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ABSTRACT 
__________________________________________________________________________  

 
 The refrigeration sector consumes more than half of the total energy consumption in a 

building (supermarket) and contributes to green-house gases. Traditionally, such systems 

employ synthetic refrigerants from which typically, about 3 to 35% of the refrigerant charge 

leaks into the atmosphere per year depending on the make, age and usage of system. Leaked 

synthetic refrigerants are detrimental to environment as they are often greenhouse gases and/or 

contribute to ozone depletion. With increase in environmental consciousness in recent times, 

stricter regulations have been enacted globally to control ozone depletion and indirect and 

direct greenhouse gases emission from refrigerating plants. In such situation, adoption of 

natural or low-GWP refrigerants such as Carbon Dioxide (CO2), Ammonia (R717), Propane 

(R290), R1234ze(E) etc. are expected to increase. This will significantly reduce the harmful 

effects of direct emissions. For reduction of indirect emission, the systems need to be inherently 

more efficient compared to the existing systems, which is the focus of research work worldwide 

at present. 

 Among the natural refrigerants, CO2 is one of the preferred choices owing to its high 

specific heat, non-toxicity, non-flammability, eco friendliness and low cost. From the 

engineering perspective, CO2 used as a refrigerant in vapour compression cycle has number of 

advantages such as lower compression ratio, high volumetric cooling capacity, compatibility 

with normal lubricants and common machine construction materials and well defined thermo-

physical properties.  

 CO2 has an old history as refrigerant, widely used before (1930s), however was 

abandoned later due to the invention of the synthetic refrigerants which were more effective at 

the then technological state. Meanwhile the world was getting conscious about ozone depletion 

effect from leaked refrigerants and later, regarding greenhouse effect caused by the synthetic 
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refrigerants. CO2 being a constituent of biosphere and environmentally benign is clearly a 

preferred fluid. Use of CO2 as a refrigerant was revived in the year 1993 by the work of 

Norwegian Professor Gustav Lorentzen, who successfully demonstrated working of a 

Automotive Air Conditioning (AAC) system based on CO2. Thereafter, studies on CO2 as 

refrigerant gained tremendous impetus and are being explored extensively for use in various 

applications.  

 With conventional vapor compression cycle design, the performance of CO2 

refrigeration system is economically advantageous only when operated in cold climate. Due to 

low critical temperature (31.3oC) and high critical pressure (73.8 bar), the performance of CO2 

refrigeration system deteriorates when operated in warm climatic conditions. Further, there are 

technical challenges of handling high pressure system. Owing to the high-pressure operation, 

physical issues such as selection of tubing material, safety, cost etc associated with a CO2 

system also poses challenge. 

 The work conducted in this thesis is broadly divided into three parts. Firstly, 

experimental investigation is carried out on a fully instrumented, laboratory setup of CO2 trans-

critical refrigeration system equipped with internal heat exchanger. Based on experimental 

data, analysis is carried out on energetic and exergetic perspectives, especially at high ambient 

up to 45oC.  

 Thereafter, theoretical models (physics based as well as an Artificial Neural Network) 

of CO2 refrigeration system are developed, validated and implemented to perform parametric 

investigation and optimization based on two controllable parameters viz gas cooler pressure 

and cooling air flow velocity across the gas cooler (termed as gas cooler face velocity).  

 Lastly, application of CO2 system in supermarket is focussed. Detailed thermodynamic 

models on booster, indirect/cascade and integrated configurations are developed. Various 

booster configurations are evaluated using thermodynamic modelling based on both energetic 
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and economic analysis. The performance of booster configurations is compared to that of 

indirect/cascade configurations. With regard to intergated system, multi-jet ejetcor 

configuartion is compared to cascaded booster configuration based on energy and 

environmental perspectives. Overall the work conducted in thesis is expected to contribute 

towards promotion of adoption of natural refrigerant, especially CO2, in warmer part of the 

globe, like in India.            
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