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Abstract

Proteins are key players in biochemical processes playing important roles as enzymes, structural

components, messengers and transporters within the living organisms. They perform their func-

tion by interacting with ligands which include other proteins, peptides, nucleic acids, carbohy-

drates, vitamins, metals, etc. Certain residues in the protein architecture govern these functions

by leading to the formation of a structural neighbourhood or site, capable of facilitating various

interactions. Elucidation of how these biomolecules interact with each other can help decipher

their mechanism of action, which may in turn, unveil various functional aspects with biomedical

implications such as manifestation of diseases. Therefore, proteins and their interaction biology

have been in focus of scientific investigations for their promising potential as disease biomarkers,

in ligand-mediated functional regulation for disease management and more recently, artificially

designed enzymes have also come to fore.

With the advent of high-throughput technology, there has been an increasing availability of

experimental data concerning protein interactions. Given the importance of gaining insights into

the functioning of various proteins, the need for multi-faceted characterisation has been rising.

Various approaches have been proposed for analysis and identification of protein interactions,

including unveiling of the crucial residues, domains and folds in their sequence and structure.

These are broadly based on similarity transfer and statistical or machine learning techniques.

The statistical or machine learning rely on pattern recognition, essentially associating patterns

in experimental observations with functions. Wide diversity in the nature and occurrence of in-

teracting residues along the proteins, within and across the families, add several complexities

in deciphering important biological traits that can be used for discrimination purposes. Never-

theless scientists are relentlessly contributing to the development of computational approaches

using novel perspectives.

In the overall scenario, as sequence information is more abundant, it is desirable that there

be sequence-based simple-yet-highly efficient computational approaches. When as minimal in-

formation as the sequence is available, there are various challenges and concerns associated

with prediction of protein properties or interactions. This thesis presents relevant contributions
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for identification of the protein architecture involved in ligand interactions using computational

efforts. Studies revolve around objectives of analysis and identification of protein ligand inter-

acting residues which have discrete and scanty occurrence such as in enzyme catalytic residues,

exploring the scope of using an ensemble approach to enhance the performance and investigat-

ing non-parametric probabilistic approaches for residues occurring more or less continuously,

such as in nucleic acid interactions.

It addresses issues of data imbalance and considers fundamental aspects of protein inter-

actions to identify protein-interacting residues using supervised machine learning and statistical

approach with advantages as above-mentioned. Analytical studies to gain an overview of the

nature of various types of protein-ligand interactions involved in enzyme catalysis, mannose-

interaction and nucleic-acid interactions have been described in various chapters using bench-

marked non-redundant recent protein data. Biological properties such as evolutionary conserva-

tion and biochemical nature of the proteins in the interaction neighbourhood at sequence-levels,

have been investigated for the development of approaches along with evolving tools such as

support vector machines and random forests. These have been reported to have effectively con-

tributed in unraveling various aspects of protein function, with powerful discriminative potential.

Based on study findings, novel methodologies involving selective features and robust dis-

criminative function powered by domain-knowledge driven post-processing filters, local neigh-

bourhood based ensembles, combinations with structural insights and conditional probability

based perspective on local occurrence are proposed. The predictions obtained by each of the

developed approaches are shown to significantly add to the comprehensive understanding of the

prediction scenario either by offering complementarily comparable with or better performances

than the state-of-art. They are made available to users as a software of Python codes requiring

as minimal as sequence information. It is hoped that these contributions boost protein based ex-

perimental studies and eventually also aid in biomolecular design for industrial production and

therapeutic applications.
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Chapter 1

Introduction

Nature is perhaps one of the best known teacher. Not only has it provided philosophical answers

to living beings, but to mankind, it has also become an ever attractive subject of intellectual

interest, for example in understanding how biomolecules work. Attempts to understand how

these biological molecules interact and play their functional roles are described in the following

chapters. As a prelude to the contributions, a brief introduction to the overall context is provided

below.

1.1 Proteins, their interactions and biological significance

Proteins, which we commonly know as components of daily food, are at deeper levels, key

players in the central dogma of life. They have important roles in the cell such as structural (cy-

toskeletal), mechanical (muscle), biochemical (enzymes) and cell signaling (hormones), even-

tually contributing to cell growth, differentiation, maintenance and degeneration (Nelson et al.,

2008). Certain residues in the protein sequences govern these functions by leading to the for-

mation of a structural neighbourhood or site, capable of facilitating various interactions. Any

disruptions in protein functions at sequence or structural level may lead to undesirable gain or

loss of function, eventually manifesting as diseases (Gonzalez and Kann, 2012). Thus, gaining

insights into various types of protein-ligand binding sites and their constituting residues, is an

important step in the elucidation of protein function, which are involved in different cellular

processes (Roche et al., 2015). A snapshot of the protein sequence and structure is shown in



1.1. Proteins, their interactions and biological significance

Figure 1.1.

Figure 1.1: An overview of protein sequence structure information. (A) Crystal structure
(PDB code: 2vnvA of BCLA Lectin from Burkholderia cenocepacia homodimer in complex
with alpha-methyl-mannoside at 1.7 Å(B) First four residues of the protein’s N-terminal are
represented in ’ball and stick’. The nitrogen atoms are coloured in blue, the oxygen atoms in
red and carbon atoms in cyan. Cα carbons are denoted and peptide bonds pointed out. (C) One
of the protein chains are represented in single letter code depicting the sequence information.

Depending upon the function, proteins interact with a variety of other biomolecules including

other proteins, nucleic acids, carbohydrates, metals, etc, (Darnell et al., 1990), using covalent

and non-covalent interactions (Nelson et al., 2008). To facilitate such interactions, amino acids

with required biochemical properties occur in the binding site, offering the required environ-

ment. Collisions between the protein and ligand are marked in this environment where molecu-

lar diffusion plays a decisive role (Schiavo et al., 2012) leading to conformational changes and

complex formation. The mechanisms of interactions cover a broad spectrum of such energy-

associated binding events (Kastritis and Bonvin, 2013) and can aid in gaining an understanding

of protein function (Perozzo et al., 2004). An overview of protein interactions at sequence and

2



1.2. Function annotation comes of age: low to high resolution

structure levels are shown in Figure 1.2.

As proteins are ubiquitous, efforts towards understanding their roles have gathered large impetus

over several years. A wide range of experimental methods are available for gaining multifaceted

relevant insights including high-throughput methods such as two-hybrid systems (Rolland et al.,

2014), mass spectrometry (Morris et al., 2014), phage display (Blikstad and Ivarsson, 2015), pro-

tein chip technology (Blikstad and Ivarsson, 2015), X-ray crystallography (Zheng et al., 2015),

Nuclear Magnetic Resonance (NMR) (Ardenkjaer-Larsen et al., 2015), etc. With growing tech-

nology, vast amounts of sequence and structural information have become available, resulting in

an increasing need for characterisation. Attempts to expedite characterisation have been made

using computational techniques have been gathering impetus (Hu et al., 2016b). These are de-

scribed below.

1.2 Function annotation comes of age: low to high resolution

Over many years, experimental studies have provided information on protein sequence, structure

and associated functional aspects. These have formed the basis of a large number of computa-

tional methods of identification and characterisation. Some of the approaches that have been

recently reported for protein-ligand interactions are mentioned in Table 1.1. These methods use

information as sequence, structure or their combination using various techniques such as evo-

lutionary trace (Lichtarge et al., 1996), similarity transfer (Yang et al., 2013b) and statistical or

machine learning (Du et al., 2016).

They are either general predictors (Capra et al., 2009; Ming et al., 2017; Nagl et al., 1999)

(Table 1.1) or targeted at specific ligand binding such as proteins (Yugandhar and Gromiha,

2017), nucleic-acids (Yan and Kurgan, 2017), heme (Xiong et al., 2012), metals (Lin et al.,

2005), vitamins (Yu et al., 2014), etc (Table 1.2) . Besides these, there are also methods that

combine multiple algorithms to achieve better predictions such as MetaPocket 2.0 (Zhang et al.,

2011) and COACH (Yang et al., 2013b).

3



1.2. Function annotation comes of age: low to high resolution

Figure 1.2: An overview of protein interactions. (A) Crystal structure of the N-terminal
exonuclease domain of the Epsilon Subunit of E. coli DNA Polymerase III at pH 8.5. The
catalytic residues of this enzyme are shown in ’ball and stick’ in the structure and highlighted
in upper case in the sequence. (B) Crystal structure of the Poly(A)-binding protein (PABP)-
binding site of eIF4G in complex with RRM1-2 of PABP and poly(A). This is an RNA binding
protein whose interacting residues are highlighted in red in the structure and in uppercase in

sequence.
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1.2. Function annotation comes of age: low to high resolution
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1.2. Function annotation comes of age: low to high resolution
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1.3. Challenges associated with identification: Gaps in existing research

The prediction scenario has been studied at various resolutions. Right from identifying

whether a protein interacts with another biomolecule to which regions are involved in the protein

and its counterpart, have been attempted with a focus on low to medium resolution prediction

(Du et al., 2016; Zhao et al., 2013a). However, reviews suggest that each of these approaches

have their advantages and limitations for use in the prediction scenario (Du et al., 2016; Roche

et al., 2015). The evolutionary trace methods largely depends on evolutionary conservation to

assign scores to various residues for their functional importance (Lichtarge et al., 1996). But

at sequence levels, not all residues that are conserved interact with ligands. As a result, even

template-based or similarity transfer methods show limitations in characterising proteins which

have similar sequence or structure but differ in function or vice-versa. In such cases, de novo

methods, which rely on pattern information, are particularly useful, as they associate functions

based on patterns available for experimental observations.

Different types of discriminating functions have been used in the computational approach de-

velopment such as classification, regression and hybrid methods (Yan and Kurgan, 2017).These

methods use biological properties such as protein topology, binding energies, evolutionary con-

servation, frequency of occurrence and biochemical nature to encode information of the protein

interaction architecture (Du et al., 2016; Roche et al., 2015). Although statistical or machine

learning approaches have their own limitations in terms of finding optimal trade-off in the pre-

diction scenario, because of their inherent advantages of generalisation and applicability in novel

characterisation, many attempts for uncovering functionally diverse protein interactions have

been made. However these are also mired with challenges offering ample avenues for relevant

research and development.

1.3 Challenges associated with identification: Gaps in existing re-

search

Many challenges lurk ahead of computational identification approaches, in terms of develop-

ment, right from collecting reliable data to making the approach more suitable for experimental

7



1.4. Motivation

applications (Jacobson et al., 2014). One of the major concerns is the fact that for a given pro-

tein, the number of residues involved in interactions vary considerably (Bartlett et al., 2002;

Khazanov and Carlson, 2013). They are governed by evolution and conserved depending upon

the importance of their functional roles. Studies have revealed that not all functionally impor-

tant residues are evolutionarily conserved to same extents and not all evolutionarily conserved

residues are equally important for function (Jensen, 1976; Tawfik, 2010). Some ligand interac-

tions are surface-based, whereas others are buried in deep pockets (Konc and Janezic, 2007),

which means, the innate architectural environment required also vary biochemically. Further,

issues of intermediate conformational changes in the proteins also exist which need careful con-

siderations. In a nutshell, the diversity in the nature and involvement of protein residues for inter-

actions with ligands is large (Chakrabarti and Lanczycki, 2007). This makes devising a simple-

yet-widely applicable assumption for identification of protein-interactions at various resolutions

- a complicated task. Often the associated inherent complexities reflect in the approaches as

false predictions. Scientists have been venturing into finding an assumption or discriminative

function such that the trade-off between true and false predictions leads to achieving a more or

less accurate prediction scenario for real-time applications. Despite several milestones, there is

still ample scope of research in this area which can be enriched by devising novel perspectives

based on domain knowledge and application of robust learning.

1.4 Motivation

The vast variation of shape, sizes, and composition of protein-ligand binding sites and the lig-

ands they bind, makes devising a general prediction method very challenging. Since the residue

composition of a ligand binding site determines the interactions, their accurate identification can

aid in learning more about the ensuing protein-ligand binding events and mechanisms involved.

From a broader perspective, understanding general composition of these sites is of great im-

portance for large-scale protein function annotation (Khazanov and Carlson, 2013). As there

has been an increasing availability of information associated with protein interactions such as

8
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their sequence, structure, binding affinities, conformational changes, involved geometry, regula-

tion and biomedical implications, widely-encompassing computational efforts can aid in adding

novel perspectives to the protein-ligand prediction scenario. This thesis is a result of a strong mo-

tivation to look beyond convention and develop perspectives for problem-based learning. It aims

to present explorations for protein-ligand interacting residue identification using supervised ma-

chine learning and probabilistic perspectives powered by domain knowledge, to eventually aid

in understanding diseases and for applications in industry and therapeutics. In order to achieve

the targeted goal, three fundamental objectives were laid down as mentioned below (in the next

section).

1.5 Aim and objectives

Having identified a subject to be studied motivated by the eventual potential impact it can have

in drug-design and protein-engineering based applications, the following objectives were laid

down to perform various studies and utilise the findings arising thereof in making meaningful

interpretations for identification of protein-ligand interaction sites computationally.

Objectives:

• Analysis and identification of key residues in protein-ligand interactions that have discrete

and scanty occurrence such as in enzyme catalytic residues.

• Exploring ensemble architecture for achieving enhanced prediction of protein-ligand in-

teracting residues.

• Use of non-parametric probabilistic approach for protein-ligand interacting residues that

occur more or less continuously such as in nucleic acid interactions.

1.6 Thesis outline

This chapter (Chapter one), provides an introduction to the issue of protein-ligand interacting

residue identification using computational approaches. Following chapters specifically address

various challenges associated with protein-ligand interacting residue identification. Chapter two

9
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has studies pertaining identification of ligand interacting residues directly involved in the cat-

alytic reaction, known as catalytic residues.The scope of achieving highly sensitive-yet-precise

identification in real-time cases is explored. The challenge associated with this type of prediction

scenario is the scanty occurrence of catalytic residues in the entire length of the proteins and this

chapter offers novel perspectives to address this issue. Chapter three highlights how drawing

consensus of protein-interaction neighbourhood information can serve in achieving enhanced

prediction of protein-mannose interacting residues. It shows why generalisation in supervised

machine learning based approaches is not a straight forward process and how knowledge guided

choice or design of prediction architecture can play a crucial role in materialising better appli-

cability. Chapter four shows how varied number and type of neighbourhood information when

included in ensemble architecture can help in prediction. Additionally, the scope of enhancing

the prediction scenario using predicted structural insights is also provided. Chapter five deals

with prediction of another biologically very important class of ligands, i.e., RNA. The number

of interacting residues depend on the type of RNAs and can vary based on numerous biological

factors. Devising a generally applicable algorithm with a considerable prediction power de-

spite the wide range of evolutionary and biochemical requirements associated with nucleic acid

binding proteins is undoubtedly challenging. This chapter illustrates how challenges associated

with specific-yet-broad class of ligand interactions can be addressed using a non-parametric ap-

proach emphasising on local amino acid occurrence. Chapter six addresses identification of

protein-DNA interactions using the same conditional probability perspective and presents issues

of cross-prediction within nucleic acids, joint prediction and scope of improvement in the overall

nucleic acid interacting residue prediction scenario. Chapter seven has conclusive remarks of

all these studies, summary of findings, challenges associated and directions for further research

and development.
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Chapter 2

PINGU: PredIction of eNzyme catalytic

residues usinG seqUence information

This chapter has details of studies performed for sequence-based identification of ligand binding

residues that are directly involved in biochemical catalysis. The primary question that motivated

these investigations was whether the challenges in relevant identification based on various ap-

proaches can be supplemented using domain knowledge and made more suitable for experimen-

tal validation.

2.1 Introduction

Enzymes, the catalysts of biological systems, are marvellous molecular devices that determine

the patterns of chemical transformations (Berg et al., 2015). They play important roles in

catalysing biochemical reactions governing processes essential for life. For examples, DNA

polymerase handles DNA replication at nuclear level, amino acyl tRNA synthetases facilitate

translation of messenger RNA to protein, polypeptide N-acetyl galactosaminyl transferase helps

in addition of N-acetyl-galactosamine to serine or threonine residues in O-linked glycosylation,

i.e., post-translational modifications at the cellular level, etc (Nelson et al., 2008). In order to

perform various catalytic functions, the enzyme architecture is bestowed upon with certain dis-

tinct properties facilitating binding or interaction with substrates, cofactors and water molecules
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(Bartlett et al., 2002). The amino acids constituting the catalytic architecture are usually organ-

ised and evolutionarily conserved and are known as catalytic residues (Furnham et al., 2014;

Nagano, 2005). So certain mutations are tolerated during the evolutionary process, while certain

others may lead to disruption in their naturally permissible states, eventually leading to loss or

gain of activity manifesting into biochemical disorders (Goldberg, 1992) such as those related

with growth (Visser, 1988), diabetes (Leahy, 2005), kidney (El Dib et al., 2013), neurological

function (Ross and Tabrizi, 2011), cancer (Vinik et al., 2014), etc.

On account of their importance, enzymes and their catalysis principles, have been the theme of

scientific studies for over several years, in which time, different enzyme mechanisms of actions

have been investigated in great detail (Bartlett et al., 2002; Hedstrom, 2002; Perona and Craik,

1997). One aspect of understanding how enzymes exercise their functional roles is to examine

how they use the limited set of residue side chains that form their "catalytic toolkit". These cat-

alytic units are basically combinations of different residues that are frequently found in diverse

unrelated enzymes (Gutteridge and Thornton, 2005). Over years, both experimental and com-

putational efforts have been made to assign various attributes of evolution, diversity in families,

mechanism of action and biochemical function for enzymes. They have also been classified to

organise perspectives for relevant studies and their application (Holliday et al., 2007; Nagano,

2005).

In view of the fact that the computational approaches offer time and resource utilisation advan-

tages, they have gained impetus through the years, broadly including similarity-transfer and ab

initio or de novo techniques, reviewed in a previous study (Zhang et al., 2009). The similarity-

transfer based methods spot supposed catalytic residues in uncharacterised sequences based on

their homology with sequences whose catalytic residues are known. Thus, they depend on tem-

plates, alignment and pattern matching for catalytic residue mapping. The ab initio methods,

on the other hand, foreshow catalytic residues by capitalising on several general properties of

enzyme catalytic residues which distinguish them from non-catalytic residues. These methods

are of assistance especially when the catalytic residues of query enzymes are largely dissimilar

12
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from the characterised enzyme catalytic residues. By means of sequence and structure infor-

mation, various computational approaches have been reported over years for developing knowl-

edge bases (Fleischmann et al., 2004; Furnham et al., 2014; Holliday et al., 2005; Nagano, 2005;

Pegg et al., 2006; Schomburg et al., 2004), analysing important biological properties (Bartlett

et al., 2002; Bate and Warwicker, 2004; Ben-Shimon and Eisenstein, 2005; del Sol et al., 2006;

Lichtarge et al., 1996; Meroz and Horn, 2008; Youn et al., 2007) and catalytic residue prediction

(Chien and Huang, 2012; Choi and Kim, 2011; Chou and Cai, 2004; Dou et al., 2012; Fajardo

and Fiser, 2013; Gao et al., 2013; Izidoro et al., 2014; Lichtarge et al., 1996; Lu et al., 2014;

Sankararaman et al., 2010; Zhang et al., 2008, 2009).

There are many complexities associated with the computational identification of catalytic

residues, such as available definition of catalytic residue in literature, their reaction involvement,

their sequence-structure-function relationships and available knowledge or resources to ascertain

discriminative properties. Among the many biological aspects, enzymes have been studied in

the context of catalysis for residue type, location in secondary structure, residue-residue sepa-

ration, solvent accessibility, intra-protein electrostatic interactions, mobility as assessed based

on crystallographic temperature factors, environment polarity and the sequence conservation

between homologous enzymes in terms of residues that were in the catalytic residue neighbour-

hood (Zvelebil and Sternberg, 1988). On account of the inherent data imbalance and biochem-

ical diversity, the prediction scenario is often mired with a significant number of false positives

(Zhang et al., 2009). More recent approaches that have been developed in the last five years in-

clude L1pred (Dou et al., 2012), neural networks with gravitational center of mass based distance

(Fajardo and Fiser, 2013), Random forests with minimum redundancy maximum relevance fea-

tures (Gao et al., 2013), CLIPS-4D (Janda et al., 2013), EFPrf and rf-SDRs (Nagao et al., 2014),

CMASA extension (Flores et al., 2014), EXIA2 (Lu et al., 2014), GASS (Izidoro et al., 2014),

etc.

Despite the challenges associated, many a milestones have been achieved in unraveling enzyme

function and its catalytic architecture. With the help of this fundamental information, important

13
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pointers in host-pathogen interactions leading to various diseases, some even life threatening like

cancer, have been unveiled (Goldberg, 1992). Rapid advances in high-throughput technologies

have yielded large numbers of uncharacterised protein sequences, presenting a pressing need for

knowledge acquisition in this context. This chapter presents an approach for obtaining catalytic

residue predictions with improved performance by using selected physicochemical properties

and evolutionary information from enzyme sequences in a supervised machine learning based

prediction architecture and post-processing.

2.2 Materials and Methods

In this chapter, prediction of catalytic residue was delineated in a classification based construct

comprising of two classes: (i) the catalytic residue (positive class) and (ii) the non-catalytic

residue (negative class). As shown in the Figure 2.1, supervised machine learning is employed

for the classification purposes. This process comprises of training and testing phases broadly

using non-redundant datasets. Based on the available information a model (or discriminative

function) is determined that can describe and distinguish between the two classes. The discrim-

ination is usually based on inherent characteristic traits of the two classes. In this study, evolu-

tionary and biochemical information of enzymes are presented for a given residue along with its

sequence neighbours. After the model development, an assessment of the performance is done

using cross-validation for determining how well the model is capable of performing on indepen-

dent data set. Development of a supervised machine learning approach requires careful dataset

construction, feature extraction (and selection, if any) and classification using an appropriate

discriminative function. In this chapter, an additional step is described to facilitate highly pre-

cise prediction, i.e, the use of post-processing based on domain knowledge of enzymes. These

are described in the following:

2.2.1 Datasets

For the construction of suitable benchmark training and independent test datasets, updated list

of enzymes with catalytic residue information was collected for the predictor development from

14
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Figure 2.1: Schematic workflow of a typical supervised machine learning approach.

the study L1-pred (Dou et al., 2012) and the Catalytic Site Atlas (CSA) 2.0 (Furnham et al.,

2014). The sequence information was generated for the collected Protein Data Bank (PDB)

code using the ATOM record of the enzyme structures available in the PDB (Berman et al.,

2000). From the pool of enzyme sequences, the sequence fragments with lengths less than

60 amino acids were filtered out. Additionally, to limit the possible scope of overestimation

and for the inclusion of diversity, remaining enzyme sequences were clustered. Clustering was

performed using BLASTClust (Altschul et al., 1997) into groups with ≥ 30% intra-cluster pair-

wise sequence identity over a 60% overlap on both sequences. A total of 850 clusters were

returned with 2819 catalytic residues and 312222 non-catalytic residues. From this parent non-

redundant dataset, 650 enzymes were randomly allocated into the training and 200 enzymes in

the independent test dataset. The training dataset was named as Dset650 and independent test

dataset as Dtestset200 and employed in this study for predictor development.
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2.2.2 Encoding of biological properties as features

After making the benchmark dataset, a set of biologically relevant informative features was

created and employed for predictor development in this study. This step involved representing

the protein P as a discrete model (Chou, 2011) of residues in its sequence of length L as follows:

R1R2R3R4R5R6R7R8R9R10...Ri.....RL−3RL−2RL−1RL (2.1)

For a given residue Ri the window size reflects the flanking region, presented by w number of

residues in each side as shown below.

Ri−w..Ri−2Ri−1RiRi+1Ri+2..Ri+w (2.2)

In this discrete model, each of the residues were represented using their sequence-based bio-

logical properties and their local neighbourhood information was used using various window

sizes.

Polarity index

The rich variation in physicochemical properties of the twenty naturally occurring amino acids in

protein sequences such as their polar nature, can guide the functional and architectural specificity

of proteins. A major hurdle in performing rigorous statistical analyses of biological sequence

data is the so-called "sequence metric problem", i.e., which arises because sequences are essen-

tially represented as alphabets rather than arrays of numerical values. In order to overcome this

problem, a multivariate statistical analysis was performed in earlier studies, on almost 500 amino

acid attributes to yield a small set of distinctly interpretable numeric patterns of amino acid vari-

ability (Atchley et al., 2005). These high-dimensional attribute data are summarised by five

multidimensional patterns of covariation in attributes that reflect polarity, secondary structure,

molecular volume, codon diversity, and electrostatic charge. Factor I is bipolar (substantially
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different positive and negative factor coefficients) and displays simultaneous covariation in por-

tion of exposed residues versus buried residues, non-bonded energy versus free energy, number

of hydrogen bond donors, polarity versus non-polarity, and hydrophobicity versus hydrophilic-

ity; factor II is a secondary structure factor; factor III relates to molecular size or volume with

high factor coefficients for bulkiness, residue volume, average volume of a buried residue, side

chain volume, and molecular weight; factor IV reflects relative amino acid composition in vari-

ous proteins, number of codons coding for an amino acid, and amino acid composition. Factor

V refers to electrostatic charge with high coefficients on isoelectric point and net charge. Since

the catalytic architecture generally tends to have polar residues (Bartlett et al., 2002), it could be

used for discriminating them from non-catalytic residues. After initial screening, in this study,

one of these five factors mentioned above, factor I, called the Polarity Index, representing var-

ious aspects of catalytic residues was chosen to present the physicochemical properties. The

values used for each of the 20 naturally occurring amino acids are: (A: -0.591, C: -1.343, D:

1.050, E: 1.357, F: -1.006, G: -0.384, H: 0.336, I: -1.239, K: 1.831, L: -1.019, M: -0.663, N:

0.945, P: 0.189, Q: 0.931, R: 1.538, S: -0.228, T: -0.032,V: -1.337, W: -0.595, Y: 0.260).

PSSM and conservation score

The evolution of enzymes have been widely studied to gain insights into their function (Ander-

son et al., 2016; Buljan and Bateman, 2009; Choi and Kim, 2006; Fischer et al., 2016; Kinch

and Grishin, 2002; Soskine and Tawfik, 2010; Studer et al., 2013; Todd et al., 1999; Vogel et al.,

2004; Yuen and Liu, 2007) . Findings over years have revealed that enzymes, in order to facili-

tate their diverse functional roles, may undergo different types of evolutionary changes (Alcalde,

2017; Galperin and Koonin, 2012; Galperin et al., 1998; Harayama et al., 1992; Mannervik et al.,

2009; Rost, 2002; Tabita et al., 2007; Whisstock and Lesk, 2003). However, even when they alter

their function over the course of evolution, there are several different properties which it might in

principle conserve as others change (Gutteridge and Thornton, 2005). The catalytic mechanism

might remain the same, the substrate specificity might remain the same, or the catalytic archi-

tecture might remain the same. Therefore, it may be understood that residues that are important
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for the structure and function of a protein are conserved through evolution (George et al., 2005);

such as catalytic residues, as stated by another study (Petrova and Wu, 2006). Based on all these

previous remarks made about catalytic residues, it was inferred that evolutionary information

could be used to discriminate among conserved and non-conserved residues, of which an impor-

tant class is the catalytic residue, as also reviewed in the context of computational efforts (Zhang

et al., 2009). Disentangling evolutionary signals have shown that it is possible to improve the

prediction of catalytic residues by using sequence evolutionary information and sequence con-

servation (Teppa et al., 2012).Thus, evolutionary patterns were presented for the catalytic residue

prediction in this study using PSSM and entropy. PSI-BLAST(Altschul et al., 1997) was used to

create PSSM features, i.e., where for each of the residues, 20-dimensional Weighted Observed

Percentages (WOP) vectors were obtained. Each of these vector for a residue depicts the log-

likelihood of the substitution of 20 amino acids at that sequence position. PSSM values (x) for

each residue is normalised by 1/(1 + e−x).

PPSSML =



S1→1 S1→2 ... S1→20

S2→1 S2→2 ... S2→20

. . Si→j .

. . ... .

SL→1 SL→2 ... SL→20


(2.3)

Since the frequency distribution of 20 amino acids for a given residue position is given by

WOP, the entropy (EntWOP) (Zhang et al., 2008) was computed using the equation 2.4:

20∑
i=1

−pilog(pi), where pi = ni/
20∑
j=1

ni (2.4)

The conservation values depicted by EntWOP lies in between between 0 (most conserved)

and 2.996 (least conserved).
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2.2.3 Feature selection

Selective presentation of biological properties can also provide for clarity during discrimination

in the prediction process as also described in a previous study (Gao et al., 2013). The central

thought process behind using a feature selection technique is that the data may contain many re-

dundant or irrelevant features, which can be removed without incurring much loss of information

(Bermingham et al., 2015). In order to select properties which could appropriately discriminate

between the catalytic and non-catalytic nature of the residues using evolutionary and physico-

chemical perspectives, feature selection using Fischer-score (F-score) technique was performed

in this study. F-score estimates the discrimination of two sets of real numbers (Chen YW, 2006).

Given training vectors xk, k = 1, ...,m if the numbers of positive and negative instances are n+

and n−, respectively, then the F-score of the ith feature is defined as:

Fi =
(x̄

(+)
i − x̄i)2 + (x̄

(−)
i − x̄i)2

1
n++1

∑n+

k=1 (x
(+)
k,i − x̄

(−)
i )2 + 1

n−−1
∑n−

k=1 (x
(−)
k,i − x̄

(−)
i )2

(2.5)

where x̄i, x̄
(+)
i , x̄(−)i are the average of the ith feature of the whole, positive, and negative

datasets, respectively; x̄(+)
k,i is the ith feature of the kth positive instance, and x̄(−)k,i is the ith

feature of the kth negative instance. The difference between the positive and negative sets is

depicted by the numerator and the denominator indicates discrimination within each of the two

sets. Larger F-scores have been reported to have more discriminative potential (Chen YW, 2006)

and was thus, employed in this study.

2.2.4 Supervised machine learning based discriminative functions

Based on the inherent advantages and reported applications in a previous review (Zhang et al.,

2009), three classifiers were chosen for relevant studies, i.e. support vector machines (SVM),

l1- regularised logistic regression (LLR) and radial basis function networks (RBFN). These are

described in the following:
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Support vector machines

SVM is a method for the classification of both linear and non-linear data based on the struc-

tural risk minimisation principle of statistics learning theory (Vapnik, 2013). Basically it is an

algorithm that uses a non-linear mapping to transform the original training data into a higher

dimension. Within this new high dimension, the linear optimal hyperplane is searched for that

separates one class from the other. With an appropriate non-linear mapping to a sufficiently high

dimension, a hyperplane that separates data from two classes can be achieved. The SVM finds

the said hyperplane by means of support vectors and margins defined by them. Several stud-

ies reported their applications, especially in biological datasets (Bradford and Westhead, 2005;

Cai et al., 2002, 2003; Chou and Cai, 2002; Ding and Dubchak, 2001; Kumar Kandaswamy

et al., 2010; Mohabatkar et al., 2011; Nugent and Jones, 2009; Petrova and Wu, 2006; Zhang

et al., 2008; Zhou et al., 2007). Mathematically, a training vector xi ∈ Rn, and class values

yi ∈ {−1, 1}, i = 1, ..., N as depicted in the following equation, are used:

Minimise
1

2
wT ẇ + C

N∑
j=1

ξi (2.6)

Subject to yi(w
T ẋi + b) ≥ 1− ξiandξ ≥ 0 (2.7)

where w is the normal vector perpendicular to the hyperplane and ξi are slake variables for per-

mitting misclassifications. A penalty parameter C(> 0) is employed for balancing the trade-off

between the margin and the training error (Scholkopf and Burges, 1999). Number of parameters

and kernels (e.g. linear, polynomial, radial basis function and sigmoidal) are optimisable and

further, the kernel may be defined by the user. In this study, radial basis function kernel was

selected and models were generated using SVMlight Version 6.02 package which is available at

http://svmlight.joachims.org/.

20

http://svmlight.joachims.org/


2.2. Materials and Methods

L1-regularized logistic regression

In statistics, logistic regression, or logit regression, or logit model is a regression model where

the dependent variable is categorical. It may be binary, such as in this problem, catalytic or

non-catalytic. L1-logreg classifier (Koh et al., 2007) has innate feature ranking capacity, which

is beneficial for optimal selection of information from features encoded as shown in a previ-

ous study (Dou et al., 2012). This classifier is basically an implementation of an interior-point

method for large-scale solver for problems based on l1- regularised logistic regression. The

logistic model measures the conditional probability of b ∈ {−1, 1} given x ∈ Rn,

P (b|x) =
exp(b(wTx+ v)

1 + exp(b(wTx+ v)
(2.8)

where x denotes a vector of feature variables and b denotes the associated binary outcome (class).

The model has parameters w ∈ Rn (the weight vector) and v ∈ R (the intercept); wTx+ v = 0

defines the neutral hyper-plane in the data vector space. The classifier locates the optimal model

by maximising the estimation of likelihood from the observed examples, i.e., minimising the

average logistic loss:

Minimise
1

2

m∑
i=1

log(1 + exp(−bi(xTi w + v))) + λ

n∑
i=1

|w − i| (2.9)

where λ > 0 is the regularisation parameter that can balance the average logistic loss and the

size of the weight vector. The software package of L1-logreg classifier available at http://

www.stanford.edu/~boyd/l1_logreg/, was used for studies presented in this chapter.

Radial basis function networks

A radial basis function network is an artificial neural network that uses radial basis functions

as activation functions (Broomhead and Lowe, 1988). They typically have three layers: an

input layer, a hidden layer with a non-linear RBF activation function and a linear output layer.

The input can be modeled as a vector of real numbers xi ∈ Rn The input nodes transfer the
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information to the hidden nodes directly and the first layer connections are not weighted. The

general mathematical form of the output nodes in an RBF network is as follows:

gj(x) =
k∑
i=1

wjiφ((||x− µi||;σi)) (2.10)

where gj(x) is the function corresponding to the jth output node and is a linear combination of k

radial basis functions φ() with center µi and bandwidth ri; The value of r can be estimated with

data-driven methods. Also, wji is the weight associated with the link between the jth output

node and the ith hidden node. Functions that depend only on the distance from a center vector

are radially symmetric about that vector, hence the name radial basis function. In this chapter,

the QuickRBF package (Ou, 2005) which has been reported to have successfully contributed

in an earlier protein related studies (Chen et al., 2010; Ou, 2012; Ou and Chen, 2009), was

used to construct RBFN classifiers with all training data as centers. RBF networks have the

same properties as back-propagation networks such as generalisation ability and robustness,

and further, they present an additional advantage of quick learning and outlier detection. This

package was used with a bandwidth = 5, available at http://www.csie.ntu.edu.tw/~yien/

quickrbf/.

2.2.5 Prediction performance assessment

Performance measure is the way a solution to a given problem can be evaluated. For this study

and others in this thesis, in order to evaluate how well experimental observations have been pre-

dicted by the developed model, counts of correctly identified and incorrectly identified residues

were generated as shown in the Figure 2.2. Using the counts of true positives (TP; residues cor-

rectly predicted as catalytic), false positives (FP; residues incorrectly predicted as catalytic), true

negatives (TN; residues correctly predicted as non-catalytic) and false negatives (FN; residues

incorrectly predicted as non-catalytic), assessment parameters providing various class-wise and

general insights such as sensitivity (SN) or recall (RC), precision (PR), specificity (SP), ac-

curacy (AC), Matthews correlation coefficient (MCC), F-measure (FM), etc., were calculated
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Figure 2.2: An illustration of performance assessment using confusion matrix.

during cross-validation, which is described below. RC or SN is the relative frequency of the

correctly classified positive examples. SP is the relative frequency of the correctly classified

negative examples. PR measures the proportion of the correctly identified residues among ex-

amples predicted as positive. AC is the proportion of the known residues that are correctly

predicted in all predictions. MCC indicates the degree of the correlation between the actual and

predicted classes of the residues. MCC values range between zero and one (one where all the

predictions are correct, and zero where none are correct. FM combines precision and recall into

their harmonic mean. Mathematically,

SN or RC =
TP

(TP + FN)
∗ 100 (2.11)

PR =
TP

(TP + FP )
∗ 100 (2.12)

SP =
TN

(TN + FN)
∗ 100 (2.13)

AC =
(TP + TN)

(TP + FN + FP + FN)
∗ 100 (2.14)
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MCC =
(TP ∗ TN)− (FP ∗ FN)√

((TP + FP )(TP + FN)(TN + FP )(TN + FN))
(2.15)

FM =
2 (PR ∗RC)

PR+RC
∗ 100 (2.16)

In this study, performance evaluation of models trained on Dset650 was done using ten-

fold cross-validation (10CV). The enzymes of training dataset were divided into ten sets. One

enzyme set was taken out of the ten sets and used as test dataset, and the remaining were used

as datasets for training. This process was repeated ten times and the results arising out of each

attempt were averaged over all the test results and best models were selected based on best

F-measure.

2.3 Results and Discussion

Biochemically diverse benchmarked enzymes were used for supervised machine learning in-

cluding steps of training and independent testing. The results obtained were analysed and ap-

plied in real scenario and efforts towards using domain knowledge for exploring further scope

of improvement were made.

2.3.1 Biochemical diversity of enzymes

Representing the diversity in enzymes can help in generalising the prediction approach. For

dealing with the challenges of accurate catalytic residue prediction, firstly, an analysis of vari-

ations observed in enzymes was done. This included attempts to understand aspects such as in

the number of catalytic residues per chain, type of constituting amino acids, sequence length and

non-catalytic residues to catalytic residues per chain (NnCS) were analysed. The count of cat-

alytic residues occurring in an enzyme chain ranged from 1 to 23 in the Dset650 (total 2136) and

1 to 10 in the Dtestset200 (total 683). Most chains comprised of less than 10 catalytic residues

as can be seen in Figure 2.3.

Further examination into the amino acid composition of these residues in the datasets

showed that there were representations of catalytic residues of different naturally occurring
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Figure 2.3: Number of catalytic residues per enzyme (chain) in the datasets.

amino acid types. The amino acid distribution in groups of charged (HERKD), polar (QT-

SNCYW) and hydrophobic (GFLMAIPV) was observed to be 61.6%, 28.6%, and 9.8% for

Dataset650 and 62.1%, 26.21%, and 11.7% for Dtestset200. The overall trend is shown in Figure

2.4, which is similar to amino acid distribution in catalytic residues reported in previous study

(Bartlett et al., 2002). An examination of the enzyme sequence lengths in the datasets (shown in

Figure 2.5) indicates that lengths of Dset650 enzymes ranges from as small as 67 amino acids

(aa) to as large as 1520 aa and that of Dtestset200 ranges from 62 aa to1023 aa. Therefore, the

study was inclusive of variety in enzyme sequence length as can be seen in Figure 2.5. These

diverse sequence lengths have vivid NnCS in datasets with Dset650 having NnCS ranging from

over 14 to 1024 residues, with most enzymes having NnCS in between 80 and 100. In Dtest-

set200, NnCS ranged from 16 to 848, with a most enzymes having NnCS in between 80 and

100. This observation highlights the fact that the distribution of catalytic residues in enzymes is

highly skewed, as also reported in earlier studies (Figure 2.6). With this preliminary idea on the

included enzymes’ diversity, their biological properties were encoded from sequences. These
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Figure 2.4: Type of amino acids constituting the catalytic residues of enzymes.

Figure 2.5: Sequence lengths (number of amino acids in a chain) of enzymes.
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were then used as an input into various classification models (described below) for obtaining the

best possible catalytic residue prediction.

Figure 2.6: Non-catalytic residues per catalytic residue in enzymes.

2.3.2 Choice of classification models

Catalytic residues have prominent physicochemical properties and evolutionary information that

differentiate them from non-catalytic residues. These properties were extracted from the enzyme

sequence as features of polarity index of amino acids, position specific scoring matrix and en-

tropy information. They were then used for discrimination purpose with the help of three clas-

sifiers SVM, LLR and RBF as described in methodology. The prediction performance obtained

upon 10CV shown in Table 2.1. The impact of using imbalanced training on prediction is also

depicted. As shown in the table, the models trained with balanced number of catalytic residues

and non-catalytic residues show a MCC of 0.652 and FM of 83.1% (SVM). This is better than

the performance obtained using LLR and RBF. When the number of non-catalytic residues per
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Figure 2.7: Selected number of features showing the best training performance on Dset650.

catalytic residue was greater than one (NnCS > 1), the training performance showed a dip in

sensitivity with greater NnCS values. Because catalytic residues have very scanty occurrence in

the enzyme sequence, it is essential to have a model than can predict as many of them. Although

there may be many false positives using this model, in order to obtain better identification of

both the classes, a compromise at this stage was explored for facilitating end-user eventually.

The issue of false prediction was addressed separately. Thus, the best SVM models (training

NnCS = 1 in a window size = 15) were used for prediction on enzymes in the independent test-

dataset. However, before independent testing, the scope of using selective features was explored

using F-score as described in methodology. Study findings suggested that 200 out of 330 fea-

tures were sufficient to reach the best prediction performance under the considerations, in this

study as shown in Figure 2.7. Upon examining the 200 optimal features, details shown in Table

2.2, 10 features were that of Polarity index, 175 of PSSM and 15 from EntWOP. The model

developed using selected features yielded a promising performance, with an FM of 83.6% and

MCC of 0.665, and this was used for independent testing as discussed in the next section.
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Table 2.1: Ten-fold cross-validation results on Dset650

NnCS Classifier SN PR SP AC MCC FM
1 LLR 84.7 79.4 80.0 81.4 0.629 81.9

RBF 85.6 79.8 78.3 81.9 0.641 82.6
SVM 85.6 80.8 79.5 82.5 0.652 83.1

2 LLR 73.2 76.0 88.4 83.3 0.622 74.6
RBF 71.9 76.6 89.0 83.3 0.619 74.2
SVM 75.4 76.7 88.4 84.1 0.642 76.0

3 LLR 58.6 71.7 94.2 87.1 0.571 64.4
RBF 58.3 75.4 95.4 87.6 0.580 64.4
SVM 62.0 72.4 94.0 87.6 0.595 66.7

4 LLR 48.6 70.1 96.5 89.7 0.528 57.3
RBF 45.1 74.2 97.4 90.0 0.528 56.1
SVM 54.3 71.0 96.3 90.3 0.567 61.5

Table 2.2: Summary of selected features for independent on Dtestset200

Position in window
Feature composition and frequency of occurrence
Polarity index PSSM EntWOP Total

-7 0 5 1 6
-6 1 7 1 9
-5 1 13 1 15
-4 1 13 1 15
-3 1 14 1 16
-2 1 17 1 19
-1 1 14 1 16
0 1 20 1 22
+1 1 15 1 17
+2 0 16 1 17
+3 1 11 1 13
+4 0 8 1 9
+5 0 8 1 9
+6 0 7 1 8
+7 1 7 1 9
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2.3.3 Incrementally challenging predefined settings for independent testing

Prediction in a balanced fashion (among one catalytic residue and one non-catalytic residue)

in independent test dataset showed an MCC of 0.629 and an FM of 81.5%. Encouraged by

the discriminative potential, these models were posed with incrementally challenging prediction

scenarios. This was done by increasing NnCS in the setting for identification. Results indicated

that the developed models were able to identify most of the catalytic residues despite their scanty

occurrence in the entire sequence of amino acids. However, in addition to these true catalytic

residues, some non-catalytic residues were mistakenly identified as catalytic. This, could also be

noted in Table 2.3 as the decrease in precision from 81.2% (NnCS = 1) to 13.4 % (NnCS = 30).

However, as described earlier, our interest in accurately identifying as many catalytic residues is

achieved with an overall sensitivity (81.9%) throughout the increments in NnCS. The specificity

was also high (≥ 80%) throughout, implying most non-catalytic residues were also correctly

identified. FM and MCC over the varied NnCS are shown in Table 2.3. Based on the obtained

promising results, the performance of these models was explored in the real scenario (where all

the catalytic residues and non- catalytic residues of a chain were included) and is described next.

Table 2.3: PINGU prediction on Independent test-dataset Dtestset200.

NnCS SN PR SP AC MCC FM
1 81.9 81.2 81.0 81.5 0.629 81.5
6 81.9 40.1 79.6 79.9 0.473 53.8
12 81.9 26.3 80.9 81.0 0.392 39.8
18 81.9 20.1 81.9 81.9 0.347 32.3
24 81.9 15.9 81.9 81.9 0.309 26.6
30 81.9 13.4 82.1 82.1 0.285 23.0

2.3.4 Predictions in real scenario

Upon independent testing, the best model obtained during the independent testing with (c = 50.0

and g = 0.08) was named PINGU: PredIction of eNzyme catalytic residues usinG seqUence

information. From the independent test 60 enzymes were chosen and the discrimination power
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of PINGU was tested on them. These enzymes were diverse with respect to enzyme classes,

sequence lengths and NnCS. Performance evaluation was done and results are shown in Figure

2.8. It was observed that the performance of PINGU on an average is 86.4% sensitive, 80.9%

specific with an MCC of 0.203 and FM of 12.6%. The premise of predicting most catalytic

Figure 2.8: PINGU prediction performance of in real scenario on 60 diverse enzymes.

residues is preserved (detailed performance results are shown in Table 2.4). Further, the predic-

tion scenario was explored to seek for peculiarities if any. Upon analysis, it was marked that

some of these residues were present in the enzyme sub-unit interface in homo-dimeric proteins

with PDB code 1bd0, 1dqr and 1q6l (based on CSA database (Furnham et al., 2014) records).

For predictions at residue level, one chain per enzyme was included in this study and mapping of

the residues that were present on the subunit interface of the other chain was done. Predictions

for the mentioned enzymes showed that the following residues occurring on the subunit inter-

face were missed. 1dqrA position 388 (Histidine) and 1q6lB positions 68 (Alanine) and 139

(Arginine), with numbering based on PDB (Berman et al., 2000). Further, whether the residues

missed were solvent exposed (surface) or buried could provide an interesting understanding of
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the trend in prediction by PINGU. This was also explored using GETAREA web server available

at http://curie.utmb.edu/getarea.html. It was found that nine of the 60 protein chains

(1aopA, 1bd3A, 1bibA, 1djlB, 1dqrA, 1f6dA, 1g99A, 1kezB, 2tdtA) have one of their catalytic

residues exposed and five others (1cvrA,1jhfA, 1nsfA, 1sesB, 2a86B) have two. PINGU was

able to predict 15 out of 19 solvent exposed catalytic residues from above-mentioned 14 protein

chains. Details of the performance of PINGU for these proteins are given in Table 2.4. However,

no specific bias or prediction trend was observed with regard to residues present on the subunit

interface or those occurring on the surface of the enzymes.The false positives causing dip in pre-

dictor precision (Figure 2.9) is addressed separately by application of predicted ligand-binding

information. This is described in the following.

Table 2.4: Prediction performance of PINGU on 60 diverse enzymes in real scenario.

PDB code TP FN FP TN SN PR SP AC MCC FM
12asA 3 0 33 280 100.0 8.3 89.5 89.6 0.273 15.4
1a0iA 1 0 29 304 100.0 3.3 91.3 91.3 0.174 6.5
1aldA 3 0 81 265 100.0 3.6 76.6 76.8 0.165 6.9
1aopA 5 0 118 360 100.0 4.1 75.3 75.6 0.175 7.8
1b6bB 3 2 12 125 60.0 20.0 91.2 90.1 0.307 30.0
1b6tA 2 1 36 106 66.7 5.3 74.7 74.5 0.134 9.8
1bd0A 4 0 85 285 100.0 4.5 77.0 77.3 0.186 8.6
1bd3A 2 1 32 175 66.7 5.9 84.5 84.3 0.165 10.8
1bibA 2 0 46 259 100.0 4.2 84.9 85.0 0.188 8.0
1ca2A 3 0 36 203 100.0 7.7 84.9 85.1 0.256 14.3
1cgkA 4 0 135 236 100.0 2.9 63.6 64.0 0.135 5.6
1chkA 2 0 23 199 100.0 8.0 89.6 89.7 0.268 14.8
1cvrA 4 0 43 374 100.0 8.5 89.7 89.8 0.276 15.7
1czf A 4 0 49 295 100.0 7.6 85.8 85.9 0.254 14.0
1db3A 4 0 111 243 100.0 3.5 68.6 69.0 0.155 6.7
1de6A 3 0 52 347 100.0 5.5 87.0 87.1 0.218 10.3
1dilA 1 2 26 257 33.3 3.7 90.8 90.2 0.084 6.7
1djlB 3 0 41 124 100.0 6.8 75.2 75.6 0.226 12.8
1dliA 6 0 109 273 100.0 5.2 71.5 71.9 0.193 9.9
1dnkA 4 0 21 221 100.0 16.0 91.3 91.5 0.382 27.6
1dnpB 3 0 108 344 100.0 2.7 76.1 76.3 0.143 5.3
1do8A 3 0 109 413 100.0 2.7 79.1 79.2 0.146 5.2
1dqrA 6 1 155 381 85.7 3.7 71.0 71.3 0.140 7.2
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1eq2A 3 0 59 234 100.0 4.8 79.9 80.1 0.197 9.2
1f6dA 4 0 113 245 100.0 3.4 68.4 68.8 0.153 6.6
1f8xA 2 1 17 123 66.7 10.5 87.9 87.4 0.230 18.2
1fcbA 5 0 80 412 100.0 5.9 83.7 83.9 0.222 11.1
1fq0A 2 0 42 155 100.0 4.6 78.7 78.9 0.189 8.9
1g99A 5 0 102 287 100.0 4.7 73.8 74.1 0.186 8.9
1gcuA 2 4 21 254 33.3 8.7 92.4 91.1 0.136 13.8
1gimA 3 0 142 272 100.0 2.1 65.7 66.0 0.117 4.1
1gsaA 3 0 65 234 100.0 4.4 78.3 78.5 0.186 8.5
1h7aA 5 0 132 412 100.0 3.7 75.7 76.0 0.166 7.0
1hrkA 6 0 53 286 100.0 10.2 84.4 84.6 0.293 18.5
1htoX 3 0 131 329 100.0 2.2 71.5 71.7 0.127 4.4
1jhf A 4 1 22 161 80.0 15.4 88.0 87.8 0.317 25.8
1kasA 4 0 114 280 100.0 3.4 71.1 71.4 0.155 6.6
1kezB 4 0 19 230 100.0 17.4 92.4 92.5 0.401 29.6
1l7nB 5 1 23 165 83.3 17.9 87.8 87.6 0.350 29.4
1m9cA 4 2 63 82 66.7 6.0 56.6 57.0 0.091 11.0
1n2cC 4 2 69 389 66.7 5.5 84.9 84.7 0.160 10.1
1nn4A 4 0 36 105 100.0 10.0 74.5 75.2 0.273 18.2
1nsf A 2 1 21 209 66.7 8.7 90.8 90.6 0.217 15.4
1o98A 3 0 141 353 100.0 2.1 71.5 71.6 0.122 4.1
1ok4J 2 1 25 208 66.7 7.4 89.3 89.0 0.197 13.3
1p7mA 2 1 33 137 66.7 5.7 80.6 80.4 0.154 10.5
1pymB 3 1 39 225 75.0 7.1 85.2 85.1 0.201 13.0
1q6lB 7 2 21 171 77.8 25.0 89.1 88.6 0.399 37.8
1qfeB 2 1 23 212 66.7 8.0 90.2 89.9 0.207 14.3
1sesB 4 1 73 329 80.0 5.2 81.8 81.8 0.174 9.8
1w1oA 1 2 63 454 33.3 1.6 87.8 87.5 0.049 3.0
1ytwA 5 1 44 242 83.3 10.2 84.6 84.6 0.258 18.2
1z9hA 2 2 15 241 50.0 11.8 94.1 93.5 0.220 19.0
2a86B 7 0 57 199 100.0 10.9 77.7 78.3 0.292 19.7
2dlnA 5 0 72 215 100.0 6.5 74.9 75.3 0.221 12.2
2f9rB 8 1 26 236 88.9 23.5 90.1 90.0 0.427 37.2
2oatA 3 0 96 326 100.0 3.0 77.3 77.4 0.153 5.9
2pgdA 4 0 121 343 100.0 3.2 73.9 74.2 0.154 6.2
2tdtA 2 1 74 183 66.7 2.6 71.2 71.2 0.089 5.1
2ts1A 2 2 85 316 50.0 2.3 78.8 78.5 0.069 4.4
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2.3.5 Application of enzyme domain knowledge in post-processing

Biological functions at deeper levels are inclusive of specific biochemical activities such as catal-

ysis. Looking for catalytic residues in a reduced search space may improve the prediction sce-

nario (Zhang et al., 2009). As catalytic residues are also ligand-binding residues in a broader

perspective, it was hypothesised that upon searching for catalytic residues within ligand binding

residue pools may reduce the search space, thus sparing the scenario from false predictions. To

explore this idea, predicted ligand information was used as a post-processing filter (Bruha, 2001).

For this, predictions of a template-recognition based ligand binding site predictor, S-SITE (Yang

et al., 2013b), was combined with PINGU predictions hoping to improve its precision. The class

labels of each of the test protein residues were re-labeled. Those predictions of PINGU that were

also present in the set of S-SITE based predictions were considered as catalytic, the remaining

residues were filtered out and regarded as non-catalytic.

Table 2.5: Prediction performance upon application of post-processing filter in real scenario
on 60 diverse enzymes.

PDB code TP FN FP TN SN PR SP AC MCC FM
12asA 3 0 2 311 100.0 60.0 99.4 99.4 0.772 75.0
1a0iA 1 0 12 321 100.0 7.7 96.4 96.4 0.272 14.3
1aldA 3 0 17 329 100.0 15.0 95.1 95.1 0.378 26.1
1aopA 5 0 30 448 100.0 14.3 93.7 93.8 0.366 25.0
1b6bB 2 3 2 135 40.0 50.0 98.5 96.5 0.429 44.4
1b6tA 2 1 14 128 66.7 12.5 90.1 89.7 0.258 21.1
1bd0A 2 2 13 357 50.0 13.3 96.5 96.0 0.244 28.6
1bd3A 2 1 9 198 66.7 18.2 95.7 95.2 0.322 33.3
1bibA 2 0 19 286 100.0 9.5 93.8 93.8 0.299 50.0
1ca2A 2 1 9 230 66.7 18.2 96.2 95.9 0.334 66.7
1cgkA 4 0 16 355 100.0 20.0 95.7 95.7 0.436 NA
1chkA 1 1 1 221 100.0 8.0 89.6 89.7 0.268 27.3
1cvrA 4 0 4 413 100.0 8.5 89.7 89.8 0.276 37.5
1czf A 0 4 2 342 100.0 7.6 85.8 85.9 0.254 18.2
1db3A 3 1 15 339 100.0 3.5 68.6 69.0 0.155 27.3
1de6A 3 0 10 389 100.0 5.5 87.0 87.1 0.218 17.4
1dilA 1 2 7 276 33.3 3.7 90.8 90.2 0.084 36.4
1djlB 3 0 16 149 100.0 6.8 75.2 75.6 0.226 8.0
1dliA 2 4 15 367 100.0 5.2 71.5 71.9 0.193 17.4
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1dnkA 2 2 5 237 100.0 16.0 91.3 91.5 0.382 36.4
1dnpB 1 2 20 432 100.0 2.7 76.1 76.3 0.143 8.4
1do8A 2 1 9 513 100.0 2.7 79.1 79.2 0.146 28.6
1dqrA 4 3 10 526 85.7 3.7 71.0 71.3 0.140 38.1
1eq2A 3 0 14 279 100.0 4.8 79.9 80.1 0.197 29.9
1f6dA 4 0 15 343 100.0 3.4 68.4 68.8 0.153 34.8
1f8xA 2 1 4 136 66.7 10.5 87.9 87.4 0.230 44.4
1fcbA 4 1 16 476 100.0 5.9 83.7 83.9 0.222 32.0
1fq0A 2 0 7 190 100.0 4.6 78.7 78.9 0.189 36.3
1g99A 3 2 16 373 100.0 4.7 73.8 74.1 0.186 25.0
1gcuA 2 4 9 266 33.3 8.7 92.4 91.1 0.136 23.5
1gimA 3 0 19 395 100.0 2.1 65.7 66.0 0.117 23.9
1gsaA 2 1 6 293 100.0 4.4 78.3 78.5 0.186 36.4
1h7aA 1 4 9 535 100.0 3.7 75.7 76.0 0.166 13.3
1hrkA 2 4 17 322 100.0 10.2 84.4 84.6 0.293 16.0
1htoX 1 2 12 448 100.0 2.2 71.5 71.7 0.127 12.5
1jhf A 0 5 2 181 80.0 15.4 88.0 87.8 0.317 NA
1kasA 4 0 10 384 100.0 3.4 71.1 71.4 0.155 44.5
1kezB 3 1 2 247 100.0 17.4 92.4 92.5 0.401 66.7
1l7nB 5 1 3 185 83.3 17.9 87.8 87.6 0.350 71.4
1m9cA 4 2 6 139 66.7 6.0 56.6 57.0 0.091 50.0
1n2cC 2 4 9 449 66.7 5.5 84.9 84.7 0.160 23.5
1nn4A 3 1 8 133 100.0 10.0 74.5 75.2 0.273 40.0
1nsf A 1 2 6 224 66.7 8.7 90.8 90.6 0.217 20.0
1o98A 1 2 3 491 100.0 2.1 71.5 71.6 0.122 28.6
1ok4J 2 1 7 226 66.7 7.4 89.3 89.0 0.197 33.3
1p7mA 2 1 3 167 66.7 5.7 80.6 80.4 0.154 50.0
1pymB 3 1 12 252 75.0 7.1 85.2 85.1 0.201 31.6
1q6lB 1 8 9 183 77.8 25.0 89.1 88.6 0.399 10.5
1qfeB 2 1 8 227 66.7 8.0 90.2 89.9 0.207 30.8
1sesB 3 2 18 384 80.0 5.2 81.8 81.8 0.174 23.1
1w1oA 0 3 5 512 33.3 1.6 87.8 87.5 0.049 NA
1ytwA 3 3 10 276 83.3 10.2 84.6 84.6 0.258 31.6
1z9hA 1 3 2 254 50.0 11.8 94.1 93.5 0.220 28.6
2a86B 7 0 12 244 100.0 10.9 77.7 78.3 0.292 53.8
2dlnA 1 4 12 275 100.0 6.5 74.9 75.3 0.221 11.1
2f9rB 4 5 2 260 88.9 23.5 90.1 90.0 0.427 53.3
2oatA 3 0 13 409 100.0 3.0 77.3 77.4 0.153 31.6
2pgdA 4 0 11 453 100.0 3.2 73.9 74.2 0.154 42.1
2tdtA 1 2 3 254 66.7 2.6 71.2 71.2 0.089 28.6
2ts1A 0 4 17 384 50.0 2.3 78.8 78.5 0.069 NA
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Figure 2.9: Exploring preference of amino acids during PINGU predictions in real scenario.
Abbreviations tpr (Sensitivity): true positive rate; fpr (1- Specificity): false positive rate.

Figure 2.8 shows the predictor performance before and after application of this post-

processing filter. On an average, without much compromise in sensitivity, specificity or accuracy

of the predictor, an overall improvement of 16% was observed in precision. This reflected in the

assessment parameters also, where an achievement of 20% rise in FM and 0.138 in MCC was

marked (details in Table 2.4, 2.5). The results of this attempt suggest that application of post-

processing filter such as the one used in this study can be useful in obtaining accurate prediction

of catalytic residues in real scenarios, with minimal false positives, which has been a challenge

in biology.

2.3.6 Case study

PINGU predictions were so far generalised for a pool of enzymes. An insight into its working on

an individual enzyme, 4-hydroxyproline betaine 2-epimerase (Zhao et al., 2013b), is provided

here. The enzyme reportedly takes part in multiple biochemical reactions resulting in different

biologically relevant functions in the catabolic pathway depending upon osmotic stress. The

36



2.4. Conclusion

residues that directly take part in the catalytic activity, i.e., the catalytic residues, occur at posi-

tion 163 (Lysine) and 265 (Lysine) in a sequence length of 367 residues. Prediction performance

of PINGU is shown in Figure 2.10. Notably among 353 residues (residues analysed excluding

Figure 2.10: Prediction performance of PINGU on 4-hydroxyproline betaine 2-epimerase.
The alphabets in upper case indicate PINGU predictions; alphabets underlined are predicted

ligand binding residues; and those highlighted are catalytic residues.

termini), the two catalytic residues were correctly predicted. However, along with the true posi-

tives, 52 non-catalytic residues (false positives) were also predicted. To reduce the false positive

rate, predicted ligand binding residue data for this enzyme was used as a filter. Consequently,

it was observed that, of the 52 falsely predicted residues, 40 false positives could be reassigned

correctly as non-catalytic. This implied in a pool of predictions, if there had to be experimental

validation to be done, it would require scanning of only 6 other residues per catalytic residue.

These findings clearly indicate that PINGU with post-processing filtering can boost enzyme ap-

plications further.

2.3.7 Software availability

The software PINGU along with the user manual and associated data is available at http:

//dx.doi.org/10.6084/m9.figshare.1492931.

2.4 Conclusion

Based on the findings obtained, it can be understood that despite several efforts through many

years, there are still many issues associated with the prediction of catalytic residues and efforts

towards this direction have been continuing as shown in some recent studies (Sun et al., 2016;
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Xiao et al., 2015). However, using domain knowledge and supervised machine learning tech-

niques in combination can certainly improve the prediction scenario, such as demonstrated in

chapter1 by selecting robust features and application of predicted ligand binding residues as a

post-processing filter. The findings of this study are hoped to boost the enzyme function anno-

tation eventually for use in various biotechnological applications.

1Relevant findings: Pai, P. P., Ranjani, S. S. S., and Mondal, S. (2015). PINGU: PredIction of eNzyme catalytic
residues usinG seqUence information. PLoS ONE, 10(8): e0135122. http://doi.org/10.1371/journal.pone.
0135122
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Chapter 3

MOWGLI: prediction of protein-MannOse

interacting residues With ensemble classifiers

usinG evoLutionary Information

This chapter has details of studies performed for sequence-based identification of mannose-

interacting residues in proteins showcasing efforts for achieving enhanced precision. Applica-

tion of consensus information using varied type of neighbourhood information in an ensemble

architecture is demonstrated here for improving the prediction scenario.

3.1 Introduction

Among the many protein-ligands interactions, the ones involving carbohydrates are essential

for cellular processes such as signaling, structural support, inter-cell interactions, cell-matrix

adhesion, growth, and immune response (De Schutter and Van Damme, 2015). Since proteins

interacting with carbohydrate ligands are present almost ubiquitously in different tissues as cell

surface conjugates, over evolutionary time, they have been utilised as receptors for attachment

and invasion, by several disease causing microorganisms (Vliegenthart, 2007). For example,

infections involving Ebola virus (Lin et al., 2003), malaria, dengue, African sleeping sickness,

tick-borne fevers, and human immunodeficiency virus (HIV) (Dinglasan and Jacobs-Lorena,
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2005), involve protein interactions with mannose and its variants, a special class of carbohy-

drates. In order to survive, the host requires to respond adequately to these infectious agents

(Dinglasan and Jacobs-Lorena, 2005), which may be externally supplemented by global control

efforts including strategies for diagnosing diseases, infection control and treatment. A need for

progress in the novel interventions has become more prominent.

Computational efforts in aiding experiment driven therapeutic strategies can be directed

towards analysis and identification of these interactions at greater depth. For example, a protein

interacting with mannose, also known as mannose-binding lectin, is a calcium-dependent serum

protein, that participates in the innate immune response. Essentially, it binds to carbohydrates

on the pathogen surfaces, where it can elicit complement system activation or directly act as an

opsonin (Koch et al., 2001). Another protein, antibody 2G12, uniquely counterpoises a wide

range of HIV-1 isolates. It does so by binding the high-mannose glycans on the HIV-1 surface

glycoprotein gp120 (Sanders et al., 2002). Based on their functional implications, it can be

clearly understood that the potential of understanding these residues, at greater depth, could have

applications in HIV-1 vaccine development. With increasing availability of protein-sequence and

structure information, materialising computational contribution to the biomedicine community

has become feasible.

General and specific carbohydrate interacting predictors are available for use. Methods

based on structure, for example, use properties such as those discriminating sugar-binding sur-

face patches (Taroni et al., 2000) or three-dimensional probability density distribution of inter-

acting atoms (Tsai et al., 2012) or binding energy (Gromiha et al., 2014) for general prediction

of carbohydrate binding sites. Specific prediction approaches have also been reported such as

for galactose binding sites (Sujatha et al., 2004), glucose binding sites (Nassif et al., 2009), and

mannose binding sites (Khare et al., 2012). Sequence-based methods have also progressed over

years since the first prediction approach, from general protein-carbohydrate interacting sites pre-

dictors (Malik and Ahmad, 2007), to predictors which are more specific, such as, for mannose

binding sites (Agarwal et al., 2011).
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Though this field has been advancing, accurate sequence or structure based prediction of

specific protein-carbohydrate binding residues such as (mannose-interacting residues) MIR is

still challenging. This is because of their non-uniform distribution (Agarwal et al., 2011). This

may be because such interactions are not highly selective and they exhibit multiple specificities.

Any subtle changes in the size and nature of constituting amino acids can affect ligand affinity

of binding proteins. Studies suggest that within a family there seems to be a general pattern in

the nature of protein-carbohydrate interaction but gaining insights into distinguishing common

pattern between the families and specific carbohydrate binding has ample scope for research,

for example, lectin families and their interaction with mannose (Srinivasan et al., 1999). There

are reports of structural features with discriminative potential but at sequence level, needless to

say, the identification process gets very challenging. This presents an exciting scope of explo-

ration for the development of novel medical interventions (Raz and Nakahara, 2008), biological

findings such as in characterisation of enzyme dynamics (Virgens et al., 2014), understanding

of biomolecular recognition mechanisms (Mamidi and Surolia, 2015), and unraveling molecular

etiology of diseases (Fernandes et al., 2014).

The approach proposed here for identification of mannose interacting residues is called

MOWGLI (prediction of protein-MannOse interacting residues With ensemble classifiers

usinG evoLutionary Information). Its development and implementation is described in the next

section.

3.2 Materials and Methods

For developing a mannose-interacting residue predictor, as described in the previous study,

first a benchmark dataset comprising of protein-mannose interacting complex information has

to be created for learning and testing. Biological properties of mannose-interacting and non-

interacting residues have to be encoded for discrimination using a function. In this study, many

such functions have been generated to draw a consensus for exploring the scope of achieving

enhanced predictions. This is described in details below:
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3.2.1 Datasets

For this study, PDB codes of proteins which are bound to mannose and its derivatives, along

with information of their interacting residues were collected from BioLip database (Yang et al.,

2013a). This database available at http://zhanglab.ccmb.med.umich.edu/BioLiP/, has

semi-manually curated high-quality, biologically relevant ligand-protein binding interactions in-

formation, was used to prepare the non-redundant datasets. Basically, a list of protein chains

(PDB (Berman et al., 2000) code and chain identifier) interacting with mannose and its variants

(listed in Table 3.1) were collected. Mannose interacting residues were noted. Following this,

the sequence information was generated using the ATOM record of their structures (solved by

X-ray crystallography with a resolution of 3.0 Å) and filtered for presence of fragments and

non-naturally occurring amino acids. Further, sequences which were more than 25% similar to

any other sequence in the collection were removed using BlastClust (Altschul et al., 1997). Al-

together, a non-redundant benchmark data set consisting of 157 protein chains with 1311 MIR

was obtained. Of the total, 917 MIR (128 protein chains) were randomly reserved for training

and 394 MIR (29 protein chains) for testing. The training and testing datasets were named as

Dset128 and Dtestset29, respectively.
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3.2. Materials and Methods

3.2.2 Amino acid composition

Biological functions of proteins depend upon the amino acids that constitute its architecture.

To know if certain types of amino acids are favored over the others in mannose interaction,

composition of the mannose-interacting residues (MIR), and non-mannose-interacting residues

(Non-MIR) were examined. Essentially, the amino acid composition (AAC) of a given protein

data set which represents 20 natural amino acids is computed using the following formula for

MIR:

AACMIR
i =

fMIR
i

NMIR
(3.1)

And, for Non-MIR:

AACNon−MIR
i =

fNon−MIR
i

NNon−MIR
(3.2)

where AACMIR and AACNon−MIR are the AACs of MIR and Non-MIR;

i ∈ {I, V, L, F,C,M,A,G, T,W, S, Y, P,H,E,Q,D,N,K,R} fMIR
i , fNon−MIR

i are the

frequency of occurrence in MIRs and Non-MIRs in the data set; and NMIR , NNon−MIR are

the total numbers of MIRs and Non-MIRs, respectively, in the data set.

3.2.3 Features

In this study, sequence based protein evolutionary information was obtained in the form of

PSSM using the PSI-BLAST program (Altschul et al., 1997), searching the National Center for

Biotechnology Information Non-redundant database available at ftp://ftp.ncbi.nlm.nih.

gov/blast/db/ with three iterations and E-value cut-off = .001 for multiple sequence align-

ment. The final PSSM profile is a matrix comprising of 20-dimensional weighted observed

percentages (WOP) for each residue, and each of these values (x) is normalised to the range of

[0, 1] using 1/(1+e−x). For a protein P of length L, Si→j represents the normalised occurrence

probability of amino acid at position i of the protein sequence, when it is mutated by j during the

evolutionary process; j ∈ {A,R,N,D,C,Q,E,G,H, I, L,K,M,F, P, S, T,W, Y, V }. After

obtaining the normalised PSSM values for a protein, multi-dimension features for the target
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3.2. Materials and Methods

residues were created by encoding the PSSM values into a vector. The neighbourhood informa-

tion along with the evolutionary information for a residue, has been previously reported (Agar-

wal et al., 2011) to contribute to the distinct properties of the mannose-interacting region. There-

fore, in a window of (2w + 1) residues, details of w residues in the flanking region from each

side of the target residue was included, where w ∈ {4, 5, 6, 7, 8, 9, 10} giving rise to window

sizes of 9, 11, 13, 15, 17, 19, and 21. Upon exploring in this window sizes, the features vectors

of 20 ∗ (2w + 1) dimension were made.

3.2.4 Prediction engine and performance assessment

A variety of their ensemble architectures in this study, as can be seen in Figure 3.1, were cre-

ated based on the optimised base classifiers trained on Dset128 using evolutionary information.

These architectures comprised of varied G, where G ∈ {10, 15, 20, 25, 30} denoting the num-

ber of base classifiers used in the ensemble. The idea behind exploring a variety of G is to

understand, for a given set of positive examples, with varied negative examples, how best the

prediction performance can be improved. Two classifiers, i.e., RF and SVM were explored and

optimised for developing the base-classification algorithm. The performance assessed using 10-

fold cross-validation (10CV) using Dset128. Since MCC is considered to be an assessor of

how well predictions correlate with observed class labels (Baldi et al., 2000), the best models

were selected based on best MCC. Thus, for a set of 10 training folds (k ∈ {1, 2, ..., 10}) 10

best models were obtained for a base-classifier. To create the ensemble architecture, for each

G, G number of base-classifiers were created using Dset128. With an objective of enhancing

the true class prediction and diminishing false prediction based on randomness, the constitut-

ing base-classifiers were created in the following manner. Basically, in all base-classifiers, kth

fold where k ∈ {1, 2, ..., 10} contained same positive examples and negative examples were

subsampled randomly from the pool of negative examples.With the created ensembles, for each

G, predictions were obtained for protein chains in Dtestset29. For a protein chain, kth fold,

k ∈ {1, 2, ..., 10} prediction from each base-classifier was considered for every residue posi-

tion and a consensus drawn to assign the new class. In this way, consensus-based predictions
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Figure 3.1: The overall study workflow where an ensemble architecture is built from created
training dataset and optimised for prediction purposes.

46
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were obtained for all protein chains and the performance assessed fold-wise. That is, prediction

performance of all the 29 chains was averaged for a given fold. The best-performing fold (best

MCC) was considered for comparison across various G ensembles.

3.3 Results and discussion

3.3.1 Dataset analysis: insights into residues interacting with mannose and its

variants

Proteins that interact with mannose and its variants were studied to gain insights into their char-

acteristics traits, if any. Among the chains in Dset128 and Dtestset29, the sequence length and

distribution of interacting residues were explored. The sequence lengths of chains varied from

74 (aa) to 971 (aa). They belonged to multiple-classes of proteins including enzymes, lectins,

periplasmic protein, and signaling protein from a variety of organisms including lower micro-

organisms to higher plants and animals. Figure 3.2 shows the frequency of occurrence of amino

acids constituting interacting and non-interacting residues. After the dataset analysis, based on

the interacting residue particulars, the classification algorithm was chosen for creation of ensem-

ble architecture.

3.3.2 Base-classifer and ensemble performance

Considering the imbalanced data as shown above, if the entire data are used, the classifier may

be prone to ignoring the minority class, i.e., the class of interest consisting of MIR. Therefore,

multiple comparatively small and balanced subsets (where representatives from the larger pattern

are to be selected randomly) were employed in the study. First, an optimisation of individual

classification was done and then they were combined into ensemble architecture. For base-

classifier creation, biologically relevant properties such as PSSM and local AAC (AAC of the

fragment containing interacting residues along with their neighbourhood) were extracted, for the

interacting residues present in Dset128 chains. The process was optimised using 10CV. The so

obtained best results are shown in Table 3.2.

Clearly, all assessment parameters suggest PSSM to have relatively more discriminatory
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Figure 3.2: Frequency of occurrence of the mannose (A) interacting residues (MIR) and (B)
non-interacting (Non-MIR) in the datasets.
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Table 3.2: Training prediction performance using different feature types.

Window size Classifier Features MCC FM
9 RF PSSM 0.368 66.6

LAAC 0.197 54.2
SVM PSSM 0.390 60.1

LAAC 0.251 52.1
11 RF PSSM 0.368 67.0

LAAC 0.145 50.2
SVM PSSM 0.374 65.4

LAAC 0.215 58.1
13 RF PSSM 0.385 67.6

LAAC 0.165 51.0
SVM PSSM 0.398 65.2

LAAC 0.183 56.9
15 RF PSSM 0.373 67.0

LAAC 0.189 50.9
SVM PSSM 0.389 58.6

LAAC 0.204 57.0
17 RF PSSM 0.364 66.1

LAAC 0.217 50.4
SVM PSSM 0.384 57.5

LAAC 0.222 57.4
19 RF PSSM 0.368 66.4

LAAC 0.187 48.6
SVM PSSM 0.374 62.1

LAAC 0.242 59.8
21 RF PSSM 0.357 66.0

LAAC 0.201 49.3
SVM PSSM 0.374 65.4

LAAC 0.237 58.6

49



3.3. Results and discussion

potential than LAAC with both RF and SVM with maximum MCC in the window size of 13.

The RF showed an MCC of 0.385 and FM of 67.6%. SVM showed an MCC of 0.398 and FM

of 65.2%. Therefore, in this study, PSSM has been used as a discriminating feature of MIR.

Both RF and SVM using a window size 13 were employed further in the classification ensemble

architecture. This was developed as described in Materials and Methods section 2.6 with G sets

of 10, 15, 20, 25, and 30 base-classifiers on Dset128. The performance evaluation parameters of

the training phase are shown in Table 3.3.

Table 3.3: Prediction performance of base-classifiers on an average. Each base-classifier
obtained using 10-fold cross-validation on Dset128.

G Classifier SN PR SP AC MCC FM
10 RF 62.1 69.6 72.7 67.4 0.352 65.3

SVM 54.8 78.8 79.5 67.2 0.382 59.3
15 RF 62.2 69.7 72.8 67.5 0.355 65.4

SVM 54.6 78.8 79.5 67.0 0.380 59.0
20 RF 62.0 69.6 72.7 67.4 0.352 65.2

SVM 54.3 78.7 79.4 66.8 0.376 58.6
25 RF 62.0 69.5 72.6 67.3 0.351 65.2

SVM 53.4 79.2 79.8 66.6 0.374 57.8
30 RF 61.8 69.4 72.6 67.2 0.349 65.0

SVM 52.6 79.6 80.2 66.4 0.372 57.2

Consequently, by means of the best trained models of each G set, predictions were obtained

for protein chains in Dtestset29 which had considerable diversity. The predictions were further

analysed and this process repeated for all the sets of ensembles. The number of votes needed

was studied and optimised based on best averaged MCC as shown in Figure 3.3.

The ensemble with a set of 25 base-classifiers, with a consensus from all 25 for both ap-

proaches, showed an MCC of 0.370 for RF and 0.333 for SVM. This was analysed further to

understand the prediction scenario obtained using ensemble and non- ensemble approach. Look-

ing into Figure 3.4, it can be clearly understood that there is an enhancement in prediction using

the ensemble approach as compared to the base-classifiers, with an increase in MCC from 0.208

to 0.370 upon using RF and an increase from 0.202 to 0.333 with SVM.

Based on the above, the 25 RF base-classifier based ensemble architecture is selected for
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Figure 3.3: Prediction performance of RF (top panel) and SVM (bottom panel) based ensem-
ble classifiers.
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Figure 3.4: Comparative analysis of ensemble and non-ensemble classification approaches
using RF (top panel) and SVM (bottom panel).
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further analysis and named MOWGLI (prediction of protein-MannOse interacting residues

With ensemble classifiers usinG evoLutionary Information). In order to understand its dis-

criminatory potential for proposing this work as a new prediction approach, it is important

that MOWGLI ’s performance be comparable with the state-of-art mannose-specific and gen-

eral carbohydrate binding site predictors. The comparative prediction performance obtained for

MOWGLI is described below.

3.3.3 Comparison with state-of-art

Comparison of a newly put forth method with previously reported solutions is an important

step towards development of an effective computational approach. Owing to the differences in

data sets, definitions of problems, and approaches, a direct comparison with the performance

published in the literature is next to impossible (Murakami and Mizuguchi, 2010). However,

upon careful considerations with the available state-of-art and relative performance analysis of

MOWGLI was performed with sequence-based mannose-specific predictor PreMieR (Agarwal

et al., 2011), and general carbohydrate binding site predictor, CBS-PSSM (Malik and Ahmad,

2007).

For comparison with mannose-specific predictor, the 29 chains in Dtestset29 were sub-

mitted to PreMieR web server available at http://www.imtech.res.in/raghava/premier/

and analysed. Detailed protein chain-wise prediction performances obtained using both the pre-

dictors are shown in Tables 3.4,3.5 and 3.6.

There is an improvement of 22.7% in sensitivity, 26.6% in precision, and 9.2% on an aver-

age in specificity, suggesting that in the predictions obtained by MOWGLI, improved discrimi-

nation of MIRs from non-MIRs can be achieved. Figure 3.5 shows the diminishing false posi-

tive rate that can be achieved by MOWGLI indicating that ensemble approach can help address

the imbalance in data better than individual classification algorithms. The overall performance

showed an increase of 0.286 in MCC and 19.0% in FM which is indeed reassuring. The per-

formance obtained by MOWGLI in the test cases presents its enhanced prediction power, but
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whether MOWGLI’s performance is comparable with general carbohydrate binding site predic-

tor still required further insights. So, the same test cases were submitted to the CBS-PSSM

(Malik and Ahmad, 2007) web-server and the predictions evaluated. CBS-PSSM uses evolu-

tionary information in neural networks for prediction of carbohydrate binding sites including

mannose as one of the ligands. Table 3.6 shows the detailed predictions obtained by CBS-PSSM

for each of the 29 test cases.
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Table 3.4: Prediction performance of MOWGLI as compared to state-of-art. The parameters
which could not be assessed have been labelled as ’NA’

Protein ID SN PR SP AC MCC FM
1bvwA 50.0 4.7 82.8 82.2 0.110 8.6
1gahA 100.0 97.8 99.8 99.8 0.988 98.9
1jpcA 78.9 88.2 97.8 94.4 0.802 83.3
1v0zA 0.0 0.0 91.1 88.9 -0.048 NA
2c59A 20.0 33.3 97.1 91.8 0.217 25.0
2dtxA 12.5 4.8 91.9 89.4 0.028 6.9
2igoA 22.2 4.1 91.7 90.6 0.062 6.9
2msbB 100.0 100.0 100.0 100.0 1.000 100.0
2nlrA 50.0 9.3 81.8 80.6 0.150 15.7
2pk3A 13.6 50.0 99.0 92.9 0.235 21.4
2vn4A 54.5 7.9 88.1 87.5 0.172 13.8
2vnvA 90.0 60.0 94.5 94.2 0.707 72.0
2vuzA 66.7 85.7 99.2 96.9 0.740 75.0
2whlA 88.9 20.0 88.8 88.8 0.390 32.7
2wr9A 88.9 66.7 96.4 95.8 0.749 76.2
3aofB 50.0 15.2 90.6 89.3 0.233 23.3
3eqaA 83.9 65.0 96.7 95.9 0.717 73.3
3ll2A 66.7 44.4 91.0 88.6 0.484 53.3
3nkmA 0.0 0.0 96.4 95.8 -0.015 NA
3rumA 20.0 6.7 96.2 95.2 0.095 10.0
3s5xA 50.0 100.0 100.0 93.2 0.681 66.7
3vkkA 55.6 12.8 92.6 91.8 0.239 20.8
3w7tA 35.3 16.7 96.0 94.6 0.218 22.7
3zyrA 84.6 68.8 97.8 97.1 0.748 75.9
4ad4A 55.6 12.8 90.0 89.1 0.229 20.8
4bwlC 20.0 25.0 97.9 95.3 0.199 22.2
4p6aA 18.8 50.0 96.9 86.0 0.244 27.3
4pfyA 25.9 14.9 92.2 88.9 0.140 18.9
4s19A 50.0 12.0 93.8 93.1 0.221 19.4
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Table 3.5: Prediction performance of PreMieR (Agarwal et al., 2011)

Protein ID SN PR SP AC MCC FM
1bvwA 0.0 0.0 90.7 89.2 -0.04 NA
1gahA 97.8 31.2 77.2 79.2 0.481 47.3
1jpcA 15.8 13.6 78.7 67.6 -0.053 14.6
1v0zA 22.2 16.7 97.4 95.6 0.170 19.1
2c59A 12.0 50.0 99.1 93.1 0.221 19.4
2dtxA 0.0 0.0 85.4 82.8 -0.073 NA
2igoA 0.0 0.0 88.9 87.5 -0.044 NA
2msbB 100.0 22.6 77.4 78.8 0.418 36.8
2nlrA 25.0 3.9 77.1 75.2 0.009 6.8
2pk3A 13.6 8.8 89.2 83.8 0.023 10.7
2vn4A 36.4 2.9 77.6 76.8 0.045 5.4
2vnvA 40.0 22.2 87.3 83.3 0.211 28.6
2vuzA 22.2 13.3 89.2 84.5 0.091 16.7
2whlA 22.2 2.6 73.3 71.8 -0.017 4.6
2wr9A 44.4 22.2 82.3 84.0 0.234 29.6
3aofB 10.0 4.8 93.3 90.6 0.023 6.5
3eqaA 93.6 20.9 74.2 75.6 0.370 34.1
3ll2A 100.0 20.3 57.7 61.8 0.342 33.8
3nkmA 0.0 0.0 87.3 86.7 -0.03 NA
3rumA 0.0 0.0 87.3 86.2 -0.044 NA
3s5xA 11.1 9.1 82.5 72.7 -0.059 10.0
3vkkA 11.1 1.6 86.7 85.2 -0.009 2.8
3w7tA 17.7 2.1 80.8 79.3 -0.006 3.7
3zyrA 92.3 20.0 78.9 79.6 0.372 32.9
4ad4A 0.0 0.0 95.9 93.4 -0.033 NA
4bwlC 0.0 0.0 95.1 91.9 -0.042 NA
4p6aA 6.3 14.3 93.9 81.6 0.002 8.7
4pfyA 0.0 0.0 89.3 84.8 -0.007 NA
4s19A 0.0 0.0 85.1 83.7 -0.054 NA
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Table 3.6: Prediction performance of CBS-PSSM (Malik and Ahmad, 2007)

Protein ID SN PR SP AC MCC FM
1bvwA 0.0 0.0 98.0 96.4 -0.018 NA
1gahA 26.3 0.0 99.1 89.6 -0.03 NA
1jpcA 26.3 62.5 96.6 84.3 0.334 37.0
1v0zA 0.0 NA 100.0 97.7 NA NA
2c59A 4.0 14.3 98.2 91.8 0.041 6.3
2dtxA 12.5 7.1 94.7 92.2 0.055 9.1
2igoA 0.0 0.0 99.1 97.6 -0.012 NA
2msbB 14.3 12.5 93.4 88.5 0.072 13.3
2nlrA 25.0 7.4 88.3 86.0 0.076 11.4
2pk3A 0.0 0.0 97.2 90.3 -0.045 NA
2vn4A 0.0 0.0 99.3 97.5 -0.011 NA
2vnvA 0.0 NA 100.0 91.7 NA NA
2vuzA 22.2 15.4 90.8 86.0 0.110 18.2
2whlA 44.4 14.8 91.9 90.5 0.217 22.2
2wr9A 0.0 NA 100.0 92.4 NA NA
3aofB 20.0 13.3 95.6 93.2 0.129 16.0
3eqaA 0.0 0.0 98.4 91.7 -0.034 NA
3ll2A 16.7 18.2 91.9 84.6 0.089 17.4
3nkmA 0.0 0.0 99.9 99.3 -0.003 NA
3rumA 20.0 12.5 98.1 97.1 0.144 15.4
3s5xA 5.6 14.3 94.7 82.6 0.004 8.0
3vkkA 11.1 6.7 96.9 95.3 0.063 8.4
3w7tA 0.0 0.0 99.9 97.6 -0.005 NA
3zyrA 23.1 33.3 97.4 93.3 0.243 27.3
4ad4A 0.0 0.0 98.2 95.7 -0.022 NA
4bwlC 10.0 20.0 98.6 95.6 0.121 13.3
4p6aA 12.5 22.2 92.9 81.6 0.069 16.0
4pfyA 25.9 43.8 98.2 94.6 0.311 0.326
4s19A 33.3 20.0 97.7 96.7 0.242 25.0
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3.3. Results and discussion

From the table, it can be understood that, though the prediction accuracy is similar, pre-

dictions obtained by MOWGLI are 38.8% more sensitive and 24.1% precise. Figure 3.5 showed

high false negative rate in top right panel marked in CBS-PSSM predictions as compared to

MOWGLI. The specificity that can be obtained using MOWGLI is 94.1% and CBS-PSSM is

96.7%. Clearly, it can be marked that MOWGLI is able to identify MIRs from non-MIRs more

discretely than the state-of-art general sequence-based carbohydrate binding site predictor. The

results based on the analysed 29 sequences are optimistic and it would be encouraging to see a

similar trend as when more test cases can be included in the study in future. In the following,

examples of the enhanced prediction scenario that can be achieved using MOWGLI are shown

using case studies.

3.3.4 Case study

In this section, example predictions obtained for proteins using MOWGLI and state-of-art ap-

proaches above-mentioned is explained using examples from Dtestset29. Figure 3.6 (A) and

(B) show details of the prediction obtained residue wise along the sequence suggesting how

MOWGLI can be used for eventual applications in industry and vaccine development.

Mannose-specific agglutinin: This (PDB ID: 1jpcA) is a protein of the lectin family from

Snowdrop bulbs (Galanthus nivalis) and it has been determined that residues that interact with

mannose and its variants, in a length of 108 amino acids. Upon submitting this sequence for

prediction by MOWGLI, 15 of the MIRs were predicted accurately, with a precision of 88.2%

obtained upon performance assessment. Prediction for the same chain with PreMieR (Agarwal

et al., 2011) suggested that only three MIRs could be identified correctly with a precision of

13.6%. The general carbohydrate binding site predictor CBS-PSSM, though better performing

than PreMieR in this case, was also able to identify only five MIRs with predictions showing a

precision of 62.5%. After exploring the scenario at sequence level, structural information of this

protein chain was used for the prediction. Using COACH (Yang et al., 2013b), a template-based

meta-server for ligand binding sites of which mannose and its variants are a part, for the protein
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under consideration, predictions were obtained. The predictions were then screened consider-

ing those MIR derived from a template other than the query. Analysis of COACH (Yang et al.,

2013b) predictions revealed that it was able to identify more residues than PreMieR and CBS-

PSSM, i.e., 11 residues with a precision of 22.9%, but not as many as that could be obtained

with MOWGLI.

Figure 3.6: Case study. Prediction scenario for protein (A) Mannose-specific agglutinin and
(B) Glucoamylase. The interacting residues are denoted by uppercase. The prediction marked
by star, underline, tilde, and highlight are obtained by MOWGLI (this work), PreMieR (Agar-
wal et al., 2011), CBS-PSSM (Malik and Ahmad, 2007) and COACH (Yang et al., 2013b)

respectively.

Glucoamylase: This (PDB ID: 1gahA) is an enzyme of the hydrolase class from a fungus called

Aspergillus awamori of length 471 amino acids containing 45 MIR (Aleshin et al., 1996). Of the

45 MIR, using MOWGLI, all residues were accurately identified with a precision of 97.8%. Us-

ing PreMieR (Agarwal et al., 2011), 44 residues were identified but 99 residues falsely predicted

as mannose-interacting with an overall precision of 31.2%. CBS-PSSM was unable to identify
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any of the MIRs. Further, COACH (Yang et al., 2013b) predictions also could not be obtained

in this case, as templates other than the query were not available.

3.3.5 Software availability

The package for MOWGLI along with the user manual is available for the users at http:

//sites.google.com/site/sukantamondal/software. Prediction scenario is shown in

Figure 3.7

Figure 3.7: Schematic prediction scenario for a user provided query mannose-interacting pro-
tein
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3.4 Conclusion

Attempts to enhance the prediction scenario of protein-mannose interacting residues can help

unveil the underlying mechanisms of host-pathogen interactions and aid in development of in-

fection management strategies. This chapter1 clearly shows the positive impact of using evo-

lutionary information in the binding region in an random forest based ensemble setting, out-

performing the state-of-art. The vast pool of negative examples in the non-interacting region

can be used advantageously for discriminative learning purposes. With as minimal as sequence

information, enhanced performances can be achieved in the prediction scenario.

1Relevant findings: Pai, P. P. and Mondal, S. (2016). MOWGLI: prediction of protein-MannOse interacting
residues With ensemble classifiers usinG evoLutionary Information. Journal of Biomolecular Structure and Dynam-
ics, 34(10): 2069-2083. http://doi.org/10.1080/07391102.2015.1106978.
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Chapter 4

ROBBY: pRediction Of Biologically relevant

small molecule Binding residues on enzYmes

This chapter has details of studies performed for sequence-based identification of diverse ligand

binding residues in enzymes showcasing efforts for achieving enhanced precision. Application

of consensus information, as well as, template-based and structural insights are shown to posi-

tively influence the prediction scenario.

4.1 Introduction

The biological functions of proteins are intertwined to facilitate various processes in the cell.

This requires proteins to be evolutionarily designed in such a way that depending upon the

biochemical needs, the core architecture can interact with one or multiple ligands at same or

different sites in the various stages of the involved biochemical pathway. Over many decades,

with increasing number of resolved and available ligand-enzyme complexes, attempts to under-

stand these interactions using sequence and structure information have been made (Roche et al.,

2015). Some of these are general (Agostino et al., 2013; Brylinski and Feinstein, 2013; Chen

et al., 2016, 2014; Heo et al., 2014; Hu et al., 2016b; Qiu and Wang, 2011; Roche et al., 2013;

Singh et al., 2016; Tsujikawa et al., 2016; Yang et al., 2013b) whereas some others are more

specific such as DNA (Hu et al., 2016a; Ma et al., 2016) , RNA (Pai et al., 2017; Yasser et al.,
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2016), Heme (Liu and Hu, 2011), zinc (Liu et al., 2014), vitamin (Yu et al., 2014), mannose

(Agarwal et al., 2011). Modelling interactions using general or specific methods use template-

based or alternative techniques, contribute to open questions in the field of drug discovery (Konc

et al., 2015).

Despite multiple prediction efforts, determining the properties that can be used for discrim-

inative purposes in the identification of protein-ligand binding regions is challenging because

of their varied functional demands. Common assumptions such as those related to conservation

in evolution, solvent accessibility, presence on surface or pockets, etc., which have been used

to discriminate between ligand interacting and non-interacting residues, may require additional

considerations. For example, some of the proteins may have a cavity for longer and more specific

interactions with ligands, often found in enzyme catalysis (Bartlett et al., 2002). On the contrary,

some other proteins such as those involved in molecular recognition or adhesion processes may

require more surface-based interactions, where proteins provide the ligands rather exposed shal-

low clefts for binding or temporary influence (Konc et al., 2015; Krivak and Hoksza, 2015).At

higher resolution, the arrangement of residues in the sequence provides for a certain module

in structure that can in turn facilitate a specific type of interaction (Boraston et al., 2004; Gut-

teridge and Thornton, 2005). This arrangement is often conserved in proteins through evolution

because of its functional implications in the life processes (Capra et al., 2009). However, the

degree of conservation varies depending upon the nature of function and overall biochemical

requirement (Rost, 2002). Mutations or modifications in these residues may play an important

role in functional regulation (Fu et al., 2000) of these protein-ligand interactions and implicating

in disorders or diseases (Gonzalez and Kann, 2012). Scientists have been attempting to under-

stand the evolution and design of the protein-interaction architecture focussing on their innate

structure, conformational modifications, target and off-target binding, modes of interaction and

function (Konc et al., 2015).

From a computational perspective, the potential in various biological properties may not

be discretely discriminative, which puts forth the need to look for alternate means of achieving
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enhanced identification of these varyingly populated ligand interacting residues. Such problems

have been increasingly approached in bioinformatics using ensemble learning as already men-

tioned in the previous chapter. Since binding site evolution affects the specificity and selectivity

of interactions in the protein architecture (Najmanovich, 2017), the framework for prediction is

designed using consensus information available in the sequence neighbourhood. In this chap-

ter, studies for developing a de novo approach for identifying all the regions which might bind

to small molecule ligands are described. For this, the ligand binding regions in biochemically

diverse enzymes have been considered. The focus was to achieve enhanced precision without

compromising much on sensitivity by exploring supervised machine learning techniques in an

ensemble and applying domain knowledge.

4.2 Materials and Methods

The methodology used to create ensembles for the development of ROBBY is shown in Figure

4.1.

4.2.1 Datasets

For this study, enzymes which had at least one bound and unbound protein or complex informa-

tion were required. So, a list of protein chains, i.e., PDB code and chain identifier, interacting

with ligands were collected from the LigASite database. (version 9.7 released April 2012).

LigASite consists exclusively of biologically relevant protein-ligand binding sites for which at

least one apo- and one holo-structure are available. In defining the protein-ligand binding sites,

information from all holo-structures is combined, considering in each case the quaternary struc-

ture defined by the PQS server (Dessailly et al., 2008). Their sequence information for all the

PDB codes were extracted from the ATOM record of their experimentally solved structures.

Fragments and those sequences containing non-naturally occurring amino acids or other am-

biguity were removed from the study. The collection was then filtered for enzymes using a

software called SIFTS: Structure Integration with Function, Taxonomy and Sequence available

at http://www.ebi.ac.uk/pdbe/docs/sifts. Then sequences which were more than 30%
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4.2. Materials and Methods

Figure 4.1: An overview of ROBBY development.
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similar to any other sequence in the collection were removed using BlastClust (Altschul et al.,

1997). Altogether, a non-redundant benchmark dataset comprising of 311 protein chains with

8682 interacting residues and 87430 non-interacting residues were obtained. Of the total, 6512

interacting residues (233 enzymes) were randomly allocated for training and 2170 interacting

residues (78 enzymes) for testing. The training and testing dataset were named as Dset233 and

Dtestset78 respectively. To make sure the study holds true for newly identified enzymes, not

only learning from gold standard dataset is crucial, but also, testing has to be performed on

recent information too. With this objective, using the advanced search interface of the PDB,

proteins with at least one apo- (Note: these had Enzyme Classification Search: EC=1 to 6 and

Ligand Search: Has free ligands=no) and holo-structures released during May 2012 to Decem-

ber 2016 were collected and filtered for more than 30% similarity (with each other, as well as,

other previously created datasets) as mentioned above using BlastClust (Altschul et al., 1997).

Fragments and proteins not matching with the requisites were excluded from the study. After

processing for necessary attributes based on LigASite, a set of 17 enzymes was eventually ob-

tained(with 587 interacting residues and 4343 non-interacting residues) and named Dtestset17

for further use in independent testing.

4.2.2 Features

Evolutionary information has been widely used for protein-ligand interaction related annota-

tion such as in works (Capra et al., 2009; Nagl et al., 1999; Pai and Mondal, 2016; Pai et al.,

2015; Panwar et al., 2013). For the development of a general ligand binding predictor, position

specific evolutionary information in the form of position-specific scoring matrix has been used.

It was generated using PSI-BLAST program by searching the UniRef50 (Suzek et al., 2007)

database with three iterations and e-value cut-off 0.001 for multiple sequence alignment. The

final PSSM profile is a matrix comprising of 20-dimensional weighted observed percentages for

each residue. Each of the PSSM scores (x) that is generally depicted as integers was normalised

to the range of [0,1] using 1/(1 + e−x) for this study. After obtaining the normalised PSSM

values for a protein, features for the target residues were created by encoding the PSSM values
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into a multi-dimension vector along with varied neighbourhood information. Firstly, features

were extracted for a given set of interacting residues in the training dataset along with randomly

chosen balanced set of non-interacting residues, for a given window of (2w+ 1) residues. Here,

the information of w residues flanking on each side of the interacting residue were included,

where w ∈ {4, 5, 6, 7, 8, 9, 10} giving rise to window sizes of 9, 11, 13, 15, 17, 19 and 21. Then

two techniques were applied:

(i) Smoothing and condensing: This was explored to reduce noise while encoding features

as described to be advantageous in a relevant study (Fang et al., 2013). This was done by

representing each row of the vector for a residue Ci according to the following equation 4.1 for

smoothing:

Smoothing_Ci =
1

2m+ 1

j=i+m∑
j=i−m

PSSM_Cj , where i = (1, 2, ..., N) (4.1)

where PSSM_Cj represents the score in the original PSSM, smoothing_Ci represents the

score in the smoothed PSSM, N is the length of the sequence, 2m+ 1 is the smoothing-window

size. After smoothing, for condensing, the Kidera factors (Kidera et al., 1985) were used. The

smoothed PSSMs are then divided into sliding windows of size m. Each window is a matrix

Eiji =, ...,m, j = 1, ....20, where j represents each of the standard 20 amino acids. Each feature

is calculated according to the following equation:

Fi,p =
∑

Ei,jfj,p(i = 1, ...,m, p,= 1, ...10) (4.2)

where fj,p means the pth Kidera factor of j (each j has 10 Kidera factors). Finally, each value

in the condensed and smoothed PSSM matrix is scaled to the range of [-1, 1].

(ii) Ensemble learning: Further for creating ensembles, the basic feature extraction procedure

was repeated three times, where the type of non-interacting residues varied for the same set

of interacting residues. And, thus, for each of the 21 features for a given interacting residue,

20 ∗ (2w + 1) dimension vectors were constructed and applied for identification purposes.
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4.2.3 Prediction engine and performance assessment

The basic concepts and architecture employing SVM and RF that have been used here are de-

scribed in details in the previous chapter. Models were trained on Dset233 using different win-

dow sizes and negative instances while learning with one of SVM and RF at a time. All the

selected SVM models (21 models: for a given set of positive examples, three different sets of

negative examples were collected across various windows 9 to 21) were combined for obtain-

ing the consensus prediction. The same was repeated for RF followed by performance assess-

ment. The performances of individual base-classifiers and ensemble models were analysed using

Dset233 by means of 10CV. This technique along with the assessment parameters such as SN,

PR, SP, AC, MCC and FM (details described in chapter 2) have been used. Model selection was

based on best MCC. The consensus approach was tested on Dtestset78 and Dtestset17.

4.3 Results and discussion

4.3.1 Prediction insights with sequence information alone

Small-molecule or ligand interacting residue identification has been attempted over many

decades now. Many studies have brought to fore, the importance of evolutionary information

in the prediction of protein-functional residues. Since enzyme interactions are complex, delin-

eating the involved residues with minimal assumption and information was explored in this study

and has been discussed under three headings: (i) Choice of prediction architecture, (ii) Includ-

ing different types and numbers of neighbours in an ensemble, and (iii) Analysis of prediction

performance.

(i) Choice of prediction architecture:

Evolutionary information in the form of PSSM has been extensively explored for application

in identification of proteins and their functional aspects. Studies have also brought to fore, the

impact of smoothing and condensing PSSM over biochemical factors such as reported for iden-

tification of Flavin Adenine Dinucleotide (FAD), Nicotinamide Adenine Dinucleotide (NAD),

Adenosine triphosphate (ATP) (Fang et al., 2013) and Heme (Xiong et al., 2012).
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Impact of smoothing and condensing: In this study, the scope of using smoothened and con-

densed PSSM has been explored using Kidera factors (Kidera et al., 1985). Kidera factors carry

information about physical properties of all the 20 naturally occurring amino acids. Figure

4.2 shows the prediction performance (10CV) upon condensing PSSM over varied number of

neighbors, i.e., in different window sizes, using these factors. The best MCC 0.407 was shown

in window size 21 by SVM. This model was investigated further for the impact of smoothing

before condensing PSSM (Fang et al., 2013; Xiong et al., 2012). For this, varying smoothing

windows were explored. Figure 4.2 clearly suggests that there was no improvement in perfor-

mance upon smoothing. In order to gain further insights into whether the impact of condensing

evolutionary information showed an overall improvement, the contribution of PSSM and Kidera

Factors alone (for the chosen window size using SVM) was checked. Results suggested that

upon using PSSM alone an MCC of 0.456 was obtained and that with Kidera Factors alone is

just 0.242. This indicated the advantage of using PSSM without smoothing and condensing for

this study.

Role of position-specific information: Additionally, for the same window, we also explored the

role of position-specific and non-specific information, by using BLOSUM62 matrix for the lat-

ter. The BLOSUM (BLOcks SUbstitution Matrix) matrix is a substitution matrix used for scor-

ing sequence alignments evolutionarily divergent protein sequences (Henikoff and Henikoff,

1992). BLOSUM62 showed an MCC of 0.252. This suggests that position-specific information

is important and encoding it without any smoothing and condensing is more discriminative for

prediction in this study.

(ii) Including different types and numbers of neighbours in an ensemble:

It is well-known that the neighbourhood of interacting residues is important for conferring upon

them distinct functionally relevant properties. So, the prediction power of models using different

types and numbers of neighbours were explored. Prediction performances for various windows

using randomly chosen set of negative examples for three sets on Dset233 are summarized in

Table 4.1. The best performance obtained for RF was 0.449 MCC and that for SVM is 0.482.
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Figure 4.2: Assessment of prediction performance using (A) condensed PSSM with two dif-
ferent classifiers on Dset233 and (B) smoothened neighborhood information with best model.

Table 4.1: Training performance on Dset233

Window Approach SN PR SP AC MCC FM
9 RF 71.2 72.9 73.6 72.4 0.449 72.0

SVM 73.3 73.7 73.8 73.6 0.472 73.5
11 RF 70.7 73.0 73.8 72.3 0.446 71.7

SVM 73.1 74.0 74.2 73.7 0.474 73.5
13 RF 70.8 72.9 73.6 72.2 0.445 71.8

SVM 73.6 74.2 74.4 74.0 0.480 73.9
15 RF 71.2 73.0 73.6 72.4 0.449 72.0

SVM 73.5 74.0 74.2 73.8 0.477 73.7
17 RF 70.7 73.2 74.0 72.4 0.448 71.9

SVM 73.4 74.4 74.7 74.1 0.482 73.9
19 RF 71.0 72.8 73.4 72.2 0.445 71.8

SVM 73.6 74.2 74.4 74.0 0.480 73.8
21 RF 70.5 73.2 74.3 72.4 0.448 71.8

SVM 73.3 74.3 74.6 73.9 0.479 73.7
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Upon testing these models on Dtestset78, the best performance for SVM showed an MCC of

0.297 and 35.0% F-measure as shown in Table 4.2. With an objective of exploring the scope of

using the influence of type and number of neighbours to improve upon precision, consensus of

the trained models was drawn. For this, three models trained with same set of positive examples

and randomly chosen different negative examples, for each of the different windows, altogether

21 models (base- classifiers) were used. Study findings as summarised in Table 4.3 suggest that a

combination of neighbourhood information in an SVM ensemble architecture helps achieve en-

hanced precision over others. This is named ROBBY: pRediction Of Biologically relevant small

molecule Binding residues on enzYmes and analysed for robustness and further applicability.

Table 4.2: Testing performance of various models on Dtestset78

Approach SN PR SP AC MCC FM
RF base classifier: bclRF 69.3 23.9 73.5 72.7 0.276 33.3
RF ensemble classifier: ensRF 54.4 32.7 86.3 82.5 0.316 37.5
SVM base classifier: bclSVM 71.8 25.2 74.1 73.3 0.297 35.0
SVM ensemble classifier: ensSVM 53.2 36.2 88.2 83.9 0.337 39.0

(iii) Analysis of prediction performance

Enzymes are made of different amino acids varying in sequence lengths, number of required

interacting sites and biological units in macromolecular assembly (Nelson et al., 2008). They

also vary in the number and type of ligands that they interact with for performing functions.

This brings into picture the fact that identification of ligand binding sites in enzymes is not a

straight forward process. Many perspectives and approaches in a comprehensive setting can per-

haps amount to more precise predictions. For example in Dtestset78, it was found that for pro-

tein Uridylate (2’-deoxyuridine 5’-monophosphate, UMP) Kinase from a Gram-negative phy-

topathogen Xanthomonas campestris (3ek6A) which catalyses the reversible phosphorylation

of UMP to UDP (Uridine-5’-diphosphate), Figure 4.3 (A). ROBBY predictions did not have

an overlap with experimentally identified residues as per LigASite record, depicted in Figure
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4.3 (B). Since in LigASite records, the interacting residues are mapped based on experimen-

tally solved structures, nascent information during annotation may have resulted in such a gap.

Figure 4.3 (C) has the sequence based scenario where residues are mapped with experimental

observations. One of the directions in which the above goal can be achieved for ligand bind-

ing residue identification is by bringing into picture template based methods such as HOMCOS

(Fukuhara and Kawabata, 2008). HOMCOS (HOMology modeling of COmplex Structure) is

a server for modeling complex 3D structures using 3D molecular similarities based on tem-

plate complex 3D structures in PDB. For a given amino acid sequence or a chemical struc-

ture, the server provides list of contacting molecules in PDB, predicted complex 3D structure

based on the template PDB structures. Based on the mapping, it can be inferred from tem-

plates that ligands such as UTP (Uridine 5’-triphosphate) (PDB code: 2bnfB), GTP (Guanosine-

5’-triphosphate) (PDB code: 2v4yC), 4TC (P1-(5’-Adenosine)P4-(5’-Uridine)-beta,gamma-

methylene tetraphosphate)(PDB code: 2j4jF), ATP (Adenosine-5’-triphosphate)(PDB code:

2jjxC) and ANP (Phosphoaminophosphonic acid-adenylate ester) (2bmuB) are preferable by

the protein in regions some of which overlap with ROBBY predictions. The above-mentioned

ligands are represented by three letter PDB ligand code. As summarised in Table 4.3, for the

remaining 77 enzymes in Dtestset78 and Dtestset17, it could be inferred that a stable prediction

with above 80% prediction accuracy can be achieved using ROBBY. And further, findings also

suggest that as the availability of experimentally observed information improves, some of what

constitutes falsely predicted interacting residues may be addressed more appropriately.

4.3.2 Enhancing success rates, validity and applicability using structure informa-

tion

Protein structural insights have been reported to aid in enhancing prediction scenarios. In this

study, we have explored the scope of using predicted pocket information to filter out false pre-

dictions if possible. For this purpose, a meta-approach that used the consensus of a variety

of computational algorithms and tools developed in the recent decade, MetaPocket 2.0 (Zhang

et al., 2011) has been used. Table 4.3 shows the average performance for enzymes in Dtestset78
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Figure 4.3: Interaction residues of Uridylate kinase (PDB code: 3ek6A) from the Gram-
negative plant pathogen Xanthomonas campestris. (A) Hexameric biological unit (B) LigASite
mapped on one protein chain in blue and ROBBY in green (C) Sequence information: upper-
case denoting interacting residues, underline representing ROBBY predictions, open circles

denoting putative ligand binding residues using HOMCOS.
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(3ek6A excluded) where around 50% of interacting residues were identified with around 52%

precision upon combination of both the methods. On a general level, upon using a combination

of sequence-structure information, the overall precision is enhanced and this is summarised in

Table 4.3.

Table 4.3: Testing performance of various models on Dtestset78

Identification using SN PR SP AC MCC FM
Dtestset78
ROBBY 53.9 36.7 88.3 84.0 0.343 39.0
Pocket information alone 88.2 22.6 65.5 67.9 0.322 34.9
ROBBY with pocket information 50.0 52.3 97.8 89.5 0.436 46.6
Dtestset17
ROBBY 51.8 37.1 87.1 80.7 0.309 37.2
Pocket information alone 88.2 26.0 62.7 64.8 0.313 36.7
ROBBY with pocket information 49.4 52.8 93.9 86.2 0.410 44.1

4.3.3 Case study

Alcohol dehydrogenase: Belonging to the oxidoreductase class of enzymes, Drosophila al-

cohol dehydrogenase (DADH; EC 1.1.1.1, organism: Scaptodrosophila lebanonensis, length:

254 amino acids) is a NAD(H)-dependent oxido-reductase belonging to the short-chain dehy-

drogenases/reductases (SDR) family (Benach et al., 1998). It is a homo-dimeric enzyme that

catalyses the dehydrogenation of alcohols to their respective ketones or aldehydes in the fruit-fly

Drosophila, both for metabolic assimilation and detoxification purposes. In Figure 4.4 (A) on

the structure of this protein, the experimentally observed ligand.binding region is presented com-

prising of 45 interacting residues altogether, of which 31 residues were identified by ROBBY

with a precision of 81.6 % indicated in Figure 4.4 (B). MetaPocket 2.0 was able to identify all

the interacting residues indicated by stars, but the precision of this prediction obtained was only

37.2 %. Upon combining the two, the overall precision could be enhanced to 91.2 %. Further

upon adding insights obtained using template based approaches such as COACH (Yang et al.,

2013b), 3DLigandSite (Wass et al., 2010) and FunFOLD2 (Roche et al., 2013) server, it was
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suggested that predicted regions had the potential to interact with ATP. Using information in

combination can help make the prediction precise and informative as shown in this example.

Sensor kinase: Sensor kinases in the bacterial two-component system share a unique ATP-

binding Bergerat fold with the GHL (gyrase, Hsp90, and MutL) family of proteins. Salmonella

Sensor Kinase PhoQ (Guarnieri et al., 2008) catalytic domain (PhoQcat; EC 2.7.13.3, organism:

Salmonella enterica, length: 143 amino acids) regulates the expression of genes involved in

virulence, adaptation to acidic and low Mg2+ environments and resistance to host defense an-

timicrobial peptides. Figure 4.4 shows individual and combination predictions of ROBBY and

MetaPocket 2.0. For this protein, LigASite database lists out only one holo-structure which is

monomeric as shown in Figure 4.4 (A), housing 18 experimentally observed interacting residues.

Of these, ROBBY was able to identify 10 residues with a precision of 55.6 % and MetaPocket

2.0 identified 9 residues with a precision of 12.0 %. Upon combination of the two, a precision

of 55.6 % was obtained which is same as shown by ROBBY but 43.6 % more precise than

MetaPocket 2.0. In this scenario, the sequence based method can stand alone. Moreover, the

region identified as false positives at 97-100 positions (Gly-Gln-Gly) by ROBBY are putative

substrate binding residues (UniProtKB AC: P0DM80). This suggests that, with more experi-

mentally solved structures of ligand bound complexes, the prediction scenario will hopefully

enhance. Nevertheless, even as this proceeds, the sequence based methods such as ROBBY,

along with structure or template based methods can help understand and validate prediction for

experimental studies better.

4.3.4 Software availability

The approach described in this study, ROBBY, is available as a standalone package along with

the user-manual at http://doi.org/10.6084/m9.figshare.3472346.
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Figure 4.4: Case study. (A) biological assembly with highlighted ligand binding region in
blue. Predictions obtained using ROBBY and MetaPocket 2.0 along with the experimental
observation for (B) Alcohol Dehydrogenase (PDB code: 1a4uA) and (C) Sensor Kinase PhoQ
(PDB code: 3cgzA). Sequence information provided with interacting residues in uppercase,
ROBBY predictions underlined, MetaPocket 2.0 predictions denoted by star and their overlap

is highlighted.
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4.4 Conclusion

Rapidly evolving knowledge of enzyme complexes with small molecules and their potential

biotechnological applications have accelerated computational characterisation of their interac-

tion mechanism using similarity based and de novo methods. When as minimal information as

the sequence is available, there are various challenges and concerns associated with prediction

of enzyme properties or interactions. This could be because the some basic assumptions which

might not hold true for all the enzymes as described and reviewed in relevant studies (Konc

et al., 2015; Rost, 2002). To facilitate prediction in such a scenario, an approach called ROBBY

has been presented1. It is based on evolutionary information in support vector machines ensem-

ble architecture and tested for robustness. Adding domain knowledge has proven to be useful,

as shown in this chapter and the previous one, for achieving enhanced results in the prediction

scenario.

1Relevant findings: Pai, P. P., Dattatreya, R.K., and Mondal, S. (2017). Ensemble Architecture
for Prediction of Enzyme-Ligand Binding Residues using Evolutionary Information.Molecular Informatics.
Doi:1002/minf.201700021.[Epub ahead of print]
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Chapter 5

DORAEMON: conDitiOnal pRobabilistic

Approach for idEntification of aMino acids

interacting with ribONucleic acids

This chapter presents a novel perspective for sequence-based identification of residues interact-

ing with ribonucleic acids in a non-numeric feature space. A simple-yet-efficient conditional

probabilistic approach based on the local occurrence of amino acids in the interacting region is

proposed for discrimination purposes.

5.1 Introduction

RNA interactions with proteins are essential for regulation of various cellular processes, such

as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcrip-

tional and post-transcriptional levels. A variety of proteins including metabolic enzymes such

as vertebrate cytoplasmic aconitase, glyceraldehyde-3-phosphate dehydrogenase, aldolase, lac-

tate dehydrogenase etc., interact with RNA (Alberts et al., 2008; Ciesla, 2006) performing vital

molecular functions. Disruptions in protein-RNA interactions have known to have implications

in several diseases of the central nervous system, including fronto-temporal lobar degenera-

tion, amyotrophic lateral sclerosis and fragile X syndrome (Modic et al., 2013). In order to

gain a deeper understanding of the functioning of RNA-binding proteins, their mechanisms of
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interaction and eventual role in development of various diseases, various experimental and com-

putational approaches have been used in protein-centric and RNA-centric perspectives. The

experimental methods that have been developed for the determination of protein-RNA interac-

tions include techniques such as immunoprecipitation (Modic et al., 2013), RNA affinity capture

methods (McHugh et al., 2014), mass spectrometry (McHugh et al., 2014), NMR (Theimer et al.,

2012) and X-ray crystallography (Jones et al., 2001). The computational approaches on the other

hand have applied various experimental observations determining the nature of protein-RNA in-

teractions for prediction of RNA-binding proteins, the type of protein-RNA interactions and

further, have shed light on important sites involved (Si et al., 2015a). Protein-RNA interaction

information has been stored and is available in databases such as PDB (Berman et al., 2000),

PRIDB (Lewis et al., 2011), RBPDB (Cook et al., 2011), NPIDB (Kirsanov et al., 2012), DOM-

MINO 2.0 (Kuang et al., 2012), RNAcentral (Consortium et al., 2014), RAID (Zhang et al.,

2014), ATtRACT (Giudice et al., 2016), URS database (Baulin et al., 2016), RAIN (Junge et al.,

2017), etc.

Computational approaches make use of sequence and structure information of protein-RNA

complexes for prediction from low to high resolution. A low-resolution prediction is a simple

two-state prediction of whether a protein is RNA binding or non-RNA binding. A medium-

resolution prediction locates the interacting region of an RBP that binds to RNA (RNA binding

site/residue/motif prediction). At higher resolutions prediction indicates the types of RNA bind-

ing to an RBP and other aspects at 3D structure levels. Most computational methods developed

so far have focused on low to medium resolution prediction (Zhao et al., 2013a).

Several methods have been developed over decades using similarity and machine-learning meth-

ods as mentioned in a detailed review (Si et al., 2015a) for protein-RNA interaction identifica-

tion. Some of them are general predictors such as RBRIdent (Xiong et al., 2015), RBRDetector

(Yang et al., 2014), PRIdictor (Tuvshinjargal et al., 2016), FastRNABindR (Yasser et al., 2016),

RBscore & NBench (Miao and Westhof, 2016), DRNApred (Yang et al., 2014), etc. Proper-

ties such as amino acid composition, sequence similarity, evolutionary information, secondary
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structure, accessible surface area, hydrophobicity, electrostatic patches and cleft size have been

used for computational identification in different approaches so far (Miao and Westhof, 2016;

Si et al., 2015a; Yasser et al., 2016). These approaches display great diversity in definition

of binding sites, the data used for method development, algorithms used for matching, map-

ping or pattern recognition and availability of prediction programs. Owing to the importance

of understanding protein-RNA interactions, despite the inherent challenges in the characteristic

properties of protein-RNA interacting complexes, their identification has been widely attempted.

However, recent comparative studies suggest that despite these developments, many problems

are faced with respect to the usability, prerequisites, and accessibility of various tools, thereby

calling for an alternative approach and perspective supplementation in the prediction scenario

(Yasser et al., 2016). State-of-art sequence-based approaches use various evolutionary and bio-

chemical properties, among them the best performing ones use PSSM and are comparable with

structure-based methods (Yasser et al., 2016). Though PSSM has shown significant contributive

influence in the prediction processes prediction of protein functional sites, even in the prediction

of protein-nucleic acid binding residues, it may also cause the approach to suffer when there is

lack of homology or limitations in terms of resources (Butenko et al., 2009). This presents the

need for alternative approaches and perspective supplementation in order to be able to achieve

an enhanced prediction of RNA binding regions.

Inspired by the need for exploring alternative strategies for identification of protein-RNA bind-

ing regions, ideas which were inherently competitive, widely applicable and value adding, were

sought after. Based on available information, it could be inferred that since RNAs have diverse

functional roles, they vary in lengths, modes of action and requirements of interaction. The local

sequence occurrence plays a crucial role in determining structural requirements for the complex

formation and interaction. In this chapter, a novel probabilistic approach based on this local

occurrence is proposed and it is named as DORAEMON.
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5.2 Materials and Methods

Unlike previous chapters in this thesis which were based on supervised machine learning tech-

niques, in this chapter, a non-parametric approach has been used. Non-redundant datasets are

created with the information of interacting residues (at various distance cut-offs defining the

interaction). They are then used for optimisation and testing purposes.

5.2.1 Using local occurrence in a conditional probability-based perspective

In this section, first, the preliminary technical aspects of the probabilistic approach are de-

scribed, followed by the implementation details in the protein-RNA interaction datasets used

in this study.

Essentials of developing probabilistic models

An experiment is a procedure that is carried out in anticipation of the results. For example, in

this work, the goal is to predict whether a residue of an RNA-binding protein is interacting, or

non-interacting with a RNA. So, the testing of all possible residues in the protein is regarded as

an experiment. In such a case, testing one of the residues is called a trial. Finding out whether

the residue subjected to trial is interacting or non-interacting (i.e., generally the outcome of a

trial) is called an event. In a similar sense, finding the occurrence of a particular amino acid at

some specific position in the protein sequence is another event. The measure of the likelihood of

an event in an experiment comprising of several trials is referred to as probability. For example,

estimation of the probability of interaction of a residue of a protein with RNA. Probability esti-

mation, denoted as P (·), gives a value in the range [0,1] where zero(0) indicates impossibility

of occurrence, and one(1) indicates certainty. Two events ei and ej are said to be independent

if occurrence of ei does not influence occurrence of ej . The probability of occurrence of an

event ei, given the occurrence of another event ej is called conditional probability. Conditional

probability is written as P (ei|ej). Mathematically, it is computed using a well-known formula
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called Bayes’ theorem (or rule):

P (ei|ej) =
P (ei, ej)

P (ej)
(5.1)

where P (ei, ej), also written as P (ei and ej) or P (ei ∩ ej), and is estimated as P (ei, ej) =

P (ej |ei)P (ei), is the probability of both the events ei and ej occurring together and is called the

joint probability of the events ei and ej. It may be noted that the occurrence of an event could

also be influenced by the occurrence of another set of events. In equation 5.1, the term P (ej |ei)

is called the likelihood, P (ei) is called the prior, and P (ei|ej) is called the posterior. The Bayes’

theorem has been redefined in statistical machine learning term for developing the proposed

approach. Here, a data sample is represented as a vector x. To include local occurrence of amino

acids in the interacting region, a fragment is created for every residue that is to be subjected to

learning and prediction. This means, a fragment is interacting if its central residue is interacting

and likewise non-interacting, if its central residue is non-interacting. Equal number of residues

neighbouring the central or target residue are selected in the fragment. The total length of the

fragment reflects the window size used in the learning process. The posterior probability (that

is, the probability which is to be observed) of a hypothesis h (here, a model which tells whether

x is interacting or non-interacting), denoted as P (h|x) can be written as:

P (h|x) =
P (x|h)P (h)

P (x)
(5.2)

where P (x|h) (i.e., the likelihood) is the probability of occurrence of a set of xi ∈ x (i =

1, 2, ...), given a hypothesis h. The term P (h) (i.e., the prior) gives the information of occurrence

of h, and is called the prior (i.e., previously observed). The denominator term P (x) is the total

probability of occurrence of x, rather all xi ∈ x. In Bayesian inference, the occurrence of the

event x is fixed and becomes a constant, and the remaining thing varying is only the numerator

term based on the hypothesis h. Therefore, in this case, the posterior is directly proportional to
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the product of likelihood and the prior. Mathematically,

P (h|x) ∝ P (x|h)P (h) (5.3)

For the studies, x implies the occurrence of a set of events with an event being the occurrence

of an amino acid in a specific position of the protein sequence (specifically, the protein fragment

or region under consideration). So, the fragment of the protein has length w, also referred to

as window size, as mentioned briefly before. The vector term x can be represented as x =

x1, x2, ..., xr, ..., xw, where xr is the residue of interest (i.e., r = (w + 1)/2) and each xi(i =

1, 2, ..., r, ..., w) is a residue in the protein fragment at position i. For convenience, the terms

xi and i = 1, 2, ..., w are used in most of the following descriptions. Each xi can be one(1)

out of the twenty(20) possible amino acids (naturally occurring that are {’A’, ’C’, ’D’, ’E’, ’F’,

’G’, ’H’, ’I’, ’K’, ’L’, ’M’, ’N’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’V’, ’W’, ’Y’}). The probability estimate

of P (x|h) can be converted to P (x1, x2, ..., xw|h) or simply P (x1, x2, ..., xw|h) . This can be

interpreted as the probability of occurrence of each (rather all) of these xis given a hypothesis

h. As mentioned earlier, the hypothesis h is nothing but a model which tells that the fragment

is interacting (we can write this as h = true) or non-interacting (i.e., h = false). So, in simple

words, one could regard the term P (x1, x2, ..., xw|h) as the probability of occurrence of amino

acids at each ith position (i.e., xi is one of the twenty amino acid) given h is true or h is false.

So, this problem reduces to the problem of estimating the probability of occurrence of amino

acids at individual position given h is true or h is false which incorporates an assumption that

occurrence of amino acid at some position j does not depend on the occurrence of an amino acid

at present position i(i 6= j). Moreover, the overall sequence of occurrences of the amino acids

are independent of each other, and the occurrences that are conditional upon the hypothesis h

to be true or false are therefore independent. We know that when two events ei and ej are

independent we can write the joint probability P (ei, ej) as P (ei, ej) = P (ei)P (ej). This
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implies that it also holds, given a condition. This can be devised as:

P (ei, ej |h) = P (ei|h)P (ej |h) (5.4)

Upon applying the above concept in this work, the following is obtained:

P (x1, x2, ..., xw|h) = P (x1|h)P (x2|h)...P (xw|h) (5.5)

or,

P (x1, x2, ..., xw|h) =

w∏
i=1

P (xi|h) (5.6)

In this work, basically a model is being built to estimate a probability that a fragment x is

interacting or non-interacting. Mathematically, this implies interest in the estimation of P (h|x).

So, a combination of equations 5.3 and 5.6 gives us:

P (h|x) ∝ P (h)
w∏
i=1

P (xi|h) (5.7)

Since this study deals with discriminating whether a given fragment is interacting or non-

interacting based on the available knowledge base (facts) about previously observed charac-

teristics, for the purpose of bias-free discrimination between these two classes, an equal cost

of classification(discrimination) is considered. Hence, the proportionality constant (c) which

comes into the picture in equation 5.7 is the same. Since the constant is same, the final estimate

is scaled up by c. For simplicity, a unit cost is considered, i.e., c = 1, which does not affect the

final estimates for decision making purposes. Therefore, the equation 5.7 can now be written as:

P (h|x) = P (h)
w∏
i=1

P (xi|h) (5.8)

Here, the equation 5.8 essentially estimates the posterior of whether an unknown fragment, say

x_unknown, is interacting or non-interacting, given the likelihood over the past fragments i.e.,
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P (xknown|h) and the prior P (h). Thus, equation 5.8 estimates two different posterior probabil-

ities which are P (h = true|xunknown) and P (h = false|xunknown). These two estimations

are:

P (h = true|xunknown) = P (h = true)

w∏
i=1

P (xknowni|h = true) (5.9)

and

P (h = false|xunknown) = P (h = false)
w∏
i=1

P (xknowni|h = false) (5.10)

Based on the equations, the proposed model is implemented in the following manner.

Model implementation

A major part of the implementation of this model lies in estimation of P (xi|h), where i =

1, 2, ..., w; where h could be either true or false, for a given dataset of known samples or known

protein fragments. These have contained within them the information on whether they are in-

teracting or not. Computing the probabilities from the known dataset of such samples is quite

easy as the probability is the fraction of the frequency of occurrence of an event over the total

number of experiments. Here, an experiment is the set of all the known samples and event is

the occurrence of an amino acid (that takes 1 out of the 20 amino acids) given whether the con-

sidered fragment is interacting (i.e., true) or non- interacting (i.e., false). This implementation

could be clearly visualised as a directed acyclic graph (DAG), called Bayesian network (Jensen,

1996) which is depicted in Figure 5.1

5.2.2 Implementation on benchmark datasets

RNA-interacting proteins were collected from assorted datasets used for the development of

various approaches available at NBench (Miao and Westhof, 2016) and another latest dataset

used for the development of FastRNABindR (Yasser et al., 2016). From the collection, 122

non-redundant protein sequences were reserved for independent testing (RB122) and 3213

were reserved for cross-estimation (CE3123) which is explained in details in the forthcom-

ing pages. Protein sequences in CE3213 were not more than 40% similar to any of the test
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Figure 5.1: Bayesian network depicted for a protein fragment of length w where h is the
hypothesis tested to know if the fragment is interacting or not given the probability of local

occurrence of amino acids in that region.

proteins; redundancy was removed using the CD-HIT (Fu et al., 2012) software suite avail-

able at http://weizhongli-lab.org/cdhitsuite/cgi-bin/index.cgi. Fragments and

sequences containing non-naturally occurring amino acids or other ambiguity (filters) were ex-

cluded from the study to ensure the reliability of generated information and study findings. The

above implementation is known as Naïve Bayes model. For efficient implementation and access

of the probability values, the conditional probabilities as shown in the Figure 5.1 are stored as

matrices for each of the positions xis. Each matrix is called conditional probability matrix or

conditional probability table (CPT). Each matrix in this study is of the order 20×2 and there are

total w matrices. However, it just a mere representation of the probabilities in the storage space.

Besides the underlying motivation behind the work, there is also a computational aspect

of observing the efficiency of the task. The computational merit of using this model over the

available machine learning models is that it does not require any training whereas the machine

learning models need sufficient training to generalise the situation.

5.2.3 Performance assessment

The prediction performance was assessed from various angles in this study to ensure robustness

across different definitions of interacting residues and neighbourhood information. A cross-

estimation procedure was used where the protein sequences reserved for exploring various ideas
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(CE3123) were evenly distributed into five parts based on the interacting residue information.

The number of interacting samples and non-interacting samples are denoted as n+ and n− re-

spectively. For a given fold of n+ interacting residues, n− = kn+ non-interacting residues

were randomly selected without replacement from the pool of non-interacting residues, where

k ∈ {1.0, 1.5, 2.0}. The final performance results were averaged over all the folds to gain in-

sights in the study. Performance measures such as sensitivity (SN), precision (PR), specificity

(SP), accuracy (AC), Matthew’s correlation coefficient (MCC) and F-measure (FM) were calcu-

lated as described in Chapter 2.

5.3 Results and discussion

In nature, proteins are designed in such a way that they perform very specific interactions us-

ing highly specialised architecture. Residues involved in the interaction may range from few to

almost all of the protein depending upon their biological roles and multitude in function. So,

developing an approach that is suitable for identification of RNA-interacting residues despite the

variation in their natural occurrence would make it widely applicable. Motivated by this thought,

estimation of position-specific probabilities was done using balanced and imbalanced examples

from the pool of RNA-interacting and non-interacting residues. These were subsequently ap-

plied for discrimination purposes.

5.3.1 Position-specific probability estimation and discrimination

Influence of balanced and imbalanced number of examples:

Results showed that upon using probabilities derived from balanced examples, the discrimina-

tion was more meaningful with an overall sensitivity and specificity of greater than 65%. On

the other hand, probabilities derived from imbalanced examples led to an undesirable strong

bias in the prediction scenario. This is evident because of the following fact. In a dataset of

known examples containing both interacting and non-interacting types, if the number of a type

of examples is increased, it means we are increasing the prior for that type i.e., P (h). So,

if P (h = true) < P (h = false), then the posterior probability estimate for the unknown
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residue, P (h = false|xunknown), will be higher than P (h = true|xunknown); and as we are

considering unit cost of discrimination, each of the unknown residues shall be discriminated as

non-interacting. This could be observed from the results obtained for the imbalanced combina-

tion of the examples (i.e., k = {1.5, 2}). The details of the performance assessment achieved

with balanced examples for a window size (w) 11, with interacting residue definition based on

5.0 Ådistance cut-off and 100% similarity cut-off for fragments are shown in Table 5.1. The

results of studies performed using imbalanced examples were extremely biased towards the ma-

jority class and are hence not depicted in the table. These were used for further analysis across

different definition of residues.

Table 5.1: Performance assessment measures for discrimination based on probability estima-
tion from CE3213

n+ : n− SN PR SP AC MCC FM
1:1 66.4 67.3 67.7 67.0 0.341 66.8

Influence of interacting residue definition:

Residues involved in RNA-interaction have been defined using various distance cut-offs in as

per earlier work summarised in a recent study (Miao and Westhof, 2016). In order to study the

robustness of discrimination across these definitions (ranging from 3.5 Åto 6.0 Å), probability

estimations for positions in the target residue neighbourhood were performed as shown in Table

5.2. This was done using balanced examples for a window size (w) 11 and 100% similarity

cut-off for fragments. These, when used for discrimination suggested in the range of 0.334 to

0.394, for 2145 to 3378 interacting residues (n+) respectively. The sensitivity and specificity

achieved throughout was 66.0 % or more. This shows that the prediction is not biased and in

characterisation of proteins, the chances that the interacting residues are correctly identified is

similar to that of non-interacting residues.

89



5.3. Results and discussion

Table 5.2: Performance assessment measures across various distance cut-offs (definition) for
dataset CE3213

Definition n+ SN PR SP AC MCC FM
3.5 2145 69.4 69.8 70.0 69.7 0.394 69.6
4.0 2565 67.7 68.2 68.5 68.1 0.362 67.9
4.5 2838 66.9 67.7 68.2 67.5 0.351 67.3
5.0 3180 66.4 67.3 67.7 67.0 0.341 66.8
5.5 3263 66.0 67.2 67.7 66.9 0.338 66.6
6.0 3378 66.0 66.9 67.4 66.7 0.334 66.4

Influence of different types and numbers of neighbours:

It is well-known that the neighbourhood of interacting residues is important for conferring upon

them distinct functionally relevant properties. So, the prediction power of this probabilistic ap-

proach was explored using different numbers and types of flanking residues for target residue

prediction, window ranging in between 11 and 21, keeping the interacting residue definition

based on 5.0 Åcut-off and 100% similarity cut-off for fragments. Such a distance cut-off is

chosen to facilitate comparative analysis with state-of-art methods. The Table 5.2 nevertheless

shows that even if RNA-binding residues are defined based on other distance cut-offs (definition)

this approach is still stable. Table 5.3 has a summary of study findings which show balanced

performance across different numbers and types of neighbours. To ensure minimal loss of in-

formation, while applying this approach for the uncharacterised cases, a window of 11 residues

was considered for further analysis. To check if similar or dissimilar neighbourhood showed

better discrimination, we removed a redundancy at fragment level to about 60%. Study findings

are detailed in Table 5.4, indicating that considering similarity in the neighbourhood while es-

timating probabilities for discrimination was more contributive. Based on these inferences, the

testing was performed and analysed.

Analysis of prediction performance and large-scale applicability:

As mentioned in methodology of this chapter, a set of 122 RNA-interacting proteins were used

for testing the prediction power of this approach. For each of the proteins, the effective length
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Table 5.3: Performance assessment measures across various window sizes (w) for dataset
CE3213

w SN PR SP AC MCC FM
11 66.4 67.3 67.7 67.0 0.341 66.8
13 66.3 67.6 68.2 67.3 0.345 66.9
15 66.3 67.8 68.4 67.4 0.348 67.0
17 66.1 67.2 67.8 66.9 0.339 66.6
19 65.9 67.9 68.7 67.3 0.346 66.9
21 65.9 68.0 68.8 67.4 0.348 66.9

Table 5.4: Performance assessment measures across various fragment similarities for dataset
CE3213

%Cut-off SN PR SP AC MCC FM
100 66.4 67.3 67.7 67.0 0.341 66.8
90 65.5 67.1 67.9 66.7 0.334 66.3
80 66.0 67.1 67.6 66.8 0.336 66.5
70 65.6 66.4 66.8 67.2 0.325 66.0
60 65.3 66.6 67.3 66.3 0.326 65.9

evaluated excludes the terminal residues for window size 11, because the fragments generated

were of inadequate length. The results are summarised in Table 5.5 and suggest that this ap-

proach can be contributive to the prediction scenario from perspectives alternate to the existing

approaches. Meanwhile, analysis of this approach for bias towards any specific amino acid type

was performed to see if certain residues which occur more in the interacting region were pre-

dicted better. Of the interacting residues, about 1259 were charged (HERKD), 947 were polar

(QTSNCYW) and 1180 were hydrophobic (GFLIMAIPV) in nature. Among them, this ap-

proach was found to be relatively more precisely sensitive towards charged residues, followed

by polar and hydrophobic residues. The coverage, however, was slightly better with respect to

hydrophobic residues, considering they were more frequently and correctly discriminated in the

non-interacting regions. However, there was no specific bias or undesirable influence towards

any of these groups. The prediction was more or less balanced with around 60 ± 8 % sensi-

tivity and specificity. Thus, this approach is hoped to add complementarily in a comprehensive
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understanding of RNA-interaction based on templates, machine learning, and probabilities. An

example prediction is shown as follows.

Table 5.5: Independent testing of DORAEMON on RB122

Approach SN PR SP AC MCC FM
DORAEMON 55.4 22.4 67.1 66.7 0.158 29.5

5.3.2 Comparison with state-of-art RNA interacting residue predictors

Though a direct comparison between various approaches is not possible, in order to demonstrate

the discrimination power of DORAEMON, we performed a comparative analysis on New_R15

dataset (Miao and Westhof, 2016) which is summarised in Table 5.6. The assessment measures

for FastRNABindR are calculated based on predictions obtained using the web server (Yasser

et al., 2016) and for other approaches, the values are based on previous study (Miao and Westhof,

2016).

Table 5.6: Comparison with state-of-art on New_R15 dataset

Approach SN SP AC MCC FM
DORAEMON 60.4 65.2 65.5 0.213 37.8
FastRNABindR (Yasser et al., 2016) 53.2 78.0 74.9 0.268 42.6
RNABindR (?) 66.1 68.1 67.8 0.258 39.3
RBScore SVM (Miao and Westhof, 2016) 4.6 98.7 83.9 0.090 8.3
RBRIdent (Xiong et al., 2015) 16.9 95.2 86.3 0.160 21.9
PPRInt (?) 35.6 81.4 74.5 0.150 29.7
BindN+_RNA (Wang and Brown, 2006) 37.8 83.5 76.3 0.194 33.4

Based on the performance assessment measures, it can be seen that DORAEMON has a

discrimination power comparable to FastRNABindR (Yasser et al., 2016) which is a PSSM-

based approach and has been proven to perform at par with relevant state-of-art structure-based

methods.
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5.3.3 Case study

The protein-RNA complex shown in Figure 5.2. is essentially a rescue factor YaeJ (Gagnon

et al., 2012) bound to the Thermus thermophilus 70S ribosome in complex with the initiator

tRNAfMet and a short mRNA. The chain used here is Y and it is approximately 132 amino

acids in length. Excluding five residues on either side, DORAEMON showed a sensitivity of

92.6%. More specifically, DORAEMON achieved a performance of TP = 25, FN = 2, FP =

28, and TN = 67; at the same time, the FastRNABindR (Yasser et al., 2016) achieved a

performance of TP = 25, FN = 2, FP = 30, and TN = 65. This suggests an encouraging

capability of DORAEMON that may be further subjected to post-processing using knowledge-

based filters or inclusion of structural insights.

Figure 5.2: Case study. (A) The structure of YaeJ (PDB code 4dh9Y) with Y chain shown in
surface and interacting RNA is shown in cartoon. (B) The sequence of YaeJ. (A and B) The
interacting regions are highlighted in red in structure and upper case in sequence, whereas
the non-interacting regions are marked in green in structure and lower case in sequence.

DORAEMON prediction is underlined, and FastRNABindR is highlighted.
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5.3.4 Software availability

The software DORAEMON along with the user manual and associated data is available at

https://github.com/ABCgrp/DORAEMON.

5.4 Conclusion

Despite the enormous progress done in the last few decades, it is clear that both experimental

and computational approaches might often need supplementation for eventually gaining a deeper

understanding of protein-RNA interactions, and the research in this area is still progressing. The

inherent challenges associated with the identification of protein-RNA interactions including the

important residues, render the prediction scenario mired with false predictions and burden on

resources. This has led to a pressing for alternate perspectives such as the one that has been

proposed in this study, based on conditional probability of local amino acids occurrence in the

protein interaction architecture1. As suggested in recent studies, scope of diminishing cross-

predictions with DNA interacting residues, as well as, using combined nucleic-acid interaction

data for identification purposes has also been explored. This is presented in the next chapter.

Meanwhile, the findings of this study are hoped to add to a comprehensive understanding of low

to high-resolution prediction scenario in protein-RNA interaction biology for further applica-

tions in therapeutics and industry.

1Relevant findings: Pai, P. P., Dash, T., and Mondal, S. (2017). Sequence-based discrimination of protein-RNA
interacting residues using a probabilistic approach. Journal of Theoretical Biology, 418: 77-83. http://dx.doi.
org/10.1016/j.jtbi.2017.01.040
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Chapter 6

DORAMI: conDitiOnal pRobAbility based

prediction Model of protein-deoxyribonucleic

acid Interacting residues

This chapter presents findings pertaining to prediction of protein-DNA interacting residues using

a probabilistic approach (concept reported in the previous chapter). It addresses concerning

issues related to cross-predictions and explores the scope of using combined datasets containing

both protein-DNA and protein-RNA interacting residues .

6.1 Introduction

DNA, the genetic material of many living organisms, stores information for the working of al-

most all processes in the cell. It not only codes for RNA leading to formation of proteins, but

also interacts with them, in order to facilitate various molecular functions such as replication,

transcription and repair (Alberts et al., 2008). Sequence-specific DNA-binding proteins regu-

late gene-expression and also serve many structural and catalytic roles. Insights into how the

flow of genetic information occurs can boost targeted biotechnological manipulations (Konc

et al., 2015). This is particularly useful for protein regulated gene-based therapeutic strategies.

Studies suggest that various experimental techniques including biochemical, genetic and crys-

tallographic insights (Pabo and Sauer, 1984), have brought to fore, remarkable observations
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on transcription factor binding sites which have been deposited and maintained in repositories

such as TFBSbank (Chen et al., 2017), CollecTF (Kilic et al., 2013), TFinDit (Turner et al.,

2012), etc. Apart from the transcription factors, protein-DNA interactions have been studied in

general and such information is also stored in databases, for examples in DOMMINO 2.0 (),

NPIDB updated (Zanegina et al., 2016), DBBP (Park et al., 2014). As mentioned in previous

chapters, correctly locating DNA-binding residues solely from protein sequences is also an im-

portant but challenging task for protein function annotations and drug discovery, especially in the

post-genomic era where large volumes of protein sequences have quickly accumulated (Ofran

et al., 2007). Using experimental information, computational efforts have been put forth to pre-

dict various aspects of protein-DNA interactions such as the specificity of proteins which bind

to single stranded DNA or double stranded DNA (Wang et al., 2014), in elucidating mutational

landscape in transcription factors (Sneha and Doss, 2017), in understanding mechanisms of their

action (Dutta et al., 2016), in redesigning interfacial amino acids (Havranek et al., 2004), as well

as, most widely in identifying DNA-binding candidate residues in a protein sequence (Ahmad

and Sarai, 2005). Several algorithms have been designed for this purpose over the years (re-

viewed in detail in a recent study (Si et al., 2015b)), some of these even combined to achieve

enhanced prediction scenario, such as MetaDBSite (Si et al., 2011), which integrates the pre-

diction results from six available online web servers: DISIS (Ofran et al., 2007), DNABindR

(?), BindN (Wang and Brown, 2006), BindN-rf (Wang et al., 2009), DP-Bind (Hwang et al.,

2007) and DBS-PRED(Ahmad et al., 2004). More recent approaches such as DNABind (Liu

and Hu, 2013), TargetDNA (Hu et al., 2016a), PDNA (Zhou et al., 2016), etc are available using

sequence, structure or combination information. Conventional template- and machine learning

based approaches have been rigorously investigated in protein-DNA interactions at various res-

olutions and has been extensively reviewed in recent studies (Kauffman and Karypis, 2012; Si

et al., 2015b; Yan et al., 2016) still presenting ample for scope of improvement. These studies

show that prediction approaches for DNA-interacting (RNA-interacting) residues offer compa-

rably strong predictive performance but they are unable to properly discriminate DNA- from
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RNA-binding residues. That is, the prediction scenario is often challenged in terms of false pre-

dictions. Further, they propose that development of a new generation of predictors would profit

from using training data sets that combine both RNA- and DNA-binding proteins, designing new

input data that specifically target either DNA- or RNA-binding residues and seeking combined

prediction of DNA- and RNA-binding residues. In this chapter, studies have been aimed at ex-

ploring the scope of extending the conditional probabilistic approach for nucleic acid prediction,

and in the process perform investigations for protein-DNA interactions. Issues related to cross-

predictions have been addressed and the possibilities of using combined datasets for enhanced

prediction is also presented.

6.2 Materials and Methods

For this study, the probabilistic approach described in the previous chapter has been used. In the

following the implementation is explained.

6.2.1 Datasets

DNA binding protein benchmark datasets were created using data collected from diverse studies

performed on DNA-binding proteins with interacting residue information from 3.5 to 6.0 Å.

Conditional probability matrices were developed using 821 proteins (Dset821). Another set of

31 proteins (New D31) which were utilised by a recent comparative study (Miao and Westhof,

2016) for understanding the performance of various nucleic acid predictors. These proteins were

reserved for testing and comparative analysis in this study. It was ensured that the Dset821 did

not have any sequence more than 40% similar to the sequences in New D31 using CD-HIT Suite

available at http://weizhongli-lab.org/cdhitsuite/cgi-bin/index.cgi.

6.2.2 Implementation of probabilistic approach and performance assessment

Basically, the Naïve Bayes model, estimates the posterior probability P (h|x) from the known

prior probability P (h) and the likelihood P (x|h) by considering that P (h|x) ∝ P (x|h)P (h).
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The proportionality constant is basically the total probability of occurrence of a protein frag-

ment x, P (x) and is independent of h. So, removing it from the equation does not af-

fect the decision. Now, since the protein fragment x, is a vector of amino acids, that is,

x = x1, x2, ..., xr, ..., xw,the equation becomes

P (h|x) ∝ P (h)

w∏
i=1

P (xi|h) (6.1)

Here, r is the residue for which a decision is desired, as to whether it is an interacting with DNA

or not; w is the size of the fragment and is called the ’window size’. The symbol h signifies

the hypothesis that whether a residue is interacting i.e., h = TRUE, or non-interacting i.e.,

h = FALSE. Each xi may have one(1) out of the twenty(20) possible amino acids that are

{′A′,′C ′,′D′,′E′,′ F ′,′G′,′H ′,′ I ′,′K ′,′ L′,′M ′,′N ′,′ P ′,′Q′,′R′,′ S′,′ T ′,′ V ′,′W ′,′ Y ′}. The

equation 6.1 essentially estimates the posterior that whether an unknown fragment xunknown

is interacting or non-interacting, given the likelihood over the known fragments P (xunknown|h)

and the prior P (h). Therefore, equation 6.1 can be written as two different posterior probabilities

which are P (h = true|xunknown); P (h = false|xunknown);

P (h = true|xunknown) ∝ P (h = true)
w∏
i=1

P (xknowni|h = true) (6.2)

and

P (h = false|xunknown) ∝ P (h = false)

w∏
i=1

P (xknowni|h = false) (6.3)

Based on the above implementation on datasets Dset831, various interacting residue definitions

were explored. Further, studies for cross-predictions were performed using datasets used in

the development of DORAEMON. Also, the scope of using combined datasets were explore.

Performance assessment was done using parameters described in our previous studies.
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6.3 Results and Discussion

6.3.1 DNA-binding residue prediction

Based on various available and optimisable parameters, the conditional probability matrix was

generated on the earlier mentioned benchmark dataset of 821 proteins. Upon testing the devel-

oped model, now referred to as DORAMI (conDitiOnal pRobAbility based prediction Model of

protein-deoxyribonucleic acid Interacting residues), an encouraging performance was observed

and is shown as follows. An example case study is shown in Figure. The state-of-art predic-

tion approaches are diverse in many aspects and direct comparison is not possible. Testing is

done on 31 proteins benchmarked for comparative analysis purpose in a latest study (Miao and

Westhof, 2015) is summarised in Table 6.1 and 6.2 using various definition (Def). For certain

Table 6.1: Comparative analysis on New_D31 dataset

Approach Cut-off SN SP AC MCC FM
DORAMI 6.0 69.1 63.9 65.1 0.240 35.6
BindN+_DNA (Wang et al., 2010) 6.0 42.1 90.8 85.6 0.307 38.7
DORAMI 5.5 68.5 64.6 65.6 0.241 35.2
DBS_PSSM (Ahmad and Sarai, 2005) 5.5 54.1 82.5 79.5 0.273 35.6

studies, even if DNA binding residues are defined based on other distance cut-offs ranging from

3.5 Å to 5.0 Å this approach is still stable and can be seen below.

Table 6.2: Performance with various definition

Def (Å) SN SP AC MCC FM
5.0 69.2 64.9 66.1 0.245 34.3
4.5 71.7 64.6 65.6 0.244 31.8
4.0 72.3 65.7 66.7 0.237 30.1
3.5 74.4 66.6 67.3 0.223 26.2

6.3.2 Cross-predictions

Cross predictions have been a point of concern in nucleic acid interacting residue prediction

from times immemorial and it has been extensively analysed in a recent study (Yan et al., 2016).
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For exploring this issues, the approach developed for identification of protein-DNA interacting

residues (DORAMI) was tested upon RNA-binding protein sequences of New_R15. Similarly,

the approach developed for identification of protein-RNA interacting residues (DORAEMON)

was tested upon DNA-binding protein sequences of New_D31.

Table 6.3: Prediction on New_D31 by means of CPT developed using RNA binding dataset
(Pai et al., 2017)

Def (Å) SN SP AC MCC FM
5.0 67.8 65.2 66.0 0.230 35.4

69.2 64.9 66.1 0.245 34.3
6.0 68.9 62.4 64.1 0.221 34.9

69.1 63.9 65.1 0.240 35.6

Table 6.4: Comparative analysis of prediction on New_R15 by means of CPT developed using
DNA binding dataset Dset831 and DORAEMON for the optimised definition 5.0 Å.

Approach SN SP AC MCC FM
DORAMI 62.5 62.9 63.8 0.207 37.1
DORAEMON 60.5 65.2 65.5 0.213 37.8

Results show that DORAMI was able to predict RNA binding residues with more sensitiv-

ity. But this came at the cost of reduced specificity, reducing the overall coverage to a slight

disadvantage as reflected in MCC, which reduced from 0.213 to 0.207 as shown in Table 6.3 and

6.4. Further studies on using combined datasets were performed to seek benefits from combina-

tion learning if possible.

6.3.3 Comparative analysis of prediction using combined datasets

In order to understand if a combination of DNA and RNA binding proteins based CPT would

produce better predictions, as proposed for other parametric sequence based approaches (Yan

et al., 2016), an exercise with the selected definition of nucleic acid binding residues to a distance

cut-off of 5 Åwas performed. Results shown in Table 6.5 reflect an improvement in sensitivity

of the predictors upon using a combined dataset. The MCC was similar, i.e. 0.233 and 0.232,
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Table 6.5: Comparative analysis of prediction on New_R15 and New_D31 by means of CPT
using combined datasets (selected definition 5.0 Å).

Dataset SN SP AC MCC FM
New_R15 67.3 60.6 63.0 0.233 39.1
New_D31 70.9 62.4 64.2 0.232 33.5

for the predictors, implying similar achievement in terms of coverage. There was a difference

of 5.6 % in FM in the prediction, which might have manifested on account of difference in false

positives. In a nutshell, findings suggest that upon using combined datasets better sensitivity and

coverage can be obtained. Nevertheless, the cost at which this comes must be also determined,

and this could much depend on the study under consideration.

6.3.4 Case study

Visualising the prediction scenario just for the DNA-interacting residue prediction by DORAMI,

the following case study is presented on a global regulatory protein, NoIR (Lee et al., 2014). This

protein is basically a component of the transcriptional machinery for formation of nodules and

symbiosis across a range of Rhizobium, involved in the symbiosis between rhizobial microbes

and host plants, which leads to nodule formation and nitrogen fixation. Despite the false posi-

tives, DORAMI predictions suggest that the number of interacting residues predicted correctly

is high, and those missed is low, as indicated in green in Figure 6.1, leading to high sensitivity.

Large parts of the non-interacting residues, in grey, are also predicted correctly, showing the

scope of discrimination and coverage.

6.3.5 Software availability

The software DORAMI along with the user manual and associated data is available at https:

//github.com/ABCgrp/DORAMI.

6.4 Conclusion

There has been a considerable rise in protein sequence and structure information leading to a

pressing need for rapid functional annotation to boost protein-based therapeutic and industrial

101

https://github.com/ABCgrp/DORAMI
https://github.com/ABCgrp/DORAMI


6.4. Conclusion

Figure 6.1: Case study: Crystal Structure of regulatory protein NolR from Sinorhizobium
fredii in complex with DNA (Lee et al., 2014) Color code: TP=Green, FN=Cyan, FP=Red,

TN=Grey

applications. Despite several developments in computational approaches, ensuring widely ap-

plicable predictors that do not depend heavily on protein homology, or existing templates has

ample scope of research. The findings of this study1 promisingly show that sequence-based pre-

dictions can be obtained in a non-numeric feature space, yet showing comparable performance

to the state-of-art sequence based methods. This is value-adding to the comprehensive scenario

for better understanding of the protein-DNA interaction mechanisms.

1Relevant findings: Pai, P. P., Dash, T., and Mondal, S. (Manuscript in preparation 2017). DORAMI: conDitiOnal
pRobAbility based prediction Model of protein-deoxyribonucleic acid Interacting residues.
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Chapter 7

Conclusion

The human mind has been limitlessly fascinated by how things came into existence, what are

they made of, how they evolve, how they work, what happens if some of their aspects are

changed and how they can be manipulated advantageously. This has led to a huge range of

discoveries, right from understanding the details of the essential molecules of life to its complex

manifestations in nature. This thesis describes a journey of learning from, through and about

one of the fundamental aspects orchestrating various processes leading to life sustenance. If we

look at it, life sustenance is one of the most simply obvious, macro and ubiquitous phenomenon.

As much ironically, it is also, a complexly-intertwined and balanced interplay of interactions

among various biological molecules, or biomolecules, at much microscopic levels. Needless to

say, gaining insights in this direction is indeed - a challenging affair. Innately attracted towards

exploring the unexplored, researchers have achieved several milestones over years, in under-

standing these biomolecular interactions and their potential implications in health and diseases.

Glimpses of this journey can be seen here in the thesis chapters, each being an elucidation of

some of the widely known challenges in this regard, with important biomedical implications and

industrial applications, with a focus on protein interactions with ligands .

Protein interactions with ligands are crucial for orchestrating various biochemical processes in

living organisms. Disruptions in these interactions can lead to undesirable loss or gain in protein

functions, which could eventually manifest as diseases (Goldberg, 1992). Therefore, gaining
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insights into how these interactions occur may aid in developing a deeper understanding of

protein activities and their biomedical implications. Several experimental and computational

attempts have been made to understand protein-ligand interactions over the years at various

resolutions, from identifying interacting partners to learning about the involved atomic contacts

in the structures of complexes. With the advent of high-throughput technologies, there has

been an increasing availability of protein sequence and structure information. Consequently, the

demand of rapid protein characterisation for functional annotation has also risen, leading to a

pressing need for widespread computational efforts.

Computational identification relies broadly on template-based similarity transfer or pattern

recognition-based de novo methods. Each of these strategies have their own advantages and

limitations in the identification process (Roche et al., 2015). The inherent biological diversities

based on functional requirements make the scenario very complex and challenging, especially

at sequence levels (Gutteridge and Thornton, 2005; Rost, 2002). Therefore, multidirectional ap-

proaches are required for obtaining a comprehensive understanding of protein interaction biol-

ogy. Despite several attempts to achieve accurate predictions (Du et al., 2016; Si et al., 2015a,b;

Yugandhar and Gromiha, 2017; Zhang et al., 2009), there is still ample scope of improvement

for real-time applications (Pegg et al., 2006; Yan et al., 2016; Zhao et al., 2013a), for which

multiple novel perspectives are presented here.

Essentially, this thesis has attempts to understand and address various challenges associated

with sequence-based computational identification of protein-ligand interacting residues, which

is an important step towards understanding protein function and mechanism of action as sum-

marised in Chapter one. It focuses on the key issues associated with the diversity in the nature

and frequency of interacting residues which often adversely manifest in the prediction scenario,

through various studies. These include exploring the scope of using novel perspectives in su-

pervised machine learning and non-parametric approaches through feature selection, application

of post-processing, ensemble architecture, prediction combination with multiple computational

insights.
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The study findings in Chapter two suggest the use of support vector machines based architec-

ture using selected evolutionary and biochemical information for obtaining de novo prediction

with high sensitivity, which is required for scantily occurring interacting residues such as those

involved in catalysis. Although mired with false positives, this helps picking of many catalytic

residues in the prediction pool, which can be then filtered using structural inputs or sequence-

based predicted insights. Since catalytic residues are subsets of ligand binding residues in pro-

teins, by reducing the search space, the overall prediction performance can be improved (Pai

et al., 2015). Another strategy reported in this thesis for enhancing prediction performance con-

cerns the use of ensemble or consensus in prediction. Findings of Chapter three and Chapter

four demonstrate how neighbourhood information can be used to obtain consensus information

for improved learning in populations of interacting residues, where the contrast between inter-

acting and non-interacting regions is not very discrete. In proteins which allow multiple types

of ligand binding in same or different sites, use of different type and number of non-interacting

instances for a set of interacting instances shows considerable improvement in method preci-

sion. Further, domain knowledge or more specific information about the protein can be applied

to achieve residues of more relevance. An illustration of how structural insights such as pocket

information and template-based information can be used for obtaining a comprehensive under-

standing of the protein interactions is shown (Pai and Mondal, 2016). This method is suitable for

identification of ligand interacting residues where their occurrence is not very scanty or limited.

From here, explorations for diverse populations of interacting residues which occur in case of

ligands such as nucleic acids reveal the promising potential of non-parametric approaches in the

prediction scenario using local occurrence of amino acids in a conditional probability perspec-

tive, have been made. Study findings in Chapter five and Chapter six suggest the developed

probabilistic approach to be as competitive as PSSM-based approaches which show comparable

performance with structure-based approaches in this context (Pai et al., 2017) and further, rein-

states the fact that next generation approaches for protein-nucleic acid interactions should have

commonalities and a combined predictor may be a good address to the prediction scenario.
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Study findings altogether present multi-directional efforts towards gaining a comprehensive un-

derstanding of how efficiently available information can be used to achieve enhanced predictions

of protein-ligand interacting residues. It gives examples of staying focussed on objectives de-

spite deterring challenges to achieve a larger goal, by seeking help of knowledge guided filters,

utilising negative examples for improving outcomes, relying on history and evolution but not so

much and to go beyond convention and explore possibilities as much as possible. Though the

scope of research in this field has been explored widely (Pai and Mondal, 2017), providing the

scientific community many slants on how proteins perform their function, it is not surprising that

the field is still fast-growing and would continue to do so, considering the immense importance

of relevant knowledge1. This thesis is an effort towards this direction and is hoped to present

alternate perspectives for achieving enhanced results, in almost the same circumstances despite

the limitations in available resources, for a common goal, with a hope to be a part of studies

targeted at protein design applications for therapeutics and industrial production.

1Relevant examples and further details: Pai, P. P. and Mondal, S. (2017). Applying Knowledge of Enzyme
Biochemistry in Prediction of Functional Sites for Aiding Drug Discovery.Current Topics in Medicinal Chemistry,
17: Epub Ahead of Print. doi:10.2174/1568026617666170329153858
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Future scope and directions

Proteins have been under the focus of scientific studies since many years. Because of their crucial

roles in cellular processes and consequently, biomedical implications such as in diseases, plenty

of efforts have been put forth for their functional annotation. This thesis presents perspectives for

identification of protein-ligand interacting residues using feature selection, domain knowledge

guided post-processing, ensemble architecture and non-parametric methods. However, research

has been growing in this field. And, following future directions may arise based on current

findings presented:

• Use of modelled structure The current results of PINGU are promising as far as sequence-

based approaches are concerned. However, it might be useful to explore the scope of using

modelled structure information for a prediction improvement and better understanding of

the catalytic architecture.

• Extension to other proteins and identification of sub-sites MOWGLI identifies mannose

and its variants, whereas, ROBBY identifies different possible ligand interacting residues

in the proteins. This could be extended to non-enzymes and scope of allocating specific

class of ligands to the overall scenario may be investigated further. The chances of en-

hancing the prediction scenario with template-based insights may be explored.

• Inclusion of global information Currently, DORAEMON and DORAMI utilise the local

occurrence of the amino acids in the interacting region. It may be useful to investigate the

impact of adding global features.
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Appendix I: Amino acid representations

Amino acid Three letter code Single letter code

Alanine Ala A

Cysteine Cys C

Aspartic acid Asp D

Glutamic acid Glu E

Phenylalanine Phe F

Glycine Gly G

Histidine His H

Isoleucine Ile I

Lysine Lys K

Leucine Leu L

Methionine Met M

Asparagine Asn N

Proline Pro P

Glutamine Gln Q

Arginine Arg R

Serine Ser S

Threonine Thr T

Valine Val V

Tryptophan Trp W

Tyrosine Tyr Y
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