
67

Chapter - 3

Software Component Classification Framework

3.1 Overview

Aim of this chapter is to develop comprehensive strategy for the classification of

software components. For this, six dimensional classification strategy framework is

developed. It consists of dimensions such as architecture level, domain, phase, source, kind

and functionality of software components. The rest of the chapter is organized as follows:

section 3.2 provides introduction to the classification of software components. Section 3.3

elaborates the concept of six dimensional classification strategy framework. Section 3.4

explores the framework by referencing it with the practical usage. Section 3.5 deals with the

validation of SDCS framework and also presents the overall discussion on the developed

SDCS framework. Finally section 3.6 provides concluding remarks of the chapter.

3.2 Introduction

Traditional software development approaches fail in cost effective, just-in-time to

market and easily maintainable software components. The context of software component

based development has become very important in industry and research (John and Andre,

2002). Component based development can be used potentially to reduce software

development and maintenance costs. Using CBSD, software systems can be built by two

techniques. The first techniques involve integration of software components with the existing

system while with the second technique a whole new system can be developed by identifying

and integrating appropriate software components. Various classification strategies have been

evolved and identified such as taxonomies of application domains (Glass and Vessey, 1995),

cartesian space based attributes (Carney and Long, 2000), integration effort for software

components (Egyed et al., 2000), origin and modifiability attributes (Carney and Long,

2000), supplier and market conditions by COCOTS model (Abst et al., 2000), on the basis of

delivered system (Carney, 1997) and software component solution and intensive system

(Wallnau et al., 1998).

There is little concern for the broad classification within and across the domain

taxonomies (Glass and Vessey, 1995). The existing literature is not comprehensive to deal

with the classification of software components as they concentrate on specific

68

features/attributes. The intention of the chapter is to develop comprehensive strategy for the

classification of software components in order to explore, learn, assess, compare and evaluate

software components. For this, six dimensional classification strategy framework is proposed.

It consists of dimensions such as architecture level, domain, phase, source, kind and

functionality of software components.

3.3 SDCS: Six Dimensional Classification Strategy Framework

A six dimensional classification strategy framework based on the following broad and

comprehensive dimensions is defined: architecture level (A), domain (D), phase (P), source

(S), kind (K) and generic functionality (G) of software components. These dimensions are

exhaustive, still the industries/researchers are free to identify more dimensions depending

upon their project goals and requirements. Each dimension is the basis for the classification

of software components. A SDCS web can be created on the basis of project goals and

requirements (shown in Figure 3.1), which depicts how and on what basis software

components can be acquired and used.

Figure 3.1 Six dimensional classification strategy (SDCS) Web

In Figure 3.1 each point on a dimension reflects specific attribute. For example, the

innermost web points for A, D, K, G, P, and S could reflect client-server pattern, finance,

services, horizontal, execution, and commercial respectively.

The SDCS is comprehensive and the classification leads to the investigation of software

components. The classifier can have many views for this dimensional classification. This

helps in understanding relationships between classes, its usage and specification. The

dimensional discussion is as follows:

69

 Architecture level: It describes the architectural pattern such as client-server,

blackboard, control-loop, peer-to-peer, distributed, event-based etc., and also the role

that each software components plays. For example, in 3-tier client-server architectural

pattern, Figure 3.2, firstly, software component acts as a client when it requests

service, secondly, it acts as server when it serves request, and thirdly, it acts as data

when it provides data support.

Figure 3.2 3-tier architectural pattern

 Domain: Various taxonomies for application domains have been proposed (Glass and

Vessey,1995; ISO/IEC, 1999) and the most important ones are IBM, Digital and

Reifer (IBM, 1998; Reifer, 1990; AFIPS, 1980). The advent of network

infrastructures, information technology and handheld devices has a major impact on

mobile application (Upadhyay, 2006) and it is seen and included in the domain

taxonomies (current domain is taken as Education). Table 3.1 is an extension of the

domain classification (Kotonya et al., 2003).

Domain Application

Avionics Air traffic control, Electronic warfare

Command and Control Space, Satellite, Other

Embedded Systems Operating systems, I/O controllers, ASIC, Other

Electronic Commerce Agents, Brokerage, Electronic data interchange

Finance Accounting, Banking, Insurance

Healthcare Emergency care, Home care, Primary care

Education Adaptive, Context awareness, Mobile, Other

Real-time Controllers, Sensors, Signal processors

Simulation Environmental simulators

War-gaming

Telecommunications Network management

Network engineering

Utilities Transmission, distribution, marketing and

Retailing functions of electric, water and gas

Utilities.

Table 3.1 Application domains (extension of Kontony et al., 2003)

70

 Kind: It consists of four main attributes packaging, delivered, customized and size.

The software component can be packaged in different ways. Possible values for this

attribute are: executables, standards and services. This can be further understood as

source code, statically linkable binary library, dynamically linkable library, binary

component and stand-alone executable program. Packaging is a form in which the

software component is used. It is to be noted that a standalone program does not

preclude access to the source code. A delivered attribute identifies whether any

software component is shipped with software product (as product’s integral part) or

not. For example if we consider software to be delivered to a customer is made up of

C++ language then the delivered software product will not include C++ compiler.

However, some tools usually associated with the C++ compiler (e.g. the library of I/O

functions) are probably integrated in the final product. Possible values for this

attribute are: integrated or separate. A customized attribute is based on the lines of

Carney and Long (2000) considering the modifiability attribute. But here the attribute

customized is spilt up into two basic attributes mandatory modification and desirable

modification. The mandatory modification corresponds to the modifiability dimension

proposed in (Carney, 1997). If a source code is available then modification can be

achieved by performing extensive reworking or just internal code revision. In case

software component is a black box then modification is achieved by using inbuilt

mechanism provided by software component for modification. Desirable modification

refers to the internal possible customization of the software component. Such kind of

modification is not required by the software component to deliver its basic

functionality. For example, the open source web server Apache typically requires only

simple parameterization, although its source code is accessible making any in-depth

modification possible. This can be achieved by doing modification on source code,

API or interfaces, or by defining macros or configuration files and including certain

level of parameterization i.e. parameters can be defined for the product so that it can

achieve certain level of customization. Last attribute size, is an important factor of

software component. It can have three possible values: small (S), medium (M) and

large (L) in terms of MB.

 Generic functionality: It is basically divided in to two main attributes – horizontal

and vertical. In horizontal attribute, functionality can be reused in various domains

such as DBMSs, GUIs, networking protocols, web browsers etc. In vertical attribute,

71

functionality is by no means reused in various domains but rather specific to a

particular domain (e.g. Financial Applications, Accounting, Enterprise Resource

Planning, Manufacturing, Health Care Management, and Satellite Control). It is to be

noted that there is less risk in the usage of horizontal software component as

compared to vertical software component as these have been available on the market

for a long time and information about them is widely available.

 Phase: It identifies the phase of system life cycle where software component is used

(development or execution).

 Source: It depicts the origin of software component and the way to get it. The

software component can come from: in-house, existing external, externally developed,

special version of commercial, independent commercial and open. Software

component can also be freely available for usage or one may have to pay fee to use it.

Obtaining it for its usage could certainly means acquiring the source code or

executable code. For the open source software component, source code is freely

available. This can be tailored or customized according to its usage in the domain. But

for software component where fee is applicable it means that while acquiring the

software component, ownership of the product (including source code) is transferred

to the acquirer. In order to use the product, the acquirer has to pay use/license fee. The

other factors such as - legal / commercial issues for software component defects,

maintenance strategies and concerns, and export restrictions also matters to use the

software component.

3.4 SDCS Framework in Practice

This section illustrates how the SDCS framework works in practice. Various software

components have been identified and put across each classification dimensions for

comprehensive study. The dimensions are covered exhaustively and are further categorized

on the basis of possible values that they can have. The proper understanding and knowledge

of software components can be depicted in Table 3.2. Specific class name are given to the

family of homogeneous software components such as: server side languages (SSL), server

side engines (SSE), database management system (DBMS), client side languages (CSL),

client side engines (CSE), programming languages (PL), development environment (DE) and

executable components (EC). Two possible values have been identified for software

components – ‘Y’ and ‘N’, which reveals whether the product belongs to classification

72

dimension or not respectively. If a product belongs to classification dimension then further

categories are associated with it. For example: origin is categorized as in-house (H), free (F),

commercial (C), externally developed (ED) and open (O); packaging is categorized as

executable (E), standards (ST) and services (SE); delivered has two categories- separate

(SA) and integrated (IN); and generic functionality is categorized further as horizontal and

vertical. Table 3.2 demonstrates those categories that are applicable to class names. Table

3.2 has been simplified to model only limited categories in each case.

The dimensional classification leads to number of classes. Calculating SDCS webs for

each specific values of dimension can identify classes. This generates the overall structure of

viewing homogeneous software components. It helps in achieving know-how about the

software components- specification, usage and knowledge. Thus it provides a generic

framework to assess, compare and evaluate software components. It might be possible for

software component to have no value on dimensions. This will generate innumerable classes

and thus increase complexity. For this reason these software components values have been

treated as not applicable and ignored for further assessment in class calculations.

Classification SSL SSE DBMS CSL CSE PL DE EC

SOAP

Oracle

Application

Server

Oracle HTML Acrobat

Reader

C++ Microsoft

Windows XP

MS

Chart

Control

Architecture

Level

Server Y Y N N N N N N

Client N N N Y Y N N N

Data N N Y N N N N N

Domain

Avionics N N N N N N N N

Embedded

Systems

Y Y Y N Y Y N N

Electronic

Commerce

Y Y Y Y Y Y Y Y

Education Y Y Y Y Y Y Y Y

Finance Y Y Y Y Y Y Y Y

Health Care Y Y Y Y Y Y Y Y

Real-Time Y Y Y Y Y Y N N

Simulation Y Y Y Y Y Y Y Y

Telecomm-

-unications

Y Y Y Y Y Y Y Y

Utilities Y Y Y Y Y Y Y Y

Other -- -- -- -- -- -- -- --

73

Continued…

Classification

SSL SSE DBMS CSL CSE PL DE EC

SOAP

Oracle

Application

Server

Oracle HTML Acrobat

Reader

C++ Microsoft

Windows

XP

MS

Chart

Control

Phase Development N N N N N N N N

Execution Y Y Y Y Y Y N Y

Source Origin Y (C) Y(C) Y(C) Y(C) Y(C) Y(C) Y(C) Y(C)

Kind Packaging Y (ST) Y (E) Y (E) Y (E) Y (E) Y (E) Y (E) Y (E)

Delivered Y Y (SA) Y (SA) Y Y (SA) Y (SA) Y (SA) Y (SA)

Customized N Y Y N N N Y Y

Size Y (M) Y (L) Y (L) Y (S) Y (M) Y (M) Y (L) Y (M)

Generic

Functiona-

-lity

Horizontal Y Y Y Y Y Y Y Y

Vertical N N N N N N N N

Table 3.2 SDCS for software components

On the basis of critical review various software components have been identified,

which are grouped under specific class names. Table 3.3, based on (Jaccheri and Torchiano,

2001), gives the broad categorization of software components on the basis of class names.

The proliferation of information technology and internet has enabled quick and rapid launch

of new software components, which makes software components obsolete soon. Special care

has been taken to collect most prominent software components. The class based

categorization helps in identifying different software components. Thus a classifier can gain

knowledge, learn, assess, evaluate and compare software components. On the same line of

Table 3.2, Table 3.3 can also be further refined and classified along six dimensions for better

perception.

SSL SOAP, CORBA, Perl, Java Language, SMIL, MS ASP, Java Servlet, Java Beans, Java RMI, Java

Server Pages, MS DCOM, CGI, CORBA IIOP spec., Java EJB, Ada Language, Java Connector,

Java Message Queue, Java NDI, Java SSE, PHP, RPC, SSH, XQL

SSE Oracle Application Server, Orion Application Server, Sybase Adaptive Server, IBM HTTP Server,

MacroMedia ColdFusion, Appache HTTP Ser., Jigsaw, MS Biztalk Ser. 2000, MS Exch. 2000,

ORBacus

DBMS

Oracle, IBM DB2, Sybase, MS SQL Server, MS Access, Borland Interbase, Clustra, MSProj.

Central, MySQL, Sybase Indus. Warehouse

CSL

HTML, XHTML, Java Applet, Dynamic HTML, WML, CSS, Java ME MIDP, MS Pocket PC

Jscript, Java Phone, Java Script, MacroMedia ColdFusion ML, MathML, WebTV

74

Continued…

CSE

Acrobat Reader, Winamp, Opera, MS IE, Lynx, Fetchl, MacroMedia ShockWave, NeoPlanet,

Java ME Runtime, Java Plugin, Netscape Communicator, MS Pocket PC IE, Palm Reader

PL

C++, Mobile Access, Java Speech, MS ActiveX, XML DTD

DE Microsoft Windows XP, IBM OS/2, MS Windows X, MS Windows NT

EC

MS Chart Control, MS Excel, MS Office, MS Word, MS Office XP, MS Outlook, Java VM, MS

Powerpoint

Table 3.3 Software components Categorization (based on Jaccheri and Torchiano,

2001)

3.5 Validation and Discussion

A survey in three phases was conducted to show the validity of the developed SDCS

framework and its applicability to software components. To get a broad view of the

validation, sixty three persons were selected and divided into three groups - Researchers,

Academicians and Practitioners. The validation was done in three phases with the intention

to get feedback on the varying interpretations and perceptions of the classification as well as

its usefulness. The candidates in the Research group were active in component oriented

domain and had published and presented their research work in conferences and journals. The

group members for Academician group were senior professors who have had long experience

in teaching and mentoring courses and projects in component oriented domain and related

areas. The third group consisted of all those who practice component philosophy,

terminologies and taxonomies in their day-to-day job as they all work in component oriented

project in software industries. The survey was conducted in three phases. Phase I consisted of

13 members, Phase II comprised 23 members and Phase III included of 27 members. It is to

be noted that the final groups that were identified for each phase are mixture of candidates

from Research, Academician and Practitioners Groups. Each person had to answer the

questionnaire (Appendix A) given to him/her with a rating pattern to each question. The

confidence level measure was also associated with the answer to the questions. The

confidence was marked from 1 to 5 where 1 was no confidence and 5 was great confidence.

Table 3.4 to Table 3.6 presents the results of the survey performed with the Researchers,

Academicians and Practitioners. The software component was considered to be within SDCS

framework and respective class name, only if the 60% of surveyed people were in agreement.

For disagreement the result could be either part or not part of the classification.

75

Characteristics Group ‘R’

R1 R2 R3 R4 R5 R6 R7

Group ‘A’

A1 A2 A3 A4 A5 A6 A7

Group ‘D’

D1 D2 D3 D4 D5 D6 D7

Level of

Agreement %

Architecture

Level

y 100

Domain y y y n y y y y y y y y y y y y y y y y y 95.2

Phase y y n y y n y y y y y y y y y y y y n y y 85.7

Source y y y y y y y y y y y n y y y y y y y y y 95.2

Kind n y y y n y y y y y y y y y y y n y y y y 85.7

Generic

Functionality

y n y y y y y y y y y y y y y y y y y y y 95.2

S
u
rv

ey

P
h
as

e I I I II

II

II

II

I I I I II

II

II

I I I I I I II

L
ev

el
 o

f

A
g

re
em

en
t

%

8
3

.3

8
3

.3

8
3

.3

8
3

.3

8
3

.3

8
3

.3

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

8
3

.3

1
0

0

1
0

0

1
0

0

1
0

0

8
3

.3

1
0

0

8
3

.3

1
0

0

1
0

0

Table 3.4 Level of agreement for SDCS framework Group 1

Characteristics Group ‘R’

R1 R2 R3 R4 R5 R6 R7

Group ‘A’

A1 A2 A3 A4 A5 A6 A7

Group ‘D’

D1 D2 D3 D4 D5 D6 D7

Level of

Agreement %

Architecture

Level

y 100

Domain y y y y y y y y y y y y y y y n y y y y y 95.2

Phase y y y y y y y y y y y n y y y y n y y y y 90.4

Source y y y y y y y y n y y y y y y y y y y y y 95.2

Kind y y y y n y y y y y y y y y y y y y y y y 95.2

Generic

Functionality

y 100

S
u
rv

ey

P
h
as

e

II

II
I

II

II
I

II
I

II
I

II
I

II

II

II
I

II
I

II
I

II
I

II
I

II

II

II

II

II

II

II

L
ev

el
 o

f

A
g
re

em
en

t

%

1
0
0

1
0
0

1
0
0

1
0
0

8
3
.3

1
0
0

1
0
0

1
0
0

8
3
.3

1
0
0

1
0
0

8
3
.3

1
0
0

1
0
0

1
0
0

8
3
.3

8
3
.3

1
0
0

1
0
0

1
0
0

1
0
0

Table 3.5 Level of agreement for SDCS framework Group 2

76

It can be seen that all the group members appreciated the classification framework by

putting high level of agreement, where a high level in agreement indicates that all have same

opinion when it comes to classification of the software components.

Characteristics Group ‘R’

R1 R2 R3 R4 R5 R6 R7

Group ‘A’

A1 A2 A3 A4 A5 A6 A7

Group ‘D’

D1 D2 D3 D4 D5 D6 D7

Level of

Agreement %

Architecture

Level

y y y y y y y y y y y y y y y y y y y n y 100

Domain y 100

Phase y 100

Source y 100

Kind n y y y y y y y y y y y y y y y y y y y n 90.4

Generic

Functionality

y n y y y y y y y y y y y y y y y y y y y 95.2

S
u

rv
ey

P
h

as
e II

I

II
I

II
I

II
I

II
I

II
I

II
I

II
I

II
I

II
I

II
I

II
I

II
I

II
I

II

II

II

II
I

II
I

II
I

II
I

 L
ev

el

o
f

A
g

re
em

en
t

%

8
3

.3

8
3

.3

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

8
3

.3

8
3

.3

Table 3.6 Level of agreement for SDCS framework Group 3

 The developed SDCS framework matched with the answers of all the 63 people. This

result shows the in depth coverage of software component classification and understanding of

the software component terminologies. The SDCS framework is comprehensive and has been

identified after critical review. It can be concluded that the SDCS framework provides the

appropriate classification to learn, assess, compare and evaluate software components. In the

first phase of the survey, group members were asked to fill up Part II(a). Based on the

responses generated in Part II(a), group members proceeded to fill up other sets of questions

ranging from Part II(b) to Part II(d). The survey result Part II(b) to Part II(d) is shown in

Appendix A.1. Part II(b) was designed to assess the difficulty level that was created in Part

II(a). At the same time it also adjudicating the confidence level of the group members in

filling Part II(a). Practitioners found it very easy to fill Part II (a) while some of the

members from group Academician found little difficulty in filling up Part II (a), see Figure

3.3, as they were not aware of some of the software components and terminologies.

Researchers found SDCS framework easy to use and comprehend. The question in Part II (c)

77

dealt with the goodness of the model in classifying software components. All most all

members had given high ratings for this and appreciated the model, see Figure 3.4. The last

question i.e. Part II (d) was aimed at yielding information that included overall satisfaction of

the group members as regards the usage of SDCS framework and their respective confidence

level in understanding it. By giving high rating to satisfaction level and confidence level, see

Figure 3.5, both the Researchers and Practitioners showed their willingness to use SDCS

framework in their future projects and research. While the Academicians showed willingness

to include SDCS framework in their mentoring and tutorials with an aim to enrich the quality

of research and content required in the software component classification and usage.

Figure 3.3 Results for Survey Question Part II (b)

Figure 3.4 Results for Survey Question Part II (c)

Figure 3.5 Results for Survey Question Part II (d)

78

The survey result established the fact that the framework covers comprehensive

information/knowledge and understanding of software component terminologies. The people

were satisfied in software components classification according to dimensions and classes.

The framework also gave an insight into the component characteristics belonging to the same

class. The SDCS framework survey result showed increased level of exposure in

understanding new technologies. One of the prominent applications of the SDCS framework

has been to improve new technological learning. This surely establishes potential of SDCS

framework for the academia, software development and research industry to perceive

software components according to their project goals and requirements. In the global market

the SDCS framework provides the individual (user, group or organization) an edge over their

competitors. Moreover so far no study has been conducted that can deal with software

component classification in such a comprehensive manner.

3.6 Concluding Remarks

In this chapter, the SDCS framework is developed that can classify software

components on the basis of six dimensions - architecture level, domain, kind, source, generic

functionality and phase. These dimensions have been chosen after critical review.

Comparison and evaluation of software components can be performed on a homogeneous set

of software components such as SSL, SSE, CSL, CSE etc. The framework leads to a broader

and an in depth classification.

In the next chapter, usability aspect of software component is dealt. The presence of

this characteristic in component quality model shows a significant difference as compared to

its presence in conventional quality models. The chapter begins with the identification of

usability sub-characteristics and respective attributes. Later, evaluation and design of a

component as per usability point of view is discussed. The chapter also presents usefulness of

the developed methodology by exploring case study.

