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Abstract

Multidimensional networks are a useful modeling paradigm for representing the

multirelational interactions between entities. Such multirelational interactions

frequently occur in the application domains of computer networks, social net-

works and multi-modal transit networks.

The thesis incorporates a study of multidimensional networks using both the

existing and the newly proposed methods. The initial focus is on the connec-

tions of a multidimensional network. The thesis starts with an analysis of the

measurement data on the broadband connections of the Indian consumers;

the analysis is used for understanding the characteristics of network connec-

tions. The thesis continues with a demonstration of the multidimensional net-

work modeling in transit networks. The transit timetable of the Indian Railways

network is analyzed as a multidimensional network. To demonstrate the advan-

tages of network analysis on the online communities, a structural analysis of

network created from the Internet relay chat (IRC) channel logs is presented.

The thesis lists some of the limitations of the existing network models. The

existing network models have nodes and connections as passive entities. The

existing network models place emphasis on the structural properties of net-

works; functional and behavioural aspects of networks are not accounted for in

the existing network models. To overcome these limitations, the thesis proposes

a new network model named the Cell Model. The Cell Model adds functional

and behavioural aspects to the existing structural model of a network. The Cell

Model makes provisions for the modeling of hierarchical networks. The the-

sis shows the generality of the Cell Model by showing a representation of the

existing network models using the Cell Model.

The utility of the Cell Model has been demonstrated by solving two research

problems in the areas of network packet traffic analysis and multi-modal tran-

sit scheduling. The Cell Model is used to create a protocol analysis software

named Darshini. Darshini has a protocol analysis pipeline that is built using



the Cell Model. Darshini can perform concurrent processing of packets and

can perform analysis of selected protocols. In the area of multi-modal transit

scheduling, we use the Cell Model to recreate a virtual transit network. In the

thesis, multi-modal transit networks of India are modeled as the Cell Model of a

network. The Cell Model-based virtual network can process the itinerary search

queries and generate a list of feasible itineraries.

The thesis makes the following research contributions.

1. A study of the network conditions experienced by the Indian broadband

users. The dataset of the measurement lab’s (M-Lab) network diagnostic

test (NDT) is used for this study.

2. Representation of the transit timetable of the Indian Railways as multidi-

mensional networks. The case of shared transit vehicles that create mul-

tiple entries in the transit timetable is considered in this study. The thesis

contains a structural analysis of the resultant multidimensional network.

3. A social network representation and structural analysis for the Internet Re-

lay Chat (IRC) channel logs of Ubuntu and Slackware IRC communities.

4. The Cell Model for the modeling of multidimensional networks. The Cell

Model uses the axioms of activeness, message exchange, observational

equivalence of FSMs and hierarchy to help model active multidimensional

networks. The Cell Model provides flexibility to choose from structural,

functional and behavioral views to model the nodes and connections of a

network.

5. An implementation of a protocol analysis software using the Cell Model. In

the process of developing the implementation, the protocol analysis prob-

lem has been redefined as a graph embedding problem. The resulting

application, named as Darshini, can perform a selective analysis of the

protocols, provides for configurable tradeoffs between memory consump-

tion and execution time, and persists the analysis results into a database.

6. Two implementations of multi-modal journey planner. The first implemen-

tation is an extension to the Connection Scan Algorithm (CSA); the pro-

posed extension adds optimization for direct connections between transit

stations and for private transport facilities. The second implementation

uses the Cell Model for modeling of the multi-modal transit networks of

India. Both the implementations provide an interactive journey planner

application.
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Glossary

Bisimulation Equivalent Two processes (for us, FSMs) are bisimilar, or bisim-

ulation equivalent, if, roughly, they may evolve together in such a way that

whenever the first process performs a certain action, the second process

is able to respond by performing a matching action, and vice versa. (Hir-

shfeld et al.).

Bridge Function A function that considers station constraints while extending

a path with an edge having edge constraints.

Code Length Size of variable-length code required to enumerate the commu-

nities in a given network; typically specified in fraction of bits.

Connection Array A sorted sequence of connections stored in an array. The

connections are sorted in the ascending order of their departure time.

Edge An unweighted and undirected binary relation between a node and a

connection of the cell model.

Edge Constraints Constraints imposed on an edge.

Inter-layer connections The connections that span more than one layer of a

multilayer network.

Itinerary A sequence of connections that satisfy a user query.

Jitter Uncertainty in the arrival time of the packets, often times measured as

variation in round trip time.

Latency Time taken by a packet to travel from source to destination, often mea-

sured as round trip time.
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Multidimensional Network Network with nodes having multiple relations.

Multilayer Network A synonym for multidimensional network.

Multi-modal Transit Network A transit network that operates more than one

mode of transport.

Observational Equivalence Also known as weak bisimulation. In observa-

tional equivalence, two FSMs are able to perform input-output matching

without striving to match the internal states.

Packet Loss Percentage of packets lost in the transmission.

Participant Node or Connection of a network which is modeled as a cell in the

cell model of a network.

Path Constraints Constraints imposed on a computed path.

Persistence The act of saving / retaining, used in the context of saving protocol

analysis results to a database.

Protocol graph A network created out of protocols (as nodes) and their packet

delivery service as provider - user relations (as connections).

Protocol parse graph A protocol graph used for protocol analysis.

Quality of Service Defined by four parameters, namely throughput, latency,

jitter and reliability.

Reactive System The systems that react to input with no stop condition.

Route (Computer Networks) Path from source to destination via intermediate

nodes.

Route (Transit Networks) A set of all trips that cover the exact same sequence

of stations and satisfy FIFO property.

Space of Changes Graph of transit stations where an edge exists between two

stations if both the stations are serviced by at least one common train.

Space of Stations Graph of transit stations where an edge exists between two

stations if the respective stations are physically connected by a train track.



Space of Stops Graph of transit stations where an edge exists between two

stations if the respective stations are adjacent in the timetable of any train..

Station The well-known locations where public transport vehicles stop (like a

bus station, railway station or an airport.

Station Constraints Constraints imposed on a station.

Structural Analysis The study of structural properties of networks such as the

diameter of the network, betweenness centrality measures, clustering co-

efficients etc..

Throughput Rate (bits per second) at which data is transferred from source to

destination.

Timetable A tuple (π, S ,Trips,R, F) indicating the scheduled vehicle depar-

tures and arrivals in a transit network. π denotes time period of a timetable.

S is the set of all stations, Trips is the set of all trips, R is the set of all

routes and F is a footpath table containing walking times between nearby

stations..

Transfer Time The time required for alighting a connection of one trip and

boarding connection of another trip.

Transit network The transport vehicles, stations and timetable of an operator

together are referred to as transit network .

Union Parse Graph A protocol parse graph containing all the supported pro-

tocols. Union parse graph is used by almost all the protocol analyzers.
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S S Stop sequence of a train.

S umRTT Sum of all round trip time samples.

T Indian railways timetable.

t Timetable of a single train.

Tarr Arrival time of a connection at S arr.

τ Silent action of FSM.
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Tdep Departure time of a connection at S dep.

Ti Time as an independent variable for the Cell Model of a network.

tr Unique trip identifier in a transit timetable.
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ttr Transfer time between two connections.

V1
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Chapter 1

Introduction

1.1 Multidimensional Networks

We live in a connected world. Both humans and technical systems survive and

thrive in a web of diverse interactions. Social networks, transportation networks

and computer networks are a few examples of such interactions.

1.1.1 Social Networks

Social networks are a representation of the relations between human beings.

Two human beings may be related in more than one way. For example, two

humans from the same family may be avid chess players and also work for the

same company. Thus these two humans share three different kinds of relations

– family, chess and work. This is an example of a network where participating

nodes (humans) form multiple relations. Another instance of multiple relations

is when two human beings interact with each other via two or more online com-

munities. Facebook, Internet Relay Chat (IRC) channels and mail groups are

examples of social networks facilitated by technology platforms; such networks

are referred to as online social networks. Networks with nodes having multiple

relations are referred to as multidimensional networks; Here each dimension

refers to one kind of relation. Some researchers refer to networks nodes hav-

ing multiple relations as multilayer networks [1]. Multidimensional online social

networks are examples of diverse interactions between humans facilitated by

1
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kubuntu

kubuntu-devel

ubuntu-devel

H1 H2

(A) Social network between IRC chan-
nel users depicting multiple relations.
The text on the connections refers to
the IRC channel on which both the

users are present.

bus

train

flight

S 1 S 2

(B) Transit network between stations
depicting multiple relations. The text
on the connections refers to the vehi-
cles using a particular mode of trans-

port to service the transit stations.

Layer1

Layer2

P11

P21 P22

Layer3 P31 P32 P33

(C) Protocol graph between protocols de-
picting use relations. A connection be-
tween two protocol nodes refers to a rela-
tion from a higher layer protocol to a lower

layer protocol.

FIGURE 1.1: Examples of multidimensional networks.

technological systems. Figure 1.1a illustrates the scenario of two human beings

interacting with each other on three IRC channels. The depicted IRC channels

are kubuntu, kubuntu-devel and ubuntu-devel.

1.1.2 Transit Networks

Transportation networks are structures that convey ... matter (people) or in-

formation from one point to another [2]. We consider transport networks that

convey passengers using vehicles. For example, India has the long tradition

of common transportation providers such as Indian Railways, state transport

corporations and Air India etc. These transport service providers ferry passen-

gers between pre-defined locations as per widely published timetables. Such
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transport providers who operate services at regular time intervals are known as

transit operators. The pre-defined locations where public transport vehicles stop

(like a bus station, railway station or an airport) are referred to as stations. The

transport vehicles, stations and timetable of an operator together are referred to

as transit network. Transport networks have different modes of transport such

as bus, train, flight and taxi. A transit network that incorporates more than one

mode of transport is called a multi-modal transit network. Multi-modal transit

networks are examples of multidimensional networks with one mode of trans-

port forming a dimension of the relations between transit stations.

In a multi-modal transit network, we may have many interesting scenarios, like:

1. The same transit network operator uses multiple modes of transport tar-

geting the same or different group of transit stations.

2. Two or more competing transit network operators use multiple modes of

transport targeting the same or different group of transit stations.

3. Two or more co-operating transit network operators use multiple modes of

transport targeting the same or different groups of transit stations.

In all the three scenarios mentioned above, two transit stations may be serviced

by one or more operators using potentially different modes of transport. Figure

1.1b illustrates the scenario of two transit stations being serviced by bus, train

and flight. All of these multiple kinds of relations help form multidimensional

transit networks. In multidimensional transit networks, a passenger may end up

undertaking a journey on two or more networks of different modes.

1.1.3 Computer Networks

A computer network is a network consisting of computing devices and their

interconnections. A computer network transfers packets from one computing

node to another. The bytes are transferred on the network using contain-

ers known as packets. Network engineers have used layered architecture to

achieve scalability in computer networks with the Internet being a prime exam-

ple of a scalable computer network. The Internet uses layered TCP/IP archi-

tecture with each layer containing multiple protocols that help with the packet
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Layer 1

Layer 2

Layer 3

H1
H2

H1
H2

H1
H2

(A) Multilayer networks with no
restrictions on inter-layer connec-

tions.

Layer 1

Layer 2

Layer 3

H1
H2

H1
H2

H1
H2

(B) Multilayer networks with inter-
layer connections restricted to ad-

jacent layers.

FIGURE 1.2: Different types of multilayer networks.

exchange. Protocols in layer Li provide packet delivery service to protocols in

layer Li and Li+1. A network created out of protocols (as nodes) and their packet

delivery service as provider - user relations (as connections) is called protocol

graph. Protocol graphs have multiple uses. Protocol graphs provide means of

linking protocols operating within a computing node. Protocol graphs also pro-

vide means of analyzing network packets inside a protocol analysis software.

Protocol analysis software packages are often referred to as protocol analyz-

ers and the protocol graphs used by the protocol analyzers are called protocol

parse graphs. An example protocol parse graph is shown in Figure 1.1c. Since

protocol graphs span multiple layers, we can refer to them as multilayer net-

works. Thus we encounter another instance of multidimensional networks in

the form of protocol parse graphs.

1.1.4 Multidimensional or Multilayer Networks

Multidimensional networks and multilayer networks have been well studied in

the existing literature [1]. We start our explanation with an illustration of the

multidimensional networks described in Sections 1.1.1 to 1.1.3. Figure 1.1 sum-

marizes the kinds of diverse relationships explained in this section. Figures 1.1a



Introduction 5

and 1.1b show multiple relations between two nodes. The existing literature on

network analysis [1] refers to such networks as multidimensional or multilayer

networks.

It is common in multilayer networks to have connections within each layer or

across different layers. The connections that span more than one layer are

called inter-layer connections. One possibility is to allow inter-layer connections

between all layers. This is the general case. Another possibility is to place lay-

ers in a strict sequence and only allow inter-layer connections between adjacent

layers. Figure 1.2 illustrates the difference in these two kinds of multilayer net-

works. While the social networks and the transport networks allow inter-layer

connections between all the layers, computer networks like the Internet only

allow connections between adjacent layers.

In the thesis, we use the phrases multidimensional networks and multilayer net-

works as synonyms.

1.2 Models for Multidimensional Networks

Network models help us create the abstractions for the study of interactions in

networked systems. Suitable notation and semantics for nodes and connections

are necessary for any valid network model. Researchers have extended the

regular graph models to represent multidimensional networks. The notational

emphasis of the existing models has the following highlights.

• A node may be present in all the dimensions. Thus effective set of nodes

in a multidimensional network is a Cartesian product of nodes and network

dimensions. Let this set be represented as Vd.

• Connections may be any subset of Vd × Vd.

• Some network models attribute functions to connections in order to model

weighted, dynamic graphs.

Kivelä et al. [1] provide a review of the existing multidimensional models. A

common theme running through many of the existing models is the focus on

the connections. Network structure is defined by the connections among the
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nodes. Existing literature on multidimensional networks focuses on structural

representation and analysis1 [1].

Because of emphasis only on the structural view of networks, the existing net-

work models have the following limitations.

• Nodes and connections are passive entities with no ability to compute or

respond.

• All the real-life networked systems have cascade events happening in the

system and messages flowing through the system. This requires process

oriented models for networks. The existing network models do not handle

the cascade events.

• Multiple relations between two nodes get represented as seemingly in-

dependent connections in different dimensions. The mutual dependence

among different relations of any two nodes is not considered.

• There have been studies on the networks of networks [3] for their structural

properties and resilience. But the notion of hierarchy to replace a sub-

network with an equivalent node is not considered.

• There is a heavy emphasis on the structural view of the network with little

attention paid to functional and behavioural views of network nodes and

connections.

• The semantics of the interactions between the participants cannot be

clearly specified.

The limitations of the existing models is due to their chosen semantics.
1The study of structural properties of networks such as the diameter of the network, be-

tweenness centrality measures, clustering coefficients etc. is part of the structural analysis of a
network.
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1.3 Solution Approach

Before we provide details of our approach, we list the requirements for an ideal

multidimensional network model. One of the desirable properties of a multidi-

mensional network model is to have nodes and connections that are respon-

sive, i.e., they react to interaction. This reaction is necessary to consider the

effect of the environment on the network. Another desirable property is to have

the network model support selection from competing representations for nodes

and connections. Finally, any new network model needs to support hierarchical

representation for sub-networks.

We propose a network model with active (responsive) participants; here we re-

fer to nodes and connections of a network as participants in a network. These

active participants can compute and provide a process orientation to network

phenomenon. We model the interactions between the network participants as

message exchanges. In real networks, participants do exhibit the ability to ef-

fect the messages / passengers / packets passing through them. This ability

to effect the messages passing through the participants is transformational in

nature. Thus activeness allows the proposed network model to represent the

transformational capability of the participants. Our network model allows a node

to be a representative placeholder for a sub-network. This ability of a node to

represent a sub-network brings in the notion of hierarchy into our proposed net-

work model.

1.4 Thesis Outline

The thesis is organized as follows.

Chapter 2: Literature Survey In this chapter we provide a survey of relevant

work on multidimensional networks. We review the related work from the

following fields: structural analysis of networks, multidimensional social

networks, multi-modal transit networks and network measurements. After

that, we provide an overview of the related work on the Cell Model – our

proposed model for the multidimensional networks. We provide a brief
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overview of the related work on the structural-functional-behavioural (SFB)

model for the network participants.

Chapter 3: Structural Analysis of Networks We use the techniques surveyed

in the previous chapter to analyze the properties of network connections

in computer networks. We generate the multidimensional networks from

the datasets belonging to the domains of transit networks and online so-

cial networks. We use the logs of Internet Relay Chat (IRC) channels

belonging to Ubuntu IRC ecosystem to generate the multidimensional net-

works. The generated networks are then analyzed for structural properties

such as node degree distribution and clustering coefficient. This chapter

contains the study of the datasets from all the three chosen application

domains.

Chapter 4: The Cell Model This core chapter propounds the Cell Model – our

proposed model for multidimensional networks. At first, we motivate the

need for the Cell Model with an example. We then proceed to define

the Cell Model of a network. Using the definition, we create three different

views of a participant (either a node or a connection). The views we create

are structural, behavioral and functional in nature. Each view provides a

certain computational model of a network participant.

We also discuss the four axioms used for constructing the Cell Model of

a network. The axioms emphasize the activeness of the participants, the

message exchange between the participants, the equivalence between

two models of a participant and the application of equivalence axiom to

create hierarchy in network. We proceed to show the generality of the

Cell Model of a network by representing regular, weighted, multiplex and

dynamic networks as special cases of the Cell Model of a network. We

conclude the chapter with a summary of applications developed using the

Cell Model.

In the next two chapters of the thesis, we demonstrate the applications of

the Cell Model.

Chapter 5: Darshini - Protocol Analyzer The first application of the Cell

Model is in the area of network measurements. We develop a protocol

analyzer software named Darshini based on the Cell Model. We first

define the problem of protocol analysis as a graph embedding problem.
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We then choose a heuristic embedding of the protocol parse graph and

proceed to create a concurrent protocol analysis software. We are able to

demonstrate the following extra features in protocol analyzers built using

the Cell Model: concurrent protocol analysis, selective analysis of proto-

cols, speed vs memory tradeoff and optional persistence. Darshini has an

advantage over tshark [4] in terms of selective analysis of protocols and

memory consumption.

Chapter 6: Multi-modal Transit Scheduler This chapter provides details on

the multi-modal transit scheduler application developed using the Cell

Model. The chapter contains a mathematical definition for journey plan-

ning application on the multi-modal transit networks. We report two

research contributions in this chapter. First, we extend the Connection

Scan Algorithm (CSA) [5] to support the direct connections and the

private transport facilities. Second, we use the Cell Model to create a

concurrent journey planner. In this process, we create the Cell Model

compliant representations for transit stations and their connections. Both

the applications are able to compute the on-demand itinerary generation

for the public transit networks of India.

Chapter 7: Conclusion The final chapter provides a summary of the thesis.

We emphasize the deficiencies of the existing models of the multidimen-

sional networks. We provide a brief overview of our efforts to perform

structural analysis on computer networks, transit networks and social net-

works. We then highlight the novelty of the Cell Model. We end the thesis

by highlighting the applicability of the Cell Model to problems in the com-

puter networks and transit networks.
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Literature Survey

We present a summary of the related work for the topics discussed in the thesis.

In Section 2.1, we review some of the existing definitions for multidimensional

networks. In Section 2.2, we show the related work done by earlier researchers

on the structural operations of the multidimensional networks. In Sections 2.3

to 2.5, we present the relevant literature on multidimensional networks in the

application domains of computer networks, multi-modal transit networks and

social networks. Section 2.6 contains a review of literature on the structure,

function, behaviour representations of systems. We end the chapter with the

identification of the gaps in existing the literature and the listing of our research

objectives.

2.1 Basic Definitions

Multidimensional networks have been studied by sociologists, physicists and

computer scientists since 1939 [1]. Over the years, researchers have come

up with different terminology such as multiplex networks, multilayer networks

and multiaspect graphs to describe the multidimensional networks. Recently,

Kurant et al. [6] use layered complex networks to describe the transit networks.

In their model, the node set of the multilayered network is common across the

layers; their work uses weighted and undirected connections. The assumption

of drawing the nodes of multiple layers / dimensions from the same node set is

prevalent in most of the existing models of the multidimensional networks.

10
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Berlingerio et al. [7] and Nicosia et al. [8] use similar notion of the same node

set and multiple relations to represent multilayer social networks. Magnani et al.

[9] enhances the notion of multilayer networks by relaxing the condition of the

same node set in all the layers. Their work uses the notion of multiple nodes in

one layer mapping to a single node in another layer. The definition of multilayer

network given by Magnani et al. [9] is as follows.

Definition 2.1. A Multilayer network is a tuple GMLN = (G1, ...,Gn, IM) where

Gi = (Vi, Ei), i ∈ 1, ..., n are network layers and IM (Identity Mapping) is an n × n

matrix of node mappings, with IMi j : Vi × Vj → {0, 1}.

The identity mapping function is responsible for mapping one or more nodes of

one layer to a single node in another layer. The network models proposed by

Kurant et al. [6] and Berlingerio et al. [7] can be derived from Definition 2.1 by

imposing an additional restriction of IMi j : Vi × Vj → {0} for i � j.

The models discussed so far do not consider cross-layer connections. Boc-

caletti et al. [10] adds cross-layer edges to the multilayer network model and

uses the same node set in all the layers.

Wehmuth et al. [11] present a model for time-varying graphs using the notion of

aspect. They use aspect to generate multiple elementary layers with time being

one aspect in the time-varying graphs. Kivelä et al. [1] and Wehmuth et al. [12]

provision for multiple aspects in their network model. Each one of the multiple

aspects can generate multiple elementary layers. The multilayers / multidimen-

sions of the network are formed by a Cartesian product on all the elementary

layers. Mathematically, we can express the network model as follows [11].

Definition 2.2. A multidimensional network Gmd = (Vmd, Emd,V, L) with V being

the set of vertices and L being the set of layers. The set of layers are generated

from the Cartesian product of elementary layers, i.e., L ⊆ L1 × L2 × ... × Lk with

each |Li| having a finite value. Each Li comes from one aspect of the graph. The

node set and the connection set are defined as Vmd ⊆ V × L1 × L2 × ... × Lk and

Emd ⊆ Vmd × Vmd respectively.

Our proposed Cell Model does not require the notion of different node sets for

different layers. We work with a single node set and a single connection set.

We use the term environment variable to represent one aspect of a multilayer

graph.
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2.2 Structural Transformations

Structural transformations of multidimensional networks has not received much

attention from the researchers. One of the earliest attempts to perform structural

transformation on multi-modal transit networks was time expanded graphs (TE-

graphs). Schulz et al. [13] represent time varying networks as time expanded

networks which are static networks. The resulting networks are used for the

computation of transit itineraries.

Another useful structural transformation is the hierarchical aggregation. In this

transformation, one network is reduced to a smaller network of representative

nodes. The shortest path computations done on the reduced smaller networks

approximate the intensive computations done on the complete network. The

hierarchical aggregation technique is used extensively in hierarchical node rout-

ing, contraction hierarchies and transit node routing schemes [14].

Researchers have recognized the redundancy in some of the dimensions of

a multidimensional network. De Domenico et al. [15] propose a measure for

structural reducibility of a multidimensional networks where by the redundant

layers are removed from the network.

Wenlei Xie et al. [16] propose three different graph models – aggregate model,

time window model and edge decay model – for study of online social networks.

We use the aggregate graph model for the study of the social networks.

We represent the connections using function and behaviour. We also replace a

sub-network using a node. These actions have an effect of inducing the required

structural transformations.

2.3 Computer Networks

Our work in the computer networks area corresponds to network measurements

topic. We accomplish two research tasks in network measurements. First we

perform the statistical analysis of the Indian broadband connections. Then we

create a protocol analyzer software named Darshini. The related work on both

these research tasks is presented in this section.
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2.3.1 Network Connection Characteristics

We rely on distributed Internet measurements for obtaining data on the con-

nection characteristics of the Indian broadband users. Such distributed Internet

measurements are performed by prominent organizations such as Measure-

ment Lab (M-Lab), CAIDA, WAND, Route Views and RIPE. Researchers take

either an active or a passive approach to Internet measurements [17]. Route

Views predominantly performs passive measurements where as WAND, RIPE

and CAIDA perform both. Lehr et al. [18] lists popular platforms for broadband

speed measurements and the discrepancies among the competing platforms.

M-Lab specializes in active Internet measurements. M-Lab provides the largest

collection of the Internet measurement and performance data. The M-Lab data

sets are available through either the cloud storage in raw format or the Google

cloud platform via BigQuery interface.

We select the network diagnostic test (NDT) tool for our network measurement

and analysis task. NDT relies on the Kernel Instrument Set (KIS) which was

developed as a part of the Web100 project [19]. The Web100 project enables a

passive per-connection monitoring of the TCP state [20]. Much of the NDT test

data set comes from the KIS probes inserted into the Linux kernel.

Apart from NDT, other tools like iperf, Speedtest.net and grenouille.com can

also perform throughput measurement. Attempts have also been made to per-

form customized client-side measurements with devices such as SamKnows

and BISMark [21]. Among all the other tools, Netalyzr comes closest to NDT

in functionality [22]. We use the NDT dataset to look at the ground reality of

broadband customer’s QoS experience.

2.3.2 Protocol Analysis

In Darshini, we utilize the graph embedding for creating an implementation of

the protocol parse graph. Graph embedding is a familiar concept in the context

of virtual networks [23]. In virtual networks, user networks are embedded in

the substrate network offered by the network service providers. The problem

of virtual network embedding (VNE) has been proven to be an NP-hard [23].

However, researchers have produced heuristics-based algorithms for solving
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the VNE problem in real-time [24]. We use a similar approach to formulate the

graph embedding problem for packet parsers. Even though there are significant

overlaps between VNE and graph embedding problem for protocol analyzers,

there are quite a few differences as well. One major difference is in the mapping

of links. In VNE, the links of user networks are mapped onto the physical paths

of provider networks. In packet parsers implemented in a machine / cluster, an

edge of protocol parse graph gets mapped to one of the edges of the provider

graph. In protocol analyzers, the edges of the provider graph are rarely physical

links.

Darshini also requires as input the specifications of the following elements: pro-

tocol headers, protocol parse graph, protocol analysis pipeline and persistence

module. The rest of this section describes literature on each of the above men-

tioned sub-areas.

2.3.2.1 Parse Graph

The idea of protocol parse graph is very old [25, 26]. A typical protocol parse

graph of the network traffic is shown in Figure 2.1. A protocol parse graph can

be implemented in hardware, software or a mix of both hardware and software.

One popular form of hardware implementation is the synthesis of the parse

graph state machine onto ASICs with TCAM [27] and onto the commercially

available FPGA architectures [28]. A survey of the hardware implementations

Ethernet
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15
100
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FIGURE 2.1: Sample protocol parse graph with edge weights.
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of the protocol parse graph techniques is available [29]. Examples of software

implementation for the parse graphs are Ntop[30], Wireshark [31] and tcpdump

[32].

Software / hardware implementations of the protocol parse graphs can either

be a fixed or a programmable kind. A fixed parse graph can only parse the

protocol sequences that are part of the given parse graph. On the other hand,

a programmable parse graph can dynamically select a parse graph at the run

time. A variation of the programmable protocol parse graph called Berkeley

Packet Filter (BPF) is used in the tcpdump [32] and Linux socket filter [33]. In

these instances, the parse graph is typically used to select packets of interest.

Unlike previous implementations which use fixed parse graph for packet analy-

sis, Darshini uses a programmable parse graph for packet analysis.

Darshini parses the incoming packets in order to analyze the protocol stack

of the packet. P4 language [34, 35] presents a parse graph notation that is

suitable for both hardware and software implementations. We use P4 language

to represent the protocol parse graph.

2.3.2.2 Packet Parsers

There have been attempts to implement a pipeline protocol parse graph to en-

hance the protocol analysis throughput. The architectural solutions proposed by

[27, 28, 36, 37] are some of the pure hardware implementations of the packet

parsers.

We adopt the Generic Protocol Parser Interface (GPPI) of Benáček et al. [36,

38] for our design of generic analyzer cell (GAC). The high frequency extractor

M2 and the GPPI discussed by Benáček et al. [36, 38] together form a seri-

ally connected pipeline implemented in hardware. Wireshark [31] implements

parse graph in software without pipelines. Our analyzer pipeline is a complete

software implementation with support for concurrency. In addition, we introduce

a logical bus connectivity to this pipeline by using feed forward / feedback line

between all stages of the pipeline. We support multiple protocols per pipeline

stage. There will always be a definite speed gap between the header extraction

work of the parser and the table lookup / persistence section where the headers

may either be interpreted or stored. The speed mismatch is often compensated
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by the use of buffers [27]. The problem has also been explained in terms of the

fast-path and slow-path of network processing algorithms [39]. We adopt the

fast and slow path separation approach to solve the speed mismatch between

protocol analyzers (header extraction) and persistence module.

2.3.2.3 System Architecture

Packet capture and protocol analysis software tcpdump, tshark and Wireshark

have been developed as stand alone packet processing utilities. Ntop [30, 40] is

a web application with dynamic plug-in system for customization of persistence,

analysis and view. Darshini has also been designed as a web application with

support for adding new protocols. One major difference between Ntop and

Darshini is the user-defined protocol analysis. Darshini allows users to specify

parse graph for protocol analysis while Ntop performs basic protocol analysis

for the full suite of its supported protocols.

2.4 Transit Networks

In this section, we review the related work on the multi-modal transit networks.

2.4.1 Graph Algorithms

Algorithm researchers have made noteworthy contributions to improve real-time

transit query performance on public transport networks. Initial research efforts

focused on adoption of best algorithms developed for routing on road networks

to the public transport networks [14, 41]. Over the years, researchers have

discovered significant differences between the two problems, namely routing

on road networks and best itinerary on public transport networks. Bast et al.

provides an overview of these differences and a summary of query speed-up

techniques for public transport (timetable) networks [42]. Bast et al. also provide

a detailed survey of algorithms used on road networks and public transport

networks [14].
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Transit scheduling algorithms fall into either graph based or non-graph based

approaches. Over the years, researchers converged onto time-expanded (TE)

graphs and time-dependent (TD) graphs as two appropriate graph-based mod-

els for representing public transport networks (also known as timetable net-

works) [43, 44]. In TE graphs, each arrival and departure event is represented

as a vertex and the travel time as a weighted edge [13]. TE graph model was

originally proposed by Schultz et al. and then extended by Müller-Hannemann

et al. [13, 45]. The widely used General Transit Feed Specification (GTFS) is a

TE graph based representation of timetable [46].

Delling et al. contract the arrival and departure nodes of TE graphs completely

[47]. They also parameterize the contraction of transfer nodes1. Bast et al.

modify the edges of TE graph model to represent periodic trips. The result-

ing transfer patterns algorithm requires costly preprocessing but provides query

responses in a few milliseconds [48].

Orda et al. propose time dependent (TD) graph model and give shortest path

algorithm [49, 50]. Brodal et al. use TD graphs for executing fast itinerary search

queries [51]. In basic TD graph model, vertices represent stations and edges

represent trips, routes. In expanded TD graph model (TD+), even routes have

station-specific vertices; such expanded TD models have been referred to as

train route graphs [43]. Geisberger et al. proposes station graph model which is

an application of contraction hierarchies preprocessing technique to TD graph

[52].

2.4.2 Non-graph Algorithms

Connection Scan Algorithm (CSA), RAPTOR, GBR and FBS are the non-graph

based approaches to transit routing [5, 53, 54, 55]. CSA represents timetables

using connections; Strasser et al. shows equivalence between running CSA

and computing shortest path queries on TE-graphs. Connection scan algorithm

(CSA) searches timetables in linear time [56]. RAPTOR, short for Round-based

Public Transit Routing, utilizes trips and routes for itinerary computation and is
1Station at which passengers change vehicles
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equivalent to queries on TD-graphs [53, 55]. Of the CSA and RAPTOR ap-

proaches, CSA uses simpler data structures and exploits cache locality proper-

ties of modern microprocessors [5, 57, 58]. GBR, short for Guide Book Routing,

utilizes network flow-based approach to generate time independent itineraries

for a given timetable [54]. FBS, short for Frequency-Based Search, shows a

way to extract and represent frequent-trips from timetables [55].

CSA uses connection as a fundamental unit for decomposing timetables and

searching these decomposed timetables. Such a clean representation allows

quick update of searchable timetables for possible delays, cancellations and

special trips on busy occasions. An update of timetables only requires changing

effected connections of CSA. CSA has been proven to be faster than RAPTOR,

TE and TD-graph based algorithms for one-to-one queries [5, 14]. Only trans-

fer patterns is faster than CSA, but transfer patterns technique requires costly

preprocessing [14, 48] and is not easily amenable to changes.

Our work adopts techniques outlined in CSA and transfer patterns papers [5,

48]. We propose an extension to CSA using DCTable. DCTable approach is

similar to direct connections of transfer patterns [48]. Such a direct connection

table approach has given rise to transit node routing (TNR) algorithm – the best

performing algorithm for road networks in terms of query response time [62].

The OMTable extends footpath table of CSA to incorporate frequent trips. We

include private transport networks in OMTable; Consequently, connection array

TABLE 2.1: Summary of the literature on the structural view of the multidimen-
sional networks.

Topic Related Literature

Network models Review by Kivela et al. [1], protocol parse graphs [26],
CSA [5], TE-graphs [13], TD-graphs [43]

Structural
transformations

TE-graphs [13], hierarchical aggregation [14], aggre-
gate graphs [16]

Community
detection

Infomaps [59]

Connection
characteristics

NDT [19], Web100 [20]

Hierarchy Nested networks of ecological systems theory
(EST)[60], recursive network architecture [61]
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gets augmented with private transport networks. Similar approaches such as

GBR and FBS affirm the need to concisely represent frequent connections of

a timetable. Our other means table (OMTable) can incorporate private transit

facilities available to users, thus bridging the gap between public and private

transport networks.

2.5 Social Networks

We take up the study of social networks using the Internet relay chat (IRC)

channels as an example. Vladimir Gligorijević et al. [63] and Tanmay Sinha et

al. [64] study the structural properties of Ubuntu IRC communities. Paul Mutton

et al. [65] studies the aggregate network structure and properties of the IRC

communities. The existing research work focuses on the structural analysis of

a single IRC channel while we extend the work to multidimensional structural

analysis.

Community detection has also received attention from social network researchers

[66]. Informally, a cluster or community can be considered as a set of entities

that are closer to each other [67]. Among the existing community detection algo-

rithms, Infomaps [59] is a community detection algorithm that works natively on

directed and weighted graphs. Lee et al. [68] perform community detection on

multilayer networks. We perform the community analysis on multiple IRC chan-

nels using the InfoMaps algorithm. Unlike previous works, we create presence

/ co-presence networks and perform community analysis on these networks.

2.6 Structural-Functional-Behavioural (SFB) Views

We define a view as a way of looking at a network. Since a network is modeling

the real world interactions, the abstract network model can contain as much

detail as we want and nothing more. Where needed, it is advantageous to

use functional and behavioural views along with the structural views for the

participants of a network.
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TABLE 2.2: Utilization of structural-functional-behavioural modelling ap-
proaches in previous work. Pure structural modeling approaches have been

covered in Table 2.1.

Approach Prior Work Utilizing the Approach

Function Review [69, 70]

Behaviour Review [71], reactive animation (RA) [72]

Structure + Function signal flow graphs [73]

Function + Behaviour GemCell [74] and BioCharts [75]

Structure + Behaviour node-centric programming [76]

All the network models we have reviewed so far take a structural view of the

networks. Table 2.1 We present a concise summary review of the literature

review given in Sections 2.1 to 2.4.

There has been extensive work on the behavioural modeling of systems (node

is an abstraction for an entity or system). Behavioural models are very powerful

and help describe network participants that continuously receive and react to

external input; The systems that react to input with no stop condition are called

reactive systems. Behavioural models are sufficient for describing reactive sys-

tems [71, 74]. Harel et al. use a hierarchical behavioural modeling for creating

reactive animation (RA) [72] which is nothing but a reactive system with an ani-

mated output.

2.6.1 A Combination of SFB Views

In creating the Cell Model, we utilize the structure, function and behaviour (SFB)

modeling approaches. The existing literature on the use of SFB modeling ap-

proaches is summarized in Tables 2.1 and 2.2.

Functional modeling of systems is extensively used in engineering disciplines.

For example, the signal flow graphs [73, 77] used by electrical engineers is a

prime example of a network model with vertices acting as junctions (signal ag-

gregators) and connections acting as transformers (specified by a transfer func-

tion). Here nodes and edges are both acting as transformers of signals passing



Literature Survey 21

through them. Eisenbart et al. [69] provide a review of functional modeling in

engineering domains.

Amir-Kroll et al. [74] utilize a combination of function and behavior approaches

to model a biological cell; their model is called GemCell. The behavioral part of

the system is specified using executable state charts and message sequence

charts. Their approach reaffirms the sufficiency of function and behavior views

to describe a complex reactive system such as biological cell. From the same

research group, Kugler et al. [75] propose BioCharts as another model of bio-

logical systems. BioCharts use multiple co-operating state machines within one

entity to model biological processes following a mix of structural an behavioral

approaches.

John Krogstie [71] provides an overview of eight different modeling perspec-

tives for process modeling. He also concludes that structural view provides a

static view of the system, where as behavioral and functional views provides

a dynamic view of the system. He also asserts that a mix of functional and

behavioral views can aptly describe most modeling scenarios.

Another approach taken by researchers is to model concurrent computation

as node-centric programming, i.e., a computation problem is mapped onto a

graph with computation done in nodes and communication dictated by the graph

topology. McCune et al. [76] provide a survey of node centric programming in

distributed graph processing.

2.7 Gaps and Objectives

Based on our survey of the existing literature, we have identified the key open

research issues as the following:

• Nodes and connections of the existing network models are passive entities

with no ability to compute or to respond.

• Real-life networked systems have cascade events happening in the sys-

tem, messages flowing through the system. This requires process ori-

ented models for networks. The structural models of networks do not

provide the semantics for modeling processes in networks.
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• Multiple relations between two nodes get represented as seemingly in-

dependent connections in different dimensions. The mutual dependence

among different relations of any two nodes is not considered.

• There have been studies on the networks of networks [3] for their structural

properties and resilience. But the notion of hierarchy to replace a sub-

network with an equivalent node is not considered.

The objectives of our proposed research are to:

1. Create datasets for multidimensional networks from the application do-

mains of transit networks and social networks.

2. Apply the existing network models to perform structural analysis on the

multidimensional networks found in social networks and transit networks.

3. Develop a new network model for multidimensional networks. The new

network model should be active, must have a process view and account

for hierarchy in networks.

4. Demonstrate the proposed model to the research problems in the appli-

cation domains of protocol analysis and multi-modal transit networks.



Chapter 3

Structural Analysis of Networks

3.1 Objectives

In this chapter we detail our work in the study of multidimensional / multilayer

networks. We use the term multilayer networks in this chapter in order to main-

tain consistency with the published literature. The term multilayer networks has

to be understood as multidimensional networks. We start our discussion with

the study of connection characteristics (Section 3.2). We then move to the

study of multilayer networks in transit networks (Section 3.3) and social net-

works (Section 3.4).

3.2 Characteristics of Indian Broadband Connec-

tions

3.2.1 Motivation

Indian ISP operators form a multilayer network with the backbone ISP forming

the common nodes linking the layers. A problem with such networks is the con-

nection quality. The connection quality is defined by a combination of parame-

ters such as high speed, low latency, low packet loss etc.; consumers are also

willing to pay a premium for good QoS. The Internet service providers (ISPs)

claim good QoS experience on their networks; yet dissatisfied consumers have

23
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contested the QoS claims of the ISPs. The main problem is the lack of objectiv-

ity in assessing the QoS parameters of an Internet connection.

To objectively assess the difference between the claimed and the experienced

conditions on broadband connections, we utilize the dataset generated by the

network diagnostic test (NDT) tool hosted on the measurement lab (M-Lab)

platform [78]. NDT is an active measurement tool fashioned in client-server

paradigm [79, 80]. NDT helps measure the performance of a network connec-

tion. Volunteer users perform NDT test between their computer and an M-Lab

server [81]. We use the NDT dataset for the years 2009–2014 to perform QoS

analysis [78]. We make inferences on QoS policies deployed on the backbone

networks of ISPs.

3.2.2 Dataset

IP address mapped to a unique ID
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FIGURE 3.1: Representativeness of NDT dataset for the calendar year 2012.
X-axis enumerates the IP addresses of the clients. Y-axis counts the number
of appearances of a client IP address in the dataset for the whole year (2012).

The NDT dataset contains test results for all the countries [82]. We perform

India-centric analysis on NDT dataset for the years 2009-2014. We check the
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representativeness of the dataset by checking the number of times a user re-

peats NDT test in a year. Figure 3.1 shows the repetitiveness of users (IP

addresses) in the NDT dataset for the year 2012. For the sake of compact plot,

each user IP address from NDT dataset has been mapped to a unique number

in an ascending order number series starting at number 1; these numbers are

placed along the x-axis. The number of times a client IP address appears in

the dataset is indicated on the y-axis. As Figure 3.1 shows, most of the clients

appear just once in the NDT dataset over the sample period of one year, thus

attesting to the diversity of the NDT dataset.

In the sample space for the calendar year 2012, only 2.2% of the IP addresses

appeared more than twice in the entire year, and 88.6% of the values appeared

exactly once over the duration of the entire year.

All the NDT tests performed by the M-lab platform are archived in the M-Lab

dataset table of the Google BigQuery database [83]. Google BigQuery database

itself is hosted on the Google cloud platform. All fields of the M-Lab dataset ta-

ble can be classified into two categories: connection-specific information and

test-specific information. The fields related to connection-specific information

record the IP addresses, host names, ISP identity and geolocation information

(latitude and longitude) of the client. The test-specific information fields record

each of the web100 kernel instrumentation set (KIS) variables as one field in

the database table.

3.2.3 Throughput Analysis

The average throughput of a broadband connection is calculated using Equation

3.1 [84].

Throughput =
DataOctetsOut

8 * (Trecv + Tcwnd + Tsnd)
(3.1)

Where,
DataOctetsOut = Number of bytes transmitted

Trecv = Receiver limited transitions

Tcwnd = Congestion limited transitions

Tsnd = Sender limited transitions
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FIGURE 3.2: Average throughput of the Indian broadband users for the month
of September during the years 2009 - 2014.
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The unit for throughput numbers mentioned in this section is Mbps, unless

stated otherwise.

Each of the data points in the NDT dataset contains latitude, longitude, through-

put information along with the date of measurement. We use September as the

reference month for the annual comparison of the throughput metric.

TABLE 3.1: Annual average throughput for the years 2009 - 2014.

Year Average Throughput (Mbps)

2009 0.437

2010 0.532

2011 0.548

2012 0.644

2013 0.543

2014 0.711

The generated throughput graph sequence shows stark contrast between the

initial and final phases of the selected five year period (2009 - 2014), an ex-

ample of which is displayed in Figure 3.2. The throughput of top-1000 Indian

broadband users measured across six years is plotted in Figures 3.2(a) to 3.2(f).

The bandwidth of a measurement is represented using a gray shade and the

radius of a circle. Higher bandwidth measurements get darker shade of gray

and also become larger circles. As we can see in Figure 3.2, the measured

throughput see gradual increase in the 2009 - 2014 time period. An interest-

ing observation over the same period is the considerable increase in the num-

ber of subscribers in non-metropolitan areas. In addition to that, we observe

that the maximum throughput value rises from 2.98Mbps in September 2009 to

21.29Mbps in September 2014.

Furthermore, Table 3.1 shows the average throughput for the years 2009-2014.

A steady growth has been observed during the years 2009-2012 and 2013-

2014. According to the Telecom Regulatory Authority of India (TRAI), the speed

of broadband is largely dependent upon three factors: bandwidth utilization,

latency and contention ratio [85]. Except for four months (May-August) in 2013,

we observe a month-on-month increase in average throughput during 2009 -

2014 period.
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3.2.4 Quality of Service (QoS)

The technical Quality of Service (QoS) is defined by four parameters, namely

throughput, latency, jitter and reliability. We assess the throughput values of a

broadband connection as per the procedure outlined in Section 3.2.3. The jitter,

latency and reliability values are computed from the kernel instrumentation set

(KIS) variables of the web100 project [20] using the following equations.

Jitter = RTTVar

Latency = SumRTT
CountRTT (3.2)

Reliability = OctetsRetrans
HCDataOctetsOut - OctetsRetrans

Where,
RTTVar = The round trip time (RTT) variation used in cal-

culation of the RTT.

SumRTT = The sum of all sampled round trip times.

CountRTT = The number of timeouts.

OctetsRetrans = The number of bytes retransmitted in one TCP

connection.

HCDataOctetsOut = The number of bytes transmitted during one

TCP connection.

We consider four Quality of Service (QoS) parameters, namely throughput, la-

tency, jitter and reliability of a broadband connection. All the four parameters

are measured separately by NDT. NDT records reliability as the percentage of

packets dropped during a test, thus a smaller number indicates a more reliable

connection. We tabulate the statistical summary of the four aforementioned

TABLE 3.2: Statistical summary of the four QoS parameters for the month of
November, 2010.

Mean Std. Dev.

Throughput 0.5Mbps 0.3734Mbps

Jitter 57.282ms 49.167ms

Latency 427.18ms 218.22ms

Packet Loss (Reliability) 4.62% 7.37%
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TABLE 3.3: Correlation coefficients between different QoS parameters for the
month of November, 2010.

Throughput Jitter Latency Reliability

Throughput 1 -0.296 -0.306 0.012

Jitter 1 0.817 -0.033

Latency 1 -0.024

Reliability 1

QoS parameters in Table 3.2. We calculate the correlations between all pos-

sible pairs of QoS parameters using the standard correlation equation of two

random variables. The results are shown in Table 3.3.

We observe from Table 3.3 that throughput has a weak negative correlation with

all the other parameters. This could be because higher throughput is generally

associated with better and more expensive broadband connections, and thus

latency and jitter would be low and reliability high. Furthermore, we observe

that even the correlation factor is constant(∼− 0.3) between throughput and two

other parameters, namely jitter and latency.

Another revelation is the strong correlation between latency and jitter. In In-

dia, low latency seems to guarantee timely packet arrival (low jitter) and vice

versa. Though a correlation between latency and jitter is expected, it is per-

haps surprising that only latency and jitter parameters are strongly linked and

not reliability.

Putting all of these facts together, we can draw two conclusions. First conclu-

sion is, there is probably a significant deployment of DiffServ across the ISP

networks in India. DiffServ traffic classes make the separation of traffic into four

classes possible and can also explain the strong correlation between latency

and jitter [86]. The high priority packets are serviced first using expedited for-

warding of Diffserv [87]; such a packet scheduling algorithm reduces the jitter

experienced by high priority (i.e., low latency) packets.

Second conclusion is, throughput determines the DiffServ traffic classes. Through-

put (in layman’s terms, connection speed) is the most visible and marketed term
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in broadband connectivity. Broadband consumers who purchase high through-

put connection are placed in higher DiffServ classes. Better treatment for pre-

mium customers could explain the negative correlation between throughput and

the other three QoS parameters.

Reliability does not have any correlation with either latency or jitter, in fact, it is

almost totally independent. In India, reliability seems to be only a weak func-

tion of the throughput, otherwise, there is really no way of guaranteeing high

reliability.

We conclude our study of the connection characteristics. In the next two sec-

tions, we focus on techniques for creation and analysis of multilayer networks.

3.3 Transit Timetables as Multilayer Networks

In this section, we look at a technique for creating the multilayer representation

of transit networks. We create a three-layer network from the public transit

timetables of Indian Railways. We explain the utility of these distinct layers

for railway passengers and Indian Railways. We also perform the structural

analysis on the three-layer network.

3.3.1 Dataset

We consider the public timetable of Indian Railways available on their website

[88]. The timetable contains schedule of express and mail type of train services.

The timetables of 2,018 express and mail trains are available on the website.

We consider the timetables for a one week time period.

Indian Railways uses the practice of sharing transit vehicles; the practice is

called slip-train. Under slip-train practice, some coaches of a given train are

separated from it at a pre-determined junction. The coaches thus separated

are attached to a different train which takes the coaches toward their destina-

tion. The slip-trains are identified in the train timetable by giving different route

number to each slip-train. Earlier studies using the Indian Railways dataset did

not consider this kind of trains.
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TABLE 3.4: Sample entries of train schedules with two of them having two
slip-trains. The examples 2 and 3 given here illustrate two different kinds of

slip-trains.

Source Station Junction Route No. Destination Station

12621 MAS NDLS Express
Chennai N/A 1 New Delhi

12780 Goa Express

H. Nizamuddin Londa Junction 1 Vasco Da Gama
2 Hubballi Junction

17603 Kacheguda - Yesvantpur Express

Kacheguda Guntakal Junction
1 Yesvantpur
2 Hubballi Junction
3 Vasco Da Gama

Sample entries obtained from the Indian Railways Network (IRN) timetable are

shown in Table 3.4. The first train bearing 12621 as train number does not

have any slip-train. The second train bearing 12780 as train number requires

that a few coaches be detached from the train at the Londa Junction. The

detached coaches are then attached to another train which takes them towards

the Hubballi station; these coaches are identified with route number 2. Similarly,

the third train bearing 17603 as the train number has two slip-trains; both the

slip-trains get separated from main train at the Guntakal Junction.

3.3.2 Definition of Multilayer Transit Networks

Timetable of any transit network is a set of timetables of all the vehicles that are

part of the transit network. In the case of IRN, the timetable consists of a set of

trains each bearing a unique train number and servicing a sequence of stations.

We start with the publicly available IRN timetable to create a three-layer net-

work. The three layers are named as space of stops, space of stations and the

space of changes. All the three layers share a common node set; the set of

nodes is created by collecting the names of all the train stations available in the

IRN timetable. The space of stops layer has an edge between two stations if

the respective stations are adjacent in the timetable of any train. The space of

stations layer has an edge between two stations if the respective stations are
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physically connected by a train track. The space of changes layer has an edge

between two stations if both the stations are serviced by at least one common

train. Kurant et al. [89] contains a more detailed explanation of these terms.

A summary of the notations used in the rest of the section is as follows.

space of stops graph:

Gstops = (Vstops, Estops) (3.3)

Vstops = set of all stations from timetable

Estops = set of all links formed between

consecutive stops of a train

space of stations graph:

Gstations = (Vstations, Estations) (3.4)

Vstations = set of all stations from timetable

Estations = set of all physical links

connecting adjacent stations

TABLE 3.5: A modified version of train schedule for the train 11063 MS Salem
Express.

Station Name Arrival Time Departure
Time

Route No. Day

Chennai Egmore source 23:00 1 1
Attur 03:44 03:45 1 2
Salem Junction 05:20 destination 1 2
Salem Junction source 07:05 2 2
Omalur 07:23 07:25 2 2
Metur Dam 08:25 destination 2 2
Salem Junction source 06:30 3 2
Erode Junction 09:00 destination 3 2
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Chennai 
Egmore

Attur

Vandalur

Salem Jn Omalur Metur Dam

route-1
route-2

route-3 Erode Jn

(A) Path taken by the train. Different routes are marked as route-1,
route-2 and route-3.

Chennai 
Egmore

Attur Salem Jn Omalur Metur Dam

Erode Jn

(B) Space of Stops network

Chennai 
Egmore

Attur

Vandalur

Salem Jn Omalur Metur Dam

Erode Jn

(C) Space of Stations network.

Chennai 
Egmore

Attur Salem Jn

Omalur Metur DamErode Jn

(D) Space of Changes network.

FIGURE 3.3: Creation of three layers from one example train time table. The
timetable considered is a modified version of timetable for the train 11063 MS
Salem Express. A tabular representation of the timetable is shown in Table 3.5.

space of changes graph:

Gchanges = (Vchanges, Echanges) (3.5)

Vchanges = set of all stations from timetable

Echanges = set of all links indicating availability

of a train between two stations

T = IRN timetable

t = Timetable of a single train

S S = Stop sequence of a single train
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J = Set of stops at which slip-train(s) separate

from the carrier train

P = Stop sequence prefix for junctions

The stop sequence of a train is a sequence of ordered tuples containing (stop,

route) elements implied by a given train timetable. For the train timetable given

in Table 3.5, the stop sequence (SS) is: (Chennai Egmore, 1), (Attur, 1), (Salem

Junction, 1), (Salem Junction, 2), (Omalur, 2), (Mettur Dam, 2), (Salem Junction,

3), (Erode Junction, 3). From SS, we can identify junction stations (J) where

slip-trains separate from the carrier train. For the given station sequence, we

have Salem Junction as the junction. For each of the junctions, we can identify a

stop sequence prefix (P) - sequence of previous stations appearing in the space

of stops. In the case of Salem Junction, the sequence of previous stations is:

(Chennai Egmore, 1) and (Attur, 1).

The three-layers of the generated network derived from the timetable given in

Table 3.5 are shown in Figure 3.3. All the three layers use the same set of

stations. Among the three layers, the space of stops has the least number of

connections and the space of changes has the most number of connections.

Algorithm 3.1 Algorithm for creating the space of stops network from the IRN
timetable having slip-trains.

1: procedure CREATESTOPLAYER(T )
2: Gstop ← empty graph
3: for all t ∈ T do
4: S S ← ExtractS topS eq(t)
5: for all si ∈ S S do
6: if IsS ameRoute(si, si+1) then
7: Gstop.AddEdge(si.station, si+1.station)
8: end if
9: end for

10: end for
11: return Gstop

12: end procedure
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3.3.3 Algorithms for Creating Multilayer Networks

We propose a list-based technique for creating a three-layer network. Our ap-

proach takes advantage of the inherent total ordering of a train timetable. Our

algorithm also incorporates the case of shared transit vehicles in the form of

slip-trains.

Algorithm 3.2 Algorithm for creating the space of stations network layer from
the space of stops network layer.

1: procedure CREATESTATIONLAYER(Estop, T )
2: Estation ← Estop

3: for all ei ∈ Estation do
4: for all t ∈ T do
5: S S ← ExtractS topS eq(t)
6: if Distance(ei, S S )) > 1 then
7: RemoveEdge(ei, Estation)
8: break
9: end if

10: end for
11: end for
12: return Estation

13: end procedure

First, we discuss generation of the space of stops network from the timetable

(Algorithm 3.1). We follow it up with further discussion on the space of stations

network (Algorithm 3.2) and the space of changes networks (Algorithm 3.3).

In Algorithm 3.1, we use the IRN timetable (T) as input for constructing the

Gstops. We initialize the Gstops to an empty graph and iterate through timetables

of all the vehicles (trains) in the network. In each step of iteration, we extract the

stop sequence (SS) from a given train timetable (t). The stop sequence is used

to create stations and edges between adjacent stations that belong to the same

route. At the end of its work, the algorithm creates a space of stops network.

It is common for express trains to pass through a station and not stop at it; such

a scenario leads to addition of shortcut edges in the space of stops network;

there is no underlying direct physical railway track that corresponds to a shortcut

edge. The space of stations network is created by pruning all the shortcut edges

from the space of stops network. Algorithm 3.2 receives Estops and checks if an

edge is a real link or a shortcut. We identify an edge as a shortcut if the two

stops identified by ei are non-adjacent in at least one of the train timetables.
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Algorithm 3.3 Algorithm for creating the space of changes network from the
IRN timetable having slip-trains.

1: procedure CREATECHANGESLAYER(T )
2: Gchanges ← empty graph
3: P← empty list
4: for all t ∈ T do
5: S S ← ExtractS topS eq(t)
6: J ← Identi f yJunctions(S S )
7: for all j ∈ J do
8: P.AddPathPre f ix( j, S S )
9: end for

10: S S Array← ExpandS S o f S lips(P, S S )
11: for all ss ∈ S S Array do
12: Gchanges.Add(CreateCompleteGraph(ss))
13: end for
14: end for
15: return Gchanges

16: end procedure

We can utilize the stop sequence to imply the non-adjacent status of two stops

identified by ei. A single scan through a stop sequence is enough to arrive at

our conclusion. This list traversal is a linear time operation and is a scalable

strategy for identifying shortcuts.

Algorithm 3.3 creates the space of changes network. In Algorithm 3.3, our goal

is to connect all the stations that are serviced by a single train. In order to

connect all the relevant stations, we elaborate on a given train timetable. Our

analysis shows that a slip-train also travels with the carrier train till the junction

where decoupling takes place. Hence, it is necessary to prefix junctions of slip-

trains with their corresponding stop sequence (P). We effectively create one

TABLE 3.6: Network characteristics of different layers created from the
timetable of the Indian Railway network (IRN).

Name of Parameter Space of Stations
Network

Space of Stops
Network

Number of nodes 2942 2942
Number of Edges 3217 5754
Number of Routes 2063 2063
Average Node Degree 2.18 3.91
Diameter of Network 238 43
Clustering Coefficient 0.003 0.449
Average Shortest path 70.78 10.11
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stop sequence per route. All the generated stop sequences of a train timetable

are stored in S S Array. We create one complete graph for each stop sequence

and add the generated graph to Gchanges.

(A) Space of stations network

(B) Space of stops network

FIGURE 3.4: Node degree distributions of multi-layer networks of Indian Rail-
ways. The x-axis indicates the degree of a node and the y-axis indicates the
fraction of nodes with a given degree. The plots are done on the log-log scale.
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(A) Space of stations network

(B) Space of stops network

FIGURE 3.5: Edge weight distributions of multi-layer networks of Indian Rail-
ways. The x-axis indicates the sum of weights of all edges of a node and the
y-axis indicates the fraction of nodes with a given degree. The plots are done

on the log-log scale.
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3.3.4 Network Analysis

We perform network analysis on the three-layer network generated using the

Algorithms discussed in the previous section. The scale of networks in differ-

ent layers can be seen in Table 3.6. As we move from the space of stations

network to space of stops network, we can see the densification of the network

in terms of the number of edges and the average node degree. We can also

see significant reduction in the diameter - maximum shortest path length - of

the network for the space of stops network vis-à-vis the space of stations net-

work. The extent of densification can also be seen by increase in the average

clustering coefficient and decrease in the average shortest path.

The node degree distributions of both space of stations and space of stops

(shown in Figure 3.4) follow power-law distributions. Prior research on this topic

by Sen et al. [90] and Srivastava et al. [91] attest to the power-law network

nature of the IRN.

We also consider the load on the network by analyzing the weighted version

of the space of stops network. Here, weight of an edge corresponds to the

number of trains utilizing that edge. Edge weights can be used to estimate

the load on the network. As can be seen from Figure 3.5, the edge weight

distributions of the space of stations and the space of stops networks follow

power-law distributions.

3.4 Structural Analysis on Social Networks

In this section, we explain the results of our study on multilayer social networks.

We consider the Internet relay chat (IRC) communities as example social net-

works for this study.

3.4.1 Dataset

We have analyzed the IRC log datasets of Slackware operating system (OS)

IRC community [92] and Ubuntu IRC ecosystem [93]. Slackware is a classic
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TABLE 3.7: Description of the datasets under consideration.

Community Log availability Statistics for the chosen time period

starting
month

ending
month

chosen
month(s)

users directed
messages

KUbuntu-devel Apr-2005 May-2017 Jan, 2013 89 3130
Slackware OS Jan-2005 Dec-2014 Jan, 2013 337 6999

Linux OS distribution. Ubuntu IRC ecosystem is the collection of all IRC commu-

nities dedicated to the development of Ubuntu OS and its’ derivatives. Ubuntu

IRC ecosystem is a flourishing set of IRC communities. Ubuntu IRC ecosys-

tem started off as one community in 2003 and proliferated to 169 communities

by January, 2017. We study thirty-six most active communities of Ubuntu IRC

ecosystem based on the total number of messages exchanged on the com-

munity in January, 2013. We also consider Slackware OS community; this is

a single online chat community catering to the online communication needs of

Slackware OS developers. A summary of the datasets under consideration is

provided in Table 3.7. The users column specifies the number of active users

active in a community; directed interactions specifies the number of conversa-

tions observed on the community.

3.4.2 Kinds of Networks

Online communities (chat channels) can be modeled as social networks based

on two parameters: first is the co-presence and second is the message ex-

change. The presence parameter helps us track the presence of a user on a

chat channel and the co-presence of a pair of users on a chat channel. The

message exchange parameter helps us track the frequency of message ex-

changes between two users of a chat channel.

A presence network can be obtained by tracking the activity of a user on various

communities. We constructed the presence social network for Ubuntu IRC com-

munities using the following network construction conventions. All the online

communities and users become vertices of the network. The edges themselves

are of three kinds:
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1. Community - User (CU) presence network

The edge between an online community and a user indicates the presence

of a user on a community. The edge weight is equal to the number of days

a user is active on the community. We represent all the community to user

edges in Acu adjacency matrix.

2. Community - Community (CC) co-presence network

The edge between any two communities indicates the presence of com-

mon users among the communities. The edge weight is equal to the num-

ber of common users between the two communities as observed over the

selected time period. We represent all the community to community edges

in Acc adjacency matrix.

3. User - User (UU) co-presence network

The edge between any two users indicates the co-presence of two users

on one or more communities. The edge weight is equal to the number

of days on which these two users have appeared on a community at the

same time. If a pair of users appear on k communities on a day, then the

corresponding edge weight gets incremented by k. We represent all the

user to user edges in Auu adjacency matrix.

The message exchange social network can be constructed based on the di-

rect chat messages exchanged between the users. In this network, users are

modeled as nodes; each message adds or increments the weight of the directed

edge from the sender to the directed receiver. As a result, we get a directed and

weighted social network. The co-presence and message exchange networks

are intimately related. The co-presence network is the background network on

which the message exchange network manifests.

3.4.3 Degree Distribution

To understand the network characteristics of the online communities, it is im-

perative to study the properties of their social networks. The node in-degree

and out-degree distributions are the starting points in this kind of social network

analysis.



Structural Analysis of Networks 42

TABLE 3.8: Justification for the numerical heuristics used in the analysis frame-
work.

Heuristic Value used Justification

Top users 100 These cutoffs were used only for visual-
ization purpose in the chapter. They are
not needed for analysis at all. The anal-
ysis methods of network profile are ca-
pable of working on large graphs with no
upper limits on the maximum graph size.

Top channels 30 These cutoffs were used only for visual-
ization purpose in the thesis. They are
not needed for analysis at all. The anal-
ysis methods of network profile are ca-
pable of working on large graphs with no
upper limits on the maximum graph size.

Edge weight
cutoffs

0 / 10 / 20 These cutoffs were used only for visual-
ization purpose in the thesis. They are
not needed for analysis at all.

On community-community (CC) and community-user(CU) presence social net-

works, two communities with higher edge weight indicates higher potential over-

lap in user interactions. On user-user (UU) presence social networks, the node

degree indicates the potential for interaction between users. On message ex-

change social networks, the node degree distribution is our primary estimate for

determining the expertise/interest and the level of activity of a user on an online

community.

3.4.4 User Communities

A social network community is defined as a subset of nodes within the network

such that connections between the nodes are denser than connections with

the rest of the network [94]. We detect social network sub-communities on the

presence and message exchange social networks of an online community using

Infomaps community detection algorithm [59]. We use the heuristic cutoffs listed

in Table 3.8 for creating the visualizations of communities. These heuristics are

only used for visualization purposes, but do not affect the structural analysis of

the networks.
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FIGURE 3.6: Node degree distributions for the CU and UU presence social
networks constructed on the IRC chat channels under study. The data is for

January, 2013 for Ubuntu IRC communities.

3.4.5 Experimental Results

We construct the adjacency matrices of the two social networks – presence and

co-presence network and message exchange social network for Ubuntu com-

munities. We construct message exchange social network for all the three com-

munities. Since presence and co-presence network requires two or more over-

lapping communities, it is not possible to construct these networks for Slack-

ware community. Table 3.9 shows the network statistics of all the communities

analyzed in the thesis.
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(B) node degree distribution of message exchange network of Slackware community.

FIGURE 3.7: Node degree distributions for the message exchange social net-
work constructed on the IRC chat channels under study. The data is for Jan-

uary, 2013 for Ubuntu IRC communities and Slackware.
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Degree Distribution

We derive the degree distribution analysis of the message exchange social net-

work for all the three communities. The node degrees, both in-degree and out-

degree, are highly concentrated. In the case of KUbuntu-devel, we observe

that the node degrees range from 1 to 9. The node degree distributions graphs

are shown in Figures 3.6 and 3.7. The degree distributions of CU presence,

UU presence and message exchange social networks closely fit exponential

equation.

We perform curve fit on degree distributions using exponential equations given

in Equation 3.6.

Nd = eKd−γ (3.6)

logNd = −γlogd + K (3.7)

where,

d = node degree

Nd = number of nodes with node degree d

γ = exponent for node degree d

K = exponent for coefficient (scaling factor)

The exponential curve fit parameters are shown in Table 3.10.

User Communities

We perform community detection on the presence and message exchange so-

cial network of the selected IRC communities. We use Infomaps [59] algorithm

for community detection.

We provide a summary of the presence and co-presence social networks of

Ubuntu communities. We prune social networks to the top-30 communities and

TABLE 3.11: Code length for the presence social networks of the Ubuntu IRC
communities. The code length has been calculated using InfoMaps community

detection algorithm. The results are for the month of Jan, 2013.

CC Network CU Network UU Network Description

6.36 8.15 12.18 complete network
4.74 6.13 6.05 reduced network

(top-30 channels
and top-100 users)
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(A) Communities among top-30 Ubuntu IRC communities.

(B) Communities among top-100 Ubuntu users.

FIGURE 3.8: Communities detected on the presence and co-presence social
networks of Ubuntu IRC ecosystem for January, 2013. The number of com-
munities has been reduced from 160 to top-30 communities by activity and the
number of users have been reduced from more than 15,000 to top-100. These

two reductions have been done to better illustrate the community networks.
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FIGURE 3.9: Communities among top-30 Ubuntu Channels and top-100 users.
User nodes are shown in circular shape whereas channel nodes are illustrated

in rectangular shape.

the top-100 users from all the communities. The sub-communities detected

on the presence social networks of Ubuntu IRC communities are illustrated in

Figures 3.8 and 3.9. The code lengths1 generated by the Infomap community

detection algorithm for the three presence social networks are shown in Table

3.11. We find that the average clustering coefficients remain stable within each

social network.
1Size of variable-length code required to enumerate the communities in a given network;

typically specified in fraction of bits.

TABLE 3.12: Code length for the message exchange social networks of the two
communities. The code length has been calculated using InfoMaps community

detection algorithm.

Month KUbuntu-devel Slackware

Jan, 2013 4.79 6.93
Jun, 2013 4.97 7.37
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(A) KUbuntu - Jan 2015, cutoff=0

(B) Slackware - Jan 2013, cutoff=10

FIGURE 3.10: Communities in the message exchange social network of chat
channels. Each community is given a different color. Cutoff numbers refers to
the minimum edge weight threshold considered for community detection pur-
poses. The cutoff numbers were chosen purely for visualization purpose and

do not limit the generality of the conclusions.
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Color Legend: Red - KUbuntu-devel; Green - KUbuntu; Blue - Ubuntu-devel

FIGURE 3.11: Communities detected in multi-channel analysis on Ubuntu-
devel, KUbuntu and KUbuntu-devel communities for the year 2013. The mes-
sage exchange graph generated from the three mentioned communities is sub-
jected to an edge weight cutoff of 10. Each node in the given graphs corre-
sponds to one user and the color of a node corresponds to one chat channel.
A user is mapped to one chat channel in which (s)he has most presence in the

selected time window.

The results of a similar community detection analysis on the message exchange

social network and the detected communities are shown in Figure 3.10. The

thickness of an edge indicates the intensity of interaction between two users.

All the nodes of one community are given one color. The code lengths gen-

erated by Infomap community detection algorithm for the KUbuntu-devel and

Slackware channels are shown in Table 3.12. The average clustering coeffi-

cients remain stable within each channel.

We also perform community detection on multiple IRC chat channels. We con-

struct multi-channel message exchange social networks by combining the mes-

sage history logs of KUbuntu-devel, KUbuntu and Ubuntu-devel communities for

the month of January, 2013. On this multi-channel social network, we perform

community detection. The resulting communities are illustrated in Figure 3.11.
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The message exchange graph generated from the three mentioned commu-

nities is subjected to edge filtering , i.e., removal of all edges with edge weight

below 10. The edge filtering does not effect the nature of communities detected,

but is only used for visual clarity. All the sub-communities predominantly belong

to one chat channel. Thus, the images clearly illustrate a clean isolation of so-

cial interactions among members of different chat channels.

3.5 Summary

In this chapter, we provide details of our analysis on the structure of multilayer

networks in the computer networks, transit networks and social networks ar-

eas. In the computer networks area, we choose NDT distributed measurement

dataset to perform statistical analysis on the Internet connections of the Indian

broadband users. In the transit networks area, we represent the timetables of

Indian Railways as a three-layer network. In the social networks area, we use

Ubuntu and Slackware IRC channels to perform structural analysis on multilayer

social networks.

With the case studies taken up in this chapter, the thesis demonstrates the util-

ity of structural analysis on multidimensional networks found in transport net-

works and social networks. The networks analyzed in this chapter fit power-law

network models. We are able to detect communities in the bipartite CU co-

presence network. We are also able to detect communities in the multidimen-

sional networks created from multiple IRC channels.



Chapter 4

The Cell Model

4.1 Motivation

Multidimensional network models have been used for the study of many real-

world networks like multi-modal transit networks and for performing network

measurements in computer networks. In both the application domains, the par-

ticipating entities are rarely passive. For example, a transit station of a multi-

modal transit network encounters dynamic conditions like rush hour traffic, ar-

rival and departure of vehicles etc. In computer networks, network packets are

received, processed, forwarded or possibly discarded by the participating com-

puting nodes. Network measurement engineers actively measure the connec-

tion characteristics in order to create realistic models of network connections.

Another interesting feature of transit and computer networks is the causality of

events in the network. Events at one node cause a cascade of related events at

neighbouring nodes. For example, if an Internet router malfunctions and reports

wrong routes1, then such a corrupt router can effect the regular operations of

routers in its’ neighbourhood.

The existing structural network models such as random graphs, scale free net-

works and disease propagation models emphasize on the structural properties
1A route is a calculated path from source computer to destination computer via intermediate

routers

52
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of complex networks. The often studied centrality measures [95] and the net-

work community detection algorithms [67] also emphasize on the structural con-

nections of a network. Some network models such as those proposed for mul-

tidimensional networks and disease propagation models use labels for nodes

and connections. In the prior literature, the assumptions made in the modeling

of complex networks are:

• Nodes of a network are passive entities with no behavioural or functional

manifestations.

• Connections are binary relations whose strength may be indicated by a

weight or a function.

• All networks are assumed to be flat structures with no hierarchy. Hierar-

chical representation of network has not been adequately considered.

We propose a network model that considers structural, functional and behavioural

aspects of network participants - both nodes and connections. Our network

model helps in the study of network phenomenon where participants exchange

messages via dynamic connections. We denote nodes and connections of a

network as cells and the network model built using this paradigm as the Cell

Model.

4.2 Notation

A Cell Model of a network can be extended from the regular network (graph)

model. The regular network model can be defined as:

Regular Network: G = (V, E) (4.1)

Nodes: V = {v1, v2, ..., vm}
Connections: E = {e1, e2, ..., en}

= {ei : ei = (v j, vk) ∈ E for i = 1 to n and

v j, vk ∈ V for j, k = 1 to m}

An equivalent notation for G (see Equation 4.1) using Cell Model can be con-

structed as follows.
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e1v1 v2

(A) A connection in a
regular graph.

e1
1

e2
1

v1

e1

v2

(B) Representation of a con-
nection in Cell Model.

FIGURE 4.1: Representation of a connection in a regular graph and in the Cell
Model.
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FIGURE 4.2: A graphical representation of a network using the Cell Model.

Network using the Cell Model: Gc = (Vc, Ec) (4.2)

Nodes: Vc = V ∪ E

Relations (Edges): Ec = {e1
1, e

2
1, e

1
2, e

2
2, ..., e

1
n, e

2
n}

= {e1
i , e

2
i : ei = (v j, vk) ∈ E and e1

i = (v j, ei) and

e2
i = (ei, vk) for i = 1 to n}
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In the Cell Model, each connection of G (i.e., e ∈ E) is given a node-like promi-

nence in Gc. Each connection ei ∈ E becomes a node in Vc, i.e. E ⊂ Vc. The

connectivity between vertices indicated by ei gets transformed into two equiva-

lent edges e1
i , e

2
i ∈ Ec. The edges of Gc are unweighted, undirected and unla-

beled. The equivalent graphical representation is shown in Figure 4.1. Hence

forth, any reference to the word edge shall be in the context of the Cell Model;

thus the word edge infers a binary relation which is undirected, unweighted and

unlabeled.

During the creation of a Cell Model, we consider the principal participating en-

tities as well as their relationships as nodes. The edges of Cell Model are

placeholders to help preserve the information about the relationships and the

participating nodes of each of the relationships.

A graphical representation of the Cell Model of a network is shown in Figure

4.2. The network thus constructed is a bipartite network.

4.3 Views on Network

We can use a combination of structural, functional and behavioural views to

provide computable models for all the participants of the network.

4.3.1 Structural View

A structural view represents the topological connections between participants

of a network. The Cell Model has the following effect on the structural properties

of a network.

• The total degree of a node remains the same. Hence, the total degree

distribution of all the nodes belonging to V ⊂ Vc remains the same.

• The size of a network in Cell Model is equal to |V |+ |E| of the corresponding

network modeled as a graph.

• All the connections of a network in Cell Model have a degree of two.

In Cell Model, the connections are simple, static edges. All the complexities

of relations like weight, functions and labels are hidden in nodes belonging to
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Ec. Thus the structural analysis such as determination of centrality measures,

communities, path length on a Cell Model of a network is equivalent to structural

analysis on a bipartite network.

4.3.2 Functional View

As per Crilly et al. [96], functions have two broad meanings in engineering.

One is the role of transforming an input to an output; this definition of function

is closer to its mathematical interpretation. The second meaning of function is

the utility derived from a system (or the goal / purpose of system as seen) by

its users. Thus a functional view can represent the external effect of a network

participant as seen by an external observer. A functional model of an active

participant is as follows.

Input messages : X = {x1, x2, x3, ..., xm}
Environment variables: A1 = {a1

1, a
2
1, ..., a

k1
2 }

A2 = {a1
2, a

2
2, ..., a

k2
2 }

...

An = {a1
n, a

2
n, ..., a

kn
n }

Function Input: Σ = X × A1 × A2 × ... × An

Output messages: Y = {y1, y2, y3, ..., yp}
Function: f : Σ −→ Y ∪ {null} (4.3)

Here X and Y represent the set of feasible input and output messages respec-

tively. The environment variables are modelled as independent variables each

TABLE 4.1: The four operations performed by the network participants in terms
of properties on a function used under function view.

Operation Properties of Function

Generate f (null, a1, a2, ..., an) � null
Terminate f (x, a1, a2, ..., an) = null
Transform f (x, a1, a2, ..., an) � null
Forward f (x, a1, a2, ..., an) = x
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of which take values from ai ∈ Ai. The set of input messages and environ-

ment variables together form the domain of the function while the set of output

messages form co-domain of the function.

The functional view of a participant provided in Equation 4.3 does not have

memory, i.e. it is stateless. When considering the state, we utilize the be-

havioural model of a participant. Table 4.1 depicts the functional model to rep-

resent the four operations on messages that can be performed by the network

participants. A participant can use only one of the four operations mentioned in

Table 4.1.

In generate operation, an output message is generated even without any input

message; the no input message scenario is indicated using null message. In

terminate operation, a participant consumes an incoming message, but does

not generate any new message in response to the consumed message. This

no output message status is shown as null message. In transform operation,

a matching output message is generated in response to an input message. In

forward operation, the input message is sent out without any modifications.

4.3.3 Behavioural View

A behavioural view represents internal changes and external responses to stim-

uli. We use the state machines to provide a behavioural view and restrict the

type of sate machines to finite state machines (FSM). The notation used for

representing the behavioural view of an entity is shown in Equation 4.4.

Finite State Machine FS M = (S ,Σ, Y, f , g, sin) (4.4)

Set of States: S = {s1, s2, s3, ..., so}
Input messages: X = {x1, x2, x3, ..., xm}

Environment variables: A1 = {a1
1, a

2
1, ..., a

k1
2 }

A2 = {a1
2, a

2
2, ..., a

k2
2 }

...

An = {a1
n, a

2
n, ..., a

kn
n }

Function Input: Σ = X × A1 × A2 × ... × An

Output messages: Y = {y1, y2, y3, ..., yp}
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Update functions: f : S × Σ −→ S

g : S × Σ −→ Y ∪ {null}
Initial State: sin

The meaning of X, Ai and Y variables remain same as in Equation 4.3. The FSM

is represented using a tuple notation with S indicating the set of states and sin

being the initial state of the FSM. The update functions f and g indicate the

functions for state update and output generation respectively.

4.4 Axioms of the Cell Model

The networks and participants of networks constructed in the Cell Model ad-

here to four axioms, namely message exchange, activeness, equivalence and

hierarchy. The rest of this section contains axioms and their interpretation.

message message

v1 e1 v2

FIGURE 4.3: A typical scenario of message exchange. A message is sent from
node v1 to its connection e1. In response, e1 may send a message to node v2.

4.4.1 Messages Between Participants

The participants in the Cell Model of a network, i.e., both nodes and connec-

tions, interact with each other by exchanging messages. Thus the axiom of

message exchange lays the ground rule for interaction in the network.

Axiom 4.1 (Message Exchange). All network interactions happen via message

exchanges.

The message transfer between two nodes facilitated by a connection is illus-

trated in Figure 4.3. In the Cell Model of a network, a connection (for example,

e1 in Figure 4.3) is drawn from one participant of a network to another if they

exchange messages. A message is sent from a node to another node via an

edge.
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terminate generate
transform

forward

FIGURE 4.4: Operations on messages performed by a participant of a network.
Each keyword denotes the kind of operation performed on a message. The

participants are nodes and connections.

4.4.2 Active Participants

Both the nodes and the connections of the Cell Model of a network are non-

passive entities. The axiom of activeness specifies the kind of operations that

these entities can perform.

Axiom 4.2 (Activeness). All the participants (nodes and connections) are ac-

tive:

1. Nodes can generate, terminate, transform or forward messages.

2. Connections can terminate, transform or forward messages.

TABLE 4.2: Operations on messages performed by the participants of network
in the Cell Model.

Operation Illustration Explanation

Generate Generate a message and send to neighbours
via a connection. Only a node can perform this
operation.

Terminate Terminate a message received. Both node and
connection can perform this operation.

Transform Alter the message and then forward the same.
Both node and connection can perform this op-
eration.

Forward Forward the message with no changes. Both
node and connection can perform this operation.
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The permitted operations performed on messages by the participants of a net-

work are: generate, terminate, transform or forward. The permitted operations

are illustrated in Figure 4.4 and are explained further in Table 4.2. Nodes can

perform any of the four operations; Connections cannot perform the generate

message operation, but can perform terminate, transform or forward operations.

The restriction of generate operation to nodes has been put in place to limit

causality of events in the network to only nodes. Only nodes can generate new

messages which can trigger further events in the network. Connections only act

on the messages sent to them.

There is an influence of environment on all the participants of the network. The

environmental influence is modeled using the independent variables. The com-

putational models of network participants are dependent on the environment

variables.

There is quite a close relation between the transform and forward operations of

a participant. A forward operation is a projection. In general, all the participants

have memory (state). A participant can switch between the allowed operations

based on the incoming message and state. The next state of a participant is

determined by the current state and the incoming message.

4.4.3 Equivalence

We strive for a simplest possible representation of an entity. Thus we often need

to replace a very detailed FSM with a more simple, abstract model for FSM. The

axiom of equivalence caters to this need for simplicity in representation.

Axiom 4.3 (Equivalence). Two behavioural views of a participant are equivalent

if both have equivalent Finite State Machines (FSM), i.e., both the FSM’s are

observational equivalent.

In order to understand the requirements of observational equivalence, we need

to understand the bisimulation equivalence.

As per Hirshfeld et al. [97], two processes (for us, FSMs) are bisimilar, or bisim-

ulation equivalent, if, roughly, they may evolve together in such a way that when-

ever the first process performs a certain action, the second process is able to

respond by performing a matching action, and vice versa.
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We use the FSM notation defined in Equation 4.4 to mathematically express the

bisimulation equivalence between two FSMs. A formal definition of bisimulation

for two FSMs is as follows.

Let FS M1 = (S 1,Σ,Y, f1, g1, sin
1 ) and FS M2 = (S 2,Σ,Y, f2, g2, sin

2 ) with si
1 ∈ S 1 and

si
2 ∈ S 2. A relation R between S 1 and S 2 is bisimulation if the following conditions

are satisfied.

1. Start condition:

Both FSMs are in their respective initial states.

⇒ (sin
1 , s

in
2 ) ∈ R

2. Matching state transitions:

With si
1 R si

2, the following three conditions hold true.

(a) for si
1, s

i+1
1 ∈ S 1 and si+1

1 = f1(si
1,σ) ∃ si+1

2 ∈ S 2 such that si+1
2 = f2(si

2,σ)

(b) for si
2, s

i+1
2 ∈ S 2 and si+1

2 = f2(si
2,σ) ∃ si+1

1 ∈ S 1 such that si+1
1 = f1(si

1,σ)

(c) si+1
1 R si+1

2

3. Matching outputs: yi
1 = yi

2 (OR) g1(si
1,σ) = g2(si

2,σ)

S 1 and S 2 are bisimilar if S 1 and S 2 share bisimilar relation. If S 1 and S 2 are

bisimilar, then the corresponding FS M1 and FS M2 are bisimilar. A bisimula-

tion equivalency between two FSMs, FS M1 and FS M2 is indicated by FS M1 ∼

FS M2.

The notion of bisimulation defined above is a strong bisimulation. The defini-

tion of strong bisimulation requires that each transition in the behaviour of one

FSM should be matched by a single state transition of the other, regardless of

whether that transition is labelled by an observable action or by a silent action

represented by τ (adopted from Section 3.4, [98]).

There exists a weaker version of bisimulation. In weak bisimulation, an FSM

is allowed multiple internal transitions (formally called τ-action) to provide the

same output sequence for a given input sequence. The weak bisimulation

equality is also known as observational equivalence. The observational equiv-

alence abstracts away the internal behaviour (state transitions and silent or un-

interesting outputs) and only focuses on the input - output equivalence. Hence,

our requirement of behavioural equivalence corresponds to observational equiv-

alence on FSMs. A weak bisimulation equivalency between two FSMs, FS M1

and FS M2 is indicated by FS M1 ≈ FS M2.
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4.4.4 Hierarchical Networks

Hierarchy is the natural way of building scalable systems. Hierarchical techno-

logical systems like Internet and social systems like metropolitan cities are a

testament to the power of hierarchy in building scalable systems. We use the

same principle in creating the axiom of hierarchy.

Axiom 4.4 (Hierarchy). A node can represent a sub-network. The representa-

tive node must satisfy the equivalence axiom with the sub-network being repre-

sented.

v1 e1 v2 e3 v3

e2 v4

v�2

FIGURE 4.5: Illustration of the axiom of hierarchy. Here v�2 is a representative
for the sub-network consisting of {v1, v2, v3, v4, e1, e2, e3}.

Figure 4.5 shows a graphical illustration of the axiom of hierarchy. The nodes

and connections highlighted by the cloud which form a sub-network of a big-

ger network have been abstracted out. In its’ place, we have a representative

node v�2. The external connections of the sub-network remain the same and v�2
provides observational equivalent behaviour to the sub-network it replaces.

We utilize a very restricted form of hierarchy via FSM equivalence. The se-

mantics of our hierarchical approach have been adopted from David Harel’s

StateCharts [99, 100]. As per the StateCharts approach, the design of a repre-

sentative FSM involves the following operations.

AND Two FSMs are put side-by-side and both run concurrently. This arrange-

ment gives concurrent processing capability to the hierarchical FSM.

Cascade Two FSMs are connected sequentially so that the output of first FSM

becomes the input of the second FSM.

Composite This operation has also been called an Or -operation in prior liter-

ature [99]. An FSM can be in any on of its valid states. For example, if
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FIGURE 4.6: Elementary operations needed to create hierarchical FSMs.

an FS M has only three states s1, s2 and s3, then the FSM can be in ei-

ther s1 state or s2 or s3 state. Hence, the naming of the arrangement as

Or -operation.

The notion of composition comes from the fact that each state of an FSM

can contain with in it another FSM. In Figure 4.6, FS M3 has three states of

which s2 contains another state machine inside it. Thus s2 is a composite

state and FS M3 is a composite state machine.

These operations are illustrated in Figure 4.6. The AND and OR operations on

FSMs are thoroughly described in StateCharts approach [100]. The state ma-

chines modeling of Unified Modeling Language (UML) v2.5 is a modern adap-

tion of StateCharts approach [101]. The semantics of composite operation de-

fined here are in line with the definition of composite state and FSM in UML

v2.5 [101]. Modifications on the StateCharts approach have been adopted for

modeling of cyber physical systems in Ptolemy II software [102] and for mod-

eling of biological systems using reactive animation [103, 104]. The Cascade

operations on FSMs are detailed in Ptolemy approach [102, 105].

4.5 Generality of the Cell Model

In this section, we show the equivalent Cell Model representations for the ex-

isting network models. We start with undirected connections, proceed to work
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TABLE 4.3: Representation of undirected connections in the Cell Model.

Type of Connection Function Operation

Unweighted and Undirected y = x with f : X → X Forward

Static weight y = f (x,w) with f : X × {w} → Y,
w ∈ Z+ and f is bijective

Transform

Dynamic connections y = f (x, t) with f : X × T → Y

with directed connections, multiplex (multiple) connections and conclude with

multidimensional connections.

4.5.1 Undirected Connections

The connection illustrated in Figure 4.1 shall be used to explain the represen-

tation for undirected connections. The undirected connections may be of three

kinds: unweighted, static weights and dynamic connections. All types of undi-

rected connections can be represented using functional view. We utilize the

notation for functional view given in Equation 4.3 to provide an equivalent rep-

resentation in Table 4.3. Dynamic connections are modeled as connections

whose weight changes with time. We model time using one independent vari-

able t = a1 ∈ A1 given in Equation 4.3.

The unweighted and undirected connections use forward operation of functional

view. The forward operation is a projection operation, i.e., f (x, a1, ..., an) = x. The

weight of an undirected edge is represented as a function whose domain is X,

range is Y and does not depend on the environment variables. The last case of

dynamic connection requires consideration of time as well. We model the input

of dynamic functions as input messages and time.

4.5.2 Directed Connections

A directed connection has source node and a destination node. We can extend

the equivalence presented in Section 4.5.1 for undirected connections with one

additional restriction. All the input messages of a connection come only from

one node and all the output messages go only to the other node of a connection.

The situation is illustrated in Figure 4.7.
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x −→ y −→
v1 e1 v2

FIGURE 4.7: Modeling of the directed connections using functional view of a
connection.

4.5.3 Multiplex Connections

We then consider the case of multiplex (multiple) connections between two

nodes. The Cell Model equivalent representation for multiplex connections is

given in Equation 4.5. The meaning of the symbols such as Σ, X, Ai is as de-

scribed in Equation 4.3.

Function Input: Σ = X × A1 × A2 × ... × An

σ = (x, a1, a2, ..., an) ∈ Σ
Output messages: Yi = {yi

1, y
i
2, y

i
3, ..., y

i
pi
} for i = 1, 2, ..., h

Function: f i : Σ −→ Yi ∪ {null} (4.5)

A multiplex connection is a set of h connections between two same nodes. For

each function input (σ ∈ Σ), every multiplex connection sends one transformed

output messages (yi ∈ Yi). All the transformed messages are received at the

destination node. An example scenario is shown in Figure 4.8a. These con-

nections are represented using one single node in Cell Model; the illustration is

shown in Figure 4.8b.

l1

l2

l3

lh

v1 v2

(A) Multiplex con-
nections in a regular

graph.

x −→ all yi −→
v1 e1 v2

(B) Representation of multiplex connec-
tion in Cell Model.

FIGURE 4.8: Modeling of multiplex connections using functional view of a con-
nection.
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Layer 1

Layer 2

H1
H2

H1
H2

(A) A multidimensional / multilayer
network with two layers illustrated.

layer1

layer2

layer12

H1 H2

(B) An equivalent representation for mul-
tidimensional connections.

FIGURE 4.9: Multidimensional connections and their representation in the Cell
Model.

4.5.4 Multidimensional Networks

Using the axiom of hierarchy, we can represent all the sub-network induced by

all copies of vi
2 as a single node. Thus all the inter-layer connections between

copies of a single node are abstracted away. The resulting multidimensional

network will be a labeled multiplex network. We can use the technique dis-

cussed in Section 4.5.3 to convert Figure 4.9b into an equivalent Cell Model

representation.

4.6 Mapping of the Cell Model to Applications

We apply the Cell Model to two different application domains. The first is a

transit scheduler which is responsible for generating travel itineraries from public

transit schedules. The second is a packet analyzer which is responsible for

protocol analysis of network traffic. The modeling conventions of two different

application scenarios using the Cell Model of network are shown in Table 4.4.

Different views adopted for nodes and connections of application networks are

shown in Table 4.5.
2A copy of vi may exist in each dimension of a multidimensional network
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TABLE 4.4: The modeling of different participants using the Cell Model.

Transit Scheduler Packet Analyzer

Network Transit network Protocol graph
Nodes Transit stations Protocol analyzer
Connections Road links Protocol clients
Messages Transit vehicles Packets

TABLE 4.5: The views adopted for different participants of the Cell Model.

Transit Scheduler Packet Analyzer

Nodes Behavioural Behavioural
Connections Function Function
Network Structure Structure

Ethernet

IPX IPv6 IPv4

TCP UDP

HTTP

5

15
100

4060

60

(A) Sample protocol parse graph
with connection weights.

P
1

P
2

P
3

P
4

(B) Completely connected (KN graph with
Self-loops) Pipeline. Here N indicates the
number of vertices / pipeline stages. In this

figure, we illustrate K4.

FIGURE 4.10: Application of Cell Model to protocol analysis. The hierarchical
nature of the Cell Model can be seen in (4.10b) where each node can embed

multiple nodes of the graph given in (4.10a).

4.6.1 Network Measurements

We consider the problem of analyzing the network packet traffic. A typical pro-

tocol parse graph of the network traffic is shown in Figure 4.10a. We are inter-

ested in concurrent analysis of the protocol parse graph using a multi-threaded

implementation of protocol analysis. We create a protocol analysis pipeline as a
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FIGURE 4.11: Generic analyzer cell (GAC) that implements one stage of a
pipeline. The same GAC is configured differently for different pipeline stages.

multi-threaded implementation of protocol analysis stages. If we model the im-

plementation stages as nodes and message passing capability between nodes

as connections, then we have a complete network formed with self-loops at

each node (shown in Figure 4.10b). We embed the parse graph in our analysis

pipeline and then perform the protocol analysis.

The analysis pipeline has been built from a symmetric node element named the

generic analyzer cell (GAC). Each GAC forms one node of the network shown

Figure 4.10b. The architecture of GAC is shown in Figure 4.11. The GAC

implements nodes as per the conventions of the Cell Model of network. This

application demonstrates the hierarchical nature of Cell Model. Each node of

the analysis pipeline is a representative for a sub-network.

4.6.2 Transit Networks

We consider the problem of searching for feasible itineraries in the schedules of

public transit networks.

Problem Statement: Create a list of travel itineraries from multi-modal public

transit timetables in response to user queries. Transit timetables are expressed

as a series of connections [5]. A connection is defined as
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Incoming 
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Outgoing 
Queries

Generic Edges
(connections)

Station 
Constraints

Incoming
Query Queue

Bridge 
Functions

State 
updates

FIGURE 4.12: A behavioural view for a multi-modal transit station. The station
constraints, bridge functions, and generic edges together constitute the state,

and behaviour of a station process.
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FIGURE 4.13: Architecture of the Transport Scheduler application.

C = (S dep, tdep, S arr, tarr, tr)
where,

tr = unique trip identifier

S dep = departure station of a connection

tdep = departure time at S dep

S arr = arrival station of a connection

tarr = arrival time at S arr

We construct the physical topology of the transit network from timetables. Each

transit station is considered as a node in the transit network and is modelled

using Cell Model of network. The structure of a transit station is shown in Figure

4.12. The architecture of the transit application is shown in Figure 4.13. We

adopt the following approach to model the public transit network.
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In the transit station model shown in Figure 4.12, we can see the details of

subsumed connections as well. The function of a connection is specified as

follows.

Independent variables: Time(Ti) = {0, 1, 2, ..., n}
Mode(M) = {car, bus, f light, train,walk}

Cost function: f : R+ × M −→ Z+ (4.6)

cost(connection) =


f inite for t ∈ Ti ⊂ R+ and m ∈ M

∞ for all other cases.
(4.7)

Equation 4.6 represents the cost of using a connection in a transit network;

Here, time and mode of transport are independent variables. In practice, the

cost of the connection function is finite only for few (time,mode) ∈ Ti × M; this

insight has been expressed in Equation 4.7. Specific conditions (constraints)

are put on the connections; these constraints have to be satisfied by the path in

order to use the connection in a path.

We compute travel itineraries as paths in time domain. Let cost(pathi) denote

the cost of path from source station to stationi. Let e j be the edge under consid-

eration for travelling from stationi to station j. Let cost(pathi+1) denote the cost of

extending the pathi from stationi to station j by using the edge e j. Then the path

cost equation for this scenario is given in Equation 4.8.

cost(pathi+1) = cost(pathi) + cost(e j) (4.8)

The computed path cost for cost(pathi+1) given in Equation 4.8 becomes finite

TABLE 4.6: Connection constraints, path constraints and their compatibility

Connection
Constraints

Path Constraints Compatibility

flight any mode yes

flight bus no

train bus or train yes
arrival before 5PM only if computed arrival time < 5PM

train bus-flight-bus no
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only if the edge constraints of e j are compatible with the path constraints of

pathi. Otherwise, the computed path cost for cost(pathi+1) becomes infinite. A

few sample edge, and path constraints are shown in Table 4.6.

We have implemented the ideas of transit station, generic edges and cost com-

putation in a concurrent application, named transport scheduler. The architec-

ture of transport scheduler is shown in Figure 4.13. The transport scheduler

models multi-modal transit network as a network of cells each of which repre-

sents a transit station. All the processing in the cells is concurrent, thus making

the application itself concurrent. The application supports multi-modal itinerary

search queries and schedule updates.

4.7 Results

4.7.1 Network Measurements

Using the concepts developed in Cell Model, we implement Darshini - a mod-

ular, concurrent, collaborative and customizable protocol analyzer workbench

software package. We are able to provide the following advantages through the

Darshini software package.

1. Concurrent protocol analysis.

2. Configurable speed-vs-memory tradeoff.

3. Configurable protocol parse graph.

4. Persistence of analysis.

5. Collaboration

We provide further details of the protocol analyzer in Chapter 5.

4.7.2 Transit Networks

We implement multi-modal transit scheduler for public transit networks of India.

We are able to provide the following new features through the transit scheduler

software package.

1. Include personal transport facilities in constructing travel itineraries.
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2. List of travel itineraries for a query.

3. Operator control over the transit stations.

4. Uniform processing of multi-modal edges using edge constraints.

We provide further details of the multi-modal transit scheduler in Chapter 6.

4.8 Implementation Choices

Our proposed Cell Model is based on message exchange between participants.

Thus we need implementation platforms that favour message passing for com-

munication. We demonstrate two implementations of the Cell Model for two

different application domains using two entirely different implementation plat-

forms.

For Darshini protocol analyzer, we choose a thread-based implementation with

Google Guava’s eventbus [106] for distribution of messages between the par-

ticipants of the Cell Model. The nodes and connections of the protocol analyzer

are implemented inside the Java threads.

For the multi-modal transit network implementation, we use an Actor model-

based approach. Actor model is an established concurrency model [107]. Im-

plementations of Actor models exist in different programming languages such

as Elixir [108], and Java [109].

4.9 Summary

We propose the Cell Model of a network for modeling multidimensional net-

works. We use three views, namely structural, behavioural and functional views,

to represent the participants of a network. The behavioural view helps create

process view of a network. All the network models built using the Cell Model

obey four axioms: activeness, message exchange, equivalence and hierarchy.

We have shown the generality of the Cell Model by representing undirected, di-

rected, multiplex and multidimensional networks using the Cell Model. We have

applied our Cell Model on two research problems and our proposed solutions to

these problems have been successfully demonstrated on real-world networks.



Chapter 5

Darshini - Protocol Analyzer

5.1 Motivation and Problem Definition

Network packet capture and protocol analysis helps observe the packet traf-

fic flowing through a computer network. Network packet capture and protocol

analysis is an integral part of modern network management [30, 110]. A ma-

jor concern in network measurements community is the lack of emphasis on

the application of scientific (repeatable, verifiable and falsifiable) measurement

principles [111]. A requirement of researchers and operations engineers is to

control / restrict the packet analysis to scenarios of interest as implied by the

experimental objectives [112]. Thus user-directed protocol analysis is an im-

portant requirement on packet capture and analysis tools. The network mea-

surement community needs collaboration and user-directed protocol analysis

features together in one measurement tool. An ideal measurement tool would

also enable scientific measurements.

Centralized data repositories such as Crawdad [113] and DataCat [114] main-

tain useful network measurement datasets created using scientific measure-

ment principles. In the network traffic datasets placed in public domain, the

process of creating and documenting experimental design is ad-hoc. Having

a packet capture tool that facilitates experimental design, documentation and

collaboration would be useful in creating templates for measurement data ex-

change. In addition, the longitudinal evolution of network traffic mix [115, 116,

117] requires user-directed protocol analysis. We find that the available tools

73
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offer typically two of the required three features – scientific measurements, col-

laboration and user-defined protocol analysis.

For example, popular protocol analysis tools like Wireshark [31] are developed

for the scenario of lone engineer analyzing the captured packet stream on a

local machine. Hence the concept of collaborative analysis is not a standard

feature in these tools. Persistence is not a standard feature of these tools; thus

collaborative analysis becomes repetitive. The experts / reviewers are asked to

look at a pcap file without the associated experimental meta-data. Another lim-

itation is the fixed configuration in measurement tools denying users the ability

to select / filter protocols of their interest for further analysis.

5.2 Packet Analysis as Graph Embedding

5.2.1 Motivation

We are interested in faster processing of captured packets by increasing the

throughput of a packet analyzer. One of the ways of achieving higher through-

put is to use concurrency. We can strive for concurrency at the level of protocols.

If we have enough processing resources in the form of parallel processors, all

the protocols of the protocol parse graph can be processed in a concurrent

mode. If not, we strive for maximum possible concurrency. Since the protocol

parse graph is a weighted and rooted tree, we architect the concurrent solution

to respect the acyclic ordering of protocols implied by the protocol parse graph.

The incoming packet traffic need to be processed in the strict ordering of proto-

cols implied by the packet headers. Thus our concurrent solution needs to be

a pipeline of protocol parsers. The interconnections among the pipeline stages

are controlled by the edges of the protocol parse graph. One advantage of our

solution is the concurrent analysis of multiple packets.

We can formulate the mathematical details of a protocol parse graph as follows.

Let G1 = (V1, E1) be a rooted, labeled tree. G1 is used to represent protocol

parse graph. We use the following notations to represent different aspects of

the protocol parse graph in terms of weighted version of G1.



Darshini - Protocol Analyzer 75

P
1

P
2

P
3

P
4

FIGURE 5.1: Completely connected (KN graph with self-loops) Pipeline. Here
N indicates the number of vertices / pipeline stages. In this figure, we illustrate

K4.

G1 = (V1, E1) (5.1)

where,

va = a vertex in V1, a ∈ [1, |V1|]
= one protocol in the protocol parse graph

Cva = weight of the vertex va ∈ V1

eb = simple, directed and weighted edge between two vertices of V1

= possibility of a protocol PDU being embedded as payload of

another protocol

wb = weight of the edge eb ∈ E1

= expected number of user protocol PDUs in the payload of provider

protocol PDUs

The weight function fw1 is defined as fw1 : E1 → N. The set intervals are on the

set N.

In a simple sequential execution model, one packet is handled at a time; packet

analyzer tools such as tshark, tcpdump take this approach. At the other extreme

is the concurrent solution in which one protocol is allocated to one concurrent

pipeline stage and the pipeline stages are connected as per the edges of the

protocol parse graph. But that would result in too many pipeline stages and is

not ideal for software environments where cost of implementing a pipeline stage

is high. In order to assign the task of parsing a protocol to a pipeline stage, the

processing capacity of the pipeline stage must be greater than or equal to the
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requirements of the protocol. The aim is to minimize the number of pipeline

stages to complete the work; Within this constraint, we need to minimize the

cost of distributing packets between the pipeline stages.

5.2.2 Pipeline as Graph

A representation of a complete graph of all pipeline stages with self-loops for

each of the stages is shown in Figure 5.1. We use this graph to represent the

pipeline stages.

We implement the communications / connections among the pipeline stages

in software using Pub-Sub design pattern. In the subsequent discussion, we

consider mapping of protocol parse graph to KN pipeline with self-loops.

The concurrent protocol analysis requires mapping of the protocol parse graph

into a completely connected pipeline. Thus we need to map one or more pro-

tocols into each pipeline stage. If two protocols mapped to a single pipeline

stage have a parent-child relation, then we need to facilitate communication

within one stage of a pipeline; such a communication is enabled by self-loops

of a pipeline stage. If the same two protocols sharing parent-child relation are

mapped to different pipeline stages, then we need to facilitate communication

between pipeline stages. We can define a pipeline as follows.

G2 = (P, E2) (5.2)

= Complete graph (KN) with self-loops

for all vertices

= graph representing all pipeline stages

where,

N = order of the graph G2 = |P|
= number of stages in the pipeline

pi = a vertex of G2, pi ∈ P

= ith stage of a pipeline, i ∈ [1,N]

Cpi = weight carrying capacity of a vertex pi ∈ P

= processing capacity of ith pipeline stage.
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ei j = weighted, simple edge between vertices

pi and pj, ∀i, j ∈ [1, |P|]
wi j = weight of ei j

For the single computer and cluster computer development scenarios, the cost

of communicating between any two computers (wi j) tends to be nearly same.

Also the cost of communicating within a computer (wii) tends to be same. Hence,

we assume

wi j = w1 ∀i, j ∈ [1, |E2|] and i � j (5.3)

wii = w2 ∀i ∈ [1, |E2|] (5.4)

The weight function, fw2 : E2 → {w1,w2}, where {w1,w2} ⊂ R+

5.3 Graph Embedding: Parse Graph to Pipeline

Mapping

In this section, we represent the graph embedding problem as applicable in

parse graph to pipeline mapping. We can represent the details of mapped pro-

tocols as follows.
Let va

i = vertex va ∈ V1 of G1 mapped to pi

= a protocol assigned to ith pipeline stage

V1
i = all vertices of V1 that are mapped to pi

= all protocols that are assigned to

ith pipeline stage

then,
�

∀va∈V1
i

Cva = cumulative weight of all vertices of V1
i

= total cost of processing for all the

protocols assigned to ith pipeline stage

For realistic mapping, the cost of processing for all the protocols assigned to

one pipeline stage must be less than or equal to the processing capacity of that
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pipeline stage.

�

∀va∈V1
i

Cva ≤ Cpi (5.5)

The cumulative weight of all vertices assigned to pi of G2 must be less than or

equal to the weight bearing capacity of pi. Extending the same reasoning to all

the vertices of G2, we can say that,

�

∀va∈V1

Cva ≤
�

∀pi∈P
Cpi (5.6)

If all pipeline stages have the same weight bearing capacity Cp, then N – the

order of G2 – is indicated by,

N ≥
��
∀va∈V1

Cva

Cp

�

The upper limit on the number of pipeline stages is imposed by the order of G1,

i.e., N ≤ |V1|.

Thus the limits on N are:

��
∀va∈V1

Cva

Cp

�
≤ N ≤ |V1| (5.7)

Implementing a parse graph on a pipeline is equivalent to graph embedding of

G1 into G2. When we embed G1 into G2, we need to transform the edge weights

of G2. Let the pipeline graph after edge weight transformation be identified as

G�2. The only difference between G2 and G�2 is their edge weights; in all other

aspects, G2 and G�2 are identical. Therefore,

fv : V1 → P (5.8)

fe : E1 → E�2 (5.9)

f �w2
: {wb} × {w1,w2}→ R+ where b ∈ [1, |E1|] (5.10)

Both fv and fe are onto functions.
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The weight of an edge in E1 (of G1) indicate the frequency of using an edge; the

weight of an edge in E2 (of G2) indicate the cost of using an edge. When we

map eb ∈ E1 into ei j ∈ E�2, we indicate the use of ei j exactly wb times, each use

incurring a cost of wi j. For the case of multiple edges of E1 being mapped into

one edge in G�2, the effective edge weights get added up. We can express the

edge weights of G�2 as follows.

w�i j = wi j ×
�

wb ∀ eb ∈ E1 ∩ (V1
i × V1

j) and

i, j ∈ [1, |E2|]

In protocol analysis, we wish to minimize the number of pipeline stages and the

overall communication cost in the pipeline. On G�2, we wish to minimize both the

order of the graph (N) and the sum of all edge weights (
�

∀i, j∈[1,|E2 |]
wi j). Obviously,

any mapping has to satisfy the capacity constraints expressed by the Equation

5.7.

In summary, our graph embedding problem can be formulated as the following

optimization problem.

Problem Statement: Embed a rooted, labeled, weighted tree G1 into a weighted,

complete graph with self-loops G�2 such that

Objectives:

• min N = order of G�2

• min
�
∀i, j∈[1,|E2 |] w�i j = sum of edge weights of G�2

Constraints

• capacity limits,
�
∀va∈V1

Cva ≤
�
∀pi∈P Cpi

• node mapping, fv : V1 → P, fv is an onto function

• edge mapping, fe : E1 → E�2, fe is an onto function

We wish to embed G1 into G�2 with the aim of G�2 having the smallest order and

least cumulative edge weight.
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FIGURE 5.2: Sample protocol parse graph with edge weights.

graph start {
ethernet;

}
graph ethernet {

switch(ethertype) {
case 0800: ipv4;

}
}
graph ipv4 {

switch(protocol) {
case 06: tcp;

}
}
graph tcp {
}
graph end {
}

FIGURE 5.3: A sample protocol parse graph specification selecting packets
containing only Ethernet-IP-TCP protocols.

In this chapter, we describe Darshini which demonstrates an implementation of

G1 into G�2 graph mapping. We allow for modification of protocol parse graph

(G1). Removal of a vertex from G1 leads to automatic removal of the mapped

element from G�2. Sections 5.4 to 5.7 describe an implementation G�2 as a con-

current (multi-threaded) pipeline.
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header ethernet {
fields {

dst_addr : 48;
src_addr : 48;
ethertype : 16;

}
}

FIGURE 5.4: Ethernet header specification in P4 language.

header ipv4 {
fields {

version : 4;
ihl : 4;
diffserv : 8;
totalLen : 16;
identification : 16;
flags : 3;
fragOffset : 13;
ttl : 8;
protocol : 8;
hdrChecksum : 16;
srcAddr : 32;
dstAddr : 32;

}
}

FIGURE 5.5: IPv4 header specification in P4 language.

5.3.1 Motivation for Heuristic Solution

The embedding of protocol parse graph into the processing pipeline can be

done in two steps. In the first step, a clustering algorithm is run on the protocol

parse graph to obtain node clusters. Each cluster can be aggregated to one

high-level node. Let us call this aggregated graph as cluster-graph. In the sec-

ond step, the cluster-graph is embedded into the processing pipeline (a graph).

Both the graph clustering and the graph embedding are NP-hard problems.

Thus we require a heuristic solution.
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5.4 Darshini Architecture

5.4.1 Input Data Formats

Darshini takes in a stream of packets to operate on. The stream of packets

are read from a pcap1 file. The beautification specification, protocol headers

and protocol parse graph are also given as input to Darshini. We use P4 lan-

guage [34] for specifying these three inputs. The beautification files are used

to represent human preferences for representation of protocol header fields (for

example, the use of dotted decimal notation for IPv4 addresses).

Darshini uses two different parse graphs. One is the parse graph of all sup-

ported protocols; prior literature refers to this graph as union parse graph [27].

The second parse graph is the user-specified parse graph indicating the pro-

tocols of interest to the user. For all practical purposes, user-specified parse

graph is a sub-graph of the union parse graph. Both the parse graphs are spec-

ified in P4 language. An example protocol parse graph is given in Figure 5.2.

Darshini parses the incoming packets in order to analyze the protocol stack of

the packet. A sample protocol parse graph is shown in Figure 5.3. This pro-

tocol parse graph only selects packets containing Ethernet-IPv4-TCP protocol

headers. We can thus use parse graph input specification to select protocols of

interest.

The P4 language specification also allows us to specify the sizes of different

headers fields of a protocol. Figure 5.4 shows the Ethernet header specifica-

tion in P4 language. Ethernet protocol header contains three fields – source

address of 48 bits, destination address of 48 bits and a packet type of 16 bits.

This protocol-specific information is encoded in the P4 specification of Ethernet

header. Similarly, Figure 5.5 shows the specification of IPv4 protocol header in

P4 language. Different fields of IPv4 header are specified in strict sequential

order.
1pcap – short for packet capture – is the file format used by packet capture tools like Wire-

shark to store the captured packets.
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FIGURE 5.6: System architecture of Darshini.
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5.4.2 System Overview

An outline of the system architecture is shown in Figure 5.6. The major build-

ing blocks of Darshini are: analyzer pipeline, P4 compiler, database (DB) and

MVC components. Our analyzer pipeline receives custom analyzers created

by P4 compiler. Analyzer pipeline uses user-defined parse graph and custom

analyzers to parse the packet stream. Analyzer pipeline internally follows pipes-

and-filters architectural pattern.

Model module is a part of MVC architecture that stores all the data of analyzers;

model interacts with controller and DB. Controller module is also a part of MVC

architecture and glues the model with views. Controller is responsible for han-

dling all requests from view module and making method calls to models module.

Controller returns data to view module which presents formatted data to user.

View module can directly interact with database over REST API. View module

facilitates collaboration between users.

5.4.3 Analyzer Pipeline

Analyzer pipeline forms the backbone of Darshini. Analyzer pipeline is respon-

sible for taking in a filtered stream of packets and analyzing these packets as

indicated by the user-specified parse graph. Analyzer pipeline stores the analy-

sis results in DB via the persistence module. The analyzer pipeline architecture

is shown in Figure 5.7a.

Each pipeline stage receives a packet and completes analysis for the protocols

the stage is responsible for. It then forwards the packet to next stage. A packet

is sent to next stage using the feedforward / feedback line. In order to accom-

modate tunneling scenarios, a feedback line connects a stage to itself or to one

of the former pipeline stages. It is possible to encounter packets that do not

have PCI header for a protocol layer (ex: raw packets with only TCP header

would obviously miss the IP header). Feed forward line enables skipping of a

pipeline stage where necessary.
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FIGURE 5.8: Implementation details of the system architecture for Darshini.
ES is an acronym for Elastic Search database.

5.5 Generic Analyzer Cell (GAC)

All the pipeline stages are created from the same template named GAC. The

block diagram of the GAC is shown in Figure 5.7b.

All the incoming packets of a GAC are received by the generic analyzer. Generic

analyzer collects statistical / flow information from the packet for record keeping

purposes. Generic analyzer pushes the collected information to the persistence

module. After this, the generic analyzer informs all the registered custom an-

alyzers of the analyzer cell about the available packet. An appropriate custom
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TABLE 5.1: API end points for Darshini. The base URL of host and ES URLs
are not shown.

API URL Service

/ home page
/signup user signup
/signin user login
/session/validate validate parse graph
/session/analyze start protocol analysis

analyzer picks up the packet to extract protocol headers. As soon as the proto-

col header extraction is done in a custom analyzer, next protocol is determined.

The processed packet is then forwarded to next analyzer cell; extracted protocol

headers are forwarded to the persistence module.

Generic and custom analyzers complete their work much faster than the per-

sistence module (database); the data path from cell input to custom analyzers

forms fast path of execution. Data path from custom analyzers to persistence

module works at much slower rate and is called slow path.

Analyzer cells decouple the fast and slow execution paths. As soon as the

output of the faster execution path is ready, the processed packet is passed to

the next pipeline stage. The slower execution path of a pipeline stage can have

long input and output queues to adjust to the packet processing throughput

disparity between the fast and slow paths.

5.6 Implementation

Darshini has been implemented as a model - view - controller (MVC) architec-

ture based web application. Figure 5.8 shows the modules of Darshini. The

following parallels exist between Darshini and graph G�2.

pi ↔ GAC

ei j ↔ feedback / feedforward line

eii ↔ Event Bus in GAC
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Darshini ES

create experiment

perform analysis
store analysis

load experiments

owned, shared experiments

share an experiment with   user
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load experiments

load analysis

User
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User
1

sign in to Darshini

store experimental description

FIGURE 5.9: Sequence diagram illustrating collaboration inside BITS Darshini.

A brief description of different system modules is given below.

Model Consists of all the Java objects representing the data (persistence pack-

age) as well as analyzer, protocol and utils packages. All model objects

get saved in Elastic Search.

View Consists of client-side (web-browser) code. We use backbone.js Model-

View framework to implement client-side functionality for Darshini in the

browser. Based on context, view either interacts with server-side controller

or with Elastic Search (ES). The API URLs accessed by the client-side

code are listed in Table 5.1.

Controller Controller is responsible for authenticating the users. Controller is

also responsible for an on-demand launch of a session to manage ana-

lyzer pipeline of a packet analysis experiment.

Session Corresponds to one independent protocol analysis. The pipeline pro-

tocol analysis itself is performed using Java Threads. Each analyzer cell

of an analyzer pipeline is run on a dedicated thread. All custom analyzers

persist the protocol analysis results to ES. Details of session and analyzer

pipeline are illustrated in Figure 5.8a. The sequence of steps involved in

one protocol analysis request are illustrated in Figure 5.8a.



Darshini - Protocol Analyzer 88

Elastic Search (ES) A plug-and-play module that provides base for persistence

of application data, especially the packet analysis data.

Persistence Responsible for managing the speed mismatch between fast an-

alyzer pipeline and the slow ES. The speed mismatch is managed using a

two-stage queue as illustrated in Figure 5.8b. Analysis data from custom

analyzers is put into batches and handed over to Elastic Search.

5.6.1 Collaborative Analysis

Darshini enables users to share experimental results with other users. A typi-

cal sequence of actions taken for collaboration within Darshini are illustrated in

Figures 5.8a and 5.9.

User signs into Darshini and creates a new experiment; User is also responsible

for supplying experimental description (meta-data). The experimental descrip-

tion gets stored in Elastic Search (ES) database. User then initiates exper-

imental analysis; controller component of Darshini receives user’s command

and spawns an analysis pipeline to complete protocol analysis. The analysis

pipeline persists the results in ES. ES makes the analysis results available to

clients via REST API. A user can preview the results of all the analyses done

previously. Users have access to two categories of experiments: owned and

shared. Owned experiments are the experiments created by self; Shared ex-

periments are the experiments shared with a user by the other users.

5.6.2 User-Defined Protocol Analysis

Darshini comes pre-configured with a union parse graph that acts as a base

graph from which experimenter selects a sub-graph. In this work, we show

results for a static mapping from union parse graph to the analyzer pipeline.

User has complete freedom to specify any sub-graph of union parse graph for

each experiment.
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5.6.3 Measurement Workbench

We created a system of measurement workbench where the Internet measure-

ments can go through the measurement cycle (Objective→ Strategies→ Mea-

sure→ Analyze→ Refine Objective).

Darshini facilitates the measurement cycle (see Table 5.2) using the measure-

ment strategies suggested by Vern Paxson [111].

5.7 Experimental Results

5.7.1 Dataset

We measure the performance of Darshini by using offline pcap files. These

offline pcap files contain unfiltered network traffic captured on an edge computer

connected to a mid-level enterprise network having approximately 5000 users.

Since Darshini is better suited to perform offline protocol analysis on the traffic of

TABLE 5.2: Support for measurement strategies in Darshini.

Measurement
Strategy

Implementation

Maintain meta-data Experimental description page
Error detection Auto-detection possible with Elastic Search queries
Reproducible analy-
sis

Experiment history

Sub-sample large
data

Sub-sampling in protocol domain using parse graph;
time domain sub-sampling possible via REST API
queries

Periodic analysis Available as a service
Data reduction
scripts

Elastic Search as a service to execute dynamic queries
from users

Outlier detection Supported through REST API interface
Comparing multiple
measurements

Supported through REST API interface

Public datasets Share experiment with other users; avoids sharing
pcap files
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TABLE 5.3: User-defined protocol analysis on a pcap file with 1,508,352 pack-
ets. The size of pcap file is 955MB.

Selected Protocols
Execution time Memory

(sec) consumption (MB)

A B C A B C

eth, ipv4, tcp 11.3 40.2 394.8 770 128 220
eth 11.3 25.6 115.9 770 128 238

A - tshark
B - Darshini in non-persistent mode
C - Darshini in persistent mode

small to medium-scale networks, mid-level enterprise traffic is a representative

test scenario for Darshini.

In this section, we compare the performance of Darshini with tshark tool. Darshini

is run in two modes – persistent mode and non-persistent mode. In persistent

mode, analysis results are saved to Elastic Search. In non-persistent mode,

analysis results are not saved.

5.7.2 User-defined Protocol Analysis

We consider two protocol parse graphs, namely P1 and P2 for demonstrating the

user-defined protocol analysis capability of Darshini. P1 contains protocols eth,

ipv4, tcp and P2 contains just eth. We complete the user-defined limited protocol

analysis using parse graphs P1 and P2 on Darshini. The execution time and

run-time memory consumption results of these two experiments are shown in

Table 5.3.

Our experiments on the use of Darshini with the available datasets leads to

the following three conclusions. First, the run time performance of Darshini is

inversely proportional to size of parse graph. Darshini is thus suitable for user-

defined limited protocol analysis. Second, the fast path (from input to custom

analyzers of generic analyzer cell) is order of magnitude faster than the slow

path (from custom analyzers to Elastic Search). The run-time performance of

Darshini is limited by the database storage performance of Elastic Search.
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Third regarding the memory usage requirement, Darshini uses 128MB for pro-

cessing a pcap size of 955MB, where as tshark consumes 770MB for process-

ing the same file. The reported number of 128MB includes the memory alloca-

tion to Java Virtual Machine (JVM) and Tomcat Servlets. Thus Darshini is more

memory efficient when compared with tshark.

5.7.3 Memory Management

We can control batch sizes of queries sent to Elastic Search. Batch size is

a configurable parameter for Darshini. With a batch size of 20,000 queries,

Darshini processes 1.5 million packets and saves analysis data to Elastic Search

in 224 seconds with a maximum memory consumption of 414 MB. With a batch

size of 5,000 queries, Darshini processes the same pcap file in 908 seconds

with a maximum memory consumption of 235 MB. Thus we can use the batch

size to make trade offs between run time vs memory consumption.

5.7.4 Throughput

Figure 5.10 shows the relative performance of packet parsing tools. We com-

pare the tools based on their execution time and memory consumption. Fig

5.10a shows the relative execution times of all the packet parsing tools for dif-

ferent pcap files. Figure 5.10b compares packet processed per second (PPS)

metric of Darshini with tshark.

As expected, Darshini performs better in non-persistent mode when compared

with persistent mode. Another way of looking at this performance differential is

TABLE 5.4: Throughput numbers achievable by Darshini.

frame size Packets Per Second Throughput (Mbps)

A B C A B C

1514 bytes 49,391 51,371 6,638 583 606 78.4
74 bytes 2,30,023 66,157 6,550 189.5 54.5 5.4

A - tshark
B - Darshini in non-persistent mode
C - Darshini in persistent mode
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the number of packets processed by the analyzer pipeline vis-á-vis complete

application. While analyzer cells consistently process around 51,000 to 66,000

packets per second (PPS) for a range of pcap file sizes, application performance

consistently hovers around 6,500 PPS. These performance numbers are inde-

pendent of packet sizes.

The range of throughput numbers achievable by Darshini are shown in Table

5.4. Since the application and analyzer pipeline performance is packet size

invariant, a meaningful performance metric is the packets processed per second

(PPS) by Darshini which stands at approximately 66,000 PPS.

5.8 Summary

We propose a concurrent, modular and scalable solution to packet process-

ing. We start with a mathematical formulation of packet processing as a graph

embedding problem. We propose a modular, scalable architecture as a heuris-

tic solution to the graph embedding problem. We realize the architecture in

our software tool named BITS Darshini with the help of a modular, concurrent

architectural element named generic analyzer cell (GAC). The GAC itself has

been implemented using software threads to provide the necessary concur-

rency. Multi-threaded implementation of BITS Darshini is capable of scaling

up/down with the availability of processing resources, namely processor and

memory resources. A comparison of Darshini with other packet processing

tools is available in Table 5.5.

Darshini enables users to select protocols of interest for analysis. The protocols

of interest are specified using protocol parse graph. In Darshini, we map the

parse graph into an analysis pipeline. Each protocol analysis request from a

user launches a custom analyzer pipeline as per the parse graph. Each custom

analyzer pipeline is executed in a completely concurrent mode there by taking

advantage of the multi-core processor architectures.

The results of protocol analysis are stored in a database (Elastic Search) in-

stance which in turn makes the results data available over REST API service

interface. Users can share experiments within Darshini. Darshini facilitates sci-

entific network measurements done in a collaborative manner.
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The protocol analyzer pipeline of Darshini is able to perform protocol analy-

sis with a maximum throughput of 606 Mbps. This throughput is sufficient for

most offline packet analysis scenarios. In-memory protocol analysis tools have

difficulty with analyzing large pcap files; for example, Wireshark has difficulty

analyzing pcap files larger than 100MB [31]. Darshini does not have any limita-

tions on the input pcap size; the packet analysis rate of Darshini is independent

of the input pcap file size.



Darshini - Protocol Analyzer 95

TA
B

LE
5.

5:
A

co
m

pa
ris

on
of

D
ar

sh
in

iw
ith

ot
he

rp
ac

ke
tp

ro
ce

ss
in

g
to

ol
s

(a
s

of
so

ftw
ar

e
ve

rs
io

ns
re

le
as

ed
up

to
O

ct
ob

er
,2

01
7.

)

P
ar

am
et

er
B

IT
S

D
ar

sh
in

i
ts

ha
rk

W
ir

es
ha

rk
nt

op
ng

B
ro

ID
S

M
ai

nt
en

an
ce

of
m

ea
su

re
m

en
t

m
et

a-
da

ta
✓

✗
✗

✗
✗

C
ol

la
bo

ra
tio

n
sh

ar
e

an
al

ys
is

,
pc

ap
s

hi
d-

de
n

←−−
sh

ar
e

pc
ap

s
−−→

sh
ar

e
an

al
ys

is
sh

ar
e

lo
gs

Pe
rs

is
te

nc
e

E
la

st
ic

S
ea

rc
h

(E
S

)D
B

✗
✗

H
TM

L/
M

yS
Q

L/
E

S
lo

gs

P
ro

to
co

ls
el

ec
tiv

ity
fo

ra
na

ly
si

s
us

er
-d

efi
ne

d
pa

rs
e

gr
ap

h
✗

✗
on

ly
ap

p-
la

ye
rp

ro
to

co
ls

B
ro

S
cr

ip
t

C
on

cu
rr

en
cy

m
ul

ti-
th

re
ad

ed
,m

ul
ti-

co
re

✗
✗

✗
✗

A
dd

iti
on

of
ne

w
pr

ot
oc

ol
s

P
4

pr
ot

oc
ol

he
ad

er
s

←−
−−−
−−−
−−−
−−−

W
S

G
D

b /
Lu

a
/C
−−−
−−−
−−−
−−−
−→

C
++

an
d

B
ro

S
cr

ip
t

P
ac

ke
tfi

lte
rs

B
P

Fc
fo

r
ca

pt
ur

e
fil

te
rs

;
E

S
R

E
S

T
A

P
If

or
di

sp
la

y
fil

-
te

rs

←−
−−−
−−−
−−−
−−−
−−−
−−−

B
P

F
−−−
−−−
−−−
−−−
−−−
−−−
−→

B
ro

S
cr

ip
ts

P
ar

se
r/

A
na

ly
ze

r
pa

rs
er

bo
th

bo
th

bo
th

bo
th

Li
ve

ca
pt

ur
e

✗
✓

✓
✓

✓

a
R

R
D

-R
ou

nd
R

ob
in

D
at

ab
as

e,
b W

S
G

D
-W

ire
S

ha
rk

G
en

er
ic

D
is

se
ct

or
,c B

P
F

-B
er

ke
le

y
P

ac
ke

tF
ilt

er
,



Chapter 6

Multi-Modal Transit Scheduler

6.1 Motivation

Public transit networks are the most preferred means of transport in most de-

veloping countries. Widespread and efficient usage of public transit networks

facilitates cost-effective increase in user mobility. Public transit networks often

offer different modes of transport, i.e., flight, train, bus, metro, taxi etc. When a

public transit network consists of more than one mode of transport, it is called a

multi-modal transit network.

Ideally commuters would like to plan their journeys. This journey planning re-

quirement from commuters gives rise to the theoretical problem of searching for

a shortest path equivalent on the timetables of the public transport networks.

One of the problems plaguing the multi-modal public transit networks is the lack

of interactive journey applications which work well in a federated transit system.

Existing journey planning applications fall into two categories.

1. Exclusive, operator-centric solutions

2. Third-party, centralized solutions

The first category mostly consists of independent network operators like Emi-

rates airline and Indian Railways [88] who can provide transit through their own

network. The second category consists of third-party centralized solutions such

96
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as Euro Railways [118], Google Transit and Expedia. In the centralized so-

lutions, the independent transit network operators would not be able to exer-

cise real-time control on their timetables used in searching for schedules. The

timetable changes made by the operators will only be reflected in the search

operations after the next round of updates.

6.1.1 Itinerary Search

A passenger using the public transit systems utilizes a series of connections to

move from one transit station to another. A strict ordering of the complete set

of connections utilized by a passenger during one journey is referred to as an

itinerary. Passengers would like to have time-efficient, hassle-free itineraries

for their journeys. Often, passengers also wish to prefer certain kinds of con-

nections; for example, a passenger can have a preference for train travel over

all other modes of transport. Thus any itinerary generated for a passenger

must match the preferences indicated by the passenger at the beginning of the

itinerary search process.

The job of the interactive journey planning algorithms / applications is to scan

through the timetables of potentially multiple multi-modal transit network op-

erators to provide a time-efficient itinerary that matches the user preferences.

Interactivity requires itinerary search completion times in a few seconds, prefer-

ably less than one second [119].

6.1.2 Operator Control

Independent transit operators often cooperate to provide transit services over

wider geographic areas. London transport system’s Oyster Card is one such

example. Oyster card is accepted by London’s bus operators, metro train opera-

tors, tram operators and riverbus service operators. The independent operators

want to retain control over their transit networks, and timetables, yet cooper-

ate with other transit providers to form federated transit services. Any transit

scheduling application designed should be able to provide for operator control

over their own transit networks, and timetables.
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6.1.3 Solution Approaches

We propose two approaches to solve the problem of interactive journey planner.

The first approach is to extend CSA algorithm [5] with two table lookups. The

first table lookup accelerates queries for direct connections. Search queries for

stations on the same route also get benefit out of the proposed direct connec-

tion table (DCTable) lookup. The second table lookup connects nearby stations

using footpath or any other known means of transport (for example, cabs); this

table is named other means table (OMTable). DCTable reduces the average

response time of the queries, where as OMTable adds the multi-modal private

transport facilities to known public transport facilities.

In our second approach, we implement a Cell Model-based concurrent solution

to the interactive journey planning problem. In the second approach, we pro-

pose a decentralized, multi-operator approach to transit network journey plan-

ners. In a federated system of transit network operators such as Euro Railways,

the independent transit network operators, and passengers would greatly ben-

efit from distributed control over the transit schedules. The independent opera-

tors can update their transit schedules as per the local conditions; passengers

can then query for feasible travel itineraries as per the current state of the feder-

ated transit network. Transit passengers greatly benefit from real-time updates

to best possible itineraries on the transit network.

6.2 Definitions

In this section, we define the necessary technical terms for developing the Tran-

sit Scheduler application.

Public transport networks contain a set of stations (S) where vehicles stop to

pickup or drop-off passengers. These vehicles cover a well-defined sequence

of stations; The arrival and departure times of a vehicle at a station is well

known. One instance of a vehicle starts at one station, goes through a well-

defined sequence of stations and stops at a final station. The vehicle arrives at

each station at arrival time (tarr) and departs at the departure time (tdep). The

sequence of stations including the first and the last stations along with their
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S 1 S 2 . . . S n VehID
trip1 (–,tdep1) (tarr2,tdep2) . . . (tarrn,–) ID1

����������������������������������
Connection (C)

trip2 (tarr1,–) (tarr2,tdep2) . . . (–,tdepn) ID1

FIGURE 6.1: Sample trips trip1 and trip2 undertaken by vehicle identified as
ID1. The trips trip1 and trip2 together form a loop trip.

respective arrival and departure times is defined as a trip. A mathematical

formulation of a trip is shown in Figure 6.1.

The arrival and departure times at a station S i are indicated as (tarri , tdepi
). The

arrival time at the starting station and the departure time at the ending station

are undefined. The time difference (tdepi
− tarri) is the waiting time at ith-station

[5].

6.2.1 Connections

The timetable of public transit system can be built from a fundamental concept

known as a connection. A definition of connection is shown in Equation 6.1.

C = (S dep, tdep, S arr, tarr, tr) (6.1)
where,

src = source station of the connection
dst = destination station of the connection
tdep = vehicle departure time at the source station
tarr = vehicle arrival time at the destination station
tr = a unique identification number

A set of related, concatenating connections form a trip for a vehicle. A set of

time-shifted trips form a route. Most public transit systems consist of unique

vehicles covering well known routes. Thus we can represent the public tran-

sit timetable as consisting of a series of related connections. The theoretical

underpinnings of a public transit timetable are detailed in [5] and [120].

In public transport networks vehicles go on a trip, return to the starting station

(through another trip) and repeat such a loop many times during one time period

(a day / a week / a fortnight); we call such trips as loop trips. In such cases, we
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consider the onward and return trips as two distinct trips. For a trip covering n

stations, we will have (n-1) connections.

trip = C1C2 . . .Cn−1 (6.2)
where,

Ci = (S i, tdepi
, S i+1, tarr(i+1) , tr)

An interesting variation on loop trips is a circular trip where a vehicle starts at

station S 1, goes through a series of stations S i and terminates the trip at S 1

again. For circular trips, the following timing constraint holds.

∀i, j ∈ [2, n] and j > i,
tdep1

< tarri < tdepi
< tarr j < tdep j

< tarr1 (6.3)

Two typical events can happen in a public transport system. One, a vehicle

makes multiple loop trips covering same sequence of stations with each trip but

having different arrival and departure times; Two, between busy stations, multi-

ple vehicles cover the same sequence of stations with each vehicle undertaking

multiple trips. Route (r) is a set of all trips that cover the exact same sequence

of stations and satisfy first-in-first-out (FIFO) property [5].

r = {trip1, trip2, . . . , tripm}

FIFO property guarantees strict time-ordering of all trips belonging to a route. A

common sense way of saying this is, "on a route, waiting never pays off."

By definition, all routes of a public transport system are mutually disjoint, i.e.,

no two routes contain a common trip. Since trips belonging to different routes

can have overlapping stations, routes may have a few common stations.

We can define timetable for a public transport system as follows [53].

Timetable = (π, S ,Trips,R, F) (6.4)

where,

π = time period of a timetable

S = the set of all stations

Trips = the set of all trips

R = the set of all routes



Multi-Modal Transit Scheduler 101

F = footpath table containing walking times between

nearby stations

6.2.2 Connection Array

In the previous section, we have shown a way to transform timetables into ele-

mentary connections. We know that each connection has a start time. Based

on the start times, we can sort the connections in ascending order and place

the resulting connection sequence in an array. This array is called connection

array (CA). In a connection array, let i and j be the positions of two connections,

then tdep(Ci) ≤ tdep(C j) ∀ i < j.

Timetables of public transport systems tend to be periodic; Often, the time pe-

riod is a day, a week or a fortnight. We can easily incorporate the periodicity by

making the following adjustments to the connection array.

1. Connection array becomes a circular list.

i.e., after last connection in the array, we can pursue the first connection

in the connection array to determine the travel itinerary.

2. Arrival and departure times of each connection need to be adjusted based

on the number of passes through the CA.

t�arr = i × Tday + tarr (6.5)

t�dep = i × Tday + tdep

where, i = 0, 1, 2, . . . , k is the number of passes made through the connec-

tion array. Tday corresponds to the time elapsed in a day. We can limit k to

3 days even for country-wide timetables.

6.2.3 Feasible Itinerary

An itinerary (I) is made up of a sequence of connections, I = C1C2 . . .Ch with

consecutive connections satisfying the condition S arr(Ci) is equal to S dep(Ci+1).

Each of the consecutive connections of an itinerary may belong to the same

trip. If two consecutive connections are not part of the same trip, a transfer is

required at the corresponding station.
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Query: S 1@00 : 10→ S 5

Itinerary:

1. Wait for 5 minutes at S 1.

2. Take trip2 = C4C5C6 from S 1 to S 4 and reach S 4 by 02 : 10.

3. Wait for 30 minutes at S 4. (transfer from trip2 to trip3)

4. Take C8 (part of trip3) and reach S 5 at 03 : 15.

FIGURE 6.2: A sample query and the generated itinerary.

A representative query from a user and the itinerary generated using CA are

shown in Figure 6.2. The itinerary shown in Figure 6.2 is feasible because

the commuter can catch C8 after C6. If C8 departs anytime before 02 : 10, the

itinerary becomes in-feasible.

6.2.4 Transfer Times

In simple connection model, transfer time – the time required for alighting a

connection of one trip and boarding connection of another trip (trip transfer ) –

has been assumed to be zero. But in reality, transfer times are non-zero. The

transfer time is often dependent on connections, station at which transfer occurs

and the time of day. The transfer time is zero for a commuter not undertaking

the trip transfer at a station. We can represent transfer time as

ttr(Ci,C j) = 0 if Ci,C j ∈ same trip

= f (Ci,C j) else (6.6)

We can approximate f (Ci,C j) as

f1(Ci,C j) ≈ f2(S arr(Ci), t) ≈ f3(S arr(Ci)) (6.7)

where, f1 : Ci ×C j → T, f2 : S × T → T, f3 : S → T

Function f3 is sufficient to model transfer times in most practical scenarios. In

the rest of the chapter, we will use function f3 to model transfer times.
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TABLE 6.1: Footpaths table.

S start S end tw

S i S j tw1

S j S k tw2

S i S k tw3 ≤ tw1 + tw2

With non-zero transfer times, a transfer Ci to C j is feasible if and only if

S arr(Ci) = S dep(C j) and (6.8)

tdep(C j) ≥ tarr(Ci) + ttr(Ci,C j)

≈ tarr(Ci) + ttr(S arr(Ci))

6.2.5 Footpaths and Other Means

In case two public transport stations are nearby, the passengers can alight a

connection at one station, walk to the nearby station on footpath and board a

new connection. For all the nearby stations of a public transport network, we

can maintain a table of walk times. A sample set of entries are shown in Table

6.1. S start denotes starting station, S end denotes ending station and tw indicates

walk time.

All entries are transitively closed which enables a direct lookup of all possible

walks between nearby stations. If the entries are not transitively closed, we

will be forced to run shortest path algorithm on the table for each query, an

expensive proposition.

No single public transport network provides best any-station to any-station con-

nectivity at all times. Our footpath table is a more effective way of reaching

the nearby stations. We can segregate all known means of transport into pub-

lic transport system with timetable and everything else (other means). Popular

other means could be footpaths, autos, taxis, car pools or a helpful drop by a

TABLE 6.2: Other means table.

S start S end tomt Details
S i S j 10 min walk
S i S k 30 min cab
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friend. The transport by other means can be summarized into a table named

other means table (OMTable). Entries in OMTable will be a tuple of the form

(S i,S j,travel time, details). The format of OMTable is given in Table 6.2.

Connection array is a very efficient representation for aperiodic connections.

Most timetables have high-frequency trips between popular stations, say a bus

every 5 minutes between S i and S j. One such timetable entry leads to 288 con-

nections in the connection array. Such routes have been called as guidebook

routes or transfer patterns [48, 54, 55]. We can efficiently represent such cases

in OMTable.

6.2.6 Direct Connections

CSA gives fast query response even on country-wide multi-mode timetables

[14]. We reduce the queries times even further by storing answers to queries

of direct connections that can be answered directly from timetable. Such direct

connections are the norm in long-distance bus networks. For these scenarios,

direct lookup is optimal.

We copy all such direct connections cases from timetables and place them

in DCTable, short for direct connections table. Entries in the DCTable are

stored as connection tuples. Any incoming query is first checked against a

match in DCTable; Upon a match in the DCTable, all possible direct connec-

tions/itineraries between two stations specified in the query are returned. If an

answer is not found, then CSA is run. DCTable’s role can be augmented as a

cache for popular queries.

6.3 Connection Scan Algorithm (CSA)

In this section, we give an outline of algorithm called a Connection Scan Al-

gorithm (CSA) that operates on a connection array to produce travel itinerary

[56]. A basic version of the CSA is given in Algorithm 6.1. Algorithm 6.1 re-

quires connection array (CA), starting station (S 1), start time (ts), ending station

(S 2), and station array (S A) as inputs. If possible, the Algorithm 6.1 produces

a feasible itinerary (I). Algorithms 6.1 and 6.2 use a few temporary variables
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during their operation. These temporary variables are as follows: IC is an array

to hold incoming connections for each station; d is an array to hold the earliest

arrival time for each station; Ci is a temporary connection variable to hold the

connection under consideration.

Algorithm 6.1 Connection Scan Algorithm (CSA)
Require: CA, S 1, ts, S 2, S A
Ensure: I

1: � Temporary variables: IC, d, Ci

2: for all si ∈ S A do
3: IC[si]← null
4: d[si]← ∞
5: end for
6: � Compute itinerary
7: for all Ci ∈ CA do
8: if tdep(Ci) > d[S dep(Ci)] and

tarr(Ci) < d[S arr(Ci)] then
9: d[S arr(Ci)]← tarr(Ci)

10: IC[S arr(Ci)]← Ci

11: end if
12: end for
13: I ←ITINERARY(IC)
14: return I

Algorithm 6.2 Fetch itinerary through backtracking (ITINERARY)
Require: IC
Ensure: I

1: � Temporary variable: Ci

2: I ← null
3: Ci ← IC[S 2]
4: while Ci do � valid connection
5: I.PREPEND(C) � add at the beginning
6: Ci ← IC[S dep(Ci)]
7: end while
8: return I

Algorithm 6.1 operates as follows. The arrays IC and d are initialized. The

for loop given in the lines 7–12 iterates through each connection and tries to

settle the arrival station of a connection. If the relaxation function (d) of arrival

station can be modified, the corresponding entries are updated in the incoming

connections array (IC). After processing all the connections, Algorithm 6.1 uses

Algorithm 6.2 to extract an optimal itinerary from IC array.
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6.3.1 Complexity Analysis

The initialization of station array in the lines 2 – 5 of Algorithm 6.1 always re-

quires nS A iterations. The for loop given in the lines 7–12 iterates through each

connection of connection array; this for loop always requires nCA iterations. The

Algorithm 6.2 has a while loop which at best requires one iteration and at worst

requires nS A iterations. Thus CSA has the running time algorithmic complexity

bounds of Ω(nS A + nCA) and O(nS A + nCA).

6.4 t-CSA Algorithm

The CSA outlined in Algorithm 6.1 have the following limitations.

• The algorithm assumes the zero transfer times.

• The algorithm assumes that an itinerary can be found on or before we

reach the end of connection array (CA).

• End of CA is also the stop condition for the loop given in the lines 7 – 12

of Algorithm 6.1.

We can redesign the basic CSA to overcome these three limitations.

An enhanced version of CSA (named, t-CSA) that incorporates modifications

is shown in Algorithm 6.3. Algorithm 6.3 builds on Algorithm 6.1. Over and

above the inputs required by Algorithm 6.1, Algorithm 6.3 requires four addi-

tional inputs. These additional inputs are: the maximum number of travel days

(n), station transfer times array (TT ), direct connections table (DCTable) and

other means table (OMTable). C j, Clast, itr, n_ca, tdep,tarr and settled are the

newly introduced temporary variables. C j denotes the first connection in the

connection array with a starting time tdep(C j) > ts. Clast holds the last connection

in the connection scan array. itr specifies the number of times the connection

array needs to be scanned for creating a feasible itinerary. n_ca, tarr and tdep are

the temporary variables used to enhance readability. settled indicates a change

in earliest arrival estimate at a station.

The first major addition to Algorithm 6.3 over Algorithm 6.1 is the DCTable code

given in lines 2 – 5. DCTable is consulted first; only in case the query fails on

DCTable, will the CSA be run. The function call on line 14 returns C j. In abstract
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Algorithm 6.3 An enhanced CSA (t-CSA)
Require: CA, S 1, ts, S 2, S A, n, TT , DCTable, OMTable
Ensure: I

1: � Temporary variables: IC, d, Ci,C j,Clast, itr, n_ca, tdep, tarr, settled, Ctemp

2: � try direct connections first
3: if I ← SEARCHDCT(DCTable, S 1, ts, S 2) then
4: return I
5: end if
6: � CSA implementation
7: � Compute number of iterations
8: Clast ← CA[CA.length − 1]
9: n_ca← tdep(Clast) mod 1440

10: itr ← n mod n_ca
11: Initialize IC and d as per lines 2-5 of Algorithm-6.1
12: � Pick first connection with tdep(C) > ts

13:
14: C j ← CONNSEARCH(CA, ts)
15:
16: � iterate through CA for sufficient number of days
17: for all day← 1, 2, . . . , (itr + 1) do
18: if day == 2 then
19: C j ← C0

20: end if
21: for all Ci ∈ CA � Ci � C j do
22: settled ← f alse
23: � set correct transfer time
24: if tr(Ci) == tr(IC[S dep(Ci)]) then
25: ttr ← 0
26: else
27: ttr ← TT [S dep(Ci)]
28: end if
29: � offset times and settle a station
30: tdep ← tdep(Ci) + day × 1440
31: tarr ← tarr(Ci) + day × 1440
32: if tdep > d[S dep(Ci)] + ttr and

tarr < d[S arr(Ci)] then
33: settled ← true
34: d[S arr(Ci)]← tarr(Ci)
35: IC[S arr(Ci)]← Ci

36: end if
37: � continued...
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Algorithm 6.3 An enhanced CSA (t-CSA) continued...
38: � use OMTable to settle nearby stations
39: if settled then
40: for all S arr(Ci), S i ∈ OMTable do
41: if d[S j] > d[S arr(Ci)] + tomt[S arr(Ci), S j] then
42: d[S j]← d[S arr(Ci)] + tomt[S arr(Ci), S j]
43: Ctemp ← (S arr(Ci), tarr(Ci), S j, tarr(Ci) + tomt[S arr(Ci), S j], om)
44: IC[S j]← Ctemp

45: end if
46: end for
47: end if
48: if tdep > d[S 2] then
49: break search
50: end if
51: end for
52: end for
53: I ←ITINERARY(IC)
54: return I

terms, CONNSEARCH performs a binary search on connection array to find the

connection C j that satisfies the condition.

min tdep(C j) − ts

With Constraints:

tdep(C j) − ts > 0

C j ∈ CA

The code block in lines 17 – 52 iterates through connection array required num-

ber of times, examines all eligible connections and tries to settle stations when-

ever relaxation is possible. The code in lines 24 – 28 considers realistic station

transfer times. Another feature addition is settling the nearby stations of a re-

cently settled station by using the entries of other means table (OMTable). The

corresponding code is in lines 39 – 47 of Algorithm 6.3. Early termination con-

dition on line 48 helps us discard all connections whose departure times are

greater than the current estimate of the earliest arrival time at the destination

station.
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TABLE 6.3: Algorithmic complexity analysis of CSA vis-á-vis t-CSA algorithms.

Complexity Bound CSA t-CSA

Lower Bound Ω(nS A + nCA) Ω(1)
Upper Bound O(nS A + nCA) O(nS A + log2nDCT + nCA × nOMTable)

6.4.1 Complexity Analysis

The t-CSA algorithm adds direct connections table (DCT ), connection array and

other means table (OMTable). We search the DCT using binary search which

has the running time algorithmic complexity bounds of Ω(1) and O(log2nDCT ). Ini-

tialization of IC on the line 11 is similar to the basic CSA algorithm. Similarly, the

connection search mentioned on the line 14 is done using binary search which

has the running time algorithmic complexity bounds of Ω(1) and O(log2nCA). The

nested loops between lines 17 – 52 of Algorithm 6.3 has the running time al-

gorithmic complexity bounds of Ω(1) and O((days × nCA − log2nCA) × nOMTable).

Thus t-CSA has the running time algorithmic complexity bounds of Ω(1) and

O(nS A + log2nDCT + log2nCA + (days × nCA − log2nCA) × nOMTable).

A fair comparison of the algorithmic complexity of CSA and t-CSA requires that

we remove the optimization for the connection search in in CA. We also need

to remove the iteration over multiple days of schedule. If we remove these

two additions, then we can see the modification of run time complexity due to

addition of DCT and OMTable. The modified run time algorithmic complexity

bounds of t-CSA are: Ω(1) and O(nS A + log2nDCT + nCA × nOMTable). A comparison

of the algorithmic complexity bounds of CSA vis-á-vis t-CSA is shown in Table

6.3. The enhanced CSA algorithm improves the lower bound but adds log2nDCT

to the upper bound. The change is desirable because of the added benefit from

drastic reduction in search completion times experienced by queries satisfied

from the direct connections table. The enhanced CSA algorithm also includes

other means of transport (using OMTable) along the public transit schedules

used by the CSA algorithm. With the inclusion of OMTable, we increase the

feasible number of itineraries for a given itinerary search request.
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6.5 Cell Model-based Solution Approach

In this section, we adopt the Cell Model for developing the Transit Scheduler

application.

Incoming 
Queries

Outgoing 
Queries

Generic Edges
(connections)

Station 
Constraints

Incoming
Query Queue

Bridge 
Functions

State 
updates

FIGURE 6.3: A behavioural model for a multi-modal transit station. The station
constraints, bridge functions, and connections together constitute the state and

behaviour of a station process.

6.5.1 Transit Station

In our approach, each transport station of the transit network exists indepen-

dently as a stand alone entity with internal state and behaviours. We use be-

havioural view to represent the transit stations. We model all the stations as

independent nodes that help search the timetables to answer user queries on

itineraries. We find that all the stations need to go through the same algorithmic

steps in answering user queries. The only difference is in terms of the station

constraints, and the connections that are available to each of the stations. Thus

we can represent a station using the abstract schematic shown in Figure 6.3.

Here, each station entity has internal state that can be updated in real-time in a

distributed manner by a transit operator. Transit operator controls the state of a

station node in order to restrict the kind of itineraries that can be formed using

that particular station as a participating node.

6.5.2 Transit Connection

Most of the vehicle routing, and transit routing algorithms use graph theory no-

tions of weighted, and directed graphs for network representation, and query

processing [14]. In these approaches, a node is a passive junction that con-

nects multiple edges. Connections themselves may be weighted, directed or
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both. Some transit routing algorithms such as CSA [5], transfer patterns [121]

use time-varying connections to model the transit networks. In CSA, transit

edges are represented as connections which are nothing but an equivalent form

of time-varying edge representation. In transfer pattern approach, the connec-

tions are stored as a compressed data structure. Both the approaches are

based on the availability of a time-varying connection at certain (periodic) times

as described by Equation 6.9.

cost(edge) =


Ci at t = ti,

∞ ∀ t � ti.
(6.9)

In Equation 6.9, Ci represents the cost of using the connection at time ti. In

practice, Ci value depends on the connection available at that time. Thus we

can represent the cost of using a connection as:

cost(C) =


tarr − tdep when t = tdep,

∞ ∀ t � tdep.
(6.10)

In Equation 6.9, we can understand the condition t = ti as a constraint on the

connection. If the constraint is not satisfied, the connection become unusable.

Similarly in Equation 6.10, t = tdep is a constraint on the connection; if that

constraint is satisfied, the cost of using the connection is tarr − tdep.

We generalize the constraint on a connection to be dependent on many environ-

ment variables. Without loss of generality, we can say that all the connections

of a network are dependent on two environment variables time (t) and mode

of transport (m). Our definition of the cost function for a connection is shown

in Table 6.4. The cost function for a connection has also been explained in

Equations 4.6 and 4.7.

6.5.3 Path Computation

In transit scheduling, we compute itineraries for a given user query. Since each

itinerary is an ordered set of connections, an itinerary is equivalent to a path

on a network. For mutimodal transit search queries, it is common to specify
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TABLE 6.4: The cost function of a connection which is dependent on on time
and mode of transport environment variables.

time mode cost

t1 m1 f (t1,m1)
t2 m1 f (t1,m1)
. . .
ti m j f (ti,mj)

all other cases ∞

TABLE 6.5: Connection constraints, path constraints and their compatibility

Connection
Constraints

Path Constraints Compatibility

flight any mode yes

flight bus no

train bus or train yes
arrival before 5PM only if computed arrival time < 5PM

train bus-flight-bus no

the conditions that an itinerary needs to satisfy. The conditions imposed on

itineraries effectively become conditions on the network paths. Conditions or

constraints imposed on the computed paths are called path constraints. Effec-

tively, each user query comes with a set of path constraints. For example, the

paths computed might only have to use air connections. Such conditions put on

path computations can be understood as path constraints. We incorporate user

preferences into itinerary search as path constraints. A path can be extended

using a connection only if the constraints of the selected connection match with

the existing constraints on the path.

Let there be two neighbouring nodes (va, vb) connected by a connection e j. Let

pathi be the path computed from source to va; the cost of pathi is denoted by

cost(pathi). Let pathi+1 be the the extension of pathi with the connection e j. Let

us denote the cost of pathi+1 as cost(pathi+1). Then the path cost computation

can be represented as:

cost(pathi+1) = cost(pathi) + cost(e j) (6.11)

The computed path cost for cost(pathi+1) given in Equation 6.11 becomes finite

only if the connection constraints of e j are compatible with the path constraints
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FIGURE 6.4: The Cell-view of network. Each station is represented by a cell,
and the cells are connected as per the underlying connectivity among the sta-

tions.

of pathi. Otherwise, the computed path cost for cost(pathi+1) becomes infinite. A

few sample connection and path constraints are shown in Table 6.5.

6.5.4 Bridge Functions

In transit scheduling, passengers can change vehicles at intermediate stations.

Thus we need to consider time required to alight one vehicle, and board an-

other vehicle at a station (called transfer time). It is impractical to schedule a

connecting journey if the passenger does not get enough time to transfer ve-

hicles. The transfer time is a function of transit station. We propose a generic

approach to consider such station-specific constraints. We propose a bridge

function that considers the suitability of a connection to extend a given path by

utilizing station-specific local constraints (station constraints). Bridge functions

give station manager ability to control traffic flow via their own station. Bridge

functions are similar in nature to cost functions of a decorated edge. Even

bridge functions have to satisfy the constraint compatibility requirements during

path cost computations.

6.5.5 Itinerary Creation

In the previous subsections, we have looked at the adoption of the Cell Model

to the itinerary search problem. In this subsection, we connect the co-operating

transit stations to form a virtual transit network. Two stations are deemed to be
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FIGURE 6.5: Architecture of the Transit Scheduler application.

cooperating if both the stations participate in a connection. The connections be-

tween co-operating stations help propagate the itinerary search queries across

the transit network.

A representative 5-node network with a process for each station is shown in

Figure 6.4. Apart from the transit nodes, an auxiliary node named query col-

lector (QC) exists. The QC is responsible for passing an incoming query to the

source station node, and collating all the itineraries coming out of the transit net-

work. In Figure 6.4, a sample query from station S 1 to station S 5 is shown. As

can be seen from the example given, a query always starts at the source node,

propagates through the network, and exits the transit network at the destination

node.

Since the query explores all the possible shortest paths to the destination, the

query results also contain the shortest path results from source station to all

other stations in the network. Thus when we query the transit network, we get

one source to all destinations kind of profile answer at no extra cost.
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6.6 Cell Model Implementation

6.6.1 Architecture

Our Transit Scheduler application is implemented using Elixir - a functional, con-

current programming language [108]. Elixir + Erlang Open Telecom Platform

(OTP) has given us the advantage of implementing station entities using Actor

concurrency model. The architecture of transit scheduler application is shown

in Figure 6.5.

The Elixir modules that form the base for our application are:

Input Parser (IP) that reads station-specific local variable values, and connec-

tion information from dataset files.

Network Constructor, and Controller (NC) that spawns a separate Station

process for each station, and initializes the spawned stations with data; NC

also maintains a registry of process identifiers for all transit station processes.

Station process is a node of the Cell Model that uses behavioural view. A

station process maintains its state using a finite state machine (FSM) based on

local variable values, and stores its outgoing connections data. Each station

process uses an internal data structure to represent all the local information,

and also selects from a set of predefined functions for manipulating any depen-

dent local variables.

Update Controller (UC) that performs create, read, update, and delete (CRUD)

operations on a station state. For example, an authorized transport manager

may change the congestion level at a station which is reflected in transfer times,

TABLE 6.6: Query API URL strings

Module Query Type Query String

UQC itinerary search baseURL/api/search

UC station schedule baseURL/api/station/schedule
(fetch / update)

UC station create baseURL/api/station/create

UC station state baseURL/api/station/state
(fetch / update)
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or mark it as having disturbance which renders the station unavailable for a pe-

riod of time. UC helps in incorporating the effects of accident / incident related

events into transit stations.

Query Collector (QC) that initiates query processing at source transit station,

and collects query results from destination station. One dedicated query collec-

tor exists for each user query. QC also filters the itinerary result set based on

user preferences.

User Query Controller (UQC) that receives user queries for itinerary search.

UQC spawns a new QC for each incoming query, and hands over the job of

query processing to the newly spawned QC.

Three kinds of queries are supported by the system. They are: itinerary search,

station schedule - both fetch, and update, and station update - create a new

station, update a station, fetch details of a station. The system is accessible via

REST API URLs shown in the Table 6.6.

6.6.2 Station as Cell (Actor)

Elixir implements Actor model of concurrency, and refers to each instantiated

Actor as a process. Each station process utilizes three distinct inputs. The

first input is a set of outgoing connections represented in the format (vehicleID,

source station, destination station, departure time, arrival time, mode of trans-

port). The second input is a set of other means table (OMTable) connections

available due to footpath, and private transport connections between stations.

These connections in OMTable are described in [120]. The third input is a set

of local variables, collectively called station state, that control the station be-

haviour. We use three station-specific local variables, namely, congestion, de-

lay, and disturbance. The congestion is a three-valued variable holding low,

medium, and high values; congestion variable indicates the level of congestion

at the local station. Delay indicates the necessary transfer time to change vehi-

cles at a station; As expected in a real-life scenario, we make the effective delay

a function of the congestion level. Disturbance is a binary variable which indi-

cates any local disruptions that stop the flow of vehicles via a transport station.

If the local disturbance is set to yes, then all the incoming queries of a station

are discarded. Effectively, the station becomes unavailable.
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TABLE 6.7: Summary of timetables obtained from the Indian public transport
networks.

Name of Network Mode of Transport #Stations #Connections

Indian Railways (IR) train 2136 44876
Indian Flights (IFlights) flight 80 2501
Long Distance Buses (LDB) bus 147 12219
Complete Network (India) multi-mode 2264 59555

6.6.3 User Preference

User queries for itinerary search can contain transit mode specification. We

utilize the user preference to filter the itinerary result set to discard undesirable

results. The itineraries are filtered at QC. An itinerary result becomes unde-

sirable if it contains any transit mode not preferred by the user. For example,

a user choosing flight mode will have all the itineraries containing non-airline

connections filtered out.

6.7 t-CSA Experimental Results

6.7.1 Dataset

We utilize transport data available from Indian public transport networks. The

characteristics of the networks selected are summarized in Table 6.7. The

#Stations and #Connections columns indicate the number of stations and con-

nections respectively. The train data has been obtained from Indian Railways

timetable [88]. This railway timetable network is the largest Indian public trans-

port network utilized by us. The flight data has been generated from the domes-

tic flight schedules released by Directorate General of Civil Aviation (DGCA),

India [122]. The bus data has been obtained from numerous public and private

bus transport operators (for one such example, namely GSRTC, see [123]).

Apart from 59,555 regular transit connections, the dataset contains 151 other

means (i.e., footpath, and private transport) connections. The dataset has been

derived from the transit network schedules of public transport network operators

in India.
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6.7.2 Itinerary Generation Times

Algorithms 6.1, 6.2 and 6.3 have been coded in Python2.7 programming lan-

guage and tested on a commodity laptop. The laptop has 2-core 64-bit Intel

i5-2430M processor with 256KB of L2 cache and 3MB of L3 cache; the operat-

ing system is 64-bit Ubuntu. We run queries on complete Indian network (has

2264 stations and 59555 connections). We randomly generate 1000 queries

with randomly chosen source, destination pairs and a random start time. Our

Python2.7 implementation of Algorithm 6.1 gives an average query response

time 0.5ms. Algorithm 6.3 gives an average query response time of 0.7ms. The

direct connection queries on DCTable execute very fast (worst case time: 1µs;

average time: 0.5µs). These numbers compare favorably with average response

time of 1.8ms for London metropolitan data reported in [5].

6.8 Cell Model Experimental Results

6.8.1 Implementation Platform

The transit scheduler has been implemented using Elixir language v1.4 com-

piled to run on Erlang Open Telecom Platform (Erlang/OTP) v19.0. All the tests

have been run on a computer with Intel core i5 2GHz processor, and 8GB RAM

running Ubuntu 16.04 x86_64 operating system. As discussed in Section 6.6,

our application incorporates user mode preferences, updates the state of a sta-

tion using API, and outputs a list of itineraries for user queries.

6.8.2 Itinerary Generation Times

We conducted a set of randomized trials to study the time response charac-

teristics, and concurrent characteristics of Transit Scheduler. Because of the

inherent concurrent nature of the architecture as described in Section 6.6.1, the

transit scheduler can concurrently propagate itinerary search query across the

transit network. We issue one itinerary search query at a time, and measure the

response time. Here, response time of a query is defined as the time taken to

collect fifteen possible itinerary results from the network. We implement a time
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FIGURE 6.6: Box plot on itinerary search times for two trials. In each trial, we
execute 100 random queries.

out of 30 seconds to avoid deadlock for queries with less than fifteen feasible

answers. A statistical analysis of the query response times for 100 queries re-

sults in a query response time distribution with median of 0.9 seconds, standard

deviation of 4.1 seconds, skewness of 3.81, and kurtosis of 19.75. We perform

multiple randomized itinerary search trials on the transit scheduler application.

We show results of two randomized trials in Figure 6.6 using box plot.

For one of the two randomized trials, we also collected the timestamps of all

the itineraries in the itinerary result set. We then sorted the queries in the as-

cending order of their completion time. Figure 6.7 illustrates the time at which

different itineraries of the result set have been collected. A dotted line marks the

observed median of 823 milli seconds for this instance of randomized trial. Fig-

ure 6.7 shows a right tailed distribution with heavy preference for low execution



Multi-Modal Transit Scheduler 120

0 5000 10000 15000 20000
0

20

40

60

80

100

query completion time in milli seconds

q
u

e
ry

 n
u

m
b

e
r 

in
 t

h
e

 s
o

rt
e

d
 q

u
e

ry
 l
is

t

median query completion time = 837ms

FIGURE 6.7: Query processing times for all the itineraries of the itinerary
search results set.

times.

The above response time characteristics makes the system suitable for interac-

tive transit scheduling on the public transport networks such as those of India.

6.9 Summary

We use connection as a building block to model timetables of public transport

networks. We propose t-CSA which adds direct connection table (DCTable) and

other means table (OMTable) to connection scan algorithm. DCTable stores

itinerary details of stations that are directly connected through a trip. OMTable
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stores details of alternative (footpath and miscellaneous modes of transport)

connections between nearby stations. We find that t-CSA extends the capabili-

ties of CSA significantly.

We also demonstrate the implementation of extended CSA on timetables of

Indian public transport networks. Our t-CSA eliminates the need to run CSA

on direct connection queries. Since direct connection queries are the bulk of

queries on timetables, t-CSA significantly accelerates interactive journey plan-

ner applications.

We make two original contributions to the modeling of transit networks. Our first

contribution is the application of the Cell Model to the itinerary search problem.

We utilize the behavioural view of the Cell Model for transit stations and the

functional view of the Cell Model for the transit connections. We utilize the

concept of constraint to provide a generic conceptual model for station-specific

and connection-specific conditions.

Our second contribution is the application of Actor concurrency model to im-

plement the Cell Model-based solution. We develop a Transit Scheduler appli-

cation that is a native concurrent solution to the itinerary search problem. We

represent each station as an Actor of the Actor concurrency model. Actors can

encapsulate complex behaviours, and have dynamic, targeted messaging capa-

bility. We also implement a real-time state update capability for all the stations.

Our approach allows independent transit operators to control the transit stations

owned by them.

Our solution allows multiple network operators to control the transit network in

real-time. We test our implementation on air, rail, and bus transit networks of

India. When run on a laptop computer with Intel core i5 processor, and 8GB

RAM, our application enables an interactive concurrent itinerary search on the

public transit timetables of India.

The transit scheduler application we built incorporates user preferences in cre-

ating itineraries. All the feasible itineraries results are collected at query collec-

tor (QC) and are filtered for user preferences. Only the itineraries that satisfy

the user preferences are forwarded to the user.



Chapter 7

Conclusion

The last two decades have seen an explosion of interest in the networked sys-

tems. Researchers have proposed network models such as random graphs,

scale-free networks, power-law networks to understand the statistical proper-

ties of networks. These traditional network models represent a single-type of

relation between the networked entities. Researchers have extended the net-

work models from single relation to multiple relations. The approach taken by

the researchers is to model multiple relations as multiple dimensions with each

dimension having a network defined by a single relation.

The consensus multidimensional network models have nodes, connections and

dimensions/layers as three representative elements to model real-world enti-

ties and their multiple-relations. Multidimensional network models are useful for

research on social networks, multi-modal transit networks and computer net-

works.

7.1 Structural View of Network

The existing network models adhere to the notion of vertices and edges pro-

posed in the graph theory. Emphasis of the existing network models is on the

analysis of the network structure. The widely accepted network characteriza-

tion metrics such as degree distributions, betweenness refer to the structure

of a network. In the thesis, the representation of the network using the graph

122



Conclusion 123

theoretic assumptions and the study of derivative properties is called structural

view of a network.

Our initial research contribution is in the structural analysis of multidimensional

networks in the domains of social networks, data networks and multi-modal tran-

sit networks. We start our study of multidimensional networks with data collec-

tion and analysis. We perform statistical analysis of the properties of broadband

network connections obtained using a distributed network measurement tool

named network diagnostic test (NDT). We collect the transit timetable data from

the public transit service providers of India. We represent the transit timetables

as multidimensional networks. In the process, we build on the previous work

and also consider the shared transit vehicles. We collect the data on the Inter-

net relay chat (IRC) community and study the multidimensional structure of the

online chat communities.

Our work on the structural analysis of multidimensional networks made us aware

of some of limitations of the structural view of a network. Emphasis on struc-

tural view of a network leads to significant limitations in the network models.

For example, the existing network models of multidimensional networks do not

adequately address the following aspects of network modeling.

• Nodes and connections are modeled as passive entities.

• Hierarchy is an integral part of large scale networks, but this aspect does

not receive enough attention.

• There is a heavy emphasis on the structural view of the network with little

attention paid to functional and behavioural views.

• The specification and semantics of the interactions between the partici-

pants is not clearly specified.

To overcome the above mentioned limitations, we propose the Cell Model – a

new network model for multidimensional networks.

7.2 The Cell Model

The Cell Model enriches the network participants with structure-function-behavi-

or (SFB) views; such a combination of three views provides a chance for better

modeling of network participants. The interactions between all the participants
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of a network are represented in the structural view of a network. The nodes and

connections are active, i.e., they can perform computation. The computational

models of nodes and connections are expressed using either the functional or

the behavioural views.

The Cell Model gives node-like prominence to relations between nodes which

are modeled as connections. More importantly, multiple relations between any

two nodes are modeled as one single connection, thus leading to a notational

consistency. The Cell Model of a network is built using four axioms.

Message Exchange All network interactions happen via message exchanges.

Activeness All the participants (nodes and connections) are active. A partici-

pant can generate, terminate, transform or forward a message.

Equivalence Two models of a participant are equivalent if both have equiva-

lent Finite State Machines (FSM), i.e., both the FSM’s are observational

equivalent.

Hierarchy A node can represent a sub-network. The representative node must

satisfy the equivalence axiom with the sub-network being represented.

7.3 Applications

We model two research problems, one from protocol analysis and another from

multi-modal public transit networks. We provide solutions to both the research

problems using the Cell Model.

We express the protocol analysis as embedding of a protocol parse graph into

a protocol analysis pipeline. The problem is NP-hard; we chose a heuristic

embedding scheme in our implementation. We implement the protocol analy-

sis pipeline in a software named Darshini. Darshini performs analysis of the

selected protocols, provides for configurable tradeoffs between memory con-

sumption and execution time, and persists the analysis results into a database.

We then present our work on the multi-modal public transit networks. We ex-

tend the connection scan algorithm (CSA) for direct connections and personal-

ized transport services; we call our extension as t-CSA algorithm. We redefine
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the mathematical representation of the itinerary search problem in terms of the

Cell Model. We implement the Cell Model-based solution for the public transit

networks of India. The implementations of t-CSA algorithm and the Cell Model-

based solution search the timetables of the public transit networks of India; both

provide the itinerary search results in less than a second.

7.4 Summary

Based on our research experience in the multidimensional networks area, we

draw the following conclusions.

1. Active network models are much better at modeling the process-oriented

phenomenon in networks.

2. The Cell Model provides a flexible approach to creating the network mod-

els. The computational models of nodes and connections can be as sim-

ple as those of regular graph models or as complex as finite state ma-

chines.

3. The Cell Model is applicable across multiple domains. The thesis show-

cases the applicability of the Cell Model to the domains of computer net-

works and transportation networks.

4. The Cell Model with its message passing paradigm is very close to the

message passing method of concurrent computation. Hence, the Cell

Model works well for computer clusters (data centers).

7.5 Future Work

One promising area of future work is to generate the domain-specific functional

and behavioral views of the Cell Model. The domain-specific views permit com-

putational complexity analysis of the the Cell Model for the chosen domain.

The results in this thesis also lay the ground work for an effective network mea-

surement workbench and a multi-modal transit scheduler. A natural extension
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to Darshini is to add more network-centric data types such as socket. The cus-

tom data types defined in Bro scripting language [112] are a testament to the

convenience of having well-suited data types for a packet processing software.

Ultimately, the goal of multi-modal transit scheduler is to provide itinerary search

across distributed and independent operators. Another area for further explo-

ration is the modelling of disaster recovery scenarios. A comprehensive disaster

recovery solution requires live updates and dynamic alternative path detection.

The Cell Model proposed in this thesis can address the modelling issues in the

areas of biological networks and agent-based systems. The Cell Model can

provide a solution to the problem of mutating infectious diseases. The problem

of disease propagation on biological networks can potentially be more effec-

tively solved by using the domain-specific functional and behavioral views of

the Cell Model. There has been active interest in the application of multirela-

tional network structural analysis techniques to model the energy grid where

energy sources are modelled as agents [124]. The prior work like multi-agent

simulation environment [125] attempts to combine the techniques of network

analysis with agent-based systems to model traffic simulations. The functional

and behavioral views allow for a more accurate specification of agents in such

agent-based systems.
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Responses to reviewers’
comments

Corrections suggested by Examiner 1: (Prof. Sudip Misra)

1. In Chapter 3, Fig. 3.2 shows the average throughput of users for different

months during the year 2009-14. The figure quality is poor and axis label

is missing in all the subgraphs.

2. In Chapter 3, Section 3.2.4, the reliability parameter of QoS needs more

explanation. It is good to explain the variable names used in the math-

ematical analysis immediately after the mathematical expression is given

(to increase the readability). How the correlation coefficients between dif-

ferent QoS parameters is calculated? Is it directly taken from the source

or the author has done it by his own?

3. In Chapter 5, Darshini architecture – is there any specific format for file

input to pipeline stage?

4. In Chapter 6, the complexity analysis of proposed t-CSA algorithm should

be provided.

5. In Chapter 7, author should add a subsection for future work.
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The modifications made in the thesis as per the suggestions of Prof. Sudip

Misra are outlined below.

1. In Chapter 3, Fig. 3.2 shows the average throughput of users for different

months during the year 2009-14. The figure quality is poor and axis label

is missing in all the subgraphs.

Ans: The image quality has been improved and the axes labels are added

in all the subgraphs. Please see Figure 3.2 on page 26.

2. In Chapter 3, Section 3.2.4, the reliability parameter of QoS needs more

explanation. It is good to explain the variable names used in the math-

ematical analysis immediately after the mathematical expression is given

(to increase the readability). How the correlation coefficients between dif-

ferent QoS parameters is calculated? Is it directly taken from the source

or the author has done it by his own?

Ans: The QoS equation (Eq. 3.2) has been corrected. All the variables
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3. In Chapter 5, Darshini architecture – is there any specific format for file

input to pipeline stage?

Ans: Sec 5.4.1 Preliminaries has been expanded to include explanation
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Sec 5.4.1 Input Data Formats. Please see page 82.



4. In Chapter 6, the complexity analysis of proposed t-CSA algorithm should

be provided.

Ans: The algorithmic complexity analysis has been added to both CSA

and t-CSA algorithms. New Section 6.3.1 discusses the algorithmic com-
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cusses the algorithmic complexity of t-CSA algorithm. Please see page
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5. In Chapter 7, author should add a subsection for future work.
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No changes were suggested

Corrections suggested by Examiner 2: (Prof. Bharat M. Desh-

pande)

No changes were suggested



List of Publications

Cell Model for Multidimensional Networks:

1. Prasad Talasila, Neena Goveas and Bharat Deshpande, Cell Model for

Multidimensional Networks. (Communicated)

Multi-modal Transit Networks:

2. Prasad Talasila, Aparajita Haldar, Suhas S. Pai, Neena Goveas, and

Bharat M. Deshpande, Multi-modal Transit Scheduler: An Actor-based

Concurrent Approach, 20th IEEE International Conference on Intelligent

Transportation Systems, Yokohama, JAPAN, 16 - 19 October, 2017.

3. TSRK Prasad, Kartik Sathyanarayanan, Sukriti Tiwari, Neena Goveas

and Bharat Deshpande, t-CSA: A fast and flexible CSA Implementation,

2nd Workshop on Intelligent Transport Systems, 8th International Confer-

ence on Communication Systems & Networks, 5 - 9 January, 2016.

4. Prasad Talasila, Shaik Asifullah, Neena Goveas and Bharat Deshpande,

Transit Timetables as Multi-Layer Networks, 4th Workshop on Intelligent

Transport Systems, 8th International Conference on Communication Sys-

tems & Networks, 3 - 7 January, 2018.

142



Network Measurements:

5. Prasad Talasila, Mihir Kakrambe, Anurag Rai, Sebastin Santy, Neena

Goveas, Bharat M. Deshpande, BITS Darshini: A Modular, Concurrent

Protocol Analyzer Workbench, 19th International Conference on Distributed

Computing and Networking (ICDCN), Varanasi, 4 - 7 January, 2018.

6. TSRK Prasad, Dhruv Shekhawat, Sukanto Guha, Neena Goveas and

Bharat Deshpande, Analysis of Impartial Quality Measurements on Indian

Broadband Connections, 22nd National Conference on Communications,

4 - 7 March, 2016.

Multidimensional Online Social Networks:

7. Prasad Talasila, Rohan Goel, Dhruv Shekhawat, Neena Goveas and

Bharat Deshpande, Discovering Patterns in Activities of Online Chat Com-

munities: A Case Study on Internet Relay Chat Channels, Springer Jour-

nal of World Wide Web (WWW). (Communicated)

Mapping of publications to Thesis chapters:

Chapter No. Chapter Name Publication Number(s)

1. Introduction None

2. Literature Survey None

3. Structural Analysis of Networks 4, 6, 7

4. The Cell Model 1

5. Darshini - Protocol Analyzer 5

6. Multi-Modal Transit Scheduler 2, 3

7. Conclusion None



Biography of the Candidate

S R K Prasad Talasila, is currently serving as a Lecturer in the Department of

Computer Science & Information Systems, BITS Pilani K K Birla Goa Campus,

Goa, India. He received his Bachelor’s degree in Electronics & Instrumentation

Engineering from BITS, Pilani - Pilani Campus, Rajasthan in 2001. He com-

pleted his Masters degree in Computer Science and Engineering in 2009 from

RVR & JC College of Engineering, under Acharya Nagarjuna University, Guntur,

Andhra Pradesh. He graduated with distinction in both the Bachelor’s and the

Master’s degree programs. He is currently pursuing Ph.D from BITS-Pilani, K K

Birla Goa Campus, Goa. His research interests include Network Science and

its applications to transport, social and computer networks.

144



Biography of the Supervisor

Neena Goveas is with the Department of Computer Science at BITS Pilani K

K Birla Goa campus. Earlier she was with Department of Physics BITS Pilani,

Pilani campus.

For her PhD thesis, she worked on "Mean field approaches to thermodynamic

properties of magnetic systems" at IIT Bombay, advisor Prof. G. Mukhopadhyay.

She worked on INDO-US sponsored project "Development and characterization

of materials suitable for magneto-optic Devices" at A. C. R. E., I. I. T. Bombay.

She worked as DST-Young Scientist Scheme Project entitled "Study of low di-

mensional magnetic systems" at IIT Guwahati.

Her main theme of research work is to study magnetic systems. Using vari-

ous mean field and computational approaches to understand their properties.

Recent research work is on Network Science and its applications to transport,

social and computer networks; modeling of Cyber Physical Systems and Wire-

less Sensor Networks.

145



Biography of the Co-Supervisor

Prof. Bharat Deshpande received his Ph.D. degree from IIT Bombay in the year

1998. After which for a year he received postdoctoral fellowship from Depart-

ment of Atomic Energy.

Before joining BITS he worked as a Reader for two years at M.S. University

Baroda. Dr. Deshpande joined BITS Pilani in year 2001 and moved to BITS

Pilani, Goa Campus in the Year 2005.

He was the head of the Department of Computer Science & Information Sys-

tems at Goa from 2006 to 2017. Apart from basic courses in Computer Science,

he has taught specialized courses like Algorithms, Theory of Computation, Par-

allel Computing, Artificial Intelligence and a few more. His research interests

are in areas of Complexity Theory, Parallel Algorithms, and Data Mining. Over

the years he has supervised numerous masters and doctoral students. He has

many national and international publications to his credit.

In 2010 he was felicitated as Distinguished faculty at the BITS alumni global

meet held in New Delhi. He was also on the Board of Studies of College of

Engineering, Pune. Dr. Deshpande was also Vice President of the Goa Chapter

of Computer Society of India.

Along with his academic interests, Dr. Deshpande is also a sports enthusiast.

He was In-charge of Students sporting activities at BITS-Pilani, Goa. He was a

member on the panel Committee of the Goa Football Association.

146


