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ABSTRACT

The problem of robot manipulator control is a complex and challenging task. The
complexity and challenge arise mainly from the fact that the accurate manipulator
dynamic model is difficult to formulate and the manipulator itself might be working in an
environment, where it is required to pick different and unknown loads at different times.
Under these circumstances, accurate and high-speed motion control of manipulator is a
difficult task. Many different control strategies have been proposed in the past to achieve
thisgoal, and it is presently an active area of research. These control strategies range from
conventional to adaptive to soft computing techniques like artificial neural networks,
fuzzy, genetic algorithms and their combinations.

In this thesis a smulation study of these different control strategies has been undertaken.
First the conventional control strategies like the non-model based PD and PID, and model
based strategies like, Computed Torque (CT), Feed Forward Inverse Dynamics (FFID)
and Critically Damped Inverse Dynamics (CDID) control were studied. These controllers
were tested against different trgectories and also for the case where manipulator
parameters change during motion due to picking up of payload. It was seen that model
based controllers give good performance only if the model parameters are known
accurately. It was also seen that the performance of controller improves if we use
reference or desired tragjectory values for model calculation rather than the actual
trajectory values which are obtained from the sensors.

A modification is proposed to the model based control strategies in terms of introduction
of modified integral error compensation. The integral action sumsthe errorsfor every five
iterations of control loop for a given set point. When the set point changes, the error
summation is reset to zero. It was seen that the performance of model based controllers
improved with inclusion of modified integral action.

Next some adaptive control algorithms for manipulator control were studied. The
advantage of adaptive approach is that the accuracy of a manipulator carrying unknown
load improves with time because the adaptation mechanism keeps extracting the
parameter information from tracking errors. The adaptive controllers studied were
Adaptive Critically Damped Inverse Dynamics Controller (ACDID), Model Reference
Adaptive Controller (MRAC) and Decentralized Adaptive Controller (DAC). These
controllers were also tested for different trgectories and different situations like cold start
(no initial estimate of parameters available), warm start (some rough initial estimate of

parameters available) and manipulator picking unknown load during the course of
[



motion. It was seen that adaptive controllers give best performance in face of parameter
variations. Moreover, the performance is better if some initial estimate of manipulator
parameters is available as in case of warm start. Like the conventional controllers these
adaptive controllers were aso tested for effect of including modified integral error
compensation in the control law. It was observed that the performance of adaptive
controllers also improves with addition of the modified integral action.

Finally, many different Fuzzy control algorithms for manipulator control were studied.
Different hybrid fuzzy control algorithms were tested, which are essentially combinations
of conventional or adaptive control algorithms with a lookup table based fuzzy controller.
It was found that hybrid fuzzy plus conventional controllers provide performance
comparable to adaptive controllers at lesser computational cost.

The Self Organizing Fuzzy Controller (SOC), which builds up the look up table, based on
trajectory errors through a modifier algorithm was investigated. It was found that this
controller gave best performance amongst all the fuzzy controllers studied in this thesis.
The Self Tuning Fuzzy controller (STFC), which changes the output denormalization
factor depending on the current trgjectory errors, was also investigated. Its performance
was not found to be as good as that of Self Organizing Fuzzy controller; however, the
overall manipulator motion is smoother for this controller. This is because the controller
is not based on lookup table. A modification to the STFC is suggested in terms of
changing both the input and output gains by zooming the universe of discourse. This
modified controller is known as Coarse/Fine Adaptive Fuzzy controller (CFAF). It was
found that CFAF gives better performance than STFC although it is still not as good as
SOC. Lastly a new hybrid Fuzzy plus Integral Error controller (HFIE) was investigated.
The modified integral action used for this controller was the same as that used earlier for
conventional and adaptive controllers. It was found that this simple controller gives avery
good performance, next only to SOC and better than STFC or CFAF.

Amongst all the controllers investigated it was found that the hybrid Adaptive Critically
Damped Inverse Dynamics (ACDID) + Fuzzy controller gives the best performance.

It isour view that some of the control strategies and techniques that have been extensively
investigated for manipulator control in this thesis can also be used in fields like Process
control systems which exhibit nonlinear, nonstationary behavior and are difficult to model
and control. Experimental implementation of various control schemes studied in this

thesisis also recommended for future work.
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CHAPTER |

INTRODUCTION

The design of intelligent, autonomous machines to perform tasks that are dull, repetitive,
hazardous, or that require skill, strength, or dexterity beyond the capability of humansis
the ultimate goal of robotics research. Examples of such tasks include manufacturing,
excavation, construction, undersea, space and planetary exploration, toxic waste cleanup,
and robotic assisted surgery.

Raobotics research is highly interdisciplinary, requiring the integration of control theory
with mechanics, electronics, artificial intelligence, and sensor technology. Table 1.1
shows a brief history of robotics and also highlightsits interdisciplinary nature.

e 1920 — Czechoslovakian playwright Karel Capek introduces the word robot in the
play RU.R. - Rossum's Universal Robots. The word comes from the
Czech robota, which means tedious labor.

e 1938 — The first programmable, paint spraying mechanism is designed by
Americans, Willard Pollard and Harold Roselund for the DeVilbiss

Company.

e 1942 — |saac Asimov publishes Runaround, in which he defines the Three Laws of
Robotics.

e 1946 — Emergence of the computer.

e 1950 - I, Robot, alandmark collection of Asimov's stories, is published.

e 1951 — In France, Raymond Goertz designs the first teleoperated articulated arm
for the Atomic Energy Commission. The design was based entirely on
mechanical coupling between the master and slave arms (using steel
cables and pulleys).

e 1954 — George Devol designs the first programmable robot and coins the term
Universal Automation, planting the seed for the name of his future
company - Unimation.

e 1959 — Marvin Minsky and John McCarthy establish the Artificial Intelligence
Laboratory at MIT.

e 1962 — General Motors purchases the first industrial robot from Unimation and
instalsit on a production line. Hardyman is born!

e 1964 — Artificial intelligence research laboratories are opened at Stanford
Research Ingtitute (SRI), Stanford University, and the University of
Edinburgh.

e 1965- Carnegie Mellon University establishes the Robotics Institute.

e 1970’s— Robots begin to be used in industrial applications.

e 1980’s — Severa robotics companies are founded: CRS, Adept, Computer Motion

etc.




e 1990’s— Walking robots, mobile robots, and new innovations emerge: Haptics,
Humanoids, Rovers etc.

e 2000’s— Raobots are mainstream....ex: Space station arm, Sony Aibo, Palm
robot, Telesurgery.

Table 1.1 Brief history of Robotics
The term robot has been applied to a wide variety of mechanical devices, from children's
toys to guided missiles. An important class of robots is the manipulator arms, such as the
CRS A 255 robot shown in Figure 1.1. These manipulators are used primarily in materials
handling, welding, assembly, spray painting, grinding, deburring, and other
manufacturing applications. The research work in this thesis discusses the aspects related
to control of such manipulators.

£ o ol

' .

2255 rohot

Fig 1.1 The CRS A255 articul ated manipulator

This thesis exclusively considers a commonly accepted class of robot plants - rigid body
open kinematic chains. A rigid body open kinematic chain consists of a seria
arrangement of finitely many (n) rigid bodies fixed by either prismatic or rotational
joints, and whose proximal link is joined to an inertial reference system. It is assumed
that each joint is instrumented with an actuator capable of delivering a commanded

torque, and sensors for sensing both position and velocity. This class of holonomic’

“In robotics, holonomicity refers to the relationship between the controllable and total degrees of freedom
of agiven robot. If the controllable degrees of freedom are equal to the total degrees of freedom then the
robot is said to be holonomic. If the controllable degrees of freedom are less than the total degrees of
freedom it is non-holonomic. A robot is considered to be redundant if it has more controllable degrees of
freedom than degrees of freedom in its task space.



systems has the useful property that the joint positions and velocities provide a natural set
of generalized coordinates, for which by applying straightforward techniques of classical
mechanics a finite dimensional, second order, ordinary differential equation of motion is
obtained. The equations of motion, though nonlinear, have the desirable structure that
they are completely controllable, observable, and are integrable. The control problem
considered is reference trajectory tracking [Tarokh and Sergji (1988)]; the task is to
analyze/design controllers which causes the plant output (robot position and velocity) to
asymptotically match a specified reference signal. This thesis does not address a great
number of other problems in robot control e.g. impedance control, grasping, assembly,
collison avoidance, task encoding, sensing environment, vision, user-interaction,
running, hitting, catching, flexible joints, flexible links, etc.

The initial attempts to solve the problem of manipulator control fall under the
‘conventional’ category. The controllers here consisted of simple PD controllers and
some model-based feedback linearizing controllers [Kelly (1998), Heredia and Wen
(2000)]. The PD controllers are widely used in industrial robots and treat each joint of
manipulator as decoupled and driving a constant inertia load. These controllers work well
if the manipulator joints are highly geared in which case the cross coupling effects of
dynamics diminish and can be neglected. These controllers give poor performance in case
of direct drive, high-speed robots.

Feedback linearization is a useful paradigm because it alows the extensive body of
knowledge from linear systems to be used to design controllers for nonlinear systems.
The roots of feedback linearization in robotics predate the general theoretical
development by nearly a decade, going back to the early notion of feed forward computed
torque [An et a. (1989)]. The basic idea of feedback linearization control is to transform
a given nonlinear system into a linear system by use of a nonlinear coordinate
transformation and nonlinear feedback.

In the robotics context, feedback linearization is known as inverse dynamics. The idea is
to exactly compensate for al of the coupling nonlinearities in the Lagrangian dynamicsin
a first stage so that a second stage compensator may be designed based on a linear and
decoupled plant. Any number of techniques may be used in the second stage. The



feedback linearization may be accomplished with respect to the Joint Space coordinates
or with respect to the Task Space coordinates.

The feedback linearization approach exploits important structural properties of robot
dynamics. However, the practica implementation of such controllers requires
consideration of various sources of uncertainties such as modeling errors, computation
errors, external disturbances, unknown loads, and noise. Moreover as the manipulator
functions in its workspace, its parameters change with every new payload it picks up.
This makes the applicability of conventional controllers very limited. However these
controllers give us a good insight into the problem of manipulator control and also form
the framework on which more advanced adaptive controllers are based.

In this thesis we have done an in-depth study of these conventional controllers and have
also suggested a method of adding integral action to these controllers to improve their
performance.

Robust and adaptive control are concerned with the problem of maintaining precise
tracking under uncertainty [Slotine (1985), Yao (1997), Imura et a. (1994)]. We
distinguish robust from adaptive control in the sense that an adaptive algorithm typically
incorporates some sort of on-line parameter estimation scheme while a robust, non-
adaptive scheme does not.

An advantage of adaptive approach is that the accuracy of a manipulator carrying
unknown loads improves with time because the adaptation mechanism keeps extracting
parameter information from tracking errors. Thus the adaptive controllers hold promise of
consistent performance in face of large load variations and inaccuracies in initia
parameter estimations. While many adaptive controllers have been proposed in literature
[Johansson (1990), Hsia (1986), Yuh et a. (1998)], most of them rely on assumptions
such as local linearization, time invariance, decoupled dynamics etc., to guarantee their
tracking convergence. However in recent past, attempts have been made and control
strategies have been proposed which do not resort to these assumptions for proving global
stability. These schemes mostly make use of linear parameterization property of
manipulator dynamics to synthesize the adaptation law and to prove globa stability
[Sadegh and Horowitz (1990)]. In this thesis we have studied through simulations a few
adaptive controllers. These controllers were tested for both warm and cold start



situations. In case of warm start, the controller starts with some rough initial estimate of
values of the parameters whereas in case of cold start it is assumed that no such initial
estimate is available. A comparison of performance is aso done. We have aso
investigated the effect of introducing integral error compensation on the performance of
these controllers.
While conventional controllers suffer in performance because they do not take care of
many uncertainties that a manipulator faces, the adaptive controllers have their own
drawbacks. They are:

e Requirement of a reasonably accurate manipulator model, even though the

parameter values are not required to be known exactly.
e Requirement of fast processors to implement computationally intensive
algorithms.

e The adaptive laws are derived mainly by trial and error.

e [|tisdifficult to prove the stability and robustness of these controllers.
In order to overcome the problems of inaccurate dynamics model and computational time
constraints, a lot of work has been done in the area of fuzzy logic control of robot
manipulators [Emami et al. (2000), Ham et al. (2000), Koo (1995)]. Fuzzy Logic control
provides an extensive freedom for control designers to exploit their understanding of the
problem and to construct intelligent control strategies. Nonlinear controllers can be
devised easily by using fuzzy logic principles. It makes fuzzy controller a powerful tool
to deal with nonlinear systems.
Many forms of fuzzy controllers for robotic manipulators have been proposed in
literature. These include conventional controllers [Ya-Chen et al. (1997), Nedungadi and
Wenzel (1991)], controllers with gravity compensation, self-organizing [Koh et al.
(1990), Kazemian (1998)] and self-tuning fuzzy controllers [LIama et al. (2000)], hybrid
fuzzy controllers [Meng and Swee (2000), Karner and Janocha (1997), Ya and Meng (2004)]
etc. Some of these controllers have been investigated in this thesis. Of particular promise
is the self-organizing controller, which builds up the rule base on-line as the manipulator
operates. It has a very simple structure, is computationally not intensive and gives very
good performance. Also of interest is a new hybrid fuzzy controller proposed in the

thesis, which too gives commendable performance. This controller is combination of



conventional fuzzy and integral error compensator. The integration of errorsis donein a
novel way so asto avoid any chances of instability.

As can be seen from above discussion, the robot manipulator control problem is a wide
and open area of research. In this thesis we have studied some of the many control
strategies used for manipulator control and have also proposed some new control
methods as well.

1.1 OBJECTIVES

This thesis is mainly about the computer control of motion, and represents an
infinitesimal advance in the human capacity to both understand and to synthesize devices
capable of performing useful work. Specificaly, it addresses the problem of constructing
and analyzing control systems for robot arms, which reliably and accurately follow,
prespecified trajectory.

The main objectives of thesis are as follows:

(@) Conventional Control

(1) To study various conventional control algorithms used for manipul ator
control. These agorithms include non-model based simple PD and
PID as well as model based Computed Torque, Feed-forward inverse
dynamics etc.

(i)  To analyze the performance of various conventiona controllers
through simulations on predefined trajectories.

(iii)  To investigate the effect of parameter variations on controller
performance.

(iv)  To study the effect of inclusion of integral error compensation on

controller performance

(b) Adaptive Control
(1) To study different adaptive control algorithms proposed for robot
manipulator control. These include Adaptive Critically damped inverse



dynamics controller, Model reference adaptive scheme and
Decentralized adaptive controller.

(i)  To study the performance of these controllers for situations like,
parameter change, warm start, cold start etc.

(i)  To study the effect of inclusion of integral error compensation on
controller performance

(c) Fuzzy Control

(1) To study some different Fuzzy control schemes which are used for
manipulator control. These include Conventional Fuzzy, Adaptive
Fuzzy and Hybrid Fuzzy schemes.

(i)  To investigate the performance of these controllers under situations
like manipulator picking up aload, starting with zero/non-zero entries
in rule base etc.

(iii)  Propose some new hybrid controllers which combine fuzzy with

conventional, and fuzzy with adaptive controllers.

(d) Comparative analysis of performance of the aforesaid controllers.

1.2 ORGANIZATION OF THE THESIS

This thesis is organized in seven chapters. Chapter 2 reviews literature in the area of
robot manipulator control. The review includes work done by researchers across the
globe on conventional, adaptive and fuzzy control. Review is also done of schemes,
which have not been directly tested on manipulators.

Chapter 3 dedls with the general structure of manipulator dynamics. It discusses some
important properties of the component matrices of manipulator dynamics. These
properties are extensively exploited for design of controllers and for proving their
stability. The dynamics equations of a two-link manipulator are derived, and error norms

used for comparison of performance are discussed.



Chapter 4 deas with Conventional control strategies for manipulators. These controllers
are tested on trgjectories for cases like, parameters exactly known, parameters not exactly
known, parameters changing during the course of trajectory etc. Effect of adding integral
error compensation to these controllersis also investigated.

Chapter 5 discusses Adaptive control strategies for manipulators. These controllers are
tested for performance through simulations. The situations tested include: manipulator
parameter estimate available (warm start), manipulator parameter estimate not available
(cold start), manipulator picking up a load during motion etc. Effect of adding integral
error compensation to these controllersis also investigated.

Chapter 6 deals with Fuzzy control methods for robot control. Various controllers like
Conventional, Hybrid and Adaptive Fuzzy are discussed. Both, self-organizing and self-
tuning varieties of adaptive fuzzy controllers are discussed. Also both lookup table and
non-lookup table based controllers are investigated. Some new Hybrid fuzzy controllers
are also proposed. All these controllers are tested through simulations.

Finally Chapter 7 presents the main conclusions of the thesis and provides

recommendations for future work.



CHAPTERI I

LITERATURE REVIEW

20INTRODUCTION

As explained in Chapter 1, control of robot manipulator is a complex and challenging
task. The motion of each joint of manipulator is usually produced by actuators that
produce torque or force. If the actuator used (e.g. Stepper motors) could directly execute
the trgjectory commands then open loop control would suffice. However such actuators
are usually not used in manipulators because of their high weight to torque ratios and
slow speeds.

The complexity of manipulator control problem is compounded by many factors, some
of which are listed below:

e The highly nonlinear dynamics of both manipulator and actuator, arising due to
inertia, gravitational, coriolis and centrifugal effects, friction, mechanical
flexibility, backlash, hysteresis and actuator geometry.

e Accurate control is required over awide range of operating conditions.

e Thereis cross coupling between neighboring inputs and outputs of the system.

e The system dynamics parameters are time varying, for example due to changes
in payload, configuration, speed of motion and component wear.

There are many control schemes proposed in literature for robot manipulators. The use
of a particular scheme is very much situation dependent. Simple PD controller can
accurately control a highly geared industrial robot, performing pick and place operation
on a known load. On the other hand a manipulator working in unknown environment or
a high speed direct drive manipulator would require more complex Adaptive or Fuzzy
controller.

The various controllers proposed by researchers for manipulator motion control can be
broadly classified into two categories based on the co-ordinate system they deal with.
These two categories are Joint space based schemes and Cartesian space based
schemes. The latter are also known as Resolved motion controllersin literature.

Another possible classification of robot controllersisin terms of their structure. In this

scheme the controllers are classified into one of the following categories:



e Conventional

e Robust

e Adaptive

e Fuzzy, Neural, GA based etc.
A good taxonomy of robot manipulator controllers is provided by Miljanovic and Croft
(1999). In this thesis we have explored controllers belonging to Conventional, Adaptive
and Fuzzy categories. This chapter presents a brief literature review of controllers in

these categories.

2.1 CONVENTIONAL CONTROL

The conventional controllers for robot manipulators consist of simple PD/PID
controllers, minimum time controllers, variable structure controllers and non-linear
decoupled feedback controllers etc.

The PD/PID controllers are very popular because of their simple structure and are still
widely used in many industrial robots.

Tarokh and Sergji (1988) have proposed a simple scheme for control of manipulators.
The scheme has two loops. an inner PD loop and an outer PID loop. The PD controller
stabilizes the robot by classical pole assignment technique, while the outer PID loop
achieves input-output decoupling for easy reference trajectory tracking. The PD and PID
gains are easily tunable and are related directly to the linearized manipulator model.

One of the main weaknesses of PD controllers is that they require measurement of
velocity for calculating the control law. Velocity measurement is often a problem and is
noise prone. One solution to overcome this problem is to implement a velocity observer.
Heredia and Wen (2000) have proposed a high gain observer for estimating the velocity.
They use the singular perturbation method to analyze the PD controller with high gain
observer. They have proved that observer error and tracking error become stable and
have also given the conditions to show the asymptotic stability of the PD controller.

The proportional—derivative (PD) control plus gravity compensation together with the
PD control plus desired gravity compensation are the ssimplest global regulators for

robot manipulators. The best feature of these controllers is that the tuning procedure to

10



achieve globa asymptotic stability reduces to selecting the proportional and derivative
gains in a straightforward manner. However, a drawback of both control strategies is
that the knowledge of the gravitational torque vector of the robot dynamics, which
depends on some parameters such as mass of the payload, usually uncertain, is required.
Kelly (1998) introduced a new class of globa position controllers for robots, which do
not include their dynamics in the control laws. He developed a new class of regulators
leading to a linear PD feedback plus an integral action driven by a class of nonlinear
functions of the position error. He characterizes the class of function and gives simple
explicit conditions on the controller parameters which guarantee global positioning.
Another important class of conventiona controllers is those, which use the model of
manipulator to accomplish feedback linearization. This idea was explained in some
detail in previous chapter. These controllers are known as model-based controllers.
These controllers use schemes, which range from simple gravitational compensation to
feedback linearization of the full manipulator dynamics. Clearly the suitability of a
model-based controller is dependent upon how well the system under control is known.
An ideal model based controller consists of the inverse of the system dynamics, used as
a pre-compensator to the actual system. The control inputs required to meet the desired
positions, velocities and accelerations can then be calculated directly from the inverse
system model. Thus, the system is driven open loop with perfect cancellation between
the inverse dynamics and the rea system. This simple scheme suffers from the
drawback that manipulator dynamics is usually never known perfectly. All the
unmodelled effects are thus not compensated. To overcome this problem feedback is
used where the open loop model-based controller is combined with a classical feedback
controller (ex. PID). The two controllers are then known as Primary and Secondary
respectively. The purpose of secondary controller is to maintain trajectory tracking in
presence of modeling errors and unmodelled disturbances. The primary controller is
designed using any available knowledge of system dynamics. The overall controller is
also known as feedforward model based controller. Paul (1974) and Bejczy (1976)
proposed such controllers which use full manipulator dynamics model in primary part.
These controllers are also known as Computed Torque controllers because the primary

part of controller ‘computes’ the torque to be applied at joints depending on desired
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position, velocity and acceleration. These controllers are thus computationally very
intensive. To reduce the computational burden, schemes have been suggested which use
only part of manipulator dynamics, such as, gravity terms. The gravity part of dynamics
is simple and provides the holding torque information thereby reducing the integral
action required of the secondary controller.

However to cancel the gravity terms we should have their exact knowledge. This at
times is a difficult task. Khorrami and Ozguner (1988) showed that asymptotic exact
tracking of trgjectory could be achieved with state feedback and Pl controllers. No exact
knowledge of gravity terms is required. Only the nominal parameter values and bounds
on their variations are required. However global asymptotic stability is guaranteed only
for the case of constant set point trajectory.

Another way of reducing the computational burden of these model-based schemes is to
use a linearized model of the system under control. This can take the form of a state
space controller designed to position the poles of the closed loop system, or to optimize
some performance criterion. However, the linearized model quickly becomes
inappropriate as the manipulator moves throughout its workspace, and hence degrades
the control. This approach may be effective if deviations from the linearization point are
small, or alternatively if different linearized models are used as the robot moves along
its trgjectory. An et al. (1989) give a good comparative experimental study on some
feedforward and computed torque controllers.

Another approach to manipulator control is to use the model in feedback part of
controller. It is thus known feedback model based controller. Here, the inner primary
controller is designed using the inverse system dynamics to give an ideally decoupled
and linearized system. It is then a simple task to design a secondary controller that
regulates the nominally linear system, giving the required closed loop system response.
The secondary controller also compensates for errors in the model based primary
controller, to ensure set point tracking and disturbance rejection. This approach is aso
occasionally referred to as computed torque control, but differs from previous law since
it uses feedback rather than feedforward.

Song et al. (1989) proposed a scheme, which tackles the problem of manipulator picking
up unknown loads at different times. They incorporate the load dynamics in the

12



manipulator dynamics itself and then exploit its properties to design the controller. Their
scheme compensates for effects of nonlinearities, couplings and varying payloads and
also ensures tracking convergence.

Leung et a. (1990) proposed a sliding mode robot controller based on the variable
structure control theory. Spong et al. (1986) proposed a robot controller which uses
optimal decision strategy, to derive a pointwise optimal control law which minimizes
the deviation between the vector of actual joint accelerations and a desired joint
accel eration vector, subject to the input constraints.

For a class of robot manipulators, which contain nonlinear couplings and uncertainties,
Mao-Lin and Meng (2000) proposed decentralized stabilizing controllers and tracking
controllers. In the former case, the system state is ensured to lie ultimately in a
prescribed neighborhood of the origin and this neighborhood can be made arbitrarily
small. In the latter case, the system is guaranteed to ultimately track a desired model
with a prescribed error and this tracking error can aso be made arbitrarily small.
Moreover, this approach can admit larger nonlinear couplings and uncertainties in the
robot manipulator system. Zhang et al. (1990) present a digital implementation of an
optimal PID controller of linearly interpolated joint trajectories. The controller obtains
optimal performance by reformulating the PID control law to minimize the time delay
between the position transducer reading and the application of the corrective torque.
Some authors have also proposed globally stable controllers where the motor dynamics
is included in the manipulator model. Su and Stepanenko (1994) proposed one such
controller and proved its stability using the Lyapunov method. They only assumed that
the inertial parameters of manipulator and electrical parameters of actuators are
bounded.

An exhaustive discussion on advanced robot control techniques has been given by Ge
(1998) and Er (1993).

2.2 ADAPTIVE CONTROL

The controllers discussed previously have constant parameters, and are designed to be
stable even when there are variations in the system under control. An alternative
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approach, termed adaptive control [Ortega and Spong (1988), Tosunoglu and Tesar
(1988), Sinha et a. (1990), Yu et al. (1992), Ham (1993), Zhang et a. (2000),
Zergeroglu et a. (2000)], automatically adjusts the controller gains as the system
changes, as shown in Figure 2.2.1. The controller therefore acts to maintain the closed

loop system response in the presence of variations in the system.

Adaptation

Algorithm  |g

0, -+ \ u 0

Controller > ROBOT

B,

W

Fig. 2.2.1 Block diagram of Adaptive controller

The first adaptive robot control algorithms in the literature addressed simplified
approximations to the full rigid body model.

One of the earliest papers specifically addressing adaptive robot control is by Dubowski
and DesForges (1979). This paper address a robot model where the joints are modeled
as decoupled linear time invariant (LTI) plants. Horowitz and Tomizuka (1986)
proposed to adaptively compensate for time varying nonlinear elements of the full
nonlinear plant with the assumption that these elements are dowly time varying in
comparison to the rate of parameter adaptation. Takegaki and Arimoto (1981) proposed
a different approach using an approximation to the full plant model, which omits some
of its nonlinear terms. Many researchers working with adaptive control algorithms
addressed a great variety of approximations to the full rigid-body nonlinear model. Hsia

(1986) and Landau (1988) give a complete account of these results, which, because of
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the plant approximations employed, can at best provide only local stability with respect
to the full nonlinear system.

Several authors made explicit use of the linearity of robot inertial parameters in
developing experimental techniques for adaptive gravity cancellation [Koditschek
(1985)] aswell asthe off-line and on-line identification of these parameters [Khoslaand
Kanade (1985)]. Shortly thereafter, several authors reported stable direct adaptive
tracking controllers that were correct with respect to the full nonlinear robot model.
These adaptive controllers, which still require accurate plant structure parameter values,
compensated for either partial or complete lack of knowledge of plant inertial parameter
values.

Craig et a. (1986) reported the fist adaptive robot control algorithm, which is globally
convergent in tracking error. This algorithm is an adaptive version of the familiar
"computed torque" exact linearization inverse dynamics control law [Luh et al. (1980)].
It has the advantage that it provides for linear tracking error dynamics. It has the
disadvantage that (i) it requires measurement of joint acceleration in addition to position
and velocity, and (ii) it is only locally stable in controller parameter error, due to a
required inversion of its estimated inertia matrix in the parameter update law. Ortega
and Spong (1988) have reported versions of these control algorithms, which do not
require measurement of joint acceleration, but remain only locally stable in the
controller parameter error.

Many model based adaptive schemes have also been proposed [Ham (1993), Slotine
(1986), Tso et a. (1991)], where those coefficients of the robot model that are not well
known or are changing, are updated automatically. This is achieved using a system
identification algorithm, which uses past input and output values of the system to
estimate the parameters, for example payload mass. The nonlinear equations of motion
of the robot are expressed as a linear function of joint outputs and model parameters.
These parameters are estimated using a Lyapunov function candidate approach [Wen
(1990)], and they converge to their true values provided certain constraints are met. This
method requires measurement of the joint angles, velocities and accelerations that can

be problematic due to noise.
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A different approach to stable adaptive model based control which achieves stable
tracking without exact linearization was reported independently, by Slotine and Li
(1988), and by Horowitz and Sadegh (1987), using a dliding-mode type of stability
proof. This algorithm has the perceived disadvantage that it does not provide linear
tracking error dynamics, but it has the advantage that it is globally stable in plant
parameter tracking error, asymptotically exact tracking, and does not require
measurement of joint acceleration. This particular area of research has seen much work
and is till active, addressing issues of convergence, stability and computational burden.
However, these model based adaptive controllers are generaly only practical if the
number of estimated parameters is restricted. The problem becomes complex if the full
manipulator model isto be estimated.

A simpler version of this "non-linearizing" approach, possessing a local lyapunov
stability proof, was reported independently by Koditschek (1987). A globally stable
version of this simpler approach, with proof of global stability, was provided by
Whitcomb et al. (1993).

A second variant of this "non-linearizing" approach with a feedforward structure
admitting off-line tabulation was reported by Wen et al. (1987). DeWit and Fixot (1992)
proposed an adaptive controller based on estimated velocity feedback thereby removing
the need of actual velocity measurement, which may be contaminated by noise.

In deriving the adaptive and control laws, many times the motor dynamics are ignored,
which essentialy is an approximation. Yu and Lloyd (1995) and Jing (1995) proposed
an adaptive controller that takes the manipulator motor dynamics into consideration. The
adaptation law proposed overcomes uncertainties of both manipulator and motor
parameters.

As mentioned earlier, the need of developing advanced control methods for robot
manipulators has been stressed by many researchers, and a lot of papers have appeared
during the last decade. One of these approaches is the decentralized adaptive control.
This scheme, aso known as "independent joint control,” is motivated by the notion of
the decentralized location of the actuator and sensor on each link. In practice, however,
the control gets somewhat complicated since the robot is a highly coupled, nonlinear
multivariable system. Also their operating environment is often poorly known and their
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parameters cannot be calculated accurately enough to be used in real-time control
applications. As a result, its stability analysis becomes more complicated and its
accurate model parameters have to be known a priori. For these reasons, adaptive
schemes are very susceptible to these uncertainties and complexities. Severa
development and applications have been presented, where adaptive controllers are used
to enhance stability and improve operating conditions of robot manipulator systems
[Hsu and Fu (2002), Oh et al. (1988)].

Oh et al. (1988) proposed a decentralized adaptive controller where the controller gain is
derived by using model reference adaptive control theory based on Lyapunov's direct
method. The adaptive gains consist of proportional, and integral combination of the
measured and reference values of the corresponding subsystems. Colbaugh et a. (1993)
proposed a controller, which is extremely simple computationally and does not require
knowledge of either the mathematical model or the parameter values of the robot
dynamics. The controller was shown to be globally stable in the presence of bounded
disturbances. Furthermore the control strategy is very general and is implementable for
either position regulation or tragjectory tracking in either joint space or task space. Gavel
and Hsia (1987) presented a decentralized adaptive controller based on high gan
feedback approach. Convergenceislocal in the state parameter space. Because of a high
gain feedback approach, the algorithm is tolerant to the nonlinear, time varying
interaction among joints, and also to the interaction among control channels due to the
nondiagona inverse Jacobian matrix. The positive definiteness of inverse Jacobian
matrix is exploited to make this approach successful.

Tarokh (1990) proposed a decentralized adaptive controller based on discrete time
model of the robot manipulator. In his scheme each local controller utilizes only its own
joint angle measurement and reference position, and does not require knowledge of the
payload, robot characteristics or other joint angles. Due to the decentralized structure of
the controller and the simplicity of the control algorithm, computation of joint torques
can be performed in parallel in areal time environment. The adaptation laws are derived
using hyperstability theory, which guarantees asymptotic trajectory tracking despite
gross robot parameter variations. The controller gains are independent of the robot
parameters provided that the gain adaptation is sufficiently fast. In the independent joint
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controller scheme proposed by Sergji (1988) for the development of the decentralized
control scheme, each joint is viewed as a subsystem of the entire manipulator system.
These subsystems are interconnected by “disturbance torques” representing the inertial
coupling terms and the coriolis, centrifugal, friction and gravity terms. The proposed
decentralized control scheme consisting of a number of independent joint controllers has
several advantages over a single centralized controller for the entire manipulator. A
major advantage is that the joint control algorithms require much less computations than
the single algorithm resulting from a centralized control law. Furthermore, due to the
possibility of paralel processing and distributed computing, the decentralized control
scheme can be implemented on a number of simple and fast microprocessors with a high
sampling rate, thus improving the system performance. Another major advantage of the
decentralized control scheme isits reliability and fault tolerant feature. In case one joint
encoder gives erroneous readings of the joint position, in a centralized control system,
thiswould affect the entire control action for all joint motors; whereas in a decentralized
system, only one control loop is affected and the remaining joint controllers are
unaffected. A variant of this control strategy proposed by Magana and Tagami (1994) is
investigated in detail in Chapter 5. Recently Parra-V ega (2003) proposed another smple
decentralized continuous sliding PID controller for tracking tasks that yields semi global
stability of all closed-loop signals with exponential convergence of tracking errors.

Besides the main approaches to adaptive control discussed above, many other variations
of adaptive control have been proposed in literature. Variable structure adaptive
controllers have been proposed by Yu (1998), Yu and Lloyd (1997) and Tso et al.
(1991). Adaptive learning controller has been proposed by Messner et a. (1991). An
adaptive controller designed using input-output approach is presented by Kelly and
Ortega (1988). Trusca and Lazea (2003) have proposed an adaptive PID learning control
algorithm for periodic robotic motion. Their controller consists of an adaptive PID
feedback part and a feedforward input learning part. The feedback part overcomes the
disturbances while the feedforward part produces the desired torques. Some authors
have also presented adaptive control schemes based on manipulator task space. In one
such scheme Feng (1995) presents a composite law, which uses the prediction error and
tracking error to derive parameter estimates without requiring inverse of Jacobian or

18



estimated inertia matrix. Burkan (2005) developed adaptive controller using
trigonometric functions depending on manipulator kinematics, inertia parameters and
tracking error, and both system parameters and adaptation gain matrix are updated in
time. The control law includes a PD feed forward part and a full dynamics feed forward
compensation part with the unknown manipulator and payload parameters.

As can be seen, many versions of adaptive control strategies are available for use today.
To decide on merits and demerits of one adaptive strategy vis-avis another, and also
that of adaptive with respect to conventional or robust schemes, some results are
available in literature. Erlic and Lu (1990) presented an experimental comparison of
Adaptive, Robust and Classical Feedback Controllers used in unconstrained trajectory
tracking for robot manipulators. In their study it was found that the adaptive controller
outperforms the other controllers. Good performance was also achieved using the
computed torque method. The proportional-derivative controller was found to perform
poorly for velocity tracking. The adaptive algorithm however was found to be
computationaly demanding. Kim and Hori (1995) have presented an experimental
evaluation of adaptive and robust schemes for robot manipulator control. They have
classified the adaptive control laws in three groups and have shown that the main
difference between groups is in terms of their PD gains. They have further shown that
the controllers can give matching performances by proper adjustment of the PD gains.
They have also investigated a two degree-of-freedom robust controller and have
demonstrated its strong disturbance rejection properties.

Burdet et a. (1998) have also given a comparative evaluation of nonlinear adaptive
controllers. They have shown that a version of Feedforward adaptive controller is well
suited for learning the parameters of dynamic equation even in presence of friction and
noise. However, if the task consists of executing a repeated trgjectory, a Lookup table
based memory controller is simpler to implement. Niemeyer and Slotine (1988) have
commented on performance in adaptive control, specifically about issues related to
computational efficiency and recursive implementation of the control algorithms.

To summarize, the adaptive control theory for robot manipulators is at present seeing
wide interest and many researchers are trying aternative controller designs. In this
thesis we have studied some of the approaches to adaptive control of robot manipulators.
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23 FUZZY CONTROL

Real time control of a robot manipulator has been the topic of research for a long time.
Many theoretical results have been and are being published showing various efficient
and accurate control strategies. These include adaptive control, non-linear feedback
control, resolved motion rate control, inverse dynamics control etc. But al of them have
problems from practical applicability point of view because of:
1) Complex non-linear mathematical model of the manipulator and
2) Extremely involved computational requirements.

In such cases, where conventional and other control methods prove inadequate and
complex, it is worthwhile to investigate the control policies of a human operator. Fuzzy
Logic is one such control method, which is based on human intuition and experience.
Fuzzy agorithms are easy to implement on a computer, do not involve any major
computational problems, and do not require a detailed mathematical model of the
system [Jamshidi (1997), Kazemian (2001)]. Fuzzy algorithms find wide use in robotic
control systems[de Silva (1995), Banerjee and Woo (1993)].

Many Fuzzy control strategies for manipulator control have been proposed in literature.
Erbatur et a. (1995) provide a comparative analysis of four different kinds of fuzzy
controllers. The controllers studied are: Straight forward conventiona fuzzy control,
fuzzy control with gravity compensation, fuzzy control with nonlinear state feedback
and a self organizing fuzzy control. The problem of gain adjustment in basic fuzzy
controller is overcome by using a self-organizing fuzzy controller. The self-organizing
controller is able to adjust its gains in a single run. Abdessemed and Benmahammed
(1998) have proposed a two layer fuzzy controller. The first layer is the familiar PID
controller, and the second is the precompensator, designed on the basis of decision
making rules and tuned to minimize the output error when the conventional controller
exhibits significant steady state error and alossin control. The control strategy proposed
by Lim and Hiyama (1991) for robotic manipulators incorporates a proportiona plus
integral (Pl) controller with a simple fuzzy logic (FL) controller. In the proposed
strategy, the Pl controller is used to ensure fast transient response and zero steady-state
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error for step inputs, or end-point control, whereas the FL controller is used to enhance
the damping characteristics of the overall system. A good classification of fuzzy PID
controllersis provided by Hu et al. (2001).

Researchers have proposed many versions of adaptive fuzzy controllers. Zhao et al.
(1993) showed that the gains of a simple PID controller could be adapted using fuzzy
logic. Fuzzy rules and reasoning are utilized on-line to determine the controller
parameters based on the error signal and its first difference. Tzafestas and
Papanikolopoulos (1990) presented an approach to intelligent PID control, which is
based on the application of fuzzy logic. Their approach assumes that nominal controller
parameter settings are available through some classical tuning technique (Ziegler-
Nichols, Kaman, etc.). By using an appropriate fuzzy matrix (which is similar to
Macvicar-Whelan matrix), they determine small changes on these values during the
system operation, that lead to improved performance of the transient and steady state
behavior of the closed-loop system. Visoli (2001) presents a comparison between
different methods, based on fuzzy logic, for the tuning of PID controllers. Y oo and Ham
(1999) proposed an adaptive controller that uses a fuzzy logic system to approximate
any nonlinear system. There is no need to derive the linear robot dynamic formulation.
Their controller is robust not only to the structured uncertainties such as payload
parameters, but also to the unstructured ones such as friction model and disturbances.
Neo and Er (1995) present a controller that employs tracking errors of the joint motion
to estimate the robot dynamics, which are subsequently used in the control law. In
particular, it requires no feedback of joint accelerations. This adaptive controller does
not require the exact robot dynamics but only the boundary of the dynamics. The
controller guarantees the global stability of resulting closed-loop system in the sense that
all the signals are bounded. A good reference, which discusses stability issues related to
fuzzy controllers, is by Kandel et a. (1999). A controller for adaptive fuzzy tracking
control of manipulator is proposed by Lin et a. (2003). Their adaptive fuzzy
compensator performs on-line learning to approximate and compensate the unknown
nonlinear dynamics of the system so that minimizing a quadratic performance index can
obtain the optimal tracker. The proposed controller and the associated learning

algorithm require no preliminary off-line learning for initialization and guarantee the
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output-tracking error to be uniformly bounded. Commuri and Lewis (1996) propose a
learning agorithm that learns the stabilizing membership functions online from initia
membership functions that are selected using simple design criteria. The controller
requires no regression matrix and is essentially model free.

The approach proposed by Kwan and Liu (1999) uses quantitative control schemes to
ensure global stability and qualitative control scheme to approximate any non-linear
functions caused by disturbances, system uncertainties and interconnections. With the
PD control as a preliminary component in maintaining the local stability, non-linear
feedback is added to ensure global stability of the entire system. An adaptive fuzzy logic
controller is incorporated into the robot arm control system as a function approximator
to compensate interconnections effect, unmodelled dynamics, friction, gravity force and
uncertainties. The stability criterion of the proposed controller is developed using the
Lyapunov synthesis approach. Sun and Wan (2004) have used a controller output error
method to design adaptive fuzzy control system. The proposed control strategy employs
a gradient descent algorithm to minimize a cost function, which is based on the error of
the controller output and is minimized by tuning some or all of the parameters of fuzzy
controller. The underlying idea of controller output error method is that each time the
response of a plant to a set-point signal is observed, it is learnt how to repeat that
response when it is required in future.

Santibanez et a. (2000) extend the idea of PD+ controller to fuzzy. The structure of
PD+ control consists of alinear PD feedback plus a specific compensation of the robot
dynamics. Furthermore, this control strategy has the distinguishing feature that it
reduces to the PD control with gravity compensation in the particular case of set-point
control. The authors show that the gains of PD+ can be varied according to afuzzy logic
system, which depends on the robot state. Global Stability of the system is aso shown.
Kim (2002) has proposed an independent joint fuzzy controller, which does not require
an accurate manipulator dynamic model and the joint acceleration measurement, yet it
guarantees asymptotic trajectory tracking despite gross robot manipulator variations. No
inversion of the estimated mass matrix is aso involved. It incorporates an integral term
in the control law, which eliminates steady state error. The feedback control loop is
guaranteed to be stable. The use of sliding mode control theory in developing an
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adaptive fuzzy controller is shown by Hsu and Fu (1995). They have presented adaptive
robust fuzzy control architecture for robot manipulators. The control objective is to
adaptively compensate for the unknown nonlinearities of robot manipulator, which is
represented as afuzzy rule-base consisting of a collection of if-then rules. The algorithm
embedded in the proposed architecture can automatically update fuzzy rules and,
consequently, it is guaranteed to be locally stable and to drive the tracking errors to a
neighborhood of zero. An adaptive fuzzy controller, which does not require
measurement of joint velocities, is discussed by Kim (2004). In this controller, adaptive
fuzzy logic alows approximation of uncertain and nonlinear robot dynamics. Only one
fuzzy system is used to implement the observer-controller structure of the output
feedback robot system.

A self-tuning adaptive fuzzy version of the computed torque controller is discussed by
Llamaet al. (1998). They have shown that the computed-torque control scheme can aso
yield a globally asymptotically stable closed-loop system not only for constant positive
definite gain matrices, but also for a class of manipulator state dependent gain matrices.
This is a theoretical result with useful implications to handle real constraint of robot
manipulators such as friction in the manipulator joints and torque capability limitations
of their actuators. They also show application of fuzzy logic to design a self-tuner for
the computed-torque control taking into account specifications of alowable actuator
torques limits and desired tracking accuracy in presence of friction.

Colbaugh (1994) proposed another approach to adaptive motion control called as
performance-based adaptive control. It is known so because the adaptive laws adjust the
controller gains directly based on system performance. The development of this schemes
proceeds by assuming that very little information is available concerning either the
structure or the parameter values of the manipulator dynamic model. As a consequence,
these methods are equally applicable to trajectory tracking in joint-space or task-space.
The controller proposed is extremely simple, require very little model information, and
shows good tracking performance and robustness characteristics. Loc et a. (2004)
proposed an adaptive fuzzy controller based on optimal control theory. The controller
does not require exact mathematical model of manipulator and takes the error vector as

control input.
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Many model-following adaptive fuzzy schemes have been investigated by researchers
[Tsai et al. (2000)]. Koo (1995) proposed a model reference adaptive fuzzy scheme and
showed that it is capable of achieving reference model tracking of a two-link robot
manipulator system. He has shown that model reference scheme is capable of
manipulator control by achieving adaptive feedback linearization, i.e. to asymptotically
cancel the nonlinearities in the system and to place system poles in the desired locations
as specified in the reference model. Golea (2002) proposed another such model-
following fuzzy adaptive scheme. In his scheme the adaptive fuzzy system is trained to
approximate the robot dynamic and then, based on the estimated model, a controller is
designed to ensure the tracking of a stable reference model. It is proven, using Lyapunov
stability, that this adaptive scheme is robust against uncertainty, external disturbance
and approximation error, and achieves asymptotic tracking of a stable reference model.
Kuswadi et al. (2003) also proposed another such scheme with particular reference to a
hopping robot. Their approach uses linearized model to design a state feedback servo
controller. Thereafter, by using fuzzy networks they have developed model reference
adaptive fuzzy control in which afuzzy network is used to compensate the nonlinearities
of robot dynamics. The role of the fuzzy network is to construct a linearized model by
minimizing the output error caused by nonlinearities in the robot control system through
alearning mechanism.

Another class of fuzzy controllers widely reported in literature is the hybrid fuzzy
controllers. These controllers combine the action of fuzzy controllers with that of some
conventional control algorithm. Butkiewicz (2000) gives a comparative study of
different conventional, hybrid fuzzy and adaptive fuzzy controllers. Brenm and Rattan
(1993) proposed a hybrid fuzzy PID controller, which takes advantage of the properties
of the fuzzy PI, and PD controllers and another method, which adds the fuzzy PD
control action to the integral control action. Li et a. (2001) have proposed a hybrid
P +ID controller for manipulator control. The structure of the FUZZY P+ID controller is
very simple, since it is constructed by replacing the proportional term in the
conventiona PID controller with an incremental fuzzy logic controller. On the basis of
the PID type controllers, only two additional parameters have to be adjusted to
implement the FUZZY P+ID controller. These two parameters allow the controller to
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behave differently, depending on the values of error and error derivative. A very similar
approach to hybrid fuzzy controller design has been discussed by Li (1998).

Ordonez et a. (1997) provide a good comparative study of adaptive fuzzy, conventional
adaptive and nonlinear non-adaptive controllers. Lin et al. (1995) provide a comparative
analysis of fuzzy and PID controllers. Their study shows the simplicity and superiority
of fuzzy controllers over their PID counterpart. Khoury et al. (2004) provide a
comparative evaluation of the fuzzy PID control method with respect to other methods
of nonlinear control, i.e., the computed torque control method and the direct adaptive
control method. They emphasize that the main advantage of the fuzzy control approach
isits non-dependency on the dynamic model of the plant.

24 MOTIVATION FOR PRESENT STUDY

As can be seen from the brief literature survey presented in the previous sections, the
problem of manipulator control is a complex and challenging task. Many methods of
manipulator control have been proposed by researchers, which range from conventional
to adaptive to fuzzy control etc. Furthermore each of these strategies have their own
wide and varied flavors.

In view of different kinds of control strategies available, work needs to be done which
could test and compare these different control strategies against a common background
and suggest the advantages and disadvantages of these strategies. As can be seen from
literature survey, some researchers have attempted these comparative studies but they
are not very exhaustive.

As discussed in section 2.1 many conventional, model based strategies have been
proposed for manipulator control. These model based schemes give good performance
in case the manipulator model is known accurately enough and is working in an known
environment. A study however needs to be done to compare these conventiona model
based control strategies for their performance against each other and also against the
non-model based algorithms under various situations. With this motivation we

undertake the following tasks in Chapter 4:
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e Compare three model based control strategies against each other for same
manipulator model and similar test trgjectories
e Anayze the effect of using approximate rather than accurate parameter valuesin
mani pulator model
e Compare the performance of model based and non model based conventional
control algorithms
e Study and compare the effect of manipulator picking up an unknown load during
the course of its motion on its performance
e Propose and study the effect of including a modified integral action to the model
based conventional control algorithms
As the efficacy of conventional control agorithms goes down with increase in
uncertainty in the manipulator model, adaptive control is often cited in literature as the
way out. As discussed in section 2.2 many adaptive control algorithms have been
proposed in literature for manipulator control. But a comprehensive comparative study
of these algorithms is by and large missing in the literature. This is the motivation for
chapter 5, where we undertake the task of an exhaustive comparative study of three
popular adaptive control algorithms used for manipulator control. In particular we
e Compare the performance of adaptive control algorithms for the case when the
manipulator picks up and releases an unknown load during the course of its
motion
e Compare the performance of adaptive control agorithms when no initial
estimate of manipulator parameters are available
e Compare the performance of adaptive control algorithms when some initial
estimate of manipulator parameters are available
e Investigate the effect of adding modified integral action to these adaptive
controllers
The adaptive control algorithms give good performance but have their own drawbacks
like being computationally expensive and difficult to prove to be stable. This has led
many researchers to investigate strategies like fuzzy and neural control for manipulators.
As discussed in section 2.3 many different fuzzy controllers have been proposed in

literature but their efficacy for manipulator control has been rarely investigated.
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Moreover there is no good comparative study existing in literature for these different
fuzzy controllers. Also thereis lot of scope to investigate new hybrid fuzzy controllers,
which are obtained as combinations of fuzzy with conventional or adaptive controllers.
This forms the main motivation for chapter 6 where we have undertaken the following
tasks:
¢ Investigate lookup table based and non lookup table based pure fuzzy controllers
e Investigate a self organizing fuzzy controller for situation where the lookup
tables start with zero and non zero values
e Propose and investigate some new hybrid fuzzy controllers
e Investigate a self tuning adaptive fuzzy controller
e Investigate a coarse/fine adaptive fuzzy controller
e Investigate the performance of these controllers for the cases when manipulator
parameters change during motion and when they do not change

e Do acomparative study of performance of the above controllers

The main motivation thus, for the present study is absence of good comparative study of
different control algorithms for manipulator control against a common background. We
have made an attempt in this thesis to do the same and in the process have also proposed
some new controllers and some modifications to the existing controllers with a view to

improve their performance.

2.5 CONCLUDING REMARKS

In this chapter we have presented a brief overview of studies carried out in the field of
manipulator control by different researchers. In particular we have presented the work
done in areas of conventional, adaptive and fuzzy control. The literature survey
represents a small and important portion of a vast body of literature available in this
area. We have not included in the survey work done on manipulator control in the areas
of neural networks, genetic agorithms, impedance control etc, as we do not intend to

investigate these schemesin this thesis.
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CHAPTER 111

ROBOT DYNAMICSAND ISSUESIN CONTROL

3.0INTRODUCTION

A robot manipulator consists of number of links interconnected by joints to form a
kinematic chain. Figure 3.1 shows a seria link (left) and a parale link (right)
manipulator. A parallel link robot, by definition, contains two or more independent serial
link chains. In this thesis for simplicity of analysis we confine ourselves to serial link
manipulators with only rotational or revolute joints. Also most of the robots used in
industry today have this serial open kinematic chain structure. Anyway, most of our
discussion about control strategies in the thesis remains valid for parallel robots and for
robots with sliding or prismatic joints as well.

In the serial open kinematic chain structure, a number of links are connected in series
through joints, which are either revolute or prismatic (linear) in nature. Each joint usually

has a single degree of freedom.

Fig. 3.1. A serial manipulator (left), the ABB IRB1400, and a parallel manipulator (right),
the ABB IRB940Tricept.

For the purpose of studying manipulator dynamics, it is usualy assumed that the

manipulator consists of rigid links with no flexibility. This assumption is quite true for the

industrial grade manipulator and does not hold good only for large arms designed for

space applications etc. Rigid robot manipulators are fully actuated, i.e., there is an
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independent control input for each degree-of—freedom. By contrast, robots possessing
joint or link flexibility are no longer fully actuated and the control problem is more
difficult, in general.

The problem of flexibility, if any, in the industrial manipulator is avoided by setting the
controller gains in such away that the natural frequency of the system lies far away from

the lowest resonance frequency of the structure so as not to excite them.
3.1 MANIPULATOR DYNAMICSEQUATIONS

The two most common methods used to derive the manipulator inverse dynamics are the
Newton-Euler and the L agrange methods [ Spong and Vidyasagar (1989)]. The Newton-
Euler method is based on force balance approach while the Lagrangian method is based
on energy conservation approach. The Lagrangian approach is easier if the number of
degrees of freedom, i.e., the number of joints of the manipulator is less than four. The
Newton-Euler approach is more suitable for implementation on computer because of its
iterative nature. However as the dynamics equations are very explicit and cumbersome
even for the ssimplest of manipulator, it is always better to use the closed form solution.
This saves a lot of processor time, thereby making the real time implementation much

more easier [Paul (1972)].

The general state space representation of the manipulator inverse dynamics is given by
equation 3.1.1 below.

r=M(0)0+V(0,6)+F(0,0)+G(0) (3.1.1)

Where:

T is nx1 vector of joint torques,

M (&) is nx n matrix called the manipulator mass matrix,

Vv (9,9) is nx1 matrix consisting of terms arising due to centrifugal and coriolis forces,
F (0,9) is nx1 matrix consisting of terms arising due to friction forces,

G(0) is nx1 matrix consisting of terms arising due to gravity,

0 is nx1 vector of joint accelerations,
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0 is nx1 vector of joint velocities,

0 is nx1 vector of joint positions and

n is the degrees of freedom of the manipulator, equal to the number of joints.

Equation 3.1.1 can aso be written in another form as:

T=M(0)6+V, (0.0)0+F, (0,0)6+G(0) . (3.12)

Where V,, (6,6) andF,, (6,6) arenow nxn matrices.

The various matrices in equations 3.1.1 and 3.1.2 have some typical properties and

relations with each other. These are often exploited for designing a controller and for

proving its stability [Craig (1988)]. Some of the important properties are listed below:

Mass matrix, M (9)

It is symmetric.
It is positive definite and bounded above and below, i.e., for an n x n identity

matrix |, and for scalars o, and g, which satisfy O<a,<p we can say that

a,l, <M (0)< B,
Its inverse exists and is positive definite and bounded.

Its time derivative is given by 2V, (0,9)—J , Wwhere J is some skew symmetric
matrix. This implies that 0.5X™M (9) X = X'V, (e,é)x where X isannx 1

vector.
The mapping 7 — ( ispassive, i.e., thereexists >0 such that

qu (u)r(u)du=>-p

0

Centrifugal and Coriolis force matrix, V(9,6)

It has a bound, which isindependent of & but increases quadratically with .

It isrelated to time derivative of manipulator mass matrix as above.
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Friction force matrix, F(@,é)

¢ Position dependence comes only when eccentricity of gearsis present.

e In highly geared robots, the friction forces can account for amost 25% of the total

torque required.

e Frictionisalocal effect, so F(H,é) is uncoupled.

« Friction forces are dissipative, i.e. 6"F (0,0)0>0.

e Friction forces are largely viscous in nature.

« If only viscous friction is modelled, thenF (6,6)is a diagonal matrix with viscous

friction coefficients as the e ements.

Gravity force matrix, G(6)

e |t consistsof all gravity related terms.
e |t hasabound that isindependent of 4.

The dynamic equations of the manipulator used for our simulations are now derived.

3.2. TWO LINK MANIPULATOR DYNAMICS

The manipulator used for simulations is a simple two degree-of-freedom articulated arm.
Thisis avery standard test bed used for studies on control in robotics literature. The two
joints of this manipulator are assumed to be driven by DC permanent magnet
servomotors. The manipulator is assumed to be of direct drive type, i.e., no gearings are
used at thejoints. Thisis usually the case for high speed and high precision manipulators.
The control strategies were tested on this two link planar manipulator. This allows us
primarily to reduce the amount of calculations that have to be made during runtime while
still including the effect of gravity on motion. Figure 3.2.1 shows the manipulator with

frames assigned to the links.

31



Gravity

rrrrr/

Fig3.2.1 Manipulator used for experiments with frames attached

In Fig. 3.2.1 the axes Z,,2 and z,are perpendicular to the plane of the paper and point

out.

The inverse dynamics is derived using the Lagrange method [Craig (1989)]. The joints
were assumed to have only viscous friction. This model was used for all smulations. The

various manipulator parameters and variables used in the model are:

m = Massof thei-th link (kg)

| =Length of thei-th link (m)

x = Location of the centre of mass of the i-th link along the respective x- axis (m)

Vo = Linear velocity of the centre of mass of the i-th link as seen in the i-th frame

(m/sec)

@i = Angular velocity of thei-th link expressed in the i-th frame (rad/sec)

| . =Moment of inertiaof thei-th link about z; axis (kg-m?)
ci I )

i= Inertia tensor of the i-th link with respect to a frame having its origin at centre of
mass of i-th link and axes parallel to the faces of the link (kg-m?)

Fi= Vector location of centre of mass of i-th link with respect to i-th frame (m)

Vi = Linear velocity of origin of j-th frame with respect to i-th frame
i R= Orientation difference between framesi and ]

0
9 - Gravity vector with respect to base frame
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As both the links of the manipulator are symmetric cuboids, we have approximated all the
off diagonal terms of the inertia tensor to zero by proper selection of frames. The kinetic

energy, Ki of the i-thlink is given by equation 3.2.1.

K, =05(m 'V} + ' %I, 'a,) (3.2.2)
For thefirst link i=1. The kinetic energy for thislink is given by equation 3.2.2
K, =0.5(m NV, + o] “l,"m,) (3.2.2)
Also
0
‘o, =|0 and (3.2.3)
)
chl = 10)1 X chl
0 X 0
0,1 |0 0

Substituting 3.2.3 and 3.2.4 in 3.2.2 we get

K, = 0.5(mx6; +1,,67) (3.2.5)
Similarly for the second link, the kinetic energy, K is given by equation 3.2.6
K, =05(m, V], v, + “0; “1, °w, ) (3.2.6)
Also
0
‘w,=| 0 and (3.2.7)
0, +0,

C, S O0]fo 0
=|-S, C, 0| L6, |+|%(6,+6,)
0 0 1|0 0

33



Séllél (3.2.8)
=1 Clb, + %, (6, +6,)

0

Here C, issameas cosé,and S, issameas sing, .

Substituting 3.2.7 and 3.2.8 in 3.2.6 we get kinetic energy for second link as
. . < \2 . . . . < \2
K, = 0.5m, [lfef +3(6,+6,) +2Cl,x,6, (6, + 92)} +05,,(6,+6,) (3.2.9)

Thetotal kinetic energy, K, of the manipulator is given by equation 3.2.10 as
K=K, +K, (3.2.10)
For calculating the potential energy of the manipulator, we know that the potential energy
of thei-th link, P, isgiven by
P=-m°"°P, +C (3.2.11)
Where C, isaconstant chosen such that the potential energy never becomes negative.
Using equation 3.2.11 the potential energy of thefirst link is given by
R=-m° °P; +C,

=mgx sing, +C, (3.212)
Similarly the potential energy of second link is given by

Pz =-m, OgT OPcz +C2

= mg(l,sing, +x,sin(4,+6,))+C, (3.2.13)
Thetotal potential energy, P, of the manipulator is now given by
P=P+P, (3.2.14)
The Lagrangian, L, for the manipulator can be calculated as
L=K-P (3.2.15)
The torques, 7, required at the joints to give the desired acceleration and velocity can be
calculated as

r= %(%} - % (3.2.16)

or Tz%(%j‘%*% (3.2.17)



From equation 3.2.17 we calculate torque required at joint 1, z,, as

__d
Tt A6,
=[(MXE +2M%,Cyl, + M + M2 + 1, +1,,16, — XS, —

(2myx,s.1,6, + R )6, + MX,gc, + (M + Myl )ge, + (MG +mxcl, +1,,)6,

é’K) P K
a0, I,

(3.2.18)
Similarly the torque at joint 2, 7, isgiven by
.- d [&K} P K
dit 00, o0,
= (M %8, + M + 1,500, + (M + 15,08, + My, S,07 + myx, 96, + Fy0,
(3.2.19)

F in equation 3.2.18 and F, in equation 3.2.19 are coefficients of viscous friction
present at joints 1 and 2 respectively.

Equations 3.2.18 and 3.2.19 can be written in standard state space format of equation
31l2as

{n} {[(mzxz+2mzxczll+m>q+mzl D+t (mzxz+mzxzczl+lm)M }
7 (MXC, + M +1 ) MG+ 0,

—2mx,s)0, —rnzxzszlﬂ{[él}{Fl}{él}
| Mx,lS,0; 0 116, 16,

My, 90, + (M +myl;)gc |
M,X,0C,,

=M (0)4 +V,, (6,0)0 + F,,0+G(0)
(3.2.20)

The manipulator dynamics in equation 3.2.20 can be rewritten in alinear form by simple
rearrangement of terms. In other words, there is a constant vector P e R™ and a function

W(e.é.é) e R™M sych that

M (0)6+V (0,0)0+F(0,6)0+G(6)=W(0,0,0)P=1¢
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Here, m is the dimension of the parameter space and is non-unique in general. The

function W(&,é,é) is called the Regressor. The parameter vector P is comprised of link

masses, moments of inertia etc. The properties of linear parameterisation and passivity
are very important from point of view of controller design. Using these properties
researchers have been able to prove elegant global convergence and stability results for
robust and adaptive control [Yu and Arteaga (1994)].

The linear form of manipulator dynamics is particularly suitable for derivation of
adaptation laws. To derive the linear form for our two-link manipulator, we define

manipulator parameter constants as:

Po= 1+ 1+ my(OG +17) + mx; (3.2.21)
P, = 2m,l,x, (3.2.22)
P =mx; + 1, (3.2.23)
P=F (3.2.24)
P =F, (3.2.25)
Ps = g(mx, + m,l,) (3.2.26)
P, = gm,X, (3.2.27)

It can be seen that all these constants are functions of manipulator parameters like, mass
of link, moment of inertia, link length etc.

The manipulator inverse dynamics can now be written in alinear form as

r=W(0,6,0)P (3.2.28)
Where P=[R B, B . . PJ] is the vector of manipulator parameters and

W(e,é,é) isthe 2 x 7 manipulator regressor matrix that has terms that are non-linear in

nature and that depend on manipulator kinematics.

For the two-link manipulator under consideration, the various terms of W matrix are:
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=
Il
S

,(6, +0.50,) —0.55,0,(0, — 6,)

s =
Il Il
0

SN
Il
H%.

(%2}

£ 55 =
5 s

7= C12
=0
W,, = 0.5C,6, + 0.5S,6
W, =6, +6,
W, =0
W, =6,
W, =0
W,, =C,

Here C,, issameas cos(é, +0,) .

The model derived above has been used throughout for simulation studies. The above
model includes all effects considering the rigid body behaviour of the individual links.
The actual values of the various manipulator parameters used for simulation are given
below in Table.3.2.1. These values are based on the Link 2 and Link 3 parameter values
for the CRS Plus manipulator.

m = 2.0kg

m, = 2.0 kg

l, =0.26 m

X =013m

X, = 0.14 meters

|, =0.09 kg — 7’

|, =0.09 kg — 7’
F,=25N-m/rad/sec
F,=25N-m/rad/sec

Table.3.2.1. Actual manipulator parameters
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3.3ACTUATOR DYNAMICS

The simplest modification to the rigid robot model given by equation 3.2.20 is the
inclusion of the actuator inertia matrix | [Craig (1989)]. The actuator inertiamatrix | is an
n x n diagonal matrix,

I =diag(l1;...; In) (3.3.1)
where li isthe actuator inertia of thei-th joint.

Defining, D(8) =M (6)+1, we may modify the dynamics to include these additional
terms as

r=D(0)0+V(0.0)+F(0,6)+G(0) (3.3.2)
As can be seen, the inclusion of the actuator inertias and friction does not change the

order of the equations.

If the joints are actuated with permanent magnet DC motors we may write the actuator

dynamics as
L%+ Ri=V-K, (3.3.3)

where i, V are vectors representing the armature currents and voltages, and L, R, Ky are
matrices representing, respectively, the armature inductances, armature resistances, and
back em.f constants.

Since the joint torque 7 and the armature current i are related by 7 =K, i, where K is
the torque constant of the motor, we may write the complete system (3.3.1)-(3.3.3) as
D(0)0+V(0.6)+F(0.6)+G(0)=K,i (3.34)

L%+ Ri =V - K, (3.3.5)

In addition, whenever the manipulator is in contact with the environment, the complete
dynamic description includes the dynamics of the environment and the coupling forces
between the environment and the manipulator. Modeling al of these effects produces an
enormously complicated model. The key in robot control system design is to model the
most dominant dynamic effects for the particular manipulator under consideration and to

design the controller so that it isinsensitive or robust to the neglected dynamics.
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In the model considered in this thesis, we have neglected all the environment interaction
effects and also al the joint flexibilities. We have only considered the inertia of motors
and have included it in the dynamic model. However some work has been done by
researchers on manipulator control with actuator dynamics included in the manipulator
model [Purwar et a. (2004), Ham et a. (1995)].

3.4 ERROR NORMS

For a quantitative comparison of performance of various controllers, three values of
errors in position have been used. They are:
e Maximum absolute error at any time during the course of entire tragjectory.

e Steady state error of the joints, which isformally defined as
& = lime(t)

t—o0

¢ Root Mean Square average of the error (e) or the L2 norm. Thisnorm is defined as

L*[e(t)]

t . . :
N = O is the total number of samples over the entire trgjectory
S

t = total time taken for the trgectory
ts = sampling time

These error norms cover well the various aspects of manipulator performance for the test

trajectories that we have chosen. The test trgjectories are described in detail in Chapter 4.
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3.5CONCLUDING REMARKS

In this chapter we have highlighted a few important properties of the individual matrices
that comprise the manipulator dynamics equation. These properties are widely used for
controller design and in particular for proving their stability.

We have aso derived the two-link planar manipulator dynamics equations using the
Lagrangian method. These equations comprise the mathematical model of the
manipulator and are used in all simulation studies.

Finally the various error norms used for comparative analysis of performance of various

controllers are discussed.
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CHAPTER IV

CONVENTIONAL CONTROL OF ROBOT MANIPULATORS

4.0 INTRODUCTION

The problem of manipulator control is a highly complex problem of controlling a system
which is multi-input, multi-output, non-linear and time variant. The genera structure of a

manipulator with controller is shown in figure 4.1 below.

;
—>
TRAJECTORY |3 CONTROLLER | L p| ROBOT 6 >
GENERATOR _
. > —>

(64.6,.6,) T T

Fig 4.1 Genera structure of robot control system

Because of the complexity of both the kinematics and dynamics of the manipulator and of
the task to be carried out, the motion control problem is generally decomposed into three
stages, Motion Planning, Tragjectory Generation, and Trajectory Tracking [Spong et al.
(1992)]. In the motion planning stage, desired paths are generated in the Task Space
without timing information, i.e., without specifying velocity or acceleration along the
paths. Of primary concern is the generation of collision free paths in the workspace. In
the trgjectory generation stage, the desired position, velocity, and acceleration of the
manipulator along the path, as a function of time are computed. The trgjectory planner
may parameterize the end-effector path directly in Task Space or it may compute a
trajectory for the individual joints of the manipulator as a curve in the Configuration
Space.

In order to compute a Joint Space trgectory, the given end-effector path must be
transformed into a Joint Space path via the inverse kinematics mapping. Because of the
difficulty of computing this mapping on-line, the usual approach isto compute a discrete
set of joint vectors along the end-effector path and to perform an interpolation in Joint

Space among these points in order to complete the Joint Space trgectory. Common
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approaches to trajectory interpolation include polynomia spline interpolation, using
trapezoidal velocity trajectories or cubic/quintic polynomial trajectories.

The computed reference tragjectory is then presented to the controller, whose function isto
cause the robot to track the given trgjectory as closely as possible. This thesis is mainly
concerned with the design and analysis of the tracking controllers assuming that the path
and trajectory have been precomputed.

The trajectory generator provides the controller with information about the desired
position, velocity and acceleration (6,,6,,6,) for each joint and keeps updating this
information at the path update rate, which usually lies in the range of 20 to 200 Hz
[Khosla (1987)]. The controller takes this information and compares it with the present
(actual) position and velocity (sometimes acceleration also) of joints (0,9,[9') , which are
provided as feedback through the sensors (usually optical encoders and tachogenerators).
Based upon the error between the desired and actual values, the controller calculates a
vector of joint torques (r) that should be applied at respective joints by the actuators to
minimise these errors. The torques are calculated using a control law. The goal of the
controller is thus, minimisation of the error, e and its first derivative & (and sometimes
the second derivative & also). Here eis calculated as

e=6,-6 4.0
and € as e=6,-6 (4.2)
where 0 isthe vector of actual joint positionsand @ that of actual joint velocities,
There are various possible controller configurations for manipulator control. In this
chapter we analyse some common conventional manipulator controller architectures [Luh
(2983)].

The conventional control strategies can be broadly classified as Linear and Non Linear

strategies. We first discuss the essence of linear control of manipulators.
4.1. LINEAR CONTROL OF MANIPULATORS
The use of linear control techniques for any system is valid only when the system to be

controlled can be modelled by linear differential equations. Thus the linear control of
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robot manipulators is essentially an approximation, as the manipulator dynamics is
described by highly non linear equations. The linear control strategies for robots give
excellent performance for manipulators having highly geared joints. This is the case with
most of the industrial robots in use today. These controllers assume that each joint is a
decoupled, independent entity. Further it is also assumed that each actuator on each joint
is driving a constant inertia load. All these assumptions hold good if the manipulator

joints are highly geared. One common linear control strategy known as PD (proportional

éd + + T o

It
o' "PD|  ROBOT |——@P
>X » Ko W‘ —T—>
0

Fig4.1.1. Block diagram of fixed proportional plus derivative plusintegra (PID)
feedback control

plus derivative) control isshownin Fig 4.1.1.

The control law used for this strategy is given by equation 4.1.1.

Top = Ko+ Kpe (4.1.1)

where é and e are error in velocity and position, and K, and K, are the controller gain
matrices. z,, IS the vector of joint torques. Usually the gain matrices are chosen to be
diagonal because of the assumption of decoupled nature of the joints, and the diagonal
elements are chosen to be greater than zero (required for stability).

All the control strategies investigated in this section and the next section (4.2) were tested
against two trgjectories. In the first test trgjectory (Fig. 4.1.2(a)), the direction of rotation
of the joints was not reversed. Here the first joint moves from its initial position of 0° to
90° degrees in 5 seconds and then stays there for another 5 seconds. The second joint on
the other hand was made to move from 0° degrees to —90° degrees in 5 seconds and was

held there for next 5 seconds.



In the second test trajectory, the direction of motion of joints was reversed in between the
motion. This produces a greater stress on the controllers. In this trgjectory (Fig.4.1.2 (b)),
thefirst joint of the manipulator was required to move from itsinitial position at 0° to 90°
and then back to 0° in 10 seconds. It was further required to hold this joint at 0° degrees
for another 5 seconds. The second joint had to trace a similar path starting from 0°, going
to —90° and then again coming back to itsinitial position of 0° in 10 seconds. The second
joint then stays at 0° for afurther time of 5 seconds.

Both the test trajectories were defined using quintic polynomials, which satisfied the
conditions of zero velocity and acceleration at the beginning and at the end of motion.
The path update rate was selected as 333 Hz. Thus the trgjectory generator supplies the
controller a new set point at every 3msec interval. The manipulator control loop runs 5

times during this interval between two set points.

DESIRED TRAJECSTOREY 1

100
S . — — — Link1 [O to 90] y
e — Link2 [0 to -20]

B0 -
40 - L B
20 - - . 1
o = i

20 b a

Desired Positon (deg)

_A40 i

&0 .

=0 - a

_100 . . . . . . . . .
u} 1 = = ] = =3 v o =] 10
Time (sec)

Fig. 4.1.2(a) Desired trgjectory 1 (Fixed Parameters)

DESIRED TRAJIJECTORY 2

R - Link1 [0 to 20 to O]
—  LinkZ [0 ta -20 to O] |

- -

S0 - - -~

100

B -
- -~
50 - - - i
- -
~ .
- -
A0 - . .
- .
# -

. b
-0 L - _
~

2o | .

Desired Position (deq)
]

40 b .

&0 a

=0 - a

-100

Time [(sec)

Fig. 4.1.2(b) Desired trgjectory 2 (Fixed Parameters)



The performance of PD controller was tested for the above two traectories. For
simulation it was assumed that we have perfect knowledge of manipulator parameters and
their values were taken as shown in Table 3.2.1.

The simulation results (error profiles) for this simple control strategy are shown in
Fig.4.1.3 (a) and Fig. 4.1.3 (b) for the two different trajectories. The root mean sguare
(RMS) value and the steady state (S.S) value of the errors for the two joints are tabul ated
inTable4.1.1.

O Zontroller

=— Link 1 [0 to 90]

Link 2 [0 to -20]

Errorin position (deg)

Time (sec)

Fig. 4.1.3(a) Errorsfor PD control (Trajectory 1, Fixed Parameters)

PO Caontroller

7 . -
6* .-//_\\-\- [
. Link 1[0 to +90 to-0]
st " . i
=
[a k]
= al 4
g -
= 2 Link 2[0 to -90 to 0]
8_ A
=
s 4
L0

0] =] 10 15
Time {(sec)

Fig. 4.1.3(b) Errorsfor PD control (Tragectory 2, Fixed Parameters)
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PD Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90° 0°— -90° 0°— 90°—0° 0°— -90°—0°

RMS SS RMS SS RMS S RMS SS

36101 | 1.6990 | 1.3115 | 15660 | 48932 | 59127 | 15740 | 1.5583

Table 4.1.1 Errorsfor PD control (Fixed Parameters)

For smulation the PD controller gain matrices were chosen to be diagonal with

K, =100and K, =50. Increasing the values of K, and K, lead to smaller errors but
increase the chances of exciting the manipulator resonance. We chose these values
through repeated simulations mainly through trial and error.

The problem with PD controllers is that they do not guarantee exact trajectory tracking,
i.e Jim e(t)=0

This can aso be seen Fig 4.1.3 (@) and 4.1.3 (b), which show a finite steady state errors.

They only guarantee the error |je(t)|| to be bounded. The steady state magnitude of |e(t)|

may be reduced to some extent by selecting higher gains [Wen et a. (1987)]. The upper
limit to the value of these gains is dictated by the unmodelled flexibility of the
manipulator. Higher gains may excite the natural resonance frequencies of the
manipulator and cause the whol e structure to become unstable.

Usually anintegral term is also used in the control law and is shown by the dashed linein
Fig. 4.1.1. Equation 4.1.1 is then modified as

Top = Ko+ Kpet K [edt (4.1.2)

where K, once again is a diagonal matrix with small scalar values to keep the higher
order effects at minimum.

The simulation results (error profiles) of the PID control strategy are shown in
Fig.4.1.4(a) and Fig. 4.1.4 (b) for the two different trajectories. The root mean square and
the steady state values of the errors for the two joints are tabulated in Table 4.1.2. In this

simulation the K, gain matrix was chosen as diagonal with elements equal to 0.25.
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P Control

—— Link 2 [0 to -90]
- — - Link 1 [0 to 90]

Time (sec)

Fig. 4.1.4(a) Errorsfor PID control (Traectory 1, Fixed Parameters)

FID Control
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Fig. 4.1.4(b) Errorsfor PID control (Trajectory 2, Fixed Parameters)

PID Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90° 0°— -90° 0°— 90°—0° 0°— -90°—0°

SS RMS SS
-0.0001 | 0.1682 | -0.0003

RMS SS RMS SSs RMS
07248 | 00 | 01944 | 00 | 06195

Table 4.1.2 Errorsfor PID control (Fixed Parameters)

Comparing Tables 4.1.1 and 4.1.2, although the introduction of the integral term in the

control law results in significantly low values of errors as compared to PD control, it also
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increases the order of the system, which can result in system instability. As shown in Fig
4.1.4(c), even asmall value of K, =5 introduces appreciable oscillations in the system

and degrades its performance. The integral term thus is amost aways avoided in the real
manipulator controller implementations.

All these limitations make linear control of manipulators unfit for tasks requiring high
degree of accuracy and/or high speed of operation.

In such situations recourse is taken to more accurate non-linear control techniques, some
of which are discussed below.

FID Control with i =5

1.5
——~ Link1 [0 to 90]
— Link2 [0 ta -90]
1k N =
L y
= osh i i
—
=]
= o
i
fan 1
S ost L ' IR
L i : S
b oo
1+ S i .
L3
15 1 1 1 1 1 1 1 1 1
] 1 2 e 4 5 = 7 & E) 10

Time (sec)

Fig. 4.1.4(c) Errorsfor PID Control with K, =5 (Trajectory 1)

4.2 NON-LINEAR CONTROL OF MANIPULATORS

The linear control of manipulators is non-model based in the sense that the control law
does not take into consideration the robot mathematical model at all. In the non-linear
control of manipulators the manipulator dynamics equation is taken in its complete form,
usually without omitting or approximating any of the constituent matrices. The only
approximation still used is that the links are still assumed to be perfectly rigid. The
manipulator model may be in feedback or in forward path of the control loop. When used
in forward path the aim is to provide a non-linear component torgque in accordance with

manipulator nonlinearities. On the other hand when used in feedback path the main aimis



to cancel the manipulator dynamics nonlinearities and make the system linear and

decoupled. Some common non-linear control techniques are now discussed.
4.2.1 COMPUTED TORQUE CONTROL (CT)

The most common control technique in the category of non-linear control is the
Computed torgue control proposed by Paul (1972). The block diagram representation of
computed torque control strategy is shown below in Figure 4.2.1.1. As can be seen the
basic idea of computed torque control isthat of feedback linearization.

Here the computed torque = ot isgiven by

7o =M (0)[ 6, + Koe+ Kpe|+V,, (6,6)0+G(0) (4.2.1.2)

If the manipulator model is known exactly then this scheme results in asymptotically
stable, linear time invariant error dynamics and provides asymptotically exact tracking
[Campaet a. (2001)].

2 (R oM (0)—p(Qpl  ROBOT - o>
+ + * + )

|
1

| | ; Vi (060)+F(0.0)+G(0) [ €9

K, K, ! <
1
éd + > T :
_> 7
. R

Fig. 4.2.1.1 Block diagram of Computed torque control

The simulation results for the Computed Torque Control method, with an exact model,
i.e., assuming that the parameter values are exactly known, are shown in Fig. 4.2.1.2(a)
and Fig 4.2.1.2(b). The RMS and Steady State values of errors are tabulated in Table

4.2.1.1(a). As can be seen, the performance of this controller is really good with both the
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steady state and the RMS values of the errors appreciably low without any danger of
instability asin the PID controller. In fact the Steady state errors are almost zero.

Computed Torgue Control

—— LinkZ2 [0 ta -20]
- - - Link1 [0 to 90]

Eror in position (deg)

o 1 2 3 4 5 5] 7 =] a 10
Time (sec)

Fig. 4.2.1.2(a) Errors for Computed torque control (Trajectory 1, Exact model)

Computed Torgue Control

- —— Linkl [0 to 90 to O]
—  LinkZ [0 to -90 to O]

-

Errarin position (deq)

Time (sec)

Fig. 4.2.1.2(b) Errors for Computed torque control (Trajectory2, Exact model)

Computed Torque Control Errors(deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90° 0°— -90° 0°— 90°—>0° 0°— -90°—0°
RMS SS RMS SS RMS SS RMS SS
0.1332 | -0.0023 | 02990 | 0.0022 | 0.1579 | 0.0000 | 0.3513 | 0.0000

Table 4.2.1.1(a) Errors for Computed torque control with exact model
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The effectiveness of this controller unfortunately lasts only till the model used is accurate.
Even a dlightly inexact model, if used, can lead to drastic degradation in performance.
This can be seen from the Fig. 4.2.1.2(c) and Fig. 4.2.1.2(d), which depict the errors in
position for a Computed Torque Controller with inexact model. The inexactness in
modelling in this case was limited to just the masses of the two links, which were taken to
be 1.8 kg each, instead of their exact value of 2 kg each. All other manipulator
parameters, like the link lengths, the positions of the centre of masses of the links, etc.,
were taken accurately. But even this small inexactness in the value of just two parameters
degrades the transient as well as steady state performance of the controller to a great
degree. Table 4.2.1.1(b) tabulates the values of these errors.

Computed Torgue Control (with inexact model)
R j j j ! - —— Link1 [0 to 20]
- N —— Link2 [0 to -90

Error in position {deg)

2 3 4 5 5 r =] =] 10
Time (sec)

Fig. 4.2.1.2(c) Errors for Computed torque control (Trajectoryl, Inexact model)

Computed Torgue Contral (wwith inexact model)

—— - Linkl [0 to 20 to 0]
—— LinkZ [0 to -90 to O]

Ermor inposiion {deg)
a

Time (s=ec)

Fig. 4.2.1.2(d) Errors for Computed torque control (Traectory2, Inexact model)
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Computed Torque Control Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90° 0°— -90° 0°— 90°—0° 0°— -90°—0°
RMS SS RMS SS RMS SS RMS SS
0.8839 | 0.0044 | 1.3060 | 1.2498 | 14132 | 17100 | 1.3908 | -1.3497

Table 4.2.1.1(b) Errors for Computed torque control with inexact model

As the estimation of the parameters of the manipulator exactly is a difficult, if not an
impossible task, and as the manipulator parameter change when it picks up a load, this
controller clearly cannot be relied upon to give a good performance under practical

circumstances.

4.2.2 FEED FORWARD INVERSE DYNAMICS (FFID) CONTROL

A dlightly different approach that is more suitable to adaptation is sometimes used instead
of computed torque scheme [Liegeois et a. (1980)]. This scheme uses the inverse
dynamics in feed forward mode. The block diagram of this scheme is shown below in
figure4.2.2.1.

1
. L 4 \ 4 |
d % op
, ROBOT | 1 P
o
i_op -
4 -
>R e——

Fig. 4.2.2.1 Block diagram of Feed Forward Inverse Dynamics Control
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In this strategy the torque is calculated as

Tiig =M (6)8g +Vi (e'é)éd * P (e,é)éd +G(0)+ Kpé+Kpe (4.2.2.1)
zw(e,é,éd,éd)P+ Kpe+Kpe o

Equation 4.2.2.1 uses the inverse dynamics model with W(6,6,64,6, ) as the regressor

matrix and P as the vector of manipulators parameters. The W and P matrices are as
defined in equation 3.2.28. The regressor matrix is dependent both, on actua and the
desired values of acceleration and velocity instead of the actual values alone as can be
seen from equation 4.2.2.1. The error system resulting from this controller can be shown

to be globally asymptotically stable when Ky and K are diagona and all the scalar

values are positive.

The simulation results for this controller, under the assumption that the manipulator
model is known accurately, are shown in Fig. 4.2.2.2(a) and Fig. 4.2.2.2(b). The values of
the RMS and the steady state errors are listed in Table 4.2.2.1(a).

It can be seen from the error profiles of Fig. 4.2.2.2(a) and (b) that the overall motion of
the manipulator, with this controller, is smoother compared to that with the Computed
Torgue controller. This is indicated by a lesser number of sign changes in the error
gradient. Also the magnitude of the RMS error for both the trajectories has decreased
appreciably as compared to the Computed Torque controller.

IMFVERSE DY MARICS COMRTROL (with exact model)
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Fig. 4.2.2.2(a) Errorsfor FFID Control (Exact model, Trajectoryl)
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FNWYERSE DYMNAMICS COMTROL (with exact model)
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Fig. 4.2.2.2(b) Errorsfor FFID Control (Exact model, Trajectory?2)

FFID Control Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90° 0°— -90° 0°— 90°—0° 0°— -90°—0°
RMS SS RMS SS RMS SS RMS SS
0.0181 | -0.0029 | 0.0181 | 0.0030 | 0.0208 | 0.0000 | 0.0208 | 0.0000

Table 4.2.2.1(a) Errorsfor FFID Control with exact model

The performance of the Feed Forward Inverse Dynamics controller was further tested by
using an inexact model of the manipulator, for the feed forward torque calculations. The
inexactness in modelling in this case, as for the previous Computed Torque controller,
was once again limited to just the masses of the two links. The two links were taken to be
of 1.8 kg each, instead of their exact value of 2 kg each. All other manipulator
parameters, like the link lengths, the positions of the centre of masses of the links, etc.,
were taken accurately. The error profiles of the two joints for this case are shown in Fig.
4.2.2.2(c) and Fig. 4.2.2.2(d). The RMS and steady state values of the errors are listed in
Table 4.2.2.1(b). It is observed that the performance of the controller shows degradation
with larger errors for both the joints and for both the trgectories. However, the
deterioration in the performance of the controller is not as marked and pronounced as it

was for the Computed Torque scheme.



This clearly indicates the merits of using the inverse dynamics in the feed forward mode
and further illustrates the advantage of using the desired velocity and acceleration instead
of the actual ones for calculating the manipulator regressor matrix. The use of desired
acceleration instead of the actual value has further advantage in terms of real
implementation. Measuring the actual acceleration of the manipulator joints is a difficult
task, as easy to use acceleration sensors are not readily available. Further, if the
acceleration is found by differentiating the velocity information given by a
tachogenerator or by double differentiating the position information given by an optical
encoder, there always are possibilities of getting wrong values due to even a very low
noise signal whose differentiation may result in very large and incorrect values of the

actual acceleration.

IMNYERSE DY MARICS COMTROL (with inexact model)
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Fig. 4.2.2.2(c) Errorsfor FFID Control (Inexact model, Trajectoryl)

INYERSE DYMARICS COMNTROL (with inexact model)
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Fig. 4.2.2.2(d) Errorsfor FFID Control (Inexact model, Trajectory?2)
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FFID Control Errors(deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Linkl Link2 Link1 Link2
0°— 90° 0°— -90° 0°— 90°—0° 0°— -90°—0°
RMS ss RMS Ss RMS SS RMS SS
0.3083 | 0.1610 | 0.1638 | 0.1601 | 04849 | 05949 | 0.1544 | 0.1571

Table 4.2.2.1(b) Errorsfor FFID Control with inexact model

We next investigate another control strategy, which calculates the manipulator regressor

matrix, W, in slightly different way, leading to further improvement in performance.
42.3CRITICALLY DAMPED INVERSE DYNAMICS (CDID) CONTROL

This control strategy is aimost same as the previous feedforward inverse dynamics,
except that the regressor matrix, W, is calculated using reference velocity and reference
acceleration instead of the desired values [Slotine and Li (1988)]. These reference values
are defined as

Or =604 +A(6y —0) (4.2.3.1)
Or =04 +A(0g —0) (4.2.3.2)
Thetorqueis calculated as

Tedia =W (0.0,6r,0) - Kpé (4.2.3.3)
wherethe error , €', isdefined as

é’ = 0 - H'R
. (4.2.3.4)
=0—64 —A (64 —6)

This control law results in a system of stable first order subspace. An exponentialy stable

system forced by an input that decays to zero has an output that decays to zero. Then
lim e(t) — 0. This result is used to prove the stability of the controller [Sadegh and

t—ow

Horowitz (1987)]. The block diagram of this control schemeisgiveninFig. 4.2.3.1.
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Fig.4.2.3.1 Block diagram of Critically damped inverse dynamics control
The CDID controller was also tested for performance, using both the exact and inexact
models of the manipulator as for the previous controllers. As can be seen from equations
4.2.3.3 and 4.2.3.4 there are two main differences between this controller and the
previous FFID controller. First, in this controller, the manipulator regressor matrix is
calculated as a function of actual positions and velocities and aso as a function of
reference velocities and accelerations, while in the FFID controller the regressor matrix
was calculated as a function of actual positions and velocities, and desired velocities and
accelerations. Second, the effective proportional gain of the CDID controller is increased
in comparison to that of FFID controller. To see the effective increase in gain, we know

that the FFID control law from equation 4.2.2.1is

Tiig =M (0)0g +Viu (0,0)04 + Fy (0.6)04 +G(0) + Kpe+ Kpe 4239
=W(0.6,0,4.0,)P+Kpe+Kpe S

and from equation 4.2.3.3, the control law for the CDID controller can be written as

Tedid ZW(Q,g,gR,éR)P-F KD (HR —9)

i} o N . (4.2.3.6)
=M (0)fg +Viy (0,0)0 + Fyy (0,0)0- + G(0) + Kp (6 —6)
Substituting equation 4.2.3.1 and 4.2.3.2 in equation 4.2.3.6 we get,
Tedid = M (0)0r +Viy (0,0)6- + Fy (0,0)0r +G(0) + Kpe+KpAe
=M (0)84 +Viy (0.6)04 + Fu (0,0)64 +G(0)+ M (6) Ae+
(4.2.3.7)

+Vy (0,0) Ae+ Kpe+KpAe
=W (0,6,04,05)P+[M (8)A+Kp e+ Viy (0.0)A+KpA e
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Comparing equations 4.2.3.5 and 4.2.3.7 we see the equivalent controller gains as
KDeq = M (9)A+ KD

. (4.2.3.8)
Kpeg =V (6,0)A+KpA

As the manipulator mass matrix M (8) is positive definite and if the A matrix is also
chosen to be positive definite, then their product M (H)A is aso positive definite. Thus

the resultant derivative controller gain for CDID controller is increased compared to the
derivative gain for FFID controller. The A matrix of the CDID controller effectively has

the same role as the Kp matrix has in the FFID controller. The matrix product
Vum (Q,Q)A in equation 4.2.3.8 can have both positive and negative valued elements, but

usually the magnitudes of these elements are small. As aresult, if we choose A = Kp, the
effective proportional gain constant of the CDID controller increases approximately by a
factor of Kp.

The simulation results for the CDID controller with exact manipulator model are shown

in Fig. 4.2.3.2(a) and (b). The RMS and the Steady State values of the errors for the two
links for two different trajectories are listed in Table 4.2.3.1(a).

CRITICALLY DAMEFED INVERSE DY MHAMICS
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Fig. 4.2.3.2(a) Errorsfor CDID Control (Exact model, Trajectoryl)
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Fig. 4.2.3.2(b) Errorsfor CDID Control (Exact model, Trajectory?2)

CDID Control Errors(deg)
TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90° 0°— -90° 0°— 90°—0° 0°— -90°—0°
RMS sS RMS SS RMS SS RMS SS
0.0183 | -0.0001 | 00183 | 00000 | 00211 | 0.0000 | 0.0212 0.0000

Table 4.2.3.1(a) Errorsfor CDID Control with exact model

As can be expected and as is also seen in Fig. 4.2.3.2(a) and (b), with the model known
exactly, the CDID controller does not give any performance improvement over the FFID
controller as far as the RMS value of the transient portion of motion is concerned.
However, as the effective proportional gain constant for the CDID controller is larger
than that for the FFID controller, it results in a better steady state performance. In fact,
the steady state errorsin this simulation are seen to have been completely removed.

The strength of the CDID controller comes to the fore when the manipulator model is not
known exactly. The error profiles for the simulation with inexact model are shown in
Fig. 4.2.3.2(c) and (d). Table 4.2.3.1(b) lists the quantitative values of the errors for
different cases. As can be seen, both the RMS and steady state values of errors, for both

the links for both the traectories are considerably reduced in magnitude over the
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corresponding values for FFID. As explained earlier, the greater value of the proportional
gain constant results in a better steady state performance, while, the use of reference
velocities and accelerations for calculation of the manipulator regressor matrix instead of
the actual values, results in an improved transient performance of the arm. This can be
mainly attributed to the fact that the reference values are ‘cleaner’ compared to the actual
values, which are sensor derived and hence always ridden with noise. Moreover if only an
optical encoder is used for feedback (as is usual), the values of velocity and acceleration
of the joints has to be derived by differentiating the position information provided by the
encoders. This numerical differentiation can further reduce the validity of data and the
problem becomes more severe with increase in the noise in the environment where the

manipulator is working.

CRITICALLY DAMRFED IMNVYERSE DYMHNARMICS COMNTROL
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— Link2 [0 to -20] ||

Errorin position {deg)

o 1 2 3 4 5 =1 7 = = 10
Time (sec)

Fig. 4.2.3.2(c) Errorsfor CDID Control (Inexact model, Trajectoryl)
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Fig. 4.2.3.2(d) Errorsfor CDID Control (Inexact model, Trajectory?2)

CDID Control Errors(deg)
TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90° 0°— -90° 0°— 90°—0° 0°— -90°—0°
RMS sS RMS SS RMS SS RMS SS
0.0140 | 0.0029 | 00203 | 0.0030 | 00232 | 00113 | 0.0214 0.0030

Table 4.2.3.1(b) Errorsfor CDID Control with inexact model
4.2.4 PURE FEEDFORWARD CONTROLLER

As the name suggests, the inverse dynamics in this scheme is calculated using only the

desired values of trgjectory. The torque hereis calculated as
Tidp =W(¢9d 19(1 ’9d ’éd ) P+ Tpp +Op ”d|2 KilKe (4241)

The last term in the above equation is added to guarantee the stability of the system [Wen
and Bayard (1987)].

The simulation results of this controller showed that in performance this controller is
essentially at par with the Critically Damped Inverse Dynamics Controller. The error
profiles and magnitudes for both the cases of exact and inexact models of the manipulator
matched to a good degree to those of CDID controller. Hence the results for this

controller are not shown separately.
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425 COMMENTS ON PERFORMANCE OF VARIOUS MODEL BASED
CONTROLLERS

The consolidated results for the ssmulations are presented in Table 4.2.5.1 (Exact model)

and Table 4.2.5.2 (Inexact model) for easy comparison of the controllers’ performances.

SNo | STRATEGY TRAJECTORY NO.1 TRAJECTORY NO.2
link1 link2 link1 link2
0°— 90° 0°— -90° 0°— 90°—>0° 0°— -90°—0°
RMS SS RMS SS RMS SS RMS SS
1. PD Control 3.6101 | 1.6990 | 1.3115 | 1.5660 | 4.8932 | 59127 | 1.5740 | 1.5583
2. PID contral 0.7248 0.0 0.1944 0.0 0.6195 | -0.0001 | 0.1682 | -0.0003
3. CT 0.1332 | -0.0023 | 0.2990 | 0.0022 | 0.1579 | 0.0 [ 03513 | 0.0
4, FFID 0.0181 | -0.0029 | 0.0181 | 0.0030 | 0.0208 0.0 0.0208 0.0
5. CDID 0.0183 | -0.0001 | 0.0183 0.0 0.0211 0.0 0.0212 0.0
Table 4.2.5.1. Errors for various controllers (Exact model)
SNo | STRATEGY TRAJECTORY NO.1 TRAJECTORY NO.2
link1 link2 link1 link2
0°— 90° 0°— -90° 0°— 90°—>0° 0°— -90°—>0°
RMS SS RMS SS RMS SS RMS SS
L cT 0.8839 | 00044 | 1.3060 | 1.2498 | 14132 | 17100 | 1.3908 | -1.3497
2. FFID 03083 | 01610 | 0.1638 | 0.1601 | 04849 | 0.5949 | 0.1544 | 0.1571
3. CDID 0.0140 | 0.0029 | 0.0203 | 0.0030 | 0.0232 | 0.0113 | 0.0214 | 0.0030

Table 4.2.5.2. Errors for various controllers (Inexact model)

Following are the observations made based on the simulation studies done in sections 4.1
and 4.2.

1. PD controller does not give acceptable performance in case the cross coupling

effects of manipulator dynamics are not negligible. The errors can be reduced by

increasing the controller gains but at the risk of exciting unmodelled dynamics.

Anyway, the steady state errors cannot be totally eliminated by even increasing

the controller gains.

PID controller gives a very good performance but has the risk of instability.

Hence it is generally not used in its pure form for manipulator control.
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3. If the manipulator model and parameters are known exactly, then the FFID and
CDID controllers give comparable performance.

4. If the manipulator parameters are not known exactly, then the CDID outperforms
FFID controller.

5. Model based controllers perform better if the values used in the model are of
reference or desired trajectory input rather than the sensor values. (Ex. CDID or
FFID vs. CT)

6. The model-based controllers are sensitive to incorrect parameter values, and
sometimes their performance may degrade below PD performance level if
inexactness in parameter values is too high.

7. For CDID the effective controller gain is increased and hence it gives lower error
than FFID.

8. The performance of these model-based controllers depends to a great extent on the

accuracy of modelling.

The flowchart for the algorithm used for software simulations done in section 4.1 and 4.2
isshown in Fig. 4.2.5.1. The variable ‘K’ keeps track of the iteration number for a given
set point. When K is equal to four, anew set point is calcul ated.

In the next section we investigate the performance of various controllers for the case
when manipulator picks up aload sometime during its motion. This changes the values of
parameters during motion and demands more from the controllers to maintain their

performance.
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43. EFFECT OF PARAMETER VARIATION ON CONTROLLER
PERFORMANCE
A great cause of stress on the controller is the change in the values of manipulator
parameters when the arm picks up aload and movesit in its workspace to place it at some
destination point. We have already said that the determination of manipulator parameters
exactly, is a very difficult task. At most we may have only a good estimate of these
parameter values but only rarely their exact values. Now as the manipulator may pick up
different loads during the course of its operation, and these loads may not be known in the
most general case, the model based controllers discussed previously will certainly result
in a degraded performance. These controllers need information about the parameter
values to control the manipulator motion effectively. Any deviation from the values used

in calculating the control law will lead to a poor performance of these controllers.

4.3.1TEST TRAJECTORIESAND PARAMETER VALUES

The various control strategies discussed previously in sections 4.1 and 4.2 were tested for
performance against two trajectories. Thefirst trgjectory consisted of only a single quintic
polynomial, which moved the two joints from their initial positions (0°) to afinal position
of 90° or -90°. The second trajectory on the other hand consisted of two quintic
polynomials. The first polynomial takes the joints from their initial home position (0°) to
either 90° or —90°, while the second polynomial moves the joints back to their home
positions. This trajectory switching is a typica occurrence during the course of
manipulator motion and puts a great stress on the controller.

In the following sections we further tested the performance of these control strategies by
incorporating the fact that the manipulator picks up aload during its motion. This results
in changed values of its parameters. We assume that in the beginning of manipulator
motion the parameter values were known exactly, and at some time during its motion, the
manipulator picks up a load thereby changing its parameter values. The controller
performance under this situation was tested by simulation.

We once again used two trgjectories for testing the control strategies. In the first case, the
joint 1 of the manipulator moves from 0° to 90° in 5 seconds. At this time the manipul ator

picks up a load. The joint then moves back to 0° in 5 seconds and then stays there for
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another 5 seconds. The motion of joint 2 is exactly same as of joint 1 except that it moves
to —90° in place of +90°. The interpolating polynomials used were quintic. This first
trajectory is shown in Fig. 4.3.1.1(a). For this trgectory the quantitative measures of

performance were taken as the RM S and the steady state values of the errors.
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Fig. 4.3.1.1(a) Desired Trgectory 1 (Changing Parameters)
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)

-20F

Time (sec)
Fig. 4.3.1.1(b) Desired Trajectory 2 (Changing Parameters)
The second trajectory used for testing is shown in Fig. 4.3.1.1(b). In this trgjectory the
two joints of the manipulator were required to move in a cyclic fashion. The first joint
moves from its home position of 0° to +45° in 2 seconds. The manipulator then picks up a
payload and returns home in next 2 seconds and upon reaching home it drops its payload.

This operation is then repeated over time. The second joint has atrgjectory profile similar

to the first one except that it moves from home to —45° and back to home. The motion of
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manipulator over a period of 8 seconds was used for finding the RM S values of the errors.
Since in this case the set point is always changing, the measure of steady state error was
replaced by the maximum error over this time period. This kind of motion is commonly
found in industrial manipulators used for ‘Pick and Place’ kind of operation. The original
values of various manipulator parameters were taken to be same as in the case of previous
simulations. When the manipulator picks up a load, the values of these parameters
undergo a change. For the task of simulation, the original and the changed values of the
parameters were taken as shown in Tables4.3.1.1 and 4.3.1.2. Thevaluesin Table 4.3.1.1
are based on Link 2 and Link 3 parameters of the CRS Plus manipulator.

m = 2.0kg

m, = 2.0 kg

l,=0.26m

X =013m

X, = 0.14 meters
|, =0.09 kg — 7’
| ,, =0.09 kg — "’

F, =25N-m/rad/sec
F,=25N-m/rad/sec

Table 4.3.1.1. Original manipulator parameter values

m =3.0kg
m, =3.0kg

|, =0.26m

X =0.15m

X, = 0.16 meters
|, =15kg—nr
|, =0.09 kg —
F,=25N-m/rad/sec
F,=25N-m/rad/sec

Table 4.3.1.2. Changed manipulator parameter values (on picking up load)

67



4.3.2PD/PID CONTROLLERS

The PD and the PID control algorithms are non-model based control strategies. These two
controllers were tested for the effect of parameter variation on their performance to form
abasis for comparison of performance for model -based algorithms.

The PD controller error profiles are shown in Fig. 4.3.2.1(a) and (b) for trgjectory 1 and
trajectory 2 respectively. The magnitudes of various error norms are tabulated in Table.
4.3.2.1. As expected, the effect of parameter variation on the performance of PD
controller is drastic. Both the RMS and the Steady State values of errors for both the
trajectories show a marked increase. It can be seen from Fig.4.3.2.1 (b) that the errors
increase every time the manipulator picks up the load and they decrease when the load is

released. Overall the errors are large and unacceptable.

L Controller
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Fig. 4.3.2.1(a) PD Control errorsfor Trajectory 1 (Changing Parameters)
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Fig. 4.3.2.1(b) PD Control errorsfor Trajectory 2 (Changing Parameters)
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PD Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°—> -90°—0° 0°—> 45°—»0°— 0°—> -45°->0°—
RMS ss RMS ss RMS | MAX | RMS | MAX
7.1415 | 9.4447 23758 | 2.6345 | 6.8624 | 9.5918 | 2.1554 | 3.3037

Table 4.3.2.1 Errorsfor PD control (Changing Parameters)

Adding an integral term and modifying the controller to PID substantially reduces the
large errors of PD controller. The simulation results for the PID controller are shown in
Fig. 4.3.2.2(a) and (b). The magnitudes of the errors are listed in Table. 4.3.2.2. The
integral gain constant K; for this controller is taken to be a small value equal to 0.25.
Kp and K were taken as 100 and 50 respectively as for previous simulations. It can be
seen that even this small value of K, results in a marked improvement in performance.
The RMS values of the errors are substantially reduced and the steady state errors are
eliminated almost totally.

FID Control

~ -2 Link1 [0 to 90 to O]
— LinkZ [0 to -20 to O]

Error in position (deq)

Time (sec)

Fig. 4.3.2.2(a) PID Control errorsfor Trajectory 1 (Changing Parameters)
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Fig. 4.3.2.2(b) PID Control errorsfor Tragectory 2 (Changing Parameters)

PID Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°>0°—> 0°— -45°>0°—
RMS SS RMS SS RMS MAX RMS MAX
0.6783 | -0.0024 | 0.1960 | -0.0004 | 1.2578 | 2.8973 | 0.5218 | 0.9304

Table 4.3.2.2 Errorsfor PID control (Changing Parameters)

But unfortunately this performance improvement is not without peril. Even a small

increase in the integral gain constant results in an unstable system. Fig. 4.3.2.2(c) is the

plot of PID controller errors versus time for a value of K, =3.25. It can be seen that the

system has become unstable with the errors increasing with time. This instability of PID

controllers makes them unfit for actual use for controlling the manipulator.
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4.3.2.2(c) PID Control errorsfor Trajectory 2 with K,=3.25 (Changing Parameters)
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The above PID controller can be modified in the way errors are summed up for the
integral action. Instead of summing the errors during the entire duration of tragjectory, the
errors are summed up only for the five iterations of the control loop. These five iterations
are associated with every new set point supplied by the tragjectory generator. Whenever
the new set point arrives from trgjectory generator, the error summation is reset to zero.
This change in the way errors are summed up, result in great advantage from stability
point of view for the controller. It can be shown that this controller is stable [Loria
(2000)].

The position error profiles for this modified PID controller are shown in Fig. 4.3.2.2(d)
and 4.3.2.2(e) for trgjectory 1 and trgjectory 2 respectively. Table 4.3.2.3 lists the values
of various errors for the two trajectories. It can be seen that the error magnitudes have
gone down appreciably for this modified PID controller when compared to the PD
controller. Of course the performance improvement is not as marked as in case of
‘normal’ PID, but is still good enough to warrant its use. In fact the errors have gone
down by more than 50% compared to PD control errors. Moreover the fact that this

scheme can be proved to be stable makesit all the more appealing.

MACdified PRI (Trajectory 1)

---- Link1 -
.5 — Linkz . ]

Time (sec)

Fig. 4.3.2.2(d) Modified PID Control errorsfor Trajectory 1 (Changing Parameters)
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Fig. 4.3.2.2(e) Modified PID Control errorsfor Trajectory 2 (Changing Parameters)

Modified PID Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°—> -90°—0° 0°—> 45°—»0°— 0°—> -45°->0°—
RMS SS RMS SS RMS MAX RMS MAX
29360 | 3.8290 | 0.9742 1.0737 28617 | 4.1457 | 0.9264 1.4036

Table 4.3.2.3 Errorsfor Maodified PID control (Changing Parameters)

4.3.3. COMPUTED TORQUE CONTROL

The computed torque control is amodel based control strategy, in which the model of the
manipulator is in the feedback loop. We have already seen that the performance of this
controller depends largely on the exactness of the model being used. For this simulation
we assumed that to begin with the model is exactly known and that this model changes
when the manipulator picks up a load. The errors versus time plot for this controller is
shown in Fig 4.3.3.1(a) and (b) for the two trajectories. Table 4.3.3.1 lists the magnitude
of errorsfor the two trajectories used for the simulated testing.

It can be seen from the error plots that in the beginning, when the model is known
exactly, the tracking errors of the two joints are small. These errors show a sharp increase
in magnitude when the manipulator picks up a load, when time is 5 seconds for the first
trajectory and 2 seconds for the second trajectory. It can be further seen that the transient

errors, which build up, tend to increase the steady state error as well. Overall the errors
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are large and the motion is jerky with the errors increasing and decreasing alternately.
Computed torque control as a result performs poorly in case the manipulator is working

in adynamic, unknown environment.

COMPUTED TORQUE COMRTROL [ Trajectory 1)

12
---- Link1
— Link2 |

Errorin position {deg)

15

Time [(sec)

Fig. 4.3.3.1(a) Computed Torque Control errorsfor Traectory 1 (Changing Parameters)

CONMPUTED TORQUE CONTROL (Trajectory 2)

15 :
- - - Link1
- —— Link2
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s . . . . . . .
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Fig. 4.3.3.1(b) Computed Torque Control errors for Trajectory 2 (Changing Parameters)

Computed Torque Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—>0°—» 0°— -45°—>0°—

RMS SS RMS SS RMS MAX RMS MAX
6.1340 | 85617 | 4.6260 | -4.7008 | 4.9007 | 12.2731 | 4.4288 | 5.0733

Table 4.3.3.1 Errors for Computed Torque control (Changing Parameters)
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4.3.4. FFID CONTROL

The Feed Forward Inverse Dynamics controller, as opposed to the Computed Torque
controller, is a model-based strategy in which the model is in the forward path of the
control loop. Moreover as stated earlier, the model-based part is evaluated as a function

of actual position and velocity as well as the desired velocity and acceleration i.e.,

W(0,0,04,64). For this controller too the initial errors at the beginning of motion are

small values, as the model is assumed to be known perfectly. However, as the
manipulator picks up the load and the model becomes inexact, the errors show a sudden
increase. These errors again decrease when the manipulator releases the load and its
original model again becomes valid. This fluctuation of errors is akin to the one seen in
the case of Computed Torque control, but the magnitude of these errors is considerably
reduced, as can be seen from Table 4.3.4.1. This can be mainly attributed to the fact that
this controller uses comparatively ‘cleaner’ desired velocity and acceleration information
instead of the actual values, which are always tainted with noise signals. The error

profiles for the two joints for the two trajectories are shown in Fig. 4.3.4.1(a) and (b).

FFID Control (Trajpectory 1)

---- Link1
—— Link2

25+ . i

Errorin position {deq)

o 5 10 15
Time (sec)

Fig. 4.3.4.1(a) FFID Control errorsfor Trajectory 1 (Changing Parameters)
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Fig. 4.3.4.1(b) FFID Control errorsfor Trgectory 2 (Changing Parameters)

FFID Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—>0°—» 0°— -45°—>0°—

RMS SS RMS SS RMS MAX RMS MAX
25940 | 3.6395 | 0.8689 | 1.1186 | 2.0083 4.1268 0.6431 | 1.0846

Table 4.3.4.1 Errorsfor FFID control (Changing Parameters)

4.3.5CDID CONTROL

The simulation results for the Critically Damped Inverse Dynamics controller are shown
in Fig. 43.5.1(a) and Fig. 4.3.5.1(b). The overall profiles of the errors have the same
basic characteristics as those for the FFID controller. There are some noticeable
differences however. First, the overall magnitudes of the different error norms for CDID
controller have decreased considerably. This can be seen from Table. 4.3.5.1. Secondly,
the errors for joint 2 have aso been limited in magnitude to a large extent. But the
oscillation of the errorsis still very much present and they tend to increase whenever the
manipulator picks up a load. The larger effective gains of the CDID controller as
compared to the FFID controller are mainly responsible for this improved performance of

the controller.
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Fig. 4.3.5.1(a) CDID Control errorsfor Trajectory 1 (Changing Parameters)
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Fig. 4.3.5.1(b) CDID Control errorsfor Tragectory 2 (Changing Parameters)

CDID Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—>0° 0°—> 45°—»0°— 0°—> -45°—>0°—
RMS SS RMS SS RMS MAX RMS MAX
0.0616 | 0.0695 | 0.0211 | 0.0214 | 0.0707 0.1244 0.0265 | 0.0509

Table 4.3.5.1 Errorsfor CDID control (Changing Parameters)
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4.3.6 COMPARISON OF PERFORMANCE

The consolidated results for the simulations carried out in section 4.3 are presented in

Table 4.3.6.1 for easy comparison of the performance of various controllers.

S.No CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2

STRATEGY link1 link2 link1 link2
0°— 90°—0° 0°—> -90°—>0° 0°—> 45°—50°—>45°>0° | 0°—> -45°—0°—-45°—>0°
RMS SS RMS SS RMS MAX RMS MAX
PD Control 7.1415 9.4447 23758 | 2.6345 6.8624 9.5918 2.1554 3.3037

PID control

(Modified) 2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036
3. CT control 6.1340 8.5617 46260 | -4.7008 | 4.9007 12.2731 4.4288 5.0733
4. FFID 2.5940 3.6395 0.8689 11186 | 2.0083 4.1268 0.6431 1.0846
5. CDID 0.0616 0.0695 0.0211 | 00214 | 0.0707 0.1244 0.0265 0.0509

Table 4.3.6.1. Errors of different controllers for changing parameter case

Following observations are made based on simulations carried out in this section:

1. The performance of PD controller degrades further for the case when parameters

of manipulator change during motion. This is mainly due to the fact that the
controller gains chosen for good performance for one set of parameters are no
longer optimal when the parameters of the manipulator change. Clearly one set of
controller gains cannot give good performance if parameters change during

motion.

. The modified PID scheme results in better controller performance with an

additional advantage of guaranteed system stability. The controller errors are
reduced significantly when compared to PD controller. Modified PID could be a

good choice for manipulator control using non-model based controllers.

. The CT controller gives errors almost matching the PD controller. This shows that

this controller does not perform well if the model used has inaccuracies. Moreover
it just adds to the calculations required to be performed to calculate the
manipulator model equations used in feedback |oop.
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4. The FFID controller performs appreciably better than the CT controller and
dlightly better than the modified PID controller. This once again indicates the
merits of using the inverse dynamics in the feed forward mode and further
illustrates the advantage of using the desired velocity and acceleration instead of
the actual ones for composing the manipulator regressor matrix. As aready stated
earlier, the use of desired acceleration instead of the actual value has further
advantage in terms of real world implementation.

5. The CDID controller is the best performer for the case of varying manipulator
parameters. It isobserved that both the RMS and steady state values of errors, for
both the links for both the trajectories are considerably reduced in magnitude over
the corresponding values for FFID. As explained earlier, the greater value of the
proportional gain constant results in a better steady state performance, while, the
use of reference velocities and accelerations for calculation of the manipulator
regressor matrix instead of the actual values, results in an improved transient
performance of the arm.

6. Model-based controllers (CT) do not aways give a better performance than a non-
model based controller (PID).

We next investigate the effect of adding modified integral error compensation on the

performance of various model-based controllers.

4.4 EFFECT OF ADDING INTEGRAL COMPENSATION TO MODEL BASED
CONTROLLERS

In this section we propose adding modified integral error compensation to the model
based controllers namely CT, FFID and CDID, which were discussed earlier. We also
investigate the effect of adding this modified integral action on the performance of these
controllers. The integral action in these controllers was limited to the five iterations of the
control loop performed for every new set point supplied by the trajectory generator. The
errors were thus summed up for only these five iterations and the summation was reset to
zero whenever the trajectory generator supplied a new set point. This was done primarily
to keep the higher order effects introduced by integral error compensation from
dominating the response and resulting in possible instability of the system. The system

78



can be proved to be stable if the summation of errors is done as described earlier [Loria
(2000)]. Moreover as a precaution, provision was made in the software to switch off the

integral action completely in case of errors growing beyond a presettable upper bound.
44,1 COMPUTED TORQUE + INTEGRAL ERROR CONTROL
The first controller investigated in this section is the Computed Torque controller

discussed previously in section 4.2.1. The block diagram of this controller with integral

error compensation is shown in Fig. 4.4.1.1. The control law for this controller is given

by equation 4.4.1.1 as
Tyie =M (H)[éd +Kpe+ er]+VM (9"9)9+G(9)+ K, Jedt (4.4.1.1)
+
R M (6) + ROBOT

Vi, (0.6)+F(0.0)+(6)
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= A
: > () P

Fig. 4.4.1.1. Block diagram of Computed Torque + Integral Error Control

Fig. 4.4.1.2(a) and 4.4.1.2(b) show the error profiles for this controller for trajectory 1
and tragjectory 2 respectively. Table 4.4.1.1 list the various errors for this controller for the
two trgectories. When the two error profiles of Fig 4.4.1.2(a) and 4.4.1.2(b) are
compared with the error profiles for the CT controller without integral error
compensation, given in Fig.4.3.3.1(a and 4.3.3.1(b), a marked improvement in
performance is noticed.

For the first trajectory the RMS values of the errors are brought down considerably and
so are the steady state errors. The steady state errors however have only been reduced and

not removed altogether because of the special nature of integral action. It is mainly
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because the summation of errors is not over the entire trgectory but only for five
iterations of the control loop, after which the summation is reset to zero.

For the second trgectory, which depicts pick-and-place kind of motion, we notice a
similar improvement as seen for the first tragjectory. Both the RMS and maximum values
of errors reduce considerably when compared to Computed Torque controller without

integral error compensation.

ZT + Intedgral Error (Trajectoy 1)

---- Link1 T T
— Link2 f .

Errorin Position {dag)

Time (s=c)

Fig. 4.4.1.2(a) CT + Integral Error Control errorsfor Tragectory 1

T + Integral error {Trajectory 2)

---- Link1 - -
—— Link2 S S

Error in Position (deq)

o.s 1 1 1 1 1 1 1

Time {(sec)

Fig. 4.4.1.2(b) CT + Integral Error Control errorsfor Trajectory 2
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CT + Integral Error Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°-»0°— 0°— -45°—0°—

RMS SS RMS SS RMS MAX RMS MAX
12919 | 1.7460 | 0.4019 | 0.4721 | 1.1894 2.3245 0.3118 | 0.6798

Table4.4.1.1 Errorsfor CT + Integral Error control

4.4.2 FEED FORWARD INVERSE DYNAMICS + INTEGRAL ERROR
CONTROL

The second controller investigated in this section is the Feed Forward Inverse Dynamics
controller discussed previously in section 4.2.2. The blod diagram of this controller with
integral error compensation is shown in Fig. 4.4.2.1. The control law for this controller is

given by equation 4.4.2.1 as
 fidie = M (0) g +Viy (0,063 + Fy (0,6)64 +G(0)+ Kpe+Kpe+ K, [edt  (4.4.2.2)

Fig. 4.4.2.2(a) and 4.4.2.2(b) show the error profiles for this controller for trgectory 1
and tragjectory 2 respectively. Table 4.4.2.1 list the various errors for this controller for the
two trgectories. When the two error profiles of Fig 4.4.2.2(a) and 4.4.2.2(b) are
compared with the error profiles for the FFID controller without integral error
compensation, given in Fig4.34.1(aQ) and 4.3.4.1(b), a marked improvement in

04

Fig. 4.4.2.1 Block diagram of Feed Forward Inverse Dynamics + Integral Error Cortrol
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performance can be noticed.

For the first trgjectory the RMS values of the errors are brought down considerably and
so are the steady state errors. The steady state errors however have only been reduced and
not removed altogether because of the same reason as stated previoudly.

For the second trajectory, we notice a similar improvement as seen for the first trgjectory.
Both the RMS and maximum values of errors reduce considerably when compared to
FFID controller without integral error compensation. The reduction in errors for this

controller however, is not as marked as that for the CT controller.

FFID + Integral Errar {Trajectory 1)
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Fig. 4.4.2.2(a) FFID + Integral Error Control errors for Trajectory 1

FFID + Integral Errar {(Trajectary 2)
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Fig. 4.4.2.2(b) FFID + Integral Error Control errorsfor Trajectory 2
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FFID+ Integral Error Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—>0°—» 0°— -45°—>0°—

RMS SS RMS SS RMS MAX RMS MAX
1.0687 | 1.4588 | 0.3508 | 0.4488 | 0.9466 1.8639 0.2759 | 0.4419

Table 4.4.2.1 Errorsfor FFID + Integral Error control

443 CRITICALLY DAMPED INVERSE DYNAMICS + INTEGRAL ERROR
CONTROL

The last controller investigated in this section is the Critically Damped Inverse Dynamics
controller discussed previoudly in section 4.2.3. The block diagram of this controller with
integral error compensation is shown in Fig. 4.4.3.1. The control law for this controller is

given by equation 4.4.3.1 as
Todidie = M (0)Or +Viy (0,0) 0 + Fy (0.0) 6+ G(0)+ Kpe+ KpAe+K, [e  (443.0)

Fig. 4.4.3.2(a) and 4.4.3.2(b) show the error profiles for this controller for trgjectory 1
and trgjectory 2 respectively. Table 4.4.3.1 list the various errors for this controller for the
two trgjectories. When the two error profiles of Fig 4.4.3.2(a) and 4.4.3.2(b) are
compared with the error profiled for the CDID controller without integral error
compensation, given in Fig.4.3.5.1 (a) and 4.3.5.1(b), we do not notice any marked
improvement in performance. In fact the improvement in errorsis only discernible when
we compare the values in Table 4.4.3.1 and Table 4.3.5.1. This is mainly due to the fact
that the errors for CDID controller without integral error compensation are already pretty
low and do not sum up to a substantial value over the five iterations of the control loop.

Choosing a higher value of can reduce the errors further K, but we have not done so here

because the intention is to compare the performance of different controller under ‘similar’

conditions.
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CDID+ Integral Error Control Errors (degrees)

TRAJECTORY NO.1

TRAJECTORY NO.2

Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°->0°— 0°— -45°—0°—
RMS SS RMS SS RMS MAX RMS MAX
0.0604 | 0.0676 | 0.0210 | 0.0208 | 0.0697 0.1226 0.0268 | 0.0513

Table 4.4.3.1 Errorsfor CDID + Integral Error control

4.4.4. COMPARISON OF PERFORMANCE

The consolidated results for the simulations carried out in section 4.3 and 4.4 are

presented in Table 4.4.4.1 for easy comparison of the performance of various controllers.

S.No | CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2

0°—> 90°—>0°—> 0°— -90°—>0°—> 0°— 45°->0°—>45°—>0° 0°— -45°—>0°—-45°—>0°

RMS SS RMS SS RMS MAX RMS MAX

1. PD Control 7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037

2. PID control 2.9360 3.8290 0.9742 1.0737 2.8617 4.1457 0.9264 1.4036

3. CT 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733

4. FFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846

5. CDID 0.0616 0.0695 0.0211 0.0214 0.0707 0.1244 0.0265 0.0509

6. CT+IE* 1.2919 1.7460 0.4019 0.4721 1.1894 2.3245 0.3118 0.6798

7. FFID+| E* 1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419

8. CDID+IE* 0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513
*

Integral Error compensation

Table 4.4.4.1. Errors (in degrees) for different controllers with modified |E compensation

Following observations are made based on simulations carried out in this section:

1. Theuse of integral error compensation improves the performance of CT and FFID

2.

3.

controllers appreciably. Hence a ‘judicious’ use of integral error compensation as

discussed previously, seems advisable.

The use of integral error compensation does not show any appreciable

performance gain in case of CDID controller, as the errors of the original

controller were already low.

The CDID + IE controller gives an overal best performance in the category of

conventional controllers.
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4.5 CONCLUDING REMARKS

In this chapter we investigated some conventional manipulator controllers for their
performance under different situations. These situations were: manipulator model known
exactly, model not known exactly and model changing during the course of motion. We
also investigated the effect of adding a modified integral action to these conventional
controllers.

The results for various controllers presented in this chapter are for the case when the
manipulator parameters change only dlightly. In real practice, the parameter values may
change by over 200% or more, as the manipulator operates in its work environment and
picks up large loads. As a result the ensuing errors due to large parameter variations
would also be large. This fact forms the basis of development of some non-conventional
control strategies, which can absorb the effect of parameter variation in its performance.
These controllers can adapt themselves depending upon the changing parameter values.

We discuss adaptive control of manipulators in the next chapter.
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CHAPTER YV

ADAPTIVE CONTROL OF ROBOT MANIPULATORS

5.0INTRODUCTION

As seen in the last chapter, due to the highly non-linear nature of manipulator
dynamics and the variable nature of manipulator parameters, the conventional non-
linear control of manipulators falls short of performance expectations in applications
requiring very accurate and precise motion control. This problem is further
compounded in the case of direct drive robots, which do not use any torque
amplifying gearings for high speed and high precision tasks. This in turn means that
we cannot in general neglect the cross coupling effects of manipulator dynamics for
these direct drive robots.
The variable nature of manipulator parameters suggests the use of Adaptive
controllers for the control of manipulators [Pagilla and Biao (2000), Song (1994)].
These controllers can either estimate the unknown manipulator parameters [Datta
and Ming (1996), Kawasaki et al. (1996)] or they can change the controller gains
depending on the prevailing position and/or velocity errorsin the system [Spong and
Ortega (1996), Colbaugh and Sergji (1994)]. Some of the important desirable goals
for design of adaptive controllers for robot manipulators are:

e |Insensitivity to parameter uncertainties

e |Insensitivity to unknown payload variations

e Low demand for on-line computations

e Decoupled joint response
In general the adaptive controller design problem is as follows. given the desired

joint position 6,(t), and with some or al the manipulator parameters unknown,

derive a control law for the actuator torques, and an estimation law for the unknown

parameters, such that the manipulator joint position 4(t) precisely tracks 6, (t) after

an initial adaptation process. Adaptive control design approaches can be broadly
classified into two categories [ Astrom and Wittenmark (1995)]:

(i) Model reference adaptive control (MRAC) and

(i) Self-tuning adaptive control

The structures of these two types of adaptive control systems are shown in Fig.
5.1(a) and 5.1(b). Existing robot adaptive schemes are derived from the applications
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of these two approaches. The adaptive controller can tackle the problem of parameter
variation to a great extent and give good performance even in the face of very large
load variation. In fact the adaptive controller goes on improving with time as it keeps

on extracting the parameter information while executing a trajectory.

Reference
> Model YX

_@—»

Adjustable  [€
——®| Controller
————— ROBOT ARM

L

>

Adaptation
Algorithm

Fig. 5.1(a) Model reference adaptive controller

Controller
Parameter ¢ System
Update —p |dentification

R Adjustable p»| ROBOT ARM X;
Controller

f

Fig. 5.1(b) Self tuning adaptive controller

In this chapter we study few adaptive control strategies for their performance in face
of different operating conditions. We also study the effect of adding a modified
integral action on performance of these controllers and do a comparative analysis of
performance of these controllers.
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5.1 ISSUESIN ADAPTIVE CONTROL OF MANIPULATORS

Some of the main issues associated with adaptive control of manipulators are listed
below:

e The strong non-linearity of robot dynamics makes the analysis of adaptive
controllers difficult.

e Most of the controllers still rely on approximations and assumptions such as
local linearization, time invariance of parameters or decoupled nature of
dynamics to prove stability.

e These adaptive schemes are computation intensive and require a fast
processor for their implementation.

e The direct adaptive approach is computationally much less expensive than
the indirect or the composite approach.

e Theoretical analysis and computer simulations of an adaptive controller are
important but not sufficient. This is because of inherent factors such as
unmodelled high frequency dynamics and measurement noise are generally
neglected in stability analysis.

e For convergence of parameter values, the reference signal should be rich
enough, i.e., it should contain sufficiently high frequency components.

e The parameter values may converge to different magnitudes for different
tragjectories. This implies transients during switching from one trajectory to
another.

e The controller parameters may not always converge to ‘true’ plant values.

The importance and significance of these issues are highlighted in following
sections, where we simulate the behavior of these controllers for different situations.

5.2. TESTING METHOD

The Adaptive controllers ssmulated in this section were tested for two different

trajectories. These two trgectories are same as those used for testing the

conventiona controllers and described in section 4.3.1. We briefly describe the
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salient points of these trajectories again for sake of clarity in the context of adaptive
motion control of manipulators.

In the first trgjectory, the first joint was required to move from its initial home
position (0°) to afinal position of +90° in 5 seconds. On reaching the final position
the manipulator picks up a load and returns back to its home position in another 5
seconds. On reaching the home position the manipulator was required to stay there
with the load for another 5 seconds. Thus the desired position of first joint remains
constant at 0° for the last 5 seconds of its motion. This kind of trgjectory enables us
to test the steady state performance of the controller. The desired motion for the
second joint is exactly the same as for the first one except that it is required to move
from 0° to -90° and then back to 0° in a total time of 15 seconds. Fig. 4.3.1.1(a)
shows the desired joint position profiles for this trgjectory.

The second test tragjectory was chosen to simulate the motion of manipulator during a
typical pick and place operation. Here the manipulator’s first joint was required to
move from its home position of 0° to a final position of +45° in 2 seconds. At this
point the manipulator picks up a load and returns back to its home position in the
next 2 seconds. On reaching home the manipulator releases the load and this cycleis
repeated all over again. The second joint of the manipulator has a motion similar to
the first one except that it moves to a final position of -45°. The errors for this
trajectory were traced for two cycles, i.e., 8 seconds. The RMS and the maximum
values of the errors were used for quantitative performance comparisons of various
controllers for this trajectory. Fig 4.3.1.1(b) shows the joint motion profiles for this
trajectory.

The controllers were tested using the above trgjectories for two cases. In the first
case we assumed that some initial estimate is available, of the various manipulator
parameter values. This estimate is a rough approximation of the real, actual values
and can be arrived at by some elementary measurements. For simulation the actual
and the estimated values of the manipulator parameters were taken as shown in
Tables 5.2.1 and 5.2.2 respectively. The actua manipulator parameters as same as
those used previously in Chapter 4, and are also givenin Table 4.3.1.1.
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m =2.0kg

m, =2.0kg

l, =0.26 m

X =0.13m

X, = 0.14 meters

|, =0.09kg—n?

| ,=0.09kg-m
F,=25N-m/rad/sec
F,=25N-m/rad/sec

Table 5.2.1. Actua manipulator parameter values

m =1.0kg

m, =1.0kg

|, =0.26m

X =011m

X, =0.12 meters
|, =0.05kg—n"
|, =0.05kg —n"

F, =20N-m/rad/sec
F,=20N-m/rad/sec

Table 5.2.2. Estimated manipulator parameter values

The adaptive algorithms in this case start with this apriori estimate and then adapt to
the true values as the motion progresses. We thus say that the manipulator makes a
warm start in this case. In the second case we assume the worst-case condition of
having no information about the manipulator parameters. Here the adaptive
algorithms have to start with no knowledge whatsoever of the values of different
parameters, i.e., al the parameters are initialized to zero value. This situation is
referred to as cold start. The parameters of the manipulator were further assumed to
have changed to new values whenever it picked up aload. These new values of the
parameters of manipulator with load were taken as shown in Table 5.2.3. The actual
manipulator parameters as same as those used previoudly in Chapter 4, and are also

givenin Table 4.3.1.2. These values are repeated here for easy reference.
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m =3.0kg

m, =3.0 kg

l,=0.26 m

X =015m

X, = 0.16 meters
| , =1.5kg—n7
|, =0.09 kg —nv¥

F, =25N-m/rad/sec
F,=25N-m/rad/sec

Table 5.2.3. Changed manipulator parameter values (on picking up load)

In the following sections we present the results of simulation studies on some

adaptive controllers tested for situations discussed above.

5.3. ADAPTIVE COMPUTED TORQUE CONTROLLER

This controller is the adaptive verson of Computed torque controller discussed in
detail in section 4.2.1. It was one of the first adaptive controllers proposed for
adaptive manipulator control by Craig (1988). This adaptive controller suffered from
many problems and is generaly not preferred because of its three main
disadvantages listed below:

e The algorithm requires inversion of the manipulator mass matrix, which is
computationaly very intensive.

e Implementation requires measurement of acceleration. Good and relatively
inexpensive acceleration sensors are difficult to get and if acceleration is
found from numerical differentiation of position or velocity information, then
the values may be spurious in the presence of even dlightest noise.

e The controller can be proved to be only locally stable in parameter error. This
requires a constant check on the values of the parameters to keep them within
acceptable range.

We did not investigate this controller because the aforesaid problems make its

practical implementation very difficult.
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5.4 ADAPTIVE CRITICALLY DAMPED INVERSE DYNAMICS
CONTROLLER (ACDID)

The first adaptive controller investigated in this work is the adaptive version of the
conventional Critically Damped Inverse Dynamics controller (CDID), described in
detail in section 4.2.3. This controller was proposed by Slotine and Li (1988). Thisis
adirect adaptive controller in the sense that the parameter values are adapted directly
from the information about position and velocity errors of the different joints. The
adaptation law is derived starting from the manipulator dynamics equation written in
alinear form asin equation 3.2.28. If we define

P-p_p (5.4.1)

as the parameter estimation error vector, with P as the true parameter values vector
and P as the vector of parameter estimates, then the linearity property of the robot

dynamics enables us to write

M (0)6r +Vi (0,0)0r + Fy (6,0)0- + G(0) =W (0,6,0r,6r )P (5.4.2)
Where
M=M-M
~M = AM _VM
Fu = Fu — Fu
G=G-G

and 6 and d are reference trajectories as defined in equations 4.2.3.1 and 4.2.3.2.

The control law used can then be written as

r=M(0)0r +Vi (0.0)0- + Fy (0.6)60r + G(0) - Kpe (5.4.3)

where é is as defined in equation 4.2.3.4 and Ky is uniformly positive definite

controller gain matrix. The stability of the controller can be proved, by considering
the Lyapunov function candidate,

\MQ:%[TM(me+ﬁrﬁﬁ] (5.4.4)

where I' isaconstant positive definite adaptation gain matrix.

Differentiating V (t) with respect to time leads to equation

V(t)=€" (r=M(0)dz ~Viy (6,6)6r —G(0))+ PT"*P (5.4.5)
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Substituting the control law in the above equation resultsin
V(t)=-e"Kpe+P' [r‘lmwTe} (5.4.6)

Now if we choose the adaptation law as

P-_Tw'e (5.4.7)
then equation 5.4.6 reduces to
V(t)=-€ Kpe<0 (5.4.8)

Thus the system is proved to be stable if the gain matrix Ky ischosen to be positive

definite. The block diagram for this controller is shown in Fig.5.4.1.

l v

6, 0 T 4
—% | REFERENCE |—@»| Még +Viybr+ | + r .gII'
Yoy | TRAECTORY | Ga| | L ) —» ROBOT [

+ +
d@—p| CENERATOR mOR NI

A A A

...............

//
v [

ADf:;/I'\I/VE < A .
3
6
@ .
+>®_

Fig.5.4.1 Block diagram of Adaptive Critically Damped Controller (with Integral
Error Feedback)

The simulation for ACDID controller was carried out for the two trgectories for the
warm and cold start cases. Fig 5.4.2(a) shows the error profiles for first trgjectory,
warm start, while Fig 5.4.2(b) shows the error profiles for second trgjectory, warm
start. Figures 5.4.2(c) and 5.4.2(d) are for the cold start case.
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Errarin position {deq)

Error in position {deg)

Errorin position {deg)
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]
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0.0z
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-0.04

0.0
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ADAPTVE CDID COMNTROL (Trajectory 1) Warm Start
' L ' — - - Link1l
L - — Link2

Time (s=ec)

Fig. 5.4.2(a) Errorsfor ACDID, Trajectory 1 (warm start)

ADAFPTIVE CDID COMTROL (Trajectory 23 Warm Start

1 2 3 4 5 5 v =]
Time (sec)

Fig. 5.4.2(b) Errorsfor ACDID, Trgectory 2 (warm start)

ADAPTIVE CDID SOMNTROL (Trajectory 1, Cold Start)

- - - Link1
. —— Link2

Time [(sec)

Fig. 5.4.2(c) Errorsfor ACDID, Trajectory 1 (cold start)
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ADAaPTINVE CDID COMRTROL (Trajectory 2, Cold Start)

0.08 -

-

- ---- Link1
b Link2

0.08 [
0.04

o.oz2

Errorin position {dag)

-0.0z2

-0.04

-0.0s5

Time (sec)

Fig. 5.4.2(d) Errorsfor ACDID, Trgectory 2 (cold start)

ADAPTIVE CDID Control Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—0°— 0°— -45°—0°—
RMS SS RMS SS RMS MAX RMS MAX

Warm Start 0.0247 | 0.0001 0.0238 | -0.0002 | 0.0391 0.0772 0.0344 | 0.0642

Cold Start 0.0244 | 0.0001 0.0220 | -0.0002 | 0.0390 0.0785 0.0323 | 0.0732

Table 5.4.1 Errorsfor ACDID (warm and cold start)

Table 5.4.1 summarizes the errors for ACDID for the two tragjectories for the warm
and cold start cases. As can be seen from the table and the error profiles, the errors
for ACDID controller are minimal and performance is much better than any
conventional controller discussed in chapter 4. Moreover as the errors are aready
low thereis hardly any perceptible difference between the cold and warm start cases.
Also it can be seen that the errors are higher for the cold start case when compared to
warm start in the beginning of motion. The controller then learns the parameter
values within first few iterations and after that the two profiles for cold and warm
start almost match.

A modification done to ACDID controller was inclusion of integral error term in
calculation of final controller output. This is indicated by blue dotted line in Fig.
5.4.1. The integra action was limited to only five iterations of the control loop,
which are done for every new set point produced by the trgjectory generator. After

every five iterations the summation of errors was reset to zero. Thisis done primarily
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to keep the summation term from growing without bound or in other words to keep
the system stable. This idea was discussed in detail in section 4.4. This modified
ACDID controller was tested for the same two trgjectories as above, for warm and
cold start cases.

Fig 5.4.3(a) shows the error profiles for first trgjectory, warm start, while Fig
5.4.3(b) shows the error profiles for second trgjectory, warm start. Figures 5.4.3(c)
and 5.4.3(d) are for the cold start case. Table 5.4.2 summarizes the errors for ACDID

for the two trgjectories for the warm and cold start cases.

ADARPTIE CDID (Trajectory 11, YWwarm Start integral Error)
0.05 T - T

- - - Link1
— Link2

o.04

o.0z2

Error in position {deq)
(]

-0.02

-0.04

0.0 * -

Time (sec)

Fig. 5.4.3(a) Errorsfor ACDID trgectory 1 (warm start, integral error)

ADARPTIVE CDID (Trajectory2, WWarm Start, Integral Errorn)

---- Link1
—— Link2

0.0

0.0
o.04

0.0z f

Ermorin position (deg)

ooz |

-0.04

-0.05

Time [(sec)

Fig. 5.4.3(b) Errorsfor ACDID tragjectory 2 (warm start, integral error)
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Errorin position {deg)

Error inposition (deg)

Integral Errar)

0.0z [

-0.04

---- Link1
— Link2

-0.06
a

Time (sec)

10

15

Fig. 5.4.3(c) Errorsfor ACDID trgjectory 1 (cold start, integral error)

ADARPTNVE CDID (Trajectory 2, Zold Start, Integral Error)

_ooz [

-0.04

-0.06

---- Link1
— Link2

Time {(sec)

Fig. 5.4.3(d) Errorsfor ACDID trajectory 2 (cold start, integral error)

ADAPTIVE CDID Control Errors (degrees)

TRAJECTORY NO.1

TRAJECTORY NO.2

Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—>0°—> 0°— -45°—>0°—
RMS SS RMS SS RMS MAX RMS | MAX
Warm Start | 0.0213 0.0 0.0212 0.0 0.0323 | 0.0508 | 0.0325 | 0.0745
Cold Start 0.0215 0.0 0.0213 0.0 0.0324 | 0.0505 | 0.0326 | 0.0716

Table 5.4.2 Errorsfor ACDID (warm and cold start with integral error)
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The introduction of integral error compensation further improves the performance of
ACDID controller. For the first trajectory the major improvement is in terms of
steady state errors. The steady state error goes to zero amost immediately after the
manipulator reaches home at the end of ten seconds. This can be seen from Figures
5.4.3(a) and 5.4.3(c). Even for the second trgjectory, there is improvement in terms
of both the Maximum error and the RMS error. As the introduction of an integral
error compensation term does not add much to the computational complexity of the
controller and on the other hand gives improved trajectory tracking, its use with
ACDID controller is advisable.

5.5 MODEL REFERENCE ADAPTIVE CONTROLLER (MRAC)

The second controller investigated is a model reference adaptive controller [Lewis et
al. (1988), Mdliotis and Lewis (1989)]. It is synthesized in two stages. First, the
known dynamics are separated out and used to perform a global linearization on the
nonlinear system. Second, a model reference adaptive controller, based on the
Lyapunov stability criterion, is designed for the remaining unknown portion of the
plant. This controller takes advantage of structure and any known dynamics of the
system in order to increase the speed of adaptation and relax the conditions required
for convergence.

The adaptation law is derived starting from the manipulator dynamic eguation

written as

M (0)6 + F(8,0)6 +G(0)0 = (5.5.1)

where M(6) is n x n inertia matrix, F(6,6) is n x n matrix containing the
centrifugal, coriolis and friction terms, G(#) isan x 1 vector containing the gravity

terms, @ isann x 1 joint position variable vector and 7 isn x 1 input torque vector.
If the system described in 5.5.1 has some known and some unknown plant dynamics
then we may write:

M=M+M =M_(+M'M))=MM,

G=G, +G, (5.5.2)

F=F +F,
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where subscript ‘k’ stands for known part and subscript ‘u’ stands for unknown part
of manipulator dynamics.
Substituting 5.5.2 in 5.5.1 results in equation

M,G+MF,0+M G0 =u

(5.5.3)
where
u=M.(r-F0-G2) (5.5.4)
If we define
X = m (5.5.5)
0
we can write equation 5.5.3 as
. 0 I 0
= {—MjM LG, -M'M k‘le X{Mu-l}u (5.5.6)
= Ax+Bu
Next we choose areference model given by
X, = A Xy + B,V (5.5.7)
where
A { 0 0 } B, = {O} (5.5.8)
K, -K, |
If the errors between actual and desired tragjectoriesis defined as
e=X%,—X (5.5.9)
the error dynamics will be given by
ée=Ae+(A —AXx-Bu+B.v
] (5.5.10)
i Lj

The control objective is to make the error decrease asymptotically. This can be
achieved if the adaptive control law chosen is

u=u, +u, 5.5.11)
where the linear feedback portion of the controller is given by

u, =K, K,]Jx+v (5.5.12)
and the adaptive portion of the control is given by

u, =—A;, AJX+AV (5.5.13)
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where A, A,and A, are adaptive gains chosen using a Lyapunov approach.

The adaptive gains are calculated as

A, =—awd’
A, =—awd’ (5.5.14)
A, =bwv'

where a and b are positive scalar gains and w is the filtered error defined as
w=Pe +PRe, (5.5.15)

where

P P
p=| 1 2 (5.5.16)
R R

isthe positive definite solution of the Lyapunov equation
AP+PA =-Q (5.5.17)

withQ > 0.
The block diagram for this controller is shownin Fig.5.5.1.

KNOWN
DYNAMICS
MODEL
.. X )
% 5 V!l I +A, > >
+ + B + - =
Ki je v.l
Ky +A, |
Ko || Ke L o
; #
ADAPTIVE Ko+ A |4
LAW /
2
64 ‘

Fig.5.5.1 Block diagram of Direct Adaptive Model Reference Control (with
Integral Error Feedback)
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The simulation for MRAC controller was carried out for the two trajectories for the
warm and cold start cases. Fig 5.5.2(a) shows the error profiles for first trajectory,
warm start, while Fig 5.5.2(b) shows the error profiles for second trgjectory, warm

start. Figures 5.5.2(c) and 5.5.2(d) are for the cold start case.

1.4 e
N - - - Link1
121 : —— Link2 .
1 i
=
La ]
= 08} .
—
=
= ]
o
=
S
L
0.2 :
0 & 10 15
Time (sec)
Fig. 5.5.2(a) Errorsfor MRAC, trgectory 1 (warm start)
MR A Control (Trajectory 2, WWarm Start)
1.8 ' ' ' ! ' T--- Linki
_ — LinkZ2 -
1.4 < T -
121 i
1+ i
0.8 .

Errorin Position {deg)

Time (sec)

Fig. 5.5.2(b) Errorsfor MRAC, trgjectory 2 (warm start)
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MR AC Control (Trajectory 1, Cold Start)
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Fig. 5.5.2(c) Errorsfor MRAC, trgjectory 1 (cold start)

MR A Control ( Trajectory 2, Cold Start)
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-
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Time (sec)
Fig. 5.5.2(d) Errorsfor MRAC, trgjectory 2 (cold start)
MRAC Control Errors (degrees)
TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—0°— 0°— -45°—>0°—
RMS SS RMS SS RMS MAX RMS | MAX
Warm Start | 09283 | 1.3691 | 02827 | 04039 | 0.6935 | 1.4323 | 0.2628 | 0.5390
Cold Start 1.3565 | 1.9183 | 0.3808 | 0.5383 | 1.1114 | 1.9689 | 0.3510 | 0.7286

Table 5.5.1 Errorsfor MRAC (warm and cold start)

Table 5.5.1 summarizes the errors for MRAC for the two trajectories for the warm

and cold start cases. As can be seen from the table, the errors for MRAC are quite
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different for the two cases of cold and warm start. The errors are appreciably lower
in case of warm start as compared to cold start. This is expected because the control
law is explicitly dependent upon torques due to known dynamics. Hence use of
known portion of manipulator dynamicsis advisable for this controller. The errors of
this controller however are larger as compared to ACDID controller as can be seen
from Tables5.4.1 and 5.5.1.

A modification done to MRAC was inclusion of integral error term in calculation of
final controller output. Thisisindicated by blue dotted linein Fig. 5.5.1. The integral
action was, as previoudly, limited to only five iterations of the control loop, which
are done for every new set point produced by the trgjectory generator. After every
five iterations the summation of errors was reset to zero. This modified MRAC
controller was also tested for the two trajectories described earlier.

Fig 5.5.3(a) shows the error profiles for first trgjectory, warm start, while Fig
5.5.3(b) shows the error profiles for second trgjectory, warm start. Figures 5.5.3(c)
and 5.5.3(d) are for the cold start case. Table 5.5.2 summarizes the errors for MRAC

for the two trgjectories for the warm and cold start cases.

MNMRACZ Control (Trajectory 1, YWarm start, Integral error)
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Fig. 5.5.3(a) Errorsfor MRAC trajectory 1 (warm start, integral error)
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MRS Control [ Trajectory 22, WWarm start, Integral error)
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Fig. 5.5.3(b) Errorsfor MRAC trajectory 2 (warm start, integral error)
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Fig. 5.5.3(d) Errorsfor MRAC trgjectory 2 (cold start, integral error)

105



MRAC Control with Integral Errors (degrees)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—>0° 0°— 45°—>0°— 0°— -45°—>0°—
RMS SS RMS SS RMS MAX RMS MAX

Warm Start 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 | 0.0732

Cold Start 0.0496 | -0.0001 | 0.0221 0.0 0.0755 | 0.3604 | 0.0300 | 0.1158

Table 5.5.2 Errors for MRAC (warm and cold start with integral error)

As expected, the introduction of integral error compensation improves the
performance of MRAC controller considerably. For the first trgjectory the major
improvement is in terms of both, the RMS and steady state errors. The steady state
error goes to zero amost immediately after the manipulator reaches home at the end
of ten seconds. This can be seen from Figures 5.5.3(a) and 5.5.3(c). For the second
trajectory also there is improvement in terms of both, the Maximum error and the
RMS error. As the introduction of an integral error compensation term does not add
much to the computational complexity of the controller and at the same time gives
improved trajectory tracking, its use with MRAC controller is advisable.

5.6 DECENTRALIZED ADAPTIVE CONTROLLER (DAC)

Decentralized control has been widely accepted by the robotics industry due to ease
of implementation and tolerance to failure. Conventional controllers for industrial
robots are based on independent joint control schemes in which each joint is
controlled separately by a simple position servo loop with predefined constant gains.
This control scheme is adequate for simple pick-and-place tasks, for which industrial
robots are often used, where only point-to-point motion is of concern. However, in
tasks where precise tracking of fast trajectories under different payloads is required,
the independent joint, conventional robot control systems are severely inadequate.

The controller investigated in this section uses a technique for advanced manipul ator
control based on adaptive independent joint control [Magana and Tagami (1994)].
A major point of departure in this approach from the centralized approaches is the
formulation of the problem in a decentralized control context at the outset. This
control scheme has two mgjor features. First, due to its adaptive nature, knowledge

of manipulator dynamic model and parameter values or the payload parameters are
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not required. Second, due to its decentralized structure and controller simplicity, the
scheme is computationally very fast and is amenable to parallel processing
implementation within a distributed computing architecture, with one
microprocessor dedicated to each joint.

The centralized model of an n link manipulator is given by equation 5.6.1 as:

M (0)0 +V (0,0)0 + F(0)0 +G(0)0 = ¢ (5.6.1)
where M(6) is n x n inertia matrix, V(0,0) is n x n matrix containing the
centrifugal and coriolisterms, F(8) isn x n matrix containing friction terms, G(8)

isan x 1 vector containing the gravity terms, ¢ isan n x 1 joint variable vector and
7 isnx1input vector.

To design the controller the centralized model of equation 5.6.1 is decomposed into
n interconnected systems as:

m, (0)6, + Z m0, +V;(0,0)+F (0)+ G (0) =7, (5.6.2)
=1
i
The coupling effects from each subsystem are then lumped together (in d) and
treated as disturbance. Each subsystem then becomes:
m (0)6, +d. =17, (5.6.3)
The main objective of the controller design isto control each joint independently in a
decentralized fashion and to track the prescribed trajectories. This controller uses an
adaptive PID control law given by equation 5.6.4.
r=K +K.e+K,e+K,4, (5.6.4)
where eisthe error given by
e=6,-0 (5.6.5)
Substituting equation 5.6.5 in equation 5.6.3 yields
md+d =K, +K.e+K,e+K, b, (5.6.6)
which on simplification gives the state space model of the system as

o 0 1 |7 [0 0
X=H= Ko K, H+ d-K, |+| m=K, |6, (5.6.7)
e — | €
m m m

If the error model is defined as

Xm:{ﬂ{ 0o 1 }{%}:Axm (56.8)
8, -0t 208,
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then error model tracking error is given by

. 0 0 0 0

eS| © Lol X + + K )

Tla 8| |—0 2] | Ko Keog, K ~d I
m m m m

(5.6.9)
To ensure the stability of the system given by equation 5.6.9, using the Lyapunov
method, the various gains can be adapted as given by equation 5.6.10.

t
K, =C, jrdt+ for
0

t
Ko =C, fredt+ fre
0

: (5.6.10)
Ky =G, Irédt+ fre
0

t
K, =C, jréddt + f,ré,
0

where

C =—,1=0,123and Q are positive constants

r = p,e+ p,& where p,and p, are positive constants

and

fo=kr|, k>0
f,=k|r|, k=0
f,=k,|r|, k,=0
f,=k]r|, k>0

The block diagram for this controller is shown in Fig.5.6.1.
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Fig. 5.6.1 Block diagram of Decentralized Adaptive Control

The ssimulation for DAC was carried out for the two trajectories as for the previous
controllers. Fig 5.6.2(a) shows the error profiles for first trgectory, while Fig
5.6.2(b) shows the error profiles for second trgjectory. However for DAC there are
no cases of warm and cold start, as this controller does not make use of any
manipulator model whatsoever. It only tunes the controller gains depending on the

current position and velocity errors.

Decentralized Adaptive Contol (Trajectary 1)

0.12
T ---- Link1

0.1 g —— Link2 ||

0.08 F .

Error in Position {deg)

Time (sec)

Fig. 5.6.2(a) Errorsfor DAC, trajectory 1
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Errorin Fosition (deg)

Decentralized Adaptive Control {(Trajectory 20

Link1

—— Link2 ||

1 2 3 £ = B 7
Time (sec)

Fig. 5.6.2(b) Errorsfor DAC, trgectory 2

Decentralized Adaptive Control Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—>0°— 0°— -45°>0°—
RMS SS RMS SS RMS MAX RMS | MAX
0.0613 | 0.0043 | 0.0259 | -0.0007 | 0.0674 0.1387 | 0.0284 | 0.0600

Table 5.6.1 Errorsfor DAC

Table 5.6.1 summarizes the errors for DAC for the two trgectories. As can be seen
from the various errors, the performance of controller is pretty good keeping in mind
the fact that no model is being used. Because this controller uses no model, the
amount of calculations to be performed in the control loop is considerably reduced.
The performance of this controller is better than MRAC but not as good as ACDID.
For situations where we cannot afford a fast processor or where such a processor is
not available, DAC isaviable option.

An additional modified integral error compensation term was introduced in this
controller to see if it provides improved trgjectory tracking as in the case of previous
controllers. Figures 5.6.3(a) and 5.6.3(b) show the error profiles for the two

trajectories for DAC with integral error compensation.
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Decentralized Adaptive Control (Trajectory 1 Integral Error)

Lirk1
—— Link2

Time (sec)

Fig. 5.6.3(a) Errorsfor DAC, trgjectory 1 (Integral error)

Decentralized Adaptive Control (Trajectory 2 Integral Errar)

Link1
—— Link2

Time (sec)

Fig. 5.6.3(b) Errorsfor DAC, trgjectory 2 (Integral error)

Integral Decentralized Adaptive Control Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—>0°— 0°— -45°—>0°—
RMS SS RMS SS RMS MAX RMS | MAX
0.0313 | 0.0418 | 0.0220 | 0.0117 | 0.0371 0.0798 | 0.0329 | 0.0507

Table 5.6.2 Errorsfor DAC (Integral Error)
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Table 5.6.2 list the values of various errors for the two tragjectories for DAC with
integral error compensation. As can be seen from Fig 5.6.3(a), the introduction of
integral error compensation does bring down the trgjectory tracking errors but it also
introduces oscillations in the system. As these oscillations do not grow in amplitude,
because the controller is stable, and as the magnitude of these oscillations is very
small, integral error compensation can still be used with this controller.

5.7 COMPARISON OF PERFORMANCE

The consolidated results for the simulations carried out in section 4.3, 4.4, 5.4, 5.5
and 5.6 are presented in Table 5.7.1 for easy comparison of the performance of

various controllers.

S.No CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2
0°> 90°>0°> 0°— -90°—>0°—> 0°—> 45°>0°>45°—0° | 0°> -45°—>0°—>-45°—0°
RMS | ss RMS | ss RMS | MAX RMS | MAX
CONVENTIONAL CONTROLLERS
1. PD Control 7.1415 9.4447 23758 | 26345 | 6.8624 9.5918 2.1554 3.3037
2 PID control 2.9360 3.8290 09742 | 10737 | 28617 41457 0.9264 1.4036
3. CT 6.1340 8.5617 46260 | -4.7008 | 4.9007 12.2731 4.4288 5.0733
4. FFID 2.5940 3.6395 0.8689 | 1.1186 | 2.0083 4.1268 0.6431 1.0846
5. CDID 0.0616 0.0695 00211 | 00214 | 0.0707 0.1244 0.0265 0.0509
6. CT+IE* 1.2919 1.7460 04019 | 04721 | 1.189% 2.3245 0.3118 0.6798
7 FFID+l E* 1.0687 1.4588 03508 | 04488 | 0.9466 1.8639 0.2759 0.4419
3. CDID+IE* 0.0604 0.0676 00210 | 00208 | 0.0697 0.1226 0.0268 0.0513
ADAPTIVE CONTROLLERS
0. ACDID 0.0247 0.0001 0.0238 | -0.0002 | 0.0391 0.0772 0.0344 0.0642
10. | ACDID+IE* | 00213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745
11 MRAC 0.9283 1.3691 02827 | 04039 | 0.6935 1.4323 0.2628 0.5390
12 MRAC+ E* 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732
13. DAC 0.0613 0.0043 00259 | -0.0007 | 0.0674 0.1387 0.0284 0.0600
14. DAC+IE* 0.0313 0.0418 00220 | 00117 | 00371 0.0798 0.0329 0.0507

* Integral Error Compensation (modified)

Table 5.7.1. Errors (in degrees) for different controllers

Following observations are made based on simulations carried out in this section:

1. The adaptive controllers give better performance than the conventional

controllers studied in chapter 4. This is mainly because of the learning

capability of these controllers. These controllers can learn the unknown or the
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changed parameter values as they execute the trajectory. Alternatively they
can adjust the controller gains depending on the current system errors.

2. The adaptive controllers also perform better than conventional controllers
with modified integral error compensation.

3. Model based adaptive controllers perform better for the warm start case than
for the cold start case. Thus it is advisable to use whatever knowledge one
may have about the manipulator parameter values at the start of motion. This
knowledge may be arough estimate of the actual values.

4. Addition of modified integral error compensation to the adaptive controllers
further improves their performance. The steady state errors for these
controllers are almost zero, while the maximum and RM S values of errors are
also reduced.

5. Model Based Adaptive controllers are computationally expensive. The DAC
discussed above is computationally least expensive of all the adaptive
controllers studied.

6. The ACDID controller with modified integral error compensation gives the
best performance amongst all controllers investigated in this chapter and in
chapter 4. Thisisindicated by the shaded cellsin Table 5.7.1.

5.8 CONCLUDING REMARKS

In this chapter we studied the efficacy of adaptive algorithms for manipulator
control. Both model based and non-model based adaptive controllers were
investigated. It was seen that all the adaptive controllers outperform the conventional
controllers.

The model based adaptive controllers were also tested for two different cases. In first
case it was assumed that a rough estimate of parameters was available while in
second case it was assumed that no such estimate is available.

Further, the effect of inclusion of a modified integral compensation to these adaptive
controllers was studied. The integral action is such that it maintains the stability of
the controller. It was seen that this integral action further improves the performance
of these controllers.

Although the adaptive controllers give a very good performance, it comes at the

price of computational complexity. All these controllers are computationally
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intensive and require a fast processor for practical implementation. We thus need to
investigate other control schemes, which can give comparable results at lesser
computational expense. One such scheme is the Fuzzy control. We study the fuzzy

controller in detail in the next chapter.
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CHAPTER VI

FUZZY CONTROL OF ROBOT MANIPULATORS

6.0 INTRODUCTION

Fuzzy control of robotic manipulators has found vast interest in the control literature.
Unlike Boolean logic, fuzzy logic deals with concepts of vagueness, uncertainty or
imprecision. It provides an extensive freedom for control designers to exploit their
understanding of the problem and to construct intelligent control strategies [Bonissone
and Chiang (1993), Ken et al. (1988)]. Nonlinear controllers can be devised easily by
using fuzzy logic principles [Zhou and Coiffet (1992)]. This makes fuzzy controllers
powerful tools to deal with nonlinear systems [Chun Fei and Chin-Teng (2004),
Mamdani (1993)].

The fuzzy control strategy consists of situation and action pairs, similar to how a human
operator uses his experience to interpret the situation and initiate the control action. A
human operator usually looks at the error and the change of error so as to arrive at a
particular control action. A block diagram for the fuzzy controller is shown in Fig.6.1.
The fuzzy controller here defines error (e) as

e=6,-0 (6.2)
and rate of change of error (&) as

e=6,-0 (62)

Fuzzy | ROBOT
Controller

Fig. 6.1. Block diagram of Fuzzy Controller

7 isthe output of fuzzy controller applied as control input to the robot system.
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A detailed view of internal of the Fuzzy controller block shown in Fig. 6.1 is shown in
Fig.6.2.

The input variables to the fuzzy controller (e, €) are quantized into thirteen levels
represented by -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, and a set of linguistic variables
such as Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero (ZE),
Positive Small (PS), Positive Medium (PM), Positive Big (PB) are assigned.

The next step in the design of the fuzzy controller is to decide the membership functions
for the linguistic variables. The decision regarding the type of the membership function
is arbitrary and depends on the choice of the user. Here, we have selected the triangul ar
membership function as shown in Fig. 6.3. The control rules are formulated in a manner
to represent the operator’s experience regarding the system behavior [Dubois and Prade
(1996)].

Fuzzy Rule Base

e e Fuzzifier Defuzzifier >

\ 4
__— '~ 3| Fuzzy Inference Engine

Fig. 6.2. Details of Fuzzy controller block
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PS PM PB

Fig. 6.3. Membership functions of the Linguistic variables

NB NM NS ZE

Some of the rulesthat were formulated are

R1:If eisZE and é isZE, thenuis ZE.

R2: If eisZE and é isNS, then uisNS.

R3: If eisNM and éisZE, then uisNM.

R4:1f eisNM and é isNB, then uisNB.

These rules constitute the knowledge base of the fuzzy controller [Nagrath et al. (1995)].
The rule strength of the individual rule is evaluated using the intersection operation
defined as

Hng (U) = Min(uyy (€°), 115 (€°)) (6.3)

where y,z(u) is the rule strength of the rule R4, u,,, (€°) is the membership of the
crisp input e* in the fuzzy set NM and 1, (¢*) isthe membership of é* in the fuzzy

set NB. For each possible combination of e* and é* , the rules are fired individualy to
give the degree to which the rule antecedent has been matched by the crisp value. The
clipped values for the individual rules thus obtained are aggregated forming the overall
control values. The output value is then defuzzified by using the center of gravity

method, which, for the discrete case, is given by
Z Mg (Ugy ) Uy
u* = Ri (64)
z He (Ug)
Ri
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The output values thus obtained for al the (e*, é*) pairs are stored in the form of a
lookup table (LUT) asshownin Table 6.1.

The array implementation improves execution speed, as the run-time inference is
reduced to a table look-up which is a lot faster, at least when the correct entry can be
found without too much searching [Albertos et al. (2000)].

é Member ship Function
6|54 |3 /|-2|-1]|0 |2 |2 |3 (4 |5 |6

-6|-56|-54|-50|-48|-48|-47|-47|-46|-45|-44|-43|-43|-42
-5|-47|-45|-44|-43|-42|-41|-40|-39|-38|-38|-37|-36|-35
-4|-37|-36|-35|-32|-30|-30|-30|-29|-29|-28|-28|-27|-27
-3/-20|-20|-19|-19|-18|-18|-17|-17|-16|-15|-14|-13 | -13
-2/ 00|00 |-08|-10|-12|-17|-23|-22|-22|-20|-20|-10|-1.0
-1/10| 10| 00| 00|-05|-05|-05|-10|-12|-15|-1.7|-1.0|-1.0
0|13|12|10| 08|06 |00|-02|-04|-06|-08]|-10|-10]-1.0
1|/20|20|19|18|18|18| 18|18 | 15|00 |-03|-10|-08
2120|120 20|20|20|20|20|20|20|12|08 00|00
312021 |23|25|25|25|26|27|28|28|29 |29 30
4 (27 ]27|28|31|32(33[35|36|36|38|38|39]39
5

6

36 | 33|37 |40 | 41|43 |43 | 44|44 | 45| 45| 46 | 47
44 | 44 | 43 | 48 | 50| 50| 51|52 |53 |54)|56| 56|56

Table 6.1. Lookup Table for the Fuzzy Controller

The controller output values shown in the Table 6.1 were obtained after some manual
adjustment through trial and error to give best possible results. This was required
because the manipulator control problem is highly nonlinear and the rules formulated

through user experience are not always correct under different situations.

6.1. PURE FUZZY CONTROL

The first investigation that was carried out concerned the performance of fuzzy
controller under the circumstance that the manipulator parameters do not change
throughout the motion. In other words, the manipulator does not pick up or release any

load during its motion. The manipulator parameters were kept same as for al previous
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simulations and are given in Table 4.3.1.1. The two trgjectories used for simulation are
same as shown in Fig. 4.3.1.1(a) and Fig. 4.3.1.1(b). The lookup table used for fuzzy
controller isgivenin Table 6.1.

The error profiles for the two links are shown in Fig. 6.1.1(a) for the first trgjectory, and
Fig. 6.1.1(b) for the second trajectory. Table 6.1.1 lists the various error measures
magnitudes for the two trajectories. As mentioned earlier these profiles are obtained by
using the lookup table given in Table 6.1, which was obtained after some manual
adjustments to the original table obtained from the rule base. As can be seen from the
error magnitudes, the performance of this controller is pretty good. Except for somewhat
large maximum error the RM S values of errors and steady state errors are quite small.
The large amount of error in the beginning of atrajectory segment is mainly because the
set points are changing rapidly during this time or the manipulator is picking/releasing
load. The amount of calculations to be done by this controller is small compared to
Model based adaptive or conventional controllers. This means that this controller can be
run at higher sampling rates giving even better performance. We have however, in this
simulation, kept the sampling rates same as for previous simulations for the sake of

*‘JUST’ comparison.

Fuz=y Control (Fixed parameters, Trajectory 1)

---- Link1

—— Link2

2F ey 1
! -3

Error in Position {deg)

——
oy (R
S

Time (sec)

Fig. 6.1.1(a) Errorsfor Fuzzy control (LUT based, Fixed parameters, Tragectory 1)
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Ermorin position {deq)
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Fig. 6.1.1(b) Errorsfor Fuzzy control (LUT based, Fixed parameters, Trajectory 2)

Fuzzy Control (Fixed parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Linkl Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°>0°— 0°— -45°—>0°—>

RMS SS RMS SS RMS MAX RMS MAX
0.6781 | 0.1676 | 0.2270 | 0.1664 | 1.1374 2.6153 0.2901 | -0.9998

Table 6.1.1. Errorsfor Fuzzy control (LUT based, Fixed parameters)

The ‘good’ performance of the Fuzzy controller deteriorates considerably if the
manipulator parameters change during motion. The two trajectories used to investigate
this case are same as before. The only differenceis that now in these two trajectories the
manipulator picks up and releases load during its motion. This Picking up and releasing
of load changes manipulator parameters during motion. The changed parameters of
manipulator are listed in the Table 4.3.1.2.

The error profiles for the two links are shown in Fig. 6.1.2(a) for the first trgjectory, and
Fig. 6.1.2(b) for the second trajectory. Table 6.1.2 lists the magnitudes of various error
measures for the two trgjectories. It can be seen from Fig. 6.1.2(a) the steady state error
for link 1 has increased considerably from the previous value of 0.1676 to 2.0 degrees.
This aso results in larger RMS value of error. From Fig. 6.1.2(b) we notice a similar

increase in errors for the second trgjectory. Thisis mainly due to the fact that the lookup
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table used for control is not optimaly tuned for the new vaues of manipulator

parameters.

Fuz=y Contral {Trajectory 1)

Ermor in Position (deg)

Time (sec)

Fig. 6.1.2(a) Errorsfor Fuzzy control (LUT based, Changing parameters, Trajectory 1)

Fuz—=y Control {Trajectory 2)

251 '.’.."‘.. o Link2 ||
.

Ermorin Position (deg)

Time (sec)

Fig. 6.1.2(b) Errorsfor Fuzzy control (LUT based, Changing parameters, Trajectory 2)

Pure Fuzzy Control Errors(deg)
TRAJECTORY NO.1 TRAJECTORY NO.2

Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—»0°— 0°— -45°->0°—

RMS SS RMS SS RMS | MAX RMS MAX
1.3926 | 2.0000 | 0.2289 | 0.1670 | 1.2304 ‘ 2.6153 0.4585 | 1.1183

Table 6.1.2. Errors for Fuzzy control (LUT based, Changing parameters)
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This problem of having to retune the Fuzzy lookup table every time the trajectory
changes or manipulator parameters change can be solved by primarily by two methods.
These two methods are Adaptive Fuzzy and Self Organizing Fuzzy control methods.
These methods will be discussed in later sections. The problem can also be alleviated by

use of Hybrid fuzzy controllers, which we would investigate next.

6.2HYBRID FUZZY CONTROL

In this section we propose and investigate some new hybrid fuzzy control schemes. The
primary characteristic of these controllers is that in these schemes the fina control
output applied to the plant is summation of individual output of two controllers. One of
them is the Fuzzy controller while the other could be a Conventional or Adaptive
controller [Butkiewicz (2000), Chin and Er (1998)]. The genera block diagram of the
controller is shown in Fig. 6.2.1. As both the controllers are individually stable, the
combination is also stable. We first discuss the results of combining Fuzzy and
Conventional controllers and then Fuzzy and Adaptive controllers.

0
Fuzzy »(X)—L»| ROBOT "
Controller A 5

Conventional/
Adaptive Controller

Fig. 6.2.1. Block diagram of Hybrid Fuzzy Controller
All the controllers discussed in the following subsections were tested for the case when

the parameters of the manipulator change during motion. The two trgjectories used to
investigate the controllers are shown in Fig. 4.3.1.1(a) and Fig. 4.3.1.1(b). In these two
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trajectories the manipulator picks up and releases load during its motion. This Picking
up and releasing of load changes manipulator parameters during motion. The changed
parameters of manipulator are listed in the Table 4.3.1.2.

6.2.1FUZZY PLUSCOMPUTED TORQUE CONTROLLER

The Computed Torque controller discussed in section 4.2.1 is combined with the Fuzzy
controller in this scheme. Fig. 6.2.1.1 shows the block diagram of this controller. The
error profiles for the two links are shown in Fig. 6.2.1.2(a) for the first trgjectory, and
Fig. 6.2.1.2(b) for the second trajectory. Table 6.2.1.1 lists the magnitudes of various
error measures for the two trgectories for this controller and some other related
controllers. As can be seen from the table, this controller performs much better than
Pure Fuzzy, CT and CT+IE controllers. Both the RMS and steady state values of the
errors have reduced considerably for this controller when compared to the other

controllers. Even the maximum values of errors have reduced considerably for the

second trajectory.
. .
Oy +X M (0) ¢ [ ROBOT .———»6?
+ + + A
< < V(6.6 +F(6.6)+G(6) (€9
<__.
A FUZzY

0 4 ¢ »| CONTROLLER

— > T >
0, ; _

Fig. 6.2.1.1 Block diagram of Fuzzy + Computed Torque Controller
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ZT + Fuzzy (Trajectory 1)

---- Link1
Link2

Erorin Position (deq)

15
Time [(s=c)

Fig. 6.2.1.2(a) Errorsfor CT + Fuzzy control (Trajectory 1)

T + Fuz=y Control (Trajectory 20

= T T
B - Linki1
R o — Linkz
1.5 P H H —
1 - —
0.5 - —

Errarin Position {deq)

1.5 L L L 1

o 1 2 3 a [ =} 7 8
Time (sec)
Fig. 6.2.1.2(b) Errorsfor CT + Fuzzy control (Trajectory 2)
SNo | CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2

0°— 90°—>0°—> 0°— -90°—>0°— 0°— 45°—0°—>45°—-0° 0°— -45°—0°—-45°-0°

RMS SS RMS SS RMS MAX RMS MAX

1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183
2. CT 6.1340 8.5617 4.6260 -4.7008 4.9007 12.2731 4.4288 5.0733
3. CT+IE 1.2919 1.7460 0.4019 0.4721 1.189%4 2.3245 0.3118 0.6798
4. CT+Fuzzy 0.1761 0.1670 0.2361 0.1667 0.6324 1.8571 0.2895 -1.0030

Table 6.2.1.1. Comparison of Errorsfor CT + Fuzzy control
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6.2.2FUZZY PLUSFFID CONTROLLER

The FFID controller discussed in section 4.2.2 is combined with the Fuzzy controller in
this scheme. Fig. 6.2.2.1 shows the block diagram of this controller. The error profiles
for the two links are shown in Fig. 6.2.2.2(a) for the first trgjectory, and Fig. 6.2.2.2(b)
for the second trgjectory. Table 6.2.2.1 lists the various error measures magnitudes for
the two trgjectories for this controller and some other related controllers. As can be seen

from the table, this controller performs much better than Pure Fuzzy, FFID and

FFID+IE controllers.

p v v
d_>
p M(6) 64 +My (60) 64 + Ry (66) 44 +G(6)
— o »
FUzZZY
CONTROLLER
KD
t t =
, ER)4
d + L -
>(X)

Fig. 6.2.2.1 Block diagram of Fuzzy + FFID Controller

FFID + Fuzy Control (Trajectory 1)

---- Link1
—— LinkZ2

Ermor in Position (deg)

_1 L L
u] 5 10 15
Time (sec)

Fig. 6.2.2.2(a) Errorsfor FFID + Fuzzy control (Trajectory 1)
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FFID + Fuzy Control (Trajectorns 2)

0.4 ;
—— Link2
o2 . [ i . e R
== u]
E -0.z2
F‘E -0.a
0 o6
-0.a
o 1 > e 4 5 = 7 =
Time (sec)
Fig. 6.2.2.2(b) Errorsfor FFID + Fuzzy control (Traectory 2)
SNo | CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2
0°— 90°—>0°—> 0°— -90°—>0°— 0°— 45°—0°—>45°—-0° 0°— -45°—0°—-45°-0°
RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183
2 FEID 2.5940 3.6395 0.8689 | 1.1186 | 2.0083 4.1268 0.6431 1.0846
3. FFID+IE* 1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419
4. FFID+Fuzzy 0.1534 0.1667 0.2716 0.1663 0.1471 0.2104 0.3702 -0.9186

Table 6.2.2.1. Comparison of Errorsfor FFID + Fuzzy control

6.2.3FUZZY PLUSCDID CONTROLLER

The CDID controller discussed in section 4.2.3 is combined with the Fuzzy controller in
this scheme. Fig. 6.2.3.1 shows the block diagram of this controller. The error profiles
for the two links are shown in Fig. 6.2.3.2(a) for the first trgjectory, and Fig. 6.2.3.2(b)
for the second trajectory. Table 6.2.3.1 lists the magnitudes of various error measures

for the two trgectories for this controller and some other related controllers. It is seen
from the table, that this controller performs better than Pure Fuzzy, CDID and CDID+IE

controllers.
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Fig. 6.2.3.1 Block diagram of Fuzzy + CDID Controller

DD + Fuz=y (Trajectory 1)

0.0s
---- Link1

o.04 —— Link2 |4
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Fig. 6.2.3.2(a) Errorsfor CDID + Fuzzy control (Trajectory 1)

127



I + Fuzey (Trajectarny 2)

0.0s
0.04
= 0.02
5 o
D -0.04
-0.06 - E ----  Link1
—— LinkZ
.05 L L
a 1 2 3 4 5 B o =]
Time (s=ec)
Fig. 6.2.3.2(b) Errorsfor CDID + Fuzzy control (Traectory 2)
SNo | CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2
0°— 90°—>0°—> 0°—> -90°—>0°— 0°—> 45°—>0°—>45°—0° 0°— -45°—0°—-45°-0°
RMS SS RMS SS RMS | MAX RMS MAX
1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183
2. CDID 0.0616 0.0695 00211 | 00214 | 0.0707 0.1244 0.0265 0.0509
3. CDID+IE 0.0604 0.0676 0.0210 | 00208 | 0.0697 0.1226 0.0268 0.0513
4. FFID+Fuzzy | 00216 0.0 0.0212 0.0 0.0343 -0.0610 0.0325 0.0507

Table 6.2.3.1. Comparison of Errorsfor CDID + Fuzzy control

6.24FUZZY PLUSACDID CONTROLLER

Adaptive controllers can also be combined with fuzzy to give a hybrid controller [Lin
and Mon (2003), Hojati and Gazor (2002)]. The ACDID controller discussed in section
5.4 is combined with the Fuzzy controller in this scheme. Fig. 6.2.4.1 shows the block
diagram of this controller. The error profiles for the two links are shown in Fig.
6.2.4.2(a) for the first tragectory, and Fig. 6.2.4.2(b) for the second trajectory. Table
6.2.4.1 lists the various error measures magnitudes for the two trajectories for this
controller and some other related controllers. As can be seen from the table, this

controller performs almost same as ACDID+IE controller with slightly lower errors.
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Fig. 6.2.4.1 Block diagram of Fuzzy + ACDID Controller
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Fig. 6.2.4.2(a) Errorsfor ACDID + Fuzzy control (Trajectory 1)
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A + Fuzzy (Trajectory 2)
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Fig. 6.2.4.2(b) Errorsfor ACDID + Fuzzy control (Trajectory 2)

SNo | CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2

0°—> 90°—>0°—> 0°— -90°—>0°— 0°— 45°—0°—>45°—-0° 0°—> -45°—>0°—-45°-0°

RMS SS RMS SS RMS MAX RMS MAX

1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183
2. ACDID 0.0247 0.0001 0.0238 -0.0002 0.0391 0.0772 0.0344 0.0642
3. ACDID+IE 0.0213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745
4, ACDID+Fuzzy 0.0130 0.0 0.0119 -0.0001 0.0291 0.0599 0.0226 -0.0564

Table 6.2.4.1. Comparison of Errorsfor ACDID + Fuzzy control

6.25FUZZY PLUSMRAC

Some work has been done on hybrid MRAC Fuzzy controllers by researchers [Jen-Y ang
(2002). The MRAC discussed in section 5.5 is combined with the Fuzzy controller in
this scheme. Fig. 6.2.5.1 shows the block diagram of this controller. The error profiles
for the two links are shown in Fig. 6.2.5.2(a) for the first trgjectory, and Fig. 6.2.5.2(b)

for the second trajectory. Table 6.2.5.1 lists the magnitudes of various error measures

for the two trajectories for this controller and some other related controllers. As can be

seen from the table, this controller performs much better than Pure Fuzzy, MRAC but

not as good as MRAC+IE controller.
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Fig. 6.2.5.2(a) Errorsfor MRAC + Fuzzy control (Trgectory 1)
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Fig. 6.2.5.2(b) Errorsfor MRAC + Fuzzy control (Trajectory 2)

S.No | CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2

0°— 90°—>0°—> 0°— -90°—>0°— 0°— 45°—0°—>45°—-0° 0°— -45°—0°—-45°-0°

RMS SS RMS SS RMS MAX RMS MAX

1. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183
2. MRAC 0.9283 1.3691 0.2827 0.4039 0.6935 1.4323 0.2628 0.5390
3. MRACHIE 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732
4. MRAC+Fuzzy 0.2472 0.3565 0.1261 0.1673 0.2350 0.3648 0.1423 -0.2403

Table 6.2.5.1. Comparison of Errorsfor MRAC + Fuzzy control

6.26 FUZZY PLUSDAC

The DAC discussed in section 5.6 is combined with the Fuzzy controller in this scheme.
Fig. 6.2.6.1 shows the block diagram of this controller. The error profiles for the two
links are shown in Fig. 6.2.6.2(a) for the first trgectory, and Fig. 6.2.6.2(b) for the
second trgjectory. Table 6.2.6.1 lists the magnitudes of various error measures for the

two trgjectories for this controller and some other related controllers. It is seen from the

table, that there is no marked improvement in performance of this controller over DAC

and DACHIE controllers.
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Fig. 6.2.6.2(a) Errorsfor DAC + Fuzzy control (Trajectory 1)
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Fig. 6.2.6.2(b) Errorsfor DAC + Fuzzy control (Trajectory 2)
S.No CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2
0°— 90°->0°—> 0°— -90°—>0°—> 0°— 45°—0°—>45°—-0° 0°— -45°—0°—-45°-0°
RMS SS RMS SS RMS MAX RMS MAX
1. Pure Fu zzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183
2 DAC 00613 | 00043 | 00259 | -0.0007 | 0.0674 0.1387 0.0284 0.0600
3 DACHI E 00313 | 00418 | 00220 | 00117 | 00371 0.0798 0.0329 0.0507
4. DAC+Fuzzy 0.0657 0.0101 0.0351 0.0001 0.0567 0.1103 0.0323 0.0791

Table 6.2.6.1. Comparison of Errorsfor DAC + Fuzzy control

6.2.7 COMPARISON OF PERFORMANCE

The consolidated results for the ssimulations carried out in section 6.2 and some other

relevant simulations carried out in Chapter 4 and 5 are presented in Table 6.2.7.1 for

easy comparison of the performance of various controllers.
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SNo | CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2
0°— 90°—>0°—> 0°— -90°—>0°— 0°— 45°—>0°—>45°—->0° 0°—> -45°—0°—-45°-0°
RMS | Ss RMS | Ss RMS | MAX RMS | MAX
CONVENTIONAL CONTROLLERS
1. PD Control 7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037
2. PID control 2.9360 3.8290 09742 | 10737 | 28617 4.1457 0.9264 1.4036
3. CT 6.1340 8.5617 46260 | -47008 | 4.9007 12,2731 4.4288 5.0733
4. EFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846
5. CDID 0.0616 0.0695 0.0211 | 00214 | 00707 0.1244 0.0265 0.0509
6. CT+IE 1.2919 1.7460 0.4019 | 04721 | 1.189%4 2.3245 0.3118 0.6798
7. FFID+IE 1.0687 1.4588 0.3508 0.4488 0.9466 1.8639 0.2759 0.4419
8. CDID+IE 0.0604 0.0676 0.0210 0.0208 0.0697 0.1226 0.0268 0.0513
ADAPTIVE CONTROLLERS
0. ACDID 0.0247 0.0001 0.0238 | -0.0002 | 0.0391 0.0772 0.0344 0.0642
10. ACDID+IE 0.0213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745
11 MRAC 0.9283 1.3691 0.2827 | 04039 | 0.6935 1.4323 0.2628 0.5390
12. MRAC+ E 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732
13. DAC 0.0613 0.0043 0.0259 | -0.0007 | 0.0674 0.1387 0.0284 0.0600
14. DAC+IE 0.0313 0.0418 0.0220 | 00117 | 0.0371 0.0798 0.0329 0.0507
HYBRID FUZZY CONTROLLERS
15. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183
16. CT+Fuzzy 0.1761 0.1670 02361 | 0.1667 | 0.6324 1.8571 0.2895 -1.0030
17. FFID+Fuzzy | 01534 0.1667 02716 | 01663 | 0.1471 0.2104 0.3702 -0.9186
18. | CDID+Fuzzy | 00216 0.0 0.0212 0.0 0.0343 -0.0610 0.0325 0.0507
19. ACDID+Fuzzy 0.0130 0.0 0.0119 -0.0001 0.0291 0.0599 0.0226 -0.0564
20. MRAC+Fuzzy 0.2472 0.3565 0.1261 0.1673 0.2350 0.3648 0.1423 -0.2403
21. DAC+Fuzzy | 00657 0.0101 0.0351 | 00001 | 0.0567 0.1103 0.0323 0.0791

Table. 6.2.7.1 Comparison of errors for various control strategies vs. Hybrid Fuzzy

Following observations are made based on ssmulations carried out in this section:

1. The Hybrid fuzzy/conventional controllers show significant performance

improvement over their conventional counterparts. All model based conventional

controllers,

i.e.,

performance.
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. The Hybrid fuzzy/conventional controllers also show significant performance
improvement over the conventional controllers with integral error compensation.
. The Hybrid fuzzy/adaptive controllers also show performance improvement over
their adaptive counterparts. However the improvement is not that significant as
in case of hybrid fuzzy/conventional controllers. This is mainly because of the
fact that adaptive controllers by themselves give very good performance leaving
little scope for further improvements.

. Adaptive controllers are computationally intensive and adding a Fuzzy controller
to them increases the computational burden even further. Further it does not
result in any significant performance improvement. Hence the use of Hybrid
fuzzy/adaptive controllers does not seem advisable.

. The performance of CDID + Fuzzy hybrid controller is amost at par with
ACDID+IE controller as can be seen from Table 6.2.7.1. It indicates that Hybrid
conventional/fuzzy controllers can perform as good as adaptive controllers.
Moreover they are computationally much less expensive than the adaptive
controllers.

. The best performance in hybrid category is that of hybrid Fuzzy + ACDID

controller.

6.3 SELF ORGANIZING CONTROLLER (SOC)

Self Organizing Controller (SOC) is based on the original Fuzzy controller [Koh et a
(1990), Kazemian (1998, 2002)]. It is termed as self-organizing because it is able to

adjust the control strategy in a fuzzy controller automatically without any human

intervention [Novakovic (1997)]. The SOC has a layered structure in which the lower

layer isa LUT based controller and the higher layer is the adjustment mechanism. Fig.

6.3.1 shows the block diagram of SOC. At the lower layer isaFuzzy controller. The two

inputs to this controller are the error e and change in error ce. These are multiplied by

normalization gains GE and GCE respectively before being given to the rule base in F.

The value obtained from lookup table in F is the output of the controller u. This is

multiplied by the output gain GU to give the final control signal U.
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Fig. 6.3.1 Block diagram of SOC [Jantzen (1998)]
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The idea behind self-organization isto let an adjustment mechanism update the valuesin
LUT of F, based on current performance of the controller. The updating should be such
that the table entry responsible for poor performance is punished, so that the next time
this entry is used, the performance is better. If the performance is good, the entries are
left unchanged.

The input to higher layer isalso error and changein error, and it modifiesthe LUT in F
through a modifier algorithm M when necessary. It uses a performance measure to
decide the magnitude of each change to F. The performance measures are numbers,
organized in a table P, which is of same size as F, expressing what is desirable, in a
transient response. The table P can be built using linguistic rules, but is often built
manually, based on experience. The same performance table P may be used with a
different process, without prior knowledge of the process, since it only expresses the
desired transient response. The controller can start from scratch with an F-lookup table
full of zeros; it will, however, converge faster towards a stable table, if F isinitialized
with sensible numbers to begin with.

The SOC learns to control the system in accordance with the desired response. This is
called training. At the sampling instant n, it records the error between desired
performance and the actual performance. Based on this error it modifies the LUT in F
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accordingly. The performance table P evaluates the current state and returns a

performance measure P(in, jn), Where i, is the index corresponding to E,, and j, is the

index corresponding to CE,. Tables6.3.1 and 6.3.2 are examples of performance tables.
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Table 6.3.1 Example of Performance Table (Y amazaki, 1982)

e
6|5 |43

0

-2

2 13 |4|5|6
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1

-1 10

M ember ship Function
-2

Table 6.3.2 Example of another Performance Table (Procyk and Mamdani, 1979)
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It can be seen that the zeros in Table 6.3.1 are amost in a diagonal band. It can be
shown that this amounts to a desired first order system behavior. Table 6.3.2 on the
other hand has zeros in a ‘Z’ shaped patch. This allows for a zero slope to begin with,
and a dlight overshoot at the end of transient [Jantzen (1998)].

6.3.1 PURE FUZZY (FIXED PARARAMETERYS)

The controller tested here is exactly same as that discussed in section 6.2. The only
difference hereisthat the normalization gain for error was increased by afactor of ten to
get an improved performance from the fuzzy controller. This is because the SOC
performance can then be compared against ‘amost’ best possible fuzzy performance.
The two trgjectories used for simulation are same as earlier. It is assumed that the
manipulator parameters do not change throughout the motion. The error profiles for the
two links are shown in Fig. 6.3.1.1(a) for the first trgjectory, and Fig. 6.3.1.1(b) for the
second trgjectory. Table 6.3.1.1 lists the magnitudes of various error measures for the
two trajectories for this controller. As can be seen, the errors for both the trgectories

have improved when compared to fuzzy controller investigated in section 6.2.

FPLURE FLIZZY (Trajectory 1)

0.25

- Link1
—— Link2

Errorin Position (deq)

Time (sec)

Fig. 6.3.1.1(a) Errorsfor Fuzzy control (Increased normalization gains, Fixed
parameters, Trajectory 1)
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Fig. 6.3.1.1(b) Errors for Fuzzy control (Increased normalization gains, Fixed
parameters, Trajectory 2)

Fuzzy Control (Fixed parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—>0°— 0°— -45°—0°—
RMS SS RMS SS RMS MAX RMS MAX
0.0551 | 0.0173 | 0.0167 | 0.0171 | 0.1198 0.3397 0.0200 | -0.0632

Table 6.3.1.1. Errors for Fuzzy control (Increased normalization gains, Fixed
parameters)
The high frequency in the above error profilesis mainly due to increased normalization

gains, which leads to increased control activity.
6.3.2 SOC (FIXED PARAMETERS, ZERO LUT)

The SOC with initial LUT empty was investigated next. Here too the parameters do not
change throughout the manipulator motion. The error profiles for the two links are
shown in Fig. 6.3.2.1(a) for the first trgectory, and Fig. 6.3.2.1(b) for the second
trajectory. Table 6.3.2.1 lists the magnitudes of various error measures for the two
trgectories for this controller. The SOC controller gives better performance than the
Pure Fuzzy controller even with initial LUT empty. This can be seen from Tables

6.3.1.1and 6.3.2.1.
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Fig. 6.3.2.1(a) Errors for SOC control (Fixed Parameters, Zero LUT, Traectory 1)
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Fig. 6.3.2.1(b) Errors for SOC control (Fixed Parameters, Zero LUT, Trgjectory 2)

SOC (Fixed parameters, Zero LUT) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—>0°—> 0°— -45°>0°—

RMS SS RMS SS RMS MAX RMS MAX
0.0338 | 0.0164 | 0.0306 | -0.0163 | 0.0331 -0.1023 | 0.0409 | -0.0923

Table 6.3.2.1. Errorsfor SOC control (Fixed parameters, Zero LUT)
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6.3.3 SOC (FIXED PARAMETERS, NONZERO LUT)

In this case it was assumed that the initial lookup table is not empty and the starting
point is same as the lookup table for Pure fuzzy controller (Table 6.1). The error profiles
for the two links are shown in Fig. 6.3.3.1(a) for the first trgjectory, and Fig. 6.3.3.1(b)
for the second trajectory. Table 6.3.3.1 lists the magnitudes of various error measures

for the two trgjectories for this controller.

SO [ MNonzero LT, Trajectory 1)

Error in position (deg)

oz L L
u] s 10 15
Time (sec)

Fig. 6.3.3.1(a) Errorsfor SOC control (Fixed Parameters, Nonzero LUT, Trajectory 1)

SO (MNonzero LT, Trajectory 2

---- Link 1
—— Link 2

-0.05

Errorin Position [deg)

Time (sec)

Fig. 6.3.3.1(b) Errors for SOC control (Fixed Parameters, Nonzero LUT, Trgectory 2)
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SOC (Fixed parameters, Nonzero LUT) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Linkl Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°>0°— 0°— -45°—>0°—>

RMS SS RMS SS RMS MAX RMS MAX
0.0315 | 0.0164 | 0.0306 | -0.0163 | 0.0293 | -0.1014 | 0.0385 | 0.0908

Table 6.3.3.1. Errors for SOC control (Fixed parameters, Nonzero LUT)

S.No CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY Tink1 link2 link L link2
0°—> 90°>0°— 0°— -90°—>0°— 0°— 45°—>0°—45°—0° 0°— -45°—0°—>-45°—0°
RMS SS RMS SS RMS MAX RMS MAX
1 PureFuzzy | 00551 | 00173 | 00167 | 00171 | 01198 0.3397 0.0200 ~0.0632
2. SOLCU%rer 0 00338 | 00164 | 00306 | -00163 | 00331 -0.1023 0.0409 -0.0923
3. SOCLNUOTnzef 0 | 00315 0.0164 0.0306 | -0.0163 | 0.0293 -0.1014 0.0385 0.0908

Table 6.3.3.2. Errors for SOC and Fuzzy (Fixed Parameters)

Table 6.3.3.2 lists the errors for the above three cases for comparison. It is seen that the
errors decrease from Pure fuzzy to SOC with zero LUT to SOC with nonzero LUT. Itis
however observed that this improvement is marginal. This is because in these cases the
manipulator parameters do not change during motion and therefore the pure fuzzy
controller gives a good performance as it is tuned for these fixed parameters of the

manipulator.

6.3.4 PURE FUZZY (CHANGING PARARAMETERS)

The next three simulations are similar to the previous three except that in these cases we
assume that the manipulator picks up and releases load during motion. Hence the
manipulator parameters change here. The first simulation is for Pure Fuzzy controller. It
is observed here as in section 6.1, that the performance of controller degrades compared

to the fixed parameter case. The error profiles for the two links are shown in Fig.
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6.3.4.1(a) for the first trgectory, and Fig. 6.3.4.1(b) for the second trgectory. Table
6.3.4.1 lists the various error magnitudes for the two trajectories for this controller.

FLURE FLZZY (Trajectory 1)

0.25
---- Link1
. —— Link2
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"
=] 7]
o
=
—
=2 B
]
—
[
= ]
S
L i
_D1 1 1
u] 5 10 15

Time (sec)

Fig. 6.3.4.1(a) Errorsfor Fuzzy control (Increased normalization gains, Changing
parameters, Trajectory 1)
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Fig. 6.3.4.1(b) Errors for Fuzzy control (Increased normalization gains, Changing
parameters, Trgectory 2
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Fuzzy Control (Changing parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—>0°— 0°— -45°—0°—

RMS SS RMS SS RMS MAX RMS MAX
0.1364 | 0.1998 | 0.0180 | 0.0173 | 0.1382 0.3249 0.0354 0.1012

Table 6.3.4.1 Errors for Fuzzy control (Increased normalization gains, Changing
parameters)

6.3.5 SOC (CHANGING PARAMETERS, ZERO LUT)

The performance of SOC under the circumstance of changing parameters is investigated
here. The error profiles for the two links are shown in Fig. 6.3.5.1(a) for the first
trajectory, and Fig. 6.3.5.1(b) for the second trajectory. Table 6.3.5.1 lists the various
error measures for the two trajectories for this controller. It is seen that SOC even with
an initially empty LUT performs better than Fuzzy controller. This is primarily because

SOC can auto tune the LUT as the parameters of manipulator change.

SO (Zero LUT, Parameter CThange, Trajectory 1)

---- Link1
— LinkZ2 |4

.1

0.05

0.0s

0.04

0.0z

-0.az2

Ermorin Position (deg)
(]

-0.04

-0.06

-0.05

-0.1

Time (sec)

Fig. 6.3.5.1(a) Errorsfor SOC control (Changing Parameters, Zero LUT, Tragjectory 1)
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SO (Zero LT, Farameter CThange, Trajectory 23

Errorin Position {deq)

- Link1

—— LinkZ2
|

Fig. 6.3.5.1(b) Errorsfor SOC control (Changing Parameters, Zero LUT, Trajectory 2)

Time (s=ec)

SOC (Variable parameters, Zero LUT) Errors (deg)

TRAJECTORY NO.1

TRAJECTORY NO.2

Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—>0°— 0°— -45°—0°—
RMS SS RMS SS RMS MAX RMS MAX

0.0245

0.0166

0.0333

-0.0169

0.0477

0.1059

0.0395

-0.1032

Table 6.3.5.1. Errors for SOC control (Changing parameters, Zero LUT)

6.3.6 SOC (CHANGING PARAMETERS, NONZERO LUT)

The last case investigated was the effect on performance of SOC when the lookup table
is initially nonzero. Here we initialized the values in lookup table to be same as those
used for Pure fuzzy controller. The error profiles for the two links are shown in Fig.
6.3.6.1(a) for the first trgectory, and Fig. 6.3.6.1(b) for the second trgjectory. Table
6.3.6.1 lists the magnitudes of various error measures for the two trajectories for this

controller.
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Fig. 6.3.6.1(a) Errorsfor SOC control (Changing Parameters, Nonzero LUT,
Trajectory 1)
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o115 I I I 1 I I
a 1 2 3 4 =1 B - =

Time (sec)

Fig. 6.3.6.1(b) Errors for SOC control (Changing Parameters, Nonzero LUT,
Trajectory 2)

SOC (Variable parameters, Nonzero LUT) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Linkl Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°>0°— 0°— -45°—>0°—>

RMS SS RMS SS RMS MAX RMS MAX
0.0271 | 0.0166 | 0.0305 | -0.0166 | 0.0380 | -0.1014 | 0.0387 | 0.0898

Table 6.3.6.1. Errorsfor SOC control (Changing parameters, Nonzero LUT)
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S.No CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2
0°— 90°—>0°— 0°— -90°—>0°— 0°— 45°—0°—45°—0° 0°— -45°—0°—-45°—0°
RMS SS RMS SS RMS MAX RMS MAX
1 PureFuzzy | 0134 | 01998 | 0018 | 00173 | 01382 0.3249 0.0354 0.1012
2. SOLCU%I'er 0 00245 | 00166 | 00333 | -00169 | 0.0477 0.1059 0.0395 -0.1032
3. SOCL’\l‘JOTnZGT 0 | 00271 | 00166 | 00305 | -0.0166 | 0.0380 -0.1014 0.0387 0.0898

Table 6.3.6.2. Errors for SOC and Fuzzy (Changing Parameters)

Table 6.3.6.2 lists the errors for the above three cases for comparison. It is seen that the

errors decrease from Pure fuzzy to SOC with zero LUT to SOC with nonzero LUT.

6.3.7 COMPARISON OF PERFORMANCE

Following observations are made based on simulations carried out in this section (6.3):

1.

When the manipulator parameters do not change during the course of trgectory, a
fixed LUT based fuzzy controller gives good performance. But building up the
LUT requires lot of intuition and experience. Besides it may also requires
adjustment of values through trial and error by repeated runs. A SOC under this
situation can quickly build its LUT starting from all zero values and give better
performance than Pure Fuzzy controller. The performance of SOC further improves
if we can start with non zero LUT.

When the manipulator parameters change during the course of trgjectory, the
performance of Pure Fuzzy controller degrades considerably. This is because this
controller uses a fixed LUT, which is tuned for one set of parameters. The SOC
under these circumstances gives much better performance as it can change its LUT
as the parameters of manipulator change. This is seen from simulations done in
section 6.3. Thus using SOC for manipulator control seems to be a better option
than Pure fuzzy as invariably the manipulator parameters change during motion.

Further it does not require any tuning beforehand. However it is better to use a
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nonzero lookup table that incorporates some user experience as it can lead to
improved performance.

6.4 SELF TUNING (ADAPTIVE) FUZZY CONTROLLER (STFC)

A Fuzzy controller consists of three magor components that can be altered to give
different controller behaviors. These three components are:

e The normalization and denormalization scaling factors

e Thefuzzy set representing the meaning of linguistic values

e Theif-then rule base
If the above three components remain fixed the fuzzy controller is of type non-adaptive.
If on the other hand any of the above three components are altered when the controller is
running, it is known as Adaptive-Fuzzy [Han-Xiong (1996)].
A Controller that changes scaling factors or modifies the fuzzy set definitions is known
as ‘self-tuning’ controller. Adaptive Fuzzy controller that modifies the rule base is
known as ‘self-organizing’ controller. These controllers can start with an existing rule
base and then modify it or they can build the rule base entirely afresh starting with no
rules a all. This type of controller was studied in previous section. Figure 6.4.1 shows
the classification of fuzzy controllers.

Fuzzy Controller Non- Adaptive

Adaptive | Self-Tuning

Self-Organizing

Fig 6.4.1. Classification of Fuzzy controllers
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The Adaptive Fuzzy controller that we investigated is of PD type [Mudi and Pal (1999),
Chatterjee and Watanabe (2005)]. The output gain (denormalization, GU) of this

controller is adjusted on-line depending on the present values of error and error

derivative. Thus the controller is of self-tuning type. We aso investigated the more

general case where both the input (normalization, GE & GCE) and output

(denormalization, GU) gains of the controller are adapted on-line. The block diagram of

the self-tuning fuzzy controller is shown in Fig. 6.4.2. The membership functions for

controller inputs (error and error derivative) and output are defined on the common

interval [-6 6] and are same as shown in Fig. 6.3. The membership functions for gain

updating factor (o) are defined on [0 1]. These membership functions are as shown in

Fig. 6.4.3.

46»‘ GE

Rule-base 1
—P Control u
Fuzzi- rule Defuzzi —pn GUa
—pp| fication detrmi- »| fication A
nation
Data base
e, > ) Gain
Fuzzif rule Defuzzi
vl — L uzzi
icatio detrmi fication
n nation
Rule-base 2

ROBOT

Output
X

T Reference Input

Fig. 6.4.2. Block diagram of the self-tuning fuzzy controller (adapted from Mudi and

Pal, 1999)
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0 0.25 0.5 0.75 1
Fig. 6.4.3 Membership functions for gain updating factor (o)
For the conventional fuzzy controller the controller output is mapped to the respective
actual output by the output gain GU. On the other hand in the self-tuning fuzzy
controller the actual output is obtained by multiplying the controller output with GUa.
The gain-updating factor o is calculated on-line using a model independent fuzzy rule base

which has e and éas inputs. The governing equations for this self-tuning fuzzy controller are

given below.

e =GEe (6.4.1)
ce, =GCE.ce (6.4.2)
u=a.GU.u, (6.4.3)

The fuzzy controller produces output based on rules of the form:
Ri:If eisE and ceisCE thenuisU

The complete rule base for the controller is shown in Table. 6.4.1.

e | NB |[NM NS |ZE |PS |PM | PB

NB | NB | NB [NB | NM | NS | NS | ZE
NM | NB | NM [NM | NM | NS | ZE | PS
NS |[NB |NM [NS |[NS | ZE |PS | PM
ZE |[NB [NM |NS |ZE |PS |PM | PB
PS |[NM |NS [ZE |[PS |PS |PM | PB
PM |[NS |ZE |[PS [PM |PM | PM | PB
PB |ZE |PS |PS [PM |PB |PB | PB
Table. 6.4.1. Fuzzy controller Rule Base
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The gain updating part of the controller produces output based on rules of the form:
Ri:IfeisEandceisCEthenaisa

The complete rule base used for updating o is shown in Table. 6.4.2.

e INB/NM NS |ZE |PS |PM | PB

NB (VB|VB | VB | B |SB| S |ZE
NM|vB|VB| B | B |[MB| S |VS
NS |VB|MB| B |[VB| VS| S |VS
ZE | S|SB | MB|ZE|MB|SB | S
PS |VS| S |VS|VB| B |MB|VB
S
S

PM | VS MB| B | B |VB|VB
PB | ZE SB| B |VB|VB |VB

Table. 6.4.2. Fuzzy Rule Base for o

The parameter o is independent of any manipulator parameter and depends only on
current system states. Thus the self-tuning scheme is largely independent of the process
being controlled.

The following steps were used for tuning the controller:

Assuming that a=1, we first adjust the value of GE so that the normalized error covers
the entire domain [-6 6] to make efficient use of rule base. We then adjust the values of
GCE and GU to make the output as acceptable as possible. This process is done through
trial and error for any one trgectory. Now we have a good conventiona fuzzy
controller, which becomes the initial starting point for fuzzy self-tuning controller.

The output-scaling factor (GU) is now set to three times (to keep the rise time almost
same) the value found in previous step. The other two scaling factors are kept same as
determined in previous step. o is no longer fixed at 1 but is calculated on-line from its

rule base.
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6.4.1 PURE FUZZY (FIXED PARARAMETERYS)

The controller investigated in this section is a normal Pure Fuzzy controller (Non LUT
based), exactly similar to the controller discussed in section 6.3.1. The normalization
and denormalization factors are chosen to be exactly same and so are the rule base and
membership functions. The complete rule baseis shown in Table. 6.4.1.

The difference here is that this controller evaluates the fuzzy rules as it is and does not
make use of lookup table while calculating the output torque values for the two links of
the manipulator. The disadvantage of not using the lookup table is mainly in terms of
considerably more number of calculations required which in turn increases the sampling
time of the controller. The advantage on the other hand is in terms of much smoother
controller action compared to lookup table based controller. Thisis of importance when
we modify this controller to self-tuning controller. The self-tuning controller gives much
better performance if the control action of the original controller is smooth.

The two trajectories used for simulation are same as earlier. For the first smulation it is
assumed that the manipulator parameters do not change throughout the motion. The
error profiles for the two links are shown in Fig. 6.4.1.1(a) for the first trgjectory, and
Fig. 6.4.1.1(b) for the second trajectory. Table 6.4.1.1 lists the various error magnitudes
for the two trajectories for this controller. A comparison between the error profiles (for
trajectory 1) of this controller and the exactly similar LUT based controller studied in
6.3.1 is shown in Fig 6.4.1.1(c). As can be seen from this figure, the errors for LUT
based controller are lower compared to Non-LUT based controller. This is mainly
because of manual fine-tuning done for LUT based controller. Also as can be expected
the trgjectory for Non-LUT based controller is much smoother compared to LUT based

controller.
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Fure Fuzzy (Trajectory 1)

0.35

0.2k

0.25
02
015

o.1p

0.0

Errorin Position {deg)

-0.05

—01 1 1

Time {(sec)

Fig. 6.4.1.1(a) Errorsfor Fuzzy control (Non LUT based, Fixed parameters,
Trajectory 1)

Fure Fuzzy (Trajectory 2

0.5 .
---- Link1
—— Link2
0.4 ce e .
;
0.3k .

Errorin Position (deq)

o 1 2 3 4 5 G F =]
Time (sec)

Fig. 6.4.1.1(b) Errors for Fuzzy control (Non LUT based, Fixed parameters,
Trajectory 2)
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Fig 6.4.1.1(c) Comparison of errorsfor LUT and Non LUT based Fuzzy controllers

(Fixed parameters)

Pure Fuzzy (Fixed parameters Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—>0° 0°— -90°—0° 0°— 45°>0°— 0°— -45°—>0°—>

RMS SS RMS SS RMS MAX RMS MAX
0.2104 | 0.2345 | 0.0966 | 0.0590 | 0.2453 0.4088 0.1273 0.2308

Table 6.4.1.1. Errors for Fuzzy control (Non LUT based, Fixed parameters)

6.4.2 ADAPTIVE FUZZY (FIXED PARAMETERYS)

The self-tuning adaptive fuzzy controller isinvestigated in this section. This controller is
discussed in detail in section 6.4. We run the simulation for two trajectories for the case
that manipulator parameters do not change during the entire duration of motion. Fig.
6.4.2.1(a) showsthe error profilesfor first trgjectory. Fig. 6.4.2.1(b) shows a comparison
of errors between adaptive fuzzy and pure fuzzy control. As can be seen from the figure,
the adaptive fuzzy controller gives improved performance compared to pure fuzzy
controller. Errors for both links for adaptive fuzzy controller are reduced. However like
the pure fuzzy controller, the adaptive fuzzy controller aso has non-zero steady state
errors for both links albeit reduced to some extent.

Fig. 6.4.2.1(c) shows the error profiles for the second trgjectory. Fig. 6.4.2.1(d) shows a

comparison of errors between adaptive fuzzy and pure fuzzy control for the second
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trajectory. Once again it is observed that adaptive fuzzy controller gives better
performance with both r.m.s and maximum errors getting reduced, when compared to
pure fuzzy controller. Table 6.4.2.1 lists the various error measures for the two

trajectories for this controller.

Adaptive Fuzesy (Fixed Parametaers, Trajectory 1)

---- Link1
—— Link2

Error in Position (deq)

Time {(sec)

Fig. 6.4.2.1(a) Errorsfor Adaptive Fuzzy control (Fixed parameters, Trajectory 1)

Comparison: Pure s Adaptive Fuzzy (Fixed Parameters, Trajectory 13

025 .
A . ---- Pure Fuzzy Link1
0=k —— Pure Fuzzy Link2
B ! kS ---- MAdap Fuzzy Link1
— Adap Fuzzy Link2

ozsfh

O
h

015

O
Y

0.0%

Errorin Position {deq)

-0.05

Time {(sec)

Fig. 6.4.2.1(b) Comparison of Errorsfor Adaptive Fuzzy Vs Fuzzy control (Fixed
parameters, Trajectory 1)
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Adaptive Fuzzy (Fixed Parameters, Trajectory 2)

0.25 ,
———~ Link1
; . . — Linkz
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Lo &)
=
=
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= oos
=
0
-0.05
e . . . . . .
0 1 2 = 4 5 G 7 a

Time (sec)

Fig. 6.4.2.1(c) Errors for Adaptive Fuzzy control (Fixed parameters, Traectory 2)

Comparison: Pure s Adaptive Fuzzy (Fixed Parameters, Trajectory 23

0.5
---- Pure Fuzy Link1
—— Pure Fuzzy Linkz
0.4 F PR - ---- Adap Fuzzy Link1
—— Adap Fu==y Link2
H
05 e —

Errorin Position [dag)

0.z L L L 1 L L L

Time [(sec)

Fig. 6.4.2.1(d) Comparison of Errorsfor Adaptive Fuzzy Vs Fuzzy control (Fixed
parameters, Trajectory 2)

Adaptive Fuzzy (Fixed parameters) Errors (deg)

TRAJECTORY NO.1

TRAJECTORY NO.2

Link1 Link2 Linkl Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—0°— 0°— -45°—0°—
RMS SS RMS SS RMS MAX RMS MAX
0.1541 | 0.1819 | 0.0887 | 0.0784 | 0.1587 0.2272 0.0990 0.1468

Table 6.4.2.1. Errorsfor Adaptive Fuzzy control (Fixed parameters)
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S.No | CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2

STRATEGY link1 link2 link1 link2

0°— 90°—>0°— 0°— -90°—>0°— 0°— 45°—>0°—>45°—->0° 0°— -45°—>0°—>-45°—0°

RMS SS RMS SS RMS MAX RMS MAX

1 PureFuzzy | 02104 0.2345 0.0966 | 0.0590 | 0.2453 0.4088 0.1273 0.2308
2. SOC Zero 00338 | 00164 | 00306 | -00163 | 0.0331 -0.1023 0.0409 -0.0923

LUT

3. SOCL’\l‘JOTmef 0 | 00315 0.0164 0.0306 | -00163 | 0.0293 -0.1014 0.0385 0.0908
4 STFC 0.1541 0.1819 00887 | 00784 | 0.1587 0.2272 0.0990 0.1468

Table 6.4.2.2. Errors for Fuzzy, SOC and STFC (Fixed Parameters)

Table 6.4.2.2 lists the errors for the Pure Fuzzy, SOC and STFC for comparison. It can
be seen that STFC performs well but is not as good as SOC.

6.4.3 PURE FUZZY (CHANGING PARARAMETERYS)

The simulations done in this section are similar to those done in previous section except
that in these cases we assume that the manipulator picks up and releases load during
motion. Hence the manipulator parameters change during the course of motion. The first
simulation is for pure fuzzy controller. It is observed that the performance of controller
degrades compared to the fixed parameter case. In particular it is the transient
performance of the controller that suffers. The steady state errors for first tragjectory
remain same for fixed and changing parameter cases. The maximum errors for second
trajectory increase in case of changing parameters. The error profiles for the two links
are shown in Fig. 6.4.3.1(a) for the first trgectory, and Fig. 6.4.3.1(b) for the second
trajectory. Table 6.4.3.1 lists the magnitudes of various errors for the two tragectories for
this controller. A comparison between the error profiles (for trajectory 1) of this
controller and the exactly similar LUT based controller studied in 6.3.4 is shown in Fig
6.4.3.1(c). As can be seen from thisfigure, the errors for LUT based controller are lower
compared to Non-LUT based controller. As explained earlier, thisis mainly because of
manual fine-tuning done for LUT based controller. Also as can be expected the
trajectory for Non-LUT based controller is much smoother compared to LUT based

controller.
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FPure Fuz=y (Changing Faramenter, Trajectory 1)
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Fig. 6.4.3.1(a) Errorsfor Fuzzy control (Non LUT based, Changing parameters,
Trajectory 1)

Fure Fuzzy (Changing Parameters, Trajpectory 27

---- Link1
—— LinkZ2

Errorin Position (deq)
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a 1 2 3 4 5 5 b =
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Fig. 6.4.3.1(b) Errors for Fuzzy control (Non LUT based, Changing parameters,
Trajectory 2)
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Fig 6.4.3.1(c) Comparison of errorsfor LUT and Non LUT based Fuzzy controllers
(Changing Parameters)

Pure Fuzzy (Changing parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Linkl Link2
0°— 90°—>0° 0°— -90°—0° 0°— 45°>0°— 0°— -45°>0°—>

RMS SS RMS SS RMS MAX RMS MAX
0.2347 | 0.2345 | 0.1206 | 0.0590 | 0.2907 0.4088 0.1579 0.2774

Table 6.4.3.1. Errorsfor Fuzzy control (Non LUT based, Changing parameters)

6.4.4. ADAPTIVE FUZZY (CHANGING PARAMETERYS)

The simulations carried out in this section are similar to those done in section 6.4.2
except for the fact that here the manipulator parameters change during the course of
motion. The manipulator is assumed to pick and release load periodically. We run the
simulation for two tragjectories as used for all simulation. Fig. 6.4.4.1(a) shows the error
profiles for first trgectory. Fig. 6.4.4.1(b) shows a comparison of errors between
adaptive fuzzy and pure fuzzy control. As can be seen from the figure, the adaptive
fuzzy controller gives improved performance compared to pure fuzzy controller. Errors
for both links for adaptive fuzzy controller are reduced. However like the pure fuzzy
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controller, the adaptive fuzzy controller aso has non-zero steady state errors for both
links although reduced to some extent.

Fig. 6.4.4.1(c) shows the error profiles for the second trgjectory. Fig. 6.4.4.1(d) shows a
comparison of errors between adaptive fuzzy and pure fuzzy control for the second
trajectory. Once again it is observed that adaptive fuzzy controller gives better
performance with both r.m.s and maximum errors getting reduced, when compared to
pure fuzzy controller. Table 6.4.4.1 lists the various error measures for the two

trajectories for this controller.

Adaptive Fuz=y (T hanging FParameters, Ttajectary 1)

---- Link1
— Link2

Ermorin Position {deg)

L L
o = 10 15
Time (sec)

Fig. 6.4.4.1(a) Errorsfor Adaptive Fuzzy control (Changing parameters, Trajectory 1)

Comparison: Pure s, Adaptive Fuzzy (Changing Pararmenter, Trajectory 1)
0.4 T T

---- Pure Fuzey Link1
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o2s -
;

oz

e e e e e o 2

Erorin Position (deq)
m]
o
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Fig. 6.4.4.1(b) Comparison of Errorsfor Adaptive Fuzzy Vs Fuzzy control (Changing
parameters, Trajectory 1)
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Fig. 6.4.4.1(c) Errorsfor Adaptive Fuzzy control (Changing parameters, Trajectory 2)
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Fig. 6.4.4.1(d) Comparison of Errorsfor Adaptive Fuzzy Vs Fuzzy control (Changing
parameters, Trajectory 2)

Adaptive Fuzzy (Changing parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—0°— 0°— -45°—0°—
RMS SS RMS SS RMS MAX RMS MAX
0.1707 | 0.1819 | 0.1010 | 0.0784 | 0.1923 0.2384 0.1147 0.1651

Table 6.4.4.1. Errors for Adaptive Fuzzy control (Changing parameters)
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S.No | CONTROL

TRAJECTORY NO.1

TRAJECTORY NO.2

STRATEGY link1 link2 link1 link2

0°— 90°—>0°—> 0°— -90°—>0°—> 0°— 45°—»0°—>45°—>0° | 0°— -45°—>0°—>-45°—>0°

RMS SS RMS SS RMS MAX RMS MAX

1 PureFuzzy | 0247 0.2345 0.1206 | 00590 | 0.2907 0.4088 0.1579 0.2774
2. SOC Zero 00245 | 00166 | 00333 | -00169 | 0.0477 0.1059 0.0395 -0.1032

LUT

3. SOCL’\l‘JOTmef 0 | 00271 0.0166 0.0305 | -0.0166 | 0.0380 -0.1014 0.0387 0.0898
4 STFC 0.1707 0.1819 01010 | 00784 | 01923 0.2384 0.1147 0.1651

Table 6.4.4.2. Errors for Fuzzy, SOC and STFC (Changing Parameters)

Table 6.4.4.2 lists the errors for the Pure Fuzzy, SOC and STFC for comparison. It can

be seen that STFC performs well but is not as good as SOC.

6.4.5 COMPARISON OF PERFORMANCE

Following observations are made based on simulations carried out in this section (6.4):

1. The error profiles for non-lookup table based Fuzzy controller are much smoother

compared to LUT based Fuzzy controllers. This is mainly because of smoother

controller action and tranglates directly into a smoother manipulator motion. The

errorsfor the LUT based controller however, are smaller.

2. The Adaptive Fuzzy controller improves the performance of Pure Fuzzy controller

considerably. The performance improvement is more for the case when the

manipulator parameters change during motion.

3. The error profiles for Adaptive Fuzzy controllers are much smooth compared to

their SOC counterparts. This is once again mainly due to their non-lookup table

based nature.

6.5 HYBRID FUZZY+INTEGRAL ERROR CONTROLLER (HFIE)

The PD sdf-tuning adaptive controller investigated in previous sections gives a

reasonably good performance for both tragjectories as far as rms errors are concerned.

However it is observed that for the first trgjectory, both the manipulator links end up
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with steady state errors of about 0.1 degrees. Moreover these errors do not decrease even
if we consider the case of manipulator parameters not changing during the course of
motion.

With a view to reduce this steady state error we propose and investigate a simple hybrid
fuzzy controller. The block diagram of this controller is shown in Fig. 6.5.1. This
controller consists of two parts. First is a smple non-lookup table based fuzzy

controller. This controller is same as that investigated in section 6.4.1 and 6.4.3. It is

also the same as the
0
Fuzzy +,® 5| ROBOT —
Controller o>
yY +T 6
e
n=>5

+ —
v X<
Fig. 6.5.1. Hybrid Fuzzy plus Integral error Controller block diagram

self-tuning adaptive fuzzy controller investigated in section 6.4.2 and 6.4.4 but with
adaptation gain o fixed at a constant value of 1. Second is an integral error controller, as
shown in Fig. 6.5.1. Usually the integral part of a controller produces an output, which is
proportional to integral of error over the entire period of motion. But this smple
addition of integral term also increase the order of system and might result in an
unstable closed loop system. The controller that we propose does not perform
summation (integration) of error over entire period of motion.

For our ssimulations the trgectory generator provides the controller with information

about the desired position, velocity and acceleration (64,64.6,) for each joint and

keeps updating this information at the path update rate which has been chosen as 3ms

(333H2z). The controller takes this information and compares it with the present (actual)
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position and velocity of joints (6,6), which are provided as feedback through the

sensors. Based upon the error between the desired and actua values, the controller

calculates a vector of joint torques (r) , which should be applied at respective joints by

the actuators to minimize these errors. In the simulations, the control loop runs five
times for every set point supplied by the trgjectory generator. The integral action of our
controller is limited to summing up these five errors for every set point provided by the
trajectory generator. The sum of these errors is reset to zero every time the trajectory
generator gives a new set point. This type of integral action cannot of course give zero
values of steady state error but can nevertheless reduce them. Further the overal
resulting controller does not suffer from danger of instability.

6.5.1. HFIE CONTROLLER (FIXED PARAMETERYS)

We run the simulation for two trajectories for the case that manipulator parameters do
not change during the entire duration of motion. Fig. 6.5.1.1(a) shows the error profiles
for first trgjectory. Fig. 6.5.1.1(b) shows a comparison of errors between adaptive fuzzy
and HFIE control. As can be seen from the figures, the HFIE controller gives much
improved performance compared to adaptive fuzzy controller. Errors for both links for
HFIE controller are reduced. This includes not only the steady state errors but also the
transient, rms and maximum errors as well. The steady state errors athough reduced, are
still not zero.

Fig. 6.5.1.1(c) shows the error profiles for the second trgectory. Fig. 6.5.1.1(d) shows a
comparison of errors between adaptive fuzzy and HFIE control for the second trajectory.
Once again it is observed that HFIE controller gives better performance with both r.m.s
and maximum errors getting reduced, when compared to adaptive fuzzy controller.
Table 6.5.1.1 lists the various error measures magnitudes for the two trgectories for this

controller.
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Fuzzy+integral Error (Fixed Parameters, Trajectory 1)
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Fig. 6.5.1.1(a) Errorsfor HFIE controller (Fixed parameters, Trajectory 1)

Comparison: Adaptive Fuzzy s Fuzzy+integral (Fixed Parameters, Trajectaory 1)
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Fig. 6.5.1.1(b) Comparison of Errorsfor Adaptive Fuzzy Vs HFIE control (Fixed
parameters, Trajectory 1)
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Fuz=y+integral Error (Fixed Farameters, Trajectory 2
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Fig. 6.5.1.1(c) Errorsfor HFIE controller (Fixed parameters, Trajectory 2)
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Fig. 6.5.1.1(d) Comparison of Errors for Adaptive Fuzzy Vs HFIE control (Fixed
parameters, Trajectory 2)

Pure Fuzzy + Integral Error (Fixed parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Linkl Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—>0°— 0°— -45°—>0°—>

RMS SS RMS SS RMS MAX RMS MAX
0.0701 | 0.0813 | 0.0218 | 0.0208 | 0.0784 0.1384 0.0229 0.0450

Table 6.5.1.1. Errorsfor HFIE control (Fixed parameters)
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S.No | CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2

0°— 90°—>0°— 0°— -90°—>0°— 0°— 45°—0°—45°—->0° 0°— -45°—>0°—>-45°—0°

RMS SS RMS SS RMS MAX RMS MAX

1. Pure Fuzzy 0.2104 0.2345 0.0966 0.0590 0.2453 0.4088 0.1273 0.2308
2. SOC Zero 00338 | 00164 | 00306 | -00163 | 00331 | -0.1023 0.0409 -0.0923

LUT

3. SOCL'\EJO;‘ZGT 0 0.0315 0.0164 0.0306 -0.0163 0.0293 -0.1014 0.0385 0.0908
4. STEC 0.1541 0.1819 0.0887 0.0784 0.1587 0.2272 0.0990 0.1468
5. HFIE 0.0701 0.0813 0.0218 0.0208 0.0784 0.1384 0.0229 0.0450

Table 6.5.1.2. Errorsfor Fuzzy, SOC, STFC and HFIE (Fixed Parameters)

Table 6.5.1.2 lists the errors for the Pure Fuzzy, SOC, STFC and HFIE for comparison.
It can be seen that HFIE performs better than STFC but is not as good as SOC.

6.5.2. HFIE CONTROLLER (CHANGING PARAMETERYS)

We next do the simulation for two trajectories for the case that manipulator parameters
change during the duration of motion. Fig. 6.5.2.1(a) shows the error profiles for first
trajectory. Fig. 6.5.2.1(b) shows a comparison of errors between adaptive fuzzy and
HFIE control. Once again it can be seen from the figures, that the HFIE controller gives
much improved performance compared to adaptive fuzzy controller. Errors for both
links for HFIE controller are reduced. This includes not only the steady state errors but
the transient, rms and maximum errors as well. The steady state errors athough reduced
are still not zero.

Fig. 6.5.2.1(c) shows the error profiles for the second trgjectory. Fig. 6.5.2.1(d) shows a
comparison of errors between adaptive fuzzy and HFIE control for the second trajectory.
As expected, the HFIE controller gives better performance with both r.m.s and
maximum errors getting reduced, when compared to adaptive fuzzy controller. Table
6.5.2.1 lists the various error measures magnitudes for the two trajectories for this

controller.
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Fuz=y + Intecral Error (Changing Farametaers, Trajectory 1)
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Fig. 6.5.2.1(a) Errorsfor HFIE controller (Changing parameters, Trajectory 1)
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Fig. 6.5.2.1(b) Comparison of Errors for Adaptive Fuzzy Vs HFIE control (Changing
parameters, Trajectory 1)
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Fig. 6.5.2.1(c) Errorsfor HFIE controller (Changing parameters, Trajectory 2)
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Comparison: Adaptive Fuzzy s Fuzzy+int
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Fig. 6.5.2.1(d) Comparison of Errors for Adaptive Fuzzy Vs HFIE control (Changing
parameters, Trajectory 2)

Pure Fuzzy + Integral Error (Changing parameters) Errors (deg)

TRAJECTORY NO.1

TRAJECTORY NO.2

Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—>0°— 0°— -45°—0°—
RMS SS RMS SS RMS MAX RMS MAX
0.0381 | 0.0813 | 0.0292 | 0.0208 | 0.1026 0.1474 0.0335 0.0498

Table 6.5.2.1. Errors for HFIE control (Changing parameters)

S.No CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY linkL link2 link1 link2
0°— 90°—>0°— 0°— -90°—>0°— 0°— 45°—>0°—45°—0° 0°— -45°—0°—-45°—0°
RMS SS RMS SS RMS MAX RMS MAX
1 PureFuzzy | 02347 | 0245 | 01206 | 0059 | 02907 0.4088 0.1579 02774
2 SOLCU%I'er 0 00245 | 00166 | 00333 | -00169 | 0.0477 0.1059 0.0395 -0.1032
3. SOCL’\l‘JOTnZGT 0 | 00271 | 00166 | 00305 | -0.0166 | 0.0380 -0.1014 0.0387 0.0898
4. STFC 01707 | 01819 | 01010 | 00784 | 01923 0.2384 0.1147 0.1651
3 HFIE 0038l | 00813 | 00292 | 00208 | 0.1026 0.1474 0.0335 0.0498
Table 6.5.2.2. Errors for Fuzzy, SOC, STFC and HFIE (Changing Parameters)

Table 6.5.2.2 lists the errors for the Pure Fuzzy, SOC, STFC and HFIE for comparison.

It can be seen that HFIE performance is amost comparable to that of SOC.
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6.5.3 COMPARISON OF PERFORMANCE

Following observations are made based on simulations carried out in this section (6.5):

1. Themodified integral action is an effective method to reducing the overall errors
for manipulator trajectory tracking.

2. The proposed HFIE controller performs remarkably well when compared to
STFC. The HFIE controller gives better performance with r.m.s., maximum and
steady state errors al getting reduced, when compared to STFC

3. The improved performance of HFIE controller is further achieved with having
much lesser number of calculations to perform compared to adaptive fuzzy
controller. Although for our simulations we have kept the sampling rate for both
adaptive fuzzy and HFIE controllers same, the much higher possible sampling
rates for HFIE controller will improve its performance further.

4. It was also observed that errors for HFIE controller go down as we increase the
integral gain constant Ki to a certain value. Any further increase in Ki results in

errors increasing again. Hence there is an optimal value for the gain Ki.

6.6 COARSE/FINE ADAPTIVE FUZZY CONTROLLER (CFAF)

When a controller is required to operate under conditions of both large and small
excursions of its inputs from their nominal values, it is convenient to use two or more
sets of fuzzy rules to effect improved control [Dunlop et a. (1994)]. For large
excursions of the controller input variables, coarse control is applied with the objective
of forcing the plant to return to its nominal operating point as rapidly as possible.
Accuracy of control is of secondary importance under these circumstances and only a
few rules are required. When the plant variables reach some small region about the
nominal operating point then fine control is applied. Here a new set of control rules
necessary to effect the desired fine control actions are used and these involve a larger
number of rules and fuzzy sets. Under normal operating conditions the controller uses

fine control for small excursions about the nominal operating point.
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An aternative way of achieving coarse-fine control is through zooming of the universe
of discourse of each controller input variable. In this case the universe of discourse is
varied, either in discrete regions in control space or smoothly as the plant approaches the
desired operating point. This approach has been used to great effect for the control of
high precision mechatronic devices and is investigated in this section for effectivenessin
case of mechanical manipulator.

The basic controller is still the self-tuning adaptive fuzzy controller discussed in section
6.4. In that controller the output-scaling factor alone is adapted via the variable gain
factor a.. The characteristics of a PlI- or PD-type fuzzy logic controller depends on both
input and output scaling factors, i.e., for the best performance, simultaneous adjustment
of both input and output scaling factors is more justified. To this effect the controller
normalizes the position and velocity errors to limit them to domain [-6 6]. It then checks
if the position and velocity errors are both within [-3 3]. If they are, then both the
position and velocity error are doubled to provide the zooming effect. If the errors are
not within [-3 3], then they are used as they are, without being doubled. This simple
strategy results in much improved performance of the controller as discussed in the

following sections.

6.6.1 COARSE/FINE ADAPTIVE FUZZY CONTROLLER (FIXED
PARAMETERYS)

We first run the ssmulation for two trajectories for the case that manipulator parameters
do not change during the entire duration of motion. Fig. 6.6.1.1(a) shows the error
profiles for first trgjectory. Fig. 6.6.1.1(b) shows a comparison of errors between
adaptive fuzzy and CFAF control. As can be seen from the figures, the CFAF controller
gives much improved performance compared to adaptive fuzzy controller. Errors for
both links for CFAF controller are reduced. Thisincludes not only the steady state errors
but the transient, rms and maximum errors as well.

Fig. 6.6.1.1(c) shows the error profiles for the second trgjectory. Fig. 6.6.1.1(d) shows a
comparison of errors between adaptive fuzzy and CFAF control for the second

trajectory. Once again it is observed that CFAF controller gives better performance with
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both r.m.s and maximum errors getting reduced, when compared to adaptive fuzzy
controller. Table 6.6.1.1 lists the various error measures magnitudes for the two

trajectories for this controller.

Coarse/Fine Adaptive Fuzzy (Fixed Parameters, Trajectory 1)
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Fig. 6.6.1.1(a) Errorsfor CFAF controller (Fixed parameters, Traectory 1)
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Fig. 6.6.1.1(b) Comparison of Errorsfor Adaptive Fuzzy Vs CFAF control (Fixed
parameters, Trajectory 1)
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CoarsedFine Adaptive Fuzey (Fixed Parameters, Trajectory 2]
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Fig. 6.6.1.1(c) Errorsfor CFAF controller (Fixed parameters, Traectory 2)
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Fig. 6.6.1.1(d) Comparison of Errorsfor Adaptive Fuzzy Vs CFAF control (Fixed
parameters, Trajectory 2)

CF Adaptive Fuzzy (Fixed parameters) Errors (deg)

TRAJECTORY NO.1 TRAJECTORY NO.2
Link1 Link2 Linkl Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—0°— 0°— -45°—0°—

RMS SS RMS SS RMS MAX RMS MAX
0.0747 | 0.0910 | 0.0373 | 0.0392 | 0.0766 0.1115 0.0358 0.0583

Table 6.6.1.1. Errors for CFAF control (Fixed parameters)
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S.No | CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2

0°— 90°—>0°— 0°— -90°—>0°— 0°— 45°—0°—45°—->0° 0°— -45°—>0°—>-45°—0°

RMS SS RMS SS RMS MAX RMS MAX

1. Pure Fuzzy 0.2104 0.2345 0.0966 0.0590 0.2453 0.4088 0.1273 0.2308

2. SOC Zero 00338 | 00164 | 00306 | -00163 | 00331 | -0.1023 0.0409 -0.0923
LUT

3. SOC Nonzero 0.0315 0.0164 0.0306 -0.0163 0.0293 -0.1014 0.0385 0.0908
LUT

4. STEC 0.1541 0.1819 0.0887 0.0784 0.1587 0.2272 0.0990 0.1468

5. HFIE 0.0701 0.0813 0.0218 0.0208 0.0784 0.1384 0.0229 0.0450

6. CFAF 0.0747 0.0910 0.0373 0.0392 0.0766 0.1115 0.0358 0.0583

Table 6.6.1.2. Errorsfor Fuzzy, SOC, STFC, HFIE and CFAF (Fixed Parameters)

Table 6.6.1.2 lists the errors for the Pure Fuzzy, SOC, STFC, HFIE and CFAF for
comparison. It can be seen that CFAF performs better than STFC but is not as good as
SOC or HFIE.

6.6.2 COARSE/FINE ADAPTIVE FUZZY CONTROLLER (CHANGING
PARAMETERYS)

We next do the simulation for two trajectories for the case that manipulator parameters
change during the entire duration of motion. Fig. 6.6.2.1(a) shows the error profiles for
first trgjectory. Fig. 6.6.2.1(b) shows a comparison of errors between adaptive fuzzy and
CFAF control. Once again it can be seen from the figures, that the CFAF controller
gives much improved performance compared to adaptive fuzzy controller. Errors for
both links for CFAF controller are reduced. This includes not only the steady state errors
but the transient, r.m.s and maximum errors as well.

Fig. 6.6.2.1(c) shows the error profiles for the second trgjectory. Fig. 6.6.2.1(d) shows a
comparison of errors between adaptive fuzzy and CFAF control for the second
trajectory. As expected, the CFAF controller gives better performance with both r.m.s
and maximum errors getting reduced, when compared to adaptive fuzzy controller.
Table 6.6.2.1 lists the various error measures magnitudes for the two trgectories for this

controller.

175




o1

o122

o1

oo

0.0s

o.04

Efrarin Position (deg)

ooz

-0.az2

4li:oarseﬂ:irle Addaptive Fuz=y ({CThanging FParametaers, Trajectory 1)

---- Link1
- — LinkZ2

L
Time (sec) o 15

Fig. 6.6.2.1(a) Errorsfor CFAF controller (Changing parameters, Trajectory 1)

Comparison: Adaptive Fuzzy s, CFF Adap Fuzzy (Changing Parameters, Trajectory 1]

o.25

Adap Fuzzy Link1
— Adap Fuzzy Link2
---- ZAF Adap Fuzzy Link1 —
—— ZAF Adap Fuzzy Link2

L L
= 10 15
Time (s=ec)

Fig. 6.6.2.1(b) Comparison of Errorsfor Adaptive Fuzzy Vs CFAF control (Changing

[ |

.1z

[

.0

O.0=

o.04

Ermorin Position {deg)

o.0z2

-0.02
]

parameters, Trajectory 1)

CoarsedFine Adaptive FuEsy (C”hanging FParameaetaers, Trajectory 2)
E T T T T T T T

---- Link1
— Link2

= = 4 =1 =1 i =1

Time (sec)

Fig. 6.6.2.1(c) Errorsfor CFAF controller (Changing parameters, Trajectory 2)

176



Comparison: Adaptive Fuzzy s CfF Adap Fuzzy (Changing Parameters,

0.25
; b S ¢ :
k P, " : e H
028 --7 - e =T - -
i - . v - .
= 015 F - . - . -
= - -
= 01§ . - - . . .
= et - TeeT Tl L ---
&
= 0.05 -
=
L o .
---- Adap Fuz=y Link1
-0.05 | — Adap Fuzzy Linkz 1
---- CJF Adap Fu==y Link1
——— ZF Adap Fuzzy Link2
0.1 L 1 1 I L L L
a 1 2 3 4 5 =1 E =]

Tme (sec)

Trajectory 2]

Fig. 6.6.2.1(d) Comparison of Errorsfor Adaptive Fuzzy Vs CFAF control (Changing
parameters, Trajectory 2)

CF Adaptive Fuzzy (Changing parameters) Errors (deg)

TRAJECTORY NO.1

TRAJECTORY NO.2

Link1 Link2 Link1 Link2
0°— 90°—0° 0°— -90°—0° 0°— 45°—>0°— 0°— -45°—0°—
RMS SS RMS SS RMS MAX RMS MAX
0.0846 | 0.0910 | 0.0435 | 0.0392 | 0.0961 0.1266 0.0448 0.0644

Table 6.6.2.1 Errors for CFAF control (Changing parameters)

S.No | CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2

0°— 90°—>0°— 0°— -90°—>0°— 0°— 45°—0°—45°—->0° 0°— -45°—>0°—>-45°—0°

RMS SS RMS SS RMS MAX RMS MAX

1. Pure Fuzzy 0.2347 0.2345 0.1206 0.0590 0.2907 0.4088 0.1579 0.2774

2 SOC Zero 00245 | 00166 | 00333 | -00169 | 0.0477 0.1059 0.0395 -0.1032
LUT

3. SOC Nonzero 0.0271 0.0166 0.0305 -0.0166 0.0380 -0.1014 0.0387 0.0898
LUT

4. STEC 0.1707 0.1819 0.1010 0.0784 0.1923 0.2384 0.1147 0.1651

5. HFIE 0.0381 0.0813 0.0292 0.0208 0.1026 0.1474 0.0335 0.0498

6. CFAF 0.0846 0.0910 0.0435 0.0392 0.0961 0.1266 0.0448 0.0644

Table 6.6.2.2. Errors for Fuzzy, SOC, STFC, HFIE and CFAF (Changing Parameters)
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Table 6.6.2.2 lists the errors for the Pure Fuzzy, SOC, STFC, HFIE and CFAF for
comparison. It can be seen that CFAF performance is better than STFC but not as good
as HFIE or SOC.

6.6.3 COMPARISON OF PERFORMANCE

Following observations are made based on simulations carried out in this section (6.6):

1. It is observed that the CFAF controller gives much improved performance
compared to STFC. Errors for both links for CFAF controller are reduced for
fixed as well as changing parameters case.

2. CFAF does not involve any additional computational burden on the controller.
The additional complexity is only in terms of few additional if-then-else
statements.

3. The CFAF controller however is still not as good as HFIE controller or SOC.

6.7 CONCLUDING REMARKS

In this chapter we investigated the efficacy of Fuzzy control techniques for manipulator
control. We investigated both the lookup table based controller and the conventional
fuzzy controller. We found that the fuzzy controller on its own does not give a
performance as good as Adaptive controllers. However the Self-Organizing and Self-
Tuning versions of the fuzzy controllers give very good performance.

We also investigated the performance of some new hybrid fuzzy controllers. It was
found that hybrid conventional-fuzzy controllers give a substantial performance
improvement. On the other hand the Hybrid adaptive-fuzzy controllers do not give much
performance improvement.

The HFIE and CFAF controllers are also very competitive in their performance. On the
whole Fuzzy control is a viable alternative to adaptive control both in terms of good

performance and reduced complexity of computations required.
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CHAPTER VII

CONCLUSIONSAND RECOMMENDATIONS

7.1 CONCLUSIONS

In this thesis we have attempted to explore the behavior of few robot manipulator
control strategies. The controllers investigated in this thesis are of conventional,
adaptive and fuzzy kind and their combinations.

We have also suggested some modifications to the existing control strategies, which
could lead to improvement in their performance. Thisis mainly in terms of introducing a
modified integra error compensation. We have also suggested some new control
strategies, like HFIE, which give good performance with minimal computational
complexity.

For the sake of ‘just’ comparison, we have kept the manipulator model and test
trajectories same throughout. The detailed conclusions for the study carried out on them
are aready presented in Chapters 4, 5 and 6 respectively. Here we state the main

conclusions and present them section wise.

CONVENTIONAL CONTROL

Various manipulator control strategies belonging to the conventional strategies were
tested in this section. These included the PD, PID, Computed Torque, Feed Forward
Inverse Dynamics and Critically Damped Inverse Dynamics control. These strategies
were tested for two different tragjectories. In the first trgectory the manipulator had to
essentially position itself accurately and in the second trajectory the manipulator is
essentially involved in a pick and place task. The first trgjectory allows us to investigate
the steady state behavior of the controller while the second trgjectory alows
investigation of transient behavior of the controller more rigorously.

The first situation tested was where the manipulator parameters do not change during
the entire trgjectory. Under this situation it was seen that although the manipulator
parameters are not changing, the fixed gain PD controller perform poorly. Thisis mainly

because the manipulator model used does not include any gearings at the joints, a case
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which is true for high-speed robots. The PID controller gives much better performance
than PD controller but can become unstable very easily even with low gain values. This
clearly points to the fact that for high speed and high precision operations these simple
non-model based schemes cannot be used.

Amongst the model-based controllers, the performance is greatly dependent upon
exactness with which the model structure and its parameters are known. If the model
and its parameters are known exactly, the model-based controllers give very good
performance. This performance degrades rapidly with increasing inaccuracies of
measurement and modeling. So much so that the performance may degrade below that
of PD controller. Under the situation of inexactness of modeling and parameter
estimation, the CDID controller gives best performance. This is mainly because this
controller uses reference values of tragjectory rather than actual ones for model
computation.

The second situation, which was tested, was when the manipulator picks up an unknown
load during the course of its motion and releases it later. This effectively means that the
manipulator parameters change during motion and the magnitude of change is unknown.
Under this situation, the performance of PD controller and CT controller degrades
appreciably. The FFID and CDID controllers also loose on their performance but not as
much as PD or CT controllers. This clearly once again highlights the merit of using
reference and desired trgjectory values, rather than actual ones, for model computation.
Lastly in this section we proposed the use of a modified integral error compensation
with the model based controllers for improving their performance. The integral action
sums up the errors for every five iterations of control loop for a given set point. When
the set point changes, the error summation is reset to zero. This modified integral action
does not suffer from stability related problems and greatly improves the performance of
the model-based controllers. Moreover as the integral action is implemented entirely in
software, it can be ‘switched off’ in case the manipulator performance degrades below a
datum level. It was seen that the performance of CT and FFID controllers improved
appreciably with the inclusion of modified integra action, while the performance of

CDID controller only improved marginally.
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ADAPTIVE CONTROL

To further improve the performance of manipulator controller, we need a controller,
which can change or ‘learn’ the manipulator parameters which are not known exactly
because of inaccuracies of estimation or because they change as the manipulator picks
up unknown loads in its work environment. Alternatively the controller could adjust its
gains as the parameters change with the objective of driving the tracking errors to zero.
Thisis essentially what the adaptive controllers do.

In this section we investigated the behavior of three different adaptive controllers widely
guoted in literature for manipulator control. These controllers are the adaptive version of
CDID or the ACDID controller, aModel Reference Adaptive Controller (MRAC) and a
Decentralized Adaptive Controller (DAC).

We first investigated the performance of these controllers for the situation that the
manipulator parameters change during the motion as it picks up and releases load. This
case was further analyzed for the situations of warm start (some estimate of parameters
known) and cold start (no estimate of parameters is available). It was seen that the
adaptive controllers out perform the conventional controllers for all situations. Even the
conventiona controllers with modified integral action do not perform as well as these
adaptive controllers. Further it was seen that the model-based controllers (ACDID and
MRAC) perform better for the warm start case. This clearly shows the importance of
using ‘good’ estimates of parameter, whenever available, for performance improvement.
We also investigated the effect of adding modified integral action to these controllers
just like we did for conventiona controllers. It was seen that addition of this action
improves the performance of adaptive controllers both in terms of steady state and
transient errors. Overall the ACDID controller with modified integral action gave best

performance amongst adaptive controllers.
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FUZZY CONTROL

Although the adaptive controllers give very good performance, their practical
implementation is not easy because of their computational complexity. This means that
high-speed processors need to be used to get sufficiently high sampling rates. This
directly translates into high cost of implementation. Hence it is worthwhile to
investigate the Fuzzy control method, which promises good performance at much less
computational complexity. In this thesis we investigated many different fuzzy
controllers, which include self-organizing, self-tuning, hybrid fuzzy etc. We have also
proposed some new fuzzy controllers for the robot manipulators.

In this section we proposed and tested several new hybrid fuzzy controllers. These
controllers are essentially a combination of pure fuzzy (LUT based) and another
conventional or adaptive controller. The control action of the two controllersis summed
up to produce the final actuating signal.

It was seen that the performance of conventional controllers studied earlier (CT, CDID
and FFID) improves considerably when they are combined in the hybrid structure with
fuzzy controller. The performance of these hybrid fuzzy/conventional controllersis also
better than conventional controllers with modified integral error compensation. As the
fuzzy controller is LUT based, it adds only a minimal computational burden. However
this burden is more than that incurred by adding only the modified integral error
compensation.

The hybrid fuzzy/adaptive controllers also showed some performance improvement.
However this improvement is not as marked as the previous case of hybrid
fuzzy/conventional controllers. Moreover these controllers are computationally even
more intensive than the adaptive controller alone. Hence we conclude that it is not
worthwhile using such controllers. We found that CDID + Fuzzy controller performs
amost as good as ACDID with modified integral error compensation with lesser
computational complexity. Hence these hybrid fuzzy/conventional controllers may
provide a viable alternative to adaptive controllers.

The second variant of fuzzy controller investigated is the fuzzy self-organizing
controller (SOC). Here the controller builds up its own LUT starting from all zero
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entries or modifies the already existing entries according to error profiles. This
controller gives an outstanding performance that was not matched by any other
controller of the fuzzy category. The performance was good even if the LUT had all
entries as zero initially. Of course the performance improved further when we started
with non-zero valuesin LUT.

The self-tuning fuzzy controller (STFC) was also studied. This controller adapts its
output denormalization gain online depending on the present error and its derivative.
The implementation of this controller is non-LUT based. It was seen that this controller
improves the performance beyond that of pure fuzzy controller but it is not at par with
the self-organizing controller. However the trajectory for STFC is much smoother
compared to that of SOC, mainly because of its non-LUT based nature. We suggest a
modification to STFC such that effectively both the input and output gains of the fuzzy
controller can be changed. This is achieved by zooming the universe of discourse. This
controller is known as coarse/fine adaptive fuzzy controller (CFAF). The CFAF
improves on the performance of STFC with minimal additional computational burden.
However the performance is till not as good as that of SOC.

Lastly we tried out a very simple hybrid architecture where we combined the fuzzy
controller with the modified integral error compensation (HFIE). To our surprise the
HFIE gives a very good performance next only to SOC. It aso outperforms the STFC
and CFAF controllers. The computational burden is lesser than SOC.

Table 7.1.1 lists the errors for various controllers under similar situation of changing
parameters. The shaded cells indicate the best performer in a category. Amongst all
controllers the hybrid ACDID + Fuzzy controller gives the best performance which is
closely matched by ACDID + IE controller.
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SNo | CONTROL TRAJECTORY NO.1 TRAJECTORY NO.2
STRATEGY link1 link2 link1 link2
0°— 90°—>0°—> 0°— -90°—>0°— 0°— 45°—>0°—>45°—->0° 0°—> -45°—0°—-45°-0°
RMS | Ss RMS | Ss RMS | MAX RMS | MAX
CONVENTIONAL CONTROL
1. PD Control 7.1415 9.4447 2.3758 2.6345 6.8624 9.5918 2.1554 3.3037
2. PID control 2.9360 3.8290 09742 | 10737 | 28617 4.1457 0.9264 1.4036
3. CT 6.1340 8.5617 46260 | -47008 | 4.9007 12,2731 4.4288 5.0733
4. EFID 2.5940 3.6395 0.8689 1.1186 2.0083 4.1268 0.6431 1.0846
5. CDID 0.0616 0.0695 0.0211 | 00214 | 00707 0.1244 0.0265 0.0509
6. CT+l E* 1.2919 1.7460 0.4019 | 04721 | 1.189%4 2.3245 0.3118 0.6798
7. FEID+ E* 1.0687 1.4588 03508 | 04488 | 0.9466 1.8639 0.2759 0.4419
8. CDID+|E* 0.0604 0.0676 0.0210 | 00208 | 0.0697 0.1226 0.0268 0.0513
ADAPTIVE CONTROL
0. ACDID 0.0247 0.0001 0.0238 | -0.0002 | 0.0391 0.0772 0.0344 0.0642
10. | ACDID+IE* 0.0213 0.0 0.0212 0.0 0.0323 0.0508 0.0325 0.0745
11 MRAC 0.9283 1.3691 0.2827 | 04039 | 0.6935 1.4323 0.2628 0.5390
12. MRAC+| E* 0.0321 0.0 0.0200 0.0 0.0559 0.1800 0.0270 0.0732
13. DAC 0.0613 0.0043 0.0259 | -0.0007 | 0.0674 0.1387 0.0284 0.0600
14. DAC+| E* 0.0313 0.0418 0.0220 | 00117 | 0.0371 0.0798 0.0329 0.0507
HYBRID FUZZY
15. Pure Fuzzy 1.3926 2.0000 0.2289 0.1670 1.2304 2.6153 0.4585 1.1183
16. CT+Fuzzy 0.1761 0.1670 02361 | 0.1667 | 0.6324 1.8571 0.2895 -1.0030
17. FFID+Fuzzy | 01534 0.1667 02716 | 01663 | 0.1471 0.2104 0.3702 -0.9186
18. | CDID+Fuzzy | 00216 0.0 0.0212 0.0 0.0343 -0.0610 0.0325 0.0507
19. ACDID+Fuzzy 0.0130 0.0 0.0119 -0.0001 0.0291 0.0599 0.0226 -0.0564
20. MRAC+Fuzzy 0.2472 0.3565 0.1261 0.1673 0.2350 0.3648 0.1423 -0.2403
21. DAC+Fuzzy | 00657 0.0101 0.0351 | 00001 | 0.0567 0.1103 0.0323 0.0791
ADAPTIVE FUZZY

22 SOC ZLUT 0.0245 0.0166 0.0333 | -00169 | 0.0477 0.1059 0.0395 -0.1032
23. | soc NZLUT | 00271 0.0166 0.0305 | -0.0166 | 0.0380 -0.1014 0.0387 0.0898
24, STFC 0.1707 0.1819 01010 | 00784 | 0.1923 0.2384 0.1147 0.1651
25. HEIE 0.0381 0.0813 0.0292 | 00208 | 0.1026 0.1474 0.0335 0.0498
26. CEAFE 0.0846 0.0910 0.0435 | 00392 | 0.0961 0.1266 0.0448 0.0644

Table 7.1.1 Errorsfor al controllers for parameter changing case
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7.2SUMMARY OF CONTRIBUTIONS

In brief we have contributed to the body of existing knowledge in the field of

manipulator control in the following way:

1.

9.

Done a comparative study of some conventional model based and non-model
based controllers. This was done for different situations like manipulator model
known exactly, manipulator model not known exactly etc.

Proposed and investigated the effect of including a modified integral action to
the all model based conventional controllers

Showed that including the modified integral error compensation improves the
performance of conventional controllers appreciably

Showed that CDID controller with modified integral action is the best performer
in conventional controllers category

Done a comparative study of some existing adaptive controllers for various
situations like warm start and cold start etc.

Proposed and investigated the effect of including a modified integral action to
the adaptive controllers

Showed that including the modified integral error compensation improves the
performance of adaptive controllers

Showed that ACDID controller with modified integral action is the best
performer in adaptive controllers category

Proposed and investigated some new hybrid fuzzy controllers

10. Done a comparative study of different fuzzy controllers like self-organizing,

self-tuning, hybrid etc.

11. Showed that the self-organizing controller with a non zero lookup table is the

best performer in fuzzy controllers category

7.3 RECOMMENDATIONS FOR FUTURE WORK

In any practical implementation of a robot controller, the actuator dynamics
plays an important role. Actuator torque saturation for example, would have a
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direct impact on stability of the system. Not much work has been done in this
direction. A complete manipulator model would definitely include not only the
robot dynamics but the actuator dynamics as well. Work may be done in the
direction of testing the behavior of these controllers with actuator dynamics

incorporated in the model.

With the recent availability of lightweight and precision acceleration sensors,
work needs to done on developing control algorithms, which use acceleration
feedback. It may be analyzed if controllers using acceleration feedback give

better performance than the controllers that do not useit.

Any simulation can at best be a pointer to expected behavior of a controller. It
can never be a subdtitute to testing by experimentation. All the control
algorithms simulated in the thesis may be experimentally tested as well.

Much work has recently been done in the area of neura networks based
controllers for robot manipulators [Patino et a. (2002), Horne et al. (1990)]. A
comparative study of these controllers with conventional, adaptive and fuzzy

controllers may be carried out.

Many genetic algorithm based robot controllers have aso been proposed of late
[Alander (1998)]. A comparative study of these genetic algorithm based
controllers with conventional, adaptive, fuzzy and neural networks based

controllers may be carried out.
These various controllers may be compared not only for their trajectory tracking

performance but also for their computational complexity. More computational

complexity directly implies costlier practical implementation.

186



LIST OF PUBLICATIONS

. Conventional Control Strategies for Robot Manipulators. A Simulation
Study, Proceedings of International Conference on Computer Applications in
Electrica Engineering-Recent Advances, IIT, Roorkee, October 2005, pp 362-
367.

. A Comparative Study of Few Conventional and Adaptive Control
Algorithms for Manipulator Control, Proceedings of the 2nd Indian
International Conference on Artificia Intelligence, Pune, December 2005, pp
252-264.

. Comparative Study of Some Adaptive Fuzzy Algorithms for Manipulator
Control, International Journal of Computational Intelligence, 2006, Vol.3,
Number 4, pp 303-311.

. Comparative Study of Some New Hybrid Fuzzy Algorithms for Manipulator

Control, Journal of Control Science and Engineering, Vol. 2007, Article ID
75653, 10 pages, 2007. doi: 10.1155/2007/75653.

187



REFERENCES

Abdessemed, F., Benmahammed, K., ‘A two layer robot control design’, Proceedings of
|EEE International Conference on Fuzzy Systems, 4-9 May 1998, Vol. 1, Pages: 522 —
527

Alander, J. T., © An indexed bibliography on genetic algorithms in robotics’, Report
series No. 94-1-ROBOT, University of Vasaa, Finland, 1998

Albertos, P., Olivares, M., Sala, A., ¢ Fuzzy logic based look-up table controller with
generaization’, Proceedings of the American Control Conference, June 2000, Pages.
1949-1953

An, C.H., Atkeson, C.G., Griffiths, J.D., Hollerbach, JM., ‘Experimental evaluation of
feed forward and computed torque control’, IEEE Transactions on Robotics and
Automation, June 1989, Val. 5, Issue: 3, Pages: 368 — 373

Astrom, K.J., Wittenmark, B., ‘Adaptive control’, Addison Wesley, 1995

Banerjee, S., Woo, P. Y., ‘Fuzzy logic control of robot manipulator’, Proceedings of
|EEE Conference on Control Applications, 13-16 Sept. 1993, Vol.1, Pages: 87 — 88

Bonissone, P.P.,, Chiang, K.H., ‘Fuzzy logic controllers from development to
deployment’, Proceedings of IEEE International Conference on Neural Networks, 28

March-1 April 1993, Vol.1, Pages: 610 — 619

Brehm, T., Rattan, K.S., ‘Hybrid fuzzy logic PID Controller’, Proceedings of the IEEE
Aerospace and Electronics Conference, 24-28 May 1993, Vol.2, Pages. 807 — 813

188



Burdet, E., Codourey, A., Rey, L., ‘Experimental evaluation of nonlinear adaptive
controllers’, IEEE Control Systems Magazine, April 1998, Vol. 18, Issue: 2, Pages: 39 —
47

Burkan, R., ‘Design of an adaptive control law using trigonometric functions for robot
manipulators’, Robotica, 2005, Vol. 23, Pages: 93-99.

Butkiewicz, B. S., ‘System with hybrid fuzzy-conventional PID controller’, IEEE
International Conference on Systems, Man, and Cybernetics, 2000, Vol. 5, Pages. 3705-
3709

Campa, R., Kdly, R., Garcia, E., ‘On stability of the resolved acceleration control’,
Proceedings of |EEE International Conference on Robotics and Automation, 2001, Vol.
4, Pages. 3523 — 3528

Chatterjee, A., Watanabe, K., ‘An adaptive fuzzy strategy for motion control of robot
manipulators’, Journa of Soft Computing, 2005, Val. 9, Pages: 185-193

Chin, SH., Er, M.J, ‘Hybrid adaptive fuzzy controllers of robot manipulators’,
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,
13-17 Oct. 1998, Val. 2, Pages. 1132 — 1137

Chun-Fei, H., Chin-Teng, L., ‘New techniques for intelligent control’, Proceedings of
|EEE International Symposium on Intelligent Control, 2004, Pages: 13— 18

Colbaugh, R., Glass, K., Sergi, H., ‘Decentralized adaptive control of manipulators

theory and experiments’, Proceedings of the 32nd IEEE Conference on Decision and
Control, 15-17 Dec. 1993, Vol.1, Pages: 153 — 158

189



Colbaugh, R., Sergji, H., ‘Adaptive tracking control of manipulators. Theory and
Experiments’, Proceedings of IEEE International Conference on Robotics and
Automation, 8-13 May 1994, Pages. 2992 — 2999

Colbaugh, R., Sergi, H., Glass, K., ‘Application of adaptive tracking control to
industrial robots’, Proceedings of the Third IEEE Conference on Control Applications,
24-26 Aug. 1994, Vol.2, Pages: 915 — 920

Commuri, S., Lewis, F.L., ‘Adaptive-fuzzy logic control of robot manipulators’,
Proceedings of IEEE International Conference on Robotics and Automation, 22-28
April 1996, Vol. 3, Pages. 2604 — 2609

Craig, J. J.,, ‘Adaptive control of mechanical manipulators’, Addison-Wesley, New
York, 1988.

Craig, J. J., ‘Introduction to robotics-mechanics and control’, Addison-Wesley, New
Y ork, 1989.

Craig, J. J, Hsu, P., Sastry, S., ‘Adaptive control of mechanica manipulators’,
Proceedings of |EEE International Conference on Robtics and Automation, 1986, Pages:
190-195

Datta, A., Ming-Tzu Ho, ‘A modified model reference adaptive control scheme for rigid
robots’, |EEE Transactions on Robotics and Automation, June 1996, Vol. 12, Issue: 3,

Pages. 466 — 470

de Silva C. W., ‘Applications of fuzzy logic in the control of robotic manipulators’,
Fuzzy Setsand Systems, Vol. 70, Pages. 223 — 234

190



De Wit, C.C., Fixot, N., ‘Adaptive control of robot manipulators via velocity estimated
feedback’, IEEE Transactions on Automatic Control, Aug. 1992, Vol. 37, Issue: 8,
Pages. 1234 — 1237

Dubois, D., Prade. H., ‘What are fuzzy rules and how to use them’, Fuzzy Sets and
Systems, 1996, Vol. 84, Pages. 169-185

Dubowski, S., DesForges, D. T., ‘The application of model reference adaptive control to
robotic manipulators’, ASME Journal of Dynamic Systems, Measurement, and Control,
Vol. 101, 1979, Pages. 193-200

Dunlop, JA., Burnham, K.J.,, James, D.J.G., King, P.J., ‘A sef-regulating scaling
method for fuzzy control’, Proceedings of the Third IEEE Conference on Control
Applications, 24-26 Aug. 1994, Vol.1, Pages: 683 - 687

Emami, M. R., Goldenberg, A. A., Turksen, I. B., ‘Systematic design and analysis of
fuzzy-logic control and application to robotics, Part |. Modeling’, Robotics and
Autonomous Systems, 2000, Vol. 33, Pages: 65-68

Emami, M. R., Goldenberg, A. A., Turksen, I. B., ‘Systematic design and analysis of
fuzzy-logic control and application to robotics, Part IlI. Control’, Robotics and
Autonomous Systems, 2000, Vol. 33, Pages. 89-108

Er, M.J., ‘Recent developments and futuristic trends in robot manipulator control’,
Proceedings of Asia-Pacific Workshop on Advances in Motion Control, 15-16 July
1993, Pages: 106 - 111

Erbatur, K., Kaynak, O., Rudas, I., ‘A study of fuzzy schemes for control of robotic
manipulators’, Proceedings of the 1995 IEEE 21st International Conference on
Industrial Electronics, Control, and Instrumentation, 6-10 Nov. 1995, Vol.1, Pages: 63 —
68

191



Erlic, M., Lu, W.-S,, ‘A comparative evauation of adaptive, robust and classica
feedback controllers used in unconstrained trajectory tracking for robot manipulators’,
Proceedings of the 33rd Midwest Symposium on Circuits and Systems, 12-14 Aug.
1990, Vol.2, Pages. 661 — 664

Gang, F., ‘A new adaptive control algorithm for robot manipulators in task space’, |IEEE
Transactions on Robotics and Automation, June 1995, Vol. 11, Issue: 3, Pages: 457 —
462

Gavel, D., Hsia, T., ‘Decentralized adaptive control of robot manipulators’, Proceedings
of IEEE International Conference on Robotics and Automation, Mar 1987, Vol: 4,
Pages: 1230 - 1235

Ge, S. S., ‘Advanced control techniques of robotic manipulators’, Proceedings of the
American Control Conference, June 1998, Pages: 2185-2199

Golea, N., ‘Indirect fuzzy adaptive model-following control for robot manipulators’,
Proceedings of International Conference on Control Applications, 18-20 Sept. 2002,
Vol. 1, Pages: 198 — 202

Ham, C., Qu, Z., Johnson, R., ‘Robust fuzzy control for robot manipulators’,
Proceedings of IEE - Control Theory and Applications, March 2000, Vol. 147, Issue 2,
Pages. 212-216

Ham, C., Qu, Z., Kaoust, J., Johnson, R., ‘A new learning control of robot manipulators
in the presence of actuator dynamics’, Proceedings of |EEE International Conference on

Robotics and Automation, 21-27 May 1995, Vol. 2, Pages: 2144 — 2149

Ham, W., ‘Adaptive control based on explicit model of robot manipulator’, |IEEE
Transactions on Automatic Control, April 1993, Vol: 38, Issue: 4, Pages. 654 — 658

192



Heredia, JA., Wen, Yu, ‘A high-gain observer-based PD control for robot manipulator’,
Proceedings of the American Control Conference, 28-30 June 2000, Vol. 4, Pages: 2518
- 2522

Hojati, M., Gazor, S., ‘Hybrid adaptive fuzzy identification and control of nonlinear
systems’, |IEEE Transactions on Fuzzy Systems, April 2002, Vol. 10, Issue 2, Pages:
198 - 210

Horne, B., Jamshidi, M., Vadiee, N., * Neura networks in robotics: A survey’, Journa
of Intelligent and Robotic systems, 1990, Vol. 3, Pages. 61-66

Horowitz, R., Tomizuka, M., ‘An adaptive control scheme for mechanical manipulators
- compensation of nonlinearity and decoupling control’, ASME Journal of Dynamic
Systems, Measurement, and Control, Vol.108, 1986, Pages: 127-135

Hsia, T., ‘Adaptive control of robot manipulators- A review’, Proceedings of IEEE
International Conference on Robotics and Automation, Apr 1986, Vol. 3, Pages. 183 —
189

Hsu, F., Fu, L., ‘Nonlinear control of robot manipulators using adaptive fuzzy diding
mode control’, Proceedings of |EEE/RSJ International Conference on Intelligent Robots
and Systems, 5-9 Aug. 1995, Vol. 1, Pages. 156 — 161

Hsu, S., Fu, L., ‘Globally adaptive decentralized control of robot manipulators’,
Proceedings of the 41st SICE Annual Conference, 5-7 Aug. 2002, Vol. 1, Pages. 402 —
407

Hu, B., Mann, G.K.l., Gosing, R.G., ‘A Systematic Study of Fuzzy PID Controllers—

Function-Based Evaluation Approach’, IEEE Transactions on Fuzzy Systems, Oct.
2001, Vol. 9, Issue: 5, Pages. 699 - 712

193



Imura, J.-I., Sugie, T., Yoshikawa, T., ‘Adaptive robust control of robot manipulators-
Theory and Experimentation’, |IEEE Transactions on Robotics and Automation, Oct.
1994, Voal. 10, Issue: 5, Pages: 705 — 710

Jamshidi, M., ‘Fuzzy control of complex systems’, Journa of Soft Computing, 1997,
Vol.1, Pages: 42-56

Jantzen J., ‘The Self-Organizing Fuzzy Controller’, Tech. report no 98-H 869 (soc),
Technical University of Denmark, 19 Aug 1998.

Jen-Yang, C., ‘Hybrid model-based adaptive fuzzy control system’, Proceedings of
|EEE International Conference on Fuzzy Systems, 2-17 May 2002, Vol. 2, Pages. 1126
-1131

Jing, Y., ‘Adaptive control of robotic manipulators including motor dynamics’, |IEEE
Transactions on Robotics and Automation, Aug. 1995, Vol. 11, Issue: 4, Pages. 612 -
617

Johansson, R., ‘Adaptive control of robot manipulator motion’, IEEE Transactions on
Robotics and Automation, Aug. 1990, Val. 6, Issue: 4, Pages. 483 — 490

Kandel, A., Luo, Y., Zhang, Y .-Q., ‘Stability analysis of fuzzy control systems’, Fuzzy
Sets and Systems, 1999, Val. 105, Pages: 33-48

Karner, J., Janocha H., ‘Hybrid controller for adaptive link control of industrial robots’,
Journal of Intelligent and Robotic Systems, September 1997, Vol. 20, Numbers 2-4,
Pages: 93 — 104

Kawasaki, H., Bito, T., Kanzaki, K., ‘An efficient algorithm for the model-based

adaptive control of robotic manipulators’, IEEE Transactions on Robotics and
Automation, June 1996, Vol. 12, Issue: 3, Pages: 496 — 501

194



Kazemian, H. B., ‘Development of an intelligent fuzzy controller’, Proceedings of
|EEE International Conference on Fuzzy Systems, 2001, Vol. 1, Pages: 517-520

Kazemian, H.B., ‘The self organizing fuzzy PID controller’, Proceedings of IEEE
International Conference on Computational Intelligence, 4-9 May 1998, Vol. 1, Pages:
319-324

Kazemian, H.B., ‘The SOF-PID controller for the control of a MIMO robot arm’, |EEE
Transactions on Fuzzy Systems, Aug. 2002, Vol. 10, Issue: 4, Pages. 523 — 532

Kelly, R., ‘Global positioning of robot manipulators via PD control plus a class of
nonlinear integral actions’, IEEE Transactions on Automatic Control, July 1998, Vol.
43, Issue: 7, Pages: 934 — 938

Kely, R., Ortega, R., ‘Adaptive control of robot manipulators an input-output
approach’, Proceedings of |EEE International Conference on Robotics and Automation,
24-29 April 1988, Vol.2, Pages: 699 - 703

Ken. C., Jian-Ya, L., Xiang, L.Y., ‘Fuzzy control of robot manipulators’, Proceedings of
the IEEE International Conference on Systems, Man, and Cybernetics, August 8-12,
1988, Vol: 2, Pages: 1210 — 1212

Khorrami, F., Ozguner, U., ‘Decentralized control of robot manipulators via state and
proportional-integral feedback’, Proceedings of IEEE International Conference on

Robotics and Automation, 24-29 April 1988, Vol.2, Pages: 1198 — 1203

Khoda, P. K., Kanade, Takeo, ‘Parameter identification of robot dynamics’,
Proceedings of |EEE Conference on Decision and Control, 1985, Pages. 777-787

195



Khosla, P., ‘Choosing Sampling Rates for robot control’, Proceedings of IEEE
International Conference on Robotics and Automation, Mar 1987, Vol. 4, Pages: 169 —
174

Khoury, G. M., Saad, M., Kanaan H., Asmar, Y. C., ‘Fuzzy PID control of afive DOF
robot arm’, Journal of Intelligent and Robotic Systems, July 2004, Vol. 40, Number 3,
Pages: 299 — 320

Kim, K., Hori, Y., ‘Experimental evaluation of adaptive and robust schemes for robot
manipulator control’, IEEE Transactions on Industrial Electronics, Dec. 1995, Vol. 42,
Issue: 6, Pages: 653 — 662

Kim, V.T., ‘Independent joint adaptive fuzzy control of robot manipulators’,
Proceedings of the 5th Biannual World Automation Congress, 9-13 June 2002, Vol. 14,
Pages: 645 — 652

Kim,E., ‘Output feedback tracking control of robot manipulators with model uncertainty
via adaptive fuzzy logic’, IEEE Transactions on Fuzzy Systems, June 2004, Vol. 12, No.
3, Pages: 368 — 378

Koditschek, Daniel E., ‘Adaptive strategies for the control of natura motion’,
Proceedings of |EEE 24th Conference on Decision and Control, Dec 1985, Pages. 1405-
1409

Koditschek, Daniel E., ‘High gain feedback and telerobotic tracking’, Workshop on
Space Telembotics, Pasadena, CA, Jan 1987, Pages. 355-363

Koh, K.C., Cho, H.S., Kim, SK., Jeong, |.S., ‘Application of a self-organizing fuzzy
control to the joint control of a Puma-760 robot’, Proceedings of IEEE International
Workshop on Intelligent Robots and Systems, 3-6 July 1990, Vol.1, Pages. 537 — 542

196



Koo, T.J.,, ‘Model reference adaptive fuzzy control of robot manipulator’, Proceedings
of IEEE International Conference on Systems, Man and Cybernetics, 22-25 Oct. 1995,
Vol. 1, Pages: 424 — 429

Kuswadi, S., Sampei, M., Nakaura, S., ‘Model reference adaptive fuzzy control for one
linear actuator hopping robot’, Proceedings of |1EEE International Conference on Fuzzy
Systems, 25-28 May 2003, Vol. 1, Pages. 254 — 259

Kwan, E., Liu, M., ‘An adaptive fuzzy approach for robot manipulator tracking’,
Proceedings of IEEE International Symposium on Computational Intelligence in
Robotics and Automation, 8-9 Nov. 1999, Pages: 53 — 58

Landau, I.D., ‘Future trends in adaptive control of robot manipulators’, Proceedings of
the 27th IEEE Conference on Decision and Control, 7-9 Dec. 1988, Vol.2, Pages. 1604
— 1606

Leung, T.P., Su, C.-Y., Zhou, Q.-J., ‘Sliding mode control of robot manipulators. A case
study’, Proceedings of 16th Annual Conference of |EEE, IECON '90, 27-30 Nov. 1990,
Vol.1, Pages:671 — 675

Lewis, F.L., Maliotis, G., Abdallah, C., ‘Robust adaptive control for a class of partially
known nonlinear systems’, Proceedings of the 27th IEEE Conference on Decision and
Control, 7-9 Dec. 1988, Vol.3, Pages: 2425 — 2427

Li, W., ‘Design of a Hybrid fuzzy logic proportional plus conventiona integral-
derivative controller’, IEEE Transactions on Fuzzy Systems, Nov 1998, Val. 6, Issue: 4,
Pages: 449-463

Li, W., Changa, X. G.,Wahl, F. M., Farrell, J., ‘Design of an enhanced hybrid fuzzy

P+I1D controller for a mechanical manipulator’, IEEE Transactions on Systems, Man and
Cybernetics, Part B, Dec 2001, Vol. 31, Issue: 6, Pages: 938-945

197



Li, W., Changa, X. G.,Wahl, F. M., Farrell, J., ‘Tracking control of a manipulator under
uncertainty by FUZZY P+ID controller’, Fuzzy Sets and Systems, 2001, Vol. 122,
Pages. 125-137

Liegeois, A., Fournier. A., Aldon, M., ‘Model reference control of high velocity
industria robots’, Proceedings of Joint Automatic Control Conference, 1980.

Lim, C.M., Hiyama, T., ‘Application of fuzzy logic control to a manipulator’, IEEE
Transactions on Robotics and Automation, Oct. 1991, Vol. 7, Issue: 5, Pages. 688 — 691

Lin, C.,, Mon, Y., ‘Hybrid adaptive fuzzy controllers with application to robotic
systems’, 2003, Fuzzy Sets and Systems, Vol. 139, Pages. 151-165

Lin, P.I., Hwang, S., Chou, J., ‘Comparison on fuzzy logic and PID controls for a DC
motor position controller’, Conference Record of the 1994 |EEE Industry Applications
Society Annual Meeting, 2-6 Oct. 1994, Vol.3, Pages: 1930 — 1935

Lin, W., Cheng, C., Chen, C., ‘Adaptive fuzzy design for optimal tracking control of
robot manipulators’, Proceedings of IEEE International Symposium on Intelligent
Control, 2003, Pages: 908 — 913

Llama, M.A., Kdly, R., Santibanez, V., ‘Stable Computed-Torque control of robot
manipulators via fuzzy self tuning’, IEEE Transactions on Systems, Man and
Cybernetics, Part B, Feb. 2000, Vol. 30, Issue: 1, Pages: 143 — 150

Llama, M.A., Santibanez, V., Kelly, R., Flores, J., ‘Stable fuzzy self-tuning computed-

torque control of robot manipulators’, Proceedings of |EEE International Conference on
Robotics and Automation, 16-20 May 1998, Vol. 3, Pages: 2369 — 2374

198



Loc, H. D.,, Ha, T. T., Cuong, N. C., ‘An adaptive fuzzy logic controller for robot-
manipulator’, International Journal of Advanced Robotic Systems, 2004, Vol. 1 Number
2, Pages: 115-117

Loria, A., Lefeber, A.AJ, Nijmeijer, H., ‘Global asymptotic stability of robot
manipulators with linear PID and PI’D control’, Stability and Control.:Theory and
Appllications., 2000, Val. 3(2), Pages. 138-149

Luh, J. Y. S, Walker, M. W., Paul, R. P., ‘Resolved acceleration control of mechanical
manipulators’, IEEE Transaction on Automatic Control, Vol.25, 1980, Pages: 468-474

Luh, J.Y.S, ‘Conventional Controller Design for Industrial Robots: A Tutoria’, IEEE
Transactions on Sys., Man, and Cybernetics, May/June 1983, Vol. 13, No. 3, Pages:
298-316,

Magana, M.E., Tagami, S., ‘An improved trajectory tracking decentralized adaptive
controller for robot manipulators’, IEEE Transactions on Industrial Electronics, Oct.
1994, Vol. 41, Issue: 5, Pages: 477 — 482

Maliotis, G.N., Lewis, F.L., ‘Improved robust adaptive controller for a class of partially
known nonlinear systems’, Proceedings of the 28th IEEE Conference on Decision and
Control, 13-15 Dec. 1989, Vol.3, Pages: 2155 — 2157

Mamdani, E.H., ‘Twenty years of fuzzy control: Experiences gained and lessons learnt’,
Proceedings of IEEE International Conference on Fuzzy Systems, 28 March-1 April
1993, Vol.1, Pages. 339 — 344

Mao-Lin N., Meng, J. E., ‘Decentralized control of robot manipulators with couplings

and uncertainties’, Proceedings of American Control Conference, 28-30 June 2000, Vol.
5, Pages: 3326 — 3330

199



Meng, JE., Swee Hong, C., ‘Hybrid adaptive fuzzy controllers of robot manipulators
with bound estimation’, IEEE Transactions on Industrial Electronics, Oct. 2000, Vol.
47, Issue: 5, Pages: 1151 - 1160

Messner, W., Horowitz, R., Kao, W. -W., Boals, M., ‘A new adaptive learning rule’,
|EEE Transactions on Automatic Control, Vol. 36, Issue: 2, Feb. 1991, Pages: 188 — 197

Miljanovic, D.M., Croft, E.A., ‘A taxonomy for robot control’, Proceedings of IEEE
International Conference on Robotics and Automation, 10-15 May 1999, Vol. 1, Pages:
176 - 181

Mudi, RK., Pa, N.R.,, ‘A robust self-tuning scheme for PI- and PD-type fuzzy
controllers’, IEEE Transactions on Fuzzy Systems, Feb. 1999, Vol. 7, Issue: 1, Pages. 2
- 16

Nagrath, 1.J., Pahade Paras Shripal, Chand, A., ¢ Development and implementation of
intelligent control strategy for robotic manipulator’, Proceedings of IEEE/IAS
International Conference on Industrial Automation and Control, 5-7 Jan. 1995, Pages:
215 - 220

Nedungadi, A., Wenzel, D.J., ‘A novel approach to robot control using fuzzy logic’,
Proceeding of IEEE International Conference on Systems, Man, and Cybernetics, 13-16
Oct. 1991, Vol.3, Pages: 1925 - 1930

Neo, S.S., Er, M.J., ‘Adaptive fuzzy control of robot manipulators’, Proceedings of the
4th |EEE Conference on Control Applications, 28-29 Sept. 1995, Pages: 724 — 729

Niemeyer,G., SlotineJ.-JE., ‘Perfformance in adaptive manipulator control’,

Proceedings of the 27th IEEE Conference on Decision and Control, 7-9 Dec. 1988,
Vol.2, Pages: 1585 - 1591

200



Oh, B.J., Jamshidi, M., Sergji, H., ‘Decentralized adaptive control [robot]’, Proceedings
of IEEE International Conference on Robotics and Automation, 24-29 April 1988,
Vol.2, Pages: 1016 — 1021

Ortega, R., Spong, M.W., ‘Adaptive motion control of rigid robots. A tutorial’,
Proceedings of the 27th IEEE Conference on Decision and Control, 7-9 Dec. 1988,
Vol.2, Pages: 1575 - 1584

Pagilla, P.R., Biao Yu, ‘Adaptive control of a robot carrying a time-varying payload’,
Proceedings of the IEEE International Conference on Control Applications, 25-27 Sept.
2000, Pages: 68 — 73

Parra-Vega, V., Arimoto, S., Yun-Hui Liu, Hirzinger, G., Akella, P., ‘Dynamic sliding
PID control for tracking of robot manipulators: Theory and experiments’, |EEE
Transactions on Robotics and Automation, Dec. 2003, Vol. 19, Issue: 6, Pages. 967 —
976

Patino, H.D., Carelli, R., Kuchen, B.R., ‘Neural networks for advanced control of robot
manipulators’, IEEE Transactions on Neural Networks, Mar 2002, Vol. 13, Issue: 2,
Pages: 343-354

Paul, R.P., ‘Modeling, Trajectory Calculation, and Servoing of a Computer Controlled
Arm’, Stanford A.l. Lab, A.l. Memo 177, Stanford, CA, Nov. 1972.

Purwar, S, Kar, I.N., Jha, A.N., ‘Adaptive control of robot manipulators using fuzzy
logic systems under actuator constraints’, Proceedings of |1EEE International Conference
on Fuzzy Systems, 25-29 July 2004, Vol. 3, Pages: 1449 — 1454

Sadegh, N., Horowitz, R., ‘An exponentialy stable adaptive control law for robot
manipulators’, IEEE Transactions on Robotics and Automation, Aug. 1990, Vol. 6,
Issue: 4, Pages: 491 — 496

201



Sadegh, N., Horowitz, R., ‘Stability analysis of an adaptive controller for robotic
manipulators’, Proceedings of IEEE International Conference on Robotics and
Automation, Mar 1987, Vol.: 4, Pages: 1223 — 1229

Santibanez, V., Kdly, R., Llama, M.A., ‘Fuzzy PD+ control for robot manipulators’,
Proceedings of IEEE International Conference on Robotics and Automation, 24-28
April 2000, Vol. 3, Pages: 2112 — 2117

Sergji, H., ‘Adaptive independent joint control of manipulators: theory and experiment’,
Proceedings of IEEE International Conference on Robotics and Automation, 24-29
April 1988,V ol.2, Pages: 854 - 861

Sinha, A.S.C., Kayalar, S., Yurtseven, H.O., ‘Nonlinear adaptive control of robot
manipulators’, Proceedings of IEEE International Conference on Robotics and
Automation, 13-18 May 1990, Vol.3, Pages: 2084 — 2088

Slotine, J. -J., ‘Robustness issues in robot control’, Proceedings of 1EEE International
Conference on Robotics and Automation, Mar 1985, Vol. 2, Pages: 656 — 661

Slotine, J.-J., ‘On modeling and adaptation in robot control’, Proceedings of IEEE
International Conference on Robotics and Automation, Apr 1986, Vol. 3, Pages:. 1387 —
1392

Slotine, J-JE., Li Welping, ‘Adaptive manipulator control: A case study’, IEEE
Transactions on Automatic Control, Nov. 1988,Vol. 33, Issue: 11, Pages:995 — 1003

Song, Y. D., Gao, W.B, Cheng, M., ‘Study on path tracking control of robot

manipulators with unknown payload’, Proceedings of IEEE International Conference on
Systems Engineering, 24-26 Aug. 1989, Pages: 321 — 324

202



Song, Y.D., ‘Adaptive motion tracking control of robot manipulators: Non-regressor
based approach’, Proceedings of IEEE International Conference on Robotics and
Automation, 8-13 May 1994, Vol.4, Pages: 3008 — 3013

Spong, M., Thorp, J., Kleinwaks, J., ‘The control of robot manipulators with bounded
input’, IEEE Transactions on Automatic Control, Jun 1986, Vol. 31, Issue: 6, Pages: 483
—490

Spong, M.W., and Vidyasagar, M., ‘Robot Dynamics and Control’, John Wiley & Sons,
Inc., New York, 1989.

Spong, M.W., Lewis, F., and Abdalah, C., ‘Robot Control: Dynamics, Motion
Planning, and Analysis’, IEEE Press, 1992.

Spong, M.W., Ortega, R., ‘On adaptive inverse dynamics control of rigid robots’, IEEE
Transactions on Automatic Control, Jan. 1990, Val. 35, Issue: 1, Pages. 92 — 95

Su, C., Stepanenko, Y., ‘Guaranteed stability based control of robot manipulators
incorporating motor dynamics’, Proceedings of IEEE International Symposium on
Industrial Electronics, 25-27 May 1994, Pages: 345 — 350

Takegaki, M., Arimoto, S., ‘An adaptive trgectory control of manipulators’, The
International Journal of Control, Vol.102, 1981, Pages: 201-217

Tarokh, M., ‘Decentralized digital adaptive control of robot motion’, Proceedings of
|[EEE International Conference on Robotics and Automation, 13-18 May 1990, Vol.2,
Pages: 1410 — 1415

Tarokh, M., Sergji, H., ‘A control scheme for tragjectory tracking of robot manipulators’,

Proceedings of IEEE International Conference on Robotics and Automation, 24-29
April 1988, Vol.2, Pages: 1192 — 1197

203



Tosunoglu, S., Tesar, D., ‘State of the Art in adaptive control of robotic systems’, IEEE
Transactions on Aerospace and Electronic Systems, Sept. 1988, Vol. 24, Issue: 5, Pages:
552 — 561

Trusca, M., Lazea, G., ‘An adaptive PID learning controller for periodic robot motion’,
Proceedings of |IEEE Conference on Control Applications, 23-25 June 2003, Val. 1,
Pages. 686 — 689

Tsai, C., Wang, C., Lin, W., ‘Robust fuzzy model-following control of robot
manipulators’, IEEE Transactions on Fuzzy Systems, Aug. 2000, Val. 8, Issue: 4, Pages:
462 — 469

Tso, SK., Xu, Y., Shum, H.Y., ‘Variable structure model reference adaptive control of
robot manipulators’, Proceedings of IEEE International Conference on Robotics and
Automation, 9-11 April 1991, Vol.3, Pages: 2148 — 2153

Tzafestas, S., Papanikolopoulos, N.P., ‘Incremental fuzzy expert PID control’, |IEEE
Transactions on Industrial Electronics, Oct. 1990, Vol. 37, Issue: 5, Pages. 365 — 371

Visioli, A., ‘“Tuning of PID controllers with fuzzy logic’, IEE Proc.-Control Theory
Appl., Jan. 2001, Vol. 148, No. |, Pages. 1-8

Wel Sun, Yaonan Wang, ‘An adaptive fuzzy control for robotic manipulators’,
Proceedings of Control, Automation, Robotics and Vision Conference, 6-9 Dec. 2004,
Vol. 3, Pages: 1952 — 1956

Wen, J. T., and Bayard, D. S., ‘Robust control for robotic manipulators, Part I: Non-
adaptive case’, Jet Propulsion Lab., Pasadena, CA, Tech. Rep. 347-87-203, 1987.

204



Wen, JT., ‘A unified perspective on robot control: the energy Lyapunov function
approach’, Proceedings of the 29th IEEE Conference on Decision and Control, 5-7 Dec.
1990, Vol.3, Pages: 1968 — 1973

Wen, J. T., Bayard, David S., ‘Robust control for robotic manipulators part 1:
Nonadaptive case’, Technical Report 347-87-203, 1987, Jet Propulsion Laboratory,
Pasadena, CA

Whitcomb, L.L., Rizzi, A.A., Koditschek, D.E., ‘Comparative experiments with a new
adaptive controller for robot arms’, IEEE Transactions on Robotics and Automation,
Feb. 1993,Val: 9, Issue: 1, Pages: 59 - 70

Ya Lei Sun, Meng Joo Er, ‘Hybrid fuzzy control of robotics systems’, |EEE
Transactions on Fuzzy Systems, Dec. 2004, Vol. 12, Issue 6, Pages: 755 — 765

Y a-Chen Hsu, Guanrong Chen, Sanchez, E., ‘A fuzzy PD controller for multi-link robot
control stability analysis’, Proceedings of |EEE International Conference on Robotics
and Automation, 20-25 April 1997, Vol. 2, Pages: 1412 — 1417

Yao Bin, ‘Adaptive robust control of robot manipulators. Theory and comparative
experiments’, The second CWC on ICIA, 1997, Pages. 442-447.

Yoo, B.K., Ham, W.C., ‘Adaptive Control of Robot Manipulators using fuzzy
compensator-part 1’, Proceedings of |IEEE/RSJ International Conference on Intelligent
Robots and Systems, 17-21 Oct. 1999, Vol. 1, Pages. 35— 40

Yoo, B.K., Ham, W.C., ‘Adaptive Control of Robot Manipulators using fuzzy
compensator-part 2’, Proceedings of |EEE/RSJ International Conference on Intelligent
Robots and Systems, 17-21 Oct. 1999, Val. 1, Pages: 52 — 56

205



Yu Tang, Arteaga, M.A., ‘Adaptive control of robot manipulators based on passivity’,
|EEE Transactions on Automatic Control, Sept. 1994,Vol. 39, Issue: 9, Pages: 1871 —
1875

Yu, H., ‘Robust Combined adaptive and variable structure adaptive control of robot
manipulators’, Robotica, 1998, Vol. 16, Pages: 623-650.

Yu, H., Lloyd, S., ‘Adaptive control of robot manipulator including motor dynamics’,
Proceedings of the American Control Conference, 21-23 June 1995, Vol. 5, Pages: 3803
— 3807

Yu, H., Lloyd, S., ‘Variable structure adaptive control of robot manipulators’, 1EE
Proceedings on Control Theory and Applications, March 1997, Vol. 144, Issue:
2, Pages: 167 — 176

Yu, H., Seneviratne, L.D., Earles, S. W.E., Adaptive control of robot manipulators’,
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,
July 7-10,1992, Pages. 293 — 298

Yuh, J., Nie, J, Lee, W.C., ‘Adaptive control of robot manipulators using bound
estimation’, Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems, 13-17 Oct. 1998, Vol .2, Pages: 1126 — 1131

Zergeroglu, E., Dawson, D.M., de Queroz, M.S., Krstic, M., ‘On Global output
feedback tracking control of robot manipulators’, Proceedings of the 39th IEEE
Conference on Decision and Control, 12-15 Dec. 2000, Vol. 5, Pages: 5073 — 5078

Zhang, F., Dawson, D.M., de Queiroz, M.S., Dixon, W.E., ‘Global adaptive feedback

tracking control of robot manipulators’, IEEE Transactions on Automatic Control, June
2000, Vol. 45, Issue: 6, Pages. 1203 — 1208

206



Zhang, H., Trott, G., Paul, R.P., ‘Minimum delay PID control of interpolated joint
trajectories of robot manipulators’, IEEE Transactions on Industrial Electronics, Oct.
1990, Voal. 37, Issue: 5, Pages. 358 - 364

Zhao, Z., Tomizuka, M., Isaka, S., ‘Fuzzy gain scheduling of PID controllers’, |IEEE
Transactions on Systems, Man and Cybernetics, Oct 1993, Vol. 23, Issue: 5, Pages:
1392-1398

207



APPENDIX A

In this appendix are presented some sample codes used for simulation of different control
algorithms. All the codes except for Adaptive fuzzy controller are written in C. That for
adaptive fuzzy is written in MATLAB. We present sample codes in each of the three
categories, i.e., conventional, adaptive and fuzzy.

A.1CDID CONTROL CODE

[* This control algorithm controls a two-link manipulator. Path update rate is 333 Hz. For
each set point the control loop is executed 5 times. Strategy is CDID Control. */

*SIMULATION*/
[* CRITICALLY DAMPED INVERSE DYNAMICS*/

#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <stdlib.h>
#include <float.h>
#define pi 3.142857

/* _____________________________________________________________________________________________________ */
[* TRAJECTORY IS QUINTIC */

/* _____________________________________________________________________________________________________ */

void main()

{

int n=0,i=0,k=5,seg=1;

float tf,t=0.0,ts=0.003,tsp,g=9.8,accld,acc2d,v1cap=2.5,v2cap=2.5,a0,b0,

thf1,thf2,vel1=0.0,vel2=0.0,11=0.26,a3,a4,a5,b3,b4,b5,v22,p0s10,pos20,
pos1=0.0,p0s2=0.0,p1,p2,p3,p4,p5,p6,p7,izz2=0.09,c1,c2,conll,conl2,
error195000],error295000] ,acc1=0.0,acc2=0.0,posld,pos2d,vel 1d,vel 2d,

epl,ep2,evl,ev2,epls=0.0,ep2s=0.0,torquel,torque2,izz1=0.09,izz1cap=0.09,con21,
con22,m1=2.0,m2=2.0,v1=2.5,v2=2.5x1=0.13,x2=0.14,izz2cap=0.09,eldot,e2dot,
m1l,m12,m21,m22,v11,v12,v21,g11,g21,m2cap=1.8,mlcap=1.8,vel1r,vel 2r,

x2cap=0.14,x1cap=0.13,gamma=100.0,kv11=50.0,kv22=50.0,ki11=50.0,ki22=50.0,acclr
,acc2r,izz1n=1.5,izz2n=0.09,m1n=3.0,m2n=3.0,x1n=0.15,x2n=0.16;

FILE *erl*er2;

clrser();

/* _______________________________________________________________________________________________________ */
[*GET INPUTS*/

/* _______________________________________________________________________________________________________ */

tsp=ts/5.0;

highvideo();

textbackground(Y ELLOW);
window(10,5,80,25);
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textcolor(CY AN);

cprintf("TRAJECTORY IS QUINTIC POLYNOMIAL || Tf(max)= 5sec");
window(15,10,80,25);

textcolor(CY AN);

cprintf("FINAL TIME "):

scanf("%f",&tf);

window(15,14,80,25);

cprintf("ANGLE OF THE FIRST JOINT IN DEGREES(+) *);
scanf("%f",&thfl);

window(15,15,80,25);

cprintf("ANGLE OF THE SECOND JOINT IN DEGREES(-)");
scanf("%f",&thf2);

thf1=(thf1* pi)/180.0;

thf2=(thf2* pi)/180.0;

if(thf1 < 0.0 || thf2 > 0.0)

{

window(15,18,80,25);

cprintf("GIVE CORRECT ANGLES ")
goto END;

b0=0.0;

a3=10.0* (thf 1)/(tF* tF* tf);
ad=-15.0* (thf 1)/(tF* tF* tF*1f);
a5=6.0* (thf 1)/(tF* tF* tF* tF* tf);
b3=10.0* (thf2)/(tf*tF*1f);
bd=-15.0% (thf 2)/(tF* tF* tF* tf);
b5=6.0% (thf2)/(tF* tF* tf* tF*tf);

pl=izz1+izz2+m2* (x2* x2+11*11)+m1*x1*x1,
p2=2.0*m2*|1*x2;

p3=m2*x2* x2+izz2,

p4=v1,

p5=v2,

p6=g* (Mm1*x1+m2*11);

p7=m2*x2*q;

window(15,19,80,25);

cprintf("BUSY WITH CONTROL \n");
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[*SERVO LOOP*/

/* _______________________________________________________________________________________________________ */
for (;seg<=4;)
{
for (jt<=tf;)
{

/* DESIRED POSITION, VELOCITY, ACCELERATION*/
if(k==5)
{

posld=a0+(a3* t* t*t)+(ad* t* t* t* ) +(ab* t t* t* t*1);
pos2d=b0+(b3* t* t* t)+(b4* t* t* t* t)+(b5* t* t* t* t*1);
vel 1d=(3.0* a3* t*t)+(4.0* ad* t* t*t)+(5.0* ab* t* t* t*1);
vel2d=(3.0* b3* t*t)+(4.0* b4a* t* t* t)+(5.0* b5* t* t* t* t);
accld=(6.0* a3*t)+(12.0* ad* t*t)+(20.0* ab* t* t*1);
acc2d=(6.0* b3*t)+(12.0* b4* t*t)+(20.0* b5* t* t*1);
=t+ts,

k=0;

}

epl=gamma* (posld-posl);

evl=gamma* (vel 1d-vell);

ep2=gamma* (pos2d-pos2);

ev2=gamma* (vel 2d-vel 2);
epls=eplst+(posld-posl);
ep2s=ep2s+(pos2d-pos2);

vel lr=vel1d+epl,;

vel2r=vel 2d+ep2;

acclr=accld+evl;

acc2r=acc2d+ev2;

eldot=vel1r-vel1;

e2dot=vel 2r-vel2;

[*exact model*/

mM11=izz1+izz2+(m2* (x2* X2+ 1* 1 1))+(m1* x1* x1)+2.0* m2* | 1* x2* cos(pos2);
M12=(m2* x2* x2)+izz2+(m2* | 1* x2* cos(pos2));
mM21=m2* x2* | 1* cos(p0s2)+izz2+(m2* x2* x2);
mM22=(mM2* x2* x2)+izz2;

v11=v1-(2.0* m2*|1* x2* sin(pos2))* vel 2;
v12=(-m2*|1* x2* sin(pos2))* vel 2;
v21=m2*|1*x2* sin(pos2)* vel 1;

v22=Vv2;

g11=g* (m1*x1+m2*|1)* cos(posl)+(m2* x2* g* cos(posl+pos2));
g21=g* (m2* x2* cos(posl+pos2));
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torquel=m11* acclr+ml12* acc2r+v11*vel lr+v12*vel 2r+gll,;
torque2=m21* acclr+m22* acc2r+v21* vel 1r+v22* vel 2r+g21,

torquel=torquel+kv1l*eldot+kill* epls,
torque2=torque2+kv22* e2dot+ki22* ep2s,

cl=  (p4-p2*sin(pos2)*vel2)*vel 1-0.5* p2* sin(pos2)* vel 2* vel 2+
p6* cos(posl)+(p7* cos(posl+pos2));

conll= (pl+p2* cos(pos2)+0.1498);

conl2= (p3+0.5* p2* cos(pos?2));

c2=  0.5*p2*sin(pos2)* vel 1* vel 1+p5* vel 2+p7* cos(posl+pos2);
con21= (0.5* p2* cos(pos2)+p3);
con22= (p3+0.1498);

errorlsn]=ep1* 180.0/(pi);
error2s n]=ep2* 180.0/(pi);
n=n+1,

ep1s=0.0;

ep2s=0.0;

acc2=((torquel-cl)* con21-(torque2-c2)* conll)/(conl2* con21-conll* con22);
accl=((torquel-cl)* con22-(torque2-c2)* con12)/(conll* con22-conl2* con2l);
vel 1=accl*tspt+vel1;

vel2=acc2* tsp+vel 2;

posl=posl+vel 1* tsp+0.5* accl* tsp* tsp;

pos2=pos2+vel 2* tsp+0.5* acc2* tsp* tsp;

k=k+1;

}

seg=seg+1;
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[*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND
SEGMENT*/

i{f (seg==2 || seg==4)
pl=izzln+izz2n+m2n* (x2n* x2n+l1*11)+mln*x1n*x1n;
p2=2.0*m2n* | 1*x2n;
p3=m2n*x2n* x2n+izz2n;
p4=v1,

p5=v2;

p6=g* (M1ln*x1n+m2n*|1);
p7=m2n*x2n*g;

t=0.0;

a0=thf1,

bO=thf2;

a3=-10.0* (thf 1)/(tf* tf*tf);
a4=15.0* (thf 1)/(tf* tf* tf* tf);
ab=-6.0* (thf1)/(tf* tf* tf* tf*tf);
b3=-10.0* (thf2)/(tf* tf*tf);
b4=15.0* (thf2)/(tf* tf* tf* tf);
b5=-6.0* (thf2)/(tf* tf* tf* tf* tf);
k=5;

}
if (seg==3)
{

t=0.0;

a0=0.0;

b0=0.0;

[*thf1=0.0;

thf2=0.0;*/

a3=10.0* (thf1)/(tf* tf*tf);
ad=-15.0* (thf 1)/ (tf* tf* tf* tf);
ab=6.0* (thf 1)/(tf* tf* tf* tf* tf);
b3=10.0* (thf2)/(tf* tf*tf);
b4=-15.0* (thf2)/(tf* tf* tf* tf);
b5=6.0* (thf2)/(tf* tf* tf* tf* tf);
pl=izz1+izz2+m2* (x2* x2+11*11)+m1*x1*x1,
p2=2.0*m2*|1*x2;
p3=m2*x2* x2+izz2;

p4=v1,

p5=v2,

p6=g* (Mm1*x1+m2*11);
p7=m2*x2*q;
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erl=fopen("scerrorl.dat","w+");
er2=fopen("scerror2.dat","w+");

for(i=0;i<=(n-1);i++)

{
fprintf(erd,"%f\n",errorlgi]/gamma);
fprintf(er2,"%f\n" error29i]/gamma);
}

fclosedll();

END:;
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A.2. ACDID CONTROL CODE

[* This control algorithm controls a two-link manipulator. Path update rate is 333 Hz. For
each setpoint the control loop is executed 5 times.kd1=100 and kd2=50. */
/* _______________________________________________________________________________________________________ */
[*SIMULATION ACDID CONTROL*/
/* POSITION + VELOCITY FEEDBACK */
/* _______________________________________________________________________________________________________ */
#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <stdlib.h>
#include <float.h>
#define pi 3.142857

/* _______________________________________________________________________________________________________ */
I* TRAJECTORY ISQUINTIC */

/* _______________________________________________________________________________________________________ */

void main()

{

int  n=0,i=0,k=5,seg=1;

float tf,t=0.0,ts=0.003,tsp,kd1=50.0,kd2=50.0,lambdal=100.0,lambda2=100.0,g=9.8,
vel1=0.0,vel2=0.0,11=0.26,thf1,thf2,a0,b0,a3,a4,a5,b3,b4,b5,
posl,pos2,plcap, p2cap, p3cap,p4cap, pScap, péeap, p7cap,
pl,p2,p3,p4,p5,p6,p7,izz2=0.09,c1,c2,conll,conl2,con21,con22,
error1s[5000],error25/5000],w11,w12,w13,w14,w16,w17,p0slo,pos20,
gamal=100.0,gama2=100.0,gama3=100.0,gama4=100.0,gama5=100.0,gamac=100.0,
posld,pos2d,vel 1d,vel 2d,accld,acc2d,vel 1r,vel 2r,acclr,acc2r,gama7=100.0,
errorl,error2,el,e2,torquel,torque2,w22,w23,w25,w27,plcapdot=0.0,p2capdot=0.0,
p3capdot=0.0,p4capdot=0.0,p5capdot=0.0,p6capdot=0.0,p7capdot=0.0,izz1=0.09,
m1=2.0,m2=2.0,v1=2.5,v2=2.5,x1=0.13,x2=0.14,acc1=0.0,acc2=0.0,m2n=3.0,
m1n=3.0, x1n=0.15,x2n=0.16,izz1n=1.5,izz2n=0.09,
x1cap=0.11,x2cap=0.12,v1cap=2.0,v2cap=2.0,izz1cap=0.05,izz2cap=0.05,
mlcap=1.0,m2cap=1.0;

FILE *erl*er2;

clrser();

tsp=ts/5.0;

highvideo();

textbackground(Y ELLOW);

window(10,5,80,25);

textcolor(CY AN);

cprintf("TRAJECTORY IS QUINTIC POLYNOMIAL || Tf(max)= 5sec");
window(15,10,80,25);

textcolor(CY AN);
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cprintf("FINAL TIME ");

scanf (" %f",&tf);

/*window(15,11,80,25);

textcolor(GREEN);

cprintf("FIRST ELEMENT OF GAIN MATRIX ");
scanf("%f", &kdl);

window(15,12,80,25);

cprintf("SECOND ELEMENT OF GAIN MATRIX ");
scanf("%f", &kd2);*/

window(15,14,80,25);

cprintf("ANGLE OF THE FIRST JOINT IN DEGREES(+) ");
scanf("%f",&thfl);

window(15,15,80,25);

cprintf("ANGLE OF THE SECOND JOINT IN DEGREES(-)");
scanf("%f",&thf2);

thf1=(thf1* pi)/180.0;

thf2=(thf2* pi)/180.0;

if(thf1 < 0.0 || thf2 > 0.0)

{

window(15,18,80,25);

cprintf("GIVE CORRECT ANGLES ")
goto END;

a3=10.0* (thf 1)/(tf* tf*tf);
ad=-15.0* (thf 1)/ (tf* tf* tf* tf);
ab=6.0* (thf 1)/(tf* tf* tf* tf* tf);
b3=10.0* (thf2)/(tf* tF*tf);
b4=-15.0* (thf2)/(tf* tf* tf* tf);
b5=6.0* (thf2)/(tf* tF* tf* tf* tf),
pos1=0.0;

pos10=0.0;

pos2=0.0;

p0s20=0.0;

plcap=izzlcap+izz2cap+m?2cap* (x2cap* x2cap+ 1* | 1)+mlcap* x lcap* x 1cap;
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p2cap=2.0* m2cap* | 1* x2cap;
p3cap=m2cap* X2cap* x2cap+izz2cap;
pdcap=vicap;

pScap=v2cap;

p6cap=g* (mlcap* x1lcap+m2cap*|1);
p7cap=m2cap*x2cap*g;

pl=izz1+izz2+m2* (x2* x2+11*11)+m1*x1*x1,
p2=2.0*m2*|1*x2;

p3=m2* x2* x2+izz2,

p4=vl;

p5=v2;

p6=g* (m1*x1+m2*11);

p7=m2*x2*g;

window(15,19,80,25);

cprintf("BUSY WITH CONTROL \n");

for (;seg<=4;) /* for two segment trajectory*/
{

for (jt<=tf;)

{

if(k==5)

{

posld=a0+(a3* t* t*t)+(ad* t* t* t* t)+(ab* tr t* t t*1);
P0S2d=b0+(b3* t* t* t)+(b4* t* t* t* t)+(b5* t* t* t* t*1);
vel1d=(3.0* a3*t*t)+(4.0* ad* t* t* t)+(5.0* ab* t* t* t*t);
vel2d=(3.0* b3* t*t)+(4.0* b4* t* t*t)+(5.0* b5* t* t* t* t);
accld=(6.0* a3*t)+(12.0* ad* t*t)+(20.0* ab* t*t*t);
acc2d=(6.0*b3*t)+(12.0* b4* t*t)+(20.0* b5* t* t*t);
t=t+ts;

k=0;

}

errorl=posld-posl,;

vel1r=(vel 1d + lambdal* errorl);

acclr=(accld - lambdal* (vel1-vel 1d));

[* DESIRED POSITION, VELOCITY, ACCELERATION*/

el=(vell-vel1r);

/~k _______________________________________________________________________________________________________ */
[*LINK 2*/

/~k _______________________________________________________________________________________________________ */

error2=pos2d-pos2;

vel2r=(vel2d + lambda2* error2);
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acc2r=(acc2d - lambda2* (vel 2-vel 2d));
e2=(vel2-vel 2r);

torquel=(plcap+p2cap* cos(pos2))* acclr+(p3cap+0.5* p2cap* cos(pos2))* acc2r+
(p4cap-p2cap* sin(pos2)* vel 2)* vel 1r-0.5* p2cap* sin(pos2)* vel 2* vel 2r+
p6cap* cos(posl)+(p7cap* cos(posl+pos2))+(0.1498* acclr)-kd1* el

cl= (p4-p2*sin(pos2)*vel2)* vel 1-0.5* p2* sin(pos2)* vel 2* vel 2+
p6* cos(posl)+(p7* cos(posl+pos?));

conll= (pl+p2* cos(pos2)+0.1498);

conl2= (p3+0.5* p2* cos(pos2));

torque2=(0.5* p2cap* cos(pos2)+p3cap)* acclr+p3cap* acc2r+(0.1498* acc2r)+

0.5* p2cap* sin(pos2)* vel 1* vel 1r+p5cap* vel 2r+p7cap* cos(posl+pos2)-kd2* e2;

c2=  0.5*p2*sin(pos2)*vel 1* vel 1+p5* vel 2+p7* cos(posl+pos2);
con21= (0.5* p2* cos(pos2)+p3);
con22= (p3+0.1498);

errorlg n]=errorl* 180.0/pi;
error29 n]=error2* 180.0/pi;
n=n+1;

wll=acclr,

w12=(cos(pos2))* (acclr+0.5* acc2r)-(0.5* sin(pos2)* vel 2* (vel 1r+vel 2r))-
0.5*sin(pos2)* vel 1*vel 2r;

wl3=acc?r;

wl4=vellr;

w16=cos(posl);

w17=cos(posl+pos2);

w22=0.5* (cos(pos2)* vel 1r+sin(pos2)* vel 1* vel 1r);
w23=acclr+acc2r,

w25=ve 2r;

w27=cos(posl+pos2);
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plcapdot=-1.0* (gamal*wll*el);

p2capdot= -1.0* ((gama2* w12* el)+(gama2* w22* €2));

p3capdot= -1.0* ((gama3* w13* el)+(gama3* w23* €2));

p4capdot= -1.0* (gamad*w14*el);

p5capdot= -1.0* (gamab* w25* e2);

p6capdot= -1.0* (gamab*w16*el);

p7capdot= -1.0* ((gamar*w17* el)+(gamar* w27* €2));

/* _______________________________________________________________________________________________________ */

/* _______________________________________________________________________________________________________ * /
plcap=(tsp* plcapdot)+plcap;
p2cap=(tsp* p2capdot)+p2cap;
p3cap=(tsp* p3capdot)+p3cap;
pcap=(tsp* p4capdot)+p4cap;
pScap=(tsp* p5capdot)+p5cap;
p6cap=(tsp* pécapdot)+p6eap;
p7cap=(tsp* p7capdot)+p7cap;

/* _______________________________________________________________________________________________________ */

/* _______________________________________________________________________________________________________ */
acc2=(((torquel-cl)* con21)-((torque2-c2)* conl11))/((con12* con21)-(conll* con22));
accl=(((torquel-cl)* con22)-((torque2-c2)* con12))/((conll* con22)-(conl2* con21));
vel 1=accl*tsp+vel1;

vel2=acc2* tspt+vel 2;

posl=posl+vel 1*tsp+0.5* accl* tsp* tsp;

pos2=pos2+vel 2* tsp+0.5* acc2* tsp* tsp;

k=k+1;

}

seg=seg+l;

if (seg==2 || seg==4)

{

t=0.0;

pl=izzln+izz2n+m2n* (x2n*x2n+l1*11)+m1n*x1n*x1n;

p2=2.0*m2n* | 1*x2n;

p3=m2n* x2n* x2n+izz2n;

p4=v1,

p5=v2,

p6=g* (M1ln*x1n+m2n*|1);

p7=m2n*x2n*g;

/* _______________________________________________________________________________________________________ */
[*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND
SEGMENT?*/

/~k _______________________________________________________________________________________________________ */
a0=thf1;
bO=thf2;
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a3=-10.0* (thf1)/(tf* tf*tf);
a4=15.0* (thf 1)/(tf* tf* tf* tf);
ab=-6.0* (thf1)/(tf* tf* tf* tf*tf);
b3=-10.0* (thf2)/(tf* tf*tf);
b4=15.0* (thf2)/(tf* tf* tf* tf);
b5=-6.0* (thf2)/(tf* tf* tf* tf*tf);
k=5;

}
if (seg==3)
{

t=0.0;

k=5;

a3=10.0* (thf L)/(tf* tf* tf);
ad=-15.0* (thf 1)/ (tf* tf* tf* tf);
ab=6.0* (thf 1)/(tf* tf* tf* tf* tf);
b3=10.0* (thf2)/(tf* tf* tf);
b4=-15.0* (thf2)/(tf* tf* tf* tf);
b5=6.0* (thf2)/(tf* tf* tf* tf* tf);
a0=0.0;

b0=0.0;

pl=izz1+izz2+m2* (x2* x2+11*|1)+m1*x1* x1;
p2=2.0*m2*|1*x2;
p3=m2* x2* x2+izz2,

p4=v1,

p5=v2;

p6=g* (Mm1*x1+m2*11);
p7=m2*x2*q;

erl=fopen("scerrorl.dat","w+");
er2=fopen("scerror2.dat","w+");

for(i=0;i<=(n-1);i++)

{
fprintf(erl,"%f\n",errorlgi]);
fprintf(er2,"%f\n",error29i]);
}

fcloseall();

END:;
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A.3ACDID+FUZZY CONTROL CODE

[* This control algorithm controls a two-link manipulator. Path update rate is 333 Hz. For
each setpoint the control loop is executed 5 times.*/

/* _______________________________________________________________________________________________________ */
/* ACDID + FUZZY */
*SIMULATION*/
/* POSITION + VELOCITY FEEDBACK */
/* _______________________________________________________________________________________________________ */
#include <stdio.h>

#include <math.h>
#include <conio.h>
#include <stdlib.h>
#include <float.h>
#define pi 3.142857

/* _______________________________________________________________________________________________________ */
[* TRAJECTORY IS QUINTIC */

/* _______________________________________________________________________________________________________ */

void main()

{

int  n=0,i=0,k=5,row,row2,col,col2,seg=1;

float tf,t=0.0,ts=0.003,tsp,kd1=50.0,kd2=50.0,lambdal=100.0,lambda2=100.0,g=9.8,
vel1=0.0,vel2=0.0,11=0.26,thf1,thf2,a3,a4,a5,b3,b4,b5,a0,b0,
posl,pos2,plcap,p2cap,p3cap,pdcap,pscap, pécap,p7cap,izz2cap=0.05,
pl1,p2,p3,p4,p5,p6,p7,izz2=0.09,c1,c2,conll,conl2,con21,con22,
error1s[5000],error255000],w1l,w12,w13,w14,w16,w17,poslo,pos20,
gamal=100.0,gama2=100.0,gama3=100.0,gama4=100.0,gama5=100.0,
gama6=100.0, posld,pos2d,vel 1d,vel 2d,accld,acc2d,vel 1r,vel 2r,acclr,acc2r,
gamar7=100.0,error1,error2,el,e2,torquel,torque2,w22,w23,w25,
w27,plcapdot,p2capdot,p3capdot, pdcapdot,pScapdot, p6capdot,
p7capdot,izz1cap=0.05,izz1=0.09,
mlcap=1.0,m1=2.0,m2cap=1.0,m2=2.0,v1cap=2.0,v1=2.5,v2cap=2.0,v2=2.5,
x1cap=0.11,x1=0.13,x2cap=0.12,x2=0.14,acc1=0.0,acc2=0.0,nep,nev,dnc,
epl,ep2,evl,ev2,countl,count2,izzin=1.5,izz2n=0.09,m1n=3.0,m2n=3.0,
x1n=0.15,x2n=0.16;

FILE *erl*er2;
P oo e e e *
[*FUZZY LOOK UP TABLE*/
P oo mmm *
float lookt[13] [13]=
{

{-5.6,-54,-5.0,-48,-4.8,-4.7,-4.7,-4.6,-4.5, -4.4, -4.3, -4.3, -4.2}
{-4.7,-45,-44,-43,-4.2,-41,-40, -3.9,-3.8, -3.8, -3.7, -3.6, -3.5},
{-3.7,-3.6,-35,-3.2,-3.0,-3.0,-3.0,-2.9, -2.9, -2.8, -2.8, -2.7, - 2.7},
{-2.0,-2.0,-1.9,-1.9,-18,-1.8,-1.7,-1.7,-1.6, -1.5, -1.4, -1.3, - 1.3},
{00, 00,-08,-1.0,-1.2,-1.7,-2.3,-2.2,-2.2,-2.0,-2.0, -1.0, -1.0},
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{10, 10, 0.0, 0.0,-0.5,-05,-0.5,-1.0,-1.2,-1.5,-1.7, -1.0, -1.0},
{13, 1.2, 1.0, 0.8, 0.6, 0.0,-0.2,-0.4,-0.6,-0.8, -1.0, -1.0, -1.0},
{20, 20, 19, 1.8, 18, 1.8, 1.8, 1.8, 15, 0.0,-0.3,-1.0, -0.8},
{20, 20, 20, 20, 20, 2.0, 20, 2.0, 2.0, 1.2, 0.8, 0.0, 0.0},
{20, 21, 23, 25, 25, 25, 26, 2.7, 2.8, 2.8, 2.9, 2.9, 3.0},
{27, 27, 28, 3.1, 3.2, 3.3, 35, 3.6, 3.6, 3.8, 3.8, 3.9, 3.9},
{36, 33, 3.7, 40, 4.1, 43, 43, 44, 4.4, 45, 45, 4.6, 4.7},
{44, 44, 43, 48, 5.0, 5.0, 5.1, 5.2, 5.3, 54, 5.6, 5.6, 5.6}
¥

clrscr();

/* _______________________________________________________________________________________________________ */

[*GET INPUTS*/

/* _______________________________________________________________________________________________________ */

tsp=ts/5.0;

highvideo();

textbackground(Y ELLOW);

window(10,5,80,25);

textcolor(CY AN);

cprintf("TRAJECTORY ISQUINTIC POLYNOMIAL || Tf(max)= 5sec");
window(15,10,80,25);

textcolor(CY AN);

cprintf("FINAL TIME ");

scanf("%f" ,&tf);

/*window(15,11,80,25);

textcolor(GREEN);

cprintf("FIRST ELEMENT OF GAIN MATRIX ")
scanf("%f", &kdl);

window(15,12,80,25);

cprintf("SECOND ELEMENT OF GAIN MATRIX ")
scanf("%f", &kd2); */

window(15,14,80,25);

cprintf("ANGLE OF THE FIRST JOINT IN DEGREES(+) ");
scanf("%f",&thfl);

window(15,15,80,25);

cprintf("ANGLE OF THE SECOND JOINT IN DEGREES(-)");
scanf("%f",&thf2);

thf 1=(thf1* pi)/180.0;

thf2=(thf2* pi)/180.0;

if(thf1 < 0.0 || thf2 > 0.0)

{

window(15,18,80,25);

cprintf("GIVE CORRECT ANGLES ");
goto END;
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a0=0.0;

b0=0.0;

/* _______________________________________________________________________________________________________ */
[*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY*/

/* _______________________________________________________________________________________________________ */

a3=10.0* (thf 1)/(tF* tF* tf);
ad=-15.0* (thf 1)/ (tF* tF* t*f):
a5=6.0* (thf L)/(tF* tF* tF* tF* tf);
b3=10.0* (thf 2)/(tf* tf*tf);

bd=-15.0* (thf2)/(tF* tF* tF* tf);
b5=6.0% (thf 2)/(tf* tf* tf* tf*tf);

pos1=0.0;

pos2=0.0;

nep=108.0/pi; /*Normalisation factor for position error*/

nev=10.8/(pi); /*Normalisation factor for error dot*/

dnc=255.0/5.6; /* Denormalisation factor for voltage*/

/* _______________________________________________________________________________________________________ */
[*ESTIMATE OF PARAMETERS */

/* _______________________________________________________________________________________________________ */

plcap=izzlcap+izz2cap+m2cap* (x2cap* x2cap+| 1* | 1)+mlcap* x Llcap* x1cap;

p2cap=2.0* m2cap* | 1* x2cap;

p3cap=m2cap* x2cap* x2cap+izz2cap;

pacap=vlcap;

pScap=v2cap;

p6cap=g* (mlcap* xlcap+m2cap*|1);

p7cap=m2cap*x2cap*g;

/* _______________________________________________________________________________________________________ * /

/~k _______________________________________________________________________________________________________ */
pl=izz1+izz2+m2* (x2* x2+11*11)+m1*x1*x1,

p2=2.0*m2*|1*x2;

p3=m2* x2* x2+izz2,

p4=v1,

p5=v2;

p6=g* (Mm1*x1+m2*|1);

p7=m2*x2*g;

window(15,19,80,25);

cprintf("BUSY WITH CONTROL \n");

for (;seg<=4;)
{
for (jt<=tf;)

{
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/* DESIRED POSITION,VELOCITY ,ACCELERATION*/
if(k==5)
{
posld=a0+(a3* t* t* t)+(ad* t* t* t* ) +(a5* tr t* t* t*1);
pos2d=b0+(b3* t* t* t)+(b4* t* t* t*t)+(b5* t* t* t* t*t);
vel1d=(3.0* a3*t*t)+(4.0* ad* t* t* t)+(5.0* ab* t* t* t*t);
vel2d=(3.0* b3* t*t)+(4.0* b4* t* t*t)+(5.0* b5* t* t* t*t);
accld=(6.0* a3*t)+(12.0* ad* t*t)+(20.0* ab* t* t*t);
acc2d=(6.0* b3*t)+(12.0* b4* t*t)+(20.0* b5* t* t*1);
t=t+ts;
k=0;
}
errorl=posld-posl,;
vel1r=(vel 1d + lambdal* errorl);
acclr=(accld - lambdal* (vel1-vel1d));
el=(vel1l-vellr);

error2=pos2d-posz;

vel2r=(vel2d + lambda2* error2);

acc2r=(acc2d - lambda2* (vel 2-vel 2d));
e2=(vel2-vel 2r);

epl=(posld-posl)* nep; /*Normalised errors*/
evl=(velld-vel1)* nev;

ep2=(pos2d-pos2)* nep;

ev2=(vel2d-vel2)* nev;

if (epl <=4.8){row=0;}

if (-4.8<epl && epl <=-3.6){row=1;}
if (-3.6<epl&& epl <=-24){row=2;}
if (24 <epl && epl <=-1.2){row=3;}
if (-1.2<epl&& epl <=-0.6){row=4;}
if (0.6 <epl && epl <=-0.1){row=5;}
if (-0.1<eplé&& epl<= 0.1){row=6;}
if (0.1<epl&& epl<= 0.6){row=7;}
if (0.6<epl&& epl<= 1.2){row=8;}
if (L2<epl&& epl <= 2.4){row=9;}
if (24<epl&& epl<=3.6){row=10;}
if (3.6<epl&& epl <=4.8){row=11;}
if (4.8 <epl){row=12;}

/*SECOND LINK*/

if (ep2 <= 4.8){row2=0;}
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if (-4.8<ep2&& ep2 <=-3.6){row2=1;}
if (-3.6<ep2&& ep2 <=-2.4){row2=2;}
if (-(24<ep2&& ep2 <=-1.2){row2=3;}
if (-1.2<ep2&& ep2 <=-0.6){row2=4;}
if (-0.6<ep2&& ep2 <=-0.1){row2=5;}
if (-0.1<ep2&& ep2 <= 0.1){row2=6;}
if (0.1<ep2&& ep2<= 0.6){row2=7;}
if (0.6<ep2&& ep2<= 1.2){row2=8;}
if (L2<ep2&& ep2<= 2.4){row2=9;}
if (24<ep2&& ep2 <= 3.6){row2=10;}
if (3.6<ep2&& ep2<=4.8){row2=11;}
if (4.8 <ep2){row2=12;}

if (evl <=4.8){col=0;}
if (-4.8<evl&& evl<=-3.6){col=1;}
if (-3.6<evl&& evl<=-24){col=2;}
if ((24<evl&& evl<=-1.2){col=3;}
if (-1.2<evl&& evl <=-0.6){col=4;}
if (-0.6<evl&& evl<=-0.1){col=5;}
if (-0.1<evl&& evl<= 0.1){col=6;}
if (0.1<evl&& evl<= 0.6){col=7;}
if (0.6<evl&& evl<= 1.2){col=8;}
if (L2<evl&& evl<= 2.4){col=9;}
if (24<evl && evl <= 3.6){col=10;}
if (3.6<evl&& evl<=4.8){col=11;}
if (4.8 <evl){col=12;}

/*SECOND LINK*/
if (ev2 <= 4.8){ col2=0;}
if (-4.8<ev2&& ev2<=-3.6){col2=1;}
if (-3.6<ev2&& ev2<=-24){col2=2;}
if ((24<ev2&& ev2<=-1.2){col2=3;}
if ((lL.2<ev2&& ev2<=-0.6){col2=4;}
if (-0.6<ev2&& ev2<=-0.1){col2=5;}
if (-0.1<ev2&& ev2<= 0.1){col2=6;}
if (0.l<ev2&& ev2<= 0.6){col2=7;}
if (0.6<ev2&& ev2<= 1.2){col2=8;}
if (L2<ev2&& ev2<= 2.4){col2=9;}
if (24<ev2&& ev2<=3.6){col2=10;}
if (3.6<ev2&& ev2<=4.8){col2=11;}
if (4.8 <ev2){col2=12;}
count1=(lookt[row] [col])*dnc;
count2=(lookt[row?2] [col2])*dnc;
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L e e e
torquel=(((((24.0* count1)/255.0)-0.066* (vel 1* 80.0))* 0.066)/2.32)* 80.0;
/* ________________________________________________________________________ ~k/
/*CALCULATE ESTIMATED TORQUE FOR LINK 2*/
L e e e

torquel=(plcap+p2cap* cos(pos2))* acclr+(p3cap+0.5* p2cap* cos(pos2))* acc2r+
(p4cap-p2cap* sin(pos2)* vel 2)* vel 1r-0.5* p2cap* sin(pos2)* vel 2* vel 2r+
p6cap* cos(posl)+(p7cap* cos(posl+pos2))+(0.1498* acclr)-kd1* el+torquel;

[*if(torquel > (80.0* 10.5*0.066))

{torquel=(80.0*10.5*0.066);}

if(torquel < (-80.0*10.5*0.066))

{torquel=-(80.0* 10.5*0.066);} */

cl=  (p4-p2*sin(pos2)*vel2)* vel 1-0.5* p2* sin(pos2)* vel 2* vel 2+
p6* cos(posl)+(p7* cos(posl+pos?));

conll= (pl+p2* cos(pos2)+0.1498);

conl2= (p3+0.5* p2* cos(pos2));

torque2=(0.5* p2cap* cos(pos2)+p3cap)* acclr+p3cap* acc2r+(0.1498* acc2r)+
0.5* p2cap* sin(pos2)* vel 1* vel 1r+p5cap* vel 2r+p7cap* cos(posl+pos2)-

kd2* e2+torque2;

c2=  0.5*p2*sin(pos2)*vel 1* vel 1+p5* vel 2+p7* cos(posl+pos2);

con21= (0.5* p2* cos(pos2)+p3);

con22= (p3+0.1498);

errorlg n]=errorl* 180.0/pi;
error2g n]=error2* 180.0/pi;
n=n+1,

wll=acclr;
w12=(cos(pos2))* (acclr+0.5* acc2r)-(0.5* sin(pos2)* vel 2* (vel 1r+vel 2r))-
0.5*sin(pos2)*vel 1*vel 2r;
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wl3=acc2r,

wl4=vellr,

w16=cos(posl);

w17=cos(posl+pos2);

w22=0.5* (cos(pos2)* vel 1r+sin(pos2)* vel 1* vel 1r);
w23=acclr+acc2r;

w25=vel2r;

w27=cos(posl+pos2);

plcapdot=-1.0* (gamal*wll*el);
p2capdot= -1.0* ((gama2* w12* el)+(gama2* w22* €2));
p3capdot=-1.0* ((gama3*w13* el)+(gama3* w23* €2));
p4capdot= -1.0* (gamad*w14*el);
p5capdot= -1.0* (gama5* w25* €2);
p6capdot= -1.0* (gamat*w16*el);
p7capdot= -1.0* ((gamar*w17*el)+(gamar* w27* €2));

plcap=(tsp* plcapdot)+plcap;
p2cap=(tsp* p2capdot)+p2cap;
p3cap=(tsp* p3capdot)+p3cap;
pAcap=(tsp* p4capdot)+p4cap;
p5cap=(tsp* pScapdot)+p5cap;
p6cap=(tsp* pécapdot)+péeap;
p7cap=(tsp* p7capdot)+p7cap;

vel 1=accl*tspt+vel1;

vel2=acc2* tsp+vel 2;

posl=posl+vel 1* tsp+0.5* accl* tsp* tsp;
pos2=pos2+vel 2* tsp+0.5* acc2* tsp* tsp;
k=k+1;

}

seg=seg+1;

t=0.0;

poslo=posl;

p0S20=p0s2;
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acc2=(((torquel-cl)* con21)-((torque2-c2)* conl11))/((con12* con21)-(conll* con22));
accl=(((torquel-cl)* con22)-((torque2-c2)* con12))/((conll* con22)-(conl2* con2l));
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[*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND
SEGMENT*/

i{f(seg==2 || seg==4)
pl=izzln+izz2n+m2n* (x2n*x2n+l1*11)+m1n*x1n*x1n;
p2=2.0*m2n* | 1*x2n;
p3=m2n*x2n* x2n+izz2n;
p4=vl;

p5=v2;

p6=g* (m1ln*x1n+m2n*|1);
p7=m2n*x2n*g;

a0=thf1;

bO=thf2;

a3=-10.0* (thf1)/(tf* tf*tf);
a4=15.0* (thf 1)/(tf* tf* tf* tf);
ab=-6.0* (thf 1)/(tf* tf* tf* tf* tf);
b3=-10.0* (thf2)/(tf* tf*tf);
b4=15.0* (thf2)/(tf* tf* tf*tf);
b5=-6.0* (thf2)/(tf* tf* tf* tf* tf);
k=5;

}

if (seg==3)

{

t=0.0;

a0=0.0;

b0=0.0;

/*thf1=0.0;

thf2=0.0; */

a3=10.0* (thf L)/(tf* tf*tf);
ad=-15.0* (thf 1)/ (tf* tf* tf* tf);
ab=6.0* (thf 1)/(tf* tf* tf* tf* tf);
b3=10.0* (thf2)/(tf* tf*tf);
b4=-15.0* (thf2)/(tf* tf* tf*tf);
b5=6.0* (thf2)/(tf* tf* tf* tf* tf);
pl=izz1+izz2+m2* (x2* x2+11*11)+m1*x1*x1,
p2=2.0*m2*|1*x2;
p3=m2*x2* x2+izz2,

p4=v1,

p5=v2,

p6=g* (Mm1*x1+m2*11);
p7=m2*x2*q;

k=5;

}
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erl=fopen("scerrorl.dat","w+");
er2=fopen("scerror2.dat","w+");

for(i=0;i<=(n-1);i++)

{
fprintf(erd,"%f\n",errorlgi]);
fprintf(er2,"%f\n",error24i]);

}
fclosedll();
END:;
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A.4SOC FUZZY CONT

ROL CODE

[* This control algorithm controls a two-link manipulator. Path update rate is 333 Hz.
each setpoint the control loop is executed 5 times.*/

[*SIMULATION*/
[* SOC FUZZY */

For

/* _______________________________________________________________________________________________________ */

#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <stdlib.h>
#include <float.h>
#define pi 3.142857

/* _______________________________________________________________________________________________________ */
/* TRAJECTORY ISQUINTIC */
/* _______________________________________________________________________________________________________ */
void main()
{
/* _______________________________________________________________________________________________________ */
[*FUZZY LOOK UP TABLE*/
/* _______________________________________________________________________________________________________ */
float lookp[13] [13]={
{-6, -6, -6, -6, -6, -6, -6, -5, -4, -3, -2, -1, O},
{-6, -6, -6, -6, -5, -4, -4, -4, -3, -2, -1, 0O, 0},
{-6, -6, -6, -5, -4, -3, -3, -3,-2,-1, 0, O, 1},
{-6,-6,-5,-4,-3,-2,-2,-2,-1, 0, O, 1, 2},
{-6,-5,-4,-3,-2,-1,-1,-1, 0, O, 1, 2, 3},
{-5,-4,-3,-2,-1,-1, 0, 0, O, 1, 2, 3, 4},
{-5,-4,-3,-2,-1, 0, 0, O, 1, 2, 3, 4, 5},
{-3,-2,-1, 0,0, 0,0, 1, 1, 2 3, 4, 5},
{-2,-1,0,0,0, 1,1, 1, 2, 3 4,5, 6},
{-1,0,0,0, 1, 2, 2, 2, 3, 4,5, 6, 6},
{0,001, 2 3,3 3, 4,5, 6, 6, 6},
{0,0 1, 2 3, 4,4, 45,6, 6, 6 6},
{0, 1 2 3 45,6, 6, 6 6,6, 6 6}
1

float lookt[13] [13]=(

{-5.6,-5.4,-5.0, -4.8,-4.8, -4.7, -4.7, -4.6, -4.5, -4.4, -4.3, -4.3, -4.2}
{-4.7,-45,-4.4,-4.3,-4.2,-4.1, -4.0, -3.9, -3.8, -3.8, -3.7, -3.6, -3.5},
{-3.7,-3.6,-35,-3.2,-3.0,-3.0, -3.0, -2.9, -2.9, -2.8, -2.8, -2.7, -2.7},
{-20,-2.0,-1.9,-1.9,-18, -1.8,-1.7,-1.7, -1.6, -1.5, -1.4, -1.3, -1.3},
0.0,-0.8,-1.0,-1.2, -1.7, -2.3,-2.2, -2.2, -2.0, -2.0, -1.0, - 1.0},
1.0, 0.0, 0.0, -0.5,-0.5, -0.5, -1.0, -1.2, -1.5, -1.7, -1.0, -1.0},
1.2, 1.0, 0.8, 0.6, 0.0,-0.2, -0.4, -0.6, -0.8, -1.0, -1.0, -1.0},

20, 1.9, 1.8, 1.8, 1.8, 1.8, 1.8, 1.5, 0.0,-0.3, -1.0, -0.8},

{00,
{ 10,
{13,
{20,
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{20, 20, 20, 2.0, 20, 20, 20, 2.0, 2.0, 1.2, 0.8, 0.0, 0.0},
{20, 21, 23, 25, 25, 25, 2.6, 2.7, 2.8, 2.8, 2.9, 2.9, 3.0},
{27, 27, 2.8, 3.1, 3.2, 33, 35, 3.6, 3.6, 3.8, 3.8, 3.9, 3.9},
{36, 3.3, 37, 40, 4.1, 4.3, 4.3, 44, 44, 45, 45, 4.6, 4.7},
{44, 44, 43, 48, 50, 5.0, 5.1, 5.2, 5.3, 5.4, 5.6, 5.6, 5.6}
|
[*float lookt[13] [13]={
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0}
bl

float lookt2[13] [13]={
{-5.6,-5.4,-5.0, -4.8, -4.8, -4.7, -4.7, -4.6, -4.5, -4.4, -4.3, -4.3, -4.2},
{-4.7,-45,-4.4,-4.3, -4.2, -4.1, -4.0, -39, -3.8,-3.8, -3.7, -3.6, -3.5},
{-3.7,-36,-35,-3.2,-3.0,-3.0, -3.0, -2.9, -2.9, -2.8, -2.8, -2.7, -2.T},
{-2.0,-2.0,-1.9,-1.9,-18,-1.8, -1.7, -1.7, -1.6, -1.5, -1.4, -1.3, -1.3},
{ 0.0, 00,-0.8,-1.0,-1.2, -1.7, -2.3, -2.2, -2.2, -2.0, -2.0, -1.0, -1.0},
{ 1.0, 1.0, 0.0, 0.0,-0.5,-0.5, -0.5, -1.0, -1.2, -1.5, -1.7, -1.0, -1.0},
{13, 1.2, 1.0, 0.8, 0.6, 0.0,-0.2,-0.4,-0.6, -0.8, -1.0, -1.0, -1.0},
{20, 20, 1.9, 1.8, 1.8, 1.8, 1.8, 1.8, 1.5, 0.0,-0.3,-1.0, -0.8},
{ 2.0, 20, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.2, 0.8, 0.0, 0.0},
{20, 2.1, 2.3, 25, 25, 25, 2.6, 2.7, 2.8, 2.8, 2.9, 2.9, 3.0},
{27, 2.7, 28, 3.1, 32, 3.3, 35, 36, 36, 38, 3.8, 3.9, 3.9},
{ 3.6, 3.3, 3.7, 40, 4.1, 4.3, 4.3, 4.4, 4.4, A5, 45, 4.6, 4.7},

{44, 44, 43, 48, 50, 50, 51, 52, 53, 5.4, 5.6, 5.6, 5.6}
};

/*float lookt2[13] [13]={
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
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{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0}
bl

int  n=0,i=0,j=0,k=5,row=0,row2=0,col=0,col 2=0,rowp,row2p,col p,col 2p,seg=1;

float tf,t=0.0,ts=0.003,tsp,g=9.8,a0=0.0,b0=0.0,pos10o,pos20,vel 1=0.0,vel 2=0.0,
11=0.26,thf1,thf2,a3,a4,a5,b3,b4,b5,pos1,pos2,pl,p2,p3,p4,p5,p6,p7,
i1zz2=0.09,c1,c2,conll,conl2,con21,con22,errorls 5000],error29 5000],
accl,acc2,posld,pos2d,vel 1d,vel 2d,ep1=0.0,ep2=0.0,ev1=0.0,ev2=0.0,
1zz1=0.09,count1,count2,m1=2.0,m2=2.0,v1=2.5,v2=2.5,x1=0.13,x2=0.14,
nep,nev,dnc,izz1n=1.5,izz2n=0.09,m1n=3.0,m2n=3.0,x1n=0.15,x2n=0.16,ep1s=0.0,
ep2s=0.0,ki1=0.0,ki2=0.0, torquel,torque2,;

FILE *erl*er2

clrser();

tsp=ts/5.0;

highvideo();

textbackground(Y ELLOW);

window(10,5,80,25);

textcolor(CY AN);

cprintf("TRAJECTORY IS QUINTIC POLYNOMIAL || Tf(max)= 5sec");
window(15,10,80,25);

textcolor(CYAN);

cprintf("FINAL TIME ");

scanf (" %f" & tf);

window(15,14,80,25);
cprintf("ANGLE OF THE FIRST JOINT IN DEGREES(+) ");
scanf("%f",&thfl);

window(15,15,80,25);

cprintf("ANGLE OF THE SECOND JOINT IN DEGREES(-)");
scanf("%f",&thf2);

thf 1=(thf1* pi)/180.0;

thf2=(thf2* pi)/180.0;

if(thf1 < 0.0 || thf2 > 0.0)

{

window(15,18,80,25);

cprintf("GIVE CORRECT ANGLES ");
goto END;
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a3=10.0* (thf L)/(tf* tf* tf);

ad=-15.0* (thf 1)/ (tf* tf* tf* tf);

ab=6.0* (thf 1)/(tf* tf* tf* tf* tf);

b3=10.0* (thf2)/(tf* tf* tf);

b4=-15.0* (thf2)/(tf* tf* tf* tf);

b5=6.0* (thf2)/(tf* tf* tf* tf* tf);

pos1=0.0;

pos2=0.0;

nep=1080.0/(pi); /*Normalisation factor for position error*/
nev=1.0*10.8/pi; /*Normalisation factor for error dot*/
dnc=255.0/6.0;  /*Denormalisation factor for voltage*/

pl=izz1+izz2+m2* (x2* x2+11*|11)+m1*x1* x1;
p2=2.0*m2*|1*x2;

p3=m2* x2* x2+izz2,

p4=v1,

p5=v2;

p6=g* (Mm1*x1+m2*11);

p7=m2*x2*q;

window(15,19,80,25);

cprintf("BUSY WITH CONTROL \n");
a0=0.0;

for (;seg<=4;)
{
for (jt<=tf;)

{

if(k==5)

{

posld=a0+(a3* t* t*t)+(ad* t* t* t* t)+(a5* t* t* t* t*1);
pOS20=b0+(b3* t* t* t)+(b4* t* t* t* t)+(b5* t* t* t* t*1):
vel 1d=(3.0* a3* t*t)+(4.0* ad* t* t*t)+(5.0* a5* t* t* t*1);
vel2d=(3.0* b3* t*t)+(4.0* b4* t* t*t)+(5.0* b5* t* t* t*t);
t=t+ts,

k=0;

}

/* DESIRED POSITION,VELOCITY ,ACCELERATION*/
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epl=(posld-posl)* nep;
ep2=(pos2d-pos2)* nep;
evl=(velld-vel1)* nev;
ev2=(vel2d-vel2)* nev;

if (epl <=-4.8){rowp=0;}
if (-4.8<epl && epl <=-3.6){rowp=1;}
if (-3.6<epl && epl <=-2.4){rowp=2;}
if (-24<epl && epl <=-1.2){rowp=3;}
if (-1.2<epl && epl <=-0.6){rowp=4;}
if (-0.6 <epl && epl <=-0.1){rowp=5;}
if (-0.1<epl&& epl <= 0.1){rowp=6;}
if (0.1<epl&& epl <= 0.6){rowp=7;}
if (0.6<epl&& epl <= 1.2){rowp=8;}
if (1L.2<epl&& epl <= 2.4){rowp=9;}
if (24<epl && epl <= 3.6){rowp=10;}
if (3.6<epl&& epl <=4.8){rowp=11;}
if (4.8 <epl){rowp=12;}

/*SECOND LINK*/
if (ep2 <=-4.8){row2p=0;}
if (-4.8<ep2&& ep2 <=-3.6){row2p=1;}
if (-3.6<ep2&& ep2 <=-2.4){row2p=2;}
if (-(24<ep2&& ep2 <=-1.2){row2p=3;}
if (-1.2<ep2&& ep2 <=-0.6){row2p=4;}
if (-0.6 <ep2&& ep2 <=-0.1){row2p=5;}
if (-0.1<ep2&& ep2<= 0.1){row2p=6;}
if (0.1<ep2&& ep2<= 0.6){row2p=7;}
if (0.6<ep2&& ep2<= 1.2){row2p=8;}
if (1L.2<ep2&& ep2<= 2.4){row2p=9;}
if (24<ep2&& ep2 <= 3.6){row2p=10;}
if (3.6<ep2&& ep2<=4.8){row2p=11;}
if (4.8 <ep2){row2p=12;}

if (evl <=-4.8){ colp=0;}

if (-4.8<evl && evl <=-3.6){colp=1;}
if (-3.6<evl&& evl<=-24){colp=2;}
if ((24<evl && evl <=-1.2){colp=3;}
if (-1.2<evl&& evl <=-0.6){colp=4;}
if (-0.6<evl&& evl<=-0.1){colp=5;}
if ((0.1<evl&& evl<= 0.1){colp=6;}
if (0.1<evl&& evl<= 0.6){colp=7;}
if (0.6<evl&& evl<= 1.2){colp=8;}
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if (1L2<evl&& evl<= 2.4){colp=9;}
if (24<evl && evl <= 3.6){colp=10;}
if (3.6<evl&& evl<=4.8){colp=11;}
if (4.8 <evl){colp=12;}

[*SECOND LINK*/
if (ev2 <=-4.8){ col2p=0;}
if (-4.8<ev2&& ev2<=-3.6){col2p=1;}
if (-3.6<ev2&& ev2<=-2.4){col2p=2;}
if (-(24<ev2&& ev2 <=-1.2){col2p=3;}
if (-lL.2<ev2&& ev2<=-0.6){col2p=4;}
if (-0.6<ev2&& ev2<=-0.1){col2p=5;}
if (-0.1<ev2&& ev2<= 0.1){col2p=6;}
if (0.1<ev2&& ev2<= 0.6){col2p=7;}
if (0.6<ev2&& ev2<= 1.2){col2p=8;}
if (L2<ev2&& ev2<= 2.4){col2p=9;}
if (24<ev2&& ev2 <= 3.6){col2p=10;}
if (3.6<ev2&& ev2<=4.8){col2p=11;}
if (4.8 <ev2){col2p=12;}
lookt[row][col]=lookt[row][col]+lookp[rowp][colp];
if(lookt[row][col]>6.0)
{lookt[row][col]=6.0;}
if(lookt[row][col]<-6.0)
{lookt[row][col]=-6.0;}
lookt2[ row?2] [ col 2]=lookt2[ row2] [ col 2] +lookp[row2p] [col 2p];
if(lookt2[row2][col 2]>6.0)
{lookt2[row2][col2]=6.0;}
if(lookt2[row?2][col 2] <-6.0)
{lookt2[row2][col2]=-6.0;}
epl=(posld-posl)*nep; /*Normalised errors*/
evl=(velld-vel1)* nev;
epls=eplst+(posld-posl);

ep2=(pos2d-pos2)* nep;
ev2=(vel2d-vel2)* nev;
ep2s=ep2s+(pos2d-pos2);

if (epl <=-4.8){row=0;}

if (-4.8<epl&& epl <=-3.6){row=1;}
if (-3.6<epl && epl <=-2.4){row=2;}
if ((24<epl&& epl <=-1.2){row=3;}
if (-1.2<epl&& epl <=-0.6){row=4;}
if (-0.6<epl&& epl <=-0.1){row=5;}
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if (-0.1<epl&& epl<= 0.1){row=6;}
if (0.1<epl&& epl <= 0.6){row=7;}
if (0.6<epl&& epl<= 1.2){row=8;}
if (L2<epl&& epl <= 2.4){row=9;}
if (24<epl && epl <= 3.6){row=10;}
if (3.6<epl&& epl <=4.8){row=11;}
if (4.8 <epl){row=12;}

[*SECOND LINK*/
if (ep2 <=-4.8){row2=0;}
if (-4.8<ep2&& ep2 <=-3.6){row2=1;
if (-3.6<ep2&& ep2 <=-2.4){row2=2;
if (-(24<ep2 && ep2 <=-1.2){row2=3;
if (-1.2<ep2&& ep2 <=-0.6){ row2=4;
if (0.6 <ep2 && ep2 <=-0.1){row2=5;}
if (-0.1<ep2&& ep2<= 0.1){row2=6;}
if (0.1<ep2&& ep2<= 0.6){row2=7;}
if (0.6<ep2&& ep2<= 1.2){row2=8;}
if (L2<ep2&& ep2<= 2.4){row2=9;}
if (24<ep2&& ep2<=3.6){row2=10;}
if (3.6<ep2&& ep2<=4.8){row2=11;}
if (4.8 <ep2){row2=12;}

) A o et

if (evl <=-4.8){ col=0;}
if (-4.8<evl && evl <=-3.6){col=1;}
if (-3.6<evl&& evl<=-24){col=2;}
if ((24<evl && evl <=-1.2){col=3;}
if ((1L.2<evl&& evl<=-0.6){col=4;}
if (-0.6<evl&& evl<=-0.1){col=5;}
if (-0.1<evl&& evl<= 0.1){col=6;}
if (0.1<evl&& evl<= 0.6){col=7;}
if (0.6<evl&& evl<= 1.2){col=8;}
if (L2<evl&& evl<= 2.4){col=9;}
if (24<evl&& evl <= 3.6){col=10;}
if (3.6<evl&& evl<=4.8){col=11;}
if (4.8 <evl){col=12;}

/*SECOND LINK*/
if (ev2 <=-4.8){ col2=0;}
if ((4.8<ev2&& ev2<=-3.6){col2=1;}
if (-3.6<ev2&& ev2<=-24){col2=2;}
if (-(24<ev2&& ev2<=-1.2){col2=3;}
if (-lL2<ev2&& ev2<=-0.6){col2=4;}
if (-0.6<ev2&& ev2<=-0.1){col2=5;}
if (-0.1<ev2&& ev2<= 0.1){col2=6;}
if (0.1<ev2&& ev2<= 0.6){col2=7;}
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if (0.6<ev2&& ev2<= 1.2){col2=8;}
if (lL2<ev2&& ev2<= 2.4){col2=9;}
if (24<ev2&& ev2<=3.6){col2=10;}
if (3.6<ev2&& ev2<=4.8){col2=11;}
if (4.8 <ev2){col2=12;}
count1=(lookt[row] [col])*dnc;
count2=(lookt2[row2] [col2])*dnc;

torquel=(((((20.0* count1)/255.0)-0.066* (vel 1* 80.0))* 0.066)/2.32)* 80.0+ki1* epls,
[*if (torquel>55.44)
{torquel=55.44;}
if (torquel<-55.44)
{torquel=-55.44;} */
cl=  (p4-p2*sin(pos2)*vel2)*vel 1-0.5* p2* sin(pos2)* vel 2* vel 2+
p6* cos(posl)+(p7* cos(posl+pos2));
conll= (pl+p2* cos(pos2)+0.1498);
conl2= (p3+0.5* p2* cos(pos?2));
/* _______________________________________________________________________________________________________ */

/* _______________________________________________________________________________________________________ */
torque2=(((((20.0* count2)/255.0)-0.066* (vel 2* 70.0))* 0.066)/2.32)* 70.0+ki2* ep2s;

[*if (torque2>48.51)

{torque2=48.51;}

if (torque2<-48.51)

{torque2=-48.51;} */

c2=  0.5*p2*sin(pos2)*vel 1* vel 1+p5* vel 2+p7* cos(posl+pos2);

con21= (0.5* p2* cos(pos2)+p3);

con22= (p3+0.1498);

/* _______________________________________________________________________________________________________ */

o e e e e e e e *
errorls n]=epl* 180.0/(pi* nep);

error29 nj=ep2* 180.0/(pi* nep);

n=n+1;

epls=0.0;
€p2s=0.0;

acc2=((torquel-cl)* con21-(torque2-c2)* conll)/(conl2* con21-conll* con22);
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accl=((torquel-cl)* con22-(torque2-c2)* conl12)/(conll* con22-conl2* con2l);
vel 1=accl*tsp+vel1;

vel2=acc2* tspt+vel 2;

posl=posl+vel 1* tsp+0.5* accl* tsp* tsp;
pos2=pos2+vel 2* tsp+0.5* acc2* tsp* tsp;
k=k+1;

}

t=0.0;

poslo=posl;

p0S20=p0s2;

seg=seg+l;

[*CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND
SEGMENT*/

i{f(seg==2 || seg==4)
pl=izzln+izz2n+m2n* (x2n*x2n+l1*11)+m1n*x1n*x1n;
p2=2.0*m2n* | 1*x2n;
p3=m2n* x2n* x2n+izz2n;
p4=vl;

p5=v2;

p6=g* (m1ln*x1n+m2n*|1);
p7=m2n*x2n*g;

a0=thf1;

bO=thf2;

a3=-10.0* (thf1)/(tf* tf*tf);
a4=15.0* (thf 1)/(tf* tf* tf* tf);
ab=-6.0* (thf1)/(tf* tf* tf* tf*tf);
b3=-10.0* (thf2)/(tf* tf*tf);
b4=15.0* (thf2)/(tf* tf* tf*tf);
b5=-6.0* (thf2)/(tf* tf* tf* tf* tf);
k=5;

}

if(seg==3)

{

t=0.0;

a0=0.0;

b0=0.0;

[*thf1=0.0;

thf2=0.0; */

a3=10.0* (thf 1)/(tf* tf* tf);
ad=-15.0* (thf 1)/ (tf* tf* tf* tf);
ab=6.0* (thf 1)/(tf* tf* tf* tf* tf);
b3=10.0* (thf2)/(tf* tf*tf);
b4=-15.0* (thf2)/(tf* tf* tf* tf);
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b5=6.0* (thf2)/(tF* tF* tf* tF*tf);

pl=izz1+izz2+m2* (x2* x2+11*11)+m1*x1* X1,

p2=2.0*m2*|1*x2;
p3=m2* x2* x2+izz2,
p4=vl;

p5=v2;

p6=g* (Mm1*x1+m2*11);
p7=m2*x2*g;

k=5;

erl=fopen("scerrorl.dat","w+");
er2=fopen("scerror2.dat","w+");

for(i=0;i<=(n-1);i++)

ipri ntf(erl,"%f\n" errorlgi]);
fprintf(er2,"%f\n" error24[i]);
3*for(i=0;i<=12;i++)

1£or(j =0;j<=12;j++)

fprintf(erd,"%f\n" lookt[i][j]);
fprintf(er2,"%f\n" lookt2[i][j]);
}

3l

fcloseall();

END:;
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A5 ADAPTIVE FUZZY CONTROL CODE

% Declare and initialize the variables
clear errorls,

clear error2s,

ts=0.003;

tsp=ts/5.0;

tf=2.0;

thf1=45;

thf2=-45;

n=1;

i=0;

k=5;

seg=1;

t=0.0;

0=9.8;

a0=0;

b0=0;

vel1=0;

vel 2=0;

[1=0.26;

i1zz2=0.09;

1zz1=0.09;

m1=2.0;

m2=2.0;

v1=2.5;

v2=2.5;

x1=0.13;

x2=0.14;

izz1n=1.5;

izz2n=0.09;

m1n=3.0;

m2n=3.0;

x1n=0.15;

x2n=0.16;

ki1=6000;

ki2=6000;

epls=0;

ep2s=0;

thf 1=(thf1* pi)/180.0;
thf2=(thf2* pi)/180.0;
a3=10.0* (thf 1)/(tf* tf*tf);
ad=-15.0* (thf 1)/(tf* tf* tf* tf);
ab=6.0* (thf 1)/(tf* tf* tf* tf* tf);
b3=10.0* (thf2)/(tf* tf* tf);
b4=-15.0* (thf2)/(tf* tf* tf* tf);
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b5=6.0* (thf2)/(tf* tf* tf* tf* tf);

pos1=0.0;

pos2=0.0;

nep=1080.0/(6.0* pi); %Normalisation factor for position error*/
nev=1.0*10.8/(6.0*pi); %Normalisation factor for error dot*/
dnc=3*255.0; %Denormalisation factor for voltage*/

pl=izz1+izz2+m2* (x2* x2+11*11)+m1*x1*x1,
p2=2.0*m2*|1*x2;

p3=m2* x2* x2+izz2,

p4=vl;

p5=v2;

p6=g* (m1*x1+m2*11);

p7=m2*x2*g;

a0=0.0;

b0=0.0;

while seg <=4,
whilet <=tf,

% DESIRED POSITION, VELOCITY, ACCELERATION*/
if k==5,
posld=a0+(a3* t* t*t)+(ad* t* t* t* t)+(a5* t* t* t* t*1);
pOS20=b0+(b3* t* t* t)+(b4* t* t* t* t)+(b5* t* t* t* t*1):
vel 1d=(3.0* a3* t*t)+(4.0* ad* t* t*t)+(5.0* a5* t* t t*1);
vel2d=(3.0* b3* t*t)+(4.0* b4* t* t* t)+(5.0* b5* t* t* t*t);
t=t+ts;
k=0;
end
epl=(posld-posl)* nep; %Normalised errors*/
evl=(velld-vel1)* nev;
epls=eplst+(posld-posl);

ep2=(pos2d-pos2)* nep;
ev2=(vel2d-vel2)* nev;
ep2s=ep2s+(pos2d-pos2);

if abs(epl)<0.5 & abs(ev1)<0.5,

epl=2*epl;
evl=2*evl;
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end

if abs(ep2)<0.5 & abs(ev2)<0.5,
ep2=2*ep2;
ev2=2*ev2;

end

evZ];
countl=evalfis(ul,x1x);
count2=evalfis(u2,x1x);
%al phal=evalfis(ul,x2x);
%al pha2=eval fis(u2,x2x);

if abs(epl)<0.5 & abs(ev1)<0.5,
aphal=alphal;%/2;

end

if abs(ep2)<0.5 & abs(ev2)<0.5,
alpha2=alpha2;%/2;

end

countl=count1* dnc;%* a phal;
count2=count2* dnc;%* alphaz;

if abs(epl)<0.5 & abs(ev1)<0.5,
epl=epl/2;
evl=evl/2;

end

if abs(ep2)<0.5 & abs(ev2)<0.5,

torquel=(((((20.0* count1)/255.0)-0.066* (vel 1* 80.0))* 0.066)/2.32)* 80.0+ki1* epls;
cl= (p4-p2*sin(pos2)*vel2)*vell1-

0.5* p2* sin(pos2)* vel 2* vel 2+p6* cos(posl) +(p7* cos(posl+pos2));

conll= (pl+p2* cos(pos2)+0.1498);

conl2= (p3+0.5* p2* cos(pos2));

torque2=(((((20.0* count2)/255.0)-0.066* (vel 2* 70.0))* 0.066)/2.32)* 70.0+ki2* ep2s;
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c2= 0.5* p2* sin(pos2)* vel 1* vel 1+p5* vel 2+p7* cos(posl+pos2);
con21= (0.5* p2* cos(pos2)+p3);
con22= (p3+0.1498);

if k==4,

errorls(n)=epl* 180.0/(pi* nep);
error2s(n)=ep2* 180.0/(pi* nep);
n=n+1,

epls=0.0;

ep2s=0.0;

end

acc2=((torquel-cl)* con21-(torque2-c2)* conll)/(conl2* con21-conll* con22);
accl=((torquel-cl)* con22-(torque2-c2)* con12)/(conll* con22-con12* con2l);
vel 1=accl*tspt+vel1;

vel2=acc2* tsp+vel 2;

posl=posl+vel 1* tsp+0.5* accl* tsp* tsp;

pos2=pos2+vel 2* tsp+0.5* acc2* tsp* tsp;

k=k+1,

end

t=0.0;

poslo=posl,;

p0S20=p0s2;

seg=seg+1;

%CALCULATE CONSTANTS OF QUINTIC TRAJECTORY FOR THE SECOND
SEGMENT*/

if seg==2 | seg==4,

pl=izzln+izz2n+m2n* (x2n*x2n+l1*11)+m1n*x1n*x1n;
p2=2.0*m2n* | 1*x2n;
p3=m2n*x2n* x2n+izz2n;
p4=v1,

p5=v2;

p6=g* (m1n*x1n+m2n*|1);
p7=m2n*x2n*g;

a0=thf1,

bO=thf2;

a3=-10.0* (thf1)/(tf* tf*tf);
a4=15.0* (thf 1)/(tf* tf* tf* tf);
ab=-6.0* (thf 1)/(tf* tf* tf* tf*tf);
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b3=-10.0* (thf2)/(tF* tF*tf);
b4=15.0% (thf2)/(tF* tF* tF*tf);
b5=-6.0* (thf2)/(tF* tF* tF* tF*tf);
k=5;

end

if seg==3,

t=0.0;
a0=0.0;
b0=0.0;
%thf1=0.0;
%thf2=0.0;
a3=10.0* (thf L)/(tf* tf* tf);
ad=-15.0* (thf 1)/ (tf* tf* tf* tf);
ab=6.0* (thf 1)/(tf* tf* tf* tf* tf);
b3=10.0* (thf2)/(tf* tf* tf);
b4=-15.0* (thf2)/(tf* tf* tf* tf);
b5=6.0* (thf2)/(tf* tf* tf* tf* tf);
pl=izz1+izz2+m2* (x2* x2+11*|11)+m1*x1* x1;
p2=2.0*m2*|1*x2;
p3=m2* x2* x2+izz2,
p4=v1,
p5=v2;
p6=g* (Mm1*x1+m2*11);
p7=m2*x2*q;
k=5;

er1=fopen(‘f:\back\output\scerrorl.dat','w");
er2=fopen(‘f:\back\output\scerror2.dat','w");

errorls=errorls,
error2s=error2s,

%i=1;

%whilei<n,
fprintf(erl,'%2.5f \n',errorls);
fprintf(er2,'%2.5f \n',error2s);
%i=i+1;

%end

fclose(erl);
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fclose(er2);

244



Brief Biography of the Supervisor

Surekha Bhanot is currently attached to the Instrumentation Unit of Birla Institute of
Technology and Sciences (BITS), Pilani as Professor and Unit Chief. She holds a Ph.D
degree from University of Roorkee (now I1T, Roorkee). Previosly, she completed Master
of Philosophy (M.Phil) in Instrumentation and Bachelor of Engineering (B.E) in
Mechanical from BITS. She has a teaching experience of over 26 years, of which 19
years were at Thapar Institute of Engineering Tectnology (TIET), Patiala and rest at
BITS, Pilani. Her current research interests include Instrumentation and Al techniques for
process modeling and control.

Brief Biography of the Candidate

Sudeept Mohan completed his Master of Engineering (M.E) degree in Electronics and
Control from the Birla Institute of Technology and Sciences (BITS), Pilani. He also holds
a Masters (MSc.) degree in Physics and Bachelor of Engineering (B.E) in Electrical and
Electronics from the same institute. He has a teaching experience of over fifteen years at
BITS, Pilani. Currently he is attached to the Computer Science department at BITS as
Assistant Professor. His research interests include Automatic controls and Robotics.

245



	COVER PAGE.pdf
	CERTIFICATE.pdf
	Abstract.pdf
	Acknowledgements.pdf
	TABLE OF CONTENTS.pdf
	List of figs and tables.pdf
	List of Abbreviations.pdf
	chapter 1.pdf
	chapter 2.pdf
	chapter 3.pdf
	chapter 4.pdf
	chapter 5.pdf
	chapter 6.pdf
	chapter 7.pdf
	List of Pubs.pdf
	References.pdf
	appendix.pdf
	Brief Biography of the Candidate.pdf



