and their harmonics are lower in frequency than
the value of the applied frequency. This is similar in principal to the
measurement of the electronic dielectric constant of any substance. By
increasing the frequency, the dipole and atomic dielectric constants fall
out of the picture, because they require a motion that is too slow to follow
the applied field. The clamped dielectric constant has recently been
measured'! by measuring the dielectric constant and associated resistance for
alarge-sized crystal (/=1.75 cm; w=1.75 cm; £=0.75 cm) at a frequency of
20 megacycles. The result over a temperature range is shown plotted by
Fig. 7.8. The dielectric constant increases to about 300 at —18° and +24°,
the two Curie temperatures. The finite value of the “clamped” dielectric

1 Mason, W. P., “Theory of the Ferroelectric Effect and Clamped Dielectric
Constant of Rochelle Salt,” Phys. Rev., Vol, 72, No. 9, pp. 854-865, Nov. 1, 1947,
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constant and the occurrence of its maximum at the same temperature as
that for the “free” dielectric constant are accounted for by the theory
presented in section 11.5, Chapter XI. The solid curve labeled 1 is another
measurement’? of the constant made at a frequency of 160 kilocycles by
eliminating the interaction between the mechanical and electrical energies
by means of theoretical relationships of the type discussed in the next
section. The two measurements agree quite closely, as do also the asso-
ciated Q’s of the crystal considered as a condenser.

7.22 Piexoelectric Properties of Rochelle Salt

When a voltage is applied to an X-cut rochelle salt crystal, a relatively
large distortion occurs for the crystal. The distortion for a plain X-cut
crystal is a face shear which distorts a square into a rhombus, as shown in
Fig. 7.1B. To obtain a longitudinal motion, one cuts a crystal out with
its length 45° from the y- and z-axis as shown by Fig. 7.1B. If one plots
the ratio of the extension to the applied voltage, the ratio becomes very
large near the Curie points and is much smaller at other temperatures.
Also the ratio is a function of the voltage gradient. On the other hand
if one plots the ratio of the extension to the charge per unit area on the sur-
face, the ratio is nearly constant for all temperatures and does not depend
on the voltage gradient. Actually, as shown in Chapter VIII and Chapter
X, the most constant ratio is not the ratio of the extension to surface charge
(or electric displacement, if we consider a quantity that has meaning in
the interior of the crystal and is equal to the surface change (times 4r)
at the surface), but is the ratio of the stress to a part of the electric dis-
placement, namely, the dipole polarization. However, the dipole polariza-
tion is not easily measured so that it appears better to base the funda-
mental equations on the electric displacement, since this is easily measured
and is directly related to the energy stored per unit volume of the crystal.
This point of view is developed in Chapter III and it is shown that the
piezoelectric, elastic and dielectric equations for an orthorhombic bi-
sphenoidal crystal (class 6 symmetry » = D; or 222), can be written in
the form

D:
Ty = c11S1 + €122 + 1383 E; = P h14Ss
Ty = 1281 + 2283 + ¢2383
D
Ts = c1381 + c2382 + 3353 E, = ;gi — hosSs (7.1)

*12 “ The Location of Hysteresis Phenomena in Rochelle Salt Crystals,” Phys. Rev.,
Vol. 58, pp. 744-756, Oct. 15, 1940.
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D,
Ty = c53Ss — hua (4—1’)
D D,
Ts = ci5S5 — has (ng) E, = 5 — h3sSe (7.1)
€33
Te = cs3Se — hse (91>
47

where T to T are the six stresses for the crystal, as defined in Chapter III,
81 to Sg the six strains, D, D,, D, the electric displacements along the x-,
- and z-axis, respectively, E,, E,, E, the fields along the three axis, ¢;;
to cge the nine elastic stiffness constants, and A4, Ags, A3e the three piezo-
electric constants relating the stress to the electric displacement divided
by 4x. The shear elastic constants have a superscript D, indicating that
they are measured at constant electric displacement, while the dielectric
constants along x, y and z, €}, €3, €53 are measured at constant strain, i.e.
are the clamped dielectric constants.

All the dynamic methods of measuring the piezoelectric constants of
rochelle salt employ longitudinal vibrations of crystals cut with their
length 45° from the crystallographic axis and with their thickness along
the third axis. By using the transformation equations given in the
appendix, Section A-4, it can be shown that the elastic and piezoelectric
equations pertaining to a 45° X-cut crystal can be written in the form

Ti = cuSt + (M) Sh+ (‘1_2;&) st o+ (Cla ; 512) sl

2
T = (512 -2+-t‘13) )+ (622 + ¢33 +42¢23 + 46?4) s,
Ca2 + 33 + 203 — 4ci €33 — ¢ D,
+(22 33 ; 23 44)‘5,:;_*_(33‘1 22>S:_}'14(4_,>
293 — 4cl
T = (512 '21’513) S+ (522 + ¢33 -l; 23 44) s 7.2)
C22 + ¢33 + 203 + 4cby c33 — ¢ D,
+(22 33 - 23 44) s +(33 ; 22) s, +h“(4_")

b |

13 — ¢ £33 — € €33 — C
=(132 12)S1+(334 22)S;+(334 22)S§

-2
+ (622 + t‘a: 23) S;

D
E, = ;,i — h14(S83 — S3)
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T, Tes E, and E, do not enter into the motion of the crystal. For a long,
thin crystal wnth its length along the y’-axis, its thickness along x, and its
wndth along z the only stress that differs from zero is Ts. Settmg Ti =
Ty = T4 = Ts = Tq = 0, the equations pertaining to this crystal are

4
T=( )y
2 SO+ Sa2 + 33 + 2503/

A vl )
y  (7.3)-
2644 56 + S22 + 533 + 2593 (7.3)

E D,I: T ﬁu( S22 + 533 + 2523 )]

4wl cha \siu + S22 + saz + 2503

h14 ( 4 >S,
T 2D \D + s2n + 533 + 203/ 2

where 522, 533, 523 are the elastic compliances of the crystal which are deter-
mined from the elastic stiffnesses by the equations

- (—-—l)"+jA°"i/A°
where
€11 C12 (13

A® = c12 Coa C23

€13 (23 (33

and A%i, is the minor obtained from A° by suppressing the 7th row and jth
column. &% = 1/c%. From the form of (7.3) it is obvious that

P 4 590 + 533 + 25 ’
14 22 ; 33 23 =ng (7.4)

which is the inverse of Young’s modulus for the long, thin crystal at an
angle of 45° between the y- and z-axes. Also

4r hh( S22 + Sz + 2533 ) 4r =4_r (7.5)
Sgs + Sag + Sz + 2523 & e )

€11

8 T D

€1 Caq '
where e{‘l is the longitudinal clamped dielectric constant, f.e. the dielectric
constant measured when the strain S5 is zero. As discussed in a previous

paper,12 his can be measured by measuring the dielectric constant at
twice the resonant frequency of the crystal. By evaluating the terms

{l&( S22 + 333 + 228 >’
i \sts + 523 + Saz + 292
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the clamped dielectric constant can be evaluated, and this is the source
of the 160-kc clamped dielectric constant measurement of Fig. 7.8. With
these simplifications, equation (7.3) can be written in the form

. hu (D, D,, h
T} = Sh/s% — ,,“,,,( ); E, = chi‘,,, Sh (7.6)

2044522 fu S22

The most direct way of measuring the constant 44 is to determine the
open-circuit voltage of a rochelle 45° X-cut for a given strain 3. This
was done in a previous paper'? by glueing a half-wave rochelle salt crystal
onto a half-wave quartz crystal and comparing the open-circuit voltage
of the quartz with that of the rochelle salt when they are both driven by
a half-wave quartz driver. Knowing the relative strain in the two
crystals which are in the ratios of the velocities of sound propagation for
the two crystals, and the open-circuit voltage for quartz, which is given
by the equation

Eq = deSolt _ 315 5 10° 4,5, @.7)

e111'22

where /; is the thickness of the crystal, it was found that the value of 44
for rochelle salt was

hys = 7.58 X 10* dynes/cgs units of charge (7.8)

and this value was quite independent of temperature from —10°C to
+45°C.

Another method of measuring 4,4 is to measure the resonant and anti-
resonant frequencies of a plated crystal and the free dielectric constant.
Figure 7.9 shows the measured resonance (Curve A), the anti-resonance
(Curve B), while Curve C shows the resonance of the same crystal measured
with the plating removed and the crystal in an air-gap holder with a large
air gap. To use these measurements in evaluating 44, one has to combine
the piezoelectric equation (7.6) with Newton’s law of motion for any ele-
ment of the crystal which for this case can be written in the form

82 aT,
where 7 is the displacement of the elementary volume in the direction of
the length, i.e., . Introducing the first of equations (7.6), noting that



PROPERTIES AND USES OF ROCHELLE SALT 127

9 .
S5 = 5—;—’ » we have the equation

aDz
% 1 a% N (3)" -
T e A=) (10

From the second of equation (7.6) noting that the plated surface is an
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Fia. 7.9. Resonances of a rochelle salt crystal as a function of temperature. A. Resonant

frequency of a plated crystal. B. Anti-resonant frequency of a plated crystal. C. Reso-
nance of an unplated crystal in an air gap holder.

equipotential surface so that E; is independent of y’, we have

1 aD, ( hig )a%
w7 =\s;pp) 7 7.11
oy " \dhg) " 1D

. . .. aD, .
Eliminating Ey—,j from the two equations, we have

6_2?7 1 éfp__ _( his )(511 - ¥y )
P or ;25; ay" A 322 ay*’
where (7.12)

2o -G ER] -5
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where # the electro-mechanical coupling factor is defined by

hia a1 his )( & ) (du 2 4x
2 _ (214 =|=) 5= 7.13
k 26?4) (47-‘22> 25/ \4rssy 2/ sk .13)

as can be shown from the relations in Chapter III. These follow from the
equations
dr  4r @(4;5’5-:{’4). dr  4r

Ic = - g X =7 + Z14h14
ey ;:?; cfx 453 ¢y

_ die = (éu - hu)(eu
£14 P 14 =814 o

which hold for an orthorhombic bisphenoidal crystal (class of rochelle
salt). In these equations di4 and g14 are other types of piezoelectric con-
stants as defined in Chapter III. From these equations we have

(7.14)

4r 41+éf_4(43g—5f4) :11_*_}1_";!
E P AT ey
hence (7.15)
41[1 (h,4> e,,“] A ey - _4_11_'
€{'1c 2‘44 4r 'f')z' éfxc n
and
ar  _€h
41r:D 4«:5

Equation (7.12) is the same equation discussed in detail in Chapter V.
It is there shown that the resonant frequency is given by the equation

fom o
" pS22

while the electromechanical coupling defined by equation (7.13) is related
to the separation Af between the resonant and anti-resonant frequencies
by the equation

o220+ (5 IR+ ] o

From the data on the resonant and anti-resonant frequencies of Fig. 7.9,
which allow one to calculate 55, and # the electromechanical coupling, the
data of Fig. 7.6 for the free dielectric constant, and from Fig. 7.10 of the

(7.16)
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next section which shows a measurement of 2, over a temperature range,
the value of 4;4 can be evaluated and was found to be nearly a constant
equal to about 7.8 X 10%. There is some indication that it falls off slightly
at the higher temperature which would agree with the data of Chapter X
that the ratio between the piezoelectric stress and the dipole polarization
is the most nearly constant ratio. Since the dielectric constant of electrons
and atoms €y, 1.e. for all sources except the dipole, is around 7, the dipole
polarization represents from 92 to 99 per cent of the total value of Dx/4x
and hence the dipole polarization piezoelectric constant fy4, defined as the
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N
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F16. 7.10. Shear elastic constants of rochelle salt measured in air gap holder.

ratio of the piezoelectric stress to the dipole polarization for a constant
strain, has a value around

fiqlhu
Sio =5—5 =78 x 10 (7.18)

No very exact measurements have been made for these constants for high
polarizations, but theoretically they should be independent of the polariza-

tion value.
For the other two piezoelectric constants along the y- and z-axes, the

writer!® found
hog = —5.8 X 104; hge = 4.81 x 10* (7.19)

As discussed in Chapter II1, three other forms for writing the piezoelectric

18 Mason, W. P., “ A Dynamic Measurement of the Elastic, Electric, and Piezo-
electric Constants of Rochelle Salt,” Phys. Rev., Vol. 55, pp. 775-789, April 15, 1939,
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equations are in common use and these involve other piezoelectric constants
that -are related to the ones measured here by the equations

ﬁu ’125 hae
gl4="§; xzs=c—?5; gae=g
kg€ hases. haoes:
€14 = ::u; 625 = 2:::22; €36 = ::::aa (7.20)
die = hua(eh) | dor = has(edz) du = hae (i)
A X R AT

The g constants determine the open-circuit voltage of the crystal used as a
microphone for a given applied pressure, the e constants determine the
stress exerted by the crystal for a given applied field, and the 4 constants
determine the displacement of the crystal for a given applied field. From
the elastic constants determined in the next section and the dielectric
constants determined in the last section, these constants for room tempera-
ture (25°C) become

g14 = 6.3 X 10—7; 825 = —19 X 10—7; g3 = 4.8 X 10—7
e14 = 1.4 X 106; eos = —4.7 X 104; e36 = 3.4 X 10t (7.21)
dig =7 X 1075 dog = —169 X 1078; dzg = 35.5 X 1078

The values of ¢14 and di4 vary considerably with temperature and field
strength while the value of g14 and A4 are relatively constant. For the
¥ and z directions, since no ferroelectric effect exists along these axes, the
values of all four constants are relatively fixed for temperature and field
strength conditions.

7.23 Elastic Constants of Rochelle Salt

As shown by equation (7.1) there are nine elastic constants for rochelle
salt. Six of them ¢y3, 12, €13, €22, €23 and ca3, are independent of the field
or electric displacement conditions while the other three depend on whether
we have constant field or constant electric displacement. The relation
between the constant field and constant displacement constants is dis-
cussed in the Appendix Section A-2, and it is there shown that

D= B+ b By = B + eashas; chs = chy + eaghzs  (7.22)

The elastic compliances which occur when we write the strains in terms of
the stresses are also of interest, and, in fact, are more easily measured than
the elastic stiffness constants. For rochelle salt these occur in equations
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of the type

D,
Sy = 51Ty + 512T2 + 513T3 Se = s65Te + 836 4

D,
S2 = 512T1 + $20T2 + 53373 E; = T~ 21475
11

(7.23)
D
S3 = 513T1 + 523T2 + 53373 E, = :Ty — 2575
22

D, D,

Ss = 5Ty + gua ol E. = ;:{—3 — g36Te

D
D D,
Sg = 55576 + g25 ol

The s constants 513 to s33 are related to the ¢;; to ¢33 constants by the
relations

sij = (=1 A%/
where
‘i1 C12 €13
A° =| 12 €23 Co3 (7.24)

€13 (23 (33

and A% is the minor of this determinant obtained by suppressing the sth
row and jth column. The three shear compliances at constant field are
related to the shear compliances at constant displacement by the formulae

D E D E . D _ E
Saa = Saa — d14g14; 585 = 555 — d25825; see = See — daegas (7.25)

The relation between shear elastic stiffness and shear elastic compliance
constants can be written in the form

1 1 1
= —— e = — L'p=_"‘
‘ﬁ J‘ﬂ’ "g': 515)5’ 66 Sge’
1 1 1
Ga=F; Cm=-fF; =% (7.26)
Sa4 85 Je6

The nine elastic compliances have been measured by static means by
Mandell and Hinz and by dynamic methods by the writer!® and Hunting-
ton.'* The shear constants measured by the writer were the constant
displacement type measured by employing an unplated crystal in an air-
gap holder. The method of separating out the various constants by using

14 Huntington, H. B., Pkys. Rev., Vol. 72, No. 4, pp. 321-331, Aug. 15, 1947.
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variously oriented crystals is discussed in detail in Chapter X. Huntington
measured essentially the constant field constants since he employed the
ultrasonic pulse method which results in the constant field constants.
Table XI shows a comparison of the measurements of Hinz, Huntington
and the writer. The last two agree very well except for the value of s3.
The last column shows the recommended values of the constants.

TABLE XI
Evrastic ConsTanTs oF RoCHELLE SALT
Mason, 30°C
Hinz, Room Temp. Constant Dis- Huntington Recommended
Constant Field placement  Adiabatic values
Constant  Constant Dis-
Calc. Observed Displace- placement,
Obsd. Adiabatic Adiabatic ment Adiabatic
om?/dyne  X10712 X 1012 X10-12 x10-12 x10-12
S11 5.23 519 5.18 5.24 5.20
S22 3.43 3.41 3.49 3.50 3.50
S8 3.24 3.22 3.34 3.37 3.35
S44 9.63 9.63 7.98 7.45 7.9
555 33.7 33.7 32.8 34.9 33.0
566 11.8 11.8 10.1 10.4 10.2
S12 —2.18 -2.20 —-1.53 —1.54 —1.53
518 —-1.69 -1.72 -2.11 —-0.98 -1.7
S23 -1.34 —-1.36 —-1.03 —0.91 -1.0

Some values have been measured for the temperature coefficients of the
elastic constants. In general these differ depending on whether the tem-
perature range is below, between, or above the Curie temperature. Above
the Curie temperature, the writer found the following values of the tem-
perature coefficient expressed in parts per million per degree centigrade

Tsy = 1,230;  TsB = —1,660; Tsyip = 5,240
Tspe = 1,330; TsB =  700; Ts;3= 2,710
Tsaz = 890; TsB = 1,830; Tso3 = —10,200

These are useful in only one temperature range but show the large varia-
tion of elastic constants compared to what one can obtain in quartz. Two
of the shear elastic constants have been measured over a wide temperature
range by measuring the face-shear modes of long, thin crystals cut with
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their thickness along the %- and z-axes and with their lengths along the
z- and y-axes respectively. The face-shear modes of these two crystals
are determined by the cf; and ¢ constants, respectively, when they are
measured in an air gap holder with a large air gap. This follows from the
fact that the D; and D, electric displacements are the only ones generated
by these modes of motion, and since the normal component equals the
surface charge which is zero, since no plating is on the crystal, and hence
D; and D, are constant through the crystal and equal to zero. Figure
7.10 shows the values plotted as a function of temperature and it is obvious
that the proximity of the ferroelectric temperatures exercises an effect on
these two shear elastic constants.

7.3 Useful Cuts in Rochelle Salt

The cut most widely used is the X-cut which as shown by Fig. 7.1B,
is cut with its major face normal to the x-axis. If a voltage is applied to
this cut, it shears so that the square changes into a rhombus. But cutting
the crystal length 45° from the crystallographic y- and z-axes, a crystal
is obtained which elongates along one direction and contracts along the
width. This cut, which is known as the 45° X-cut, is widely used in pro-
ducing longitudinal vibrations. By combining two longitudinal crystals,
as shown by Fig. 7.1C, a “ bimorph ” crystal is obtained which bends.
This has a much lower frequency than a longitudinal crystal and is used
in voice frequency apparatus for picking up and reproducing sound.
Figure 7.1D shows a combination of two X-cut crystals used to produce a
twisting motion. The center faces of the two crystals form one set of
electrodes, and the two outside electrodes, the other pair, so that two
opposing face-shears are applied to the combination. This causes the
whole crystal to twist and produces a torsional motion in the pair. Finally,
Fig. 7.1E shows two thin face-shear X-cut crystals which, when they are
clamped on three corners, produce a large motion at the fourth corner.
All three of these bimorph-type crystals have been used in such devices
as phonograph pickups, microphones, headphones, loudspeakers, surface
roughness analyzers, light valves and many other applications.

For a 45° X-cut crystal, the equations applicable for the extension are

D.
Si=s3Ti+ & Z':
(7.27)

E; = —ngl + B{Dz

where §; is the strain along the length, T; the stress applied along the
length, g; the effective piezoelectric constant for the 45° axis, and 87 the
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impermeability (inverse of the dielectric constant) which is measured when
the crystal is free to move. In cgs units the above constants have the
values

B =3.16 X 1072 cm?/dyne; g = 31.5 X 1078 = %1 (7.28)

while the free dielectric constant, which is the inverse of 87, has the value
shown by Fig. 7.6 for low applied fields and for high fields (500 volts per
cm). Equation (7.27) can be used to predict the action of the crystal
under static conditions or at frequencies much lower than the resonant fre-
quencies of the crystal. For example, if we wish to find the response of
the crystal as a microphone, the second equation states that for open-
circuit conditions for which the charge on the surface, and hence the elec-
trical displacement Dy, is zero, the potential generated for a given pressure
(negative of the tension T7) is

E

E. = 7= oT: = 31.5 X 1078 (pressure in dynes/cm?)  (7.29)
¢

Since the electrostatic unit of potential, the stat volt, is 300 volts, the volts
generated per dyne per sq cm pressure are

Eyote = 31.5 X 1078 X 300 X /ixp = 9.1 X 1075 volts per dyne  (7.30)

per sq cm for a crystal 1 centimeter thick. Since the voltage generated
for a given pressure is directly proportional to the g; constant, which is
one half the appropriate shear constant, equation (7.21) shows that a 45°
Y-cut crystal, which will have a g; piezoelectric constant equal to 3 X 190
X 1078 =95 X 1078, will generate about 3 times the open-circuit voltage
for the same pressure that a 45° X-cut crystal will. The 45° Y-cut has
been used to some extent as a microphone and as a transducer in under-
water sound equipment for transferring electrical energy into mechanical
energy. When the crystal is used as a microphone working into a low
impedance, the Y-cut will not deliver as much voltage as an X-cut crystal
on account of the very low impedance (high capacity) of the X-cut
crystal, but the voltage that it does deliver is not a function of the tem-
perature as in the case of the 45° X-cut.

By eliminating D, from equation (7.27), the strain §;, which is the expan-
sion per unit length, can be expressed in terms of the applied field as

2 T
g€l g
S = (:{.’2 +5 T: + e E, (7.31)
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In the absence of an external stress T}, the total free displacement for 1
volt applied is
Vel (1

d=38/=103 x1 ‘9-—-<—) 7.32

1 3 X 10 = \U (7.32)

This displacement as a function of the volts per inch applied is shown by

Fig. 7.11 for several different temperatures. Outside of the Curie region

the displacement is much less since the dielectric constant ¢ is so much
smaller, particularly for large fields.

When two crystals are glued together to form a bimorph unit it has been

shown!® that the displacement of the component longitudinal crystals is
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Fic. 7.11. Strain in an X-cut rochelle salt crystal as a function of the field and temperature.

multiplied by the factor 3///, where / is the length of the crystal and /; the
total thickness of the two elements. This is a method of enhancing the
total displacement of the unit at the expense of a considerable lowering of
the resonant frequency of the device. Since the dielectric constants of the
two crystals glued together will be less than the free dielectric constant of
Fig. 7.6 and will approach the dielectric constant of the clamped crystal
shown by Fig. 7.8, the very large temperature and saturation effects noted
for the free crystal, will be considerably reduced for the bimorph type.
However, the response may vary by a factor of 5 for a wide-temperature

18 Mason, W. P., Electromechanical Transducers and Wave Filters, Chapter VI,
p- 214, D. Van Nostrand Company, Inc., 1942, 2nd Edition, 1948.
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range. A typical response in the ferroelectric range for a bender unit
13 inches long, § inches wide and 0.040 inch thick is

33 volts 0.002 inch

77 volts 0.0045 inch
125 volts 0.006 inch
140 volts 0.0065 inch

The displacement for any other shape unit will vary in proportion to the
factor (///;)? and will be independent of the width.

When such units are used as voltage generators, as in phonograph pickup
devices, the mechanical impedance of the device is very considerably
lowered over what would be obtained with a clamped longitudinal device.
The response can be calculated by determining how much strain is gener-
ated by a given motion and calculating the voltage from equation (7.27).
A typical unit 0.030 inch thick, }§ inch long and 1% inch wide will give an
output as high as one volt when played from a phonograph record. This
response will be relatively independent of the temperature when the device
is operated into the grid of a vacuum tube.



CHAPTER VIII

ProrerTiES AND Usgs oF AMmonium DiavbproGen PxospuaTE (ADP)
AND Potassium DinyproGen Puospuate (KDP)

During World War II a new piezoelectric crystal ammonium dihy-
drogen phosphate (NH4HpPO,) was developed and was widely used® as
the transducing element of underwater transducers and hydrophones.
This crystal has no water of crystallization and hence will not dehydrate,
will stand temperatures up to 100°C, and will radiate considerable amounts
of acoustic power without breaking down. The properties were so favor-
able that ADP largely displaced rochelle salt and other types of electro-
mechanical transducers in underwater sound applications. It appears
likely that for devices that transform mechanical vibrations into electrical
vibrations, such as phonograph pickups, microphones, etc. — that ADP
will give superior results to rochelle salt and may eventually replace ro-
chelle salt for such applications. For devices that have to produce a
large motion for a given voltage, however, rochelle salt is still the only
crystal that has a large enough 4 constant to be of interest.

ADP is one of a group of four isomorphous salts that have very interest-
ing dielectric and piezoelectric properties. It was first shown by Busch?
that ammonium dihydrogen phosphate (NH,H.PO,), potassium dihy-
drogen phosphate (KH,POy,), potassium dihydrogen arsenate (KH;ASOy,),
and ammonium dihydrogen arsenate (NH,HzASOjy), all exhibited phase
changes at temperatures ranging from 91°K to 220°K. It was established
for potassium dihydrogen phosphate and potassium dihydrogen arsenate
by measuring the dielectric constant and the associated charge potential
loops, that these phase changes were of the ferroelectric type. Similar
measurements of ammonium dihydrogen phosphate (ADP) and ammonium
dihydrogen arsenate failed to show ferroelectric properties on account of
the sudden fracture of these crystals at temperatures above the ferro-
electric Curie temperatures. Furthermore, by extrapolating the dielectric
and piezoelectric measurements to low temperatures, it is doubtful if they
would become ferroelectric down to temperatures of 0°K.

1 Keller, A. C., * Submarine Detection by Sonar,” Trans. A.IE.E., Vol. 66, pp.
1217-1230, 1937.
®Busch, George, *“ Neue Seignette Elektrika,” Helo. Phys. Acta, Vol. 2, No. 3,

1938.
137
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Of these crystals, ADP is the only crystal that has had technical applica-
tion although the use of KDP has been suggested for use in filters by
Matthias and Scherrer.? On account of the high temperature coefficient
of frequency, however, which amounts to about 300 parts per million per
degree C in the room temperature range, it is doubtful if KDP would be
useful for this purpose. ADP is the crystal of the four isomorphous crystals
having the largest electromechanical coupling (30 per cent) and it is the
purpose of this chapter to describe its properties and applications. Since
KDP has considerable theoretical interest on account of its ferroelectric
transformation, its properties are also discussed.

8.1 Physical Properties of ADP and KDP
8.11 General Properties of ADP and KDP

ADP and KDP crystallize in the tetragonal scalenohedral class (sym-
metry ¥4 = Dyg or 42m on the Hermann-Mauguin system) with the habit
shown by Fig. 8.1. The ¢- or 2z-axis lies along the long direction of the
crystal. This is an axis of fourfold alternating symmetry. The »- and
y-axes, which lie normal to the prism faces, are axes of twofold symmetry.
Since the properties of crystal plates cut normal to these two surfaces are
identical, it is a matter of convention which is called ¥ and which y. The
two diagonal axes, labeled P; and Py, can be distinguished by piezoelectric
tests and P; has been taken as the axis along which a positive stress (ten-
sion) produces a positive charge at the positive (i.e. upper) end of the z-
axis. With the z-axis vertical and the P;-axis toward the observer's
right hand, the x-axis has been taken as the axis which runs from front
to back of the crystal and the y-axis from left to right. The density of
ADP is 1.804 while that of KDP is 2.31.

ADP and KDP have no water of crystallization and hence will not dehy-
drate when the humidity becomes low. At about 93 per cent humidity
the crystals will deliquesce and will pick up moisture from the atmosphere.
They are usually used under oil or in a sealed container so that this property
does not cause trouble. ADP can be taken up to 190°C before it melts.
However, ammonia is given off from the surface at temperatures above
100°C and since this impairs the adherence of the electrodes to the crystal
surface, it is desirable to keep the temperature of operation under 100°C,
This allows one to use the crystal under any likely atmospheric conditions.
Electrodes are usually put on by the gold-evaporation process. The
crystal can be cut by an abrasive disc, cooled by a saturated solution of

3 Matthias, B. and P. Scherrer, “ Crystal Band Pass Filters,” Helo. Phys. Acta,
Vol. 16, pp. 432434, 1943.
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the material, and can be surfaced by an abrasive belt cooled by the same
solution.

Due to the transmission of ions through the crystals, they have a volume
leakage, which for the purest salt is shown for ADP and KDP in Fig. 8.2.
The crystal structure of KDP is shown by Fig. 11.9 of Chapter XI and
it is seen that the PO, groups are bonded to other PO, groups by means

y

o°

100

'2/ \Y

Fic. 8.1. Crystal form and crystal axes for ADP and KDP.

of hydrogen bonds. An ion containing these bonds will have less activa-
tion energy than for most crystals and a lower resistivity results. The
presence of a field can cause a migration in the direction of the field which
is the source of the resistivity measured and plotted in Fig. 8.2.

A rough calculation of the conductivity* can be made as follows. In
order that a hydrogen bonded ion shall move from one position to another,

4 This calculation follows closely that given by J. Frenkel, Kinetic Theory of Liquids,
pp. 4048, Oxford University Press, 1946.
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enough energy must be imparted to it to break the bond. As will be
seen, this bond energy is in the order of 12.6 kilocalories per mole for Z-cut
KDP and 14.6 kilocalories for Z-cut ADP. The potential barrier that
has to be overcome in breaking this bond will be as shown by Fig. 8.3,
plotted as a function of the distance. There are two stable positions
separated by a distance 8 which for KDP is in the order of 4.6 X 1078 cm
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Fic. 8.2. Resistivity of ADP and KDP as a function of temperature.

on the average. The height of the potential barrier 7 in ergs is about 21
times the average potential energy of the ion, so that according to Maxwell’s
distribution law, the probability that a molecule will have enough energy
to cross the barrier and become free for a single try, is

e VAT 2 2 2 0.80 X 107° (8.1)

for a temperature of 300°K = 27°C. Multiplying this by », the number
of times per second that the molecule assaults the barrier, a;2, the number
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of transitions occurring per second from potential well 1 to potential well
2, is

aje = VE—W/kT = k—Z'Te—W/kT (8.2)

. . . kT .
According to Eyring’s reaction rate theory,» = — , where & is Boltzmann’s

h
constant, 4 Planck’s constant and T the absolute temperature.
When a field E is impressed across the crystal in the direction 1 to 2,
the potential well 1 will be raised with respect to the potential maximum

~
DISTANCE

L

Fic. 8.3. Potential well distribution for calculating leakage resistance.

W, while the potential well 2 will be lowered, as shown by the dotted line.
Then the difference between the bottom of wells 1 and 2 and the top of
the potential barrier are

Ees Ees
Wi=W -=25 Wa=W 45 (8.3)
where § is the potential well separation, e the charge on the nucleus, and
E the field which is also the applied field, since the current flow would
destroy any internal field of the Lorentz type. Hence ai2 and agi, the
rates of going from potential wells 1 to 2 or vice versa, are
kT _(w- kT _
alg = —e (W —Ees/2) /kT g = —e (W+Ee3/2) /kT (8.4)

A ’ A
The net flow in the direction of the field is

(axz —agy) = k_T: e~ W/kT [(M/zkr _ e—m/m]
h

. ﬂ Ees _wpr _‘?ﬁ‘; —W/T
2 T ¢ 5 ¢ (8.5)

The leakage current will be the number of cells # per sq cm times the
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charge ¢ times the net flow (a;2 — ag;) or will be
NE25?
; ¢~ W/kT

where N = n/8 is the number of molecules per cubic centimeter. The
resistivity per cubic centimeter will then be the field E per centimeter
divided by the current 7 per square centimeter or
E _ he"T h X9 X 1011W/*T
R = - = —< in cgs units =
i~ Nee "B N&s?
The activation energy # can be calculated from the data of Fig. 8.2,
from the resistivity as a function of temperature. By taking two tempera-
tures T3 and T2

(8.6)

§ = ne(arz — ag1) =

in ohms per cc  (8.7)

W/ETL
% S = 6% T [n-7] (8.8)
2
Hence
R,
klog, —
R1 wii 1 R2
log. R F [Tl - Tz] and W = (l ) —1—) (8.9)
Ty, T,

The expression in calories per mole is obtained by multiplying by
Avogadro’s number N4 = 6.06 X 10*® and dividing by the mechanical
equivalent of heat (4.187 X 107 ergs/cal). Hence

Nk log, (I; )
W (cal. per mole) = ( : : z = 12.6 kilocalories per mole

- 2 7 for Z-cut KDP.
T, Tz) 4,187 x 10

(8.10)

For Z-cut ADP the activation energy is 14.6 kilocalories per mole.

The constant of (8.7) is also of some interest. From X-ray data,
N =10%%5 = 4.6 X108 cmand 4 = 6.6 X 10727, ¢ = 4.8 X 10719, and
W/kT = 24.3 at 300°K = 27°C for Z-cut ADP. This gives a calculated
resistivity of 4 X 107 compared to a measured value of 2 X 10'°, This
makes it appear that the conductivity is due to an impurity, having a
lower activation energy than pure ADP, for which 1 molecule in 108 is
providing an ion.

Some confirmation of this idea is furnished by the work of E. J. Murphy,
who found that by taking the temperature up to 125°C a break occurred
in the resistivity curve and the activation energy indicated for the higher
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temperature was 20.4 kilocalories. Murphy ascribes this activation energy
to the pure salt and the lower activation energy to an impurity. Further
confirmation of this idea is had by introducing 0.006 molar per cent of
sulphate ions (SO,) into the crystal, which caused the activation energy to
drop to 10.9 kilocalories and the resistivity to 5 X 108 ohm centimeters
at 27°C = 300°K. This checks the idea that one molecule in 10* is
contributing to the conduction with a much lower activation energy. For
some applications it is necessary to specify a high resistivity and the
freedom from certain ions, such as the sulphate ions, has to be good.
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Fio. 8.4. Inverse susceptibility of ADP and KDP as a function of temperature measurements
along z-axis.

8.12 Dijelectric Properties of ADP and KDP

On account of their symmetry these two crystals have two dielectric
constants €;; = €22 and eg3. These constants have been measured for the
free crystal by Busch? and the writer.®> The results agree quite closely and
are shown by Fig. 8.4 for KDP and Fig. 8.5 for ADP. The dielectric
constant along the z-axis for KDP shows the very large peak associated
with a ferroelectric crystal at a temperature of 122°K and the dielectric
constant, becomes as high as 30,000. Below the Curie temperature, the

5 Mason, W. P., “ The Elastic, Piezoelectric and Dielectric Constants of Potassium

Dihydrogen Phosphate and Ammonium Dihydrogen Phosphate,” Pys. Rev., Vol. 69,
pp. 173-194, March 1 and 15, 1946.
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polarization exhibits hysteresis effects, and by taking the saturation value
for the hysteresis loop Busch? finds that the spontaneous polarization
as a function of temperature is shown by Fig. 8.6. The maximum polariza-
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Fic. 8.5. Dielectric constant of ADP and KDP along x-axis.
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Fio. 8.6. Spontancous polarization of potassium dihydrogen phosphate and potassium
dideuterium phosphate.

tion is in the order of 14,100 esu/cm? compared to 740 for rochelle salt.
By introducing deuterium in place of the hydrogen, Bantle® showed that

¢ Bantle, W., “ The Specific Heat of Seignette-clectric Substances. Dielectric
Measurements on KDjPO, Crystals,”” Helv. Phys. Acta, Vol. 15, pp. 373-404, 1942,
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the Curie point could be raised to 213°K. The dotted curve of Fig. 8.6
shows the measured spontaneous polarization. By going to temperatures
below 58°K for KDP and below 105°K for the deuterium salt, it was found
that the hysteresis loops disappeared and the dielectric constant dropped
to 40. It has been suggested that this effect is due to the freezing-in of the
domains so that they cannot be reversed even by the largest applied field.
Above the Curie temperature, the “ free ” dielectric constant for KDP
is given closely by the equation
e = 4.5 + 3122/(T + 151) (8.11)
where T is expressed in degrees centigrade. This indicates that the
dielectric constant is made up of a part that varies only slightly with
temperature, and another, due presumably to the hydrogen bond dipoles,

which varies inversely as the temperature difference. A similar equation
fitting ADP is

e = 7.0 4+ 2670/ (T + 287) (8.12)
indicating that the Curie temperature due to the hydrogen bonds is in the

neighborhood of absolute zero. No measurement has been made of the
clamped dielectric constant, but this can be calculated from the equation

fga = ég'a — 4w (dzecss); e151 = Efl — 4x(disers) (8.13)
and the evaluation of the piezoelectric constants given in the next section
and also in Tables XII and XIII.

8.13 Piezoelectric Properties of ADP and KDP

For the crystal class (¥3 = Dsq or 42m) the piezoelectric, elastic and
dielectric equations can be written in the form

Ty = 1181 + 1283 + ¢1383; Te = 5, Se — h3e(Dz/ax)

()
D.

Ty = 1381 + ¢2382 + €1383; E; = & h14Ss
Dy

Ts = 1381 + 1383 + 33833 Ey = 3 k1455 (8.14)
D,

Ty = ciuSq — h1a(Dx/4x); E, = pr h3eSe

Ts = cuSs — hu(Dy/47);

with similar forms for the other three methods for writing these equations.
The piezoelectric constant Az has been measured for these crystals
over a wide temperature range and has been found to decrease somewhat
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as the temperature is increased. If, however, we take the ratio of the
piezoelectric stress to the dipole polarization, a constant ratio f3¢ is obtained
which is independent of temperature. To obtain this constant using
equation (8.14), we note that

P 4P =P ) 4 Py =22 p, 819)
where P, is the polarization for electrons and atoms and P, is the dipole
polarization. «3, is the susceptibility due to electrons and atoms, and
€3, is the dielectric constant due to electrons and atoms, which from
equations (8.11) and (8.12) are 4.5 and 7.0 for KDP and ADP respectively.
Introducing (8.15) into equations (8.14), the equations for the piezo-

electric effect become

E.e,
Te = cBSe — /136( ey P,,,) ;

47
41’ (Ezego

E. =

2 + Pza) — h36Se (8.16)
n

€33

Solving these equations simultaneously

A S S
Ts - [cé)e + 36€3,€33 ] S6 _ ( S}l36633 )P;d;

41’(‘:?3 - fao) €33 — €3,
4xP, h3ges
E, = 41 _(33"‘33 )s6 (8.17)
€33 — €3, €33 — €3,

Hence the piezoelectric constant f3g relating the stress Tg to the dipole

polarization, is
h3e€3s
Sio =\m5—— (8.18)

€33 — €3,

The piezoelectric constant 43¢ was measured by measuring the resonant
frequency of a plated 45° Z-cut crystal and comparing that with the
resonant frequency for an unplated crystal. The frequency of the plated
crystal is controlled by s%; elastic compliance, while that for the unplated
crystal with an air gap holder is controlled by the elastic compliance s5.
As shown by equation (7.12) of the last chapter, these are related by the
equation

1 -8 =58/ (7.12)

where £2, the electromechanical coupling, is equal to

1!35 !aa 5_3_5241'
(&G
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Figure 8.7 shows the measured resonance frequencies for plated and un-
plated crystals-for KDP and Fig. 8.8 shows the same quantities for ADP.
From these the electromechanical coupling constant can be calculated and
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Fic. 8.7. Resonance frequencies for plated and unplated KDP crystals.

is shown plotted by Fig. 8.9 for both ADP and KDP. The curve for KDP
rises to a maximum of 92 per cent at —151°C, the Curie temperature, and
continues high to 80°K, the lowest temperature measured. ADP has
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Fic. 8.8. Resonance frequencies for plated and unplated ADP crystals.

about a 30-per cent coupling at room temperature, which is the highest
value for a non-ferroelectric crystal so far found. It increases to about
42 per cent at —125°C, at which temperature the crystal shatters to bits.
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This temperature is not a Curie temperature, for the dielectric constant
and coupling curves of Fig. 8.4 and 8.9 do not show any deviation from a
smooth curve as this temperature is approached. It was surmised® by
the writer that there was a second set of hydrogen bonds between the oxy-
gen and the ammonia ions and that the sudden shattering at —125°C is
due to a first-order change in the crystal structure connected with the
ammonium hydrogen bond system. The existence of this second set of
hydrogen bonds has recently been confirmed by Prof. R. Pepinsky’ by a
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Fic. 8.9. Coefficient of coupling of ADP and KDP as a function of temperature.

structure analysis of ADP. This ammonium hydrogen bond system may
explain why the coupling constant of ADP is so much larger than that of
KDP, for with the close mechanical coupling between all the POy ions that
occur through the ammonium hydrogen bonds, one would expect a larger
change in the lattice positions would be caused by a change in the HyPOq
dipoles than would occur in the KHpPO, case, where the POy ions are
coupled to the K ions by central electrostatic forces.

That the fracture at —125°C is not a change in the PO, hydrogen bond
system is confirmed by the work of Bartschi,® Matthias, Merz and
Scherrer. According to them the transition is due to the freezing of the
rotation of the ammonium ion similar to what occurs in ammonium chlo.
ride. By introducing thallium in the ADP crystal, they screen the
quadruple moment of NHy and lower the transition point to —180°C.

7 Private communication, to be published shortly.
8 Bartschi, P., B. Matthias, W. Merz, and P. Scherrer, Helo. Phys. Acta, Vol

18, Fasciculus Quartus, 1945.
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From these data, the data on the free dielectric constant given in Fig.
8.4 and Fig. 8.5 and the data on the elastic constant % given in the next
section, all of the piezoelectric constants can be calculated and are given

by Table XII for ADP and Table XIII for KDP.
TABLE XII

PiezoeLecTric ConsTaNTs oF ADP
Temperature

in °C dag X 108 236 X 104 g3 X 108 hge X 1074 €35 fze X 104
100 129.5 7.62 117 7.47 12.9 16.3
80 132.5 7.82 116 7.55 13.0 16.3
60 136 8.14 116 7.67 13.3 16.2
40 142 8.61 117.5 7.87 13.6 16.2
20 148 9.04 118.5 8.09 14.0 16.2
0 155 9.54 120.0 8.37 14.4 16.3
- 20 161 10.0 119 8.44 14.9 16.0
— 40 170 10.65 121 8.75 15.4 16.1
— 60 180 11.32 122 8.94 16.0 15.9
— 80 198 12.4 125 9.35 16.7 16.1
—100 207 12.9 126 9.6 17.3 16.1
—110 242 14.9 130 10.0 18.2 16.3
—120 261 15.4 132 10.2 18.6 16.3
—122 270 15.6 132 10.3 19.0 16.3
TABLE XIII
PiezoeLecTrIc ConstanTs oF KDP
Temperature
in °C dsg X 108 236 X 1074 g3s X 10° ks X 1074 €33 fag X 10—
100 50.4 2.91 36.8 2.16 17.0 2.95
80 54.0 3.17 37.2 2.21 18.0 2.95
60 59.0 3.5 38.6 2.32 18.9 3.04
40 63.2 3.8 38.8 2.35 20.3 3.02
20 69.6 4.26 39.4 2.44 21.8 3.07
0 76.2 4.73 39.6 2.50 23.75 3.09
- 20 85.9 5.39 40.4 2.58 26.0 3.12
— 40 98.6 6.24 41.0 2.66 29.4 3.14
- 60 119.0 7.55 41.5 2.73 34.9 3.14
— 80 153 9.75 42.0 2.79 43.9 3.10
-100 202 12.8 42.2 2.81 57.6 3.05
-120 334 20.8 . 43.0 2.93 89.8 3.08
-130 480 - 29.0 43.2 2.97 123 3.09
-140 975 47.3 43.4 2.98 200 3.06
—145 1465 70.0 43.6 3.02 291 3.07
-~150 4400 130. 44.0 3.07 542 3.10
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The first four columns of these two tables show the four standard
piezoelectric constants dzg, €36, g3 and Age. Of these for the ferroelectric
crystal, dsg varies by a factor of 88, ezg by 44.5, g3¢ by a factor 1.2, and Asg
by a factor 1.42. Hence the constants involving the electric displacement
D, are much more constant than those involving the field. However, if we
take a part of the displacement, namely, that part due to the dipole polariza-
tion, a much more constant ratio is obtained for both ADP and KDP.
The fifth column shows the clamped dielectric constant and from this and
the dielectric constant due to electrons and atoms which, from equations
(8.11) and (8.12), are respectively 4.5 for KDP and 7.0 for ADP, one can
calculate the ratio of piezoelectric stress to dipole polarization. This is
shown by the last column, for the two crystals and within the experimental
error is a constant equal to 16.2 X 10* for ADP and 3.1 X 10* for KDP.
It is this ratio of 5 to 1 that gives ADP the larger electromechanical
coupling and makes it the more useful crystal at room temperatures.

The other piezoelectric constant for these crystals is very small, and any
crystal with its major face cut perpendicular to the z-axis is very weakly
driven. The coupling is so small that measurements by the resonant and
anti-resonant method are not too reliable. The constants were measured
at one temperature by putting the crystal in an impedance bridge and
measuring the equivalent shunt resistance as a function of frequency near
resonance. The relation for a KDP crystal is

Frequency | 102250 [102270|102280 102290 102300102310 |102320| 102330

Equivalent shunt resist-
ance in ochms

1,200,000'680,000‘570,000|500,ooo|sso,oool7oo,ooo|9oo,ooo|1,1so,ooo

the crystal being a 45° X-cut with the dimension L = 19.56 mm;
W = 6.10 mm; T = 0.90 mm. The shunt capacity of the crystal was
54 uuf agreeing with a dielectric constant of 46 shown in Fig. 8.4. By
considering the equivalent circuit of a crystal, it can be shown that the
equivalent shunt resistance is given by the formula

r-m(gRe) (7-2)] e

where R, is the shunt resistance at resonance, Cp the shunt capacitance of
the crystal, r the ratio of Cp to the motional capacitance Cy, and fz the
resonant frequency of the crystal. From the measurements R, = 500,000
ohms, fr = 102,290 cycles; C = 54 X 107!? farads. At 40 cycles from
resonance, the ratio R,/R; = 2.4. This gives enough data to solve for r,
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which we find to be 26,400. The electromechanical coupling factor is
related to r by the equation

(8.20)

From the resonant frequency and the length, 55 is found to be 2.56 x 1072
cm?/dyne. Hence

T E
diy =2 Xk, /ﬁi.‘_” = 4.2 X 1078 for KDP (8.21)
vg

A similar measurement for the 45° X-cut ADP crystal gives
diy = 5 X 1078 (ADP) (8.22)

Hence although the dielectric constants normal to the x-axis are very
large, the piezoelectric constants for this direction are very small.

8.14 Elastic Constants for ADP and KDP

All the elastic constants of these two crystals have been measured over a
temperature range by the usual process of measuring longitudinal vibrations
for 6 oriented crystals, and face-shear modes for crystals cut normal to the
x- and z-axis. The constants s11, $12, $13 and s33 are independent of the
condition of the applied field and are shown by Fig. 8.10 for ADP and
Fig. 8.11 for KDP. The two shear-elastic constants do depend on the
field, but since the coupling is so small for fields normal to the z-axis, no
measurable difference is found for ¢44. Figure 8.12 shows the s44 and sg¢
constants for ADP. The sg¢ constant is given for the two conditions of the

electric field,namely, s& denoting a constant field and s denoting a constant

. .. 1
displacement. Similar measurements for KDP, plotted as ¢y = —
S44

and ces = ;l— , are shown by Fig. 8.13.
66

The temperature expansion coefficients for these two crystals are also of
interest and are shown by Fig. 8.14 for ADP and Fig. 8.15 for KDP.
ADP has nearly a zero temperature coefficient of expansion in the region
from 20°C to 80°C.

8.2 Useful Cuts and Applications of ADP Crystals
8.21 Useful Cuts for ADP Crystals

Since the gzg constant is so much larger than the g4 constant in ADP,
it is obvious that most of the useful cuts will be those that are normal or
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nearly normal to the z-axis. A crystal cut normal to the z-axis will gener-
ate a face-shear motion similar to that shown by Fig. 7.1B for rochelle salt.
By cutting the length 45° from the » and y crystallographic axes, a longi-
tudinal motion may be produced. The Z-cut and the 45° Z-cut crystals
are the principal cuts used for ADP crystals. The Z-cut has been used in
generating face-shear modes and in the production of torsional crystals.
The 45° Z-cut crystal has been used as the transducing element in under-
water sound equipment and in microphones, phonograph pickups, and in
other devices for transforming mechanical energy into electrical energy.
By cutting the major surface at an angle of 45° between the x- and z-axes,
with the width along the y-axis, a cut is obtained which will produce a
thickness-shear mode of high electromechanical coupling. Also if the
normal makes equal angles with all three crystallographic axes, a plate is
obtained which will generate a thickness longitudinal mode in the manner
of an L-cut rochelle salt crystal.® The coupling is less than can be
obtained in an X-cut thickness vibrating quartz crystal and therefore this
cut has not been used.
The equations of motion of a 45° Z-cut take the form

, D,
Si =T + &g
w

E. = —giTi + D, (8.23)

where g, = =59.2 x 1078 5B = 4.72 X 10712 cm?/dyne;

£36
2
1
o= = = 15.7

@ Bis

When used as a voltage generating device, the volts generated on open
circuit per dyne per sq cm for a crystal 1 centimeter thick, are

Evois = 1.78 X 107 volts. (8.24)

This is larger than for 45° X-cut rochelle salt. Because of the lower
dielectric constant this crystal has to be operated into a higher impedance
than does rochelle salt to obtain the same output. Crystals of this sort
are replacing rochelle salt for applications such as microphones and phono-
graph pickups because of their greater chemical stability and their ability
to withstand wide temperature variations.

® The L-cut rochelle 8alt crystal was first described by Cady, “ The Longitudinal
Piezoelectric Effect in Rochelle Salt Crystals,” Proc. Phys. Soc., Vol. 49, pp. 645653,
1937, and has been used to some extent in producing high-frequency longitudinal
vibrations in liquids.
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8.22 Applications of ADP in Underwater Transducers
The electromechanical coupling factor of ADP, given by the formula

Tl
_ %86 [ @ _ 3 (8.25)
k 2 Vdrsh

On account of this high coupling!® these crystals can convert electrical
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Fic. 8.16. Voltage breakdown of ADP crystals plotted as a function of crystal thickness.

into mechanical energy or vice versa, efficiently over a frequency range of
f8/fa = 136 (8.26)

The crystal limitations in transferring electrical power to mechanical
power are the breaking strain and the voltage gradient that the crystals
will penmt Experiments with ADP crystals show that they will break
if the strain exceeds from 5 to 10 X 10~ cm per cm. The voltage gradient
that they will stand, before a voltage puncture occurs, is a function of the
thickness of the crystal. Figure 8.16 shows the voltage gradient which
will produce a puncture in the average crystal when they are immersed in
an insulating oil.

The two types of units commonly used are shown by Fig. 8.17. The
quarter-wave unit is glued to a quarter-wave heavy metal backing plate,

10 Mason, W. P., Electromechanical Transducers and Wave Filters, Chapter VI and
VI1, D. Van Nostrand Company, Inc., 1942, 2nd Edition, 1948.
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usually with a ceramic or plastic insulator in between, and radiates its
energy from its free face. A half-wave unit works into a low mechanical
impedance on one end and radiates its energy from the other end. The
equivalent circuit for these types of units and methods for calculating their
efficiency, band widths, etc. has been discussed in the book, Electromechan-
ical Transducers and Wave Filters'® Chapter VI.

A large-scale transducer! using a number of quarter-wave radiators was
produced during the war by Bell Laboratories and incorporated as part of
QJA sonar system used by the Navy. The face plate of the transducer is
shown by Fig. 8.18, which shows 52 quarter-wave transducing blocks of
crystals which are glued to the same number of quarter-wave metal backing
plates and the whole assembly held by a thin, metal-face plate. The

RADIATING
FA(iE

LOW 'MECHANICAL
IMPEDANCE

QUARTER-WAVE
BACKING PLATE

(3) QUARTER-WAVE TRANSDUCER (b) HALF-WAVE TRANSDUCER

QUARTER ~WAVE
CRYSTAL

Fia. 8.17. Quarter-wave and half-wave transducers.

blocks on the outside are made of two ADP crystals, while those on the
inside are made of four ADP crystals. Since the same voltage is ap-
plied across all the crystals, the inner and thinner crystals operate at an
amplitude twice that of the outer crystals, which are twice the thickness of
the inner crystals. The purpose of this graduation was to suppress the
minor lobes that are only 13.5 db down from the main lobe if the whole
unit acts like a plane piston. This has been accomplished, as shown by
Fig. 8.19, which shows the measured and theoretical response of this unit
plotted as a function of angle from the normal. The measured side lobes
are at least 22 db down from the main lobe. The crystal groups are
connected electrically into halves about a vertical line and each half is
connected to the high side of a transformer; the low sides provide imped-
ance matches to the driver amplifier and receiver amplifier circuits. The
purpose of dividing the transducer in two halves is to allow a phase com-
parison of the received pulse on the two halves, which will locate the
direction of the pulse much closer than would be possible with the
directivity pattern of the transducer alone. The transformers are
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mounted within the transducer case. The contacts between the crystals
and their electrodes are gold to gold. Gold is evaporated on the crystals
and gold-plated metal foil is later attached to the prepared crystals by
glueing. This combination provides a very low interface electrical
resistance and consequently minimizes heating at this point during the
transmission of the high-power outgoing pulses.

The crystal array and resonator plate assembly are supported in rubber
mountings inside a steel case. A rubber closure essentially sound trans-
parent is vulcanized to the steel case forming the front face, as shown in
Fig. 8.20. The case is sealed by a rubber gasketed steel cover which also
serves to house the matching transformers within the cylindrical section.
A sound absorbent baffle, which consists of alternate layers of 100-mesh
wire cloth and expanded metal is fastened to the inside of the case directly
back of the steel resonators. The function of this sound-absorbent baffle
is to attenuate signals through the back of the transducer and also to
reduce reflections within the case. The transducer assembly is supported
by a flange at the top of the cover casting which is attached to the vertical
training shaft of the retracting gear. The transducer can be rotated within
a cylindrical space 12 inches in diameter. The entire transducer weighs
about 200 pounds.

The inside of the transducer is vacuum filled with electrical grade castor
oil from which air and water vapor have been removed by evacuation.
The crystal array has an effective area of 200 sq cm so that with an electrical
power input of the order of 100 to 150 watts, it corresponds to at least 0.5
watt per sq cm of crystal area. Because the conversion efficiency of the
crystals is nearly perfect, better than 80 per cent of this power is converted
into acoustic energy. By the time this energy has reached the front
surface it has spread out so that the energy density in the water is consider-
ably less than 3 watt per sq cm which represents the steady-state cav-
itation value for sea water at atmospheric pressure. It has been found
that many liquids including castor oil will support more energy density
than that indicated by the calculated steady-state value based on pres-
sure only. ‘The cohesive pressure of the liquid and the increases observed
for short pulse duration indicate that such projectors are capable of ra-
diating considerably more power.

The transducer is mounted in a stream-lined dome and the whole unit
can be drawn up into the ship by the retracting gear, shown by Fig. 8.21.
The details of the stream-lined dome are shown by Fig. 8.22. The front
part is a transparent .018-inch thick piece of stainless steel supported on an
expanded metal frame. In the back fastened to this bulkhead is an
absorbing panel and a reflecting pad to provide sound absorption for the
transducer and reflection of noise coming from the propeller. The
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directional pattern of the transducer within the dome is essentially the
same as that outside, and the use of the streamlined dome reduces materi-

casLE

CABLE SEAL

Fia. 8.20. Case and pc rubber transparent window for QJA transducer.

ally the noise generated by moving the transducer rapidly through the
sea water.

The details of the QJA system are described in the above-mentioned
paper.! Such systems were widely used during World War II, and they
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and other type systems employed ADP crystals to a very considerable
amount.

Fic. 8.21. Dome and retracting system for QJA sonar system.

8.23 Use of ADP Crystals in Producing High Strains in Metals

The particle velocity on the end of a quarter-wave or half-wave crystal
is equal to

£ =08y or §=233X10°85y (8.27)

where £ is the particle velocity, v the velocity of propagation (equal to
3.3 % 10% cm per sec for a 45° Z-cut ADP crystal) and Sy is the maximum
strain that the crystal will stand. This maximum strain occurs at the
middle of a half-wave length unit or at the glued joint for a quarter-wave
unit. Since the crystal is stronger than most of the adhesives that can be
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used to attach it to high mechanical impedance solid materials, the half-
wave length unit can be used to produce a higher particle velocity than the

quarter-wave unit.

BAFFLE

SOUND ——1
TRANSPARENT
WINDOW

Fia. 8.22. Details of transparent dome showing absorbing baffle.

With a maximum strain of 5 X 107 possible for ADP or most other
synthetic crystals, the limiting particle velocity is about 165 cm per sec,
and hence crystals cannot be used directly to produce very high strains in
metals, or terminal velocities approaching the speed of sound. If, how-
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ever, a crystal mosaic is glued to a metal rod tapered exponentially like a
horn, a very high strain and a very high terminal velocity can be produced
at the small end. Fig. 8.23 shows a construction used for testing fatigue
in metals. A crystal mosaic several inches in cross-section is glued to a
steel rod which tapers from the crystal area down to a thickness of 0.05

~~~~~ A= wavetencrr
(WHERE N=INTEGER)

-~

Fic. 8.23. Metal “ horn” for obtaining a large strain in a metal sample.

inch, after which it increases in diameter. The taper is an exponential
function of the length and must satisfy the relation.
2nf

T (8.28)

where the taper T is determined by the equation for the area
§ = Soe? (8.29)

f is the resonant frequency of the crystal, and v, the velocity of sound in
the steel. If the total length of the steel piece is made an integral number
of half-wave lengths of the crystal frequency, the glued joint will come
at a loop of the motion and will not be appreciably strained. The whole
system acts as a resonant system and produces a considerable motion for
small applied voltages. The particle velocity of the steel section adjacent
to the crystal is the same particle velccity as the crystal surface. Now
it can be shown that the strain in the bar of uniform section at the nodal
point (point of maximum strain), is equal to

S = /v, (8.30)

where v, is the velocity of propagation of the wave in the steel and £ the
particle velocity at the surface. The effect of the tapered section is to
increase the particle velocity in inverse proportion to the diameter. Hence,
if the diameter decreases from 2 inches to .05 inch, the velocity is multiplied
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by a factor of 40 and the strain at the nodal point is equal to

Sy = 40 X :— Se | (8.31)

where S, is the strain in the steel, §; the strain in the crystal, v, the velocity
of propagation in the crystal (3.3 X 10° cm per sec) and v, the velocity
of propagation in the steel—about 5.1 X 10° cm per sec. For a strain of
4 X 107* in the crystal, a strain of .01 can be generated in the steel. This
is sufficient to cause plastic deformation in the steel and by gradually
increasing the drive on the crystal the fatigue properties of the steel can
be investigated at a high rate of strain and velocity. It should be noted
that for the transformer formulae to remain valid, the largest diameter of
the metal horn should be less than a half-wave length for the frequency of
operation.

This same system can be used to produce a high particle velocity on the
small end of the steel bar. The only limitation is the strain that the metal
will stand. Other uses appear to be delivering a large amount of power for
a small area. By attaching a boring tool and using carborundum, a very
rapid drill is obtained.

By mounting a torsional crystal on the large end of the bar a torsional
vibration can be given to the bar and the properties of the material under
shearing strain can be tested. An ADP crystal can be made to vibrate
in torsion as discussed in Chapter XIV, by using the electrode system
shown by Fig. 14.7. The inside surface is covered by one electrode while
the two outside electrodes, each of which cover a 90-degree segment, are
connected together and form the other electrode. The centers of the two
outside electrodes are normal to the z-axis and the field is directed out
from the center for both electrodes, as shown in Fig. 14.7, thus producing
a shearing motion for one segment and the opposite shear on the other
segment so that the whole crystal is given a torsional motion. The use
of a torsional ADP crystal for measuring shear viscosity and elasticities
of liquids is discussed in Chapter XIV.



CHAPTER IX

ProrerTiES AND Usks or Etuyiene Diaming Tartrate (EDT) anp
Dirorassium TartraTE (DKT) CrystaLs

9.1 Introduction

During the last 10 years or more, the properties of synthetic crystals
have been investigated at Bell Laboratories with the aim of understanding
the properties of such crystals and in obtaining crystals of use for the
telephone plant. This search has recently resulted in two crystals of the
monoclinic sphenoidal class which have cuts having zero temperature co-
efficients, high Q’s, little or no water of crystallization, and a high electro-
mechanical coupling. These crystals are a suitable substitute for quartz
for use in electrical wave filters. The requirements for such crystals are a
rather high degree of frequency and inductance stability over a temperature
range from 55°F to 110°F, a good chemical stability against atmospheric
humidity conditions, a low mechanical dissipation, and a long-time stability
against structure changes which would produce a change or aging in
frequency or electrical properties.

Fortunately, these crystals were discovered before the end of the war,
for due to the large number of quartz crystals used in communication
equipment, a shortage of large-sized quartz crystals had developed. Dur-
ing the war, quartz crystals to the number of 30,000,000 per year, were
used in the communication equipment of the services for the purpose of
stabilizing the frequencies of oscillators. As the war progressed, it became
difficult to obtain large-sized crystals and toward the end of the war most
manufacturers were using crystals whose original weights were under 100
grams. With the end of the war, it has become difficult to obtain natural
crystals of sufficient size to supply blanks for filters which may run in
size up to 2 inches long. With these synthetic crystals, it is possible to
grow natural crystals of any desired size and hence the filter crystal supply
problem can be met.

These crystals are ethylene diamine tartrate! (CeH;4N3Og) and di-
potassium tartrate! (K¢C4H403-—%H20). The first has been given the

I'The properties of EDT are described in a paper ““ New Low Coefficient Synthetic
Piezoelectric Crystals for Use in Filters and Oscillators,” W. P. Mason, Proc. L.R.E.,
Vol. 35, No. 10, p. 1005, 1947, while the properties of DKT are described in a paper
“ Properties of Monoclinic Crystals,” PAys. Rev., Vol. 80, pp. 705-728, Nov., 1946.

165
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designation EDT and the second DKT. EDT has no water of crystalli-
zation and hence will not dehydrate. It will deliquesce or collect water at
humidities above 93 per cent, but since it is fabricated in low-humidity
rooms and mounted in sealed glass containers, this introduces no handicaps.
DKT has one molecule of water of crystallization for each two of potassium
tartrate, but this is tightly bound and tests show that no dehydration
takes place up to 80°C. The crystal deliquesces somewhat lower in
humidity — around 80 per cent — than does EDT. Of these two crystals,
DKT is more stable with temperature, but is harder to grow and requires
more careful handling than does EDT. Accordingly, the first commercial
application has been made using the EDT crystal. The Western Electric
Company has established a growing plant for this crystal at Allentown,
Pa., and is producing finished crystals of this material for filters.

As discussed in a recent paper by Walker and Kohman,? these crystals
are not grown by the rocking-tank method which has been used for rochelle
salt and ADP, because of the much greater tendency to crystallize from
solution spontaneously as compared with the other two crystals. Instead,
a rotary method has been used in which crystal seeds are mounted on a
spider rotated with a reciprocating motion through the saturated solution.
This motion keeps a constant saturated solution at the growing face of the
crystal. Experience has shown that if motion is stopped for a period of
several hours, the interfacial solution becomes less saturated, thus starv-
ing the crystal and causing the formation of a veil. The sotary motion
also tends to sweep out spurious seeds, permitting them to settle on the
bottom of the tank, where an unsaturated zone is maintained because
of the proximity of the tank bottom to the heating element located at the
base of the apparatus. The crystals can be grown by either starting with
a saturated solution at a high temperature and gradually lowering the
temperature, or by using a constant temperature and replenishing the salt
by a continuous process. The constant-temperature method is used at
the Western Electric plant at Allentown. The temperature is set at 43°C,
for it has recently been found that a hydrate of EDT is more stable below
41°C, and trouble has been experienced in growing this as a contaminant
when the temperature is lower than 43°C. The early process of growing
involves a capping operation in which the formation of natural faces occurs
on a cut plate of the proper cross-section, and a bar growth in which clear
material is grown on the capped plate. The capping operation can be
dispensed with if the growing end of the crystal is used as a capped plate.
The crystal has peculiar growing habits and will grow only on one end of
the y or & crystallographic axis.

2Walker, A. C. and G. T. Kohman, *“ Growing Crystals of Ethylenediamine
Tartrate,” Trans. AI.E.E., Vol. 67, 1948.
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The study of the methods of fabricating, mounting, methods for elimi-
nating interfering modes of motion, and testing, has been carried out under
the direction of R. A. Sykes. Part of this work is described in a paper by
Pennell and Griffin.® The bars used are up to 7 inches of clear growth
having a cross-sectional area of from 2 to 4 square inches. The cutting
and wafering is performed by a wet-string type of saw which cuts by dis-
solving the material locally along the cutting line. This machine is shown
by Fig. 9.1. The string saw consists of one or more endless strings running
over pulleys to give a taut vertical section similar to a ganged band saw.
Following cutting, the wafers are rough ground to give a flat face and a
straight edge and are X-ray corrected for face and edge orientation. They
are then ground to size on a wet-belt sander equipped with accurate ways
and holding fixtures. To prevent local heating, a liquid coolant is used.

Processing of the plates into finished crystal units now begins. The first
steps consist of etching the plates in a solution of alcohol and water to
remove any surface cracks, and attaching of four headed terminal wires by
a cementing process. These wires are only 8 mil inches in diameter, yet
can withstand loads of 7 to 8 pounds. They are located in pairs on opposite
sides near the center of the plate. The plate, with the wires attached, is
then coated to a thickness of a few hundred thousandths of an inch with
gold by an evaporation process and the plating on each major surface is
divided into halves by a sand-blasting process.

Frequency adjustment is accomplished by reducing the length of the
crystal by grinding the end with a fine abrasive paper. After adjustment,
the crystal is mounted in a cage and sealed in an evacuated glass con-
tainer, as shown by Fig. 9.2. Tests on the long-time stability of these
plates have been made over a considerable period. These measurements
show that a typical EDT crystal unit will frequency age about +40 parts
in a million over the first year. This aging rate is rapid at first, but
diminishes to almost zero at the end of the year. The same general sort
of thing occurs for the dissipation factor, the resistance decreasing to 50
per cent of its initial level and becoming asymptotic within a year. In
frequency aging, the dispersion is low enough so that the ultimate fre-
quency can be predicted and provided for during final adjustment. In
comparing the characteristics of the new EDT synthetic crystal units to
the more commonly used cuts of quartz for network applications in the
low-frequency ranges, it may be said that EDT is superior with regard to
inductance and ratio of capacitances, that it is approximately equal or
superior in temperature coefficient, physical size, and aging characteristics,

3 Griffin, J. P. and E. S. Pennell, “ Design and Performance of Ethylene Diamine
Tartrate Crystal Units,” Trans. 4.1.E.E., Vol. 67, 1948. Presented before ALE.E,,
Jan. 26-30, 1948.
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Fio. 9.1. String saw for cutting EDT crystals.
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but that it is inferior in regard to mechanical strength and dissipation
factor. However, (s as high as 30,000 are regularly obtained with the
mounted crystal and this is sufficient to meet the band-pass filter require-
ments for the high-frequency carrier systems.

The application of these crystal units to filters has been carried out
under the direction of A. R. D’Heedene and some of the work is described
in a paper by E. S. Willis.# The crystals have been applied in the 56-kc

Fic. 9.2. Mounted EDT crystal for filter uses.

pilot channel filters and in the 12-channel bank of the high-frequency
carrier systems, which provide very flat filter bands utilizing about 3300
cycles of a total frequency spacing of 4000 cycles for transmission of speech.
All the filters for the cable and open-wire carrier and the coaxial systems
use the same bank of filters which lie in the frequency region from 60 to
108 kc. 'The need for these new crystals arising out of the large growth
of the carrier systems and the dwindling supply of quartz, is summarized
in this paper. After considering alternate means for supplying these filters
it was decided, in ‘the interest of manufacturing effort and office space

*Willis, E. S., “Crystal Filters Using Ethylene Diamine Tartrate in Place of
Quartz,” Trans. A.IE.E., Vol. 67, 1948. Presented before A.LLE.E., Jan. 26-30,
1948.
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Fi1e. 9.3. Crystal filter circuit and resulting attenuation characteristic.

required, to develop the EDT crystal units. These not only maintained
the same operating frequency range as the present circuits, but also pro-
vided the following advantages:

1. The EDT filters can be designed to meet practically the same elec-
trical requirements as the quartz filters, thereby requiring only minor
systems circuit changes.

2. The EDT filters occupy the same mounting space as the quartz-
crystal filters, eliminating the need for extensive equipment design
changes. ‘

3. An independent source of piezo-active material is provided so that
growth of the long-distance facilities in the future will not be re-
stricted by the inability to import sufficient quartz.
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The initial application was for the pilot-channel filter used for picking
off a control frequency for adjusting the gain of the amplifiers of the system.
A ladder network was used with three shunt condensers and two series
crystals. The A type EDT crystal, described in section 9.3, was used
because of its greater temperature stability and smaller size.

The channel filters in the form of a bank of 12 ranging in frequency from
60 kc to 108 kc, require about 75 per cent of all the crystals used for filters.

Fic. 9.4. Finished filter assembly.

The type of circuit utilized, as shown by Fig. 9.3A, is similar to the quartz
crystal section described in Chapter VI, except that a shunt coil is used
between the two balanced lattice sections rather than series coils. For
the first six channel filters, ranging in frequency from 60 kc to 84 ke, the
Y-cut crystal described in section 9.3 is used. This crystal is used on
account of its high electromechanical coupling, which allows the impedances
of the associated coils and condensers to be maintained at a reasonable
value. The frequency stability of this cut over a temperature range from
55°F to 110°F, is about four times as good as that of the —18° X-cut quartz
crystal, which has heretofore been used in this type of filter. For the
upper six channels, the electromechanical coupling of the Y-cut is too high
and the (yalt 4 20°/ —5°) cut of Fig. 9.19 (which has been given the
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designation of B-cut), will probably be used. Fixed resistances are used
with these filters in order to equalize the losses over the frequency range.
The three coils are made with powdered-iron-dust cores having a good
temperature stability and a high Q. A typical filter loss frequency curve
is shown by Fig. 9.3B. The completed assembly is shown by Fig. 9.4,
which shows the four crystals mounted in glass sealed tubes, the three
coils, and the variable condensers. The fixed condensers and the resist-
ances are in the chassis under the base plate.

9.2 Properties of Ethylene Diamine Tartrate (EDT) Crystals

Monoclinic crystals are characterized by having two crystallographic
axes 4 and ¢ not at right angles to each other, and a third axis & that is
perpendicular to the other two. The c-axis is along the shortest distance
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Fig. 9.5. Method for relating rectangular axes to the crystallographic axes of a
monoclinic crystal.

of the unit cell while the J-axis is the axis of twofold symmetry. In
measuring the properties of a crystal, the calculations come out much more
simply for a right-angled system of coordinates. As shown by Fig. 9.5,
the method chosen for relating the right-angled x-, y-, z-systems of axes
to the 4, &, ¢ crystallographic axes of the crystallographer, is to make z
coincide with ¢, y with &, and to have the x-axis lie in the plane perpendic-
ular to the 4-axis and at an angle of 51’ above the g-axis for DKT. For
EDT the angle between x and @ is much larger, s.e. 15°30’.

The x-, y-, z-axes form a right-handed system of axes. Since é =yisa
binary axis, it is necessary to have a convention for specifying which end
of the axis is positive. This can be done by locating the two optic axes of
the crystal. A monoclinic crystal is a biaxial crystal and the plane that
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contains these two axes must be either perpendicular or parallel to the &
or y crystallographic axis. As shown by Fig. 9.6, for these two crystals
the optic axes lie in a plane parallel to the 4-axis and at an angle of 21° in
a clockwise direction from the ¢ or z crystallographic axis for DKT and at
an angle of 25° for EDT. Since +x lies at a counterclockwise angle of
90° from ¢, and +4 = +y makes a right-handed system of coordinates
with the ¥- and z-axes, the measurement determines the positive direction
of all three axes.

+z=¢C
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F1e. 9.6. Plane of optic axes with respect to the 4 and ¢ crystallographic axes.

DKT has two cleavage planes lying along planes determined by the
three crystallographic axes. EDT has one cleavage plane which is the
001 plane, i.e., the plane containing the @ and 4 crystallographic axes.
None of these cleavages are sufficiently bad to prevent lapping and grinding
these crystals by ordinary procedures. The density of EDT is 1.538 while
that of DKT is 1.988.

Since not all directions in the crystal are equivalent, useful cuts occur
in certain materials and modes at motion at definite orientations with
respect to the crystallographic axes. The quickest method for finding the
locations of these cuts in a suitable crystal substance is by determining the
values and temperature coefficients of the fundamental elastic, piezo-
electric, and dielectric constants of the crystal. From these fundamental
constants, the properties of any other orientation can be calculated by
applying mathematical formulae for transferrmg from the set of crystallo-
graphic x-, y-, z-axes to a rotated ', y', 2’ system of axes. Hence, if the
fundamental constants are known, the location can be calculated, in a
properly selected material and mode of vibration, of all crystal cuts having
such desirable properties as low temperature coefficients and high electro-
mechanical couplings.
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For a plated, non-ferroelectric type crystal such as these, the most
useful method of expressing the piezoelectric constants is that originally
due to Voigt, who expressed the six strains §; to Sg in terms of the six
stresses Ty to Tg and the three electric fields E;, E,, E,. The strains S,
83, 3 are the elongation per unit length along the x-, y-, z-axes respectively,
while the strains S4, S5 and Se represent the shearing strains around the
axes x, y, and 2, respectively, as discussed in Chapter III. The stresses
Ty, Ta, Ts similarly represent the stresses tending to produce elongations
along the x-, y-, z-axes, respectively, while Ty, T, Tg represent the shearing
stresses tending to produce shearing strains around the x-, y-, z-axes re-
spectively. The fields E;, E,, E, are the potential gradients (or the
potentials divided by the distance over which they are applied) existing
along the x-, y-, z-axes respectively. This relation shown by Equation
(9.1) is Voigt’s method of expressing the inverse piezoelectric effect. For
a monoclinic sphenoidal crystal, these equations take the form

Sy = shTh + staTe + s3Ts + s5Ts + dnE,
Sy = sHaTy + 55T + 555Ts + s5Ts + dasE,
83 = sisT1 + s53T2 + 533Ts + 535Ts + dasFy
Sy = s§4Ts + 545To + dvuEy + dayE,
Ss = 51sT1 + 53Tz + 535Ts + 555 T + dosE,
Se = 53aT4 + 565T6 + dieEz + daeEs

9.1

The ¥, to s& are the 13 elastic compliances of the crystal which are the
ratios of the strains to the appropriate stress when all other stresses and
the field are held constant, and dy4 to dsg the eight piezoelectric constants,
which are the ratios of the strains to the appropriate applied field when all
the stresses are held constant. The superscript E over the s%, s indicates
that the fields are held constant for the compliance measurements.

The direct piezoelectric equations express the electric displacement
generated in the medium along the three axes in terms of the applied
stresses and the applied fields. These become

T 7
D. = ks +ﬁ‘8'£" + d14Ty + d1eTe

4x 4x 4r
D T.E,
‘;! = _Gzzz'__y_ 4+ dnTy + d2eTe + d23Ts + dosTs 9.2)

D ehE:.  eRE
- -%+%—5+da47’4 + d3¢Te
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where €, etc., are the dielectric constants measured at constant stress T,
and D, D,, D,, the electric displacement along the three axes.

As discussed in Chapter X all of these constants can be measured by
measuring the resonant frequency, anti-resonant frequency, and the capaci-
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Fic. 9.7. Longitudinal elastic compliances of EDT plotted as a function of temperature.

tance at low frequencies of 18 oriented cuts. This process is described and
illustrated for several crystals in Chapter X and has been employed for
the EDT crystal, the resulting constants expressed in cgs units are shown
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Fio. $.8. Shear elastic compliances of EDT plotted as a function of temperature.

by Figs.9.7,9.8,9.9,9.10 and 9.11. Fig. 9.7 shows the longitudinal elastic
compliances, Fig. 9.8 the shear elastic compliances, Fig. 9.9 the cross
coupling elastic compliances, Fig. 9.10 the eight piezoelectric constants
and Fig. 9.11 the four dielectric constants — all plotted as a function of
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temperature. In deriving the elastic constants as a function of tempera-
ture, use has to be made of the temperature expansion coefficient in the
various directions, in order to eliminate the change in length and the change
in density. Measurements made by Mrs. E. A. Wood of the expansion co-
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F1a. 9.9. Cross coupling elastic compliances plotted as a function of temperature.
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F1o. 9.10 Piezoelectric constants of EDT plotted as a function of temperature,

efficient in the x, z plane are shown by Fig. 9.12 and the coefficient along
the y-axis is +20.3 parts per million per degree centigrade. From these

values the four temperature coefficients become

ap = 0; age = +20.3 X 10_0; agg = 80 X 10~°

ag = —32 X 1078

©.3)
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This crystal has a rather remarkable temperature expansion characteristic,
since it has a very high positive expansion in one direction (+90 parts in
108 per °C) and a small negative coefficient (—12 parts in 10® per °C) in
a direction perpendicular to the large coefficient. This temperature ex-
pansion property is the source of some trouble in handling, since the
crystal is likely to fracture if subject to sudden uneven heating or cooling.
This property also limits the rapidity with which a change in temperature
can be made in measuring temperature coefficients and is the source of
some trouble in cementing wires to the surface.
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Fic. 9.11. Free dielectric constants plotted as a function of temperature.

9.3 Useful Filter Cuts in EDT Crystals

For use in filters one of the requirements is that a single mode be ob-
tained which is separated in frequency from other interfering modes by a
considerable amount. This requirement can usually be met by utilizing a
longitudinal-mode crystal with its length two to three times the width.
By observing the data of Fig. 9.7, it is noted that both the elastic com-
pliances s& and s of EDT have minimum points at 20°C and hence
crystals cut with their lengths along either the x-axis or the z-axis will have
zero tempcrarure frequency values at about 20°C. Furthermore, these
two modes can be driven by applying a field along the y-axis, since
as shown by Fig. 9.10, there are values for da; and dp3 equal respectively
at 20°C to .

cgs units of charge
dyne per sq cm

dyy = +34 x 1078 3 dim = -31x107° (9.4)



178 PIEZOELECTRIC CRYSTALS AND ULTRASONICS  Cuar.9

o0 EXPERIMENTAL
= CALCULATED FROM

- ab
Va2sin2(e-76) + b2cos 2 (e -70)
WHERE 0=1-12.2 x16%, b=1+91.9x10

r

-1

FiG. 9.12. Temperature expansion coefficients of EDT in xz plane.

The elastic compliances for these two cuts are

s =388 x107'% s =9.8 x 10712 9.5)
and the free dielectric constant for both cuts is
2y = 8.22 9.6)

It has been shown that the electromechanical coupling factor &, and the
ratio of capacitances r for a longitudinal crystal are given by the formulae

2 (1 -
k -421‘1%4 r -~8-(——k—,—) ©.7)
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Hence, for these two crystals, y-cut, length along x, and y-cut, length
along z, the constants are respectively

k = .215;  r = 25.5 length along x,
k = .126; r = 76.5 length along 2 9.8)

The first cut, the 0°Y-cut with its length along x, has a high coupling
and low ratio of capacitance, a relatively small change of frequency about
the point of zero temperature coefficient, and a small change of coupling
with temperature. It is one of the most important filter cuts. On the
other hand, the 90°Y-cut, with its length along z, has a low coupling, a
large change in frequency about its zero temperature coefficient, and a
large change of coupling with temperature and hence has not found any
practical applications.

By combining the elastic constants according to the equation for a
rotated system of axes,® which takes the form

sE =I5 4 Bl (2shy + sbs) + Brd (258 + s5) + Wnsh + mbsh
+ min}(25ks + sby) + 2mdhisis + nishy + mihny (K + 258),  (9.9)

where the directions cosines /; to 73 for the rotated system are related to
the crystallographic axes x, y, 2 by the relation

(9.10)

it can be shown that there is another region for which zero-temperature-
coefficient crystals can be obtained. This region, as shown by Fig. 9.13, is
obtained by starting with a crystal whose thickness is along y and whose
length is along z, rotating the direction of the length by a counterclockwise
angle of 45° about the thickness, then rotating the crystal about its width
by a counterclockwise angle of 63°. According to a system of notation
proposed by W. L. Bond and adopted by the Committee on Piezoelectric
Crystals of the I.R.E., this crystal is designated as the (yztw, 45°, 63°)
crystal. The first letter indicates the direction of the thickness before
rotation; the second letter represents the direction of the length before
rotation; the third letter and the first number represent respectively the
axis of the first rotation, and the value of the angle measured in a counter-
clockwise direction, and the fourth letter and second number represent
respectively the second axis of rotation and the angle of rotation measured
in a counterclockwise direction.

5 See transformation equation of Chapter V, equation 5.69.
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For this crystal the direction cosines between the new rotated axes and
the crystallographic axes, assuming that z’ lies along the thickness of the
crystal, »” along the length, and y’ along the width (in a right-handed
coordinate system), are given by the equations

ly = sin ¢ cos 6; my; = — sin 6; 7y = cosfcose

lo = cos ¢; my = 0; Ny = —sing 9.11)
I3 = sin @ sin ¢; m3 = cos 0; ng = sin @ cos ¢
+z
/
/
/ 45%°
I, !
' \\ l!\ \\\
\\ / ".,\ N
re S 4Y

+X

Fic. 9.13. Orientation of A-cut crystal.

With these values, the piezoelectric constants of the rotated crystals

become
dia = cos® 0 [day sin? ¢ + da3 cos? ¢ + das sin ¢ cos o]

+ sin? 0 cos 0 {dsz — [(d1s + d3e) sin ¢ cos ¢ 9.12)
+ dyg sin® ¢ + da4 cos® o]}

while the elastic and dielectric constants are given by
sE = sF sin*pcost 0 + (2% + 5E) sin? 0 cos? 0sin? o
+ (2% + 55) cos* 0sin p cos® o
+ 25E cos* 6sin® p cos ¢ + 52 sin? @
+ (255 + sE) sin® 6 cos® 0 cos? ¢
+ 2% (cos* 6 cos® ¢ sin @) + 55 cost 0 cost
+ 2(s% + s5) sin® @ cos® 0 sin ¢ cos ¢ 9.13)
ex: = €11 sin® 0 sin? p + 2]y sin® 0 sin ¢ cos
+ €33 cos? 0 + ed3 sin® 0 cos® ¢
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With these equations the constants for the (yztw, 45°, 63°) crystal, which
has been given the designation A4-cut, become

dig = +31.0 X 107°8;  sE =555 x10712; T =650 (9.14)

Furthermore, by determining the elastic constant s as a function of
temperature, we find that the variation is very small.

The characteristics of a crystal in which the filter designer is interested
are the change in resonant frequency with temperature, the ratio of
capacitances in the equivalent circuit of the crystal, and the dielectric
constant. All the elements of the equivalent circuit (Fig.9.14) can be
calculated from these values. Figure 9.15 shows these values as a function

L c1t

FREQUENCY

fR |fA

REACTANCE

IL
N\
co

Fic. 9.14. Equivalent circuit and reactance frequency characteristic of piezoelectric crystal.

of temperature for temperatures from —80°C to +80°C. Similar quanti-
ties for the Y-cut crystal are shown by Fig. 9.16.

The A-cut crystal has a higher ratio of capacitances (lower electro-
mechanical coupling) than the Y, but has a considerably flatter tempera-
ture-frequency characteristic and hence is used in such applications as
pilot channels, where a higher stability and a lower coupling are required.
The Y-cut crystal has been used in applications where a high coupling
and a moderate temperature stability are required.

A monoclinic crystal has the advantage that with the large number of
elastic constants existing, a greater probability exists in balancing the
temperature coefficients of one constant against those of the other constants
and obtaining a zero temperature coefficient, but, it has the disadvantage
that with the large number of cross coupling elastic constants, the chances
of obtaining disturbing interfering modes is also larger. This is illustrated
by Fig. 9.17, which shows the frequency spectrum of a Y-cut EDT crystal
plotted as a ratio of width to length. The lower solid line represents the
resonant frequency of the main mode and the numbers on the figure are
the ratios of capacitance at 25°C. The top solid line is the coupled width
mode, which has relatively strong resonances. The first dotted line above
the main mode is the second flexure, which is coupled to the main longi-
tudinal mode through the shear coupling as in quartz. This becomes so
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strong at low ratios of width to length that it makes the crystal unusable
for ratios of width to length less than 0.31 and greater than 0.5. The
second dotted line represents another mode that causes a small interfering
effect. In addition to these modes, there exists a coupling to a thickness
flexure which makes certain ratios of thickness to length unusable.
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Fie. 9.17. Frequency spectrum of Y-cut crystal.

With all these limitations, the constants of the elements in the equiva-
lent circuit for a crystal shown by Fig. 9.14 cannot be obtained by varying
the width and thickness over wide ranges as can be done with quartz
crystals. To get all of these variations it has been found necessary to
employ more complicated orientations, which vary the fundamental
constants of the crystal without changing the temperature stability.
Since most of the crystals require a coupling greater than can be obtained
in the A-cut but less than in the Y-cut, we look for modifications in orienta-
tions surrounding the Y-cut.
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The simplest orientation to employ is a rotation about the thickness,
causing the length to vary from the x direction by +6°. The effect of this
rotation is to change the constants of the crystal, as shown by Fig. 9.18.
The top curve shows the frequency constant, at 25°C, of a crystal whose
ratio of width to length is 0.4. This increases for negative angles and
decreases for positive. The second curve shows the ratio of capacitances
as a function of angle, and the bottom curve shows the temperature for
which the temperature coefficient becomes zero. This increases for nega-
tive angles and decreases for positive angles.

Two other rotations are also possible: rotations about the width and
rotations about the length. As shown by Fig. 9.19, which shows the
principal filter orientations, so far found useful, an orientation of +10°
about the width was found and this has very similar characteristics to the
Y-cut crystal. A rotation around the length has also been tried and by
rotating +20° about the length and —5° about the resulting thickness, an
orientation, having a zero temperature coefficient, relative freedom from
unwanted modes of motion, and a relative inductance in the equivalent
circuit of Fig. 9.14, about 50 per cent larger than that for the Y-cut has
been found. This is shown on Fig. 9.19 as the (yxlr 2220° —5°) crystal
and it appears likely that this cut may be used for the higher channel
band-pass filters. It has been given the designation B-cut.

9.4 Properties of Dipotassium Tartrate (DKT) Crystals
The constants of DKT crystals are given in Table XIV.

TABLE XIV
ConstanTs oF DKT CrysTaLs
Piezoelectric Dielectric Temperature
C Elastic Compliances Constants Expansion
onstants Constants
dig = —25.0 X 1078533 = +2.24 X 1072 cm?/dyneje11 = 6.44 |1 = +12.0 X 10-¢/°C
415 = +65 512 = —0.08 egg = 5.80 g = +448
day = —2.2 s13 = —1.64 33 = 6.49 |agy = +32.0
dog = +8.5 515 = —0.64 e13 = .005|a33 = —12.0
dyg = —10.4 599 = +3.37 p = 1.988
doy = —22.5 593 = —1.05
dge = +29.4 . 595 = —0.57
dge = —66.0 sa3 = +3.86
S35 = +0.90
saa = +11.90
546 = +0.57
555 = +8.15
566 = +10.41
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Using these constants, some interesting cuts for DKT crystals have also
been found. Figure 9.20 shows two longitudinal cuts, the (zx745°) cut and
the (zx¢ 37.5°) cut, and one face-shear cut, all of which have zero temper-
ature coefficients of frequency around room temperature. Figure 9.21
shows how the resonant frequency and ratio of capacitances of the 45° z-cut
crystal vary over a wide temperature range. Comparing this with the

c=2Z

z z z AT
as° 2 CUT 37y zeur SHEAR CUT
L=2w L= 2w t=v
W w
w
A A
45> /Za'l{
x K x o

Fic. 9.20. Form of DKT crystal and useful zero temperature coefficient cuts.

data of Fig. 9.16 for a Y_cut EDT crystal, we see that the DKT crystal
has a higher coupling (lower ratio of capacitances) than does the Y-cut
EDT crystal and a frequency variation that is only about one third that for
the EDT crystal. It appears likely that when growing and processing
methods are further investigated, this crystal may have uses in apparatus
for which a large electromechanical coupling and a low temperature
coefficient are required.

The higher coupling existing in EDT and DKT crystals over what can
be obtained in quartz, also open up interesting possibilities. With this
coupling, band-pass filters having the channel band widths of 3300 cycles,
are possible at frequencies as low as 20 kilocycles. Also with the high
coupling, it may be possible to dispense with coils entirely in the high-
frequency range for voice channels and reduce the size and cost of such
filters. These possibilities have not yet been explored.
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9.5 Application of EDT Crystals in the Control of High-Frequency Oscillators

A high-frequency shear mode has also been found in EDT crystals which
has a zero temperature coefficient at room temperature. This crystal,
as shown by Fig. 9.19, has its major plane, the 001 crystallographic axis,
i.e., the plane determined by the  and 4 crystallographic axes. Figure 9.22
shows a measurement of a crystal having the dimension / along y = 1.737
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Fic. 9.21. Frequency constant, ratio of capacities, and dielectric constant of 45° Z-cut
DKT crystal as a function of temperature.

cm; w along 4 = 0.922 cm; ¢ = 0.874 mm. The resonance frequency
fr shown by the curve has a frequency that is given by the equation for a
crystal 1 mm thick

fr =foll —as(T — To)?] = 904,000[1 — 1.21 X 1078(T — 10°)%] (9.15)

where T is the temperature in degrees centigrade.

This is a rather large curvature constant a3 compared to what can be
obtained with a quartz crystal. For example, the curvature constant ap
for BT quartz, which is one of the cuts most widely used for high-frequency
oscillators, is

ag = 042 x 107° (9.16)

Hence, for a given temperature range on either side of the zero coefficient
temperature, the EDT crystal would have around 29 times as much
frequency change as the quartz crystal. Another way of expressing the
relation is that for a given frequency tolerance, the EDT crystal could
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cover only 1/v29 = .185 times the temperature range that the quartz
crystal could. This larger curvature appears to be possessed by all syn-
thetic crystals so far examined.

However, for the very wide temperature range required for military
application (—50°C to +90°C), a quartz crystal may not give all the
accuracy required and hence a moderate temperature control is often re-
quired. If a temperature control is used, it requires one only five times
as good to hold the frequency of an EDT crystal to the same variation as
a quartz crystal. For example, an accuracy of .01 per cent in frequency
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Fic. 9.22. Resonant and anti-resonant frequencies of thickness vibrating EDT crystal.

could be met by holding the temperature constant to +9°C and this is
easily held by even a snap-switch thermostat. Hence an EDT thickness
vibrating crystal has uses in controlling oscillators.

For a temperature-controlled crystal, it is desirable to have the temper-
ature of zero coefficient up around 70°C to 90°C in order that the thermostat
will operate under all ambient conditions. This can be obtained with an
EDT crystal by increasing the rotation angle about y. Figure 9.23 shows
measured values of this temperature in degrees centigrade as a function of
the angle of rotation of the normal from 2. The ratio of capacitances curve
and the frequency constant plotted in kilocycle millimeters are also shown.
For high angles of rotation, the coupling gets quite large and hence there
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is a large separation between resonant and anti-resonant frequencies. This
property of the crystal is of considerable use in a frequency-modulated
oscillator, for it allows a wide percentage swing of the resonant frequency.
By temperature controlling the crystal, the average frequency can be held
quite constant and the frequency swing made quite large, so that these
crystals have applications in frequency-modulated oscillators.
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Fic. 9.23. Frequency constant, ratio of capacities, and temperature of zero coefficient of
thickness vibrating EDT crystal plotted as a function of orientation.

The thickness of the crystal can be easily lapped down to one-third of
a millimeter, which will give a frequency of about 2.7 megacycles. On
account of the large electromechanical coupling, the third and fifth har-
monics are strongly driven and hence it should be possible to reach fre-
quencies as high as 13.5 megacycles. Hence for certain purposes the use
of EDT crystals to control oscillators is a distinct possibility.



CHAPTER X

MEASUREMENTS OF THE PROPERTIES OF A NUMBER OF
PiezoeLeEcTric CRYSTALS

In the program for measuring the properties of promising piezoelectric
crystals, the complete or partial properties of a number of crystals, particu-
larly if they appeared to have specific applications, have been published.
However, a number of crystals for which partial determinations have been
made, or for which there did not appear to be any specific uses, have not
been published. It appears worth-while to record all the measured
properties, since from them indications may be obtained of the effects of
chemical substitutions and of the types of molecular structure that result
in high piezoelectric couplings, low temperature coefficients, or related
quantities.

The crystals are grouped according to crystal classes, since similar
measuring methods are applicable to all members of a particular class.

10.1 Measurements of the Properties of the Cubic Crystals, Sodium Chlorate
and Sodium Bromate

Two crystals of the cubic tetrahedral class (symmetry T or 23) have been
measured® rather extensively since their crystal structure is well known
and measurements of their properties throw some light on the molecular
mechanism of piezoelectricity. These two crystals are sodium chlorate
and sodium bromate.

Measurements of the piezoelectric constant of sodium chlorate were
made as early as 1893 by Péckels, who obtained a value of 4.84 x 1078 cgs
units for the piezoelectric constant 4y4.2 Voigt® measured the elastic
constants and came to the conclusion that the crystal had a negative
Poisson’s ratio; i.c., the crystal would expand sidewise as it elongates
lengthwise. The measurements made here do not confirm this conclusion
and they have recently been checked by Bhagavantam and Surganarayon*
who used a piezoelectric wedge to measure the elastic constants.

! Mason, W. P., “Elastic, Piezoelectric and Dielectric Properties of Sodium
Chlorate and Sodium Bromate,” Phys. Rev., Vol. 70, pp. 529-537, Oct., 1946.

2 Voigt, W., Lehrbuck der Kristallphysik, B. Teubner, p. 873.

8 [bid., p. 741.

¢ Bhagavantam, S. and D. Surganarayon,  Elastic Constants of Sodium

Chlorate,” Phys. Rev., Vol. 71, No. 8, p. 553, April 15, 1947.
190 .
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X-ray crystal structure studies® show that sodium chlorate has four
molecules per unit cell. Each molecule consists of three oxygen atoms
arranged in the form of an equilateral triangle with a separation of 2.384
between oxygen centers, as shown by Fig. 10.1. The chlorine is located at
a distance of 0.48& above the plane of the oxygen atoms in a line through
the center of gravity of the oxygens. The sodium lies above the chlorine
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Fic. 10.1. Positions of sodium, chlorine, Fic. 10.2. Location of molecules in
and three oxygens in sodium chlorate. unit cell for sodium chlorate.

at a distance of 6.12A. On account of the large separation of the sodium
from the chlorate ion, it is probably the latter which acts as the dipole in
the temperature variable part of the dielectric constant. The dipole is
formed by the positive charge on the chlorine reacting with the center of
gravity of the negative oxygens. The evidence from the temperature
measurements is that this is a rotating dipole formed by an actual turning
through a very small angle of the plane of the three oxygen atoms and the
chlorine. The dipole moves very little at low temperatures, but becomes
more free to move at higher temperatures and at the melting point is
approaching the state of a ferroelectric crystal.

All of the properties of this crystal can be measured by employing three
oriented cuts. This follows from the piezoelectric equations for a cubic
crystal,

S1 = suT1 + 51272 + 51273 Se = s4Te + dI;Ez

Sg = 5121 + s T2 + 512735 o, = % E;:“ disT,

83 = 19Ty + 512T2 + suTs 8y = % = E;fl + diTs (10.1)
Se = T+ duiEs =D B,

S5 = s&,Ts + diuEy

8 Wyckoff, R. W. G., The Structure of Crystals, p. 276, Chemical Catalogue Co.,
New York.
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There are three elastic constants, one piezoelectric constant, and one
dielectric constant.

All cuts are taken normal to one of the three equivalent crystallographic
axes, which for convenience will be designated the z-axis. One cut has its
length 45° from the other two axes, one cut has its length 22.5° from one of
the axes, and the third with its length along one of the crystallographic
axes. The first two cuts are driven in their lowest longitudinal mode
and their length is made long compared to their width or thickness so that
the uncorrected compliance s§y is determined. Since the direction cosines
for these two cuts are

x y 2
’ .
x| h = cos b my =sinf; n =0
y/ 12 = = Sin 0; m2 = COS 0; ny, = 0 (10.2)
2 |l =0; mg = 0; ng =1

we have from equation (5.67) that the elastic compliance s% and the
piezoelectric constant 43, are given by the equations

5% = 511 (cos* 0 + sin* 0) + (2512 + 55;) sin® 0 cos? 6

/ . . .
day = dge sin 0 cos @ = di4 sin 6 cos 0, since dag = di4

The third cut with its length along x, thickness along z and width along y,
determines the shear-elastic constant s44. This crystal was about 6 times
as long as its width, and by measuring the fundamental and high harmonics
of the shear mode, the elastic constant 544 is determined according to the
equation

1

" (Yufr)e

where /, is the width, f the resonant frequency (which is most accurately
obtained by taking a high harmonic and dividing the resonant frequency
by the harmonic order), and p the density.

The measured values of the resonant frequency fg, the separation of
resonant fg and anti-resonant frequency fa4 (i.e., Af = fa — fg) divided
by the resonant frequency, and the dielectric constant measured at 1000
cycles, are shown in Table XV,

From these data and the density p = 2.49 at 25°C, one can calculate the
elastic and piezoelectric constants at a temperature of 28°C. Since the
resonant frequency of a longitudinal mode is given by

1

LTV

s (10.3)

(10.4)
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TABLE XV
MEeASURED PropErTIES OF SopiuM CHLORATE
Z-cut L = 22.5° |Z-cut,L = 45° 0° Z-cut, Free
from X from X L along X . .
:‘g"‘"‘“’g L=20.13mm |L =20.38mm|L =29.90 mm ﬁsf{f g_cfz Ié::::i;:::
mUegress T W= 269mm W= 2.71mm# = 6.02mm o
T= 1.00mm [{T= 1.0lmm{T= 1.04mm €n
28 193.2 ke cm 181 .8 kccm 108.6 0.000281 5.76
40 192.2 180.9 108.3 0.000317 5.8
75 190.2 179.3 108.2 0.000393 5.94
100 187.2 177.2 106.2 0.000465 6.05
130 183.4 173.5 104.2 0.000584 6.21
140 182.3 172.5 103.8 0.00065 6.27
150 181.3 171.3 103.1 0.000725 6.34
160 170.3 102.5 0.000807 6.41
170 178.6 169.2 102.0 0.000894 6.49
180 177.5 168.3 101.2 0.00098 6.57
190 176.1 167.1 100.4 0.00115 6.70
200 175.1 166.2 99.9 0.00134 6.81
210 173.1 164.5 99.1
220 172.2 163.3 98.3
230 170.3 161.3 97.2
240 168.5 160.2 96.2

where / is the length of the crystal, which has been assumed long and thin,
the values are

S5 at 22.5° = 2.69 X 1072 cm?/dyne;

Now since

s at 45° = 3.045 x 10712

(10.5)

s at 22.5° = sy3[cos? 0 + sin® 0] + (2512 + 5&) sin® 0 cos? @

where # = 22.5° we have
| Brge = T5511 + 125(2sy + 5K
B = Ssu + 25212 + 5f0)

Solving for 51, and (2612 + &), we find
511 = 2P — e = 2.335 X 10712 cm?/dyne
(213 + 5&) = 6fiue — Solinp = 7.51 X 1072 cm®/dyne

|

(10.6)

(10.7)
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The value of {5 can be obtained from the data on the 0°Z-cut and equation
(8.3). These give
1

= = 8. 12 . 2 .
“ (2 x 108,600)% x 2.49 8.54 X 107* cm®/dyne  (10.8)

Hence, we have

7.51 = 8.54) x 10712
g = UL =8 XN 0615 « 1072 em?/dyne (109)

2
Since the value of Poisson’s ratio is equal to
S12 515
=—_— == 2 10.10
‘ S 2.335 2 ( )

the value is positive and has an ordinary value contrary to Voigt’s measure-
ment indicating a negative value of —0.51.

The value of the piezoelectric constant can be obtained from the meas-
urement of the dielectric constant, the elastic constant of the 45°-cut
crystal and the separation of resonant and anti-resonant frequencies.
From equation (5.33), the coefficient of electromechanical coupling defined

by the equation
k -_
;531'3511!1
4x

can be calculated from the separation of (f4 —fr)/fr = Af/fr given in
the fourth column of Table XI. From the equation

2 = .000694; k = .0264; €3 = 5.76; st = 3.045 X 10712 (10.11)

hence

dgy = %1 =3.05 X 10%in cgsunits;  dis = 6.1 X 1078  (10.12)

This is slightly larger than Pockel’s measured value of 4.84 X 1078,

As the temperature increases, both the length and density change so if an
accurate measurement of the elastic constants is to be obtained over a
wide temperature range, account has to be taken of the temperature-
expansion coefficient of the crystal. These have been measured over a
range of temperatures by using an optometer mounted on a frame of fused
quartz. The expansion coefficient is measured® by determining the change
in length of the specimen compared to the length of a similar section of

¢ This measurement was made by Mrs. Elizabeth A. Wood.
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The results for sodium chlorate

and sodium bromate are shown by Fig. 10.3. Since the frequency of a
crystal is given by the equation

1
I# = 37

COEF. OF THERMAL EXPANSION

SUBSTANCE {108 x a4, PER DEGREE C)
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Fia. 10.3. Temperature expansion curves for sodium chlorate and sodium bromate.

and the frcquency constant f, = frly, where /y is measured at 25°C, the
elastic constant sfj is given by the formula

1

o=

1”&%ﬂ+qe—ﬁm2
(2fc;“1) P

_l+a(e -25)
(2f0)*p0

/ Po
(1 +a(e - 25)P

(10.13)
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where o is the temperature expansion coefficient of length which is the
same for all directions of a cubic crystal and © is the temperature in
degrees C. Taking account of this correction, the elastic compliances of
sodium chlorate are shown plotted by Fig. 10.4. As the melting point of
264°C is approached, the elastic compliances, in particular the shear
compliance, increases more rapidly with temperature. Similar curves for

-
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o e
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Fic. 10.4. Elastic compliances of sodium chlorate.

sodium bromate are shown plotted on Fig. 10.5. Since the melting point
of this crystal is around 420°C, the elastic compliances of this crystal are
very linear with temperature up to 200°C and it has been suggested that
this crystal could be used as a thermometer by comparing the frequency
of an oscillator controlled by a sodium bromate crystal with the frequency
of an oscillator controlled by a quartz crystal.

As the temperature increased, it was found that the dielectric and
piezoelectric constants also increased. At 200°C the leakage resistance of
the crystal became noticeable and became low enough at 210°C and higher
to make the measurement of the dielectric constant and the anti-resonant
frequency unreliable. The resistivity curve as a function of temperature
is shown plotted by Fig. 10.6. At 245°C the resistivity was low enough so
that no appreciable piezoelectric response was obtained, and at the melting
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point of 263°C, the resistivity was less than 1000 ohms per cubic centimeter.
This indicates that as the crystal approaches its melting point, it becomes
highly ionized with the chlorate ion separating from the sodium ion for a
large number of molecules. This behavior is usual for an “ ionic crystal.”
The logarithmic plot of resistance versus inverse temperature, which is
usual for crystals, is explained as a defect phenomenon in the crystal lattice.
Holes exist in the lattice and ions in the crystal can migrate through the
crystal by jumping into empty holes, leaving holes in the structure behind
them. In jumping from one position to a free hole, the ion has to surmount
a potential barrier of energy #. The applied field is not sufficiently

8

7 ISE.

m——— (25‘2*554)

VALUE OF ELASTIC COMPLIANCES
IN cM2/OYNE (x10712)
w

-20 20 40 60 80 100 120 140 160 180 200 220 240 260

TEMPERATURE IN DEGREES CENTIGRADE

Fie. 10.5. Elastic compliances of sodium bromate.

strong to accomplish this and it requires an accumulation of thermal
energy to cause the ion to move from one position to another. The
probability of changing positions under no external field is

a = CeViT (10.14)

where # is the value of the potential barrier, called the activation energy,
k Boltzmann’s ‘constant, and T the absolute temperature. When a field
is applied more movement occurs in the direction of the field than against
it, and this average flow times the amount of charge carried by the ions,
results in the leakage current as discussed in Chapter VIII. The fact that
there are usually two slopes is accounted for by two different mechanisms
having different activation energies and different multiplying constants C.
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Table XV shows the ratio of Af/fr for the 45° cut and the free dielectric
constant measured at 1000 cycles as a function of temperature. The

TEMPERATURE IN DEGREES CENTIGRADE
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Fic. 10.6. Resistivity of sodium chlorate plotted against 1/7T.

dielectric constants of sodium chlorate and sodium bromate as a function of
temperature are shown plotted on Fig. 10.7. The dielectric constant of
sodium chlorate can be expressed as a function of temperature by the
empirical equation

310 6750
320 -6 (320 — 6)?

where O is the temperature in degrees centigrade. This indicates that

e =47 + (10.15)
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there is a part equal to 4.7 that is independent of temperature and another
part that varies with temperature and becomes large for temperatures
approaching 320°C. The first part is caused by the electronic and ionic
polarizabilities, while the temperature variable part is caused by changes
of the dipoles. For sodium bromate, since the measured values are taken

7.0
s 6.8
% 6.6
oo NaC103 > g
g2 K= 47 +20__ 6750 X |
g -7 +320-T [320-7)2 Y ) =
Y s.0
é - /é\NeB\’Q;.3 v
- 5.8 P“ K=4.07+(W.T) ]
s 56
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3 5.4
> 8.2
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Fic. 10.7. Dielectric constants of sodium chlorate and sodium bromate plotted as a function
of temperature.

considerably below the transition point, a single term is sufficient to fit
the curve and we have
323
e =4.87 + @14 — 0) (10.16)
From the data of Table XV on Af/f, the elastic compliance for a 45°
cut and the free dielectric constant, the piezoelectric constant of sodium
chlorate can be determined as a function of temperature. This is shown
plotted by Fig. 10.8 as is also the 4i4 values for sodium bromate. If we
plot 1/dy4 for these two crystals, the values lie on a straight line, as shown
in the dashed lines of Fig. 10.8. The sodium chlorate curve, if we extend
it, has a zero value of 1/dy4 (infinity value for d14) at about 320°C, while
for sodium bromate this temperature occurs at about 415°C.  As discussed
in Chapters VII and VIII, the high value of the 4,4 piezoelectric constant
indicates that the crystal is approaching a Curie temperature for which the
dipoles are sufficiently free so that they can aid each other in orienting
themselves and would produce a spontaneous polarization. These tem-
peratures are somewhat above the melting points where the ions are free
translationally and indicate that the dipoles are due to an actual turning
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of the chlorate ion, since otherwise there is no reason why the Curie
temperature should be so closely related to the melting temperature.

The large variation of piezoelectric and dielectric constant with tempera-
ture allows one to make some calculations about the cause of the piezo-
electric effect. By employing the transformation equations between the
warious systems for writing piezoelectric equations, one can relate the
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F1c. 10.8. Piezoelectric constant d; for sodium chlorate and sodium bromate.

piezoelectric stresses to the electric field or the electric displacement D,
or can relate the piezoelectric strain to the electric field or the electric
displacement. These equations are for a cubic crystal

Se = 5e3Te + daoEs; S = s66Te + g368:; Te = cesSe — eseEs;

4rd.
Te = &S — hsed, where &, = D: hnd g8 = —p= ; (10.17)
4r €33
4xdse 1 1
ess = daecos; hae 3—:37;—[&’ cos =ES ‘6 P
‘.E
o = L]
o (l _ 47236"66)
&

If we calculate the constants dy4, €14, £14 OF A14 Which relate respectively
the piezoelectric strain to the electric field, the piezoelectric stress to the
electric field, the piezoelectric strain to the electric displacement, and the
piezoelectric stress to the electric displacement, we find that none of these
quantities are a constant over the temperature range. The one that is
most constant is the ratio A4 of piezoelectric stress to electric displacement.
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If, however, we segregate out a part of the electric displacement, namely
the dipole polarization, and calculate the ratio of piezoelectric stress to
dipole polarization, we obtain a ratio denoted by fi4 which is a constant
within experimental error for both sodium chlorate and sodium bromate.
The electric dlsplacement is equal to

D, E,

— =8 =—+P,,+ P 10.18

4T z 41’ + Z + zd ( )
where P,, is the polarization due to electrons and ions, and P,, the polariza-
tion due to dipoles. Since the polarization P,, is independent of tempera-
ture and stress and is proportional to the field, we can write

_1—)_2 E ,éo
4r

E
=8 = ;’ (1 + 4mwey) + Py = + Py (10.19)
where ¢ is the temperature and strain independent part of the dielectric
constant. Introducing this expression into equation (10.17), we have for
the form relating piezoelectric stress to electric displacement

Hseoess
4 (s — )

1433
and fia =5—— (10.20)

€33 — €

Ts = coeS6 — f1sPq Where cgg = cgs +

Calculating f4 for sodium chlorate and sodium bromate, we find that it is a
constant within experimental error equal to 9 X 10* for sodium chlorate
and 18 X 10* for sodium bromate. The constancy of this quantity indi-
cates that when the dipole turns through a small angle (which is propor-
tional to the dipole polarization), this produces a stress on the crystal
lattice which distorts it and produces a piezoelectric strain. Since the
compliance is a function of temperature, the resultant strain dipole polariza-
tion ratio is not as constant as the stress dipole polarization ratio.

By using the dipole piezoelectric constant, an equivalent circuit can be
obtained which takes account of the dielectric constant ¢, the dielectric
constant for dipoles 5, the coupling between the dipole polarization and the
piezoelectric stress, and the elastic compliance. At low frequencies, this
network is shown by Fig. 10.9. (eo/4r) represents the capacitance of a
crystal one cubic centimeter due to electrons and atoms, while (es/4r)
represents the capacitance of the crystal of one cubic centimeter due to
dipoles. The combination of three mutual compliances Cy, of which two
are positive and one negative, represents the coupling between the electrical
and mechanical properties of the crystal. Since the charge on the con-
denser (es/4x) represents the dipole polarization when the crystal is
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clamped so that no displacement can occur in the mechanical arm, the
dielectric constant is the clamped dielectric constant ¢5. The mechanical
elastic constant represented by the condenser Cg is the ratio between the
applied stress T; and the strain when the dipole polarization P, is sup-
pressed. By writing equation (10.20) in the form for a longitudinal
crystal, we have ’

4x
T, = c’flSl — fa1Pegs E, = P I Py — f2151
(63 — €)
(10.21)
h =B har€06s f ha1€5
where = —_— . = —r8
11 11 4"(65 _ 60) y 81 Eg — Eo
€d iy M
4w Cy  Cym Cp ar Cy  Cyng2 £ 8
I L I I L
ol N LI L
5%:: -CM== s—g:: “Cu==
() (e)

Fic. 10.9. Equivalent circuit of crystal showing effect of dipole coupling.

For the 45° cut, Ag; = k14 and f31 = fi4. When the crystal is clamped so
that no displacement occurs in the mechanical compliance Cg = 1/cf;,
the force applied by the mutual compliance capacitance Cy is

) J P .
GoP) (= 2) = £ = Pt v = (02D
The final arm containing Cg is the mechanical arm and the charge on
Cg, if T, is set equal to zero, represents the strain in the crystal due to the
applied field. If T is zero, the total capacitance as measured from the
electrical side is

S 8 T
Sl 1 e, & %«
Cutu| TG w T w-B e T OD

1 —-
41'6':1

whnere = d
‘fSI l":’.

is the dipole coupling constant, and represents the percentage of the
electrical energy in the dipole arm stored in a mechanical form. The
dipole dielectric constant for zero stress is the dipole dielectric constant
for constant strain divided by (1 — 43).
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If we define the square of the electromechanical coupling constant as
the ratio of the total input energy that is stored in mechanical form for a
static applied voltage, the electromechanical coupling is given by the
equation

L

= 2774 s _ S 10.
k2 R where € € + € (10.24)

If the dipole dielectric constant is small compared to the dielectric constant
for electrons and atoms, the electromechanical coupling is small compared
to the dipole coupling constant. These quantities have been evaluated
for four crystals and the results are shown in Table XVI.

TABLE XVI1
Material Sa1 o1 & ka &5 k
KH;PO«(KDP) 3.2 X 104 1.70 X 101! 17.4 114 | 21.9 .105
NHH MO, (ADP) 16 X 104 1.85 x 101! 9.7 .332 1 15.7 .285
NaClO; 9 X 10* 4.3 X 101! 1.0 .039 5.70 | .017
NaBrOg 18 X 104 4.2 x 10! 0.83 | .072 5.70 | .028

This table shows that the dipole constant f3; varies for different crystals
by a factor of 6 to 1, being highest for sodium bromate and lowest for
potassium dihydrogen phosphate. The last column shows the value of
the electromechanical coupling which is a measure of the amount of the
total applied electrical energy that appears in mechanical form under
static conditions. An examination of the data shows that this is low for
sodium chlorate and sodium bromate, because the electronic and ionic
polarization is large compared to the dipole polarization and hence only a
small fraction of the total input electrical energy goes into orienting the
dipoles. KDP, which has a smaller dipole piezoelectric constant, has a
larger electromechanical coupling because of the fact that the dipole
polarization represents about three fourths of the total polarization,
whereas for sodium chlorate it is only 0.2 of the total. Ammonium dihy-
drogen phosphate obtains its large coupling because of the fact that over
fifty per cent of the total polarization is dipole polarization and in addition
the dipole piezoelectric constant is large.

To complete the equivalent circuit of Fig. 10.9 for high frequencies, one
adds a mass equal to } the mass of the crystal, for a crystal vxbratmg
freely on both ends, and multlplles the compliance Cg by a factor 8/x? to
take account of the variation of compliance with frequency. The factor
8/x% holds for frequencies near the first resonance. This equivalent
circuit is shown by Fig. 10.9B.
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10.2 Measurements of the Properties of Trigonal and Hexagonal Crysials
10.21 Properties of Dextrose Sodium Chloride, Bromide and Iodide

The crystals of dextrose sodium chloride, dextrose sodium bromide and
dextrose sodium iodide all crystallize in the quartz class and hence are of
some interest in answering the question of whether crystals of similar
classes will have the same types of properties, such as, for example, tem-
perature coefficient of frequency. For quartz, the low and zero tempera-
ture coefficients of frequency are made possible by the fact that the cgg
shear-elastic constant has a positive temperature coefficient and by vari-
ous orientation processes, the positive coefficient can be made to annul
the usual negative temperature coefficients of frequency.

Measurements made for these crystals show that the shear temperature
coefficient of frequency is highly negative and hence crystals belonging to
the same crystal class do not always have the same types of temperature
coefficients. The piezoelectric constants are of the same order as quartz,
the elastic constants all have high negative coefficients of frequency and the
values of Q are relatively low. Hence it does not appear that these crystals
will be of practical use.

The method of measuring these crystals is to take four oriented cuts
with their thickness direction along the x-axis, and with their lengths at
orientation from —30° to +60° with respect to the y crystallographic
axes of the crystal, and to measure a Y-cut crystal in its face-shear mode
and its thickness-shear mode. These data are sufficient to determine the
six elastic constants, the two piezoelectric constants and one dielectric
constant. To determine the other dielectric constant, a crystal is cut
normal to the z-axis. Since no piezoelectric motion is excited by a field
along z, only the dielectric constant can be measured for this orientation.

Since these crystals belong to the quartz class, the elastic, dielectric
and piezoelectric equations are the same as those given by equation (6.1).
For the series of four oriented cuts all with their thicknesses along the
x-axes, the equations of motion for a long, thin crystal take the form

D T
S} = sETh + digEs; 8, = - ;—:—r E. +disT)  (10.25)

since all the stresses except T; are equal to zero for a long, thin crystal.
For crystals rotated by positive or negative angles of 6 with respect to the
y crystallographic axes

& = 5% cos® 9 + 533 sin® 0 — 25Ts cos® Bsin 0 + (233 + 554) sin® 0 cos? @

4= [..41,(1 + cos ;0) + dyy sin 2"] (10.26)
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These equations follow from equations (5.67) by taking the direction

cosines
x y 2
 |h=0; my = cos 0; n =siné
y |k =0; my = — sin 6; ny = cos (10.27)
2 |l =1 mg = 0; ng3 =0

and noting that for crystals of this class sa2 = 5115 S23 = 5135 S24 = —S1435

diz

—'du.

crystallographic axis measured in a counterclockwise direction.
The data for dextrose sodium bromide are shown by Table XVII.

In this equation 6 is the angle between the length and the y

TABLE XVII
Anti- . . .
. . Resonant Ratio | Coef- | Capaci- | Dielec-
Dimension Resonant X .
. Fre- of ficient |tance of tric
Cut in mm Fre- .
! w s quency enc Capaci- | of Coup-| Crystal | Constant
fr 1 Y | tances r ling & Mpf e
fa
—30° X-cut (4.38/1.28/0.96 | 371,280 — — — — —
0° X-cut [9.13|2.95/0.975| 177,500 | 178,990 | 182.5 | .082 1.0 4.1
+30° X-cut |9.89[2.70{0.99 | 158,600 | 158,972 | 213.0 | .0765 1.0 4.0
+460° X-cut (9.982.95/1.01 | 163,240 | 163,338 | 832.0 | .0385 1.1 4.0
Resist Fre-
a::‘ a-t Value [quency Elastic Piezoelectric Temperature
Cut Rcso:ance of Con- | Compliance Constant Coefficient
R 0 stant 592 dn of Frequency
Je
—30° X-cut —_ — 162.5 |5.62 X 10712 — —186 in 10%/°C
0° X-cut 38,000 | 3,900 | 161.5 {5.69 X 1012]11.0 X 1078 | —328
++30° X-cut | -100,000 | 5,280 | 156.5 {6.06 X 10™!%| 10.62 —285
+60° Xcut | 115000 { 5,500 | 163.1 [5.56 X 10712| 5.13 —210

From these data, equations (10.26), and the density p = 1.69, part of the
elastic constants and the piezoelectric constants can be determined.
The value of sf is determined directly from the 0° X-cut and is
55 = 5.69 X 10712, Since the term in $4 reverses sign on going from
positive to negative angles, we have

S22-90 = S3%we 0.34 x 1012

3 (10.28)

14 =
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The remaining two constants of equation (10.26) can be solved from the
remaining data and are given by the equations

s33 = 511+ 43514 + S22 — (%2:—”) = 523x 10712
(10.29)
(2513 + 544) = 3(S22300 + S22_300) — 66252340 — 3.315y; — 142514
= 12.6 x 10712

From the values of df; given in Table XVII and in the equations (10.26)
we find

diy = =110 X 10°8; 4y = —5.4 X 10~® (10.30)

These values are slightly larger than in quartz, but due to the much larger
compliance, the coupling factor & is even lower than in quartz.

To obtain the remaining elastic constants we have to evaluate the shear
elastic compliances. These can both be obtained from a Y-cut crystal
by measuring the thickness shear and the face shear, both of which are
driven for this type of crystal. To obtain the high-frequency shear mode,
a square crystal was cut and the contour dimensions were decreased until a
good resonance free from interfering modes was obtained. The data then
were taken and are shown by Table XVIII. The same crystal was then
ground down till its length was six times its width and the face-shear
frequency was measured. The results are given in Table XXXII.,

TABLE XVIII
Mod Dimension in mm | Resonant | Temperature |Diclectric/ Shearing
¢ ! w t Frequency Coefficient |Constant| Constant
High Freq. 7.04 7.04 1.05| 1,017,820 ~320 parts 4.0 cos =
Shear in 10%/°C 7.66 X 1010
Low Freq. 7.04 1.6 1.05 601,000 ~240 parts 4.0 =
- Shear in 10%/°C 6.34 X 1010

To obtain the s constants from the ¢ constants, we have to make use of the
relation derived in the Appendix Table XXXII, which can be written

s = (=1)"Hacw/ac (10.31)



PIEZOELECTRIC CRYSTALS 207

where a1 €12 €13 ¢y 0 O
C12 m s —c4 0 O
€13 €13 €33 0 0 0

A® = Cl4 =—C14 0 €44 0 0
0 0 0 0 €44 C14
0 0 0 0 o u-02

2

and A°Y is the determinant obtained from this by suppressing the ith row
and sth column. Solving these, we have

€33 | C44 €33 (44 —C(13
Bpy=—+—=; Wp=—=—; SHg= ;
al B, ’ 1 al Bl ’ 13 al )
—C14 tn + 12 ‘11 — Gz
S14 = "7 3 533 = 7 H S44 = 7 5
B a B
pIm
see = 2(s11 — 512) = ra (10.32)
4 2 ’ 2
where a = cza(cn1 + €12) — 2is; B = caalcry — c12) — 2i1s. Con-
versely, we can also write
533 S44 533 S44 —J513 —S514
kn=="+—7; Unp=—"¢=-—73 3= 3 = ;
a B a B a [+]
Can = S11 + S12 s = S11 = S12 _fu —az _ Su
o1 o2, 4 = 12, o5 = 12 _ 24
8 a g 2 28 (10.33)

2 2
where a = s33(s11 + 512) — 251335 B = s4a(s11 — 512) — 2974

The above measurements give some elastic compliances, and some
elastic stiffness constants. Since c¢44 and ce¢ are measured, we find on
solving the expression for ¢4y and cgg that

1 1 StaCaa
(511 = 512) = yom + \’(%“)2 + cos

o oL + 253 (10.34)
44 Caa L + \/ 1 + SaCaa
4o (4ce8)® *  cos

Hence with the measured values
& =158 x10713;, & = 4+ =6.55 x 10712
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and hence & = -0.86 x 10714 (10.35)

Hence all the constants are determined and are when collected together

st = 5.69 x 10712 533 = 5.23 x 10712 dy = —11.0 x 1078

5= -086x1012 f = -034x1072 4, = -54x10"8
513 = —1.60 X 10712 K =158 x 1072 & =40
€33 not measured (10.36)

The temperature coefficients of frequency of all of the crystal cuts were
measured and are shown by Tables XVII and XVIII. They are all found
to have high negative temperature coefficients. Hence there exists no
possibility of obtaining zero or positive temperature coefficients with this
crystal. This shows that crystals of the same class do not all have the
same type of temperature-coefficient response.

The other two crystals of this class, dextrose sodium chloride and
dextrose sodium iodide, have also been measured and the results are shown
by equations (10.37) and (10.38). Here also all the temperature coeffi-
cients are highly negative and no zero temperature coefficients are possible.
In dextrose sodium chloride

5 =638 x 10712 sa3 = 7.02 X 10712 dyy = —20.9 x 1078

&= 261 X102 & = 4036 X 107 dyy = +1.0 X 10~°
s1i3 = —1.6 X 10712 Jﬂ = 13.0 x 10712 €1 = 4.25

p = 1.564 (10.37)

For dextrose sodium iodide
& =602 x 10712 s33 = 5.16 X 10712 din = —11.4 x 1078
&= —343%1072  F - 4038 x 1072 4y, = 422 x 1078
513 = —0.62X 10712 & = 13.0 x 10712 & = 4.6
p = 1.864 (10.38)

Another crystal in the quartz class, aluminum phosphate AIPOy, has been
measured. This crystal has a melting point of 1500°C, is nearly insoluble
in water, and has a density of 2.566. The measured constants are

& = 1.61 X 1072 cm?/dyne 5 = 5.3 x 10712

i

&= —-01 x10712 5 =322 x 10712
5= —083 x 10712 dyy = £10.0 X 10~
J’fg = 40,89 X 10712 d1s = F4.65 X 1078

sE = +1.61 x 10712 dy = 6.05
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This crystal has all negative temperature coefficients in the room-tempera-
ture range. The crystal having the lowest frequency temperature coeffi-
cient is the Y-cut thickness-shear mode and at —40°C the temperature
coefficient is zero.

10.22 Properties of Crystals in the Tourmaline Class

Tourmaline belongs to the ditrigonal-pyramidal class (20) having the
symmetry cg, or 3m, which means that the z-axis is a threefold axis and that
there are three planes of symmetry for the crystal parallel to z. Its piezo-
electric and elastic constants have been measured by Voigt’ but previously
no measurements have been made of the temperature coefficients of the
crystal for various orientations. Measurements have been made and are
discussed in this section. It appears that the temperature coefficients for
all the modes of motions are negative and hence no possibilities exist for
zero temperature coefficient cuts.

Tourmaline has the same set of elastic constants as quartz but a different
set of piezoelectric constants. This necessitates a different set of crystal
orientations to obtain all the elastic and piezoelectric constants, since, for
example, a crystal cut normal to the x-axis cannot be driven in a longi-
tudinal mode. To obtain the set of crystals with lengths in the yz plane
as was done for quartz, we take a set whose thickness directions also lie
in the yz plane, as shown by Fig. 10.10. This series of four crystals
having lengths along the y-axis and at angles of 22.5°, 45° and 67.5° with y,
have the direction cosines given by equation (10.39) when the length of
the crystal is taken along the x’-axis, the width y’ lies along the negative
x-axis and the thickness lies along z’.

x y 2z
% h =0 my = cos 8 n =sinf
y’ 12 = -1 mg = 0 Ng = 0 (10.39)
2 =0 mg = —sinf  ng = cosf

Inserting these direction cosines in equations (5.67), the inverse of Young’s
modulus for the crystal length and the piezoelectric constant driving the
crystal become

& =50 cost 0+ (255 +55,) sin? 0 cos? 0 —25%, sin 6 cos® 0+55; sin6 (1040)
day = dgy cos® 8+ (dag — dy5) sin 0 cos 8 — das sin 6 cos® 6 )
Cx"ystals were obtained with the orientations shown by Fig. 10.10, and the

"Voigt, W., Lehrbuch der Kristallphysik, p. 753, B. Teubner, 1910,
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measured and calculated results are shown by Table XIX. The orienta-
tion in the first column is specified by a method adopted by the Piezo-
electric Standardization Committee of the I.LR.E. The first letter denotes
the direction of the thickness in the unrotated position, the second letter
denotes the direction of the length, the third letter denotes the axis of
rotation of the rotated cut and the angle given denotes the angle of rotation

b4

L1120

11

1010

Fic. 10.10. Set of crystals for measuring piezoelectric constants of tourmaline.

measured in a counterclockwise direction. The orientations used were
rotated in a counterclockwise direction from the y-axis. The second, third
and fourth columns denote the dimensions in millimeters; the fifth column
is the resonant frequency in cycles; the sixth column is the separation in
frequency Af between the resonant and anti-resonant frequencies; the
seventh column is the frequency constant, i.e. the product of the frequency
by the length of the crystal; the eighth column is the temperature coeffi-
cient of the resonant frequency measured from —50°C to +50°C given in
parts per million per degree centigrade. The ninth column is the free
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dielectric constant measured at 1000 cycles. The other four columns are
data calculated from the measured values in the other columns. % is the
inverse of Young’s modulus along the length of the crystal calculated from
the frequency constant and the density p = 3.1 from the formula

1
= 10.41)
Ju 2Visip (
The next column is the ratio of the capacitances of the crystal given by
_Jr
r=a 7 (10.42)

The electromechanical coupling can be calculated from equation (5.36)
and is plotted in the next to the last column, while the piezoelectric constant
da; can be calculated from the data of the table by using equation (5.33).
One extra crystal, the Y-cut crystal with its length along &, is also used
since the piezoelectric constant da;, which from equation (3.64), class 20,
of Chapter I11, is equal to dag, can be directly evaluated from the 4 constant
and from Table XV has the numerical value of 1 X 1078, From equation
(10.40) we also see that the first crystal of the table gives the numerical
value of d3; = 1.03 X 1078, There remain then the values of dy5 and ds3
to determine as well as the signs of the other two constants. Squeeze tests
by W. L. Bond show that the signs of these constants are negative.

By using the piezoelectric constants for a rotated crystal given by
equation (10.40), we find that to fit the measured values of the last column
of Table XIX, we have to have

dgy = —1.03 X 1078;  dpp = —1.0 X 107%;

10.43
(daz — dis) = +54 X 1078 ( )

The data for s&; given in the tenth column of Table XIX, will determine
three of the elastic compliances and one relation between the remaining
constants. s} is given directly by the first or last crystals and is

5 = 0.385 x 1072 cm?/dyne (10.44)

To obtain the other three values in (10.40), we have three equations with
three unknowns for the three different angles. For these negative angle
orientations we find on solving these equations that

S33 = 1.79511;1,.«: + .74311”_9 - 1.265511“5 - .265.!'11
S14 = —3.05.)‘11” - 0.5351“-,‘. + 1.79!11“0 -+ 1.79511 (10.45)
(2513 + i) = 8.85!11.'9 - 6.854‘11”_.. - 2.854'“,,“. + 2.85511
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where 115940 1S the value of 53 at the positive angle of 22.5° from y, etc.

and 511 is the value along y given in (10.44). Substituting in the values
from Table XIX, we find

& =0385 X 10712, oF =0.636 x 1072

10.46
255 + s5) = 1.402 x 107'%;  sE = 4.045 x 10712 ( )

All of these values agree quite well with those measured by Voigt, shown
by equation (10.47).

S11 = Sa2 = 0.398 X 10712 c11 = c22 = 270 X 10'° dynes/cm?

sag = 0.625 c33 = 161 dys = 11.0 X 1078
Sq4 = 555 = 1.51 C44 = c55 = 67 dyy = —0.94

512 = —0.103 c12 =69 dz =0.96

S13 = 23 = —0.016 €13 = o3 = 8.8 dsz = 5.4

S1a= —S24=Spg2=+0.058 14 = —co4 =56 = —7.8 (10.47)

The last column shows the piezoelectric constants measured by Voigt and
Rontgen, with the preferred values selected.?

To complete the measurements of the elastic and piezoelectric constants,
we need to measure two shear vibrating crystals. Since it is not possible
to obtain face-shear modes in this class for crystals cut along the crystal-
lographic axes, two thickness-shear modes, both driven by the piezoelectric
constants dys = da4, are used and the measured results are shown by
Table XX.

From these measurements we have directly that

cas = 65 X 10'° dynes/cm?;  ¢gg = 95 X 10'0;
dis = £109 X 1078

Using equations (10.34) of the last section, which applies to this crystal
class also, all the constants can be evaluated and are

(10.48)

511 = 0.385 x 10712 c11 =272 X 10'%dynes/cm?  dy5 = —10.9 x 1078
512 = —0.048 X 10712 ¢, = 40 % 10'° dag = —1.0 X 1078
518 = —0.071 X 10712 g =35 X 1010 dgy = —1.08 X 10~
530 = 0.636 X 10712 gz = 165 X 1010 dsg = —5.5 X 10~
g =154 X 10712 gpe = 65 X 1010 & =l =82
s1a = +0.045 X 10712 ¢4 = —6.8 X 1010 & =75

(10.49)

8Cady, W. G., Piezoelectricity, p. 227, McGraw-Hill Book Co., Inc., 1946.
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These signs of the piezoelectric constant are opposite from those given
by Voigt on account of a different choice of the +z-axis. All the tem-
perature coefficients are uniformly negative, of values from —40 to —60
parts in a million per degree C and hence no possibility exists of obtaining
zero temperature coeflicient of frequency cuts.

Two other crystals of the tourmaline class, lithium trisodium chromate
and lithium trisodium molybdate have been partially measured. Since
they dehydrate rapidly, it was not thought worth-while to make complete
measurements. The results obtained for these two crystals are given by
equations (10.50) and (10.51).

LITHIUM TRISODIUM CHROMATE HEXAHYDRATE

sip = 7.87 X 10712 Tsip = +7.5 x 107¢/°C
533 = 3.5 x 10712 Tss3 = +7.0 X 1074
(2513 + 544) = 0.9 X 10712 (2Ts13 + Ts4e) = +19 x 1074 (10.50)
dyg = +8.6 X 1078
& = 8.0
p =211
LITHIUM TRISODIUM MOLYBDATE HEXAHYDRATE
sino=295 x 10712 Tsyy = +7.3 X 107*/°C
sa3 = 2.71 X 10712 Tsgz = +5.9 X 107
(2513 + 544) = 7.05 X 10712 (2Ts13 + Tssq) = +4.0 X 107
(10.51)
dyg = +7.45 X 1078 & = 6.7
dg; = +£4.0 X 1078 &3 = 5.3
dsg = +5.8 x 1078 p =243

10.3 Measurements of Properties of Crysials in the Tetragonal Class

Three crystals of the tetragonal class have becn measured, ammonium
dihydrogen phosphate (ADP) and potassium dihydrogen phosphate
(KDP), whose constants were given in Chapter VIII, and nickel sulphate
hexahydrate. The first two belong to the tetragonal scalenohedral class
(11), (symmetry Y4; 42m) while nickel sulphate hexahydrate belongs to
the tetragonal trapezohedral class (12) (symmetry D, or 422). The proc.
ess of measuring crystals of class 11 is g take a set of fo als"perpen-
dicular to the @ = x crystallographic axis and another set perpendicular
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to the ¢ = z crystallographic axis. One of each set has its length along one
of the crystallographic axes, and the other three angles of 22.5° 45° and
67.5° with this axis. The crystal with its axis along the crystallographic
axis, is driven in a face-shear mode, while the other three are driven in
longitudinal modes. For crystals cut perpendicular to x, the longitudinal
modes are controlled by the elastic and piezoelectric constants

dyy = %—4 sin 20 (10.52)

1’ . .
5% = 511 cos* 0 + (2513 + 55) sin? 0 cos® 6 + 533 sint @

where 6 is the angle between the length and the y crystallographic axes.
Hence determining the elastic constants from the resonant frequency by
the equation

, 1

sH o= W (10.53)

the three moduli are determined by the equations
su = 170755 50 — s + 29358 5
s33 = 1.707sg75o — i + 293555 ¢ (10.54)
(2513 + sha) = bsf5e — 2shope — 2G5

For crystals cut perpendicular to the 2-axis
dg = d—;“-sinz 6 (10.55)
s% = 511 (sin* 0 + cos*6) + (2512 + 55) sin® 6 cos? @
and the equations for determining the constants become
si= (Bt shrpe) — Sbes (2512 + 563) = 6555 — 2 (Do g0+ 5Er.50) (10.56)

The face-shear mode perpendicular to the x-axis is controlled by the
shear-elastic constant ¢k, while the shear mode perpendicular to the
z-axis determines the shear constants cfg. This process was followed for
ADP and KDP and the results are given in Chapter VIII.

For crystals of class (12), however, there is no piezoelectric constant dag
and hence crystals cut perpendicularly to the z-axis will not be driven
piezoelectrically. To get around this difficulty, one crystal is cut as shown
by Fig. 10.11 with its length 45° from the z-axis in a plane 45° from the
x- and y-axes and with its thickness in the xy plane. This crystal has a
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piezoelectric driving constant, and an elastic constant

d .1 2512 + see
dy =3t off = ;[’23 T :as] (10.57)

and allows one to evaluate the sum (25,2 + s&). The other crystal, as
shown by Fig. 10.11, is cut with its width along x and its length and

‘!
z

(») (e)

Fic. 10.11. Crystal orientations for measuring constants of nickel sulphate.

thickness 45° between the y- and z-axes. This crystal has piezoelectric
and elastic constants equal to

E
‘1—;5 and ‘““2”5“ (10.58)

and hence can be used to determine cf.

Table XXI on p. 217 shows measurements for these 6 orientations for
nickel sulphate hexahydrate. From these measurements the constants
can be evaluated and are given by equations (10.59). The temperature
coefficients of all modes of motions are negative and no zero temper-
ature coefficients are possible.

s = 6.5 X 10712 d“ = 4180 X 1078 @
512 = —4.68 X 10712 & =62
— 12 T = 0,
513 0.13 x 10— €33 6.8 (10’59)
sz3 = 3.43 X 10712 p = 2.07

5§, = 8.65 x 10712
sk = 5.62 x 10712

9 It has recently been found that the piezoelectric constants of a number of crystals
were measured by Frederich Spitzer for his thesis at Goettingen in 1938. He
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10.4 Measurements of Crystals in the Orthorhombic Class

Six crystals of the orthorhombic class have been measured, all of them
belonging to the orthorhombic bisphenoidal class 6 (symmetry ¥ = D,
or 222) which is the class of rochelle salt. The method of measurement is
very similar to that of tetragonal crystals except that the process is
repeated for all three axes since the properties of all three axes are different.
The equations for the inverse of Young’s modulus and the longitudinal
piezoelectric constants for the x-, y- and z-axes are given by equations

(10.60), (10.61) and (10.62).

5% = 590 cos* 0 + (2523 + 55) sin® 0 cos? 0 + 535 sin* 6

dhy = -‘%—‘ sin 26 (10.60)

B = spcost @ + (2613 + 555) sin® 0 cos? 0 + s33 sin* 6

P (10.61)
2

s = 511008t 0 + (2512 + 55) sin® 6 cos? 0 + sq0 sint @

dgy = ‘%9 sin 26 (1062

Hence from measurements of three crystals, whose lengths are 22.5°,
45° and 67.5° from one of the crystallographic axes and whose thickness
lies along another axis, the elastic constants of these equations can be
derived. The equations for evaluating the constants from the measure-
ments are similar to (10.54). The face-shear modes for crystals cut
perpendicular to the x-, y- and z-axes are controlled by the elastic constants

1
- E o= s ,ge=lz (10.63)

1
cf4 :5” Se6

&

Hence twelve cuts in sets of four perpendicular to the three crystallographic
axes will determine the nine elastic constants and give checks on the sy3,
sag and s33 elastic constants. The three 45° cuts will determine the three

measured the constants of sodium chlorate, sodium bromate, nickel sulphate hexa-
hydrate, ADP, KDP; magnesium sulphate, lithium sulphate monchydrate, DKT
and ammonium tartrate. The values agree closely with the data presented in this
book and for nickel sulphate hexahydrate the value of dis found by Spitzer was
—15.9 X 1078,



220 PIEZOELECTRIC CRYSTALS AND ULTRASONICS Cuar. 10

piezoelectric constants, and low-frequency measurements of the capaci-
tances of any of the crystals perpendicular to the x-, y- and z-axes, will
determine the dielectric constants e}y, exp and exg.

The six crystals measured were lithium ammonium tartrate monohy-
drate, lithium potassium tartrate monohydrate, strontium formate
dihydrate, barium formate, iodic acid, and sodium ammonium tartrate.
The first two are isomorphic crystals and lithium ammonium tartrate has
one orientation having a zero temperature coefficient of frequency. Since,
however, the coupling is smaller than in ethylene diamine tartrate and the
curvature of the frequency with temperature is larger, this crystal has not
come into practical use. Perpendicular to the y-axis, the dielectric con-
stant and the piezoelectric constant get larger as the temperature is reduced
and some possibility exists that ferroelectric effects may occur at low
temperatures. This question is discussed further in section 10.6. Stron-
tium formate with two moles of water is fairly strongly coupled but
dehydrates badly and does not appear useful. Barium formate has no
water of crystallization but has a small coupling and all of its frequency
temperature coeflicients are negative. The fact that iodic acid (HIOj)
has large piezoelectric coupling coefficients was pointed out by the Naval
Research Laboratories!® and independent measurements have been made
by them of the fundamental constants. Sodium ammonium tartrate
tetrahydrate is isomorphous with rochelle salt. In spite of the rather
large piezoelectric constants, it is not likely to be used practically on
account of the very bad dehydration properties which are considerably
worse than those of rochelle salt.

By employing these methods of measurements it is found that the
elastic, piezoelectric and dielectric constants of lithium ammonium tartrate
at 25°C are '

s11 = 3.0 X 1072 cm?/dyne 55 = —0.82 X 10712 ¢} = 7.2

S22 = 2.56 513 = =027 X 10712 ¢, =80

sag = 3.5 s;s = —=1.22X 1072 ¢ =69 (10.64)
& =84 dyy = £132x10%% 5 =171

& =150 das = £19.6 X 1078

& =43 dge = +14.8 x 1078

19 Burstein, Elias, “Approximate Determination of the Piezoelectric Properties of
Small Crystals,” Rev. Sc. Inst., Vol. 18, No. 5, May, 1947,
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The temperature coefficients of these quantities have also been measured
and between —30° and +80°C have the following values.

Tsiy = +8.8 X 107 per°C  Ts3 = +6.0 X 107*

Tsys = +6.2 X 1074 Tdyy = +3.9 x 1073
Ts33 = +6.1 X 107 Tdos = —5.0 x 1073
TsE, = +6.7 x 107 Tdss = +3.1 X 1072 (10.65)
Tsk = —8.3 x 107 Ten = +1.9 x 1074
Tst = +109 x 10~* Tegz = —2.7 X 107*
Ts12 = +4.5 X 1074 Teg3 = —0.4 X 107*

Ts13 = +74.0 x 107

As with quartz, the zero temperature coefficient crystals are made
possible by the negative temperature coefficients of one of the shear
elastic compliances, in this case sf. However, the curvature of this
constant is so high that the temperature characteristic is very curved.
The properties of the crystals cut normal to the y-axis are discussed
further in section 10.6.

Only the three 45° cuts have been measured for lithium potassium
tartrate, since the results did not appear promising. From these the
following data are obtained.

Normal to x
e =28 x 10712 Tsfie = +5.4 X 1074
d“ = ﬂ:9.6 X 10—8 eﬁ = 5.84
Normal to y
e =572 x 10712 Tshe = +1.3 X 1074 1066
dys = £33.6 X 1078 & =7.32 '
Normal toz
e = 2.56 X 10712 T = +73 x 107*
dgg = £22.8 X 1078 & =74

p = 1.61
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The data for strontium formate dihydrate are given by equation (10.67)
and (10.68)

s = 2.84 X 10712 cm2/dyne Sag = —0.2 X 10712

s23 = 3.1 dyy = £25.6 X 1078

s33 = 3.1 dos = +34.6

55 =65 dsg = %=7.0

& =93 5;: = 6.1 (10.67)
& =58 e = 6.4

513 = —0.8 x 10712 &3 = 6.0

513 = +1.1 p = 2.25

The temperature coefficients for these quantities have been measured and
are shown by equation (10.68)

Tsiy = +10 X 107%/°C Tse3 = +42 X 104

Tsap = +5.5 X 107 Tdyy = —8 x 107*

Tszs = +5.95 X 1074 Tdys = —3.8 X 107

Tsg, = +4.6 X 10™* Tdzs = —14.7 X 107*  (10.68)
Tshs = +3.2 X 107* Te;; = —0.8 X 1074

Tsh = +4.7 X 1074 Tesy = —1.3 X 1074

Tsiz = +10.4 X 1074 Tess = +5.7 X 1074

Ts13 =0

On account of the low coupling only the face-shear modes have been
measured for barium formate. These yield the following data:

s =785 X 1072 cm?/dyne  dyy = +12 X 108

sk = 6.0 x 10712 das = +8 X 1078

& = 8.25 x 10712 dgg = £14 X 108 (10.69)
Tsk = +3.2 X 107*/°C 1 =79
Tsh = +3.2 x 1074 2 = 5.9
Tses = +3.9 X 1074 & =75

p = 3.261
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The data for iodic acid yield the following constants and temperature
coefficients:

511 = 3.98 x 10712 s12 = —=0.775 X 10712 ¢; = 7.5
s2 = 2.01 x 10712 513 = —0.97 x 10712 €2 = 124
s33 = 2.56 x 10712 s23 = —0.045 X 10712 ¢35 = 8.1
Ses = 545 X 1072 4y, = +£56.8 x 1078 p = 4.63
s = 4.56 X 10712 dys = 46 x 1078

Sgs = 5.76 X 1072 dgg = £70.5 x 1078

For the temperature coefficients all of them are positive and no possibility
exists for obtaining a zero temperature coefficient crystal.

I

(10.70)

Tsip = +7.0 x 107%/°C Ts12 = +9.3 X 107*
Tsga = +6.0 X 1074 Tsi3 = +11.0 X 107*
Tsa3 = +12.0 x 107* Tso3 = +1.7 X 1072 (10.71)
Tsk = +7.5 x 1074 Tdyy = +3.5 x 107*
TsE = +7.0 x 107* Tdys = —3.5 X 107*
TsE = +6.5 x 1074 Tdsg = —0.9 X 1074

Measurements have been made of sodium ammonium tartrate tetrahy-
drate that is isomorphous with rochelle salt. It is found that one of the
shear elastic constants st has a negative temperature coefficient and hence
a series of zero temperature coefficient of frequency cuts are possible.
However, since, the crystal dehydrates so badly it does not appear likely
that this crystal will be of any practical use, although the piezoelectric
constant along the y direction is rather large and increases with a lowering
of the temperature. The temperature coefficient of das is too low to
indicate any ferroelectric properties above absolute zero in temperature.
The measured constants are given in equation (10.72) while the tempera-
ture coefficients of these properties are shown by equation (10.73).

so=570 X 10712 5, = —155x 1072 f, = 90
sog = 3.85 X 10712 g3 = —22 X 10712 e = 89
g3 = 40 X 1072 g0 = —1.55 X 1072 & = 10.0
B =945 X10°¥ gy = £57.0 x 1078 p = 1.587
B =330 X 10712y = +95.0 x 1078
5o = 115 X 107'%  dgg = 31.0 X 1078

(10.72)
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For the temperature coefficients, we find

Ts11 = +9.0 X 10“‘/°C Tszg = —4.8 X 107

Tsye = +10.5 x 1074 Tdyy = +2.1 X 1074

Tsss = +11.4 X 1074 Tdos = 1.9 x 1078

TsE, = +4.4 x 107 Tdze = +12.1 x 10~* (10.73)
Tsk = —18.5 x 107 Ty = +1.0 x 107*

TsE = +4.6 x 10~ T = +3.0 X 1074

Tsyz = +4.8 X 1074 Tezg = +3.8 X 1074

Tsi3 = +5 X 107

The elastic and piezoelectric constants agree quite well with those
measured by Mandell.!!

10.5 Crystals of Monoclinic Class

A total of five crystals, all of the monoclinic sphenoidal class (symmetry
Cyor2), have been measured. Two of these, the ethylene diamine
tartrate (EDT) and dipotassium tartrate (DKT), have already been dis-
cussed in Chapter IX. The other three crystals are lithium sulphate
monohydrate (LiSO~H;0), tartaric acid (CHgOs) and ammonium
tartrate (N2C4H;204). Of these crystals lithium sulphate is shown by the
International Critical Tables to have the largest pyroelectric constant.
It has been pointed out by Dr. Hans Jaffe of the Brush Development Co.,
that lithium sulphate has one of the highest electromechanical couplings
(about 35 per cent) for a thickness longitudinal mode of any non-ferro-
electric crystal. This property may be of use in creating high power
ultrasonic waves in liquids. Another use of crystals of this class is in
obtaining hydrophones or other indicators of static or low-frequency
hydrostatic pressure. Up to the present time tourmaline has been the
crystal most widely used, but lithium sulphate and tartaric acid are more
sensitive than tourmaline. The open-circuit voltage for a hydrostatic
pressure is proportional to the ratio

Vo =K (da1 + fg + da3) (10.74)

for these crystals, while for tourmaline the open-circuit voltage normal to

31 Mandell, W., Proc. Roy. Sac., Vol. 121, pp. 130-140, 1928; Proc. Roy. Soc., Vol.
165, pp. 414431, 1938.
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the z-axis is

Vo = K(dal -::dga) - K(SS -+ 103) % 10-8
€33 53

= K(1.23 x 107®) (10.75)

For lithium sulphate and tartaric acid the ratios are respectively

450 + 5.5 — 11.6 s
o3 ) = K(3.7 X 1078);

23 + 6.3 + 6.5
(C4sHgOe) = K (——'—4‘?——

(LiSOs-H;0) = K(
(10.76)
) = K@3.5 x 107%)

Hence these crystals are about three times as sensitive as tourmaline and
provide an acceptable substitute for this relatively expensive material.
Crystals of this class have 13 elastic constants, 8 piezoelectric constants
and 4 dielectric constants. The process of measuring these constants is
described completely in a recent paper'? and was illustrated for the crystal
dipotassium tartrate (DKT). The process consists of measuring the
properties of four long, thin, oriented crystals cut normal to the x-axis,
four cut normal to the z-axis, five cut normal to the y-axis (which is the
axis of diagonal symmetry) and four doubly oriented cuts as described
below. The equations for the crystals cut normal to the x- and z-axes
are the same as for the orthorhombic crystals given by equation (10.60)
and (10.62) and from these one can determine
Sty S22, 33y Sa4y Jees 12 23, £dua, dse, €1, e (10.77)
by the process described in section 10.4. Crystals cut normal to the
y-axis have Young’s moduli 1 /11 and piezoelectric constants d3; defined
by the equations

F = 5% cost 0 + 2555 cos® Osin 0 + (255 + &) sin® 6 cos? 6
+ 25F sin® 0 cos 6 + % sint @ (10.78)
d31 = dgy sin® 0 + dog cos® 8 + das sin 6 cos 6

where 8 is the angle between the crystal length and the +2-axis measured
in a counterclockwise direction. Since there are five constants in the
compliance equation, five crystals are cut with their lengths respectively
along z, 22.5° from 2, 45° from z, 67.5° from z, and along x. The first and
last crystals respectively determine 533 and s§; and give a check on the
values determined from the x- and 2-cut crystals. The other three crystals

2 Mason, W, P., “ Properties of Monoclinic Crystals,” Phys. Rev., Vol. 70, pp.
705-728, Nov., 1946.
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determine 575, 535 and (2555 + s%) according to the equation

s = 3.40755 50 + 141455 5o — 240755 — SE — 1.914sF

5 = 34075 5 + 1.4145% 5o — 240755, — 5B — 191455

(25 + s5) = 13.62855% — 9.642(s5 5 + sE ) + 3.828(:5 + 55)
(10.79)

where 5% 5o, 55, 55 5o denote respectively the elastic compliances along the
direction 22.5° 45° and 67.5° from 2 measured in a counterclockwise direc-

2 z
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A 45"
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Fic. 10.12. Crystal orientations for measuring constants of monoclinic crystals.

tion. The value of the piezoelectric coupling for the crystals, with its
length along & and with its length along 2, determines respectively the
magnitude of d3; and dg3. The crystal cut at 45° between x and z, together
with the other two, will determine da5 according to the equation

dos = dyse — (da1 + d23) (10.80)

The values throughout the entire orientation allow one to determine the
signs of dog and das with respect to dz;. To determine an absolute sign,
one can resort to squeeze tests which will tell the polarity of the charge on
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the surface for a given distortion. The convention is adopted that a
positive d constant is one which gives a positive charge along the positive
axis when a positive strain (an extension in the case of a longitudinal
motion) is exerted on the crystal. Crystals cut normal to the three
crystallographic axes and vibrated in longitudinal and face-shear modes will
determine 11 of the elastic constants, 5 of the piezoelectric constants and
3 of the 4 dielectric constants. To determine the remaining constants
requires four more crystals which are rotated with respect to the crystal-
lographic axes. The ones chosen are (1), a crystal with its length along the
y crystallographic axis and its width 45° between the positive x- and y-axes,
vibrating in a face-shear mode; (2) a crystal with its width parallel to z
and its length 45° between the +x- and +y-axes vibrating in a longitudinal
mode; (3) a crystal with its width parallel to » and its length 45° from
+y and +z vibrating in a longitudinal mode, and (4) a double orientation
crystal, as shown by Figure 10.12D, a(y, z, ¢, w, 45° 45° crystal) vibrating
in a longitudinal mode. By introducing the appropriate direction cosines
in equations (5.67), (5.68), (5.69) and (5.72), it can be shown that the
elastic, piezoelectric and dielectric constants for these four oblique cuts are

dis + dig — d3s — dse i 61+ 2603 + e
2 ’ €61 = -

O(W,}', [) + 450) dlli =

o Ses — 256 + 5k

Se6 = R E— (10.81)
y) IZ4 efl + 5‘{2
O._(y, x, w, +45°), dgy = —0.3535[d21 + do2 — die), €3 = Y
E ok . K
o = St T (10.82)
T o, T
Os(2, 5, w, +45°),  dgy = +0.3535[dog + dao — das), €3 = 22—:*2‘-‘6—33'
E
dy = Bt s+ Do e (10.83)

4
O4(y, 2, ¢, w, +45° + 45°),
dgy = 0.1768[day + dag + das + 2dz2 — (dis + die + das + dze)]  (10.84)

o ﬁ{l + ég's + 2(‘3’2 + Gfs)

€33 2 i SE o= Teld + o8 + (T + 5))

+ 3% + B + f + ) + U + %)) + ok + 35 + ] (10.85)
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The first crystal allows one to determine e}y, sk and gives one relation
between four of the piezoelectric constants. The second crystal does not
give any new dielectric or elastic data, but gives a second relation between
three of the piezoelectric constants d;, do2 and dyg. The third gives a
third piezoelectric relation between das, d22 and da4, while the fourth
determines the elastic constant sb and gives a fourth relation between the
piezoelectric constants. To complete the piezoelectric constant determina-
tion, one thickness mode has to be measured, and usually the longitudinal
thickness mode along y is chosen on account of its interest for producing
high-frequency vibrations. This determines the magnitude of da.
Squeeze tests are then used to determine the sign, the test consisting of
compressing a crystal in the y direction, one side of which is connected to
the grid of an electrometer tube. By the direction in which the plate
current changed, the sign of the charge on the surface touching the grid is
determined. By pressing this same crystal along the x- and z-axes, the
signs of the constants d2; and dp3 can be determined.

The measurements on these 14 crystals cut normal to the crystallographic
axes and the four oblique cuts, together with the squeeze tests, determine
uniquely all of the constants of the crystal. However, one of these
crystals, the crystal cut normal to y and vibrated in a face-shear mode, is a
coupled-mode type of vibration. As shown in Chapter V, equation
(5.62), with the axes rotated to correspond to a Y-cut crystal with its
length along x, the elastic constant controlling the resonant frequency
of the face-shear mode is

1 C.E C.E __ \/ C.E _ CkE\2 4 C,E*
o= — o[ + ¢58 (flzlp 88 )" + 4eg (10.86)

w

where ¢§i%, ¢§s' and ¢GF are the contour clamped elastic constants. These
are related to si; constants by the equation
(__ 1 )k+l Alcl

G = 3

(k,7/=1,2,3) (10.87)

where A is the determinant
oS s
A= 5§ %
st 5% S5
and A* is the determinant obtained from A by suppressing the kth row
and /th column. Since all the s§ values have been determined but &,

the two relations can be solved simultaneously for s% and all of the elastic
constants can be determined.
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The constants measured at 25°C for lithium sulphate monohydrate
(LiSO4H20) are, for a left-handed crystal, p = 2.06, dielectric constants

and temperature coefficients

& = 5.6
& = 6.5
e = 10.3
ey = .07

[

Tel;
Tegs
Tels

Tels

= +7.8 X 107*/°C
= +1.6 x 10°*
+4.7 X 107
= —40 x 1073

(10.88)

PIEZOELECTRIC CONSTANTS AND TEMPERATURE COEFFICIENTS

diy =

+14.0 x 1078

dig = —12.5 X 1078
dyy = +11.6 X 1078
das = —45.0 X 1078
dog = —5.5 x 1078

des = +16.5 X 1078
das = —26.4 X 1078
dse = +10.0 x 1078

ELASTIC CONSTANTS AND TEMPERATURE COEFFICIENTS

st
!
st
sk
sts
586
&=
o5
L
sty
s
523
s

-0.95 x 10712
-0.5 x 10712

-0.36 x 10712
+0.71 x 10712
~1.20 X 10712
+0.05 x 10712
-0.41 x 10712

= 2.39 X 107'2 cm?/dyne
=213 x 10712
= 231 x 10712
= 3.69 x 10712
=41 x 1072
= 7.40 x 10712

Tdy4 = +3.6 X 1073/°C
Tdyg = +4.5 X 1074
Tdyy = +3.2 X 1073
Tdys = —1.5 X 107*
Tdyz = —6.1 X 107*
Tdys = —2.2 X 1073
Tdsy = —0.4 X 1074
Tdye = +3.6 X 1072
Tsh = 47.2 X 1074/°C
Tslh = +52 x 10
Tsgy = —0.24 X 1074
TsE = +2.5 x 10~
Tsps = +5.0 x 1074
Tsgo = +4.2 X 107*
Tsh = +1.6 x 1073
Tshy = 450 x 1074
Tsh =0
TsE = —1.5 x 107
Tsky = —6.0 x 107*

Tshy = —1.0 X 1072
Tsky = —8.0 X 1074

(10.89)

(10.90)
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For tartaric acid (C4HgOg) the measured constants and temperature
coefficients become

p = 1.760
DIELECTRIC CONSTANTS AND TEMPERATURE COEFFICIENTS
& =43 Te, = +2.6 x 107%/°C
e2:2 =43 :re2:2 = 426 X 10:44 (1091)
& = 4.5 T3 = +1.9 X 10
e = 0.55 Tl = +12.0 x 10°¢
PIEZOELECTRIC CONSTANTS AND TEMPERATURE COEFFICIENTS
diy = +24 X 1078 Tdyy = —6.0 X 1074/°C
dig = +15.8 x 1078 Tdyg = —5.0 x 107*
dyy = —2.3 X 1078 Tdyy = +9.6 X 10~*
dog = —6.5 X 1078 Tdys = +2 X 107* (1092)
dyz = —6.3 X 1078 Tdyz = +5.3 x 1074
dos = +1.1 X 1078 Tdes = +2.5 X 107*
dyy = —32.4 X 1078 Tdyy = +1.0 x 1074
dyg = +35.0 X 1078 Tdze = —0.65 X 107*
ELASTIC CONSTANTS AND TEMPERATURE COEFFICIENTS
5 =216 x 10712 55 = +2.76 x 10712
& =177 x 10712 S5 = —29 X 10712
& = 3.85 x 10712 b= —1.64 x 10712
& =126 x 10712 Ts% = 439 x 107¢/°C
& =17.5 x 10712 TsE, = +10.8 x 1074
& =9.62 X 10712 Tsh = +6.7 X 1074
&5 = —0.61 x 1072 Tsg = +53 x 107
o= —1.5 x 10712 Tsh = +1.5 x 107* (10.93)
&= -18 x107'2 Tsh = +4.1 X 107*
Sy o= +2.8 X 10712 Tsh = +09 x 107
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Tsh = —4 x 1073 TsE = +3.0 x 1073
TsE, = +3.8 x 1073 Tsh = =52 x 107¢  (10.93)
Tsh = +2.6 x 1073 Tsh = +3.2 x 1073

For ammonium tartrate (NoC4H;504) only partial determinations have
been made since the measured couplings were small. Only the crystals
cut normal to the three crystallographic axes were made and these de-
termine the values

p = 1.601
DIELECTRIC CONSTANTS AND TEMPERATURE COEFFICIENTS
e, = 6.45 Te; = +3.5 X 107%/°C
& =638 Tel, = +7.4 X 10~* (10.94)
e = 6.0 Tel; = +2.8 X 107*

PIEZOELECTRIC CONSTANTS AND TEMPERATURE COEFFICIENTSla

diyy = +14.6 X 1078 Tdyy = —5 X 1074/°C

dgg = +17.5 x 1078 Tdez = +5.6 X 107*

dyy = 420 x 1078 Tdyy = —3.2 X 1073 (10.95)
das = —3.0 X 1078 Tdys = —2.3 X 1073

dge = +8.8 X 1078 Tdzg = —6.10~*

ELASTIC CONSTANTS AND TEMPERATURE COEFFICIENTS

55 = 3.60 x 10712 Tsf = 4+7.4 x 107*/°C

s =371 x 10712 Ts3p = +3.5 X 107*

553 = 3.50 x 10712 Tsis = +4.6 X 107*

& = 18.5 x 10712 Tsty = +9.0 x 10~* (10.96)
s& = 8.50 x 10712 Tses = +6.5 X 10~*

S = -12x 10712 Ts¥ = +6.8 x 107*

& = 4035 x 10712 Tsk = —4.2 X 1073

13 Piezoelectric constants of these three monoclinic crystals are given in reference
9, and the piezoelectric constants and part of the elastic constants have been measured
by Dr. Hans Jaffe, Bruch Co. report No. W-28-003 to U. S. Signal Corps. All three
sets of piezoelectric constants agree closely and for ammonium tartrate Spitzer and
Jaffe have shown that the largest piezoelectric constant is dy; having a value of
+26.0 X 1078, This results in an electromechanical coupling factor of 20 percent
for a thickness Y-cut crystal.
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10.6  Possible Ferroelectric Properties in Crystals Measured

Of the crystals measured over a wide temperature range, the only ones
(besides rochelle salt and KDP) that have high enough temperature
coefficients of piezoelectric constants to indicate possible ferroelectric
effects above absolute zero, or below the transition temperatures of the
crystals, are sodium chlorate and bromate (investigated in section 10.1),
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Fic. 10.13. Value of 1/dss plotted against temperature for lithium ammonium tartrate.

ethylene diamine tartrate (EDT) and lithium ammonium tartrate. For
the latter two the piezoelectric constants dp) and dzs respectively increase
markedly as the temperature is lowered.

In searching for ferroelectric properties in crystals, the two most promi-
nent characteristics are large variations with temperature of the dielectric
constants and the piezoelectric constants d;;. As shown in the next
chapter, the clamped dielectric constant and hence also the “free”
dielectric constant for a ferroelectric crystal, outside of its ferroelectric
region, satisfies approximately a Curie-Weiss law of the type

C
€ =¢ + F:_T_'; (10.97)

where T, is a Curie temperature, i.c. a temperature for which the dielectric
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constant becomes very large and for which a spontaneous polarization

occurs,
Since the d piezoelectric constants satisfy the tensor equation
T
€mn
dnkl = Zmki iy (10.98)

and since the g piezoelectric constants have been found to change only very
slightly with temperature, it is obvious that the 4 piezoelectric constants
will become large in the neighborhood of a Curie temperature.

If we plot 1/dys for lithium ammonium tartrate as a function of tempera-
ture, the curves of Fig. 10.13 result. The curve for EDT has been taken
down to the temperature of 120°K, and if we extrapolate the curve down to
absolute zero, it does not appear that EDT would become ferroelectric.
However, the curve for lithium ammonium tartrate is quite straight over
the range —150° to 80° (123°K to 353°K) and if extended down would
indicate a Curie temperature or some transition effect at about 94°K.
No further measurements have been made for this crystal at lower tempera-
tures since the systems available did not give a lower temperature.



CHAPTER XI
THEORY OF FERROELECTRIC CRYSTALS

A ferroelectric type of a crystal is one which exhibits a spontaneous
polarization in one or more directions of the crystal over a definite tempera-
ture range. The phenomena associated with a ferroelectric crystal are a
polarization field curve that occurs in the form of a hysteresis loop, a
strain field curve that also occurs in a loop, and a wide variation of the
principal properties of the crystal as a function of temperature.

Considerable progress has been made in the last few years in analyzing
the properties of ferroelectric types of crystals and in locating the causes
of the ferroelectric anomalies. As shown by the data of Chapters VII,
VIII, and X, if we plot the piezoelectric stress or strain of the crystal as a
function of the electric displacement or the polarization of the crystal, a
single-valued function results, or in other words, the strain was a double-
valued function of the field because the electric displacement and polariza-
tion were double-valued functions of the field. In particular, it has been
found that if one plots the piezoelectric stress as a function of the dipole
polarization, a constant ratio f;; is obtained. Not much progress has been
made in calculating the ratio f;; from the atomic arraignments of the
crystal lattice. The only attempt is that of Born! and the results do not
agree with experiment closer than a factor of about 10.

If, however, we determine the piezoelectric constant 4;; (or f;;) experi-
mentally, considerable progress can be made in determining the remaining
properties and relating them to the atomic structure. For example, the
““ free ”’ dielectric constant measured at low frequencies is the sum of the
“ clamped "’ dielectric constant, i.e., the dielectric constant when no strain
exists in the crystal, plus a dielectric constant which represents the
energy stored in the mechanical strain of the crystal. By measuring the
piezoelectric constants and the elastic constants of the crystal, the dielectric
constant due to mechanical strain can be evaluated and the clamped dielec-
tric constant can be determined uniquely. Another method for determining
the clamped dielectric constant is to measure the dielectric constant at
frequencies much higher than the fundamental resonances and their

1 Born, Max, ““ Atomtheorie des festen Zustandes,” B. G. Teubner, Leipzig and

Berlin, 1923.
234
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principal harmonics. At these frequencies no energy can be stored in
mechanical vibrations, since such vibrations cannot be excited and, as
shown by Fig. 7.8, the * clamped ” dielectric constants determined by
these two methods agree quite well.

All the anomalies of a ferroelectric crystal reside in the clamped dielectric
constant. This is shown by the fact that the piezoelectric constant fi4,
which measures the ratio of the piezoelectric stress to the dipole polariza-
tion, does not show any change at the ferroelectric temperatures nor do the
elastic constants measured at constant electric displacement (except for a
minute change discussed in the appendix, which can be related to a second
order effect). Furthermore, as shown by Fig. 7.8, the *“ clamped " dielec-
tric constant as measured at high frequencies, has a maximum at the Curie
temperature of the *“ free " dielectric constant. One can still change the
“ clamped ” dielectric constant by putting on a steady stress such as a
hydrostatic pressure, but this corresponds to a new grouping of the mole-
cules. For the new state, the ““ free "’ dielectric constant Curie tempera-
tures measured at low frequencies and the temperature of the maximum
value of the ““ clamped ” dielectric constant measured at very high fre-
quencies should still coincide. Hence, in order to understand the properties
of a ferroelectric type of crystal, one has to understand the clamped dielec-
tric constant of the crystal. It is possible to incorporate all of the proper-
ties in a single theory, as discussed in Section 11.5, but it is more instructive
to consider first the clamped dielectric constant.

There are three separate types of ferroelectric crystals that have so far
been found — the rochelle salt type, the potassium dihydrogen phosphate,
and the barium titanate type. The rochelle salt type has a range of
temperatures for which it is ferroelectric and upper and lower Curie points
that mark the separation temperatures between the ferroelectric regions
and the non-ferroelectric regions. Potassium dihydrogen phosphate on
the other hand has a single Curie temperature. The crystal is ferroelectric
from absolute zero up to a temperature of 121°K, above which it becomes
non-ferroelectric. Barium titanate is another ferroelectric crystal which
is capable of becoming ferroelectric in any one of three directions. It has
an upper Curie temperature at 120°C and has two transitions between this
temperature and absolute zero, as shown? by the X-ray measurements
of Miss Megaw, and the dielectric constant measurements. These transi-
tions are due to the crystal becoming ferroelectric in two and three direc-
tions, simultaneously.

Using a crystal structure determination of rochelle salt made by Beevers
and Hughes, a theory of the ferroelectric effect and the clamped dielectric

? Megaw, H. D., Proc. Roy. Soc., Vol. 189, pp. 261-283, April, 1947,
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Qomro

Owp

Fic. 11.1. Projection on (001) plane, of the structure of rochelle salt. The bonds involved
in the 1-2-9-10 chains are drawn thick, so that the chains can be picked out.

Table of Coordinates

x=g y=§) z=c¢
2K on (a) 0.00 0.00 0.05
2K on (b) 0.00 0.50 0.15
4Na on 0.23 0.99 0.52
40 on (1) 0.12 0.10 0.37
40 on ) 0.22 0.20 0.12
40 on 3) 0.23 0.40 0.82
40 on (4) 0.06 0.37 0.85
40H on (%) 0.16 0.36 0.32
40H on (6) 0.29 0.24 0.63
4HOon (7) 0.40 0.08 0.5
4H:Oon (8) 0.25 0.05 0.87
4HOon (9) 0.4 030 0.05
4H,Oon (10) 0.42 0.40 0.45
4C on 0.15 0.18 0.28
4C on 0.12 0.28 0.42
4C on 0.17 0.27 0.65
4C on 0.15 035 0.8
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constant of rochelle salt has been developed by the writer® which appears
to account quantitatively for the principal properties of rochelle salt.
This is discussed in section 11.1. For potassium dihydrogen phosphate,
the connection with the crystal structure appears to be as given in a theory
of Slater as modified by Bardeen. For both cases the ferroelectric dipole
is one associated with the motion of the hydrogen nucleus along a hydrogen
bond. For barium titanate, a three dimensional structure involving 6
equilibrium positions for the titanium nucleus, appears to be responsible
for the ferroelectric effect.

The structure of rochelle salt according to Beevers and Hughes*?® is
shown by Fig. 11.1. There are three possible hydrogen bonds in the
structure, between the oxygen molecule 1 and the water molecule 10,
between the water molecule 10 and the water molecule 9, and between the
water molecule 9 and the oxygen 2. The distance between the successive
molecules are 1 to 10, 2.59X; 9 to 10 is 2.86&; and 9 to 2 = 3.028. The
bond with the shortest distance is 1 to 10 (2.594) and it is the motion of
the hydrogen nucleus along this bond that causes the ferroelectric effect
in rochelle salt. This bond lies nearly along the x-axis (x-co-
ordinate = 2.35& y-coordinate = 0; z-coordinate = 1.09;&) which is the
ferroelectric axis of the crystal. The theory discussed in the next section
is based on the action of this hydrogen bond and leads to a ferroelectric
effect having the right value of spontaneous polarization, two Curie
temperatures, a good quantitative agreement with the measured values of
the clamped dielectric constant, and agrees well with recent measurements
which show that the dipole dielectric constant is relaxed at a frequency
of about 5 X 108 cycles.

11.1 Ferroelectric Effect in Rochelle Salt

According to the present theory, the ferroelectric effect is due to the
motions of the hydrogen neuclei in the 1-10 hydrogen bonds. Since this
is a bond between a water molecule and an oxygen ion, there is no reason
to expect that the bond is symmetric and hence we assume a potential
field of the type shown by Fig. 11.2B. Two of the 1-10 bonds are directed

3“Theory of the Ferroelectric Effect and Clamped Dielectric Constant of
Rochelle Salt,” Phys. Rev., Vol. 72, No. 9, Nov. 1, 1947, and letter to editor, Phys.
Rev., Vol. 72, No. 10, Nov. 15, 1947.

¢Beevers, C. A.,, and W. Hughes, “ The Crystal Structure of Rochelle Salt,
Sodium Potassium Tartrate Tetrahydrate (NaKCHOg4H:0),” Proc. Royal Soc.,
Vol. 177, pp. 251-259, 1941.

! Ubbelohde, A. R., and I. Woodward, * Structure and Thermal Properties of
Crystals, VI, The Role of Hydrogen Bonds in Rochelle Salt,” Proc. Roy. Soc., Vol.
185, pp. 448-465, 1946. '
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in one direction from 10 to 1 along the plus x-axis, and will be referred to
as bonds of type 1, while the other two are directed from 1 to 10 along the
minus x-axis and will be referred to as bonds of type 2. This results in
having two sets of potential wells, as shown in Fig. 11.2B. The dissym-
metry between the two potential minima is called 24; the height of the
potential barrier from the mid-position is called AU, and the separation
between the two potential minima is called 5. Now according to ele-
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Fic. 11.2. Possible potential well distributions on 1-10 bond. A. Potential well distribution
if 1 and 10 are equivalent. B. Potential well distributions if 1 and 10 are not equivalent.

mentary kinetic theory, the probability of a nucleus in one potential well
jumping to the other potential well per unit of time is

a = Te 2UAT (1..1)

where I' is a constant. (In Eyring’s reaction rate theory I' is an infrared
frequency substantially equal to #7T/A.) Let a;2 be the probability of a
particle jumping in the plus x direction per unit of time and ag; the
probability of its jumping in the negative direction. For the first bond,
N, is the population in the first minimum per cc, and N; that in the
second. For the first bond we have the relation:

N
Ni+Np = 73 Py = [-Ny + Nzl (11.2)

where p is the dipole moment per molecule. If the hydrogen nucleus is
in the center between the two oxygens, the bond is neutral and no dipole
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moment exists. If the nucleus is moved a distance /2 from the center,
the dipole moment is e/2 where ¢ is the electronic charge 4.80 X 10710 esu
and this has been taken as the dipole moment of each molecule. (Actually
the dipole moment is probably less than this due to opposing polarization
induced in the oxygens, but this effect is neglected.) Since the bond is at

an angle of 25° from the x-axis, u = ? cos 25°.

The rate at which the dipole polarization changes with time in the first
bond is

dP, N, P
—a’% = [N1aj2 — NoagiJu = "f[axz — ag) — ’211‘[012 + az1]  (11.3)

upon introducing the results of equation (11.2). Hence the rate of change
of polarization is the number of molecules in the wells along the negative
direction times their probability of jumping to the positive wells minus
the reverse reaction, all multiplied by the dipole moment u. Now suppose
that we put on a field E. This is going to change the potential wells, as
shown by the dotted line of Fig. 11.2. There is a change A8, in the position
of the minima and a change in the potential barriers that the molecules
have to surmount to reach the other potential minima. The changes in
the positions of the potential minima do not depend on temperature and
the polarization caused by them can be combined with that caused by
displacements of atoms and electrons. The dipole polarization which
results from the passage of the hydrogen nuclei over the potential barriers
is controlled by the height of the barriers

AU — A —LFes and AU + A + 1Fed (11.4)

where F is the internal field, e the electronic charge, and § the separation
of the two wells. When we establish a field E and change the polarization,
there will be an internal field of the Lorentz type given by the equation

F=E+8P

where 8 is 4x/3 for an isotropic medium, but may differ from 4x/3 for a
crystal. It has long been recognized that this equation is only a very
rough approximation since the contributions to a field from various portions
in the unit cell are not going to be the same. Slater® in his discussion of
potassium dihydrogen phosphate allows F to be proportional to E with a
factor of proportionality that varies with position in the unit cell. Busch?

®Slater, J. C., “Theory of the Transition in KHPO,,” J. Ckem. Phys., Vol. 9,
1633 (1941).

7 Busch, George, “Neue Seignette Elektrika,” Helv. Phys. Acta, Vol. 11, No. 3
(1938).
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on the other hand regards the total polarization as the most constant
quantity, and says that the local field may be different when it is acting
on the electronic and atomic polarization Pg, than it is when acting on
dipole polarization Py. Busch’s two equations are then

Fg = E +8.P; Fy =E + ;P

A more plausible case can be made out for considering that the local
field is the sum of a contribution due to the electronic and atomic polariza-
tion and a contribution due to the dipole polarization, as in the equation
used in discussing solutions.® Hence

F = E + B.Pg + BaPa

The electronic and atomic polarization can be considered as randomly
distributed so that 8, should equal 4r/3. However, the dipole polariza-
tion is not randomly distributed and its effect on the local field may be
less than 4x/3 due to shielding by neighboring oxygens.

Letting 8. = 47/3 and Ba = B a constant that may vary from crystal
to crystal and in all cases will be less than 4x/3, and setting Pg propor-
tional to the local field

4 4
F=E+7 Py +6Ps -E+—3’1~,F+5P,orF=£-f’—f:ﬂ (11.5)
. 1 ——»x
3

where « is the polarizability per unit volume due to all polarization except
that of the hydrogen dipoles. The value of y can be determined by measur-
ing the dielectric constant at absolute zero for then the dipole polarization
is equal to zero. Then

™
3 v
The dielectric constant o for this case is the ratio of electric displacement
to field or
_D_4Pst+E | dry
E E 4r
1- 3
Hence
©—1 v
ym y (11.6)

l—-?'y

8 VanVleck, J. H., “The Theory of Electric and Magnetic Susceptibilities,”” Oxford
Univ. Press, 1932, page 57.
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The total polarization is

P=PE+Pd=M+P¢1=—(€—O‘—DE+Pd 1+_".'_ﬂ__
1 — 4r 4x 1 - 4
37 37
This shows that any measured dipole polarization, such for example that
determined by a hysteresis loop, is the internal dipole polarization en-
hanced by the electronic polarization caused by the dipole polarization.
The measured dipole polarization is equal to

P =P, [1 +8 (‘° ~ 1)] 1L7)
4x
The dielectric constant then is given by
Q _ 4‘R‘Pd (eo - 1)]
¢=E—eo+ z [l-i-ﬂ e (11.8)

To determine the internal dipole polarization, one can substitute the
value of F in the expression for the potential barriers (11.4) and have

ed cos 25°
ayy = Fe_[AU_A_ 2(1 —(47/3)] (E+BPd)]/kT

e5 oos 25°

(11.9)
oy = re—[AU+A+ ST e 3771 (E+pP,,)]/kr

Introducing these values in equations (11.3) and employing the
abbreviation

2 2 aco 2
B 2628N cos? 25 _ wBN (11.10)

- 4r B 4x
4kT[l-—"§“Y] kT[l-—-é-‘y]

the equations for the dipole polarization of the first set of bonds becomes:

1dPy pypr _ Nk [A <E+3P~‘>]
Pa 7 sinh| 3+ A\

A E + ﬁPd)]
— P4, cosh [/cT+d( BNa
In a similar manner the equation for the second set is:

1dPy pypr _ Ne [__A. (___E+‘9P")]
& ¢ T2 I\ T

-A E + BPqy
— Py COSh[kT +d( 3Na )] (11.11)

4
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These two equations determine all the ferroelectric and dielectric properties
of the crystal.

For static conditions, we can set dPy/dt = dPy/dt = 0 and solve directly
for Py, and Py, Adding these

Pa= Py + Pay = &{tanh [—A— + 4 E—T-B—P")]

2 kT BNu
—_A E + BPd
+ tanh [kT + A(—ﬁNM ):” (11.12)

Combining these by the formulae for the addition of hyperbolic functions,

this can be reduced to
. E + BPd) (E + BPd)
sinh A( BNa cosh A4 BNa

Py = N 11.13
R [T )
kT BNy
Setting the field E equal to zero, this equation becomes
sinh APq cosh AP
Pa_ Nu Nu (11.14)
Nu cosh? A + sinh? AP
kT Nu

The easiest case to discuss, and one which applies for KDP described in
the next section, is the one where A the dissymmetry is equal to zero. For
this case equation (11.14) reduces to the simple form

Py AP,

— = tanh —— 11.15

Nu Na (11.15)
If the factor A is greater than 1, this equation will have real positive and
negative solutions other than zero, representing spontaneous polarization
along the +x or —x directions. For values of A slightly greater than
unity, we can replace tanh (4P4/Np) by the first two terms of the expres-
sions, or

A2 (Pa/Nup)3
Po/Nu = A(Po/Ny) — LY
Solving for Py/Npu, we have (11.16)

Ps/Nu = \,M};ﬂ
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A plot of this equation is given by Fig. 11.3, solid line. The effect of the
dissymmetry is principally to change the value of A4 for which the ferro-
electric effect can occur. Very close to the ferroelectric temperature,

0.8
Z
Nyo-of /
a
s /
Y AP 2 =0
304 >
< / '/
>
y/
0.2
) 1.05 uo us .20 1.25 .30

VALUE OF FACTOR A

Fic. 11.3. Ratio of spontaneous polarization P, to maximum dipole polarization Ny as a
function of £ and A'.

APy (/IP,; 2

P
_— 1, 2
P;/Nu is going to be small and cosh Na — 1, sinh N“ Na

equation (11.14) reduces to

Py AP, P;\? A
]—V; = (1 — tanh? ) Na [1 —/fz(ﬁ;) [-%— — tanh? (ﬁ):” (11.17)

Hence for this case the product
A) 252 NB cos? 25°

! 2 e —————— _ 2 A)
A —d(l tanh T 4kT(1 —ﬁ7> (l tanh T (11.18)
3

has to be equal to or greater than unity before a ferroclectric effect can
A

occur. The dotted lines of Fig. 11.3 show the values of T =4 T =%

and —k—f‘ = $; and Py/ Ny is plotted against A’. These result in an increase

in polarization for the same value of 4’
In order to calculate £ we have to know how the separation & depends on
the separation of the oxygens 1 to 10. The greatest value of separation



244 PIEZOELECTRIC CRYSTALS AND ULTRASONICS Cuar. 11

would result if we assume that the hydrogen nucleus maintains its distance
of 0.99A (observed for water) for all values of oxygen separations. This
would result in the straight-line relationship shown by the top full line of
Fig. 11.4. Another calculation of  has been made by Huggins® by adding
two Morse potential curves as the separation of the oxygens are varied.
The results of this calculation adjusted to give the same separation as for
water, are shown by the bottom solid line. This calculation also yields a
value for the height of the potential well AU. Some confirmation of this

1.0 |? ZOOOU
av ) 3
o J o 3
.8) re 1600
| / L

4
0.8 1200 &
| ] p—" // g

N

0.4} s 800 Z
/ / -
Y, 9
0.2 Vs ,' 400 %
" g
-~ 3
o o >

2,44 248 252 256 260 264 268 272 2.7

Fic. 11.4. Potential well separation é and height of energy barrier AU as a function of the
oxygen separation.

curve has recently been obtained by Landsberg and Baryshaskaya,'® who
observed the Raman spectrum of KDP and ADP. For KDP having a
separation of 2.54& between oxygens they observed a value of 5 = 0.384
in close agreement with the value of 0.4& shown by Fig. 11.4. Hence this
curve will be taken as representing the relation between oxygen separations,
the value of § and the height of the energy barrier AU. For rochelle salt,
the separation of oxygens is about 2.59Ag¥vhich results in a value of § =
0.514. The size of the unit cell is 14.34 X 11.93A X 6.174, and there are
four 1-10 bonds per unit cell. Hence N = 3.81 x 10?! dipoles per cubic
centimeter. The polarizability v is related to the dielectric constant for

¥ Huggins, M. L., J. Phys. Chem., Vol. 40, p. 723, 1946.

10 Landsberg, G.S., and F. S. Baryshaskaya, Doklandy Akad. Nauk., SSSR, Vol. 61,
1027-30 (1948) and Chem. Abst., Vol. 43, p. 495, Jan. 25, 1949. This reference shows
also that for ADP at 150°K the NH band appears to split into a series of narrow
maxima whereas the OH band preserves its aspect as in KH3PO,. This confirms
that the transition in ADP is due to the ammonia hydrogen bond system.
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atoms and electrons, ¢, by the relation
4‘!’ € — 1

37 T +2

The dielectric constant at low temperatures, as shown by Fig. 7.7, flattens
off at —160°C and remains constant at lower temperatures. According
to the present theory, this is the temperature that the hydrogen nuclei
freeze out into the low-potential well for each bond and hence we take
€0 as 7.0. Substituting in equations (11.19)

0.159 = 4 (11.20)
The value of A or the value of A/kT at some fixed temperature (say the

upper Curie temperature) principally determines how fast the dielectric
constant disappears at low temperatures and to make this vanish suffi-

(11.19)

310"
::“:‘.:?:.ﬁ-:‘;