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ABSTRACT 

 

Today computational fluid dynamics (CFD) is a partner with pure theory and pure 

experiment in the analysis and solution of fluid dynamic problems. In this work CFD has 

been used as a research tool to gain insight into the fluidization of Geldart A particles. 

Qualitative and quantitative investigation of homogeneous expansion and transition to 

bubbling was carried out. The two-phase flow is inherently complex and displays 

characteristic heterogeneity over different length and time scales which is ideal to be 

studied by CFD which has the unique feature of giving a visual description of the flow. 

The homogeneous expansion occurs only for Geldart A particles in the interval between 

minimum fluidization and free bubbling. The bed is believed to expand in a bubble-free 

manner; hence the name homogeneous expansion is given. The breakdown of this 

expansion and onset of bubbles has significance for a reactor and marks the transition to 

the bubbling regime. The standard Two-Fluid Model (TFM) which follows the Eulerian-

Eulerian approach was used in conjunction with selected closures from literature without 

modifications. The TFM was implemented in the FLUENT 6.3.26 CFD solver using 

finite volume method. PC-SIMPLE algorithm and segregated solver was employed. The 

investigations are reported in three parts (i) detailed study on mesh size effect (ii) detailed 

fine mesh study (iii) Reacting bed study. 

 From the mesh size effect study we found that with mesh refining, minimum 

bubbling velocity dropped exponentially and approached its experimental value. For 

capturing homogeneous expansion there was no improvement at all on reducing mesh 

size up to 1mm × 1mm from the commonly used literature value of 4mm × 4mm. Review 

of over 150 simulations across all the mesh sizes studied, revealed the presence of 

persisting dilute regions, instead of bubbles, which get triggered around experimental 

minimum bubbling velocity of approximately 8mm/s. Theses dilute regions were 

proposed as a marker which signals the onset of bubbling regime for the coarse mesh 

simulations. The effect of using frictional stress model in the simulations was 

qualitatively assessed. Also the effect of changing wall boundary condition for both gas 

and particle phase was investigated. Omitting frictional stress or changing no-slip to free-

slip boundary condition for gas phase resulted in delaying minimum bubbling velocity.  

The effect of commonly used drag laws was also studied and it was found that the 

Gidaspow and Syamlal O’Brien drag laws manifested the dilute region markers at 8mm/s 

while for Wen Yu drag law this value was 10mm/s. 

From the fine mesh (0.4mm × 0.4mm) simulations of lab-scale dimensions the 

hydrodynamics of homogeneous regime and transition to bubbling were studied in detail. 

The effect of particle density was investigated in detail. The fine mesh simulations were 

analyzed for: (i) insights into bed transition from homogeneous to bubbling regime (ii) 

effect of inter-particle forces (IPFs) and (iii) Geldart group A to B transition. Simulations 

reveal that transition to bubbling occurs over a velocity range rather than at a discrete 

velocity. Based on observations of over 25 fine mesh simulations the existence of a 

transition regime was proposed between the well known homogeneous and bubbling 

regime. For the first time we attempted to quantify the overall effect of IPFs from CFD 

simulations. The proposed IPF index dropped exponentially and becomes negligible as 

bubbling ensued. TFM simulation results were found comparable to Eulerian-Lagrangian 

simulations and also experimental data. Fine mesh simulations revealed two or three void 

structures not previously resolved, but more importantly much finer variations in the 

dilute regions. Fine mesh simulations could predict the bubbling transition, though it did 
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not adequately capture the Richardson-and Zaki type experimentally observed 

homogeneous expansion. This was shown to be due to the over prediction of the 

component of voidage due to frictional viscosity. Without frictional stress component the 

Richardson-and Zaki type expansion was clearly observed, showing that the commonly 

used frictional stress model over estimates bed voidage in homogeneous expansion 

regime. The Richardson-and Zaki parameter (n) was obtained and analyzed for the 

homogeneous expansion regime and transition regime. The n values decreased with 

terminal Reynolds number as observed in literature for liquid systems. However, the n 

values themselves were higher than those reported for liquid systems. TFM simulations 

show that the transition from Geldart group A to B occurs more gradually than is 

indicated by the Geldart classification chart. The area over which this transition occurs 

was demarcated on the Geldart chart. 

The oxychlorination of ethylene reaction was simulated in three modes: (i) fixed bed (ii) 

Bubbling bed; and (iii) Homogeneous bed. Hydrodynamics was modeled using TFM, and 

reaction kinetics obtained from literature was incorporated via a user defined function 

(UDF). The simulated reaction rates for the fixed bed were validated with experimental 

values from literature. The simulated conversion was highest for the homogeneous bed, 

second highest for the bubbling and least for the fixed bed. This was mainly because 

conversion is directly proportionate to gas residence time, which was highest for 

homogeneous bed and least for fixed bed. Fixed bed had the highest average bed reaction 

rates when compared to homogeneous and bubbling bed. This was because reaction rate 

was directly proportionate to solid packing, which was highest in fixed bed. Further, the 

average reaction rates for the homogeneous bed were only marginally lower than that of 

the bubbling bed. Hence the homogeneous bed combined optimum solid packing 

(between that of fixed and bubbling bed) with long gas residence times, to give highest 

conversion at reaction rates comparable to bubbling bed.  

 

 

Keywords: Eulerian-Eulerian; CFD simulations; Fluidization; Geldart A particles; Two-

fluid model; Homogeneous expansion; Fine mesh; minimum bubbling transition, 

Gidaspow drag law; Syamlal O’Brien Frictional stress law, Richardson-Zaki expansion, 

Inter-particle forces, Oxychlorination of ethylene, fixed bed, bubbling bed, homogeneous 

bed. 
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A  Material constant required to calculate frictional pressure, typical value 10
25

 

aD , ma, Va Displacement (m), mass (kg) and volume (m
3
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dp Particle diameter (μm) 

se  Restitution coefficient for particle collision (-) 
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 Radial distribution function (-) 

H Experimentally measured height of bed (m) 

Hab Hamaker constant for interparticle forece between particles ‘a’ and ‘b’ 

I  
Unit stress tensor (-) 

 Momentum exchange coefficient between gas and solid phase (-) 

 Mass transfer rate from solid to gas phase (kg/s) 

 Mass transfer rate from gas to solid phase (kg/s) 

n  Richardson-Zaki parameter (-) 

p Gas pressure (Pa) 

ps Solids pressure or solid particles bed pressure (Pa) 

pf Solids pressure due to friction (Pa) 

Ret Terminal settling Reynolds number (dput ρg/ μg) 

S, vp, ug Intersurface particle distance (m), particle velocity (m/s), local gas velocity (m/s) 

umb,e Experimental minimum bubbling velocity for simulated system (8mm/s) 

Umb Minimum bubbling velocity obtained by observation of first bubble from  

fine mesh simulations (mm/s) 

Umb, mesh-size Minimum bubbling velocity (mm/s) obtained by observation of first bubble 

(mm/s) simulated at given coarse mesh size  

u Superficial gas inlet velocity (m/s) 

ut Particle terminal fall velocity (m/s) 

u’mb Minimum bubbling velocity obtained by observation of dilute regions from  

fine mesh simulations (mm/s) 

u’b Inl Inlet gas velocity for first appearance of clearly defined multiple bubbles in  

T   fine mesh simulations (mm/s) 

vs
’ 

Average particle velocity fluctuation (-) 

 Velocity vector for solid phase (m/s) 

 Interphase velocity vector  

 Interphase velocity vector  

sv  Divergence of solid velocity vector (-) 

T

sv  
Transpose of divergence of solid velocity vector 

  

  



 

xviii 

 

Greek Symbols 

εs Solid volume fraction in bed/cell (-) 

 Gas volume fraction in bed/cell (-) 

εs 
max

, Maximum bed solid volume fraction or solid packing for packed bed state (-) 

εs 
min

 Minimum bed solid volume fraction for frictional stress consideration (-) 

 Reference density or volume average density of gas phase (kg/m
3
) 

 Density of gas phase (kg/m
3
) 

 Density of solid phase (kg/m
3
) 

 Density of particles (kg/m
3
) 

  Angle of internal friction (
o
) 

Ѳ Granular temperature (m
2
/s

2
) 

s  Shear viscosity of solid particles (Pa s) 

s  Bulk viscosity of solid particles (Pa s) 

  

Subscripts  

g gas phase 

p particle phase 

mf  minimum fluidization  

mb minimum bubbling 

sim Simulated 

exp experimental 

extrap extrapolated 

  

Abbreviations  

BC Boundary condition 

CGR Chemical Growth Rate 

DEM Discrete Element Method 

DPM Discrete particle Model 

EDC Ethylene dichloride 

FS Frictional Stress 

IPFs Interparticle forces 

QUICK Quadratic Upstream Interpolation for Convective Kinematics 

R-Z Richard and Zaki 

SC Specularity Coefficient 

SIMPLE Semi-Implicit Method for Pressure-Linked Equations 

TFM Two Fluid Model 

UDF User Defined Function 

VOF Volume Of Fluid (model) 

 

 

 

 

 

 

 


