Computational Studies on Gas-Solid Fluidization of Geldart A Particles Using Eulerian-Eulerian Two-Fluid Model

THESIS

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

PRIYA CHRISTINA SANDE

Under the supervision of

Prof. Saumi Ray

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI PILANI CAMPUS (RAJASTHAN) INDIA

Pilani | Dubai | Goa | Hyderabad

MAY 2015

DEDICATED TO

My Family and Friends

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

CERTIFICATE

This is to certify that the thesis entitled "Computational fluid dynamic (CFD) study on gas-solid fluidization of Geldart A particles" submitted by Priya Christina Sande, ID No. 2007PHXF014P for the award of PhD Degree of the Institute, embodies the original work done by her under my supervision.

Signature in full of the Supervisor Name in capital block letters

Dr SAUMI RAY

Designation

Associate Professor, Department of Chemistry, BITS Pilani (Pilani campus), Rajasthan.

Date:

ACKNOWLEDGEMENTS

I am grateful to the Almighty for enabling me in my life, part of which was to complete this thesis and all the other requirements of the doctoral degree. I Acknowledge and honor my parents Mr Raymond Sande and Mrs Shanta Sande.

I thank my supervisor Prof. Saumi Ray, Associate Professor, Department of Chemistry, for guiding me in a very professional manner. Under her able guidance I learnt, among many other things, an effective method of scientific inquiry.

I am grateful to Prof B N Jain, Vice-Chancellor, BITS-Pilani for giving me the opportunity to carry out this PhD work in BITS, Pilani. I am thankful to Prof A K Sarkar, Director (Pilani Campus), Prof G Raghurama, previous Director (Pilani Campus), Prof S K Verma, Dean, Academic Research Division (PhD Programme), Prof H R Jadhav, Associate Dean, Academic Research Division (PhD Programme), Prof R Mahesh, Dean, Faculty Affairs, Prof Shan Balasubramanium, Dean, Academic and Resource Planning, Prof Sai Jagan Mohan, Chief Warden, Prof Suresh Gupta, Head and Controlling Officer, and Prof Ajit Pratap Singh, Dean, Instruction Division, for their administrative help. Special mention is due to Prof H R Jadhav, with whom I interacted with most often.

Computational facilities were central to this work and I acknowledge those who played a pivotal role in their procurement. Apart from BITS Administration, I thank Prof A K Sharma, former Head of Chemical Engineering Department, Prof Suresh Gupta, Head of Chemical Engineering Department, and Dr P N Sheth, Assistant Professor, Department of Chemical Engineering.

I thank the members of the Doctoral Advisory Committee, Dr P N Sheth, Assistant Professor, Department of Chemical Engineering, and Dr. D K Miti Head of Department of Mathematics, for their valuable guidance and suggestions.

I thank all members of the Departmental Research Committee for the Department of Chemical Engineering, convened by Dr H K Mohanta, Assistant Professor, Department of Chemical Engineering. I am grateful for their continuous work in facilitating departmental research activities.

I thank Giridhar Kunkur, Librarian, and Deepak Mehta, Asstt. Librarian, for the timely provision of journal articles and e-books requested.

I thank all my department colleagues for their support. Special mention for Dr. Banasri Roy for sharing her varied research experience, Dr. Smita Raguvanshi for her guidance and encouragement and Ms. Neha Chomal for the conversations we have had on effective research methodology.

I thank the senior faculty from various Departments of BITS Pilani (Pilani campus) who have shared their wise insights and knowledge on research with me from time to time, namely Dr A K Sharma, Dr H K Mohanta, Prof. A. K. Sarkar, Prof. Surekha Bhanot, Dr. Geetha B., Dr Puspa Lata, Dr. Sangeeta Sharma and Dr. Devika Sangwan. I thank Mr. Babulal Saini, Mr. Jangvir, Mr Jeevan L Verma and Mr Ashok Saini, the non-teaching staff of our department for their support, especially their very importanat contribution to the upkeep of the CAD Lab.

I am grateful to my family for believing in me. I am grateful to my friends for their gentle encouragement. I am grateful to my mentors for guiding me along the way.

PRIYA CHRISTINA SANDE

ABSTRACT

Today computational fluid dynamics (CFD) is a partner with pure theory and pure experiment in the analysis and solution of fluid dynamic problems. In this work CFD has been used as a research tool to gain insight into the fluidization of Geldart A particles. Oualitative and quantitative investigation of homogeneous expansion and transition to bubbling was carried out. The two-phase flow is inherently complex and displays characteristic heterogeneity over different length and time scales which is ideal to be studied by CFD which has the unique feature of giving a visual description of the flow. The homogeneous expansion occurs only for Geldart A particles in the interval between minimum fluidization and free bubbling. The bed is believed to expand in a bubble-free manner; hence the name homogeneous expansion is given. The breakdown of this expansion and onset of bubbles has significance for a reactor and marks the transition to the bubbling regime. The standard Two-Fluid Model (TFM) which follows the Eulerian-Eulerian approach was used in conjunction with selected closures from literature without modifications. The TFM was implemented in the FLUENT 6.3.26 CFD solver using finite volume method. PC-SIMPLE algorithm and segregated solver was employed. The investigations are reported in three parts (i) detailed study on mesh size effect (ii) detailed fine mesh study (iii) Reacting bed study.

From the mesh size effect study we found that with mesh refining, minimum bubbling velocity dropped exponentially and approached its experimental value. For capturing homogeneous expansion there was no improvement at all on reducing mesh size up to $1\text{mm} \times 1\text{mm}$ from the commonly used literature value of $4\text{mm} \times 4\text{mm}$. Review of over 150 simulations across all the mesh sizes studied, revealed the presence of persisting dilute regions, instead of bubbles, which get triggered around experimental minimum bubbling velocity of approximately 8mm/s. Theses dilute regions were proposed as a marker which signals the onset of bubbling regime for the coarse mesh simulations. The effect of using frictional stress model in the simulations was qualitatively assessed. Also the effect of changing wall boundary condition for both gas and particle phase was investigated. Omitting frictional stress or changing no-slip to freeslip boundary condition for gas phase resulted in delaying minimum bubbling velocity. The effect of commonly used drag laws was also studied and it was found that the Gidaspow and Syamlal O'Brien drag laws manifested the dilute region markers at 8mm/s while for Wen Yu drag law this value was 10mm/s.

From the fine mesh $(0.4\text{mm} \times 0.4\text{mm})$ simulations of lab-scale dimensions the hydrodynamics of homogeneous regime and transition to bubbling were studied in detail. The effect of particle density was investigated in detail. The fine mesh simulations were analyzed for: (i) insights into bed transition from homogeneous to bubbling regime (ii) effect of inter-particle forces (IPFs) and (iii) Geldart group A to B transition. Simulations reveal that transition to bubbling occurs over a velocity *range* rather than at a discrete velocity. Based on observations of over 25 fine mesh simulations the existence of a *transition regime* was proposed between the well known homogeneous and bubbling regime. For the first time we attempted to *quantify* the overall effect of IPFs from CFD simulations. The proposed IPF index dropped exponentially and becomes negligible as bubbling ensued. TFM simulation results were found comparable to *Eulerian-Lagrangian* simulations and also experimental data. Fine mesh simulations revealed two or three void structures not previously resolved, but more importantly much finer variations, though it did

not adequately capture the Richardson-and Zaki type experimentally observed homogeneous expansion. This was shown to be due to the over prediction of the component of voidage due to frictional viscosity. Without frictional stress component the Richardson-and Zaki type expansion was clearly observed, showing that the commonly used frictional stress model over estimates bed voidage in homogeneous expansion regime. The Richardson-and Zaki parameter (n) was obtained and analyzed for the homogeneous expansion regime and transition regime. The *n* values decreased with terminal Reynolds number as observed in literature for liquid systems. However, the *n* values themselves were higher than those reported for liquid systems. TFM simulations show that the transition from Geldart group A to B occurs more gradually than is indicated by the Geldart classification chart. The area over which this transition occurs was demarcated on the Geldart chart.

The oxychlorination of ethylene reaction was simulated in three modes: (i) fixed bed (ii) Bubbling bed; and (iii) Homogeneous bed. Hydrodynamics was modeled using TFM, and reaction kinetics obtained from literature was incorporated via a user defined function (UDF). The simulated reaction rates for the fixed bed were validated with experimental values from literature. The simulated conversion was highest for the homogeneous bed, second highest for the bubbling and least for the fixed bed. This was mainly because conversion is directly proportionate to gas residence time, which was highest for homogeneous bed and least for fixed bed. Fixed bed had the highest average bed reaction rates when compared to homogeneous and bubbling bed. This was because reaction rate was directly proportionate to solid packing, which was highest in fixed bed. Further, the average reaction rates for the homogeneous bed were only marginally lower than that of the bubbling bed. Hence the homogeneous bed combined optimum solid packing (between that of fixed and bubbling bed) with long gas residence times, to give highest conversion at reaction rates comparable to bubbling bed.

Keywords: Eulerian-Eulerian; CFD simulations; Fluidization; Geldart A particles; Twofluid model; Homogeneous expansion; Fine mesh; minimum bubbling transition, Gidaspow drag law; Syamlal O'Brien Frictional stress law, Richardson-Zaki expansion, Inter-particle forces, Oxychlorination of ethylene, fixed bed, bubbling bed, homogeneous bed.

TABLE OF CONTENTS

	rtificate	iii
Acknowledgements		iv vi
	Abstract	
	Table of Contents	
	List of Figures	
	List of Tables	
No	omenclature	xvii
1.	Introduction	1
	1.1 Motivation to work in the field of CFD	1
	1.2 Computational Fluid Dynamics: a potent research tool	4
	1.3 Fluidization regimes: ripe for exploration using CFD	9
	1.4 Modeling multi-phase flows	14
	1.4.1 The Eulerian-Lagrangian approach	15
	1.4.2 The Eulerian-Eulerian approach	17
	1.5 Geldart Classification of powders	18
	1.6 Objectives of research	23
	1.7 Organization of thesis	23
2.	Literature Review	25
	2.1 Experimental works on gas-solid fluidization of Geldart A particle	s
		25
	2.2 Modeling and simulation of gas-solid fluidization of Geldart A	
	particles	29
	2.2.1 Eulerian- Lagrangian approach	
		29
	2.2.2 Eulerian approach	34
	2.2.2.1 State-of-the-art TFM	35
	2.2.2.1.1 Governing equations and Kinetic Theory of	
	granular gases	36
	2.2.2.1.2 Closures for stress tensors and solid shear	41
	2.2.2.1.3 Closures for Interphase drag coefficient	43
	2.2.2.2 CFD simulations using TFM	48
	2.2.2.1 Application of Eulerian approach in bubbling	
	fluidization	48
	2.2.2.2 Application of Eulerian-Eulerian approach in	
	riser flows	51
	2.2.2.3 Application of Eulerian approach in	
	homogeneous expansion	53
	2.2.3 Linear stability analysis approach	55
	2.3 Gas-solid fluidization with reaction	55
	2.4 Gaps in the literature	58
	2.5 Scope of the work	61

3	Simulation methodology using FLUENT 6.3.26 6	53
3.1	1 CFD procedure for simulation of non-reacting fluidized bed using	
011	two-fluid model	63
	3.1.1 Problem description	64
	3.1.2 Simulation procedure	66
3.2	2 CFD procedure for simulation of reacting fluidized bed using	
	two-fluid model	93
	3.2.1 Heterogeneous oxychlorination of ethylene to ethylene	
	dichloride	93
	3.2.1.1 Problem description	93
	3.2.1.2 Simulation procedure	94
	3.2.2 Pseudo-heterogeneous gas phase oxychlorination of	
	ethylene to ethylene dichloride	105
	3.2.2.1 Problem description	105
	3.2.2.2 Simulation procedure	107
3.3	3 Overcoming errors encountered with FLUENT 3.6.26 solver	113
4	Results and Discussion	116
	4.1 Mesh size study on gas-fluidization of Geldart A particles:	
	homogeneous expansion and transition to bubbling	116
	4.1.1 Mesh size study on homogeneous expansion	117
	4.1.1.1 Transient voidage profiles in homogeneous	
	expansion regime	120
	4.1.1.2 Effect of mesh size	126
	4.1.1.3 Effect of drag Law	128
	4.1.1.4 Effect of frictional stress	129
	4.1.2 Mesh study on minimum bubbling velocity	130
	4.1.2.1 Transient voidage profiles in bubbling regime	131
	4.1.2.2 Effect of velocity	133
	4.1.2.3 Effect of mesh size	133
	4.1.2.4 Effect of wall boundary condition	137
	4.1.2.5 Effect of drag Law	138
	4.1.2.6 Effect of time	138
	4.1.3 Comparison with fine mesh simulation	139
	4.1.4 A useful marker for regime change	142
	4.1.5 Inferences on homogeneous bed structure	143
	4.1.6 Limitations of the mesh size study	145
	4.2 Fine mesh study on gas-fluidization of Geldart A particles:	
	Homogeneous expansion and transition to bubbling	146
	4.2.1 Fine mesh simulation of the transition from homogeneous	
	to bubbling bed	146
	4.2.1.1 Ambiguity in judging minimum bubbling point	146
	4.2.1.2 A regime of transition to bubbling	148
	4.2.1.3 Comparison of TFM and DPM: non-visual	152
	minimum bubbling transition	153

4.2.2 Simulation of homogeneous expansion	155
4.2.2.1 Validation of TFM with DEM: bed voidage	
expansion curves	155
4.2.2.2 Simulated bed voidage at minimum bubbling	
conditions and density effect	159
4.2.2.3 Homogeneous expansion in the Richardson–Zaki	
form	162
4.2.3 Quantification of IPFs	168
4.2.4 The Geldart group A/B transition	177
4.2.5 Limitations of the fine mesh study	178
4.3 Reacting bed study on oxychlorination reaction of ethylene:	
Fixed bed, bubbling bed and homogeneous bed mode.	179
4.3.1 Validation of TFM simulations of reacting bed:	
Fixed bed mode	180
4.3.1.1 Simulation of reaction rate of EDC in fixed bed	181
4.3.1.2 Simulation of ethylene conversion	182
4.3.1.3 Effect of changing ethylene feed concentration on	
reaction rate and conversion in fixed bed	184
4.3.2 TFM simulations of reacting bed: Bubbling bed of	
Geldart A particles	185
4.3.2.1 Simulation of reaction rate of EDC in bubbling	
regime	186
4.3.2.2 Simulation of ethylene conversion in bubbling	
regime	192
4.3.2.3 Effect of changing ethylene feed concentration on	
reaction rate and conversion in bubbling bed	193
4.3.3 TFM simulations of reacting bed: Homogeneous bed of	
Geldart A particles	194
4.3.3.1 Simulation of ethylene conversion in	
homogeneous regime	195
4.3.3.2 Simulation of reaction rate of EDC in homogeneous	•
regime	196
4.3.4 Limitations of the reacting bed study on oxychlorination	
reaction of ethylene	198
5. Concluding Remarks	199
5.1 Conclusions	100
5.1 Conclusions	199 203
5.2 Major Contributions	
5.3 Future Scope of Research	204
References	
Appendix I	
Appendix II	
Appendix III	
List of Publications	
Biographies	. 218

LIST OF FIGURES

Figure No.	Captions	Page No.
1.1	Representative patters of the major flow regimes in fluidized bed (Kunii and Levenspiel, 1991)	11
1.2	The various fluidization regimes demonstrated by the different Geldart particles (Kunii and Levenspiel, 1991)	13
1.3	Geldart (1973) powder classification chart	19
4.1	Sample concentration scale with solids packing gradation of 4%.	119
4.2	Transient bed voidage profiles for velocities in range 4-12mm/s (experimental velocity range for homogeneous expansion and transition to bubbling) for different mesh sizes using Gidaspow drag law. (a) 16mm^2 mesh; (b) 4mm^2 mesh; (c) 2mm^2 mesh; (d) 1mm^2 mesh.	121
4.3	Snapshots of transient solid volume fraction contours of the fluidized bed using 4mm ² mesh and Gidaspow drag law. (a) Initial period bed expansion showing bed jump and settling for 6mm/s inlet velocity. (b) Evolution to pseudo steady state for inlet velocities of 6mm/s; (c) 7mm/s; (d) 8mm/s	123
4.4	Snapshots of transient solid volume fraction contours of the fluidized bed using 1 mm ² mesh and Gidaspow drag law. (a) Evolution to pseudo steady state for inlet velocities of 6mm/s; (b) 7mm/s; (c) 8mm/s	124
4.5	Snapshots of solid concentration contours of the fluidized bed at pseudo steady state conditions for inlet velocities in the velocity range 4-12mm/s using Gidaspow drag law. Dilute regions are clearly visible only for 8mm/s and higher velocities, for all mesh sizes which are: (a) 16mm ² mesh; (b) 4mm ² mesh; (c) 2mm ² mesh; (d) 1mm ² mesh	125
4.6	Effect of frictional stress on bed voidage	129
4.7	Transient voidage profiles for higher velocities including the observed minimum bubbling for various mesh sizes using Gidaspow drag law (a) 16mm ² mesh; (b) 4mm ² mesh; (c) 2mm ² mesh; (d) 1mm ² mesh.	132
4.8	Effect of mesh refinement on U_{mb} and bed voidage at 8mm/s	134

4.9	Snapshots of transient simulations, using Gidaspow drag, for the observed minimum bubbling velocity values of 49mm/s, 34mm/s, 28mm/s and 18mm/s for the respective mesh sizes (a) 16mm ² mesh; (b) 4mm ² mesh; (c) 2mm ² mesh; (d) 1mm ² mesh	136
4.10	Snapshots of solid concentration contours of the fluidized bed at pseudo steady state conditions for inlet velocities in the velocity range 4-12mm/s using Gidaspow drag law. Mesh sizes which are: (a) $2mm^2$ mesh; (b) $1mm^2$ mesh; (c) $0.16mm^2$ mesh. Here (a) and (b) are repeated from Fig. 4.5 for the purpose of comparison with the fine mesh simulations in (c).	140
4.11	Three Idealized representations of bed structure in homogeneous regime	144
4.12	Fine mesh simulation snapshots at pseudo-steady state in the homogeneous expansion and transition regime (4-12mm/s) for different particle densities (a) 1 g/cc; (b) 2 g/cc; and (c) 2.8 g/cc	149
4.13	Comparison of DMP and TFM: Variation of bed voidage fluctuation showing regime transition around the same gas velocity in both cases	153
4.14	Validation of our fine mesh TFM simulated expansion curves (with and without frictional stress) with DEM predictions.	155
4.15	Comparison of empirical and TFM simulated data: Variation of voidage at minimum bubbling velocity (9 mm/s) with particle density	158
4.16	Effect of particle density on bed expansion in homogeneous and transition regime. Particle diameter was constant at 70 μ m	163
4.17	Transient bed voidage profiles for p4 (70 μ m, 2 g/cc): Proper differentiation in voidages seen after 20 s of flow time as voids/dilutes take time to develop or stabilize.	164
4.18	Richardson and Zaki form of experimental and simulated expansion curves (ρ_p = 1.4g/cc) showing two slopes for the simulated data	166
4.19	Snapshots of solid concentration contours of the fluidized bed at pseudo steady state conditions for inlet velocities in the velocity range 4-12mm/s using Gidaspow drag law. Particle properties simulated are given in Table 4.7. Fine mesh (0.16mm ²) was used. (a) Reveals the extent of dilution; (b) Reveals the regions (coloured black) where frictional stress operates (solids packing in range 0.47-0.495)	170
1.20		1 7 1

4.20 Comparison of experimental and simulated expansion curves: The 171

difference in expansion (stripped area) is attributed to IPFs

- 4.21 I_{IPF} calculated from experimental voidages and our simulated 174 voidages (Eq.7) for different particle systems, showing (a) effect of gas velocity for system 70 µm, 1.42 g/cc (Lettieri et al., 2002); (b) effect of particle density. Systems had similar particle diameter : 66 µm, 2.5 g/cc (Oke et al., 2015), 75.1 µm, 1.73 g/cc (Bruni et al., 2006), 70 µm, 1.42 g/cc (Lettieri et al., 2002); (c) effect of particle diameter. Systems had constant particle density of 1.42 g/cc and varying particle diameters of 70 µm, 57 µm and 49 µm (Lettieri et al., 2002).
- 4.22 Geldart, 1973, classification of Group A and B powders where the 177 area between the dotted lines represents A/B transition as predicted by TFM
- 4.23 Steady state reaction rates of oxychlorination of ethylene in fixed 170 bed mode with high ethylene inlet mass fraction (0.1964): Comparison of experiment and TFM simulations is shown. The difference error is also reported.
- 4.24 Steady state reaction rates of oxychlorination of ethylene in fixed 181 bed mode with low ethylene inlet mass fraction (0.1122): Comparison of experiment and TFM simulations is shown. The difference error is also reported.
- 4.25 Simulated ethylene conversion in fixed bed operation for low and 183 high ethylene inlet mass fractions.
- 4.26 The normalized difference in the parameter (reaction rate or 184 conversion) for high and low ethylene feed concentration is plotted against gas residence time, for fixed bed operation. This indicates the effect of changing ethylene concentration on reaction rate or conversion.
- 4.27 Steady state reaction rates of oxychlorination of ethylene in 186 bubbling bed mode with high ethylene inlet mass fraction (0.1964): Comparison of simulated values in fixed bed and bubbling bed is shown. The difference error is also reported.
- 4.28 Steady state reaction rates of oxychlorination of ethylene in 187 bubbling bed mode with low ethylene inlet mass fraction (0.1122): Comparison of simulated values in fixed bed and bubbling bed is shown. The difference error is also reported.
- 4.29 Snapshots of solid concentration contours for fixed, homogeneous 189 and bubbling beds (different inlet gas velocities) which are undergoing reaction of oxychlorination of ethylene.
- 4.30 Steady state contours of ethylene mass fraction for fixed and 190

bubbling beds at three different inlet gas velocities (a) 45mm/s; (b) 92mm/s; and (c)159mm/s.

- 4.31 Steady state contours of EDC mass fraction for fixed and bubbling 191 beds at three different inlet gas velocities (a) 45mm/s; (b) 92mm/s; and (c)159mm/s.
- 4.32 Simulated ethylene conversion in bubbling bed operation for low 192 and high ethylene inlet mole fractions
- 4.33 The normalized difference in the parameter (reaction rate or 193 conversion) for high and low ethylene feed concentration is plotted against gas residence time, for bubbling bed operation. This plot indicates the effect of changing ethylene concentration on reaction rate or conversion.
- 4.34 Simulated ethylene conversion in bubbling bed vs. homogeneous 195 bed for low and high ethylene inlet mole fractions. Average conversion for fixed bed is also given for comparison.
- 4.35 Reaction rates of oxychlorination of ethylene for (a) Homogeneous 197 bed, varying ethylene feed concentration. (b) All three modes with high ethylene feed concentration (c) All three modes with low ethylene feed concentration.

LIST OF TABLES

Table No.	Caption	Page No.
1.1	Performance of major chemicals in India from 2006-2014	2
1.2	The generalized CFD solution procedure (Anderson, 1995)	6
1.3	Unique features offered by CFD as a research tool	9
1.4	Common industrial applications of fluidized beds in unit processes	10
1.5	Main characteristics of the four Geldart powders	20
2.1	Major founding works reporting evidence of Inter-particle force in fluidization of Geldart A particles	28
2.2	Major works on DPM/DEM simulation of fluidization of Geldart A particles	30
2.3	TFM governing equations of the form implemented in FLUENT 6.3.26 solver	36
2.4	Notation used for TFM equations in Table 2.3	38
2.5	Closures for stress tensors implemented	42
2.6	Closures for drag coefficient implemented	44
2.7	DPM Equations (Newtonian equation of particle motion) and closures	46
2.8	Notation used for TFM equations in Tables 2.5 to 2.7	46
2.9	Main works using Eulerian-Eulerian approach to simulate bubbling fluidization and reported failure to accurately simulate the hydrodynamics due to the coarse mesh used	50
2.10	Major works using TFM to investigate homogeneous expansion and minimum bubbling transition with their limitations	54
3.1	Summary of major numerical inputs used in the TFM simulation of non-reacting fluidized bed	64
3.2	Main steps of simulation procedure in FLUENT 3.6.26 for non-reacting bed	66

3.3	Inputs for the granular (solid) phase	75	
3.4	Main steps of simulation procedure in FLUENT 6.3.26 for heterogeneous reacting bed	95	
3.5	Gas phase material properties	97	
3.6	Solid phase material properties	97	
3.7	System parameters (Carrubba and Spencer, 1970) simulated	107	
3.8	Main steps of simulation procedure in FLUENT 6.3.26 for pseudo- heterogeneous reacting bed	108	
3.9	Gas phase material properties	109	
3.10	Solid phase material property (only density is required)		
3.11	Simulated feed conditions for inlet boundary (Carrubba and Spencer, 1970)		
4.1	Summary of results from mesh size study		
4.2	Various minimum bubbling velocities reported by experimental works and compared with fine mesh TFM simulations		
4.3	Velocity range for transition regime detected for different values of ρ_p		
4.4	Main parameters used in DEM and TFM simulations		
4.5	Comparison of simulated minimum bubbling voidages with experimental values of Abrahamsen and Geldart (1980) for different particle densities	160	
4.6	Comparison of simulated expansion with experimental works other than Abrahamsen and Geldart (Abrahamsen and Geldart, 1980)	162	
4.7	Richardson-Zaki parameters for simulated expansion curves		
4.8	Bed parameters used in TFM simulation and experimental work of Lettieri et al. (Lettieri et al., 2002)	167	
4.9	Bed voidages for the expansion curves shown in Fig. 4.19 including % voidage differences between curves and also index for IPF	176	

NOMENCLATURE

\overline{A}	Material constant required to calculate frictional pressure, typical value 10^{25}
D_a, m_a, V_a	Displacement (m), mass (kg) and volume (m ³) of particle ' a '
d_p	Particle diameter (µm)
e_s	Restitution coefficient for particle collision (-)
F_{45}	Mass fraction of particles with $d_p < 45 \ \mu m$
$\overline{Fr}, \overline{p}, \overline{n}$	Empirical material constants required to calculate pressure (-)
$F_{c,a}, F_{vdw,a}, F_{drag,a_a}$	Contact force, van der Waals force, drag force for particle 'a'
\overrightarrow{g}	Acceleration due to gravity (m/s)
$g_{o,s}$	Radial distribution function (-)
Н	Experimentally measured height of bed (m)
H_{ab}	Hamaker constant for interparticle forece between particles ' a ' and ' b '
$H_{ab} = I$	Unit stress tensor (-)
K _{as}	Momentum exchange coefficient between gas and solid phase (-)
mi _{sa}	Mass transfer rate from solid to gas phase (kg/s)
K _{gs} m _{sg} m _{gs}	Mass transfer rate from gas to solid phase (kg/s)
n	Richardson-Zaki parameter (-)
р	Gas pressure (Pa)
p_s	Solids pressure or solid particles bed pressure (Pa)
p_f	Solids pressure due to friction (Pa)
Re_t	Terminal settling Reynolds number $(d_p u_t \rho_g / \mu_g)$
S, v_p, u_g	Intersurface particle distance (m), particle velocity (m/s), local gas velocity (m/s)
$u_{mb,e}$	Experimental minimum bubbling velocity for simulated system (8mm/s) Minimum bubbling velocity obtained by observation of first bubble from
U_{mb}	fine mesh simulations (mm/s)
U _{mb, mesh-size}	Minimum bubbling velocity (mm/s) obtained by observation of first bubble
- mo, mesn-size	(mm/s) simulated at given coarse mesh size
и	Superficial gas inlet velocity (m/s)
u_t	Particle terminal fall velocity (m/s)
u' _{mb}	Minimum bubbling velocity obtained by observation of dilute regions from
	fine mesh simulations (mm/s)
<i>u'</i> _b	Inlet gas velocity for first appearance of clearly defined multiple bubbles in
,	fine mesh simulations (mm/s)
$\frac{V_s}{12}$	Average particle velocity fluctuation (-) Velocity vector for solid phase (m/s)
<i>v</i> _s	Interphase velocity vector $lf \vec{m} > 0$ $\vec{n} = \vec{n}$ else if $\vec{m} < 0$ $\vec{n} = \vec{n}$
	Interphase velocity vector $If \ \overrightarrow{m_{gs}} > 0, \overrightarrow{v_{gs}} = \overrightarrow{v_g}$ else if $\overrightarrow{m_{gs}} < 0, \overrightarrow{v_{gs}} = \overrightarrow{v_s}$ Interphase velocity vector $If \ \overrightarrow{m_{sg}} > 0, \overrightarrow{v_{sg}} = \overrightarrow{v_s}$ else if $\overrightarrow{m_{sg}} < 0, \overrightarrow{v_{sg}} = \overrightarrow{v_g}$
<i>sg</i> ⊐	Divergence of solid velocity vector (-) $m_{sg} > 0, v_{sg} = v_s$ ease $v_f m_{sg} < 0, v_{sg} = v_g$
∇v_s	-
$ \begin{array}{c} v_{s} \\ \hline v_{s} \\ \hline v_{gs} \\ \hline v_{sg} \\ \hline \nabla v_{s} \\ \nabla \overline{v_{s}} \\ \nabla \overline{v_{s}}^{T} \end{array} $	Transpose of divergence of solid velocity vector

Greek Symbols	
\mathcal{E}_{S}	Solid volume fraction in bed/cell (-)
ε, ε _g	Gas volume fraction in bed/cell (-)
ε_s^{max}	Maximum bed solid volume fraction or solid packing for packed bed state (-)
$\mathcal{E}_{s}^{min'}$	Minimum bed solid volume fraction for frictional stress consideration (-)
ρ_{rg}	Reference density or volume average density of gas phase (kg/m ³)
ρ_g	Density of gas phase (kg/m^3)
ρ_s	Density of solid phase (kg/m ³)
ρ_p	Density of particles (kg/m ³)
ϕ	Angle of internal friction (°)
Θ	Granular temperature (m^2/s^2)
μ_s	Shear viscosity of solid particles (Pa s)
λ_s	Bulk viscosity of solid particles (Pa s)

Subscripts

g	gas phase
р	particle phase
mf	minimum fluidization
mb	minimum bubbling
sim	Simulated
exp	experimental
extrap	extrapolated

Abbreviations

Appreviations	
BC	Boundary condition
CGR	Chemical Growth Rate
DEM	Discrete Element Method
DPM	Discrete particle Model
EDC	Ethylene dichloride
FS	Frictional Stress
IPFs	Interparticle forces
QUICK	Quadratic Upstream Interpolation for Convective Kinematics
R-Z	Richard and Zaki
SC	Specularity Coefficient
SIMPLE	Semi-Implicit Method for Pressure-Linked Equations
TFM	Two Fluid Model
UDF	User Defined Function
VOF	Volume Of Fluid (model)