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CHAPTER 5 

Performance optimization 

 

In this chapter, mathematical models are developed to perform parametric investigation 

and optimization of the CO2 cycle parameters for best possible performance, which was limited 

in the experimental investigation (Chapter 4). The major contribution of this chapter work is to 

perform simultaneous optimization of CO2 trans-critical refrigeration system in terms of both 

high side pressure and gas cooler face velocity. Parametric investigation of a CO2 refrigeration 

system with and without IHX is carried out using a detailed physics-based model and with an 

Artificial Neural Network (ANN) model trained from experimental input-output data recorded in 

Chapter 4.  

The models are essentially used to predict the energy efficiency (COP) for various 

working conditions. Evaporation temperature, ambient temperature, gas cooler pressure and air 

velocity over the gas cooler are chosen as input parameters to predict COP. The physics-based 

model is an integration of individual models of cycle components of the refrigeration test rig. 

This include empirical correlation for compressor, finite difference-based model for gas cooler as 

well as for the IHX and thermodynamic input output-based model for expansion valve and 

evaporator. A set of experimentally obtained values of COP and corresponding evaporator 

temperature, gas cooler pressure, air velocity across gas cooler and ambient temperature, as 

discussed in Chapter 4, are taken as training data for the ANN.  

The trained and validated ANN model is then utilized to predict optimal high side 

pressure as well as gas cooler face velocity for the varying ambient and evaporation conditions to 

achieve best possible COP. The proposed methodology is deemed suitable for design and testing 

of control system for maximization of energy efficiency.  
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5.1 Physics based model 

Physics based models are widely employed to simulate as well as to optimize the 

performance of refrigeration system. This section presents integration of individual models of 

cycle components of the refrigeration system including compressor, air-cooled gas cooler, 

double pipe IHX, expansion valve and evaporator. This include empirical correlation for 

compressor, finite difference-based model for gas cooler as well as for IHX and thermodynamic 

input output-based model for expansion valve and evaporator. Geometry and specifications of 

the components are discussed in Chapter 4, under section 4.1. Component-wise modelling of the 

CO2 trans-critical refrigeration setup as well as data reduction is described here.   

5.1.1 Compressor  

The semi-hermetic reciprocating compressor used in the experimental setup is modelled 

assuming irreversible adiabatic process inside the compressor. Simplified equations for 

volumetric and isentropic efficiency in terms of evaporation temperature and gas cooler pressure 

are obtained from the compressor manufactures data. The volumetric efficiency is given by 

equation (5.1), while the state properties of the refrigerant at inlet is used to compute the mass 

flow rate, using equation (5.2). The isentropic efficiency of the compressor is modelled with 

equation (5.3) and the same is utilized to calculate the compressor input power. Equation (5.1) 

and equation (5.2) are derived using regression based on manufacturer data (Bitzer, 2016) and 

are valid within gas cooler pressure range from 8 MPa to 11 MPa and evaporation temperature 

from -10oC to 10oC. 

�� = 1.18305 +  (0.002009 · ��) − �0.5720 · ���� − (0.000168 · �� · ��)

+ �0.15 · ��� · ���� + �0.0043 · �� · ����               

(5.1) 

�̇� =  �� · �� ∙ ��                                   (5.2) 
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��� = (−0.011711 · ��) + �1.5220 · ���� + (0.005476 · �� · ��) − �0.88 · ��� · ����

+ �0.0134 · �� · ���� − �0.0147 · �� · �� · ����

− �0.01 · �� · �� · ��� · ����               

(5.3) 

5.1.2 Gas cooler 

The geometry of the finned tube gas cooler is shown in Fig. 4.5, while the actual 

dimensions of the physical setup are listed in Table 4.2. The mass, momentum and energy 

conservation for both air and refrigerant side are modelled separately using a finite difference 

scheme. An elemental grid having dimension of as ∆xi, ∆xj and ∆xk in i, j & k direction, as 

shown in Fig. 5.1 is made. The tubes are parallel to i direction, while air flows in k directions and 

j-k is the plane of fins. A one-dimensional heat and fluid flow model is constructed and solved 

for one grid, and the solution is extended for entire geometry element by element. Major 

assumptions made for the analysis are (a) thermal equilibrium at each grid, (b) heat conduction 

within fins and along the pipe axis neglected, (c) homogenous distribution of air flow, (d) 

thermal resistance neglected at the joint of pipe and fins. 

The mass, momentum and energy conservation equations for refrigerant flow are 

discretised using finite difference scheme for a grid from coordinates (i, j, k) to (i+1, j, k), as 

shown in equation (5.4) to equation (5.6). The pressure drop in the refrigerant side is calculated 

using equation (5.7). An additional pressure drop is considered for U bends at the end of each 

tube. In equation (5.7), φ is the friction coefficient and is calculated using equation (5.8) (Gupta 

and Dasgupta, 2014).  

(�̇�)(���,�,�) = (�̇�)(�,�,�)            (5.4) 

1

������
�(�̇� ∙ ��)(���,�,�) − (�̇� ∙ ��)(�,�,�)� + ∆�� = 0   

(5.5) 
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�(�̇� ∙ ��)(���,�,�) − (�̇� ∙ ��)(�,�,�)�

∆��
 + 

� ∙ ������ ∙ �̇

�̇�
= 0 

(5.6) 

∆�� =  
� ∙ �� ∙ ∆��

2 ∙ �� ∙ ������
 

(5.7) 

� =  
1

[0.79 ln(��) − 1.64]� 
(5.8) 

 

 

Fig. 5.1 Grid for gas cooler with flow directions 
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The refrigerant side heat transfer coefficient is calculated using equation (5.9). Nusselt 

number (Nu) in the equation (5.10) is computed as an average value based on thermo-physical 

properties at the wall and bulk temperature (Pitla et al., 2002). Wall and bulk temperatures are 

evaluated iteratively by initially assuming them as equal to the temperature of refrigerant and air 

respectively. Nubt and Nuwt are individually calculated using equation (5.11) (Gnielinski, 1976). 

�� =
�� ∙ ���

������
       

(5.9) 

�� =  �
���� + ����

2
� ∙ �

���

���
� 

(5.10) 

��(��,��) =

�(��,��)

8 ∙ ���(��,��) − 1000� ∙ ��(��,��)

12.7 ∙ �
�(��,��)

8 ∙ ���(��,��)

�
� − 1� + 1.07

 

(5.11) 

Following effectiveness – NTU method, the heat transfer in the air side at grid points are 

calculated using equation (5.12). In equation (5.12), ε is the effectiveness of the grid and the 

same is calculated using the equations (5.13) and equations (5.14) for the value of Cmax = Ch and 

Cmin = Ch, respectively.  

�̇� = � ∙ ���� ∙ ���(�, �, �) − ��(�, �, �)�       (5.12) 

� = 1 − �(��∙��);  � = 1 −  �
���

��∙�
����

� ��
;  �� =

����
����

�  
(5.13) 

� = �� ∙ �1 − �
���∙��

��
� ��

� ;  � = 1 −  �
���

��∙�
����

� ��
    

(5.14) 

The heat transfer coefficient in air-side is calculated using equation (5.15) and (5.16) 

(Incropera and DeWitt, 1996). The fan power, as measured experimentally (Chapter 4, article 
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4.4) for the different air flow velocities, are used to formulate a mathematical expression for fan 

power in terms of air velocity, as in equation (5.17), and the same is used for calculating pressure 

drop in air-side, as in equation (5.18). 

��� = 0.683 ∙ ���
�.��� ∙ ���

�.�� (5.15) 

�� =
��� ∙ ���

���
 

(5.16) 

�̇� = 21.814 ∙ (��)�.���� (5.17) 

∆�� = �̇� ∙ �� ∙ ��  (5.18) 

The overall heat transfer coefficient for the gas cooler is calculated using equation (5.19), 

where ∑Rct is the conduction resistance through tube wall and fins. The overall fin surface 

efficiency (���) required for equation (5.19) is calculated using equation (5.20) (Wang et al., 

1999). Heat balance between air and refrigerant side for each grid is calculated using equation 

(5.21).  

�� ∙ � =  �
1

�� ∙ ��� ∙ ��
+ ∑��� +

1

�� ∙ ������
�    

(5.19) 

��� =  �1 −
����

��
�1 − ������         

(5.20) 

�̇� =  �� ∙ �(�, �, �)[�� (�, �, �) − ��(�, �, �)]     (5.21) 

An iterative method is used for simultaneously solving the air and refrigerant side 

equations, i.e. for i+1 and k+1 grids, respectively. The gas cooler is counter cross-flow type, and 

only one temperature out of four is known for an element as shown in Fig. 5.1. Hence one or 
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more temperatures are to be assumed, consequently, air temperature at gas cooler outlet is 

assumed. The discretised equations are solved iteratively to find the temperature of refrigerant at 

gas cooler outlet with error converging to the order of 10-3.  

5.1.3 IHX 

 The double pipe IHX, as shown in schematic diagram, Fig. 4.6, is modelled likewise the 

modelling procedure of the gas cooler, but both the fluids are CO2 here. The specific details for 

the IHX in experimental setup is listed in Table 4.3. CO2 at high pressure from the gas cooler is 

fed into the inner tube of IHX, while the low-pressure CO2 from the evaporator flows through 

the outer tube of the IHX.  

 The grid elements considered while modelling IHX is shown in Fig. 5.2. The refrigerant 

side heat transfer coefficients are calculated for both cold and hot streams using equations (5.8) 

to equation (5.11), while the pressure drops in both streams are calculated using equation (5.7). 

Perfectly insulated IHX is assumed, implying thereby heat lost from the hot side is equal to heat 

gained by cold side.       

 

Fig. 5.2 Grid for IHX with flow directions 
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5.1.4 Expansion valve 

 A manual expansion valve is modelled using thermodyanmic state point properties. 

Expansion process is modelled ensuring pressure drop within IHX as well as in the expansion 

valve. Enthalpy at the exit of IHX (higher pressure side) is calculated at the temperature and 

pressure calculated through simulation. The enthalpy at evaporator inlet is computed as a state 

point property at temperature and pressure predicted by simulation at outlet of expansion valve. 

5.1.5 Evaporator 

 The geometry of the evaporator is shown in Fig. 4.9 and its specifications are given in 

Table 4.4. For operation under various conditions during the experimental study, the useful 

superheating at evaporator exit is controlled by simultaneously adjusting refrigerant charge and 

the setting of the manually adjustable expansion valve. Adequate care is taken to maintain 

superheating at the evaporator exit, and no two-phase flow is permitted. The evaporator is 

modelled considering 10 K of superheating as the same is achieved for all experimental runs.     

5.1.6 Energy efficiency (COP) calculations 

 Compressor input power, refrigeration capacity and COP are calculated using equations 

(5.22) to equation (5.24). 

�̇� = ��̇ ∙ �ℎ�,��� − ℎ�,���
�
  (5.22) 

��̇� =  ��̇ ∙ �ℎ�,��� − ℎ�,���
�
  ̇  (5.23) 

��� =  
��̇�

��̇� + ��
̇ �

      
(5.24) 

The simulation is carried out in MATLAB platform by combining the individual component 

models, and REFPROP 9.0 (Lemmon et al., 2002) is used for obtaining air and refrigerant side 

properties. The iterative algorithm is illustrated in Fig. 5.3.  
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Fig. 5.3 Numerical algorithm to solve physical model of CO2 trans-critical refrigeration 

system with and without IHX 
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5.2 Artificial Neural Network (ANN) model 

 MATLAB toolbox is used to train and validate the ANN based model. An ANN captures 

a collection of distributed parameters from input-output data of a process through an iterative 

training algorithm (Dasgupta et al., 2001) to construct an input-output based model. The smallest 

unit in an ANN is a neuron, which can be an individual microprocessor. Each neuron in a trained 

ANN produces an output, when activated with an input stimulus beyond a threshold.  

The motivation for implementation of an ANN is to reduce extent of experimentation 

which is costly and time-consuming. Wu et al., (2008) proposed an ANN to predict the 

performance of a gas cooler in a CO2 heat pump. They discussed the parametric analysis of gas 

cooler based on the trained ANN. Belman-Flores et al., (2015) presented an ANN-based 

modelling of a reciprocating compressor for a refrigeration system. They reported that the trained 

ANN could predict the performance with less than ±1% mean relative error, whereas the error 

for the physics-based model was up to ±10%. Wang et al., (2016) presented an ANN based 

model of a hybrid ejector air-conditioning system. They compared results from three types of 

neural networks to the of experimental findings and concluded that a multi-layer perceptron 

(MLP) type network is best suited for this purpose. Some other studies propose use of ANN to 

predict the performance of a CO2 based scroll expander (Singh et al., 2017) and heat exchanger 

(Son et al., 2018) as well as to assess second law efficiency of the system (Belman-Flores et al. 

2018).          

A common ANN architecture has an input layer, an output layer and may have several 

hidden layers. The ANN architecture used in this study (Fig. 5.4), is composed of one hidden 

layer with sufficient neurons. The number of hidden neurons is varied within range 6 to 13 

iteratively with Logsig transfer function (Belman-Flores et al., 2015) and a model is established 
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to avoid overfitting, while maintaining the desired accuracy (10-3). The learning rate and the 

number of epochs for the model considered are 0.01 and 1000, respectively. Based on the error 

coefficients, minimum eight hidden neurons are considered for the prediction of COP for both 

cycles with and without IHX. The input parameters are evaporation temperature, ambient 

temperature, gas cooler pressure and air velocity over the gas cooler, while the output is COP. 

 

Fig. 5.4 ANN architecture for the output parameters 

A total of 156 experimental input-output data points for the basic and IHX cycle are 

divided into two sets: 80% in training and remaining data in validation sets. The modelling of 

ANN in this article starts with normalising the data set in the interval 0.1 to 0.9, followed by 

training of ANN based on feed forward back propagation technique employing the Levenberg–

Marquardt training algorithm, the neurons are seeded with initial weights and thresholds. The 

output from the hidden neurons are similarly scaled back. The statistical coefficient namely, 

mean relative error (MRE) and root mean square error (RMSE) as defined as in equation (5.25) 
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and (5.26) are computed. The flowchart for training the ANN is shown in Fig. 5.5 and the 

statistical coefficients of the trained neurons are listed in Table 5.1.  

 

Fig. 5.5 Flow chart for training of ANN 
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��� =  
1

�
� �

����,� − �������������,�

�������������,�
� × 100%        

�

���

 (5.25) 

���� =  �
1

�
� �

����,� − �������������,�

�������������,�
�

��

���

       
(5.26) 

Table 5.1 Statistical coefficient obtained during training process of ANN 

No. of neurons 
Cycle with IHX Cycle without IHX 

RMSE (-) RME % RMSE (-) RME % 

4 0.151 1.782 0.143 1.612 

5 0.128 1.512 0.125 1.321 

6 0.102 1.015 0.109 1.421 

7 0.095 1.235 0.087 1.021 

8 0.083 0.417 0.074 0.401 

9 0.084 0.895 0.065 0.357 

 

5.3. Model validation 

 The COP prediction using physics-based model as well as trained ANN, are plotted 

against the reference experimental data set collected in this study (78 data points each for cycle 

with and without IHX). Fig. 5.6 (a) for cycle with IHX and Fig. 5.6 (b) for cycle without IHX, 

shows comparison of error coefficients for both models. The error level is nearly same for cycle 

with and without IHX. It is observed from the Fig. 5.6 that the rmse and mre in predictions using 

ANN model are 0.0074 and 0.401%, respectively. While the rmse and mre for the physics-based 

model are 0.1145 and 7.011%, respectively. Fig. 5.6 also depicts the mse in predictions using 

ANN model trained with fewer training data sets (abbreviated as ANN* and marked by green 

line).  
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Fig. 5.6 Comparison of mse for ANN and physical models for cycle with (a) with IHX (b) 

without IHX. 
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It is observable that, with 50% fewer training data points, the error level in predictions using 

ANN* increases to 2.33% but is still useful. Prediction of optimum operating condition from 

trained ANN and control system implementation can become a lot easier if ANN can be 

systematically trained with lesser experimental data and the same may be explored in future. 

Comparatively high error in predictions using physics-based model is attributed to the various 

assumptions made, such as neglecting the heat losses and the pressure drop for the components 

as well as for the pipeline. Non-incorporation of detailed model for some components like 

receiver, accumulator and piping also contributed to error. Further, evaporator load simulation 

and ambient temperature simulation are absent in the model. The ANN model is further explored 

for optimising the critical operating parameters as the same is found to better follow the 

experimental observations.  

5.4 Parametric optimization using trained ANN model 

 The developed and validated ANN model is utilised to perform a parametric investigation 

and optimization. Among the many critical parameters, affecting the CO2 cycle performance in 

the trans-critical region, the high side pressure and gas cooler face velocity are focused. The 

simulated study is extended to optimize the CO2 cycle performance. The upper and lower limit of 

high side pressure and gas cooler face velocity are kept in accordance with the experimental 

study. For optimization of performance, a high side pressure range from 80 bar to 110 bar is 

considered, while the face velocity range within 1 m∙s-1 to 3 m∙s-1. Maintaining gas cooler face 

velocity as 1 m∙s-1, the effect of high side pressure on COP in trans-critical region is investigated 

using simulation based study. The results obtained using physics based model and ANN are 

plotted in Fig. 5.7 and Fig. 5.8, respectively, for evaporation temperature of -5oC at varying 

ambient conditions. In both Fig. 5.7 and Fig. 5.8, the solid line represents predictions from 
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simulation study while the dotted line depicts experimental observations. It may be concluded 

from the Fig. 5.7 and Fig. 5.8 that the simulated study is able to capture the trend of COP 

variation with respect to gas cooler pressure as observable from the trend of experimental data. 

Predictions from the ANN is closer to experimental observations than that from physics based 

model.  

 
Fig. 5.7 Effect of high side pressure on COP (Physics based model simulation) 

 
Fig. 5.8 Effect of high side pressure on COP (ANN based model simulation) 
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O
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 As expected, the performance of cycle decreases with increase in ambient temperature. 

At a particular ambient temperature, with rise in gas cooler pressure, the COP of the system 

increases, reaches a plateau for a particular gas cooler pressure and then decreases. This is 

attributed to the fact that with increase in gas cooler pressure both the compressor power and 

refrigeration capacity increases. However, they have contradictory effect on COP and the rate of 

increment in refrigeration effect dominates up to a certain gas cooler pressure and beyond that, 

the rate of increment in compressor power dominates. An elaborate control strategy is therefore, 

required to operate a CO2 trans-critical cycle at optimal high side pressure to take advantage of 

trade-off between the increment in both compressor power and refrigeration capacity.  

 It can be noted from Fig. 5.7 that the cycle performance in the vicinity of critical point is 

more sensitive to operating pressure on either side of the optimal set point. At ambient 

temperature of 32oC and evaporation temperature of -5oC, the best possible COP of system is 

achieved in the narrow range of operating high side pressure, 90 bar to 95 bar. Further, COP of 

the system tends to deteriorate drastically when the operating high side pressure is outside this 

optimal range of 90 bar to 95 bar. As ambient temperature increases, the variation of COP with 

change in gas cooler pressure, tends to become flatter for the region in the close vicinity of 

optimal gas cooler pressure. That implies performance of a CO2 trans-critical refrigeration cycle 

in higher ambient conditions (45oC) is very less sensitive to operating high side when operated 

near required optimal value.  

 Simultaneous optimization of face velocity of gas cooler and high side pressure is 

attempted for the various ambient and evaporation conditions in CO2 refrigeration system. The 

optimization algorithm searches for optimal solution in the defined range. The combined effect 
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of air velocity over the gas cooler and the high side pressure on COP at ambient temperature of 

35oC and evaporation temperature of 0oC are simulated and represented in Fig. 5.9.  

 

Fig. 5.9 Effect of air velocity over the gas cooler on COP (To = 0oC, Ta = 35oC) at various 

operating gas cooler pressure 

 As observable from Fig. 5.9 within the range of face velocity ranging from 1 m/s to 2 

m/s, COP of the system reaches maxima. Any further, increase in air velocity leads to 

deterioration in performance of system. This is attributed to the fact that with increase in face 

velocity, both the gas cooler performance and the fan power consumption increases, but at a 

different rate. That implies that there is scope of selecting an optimum air velocity. At ambient of 

35oC a maximum of 2.314% improvement in COP of the cycle with IHX is possible when the 

gas cooler is operated at a pressure of 9.76 MPa, and the air-side velocity is kept as 1.48 m·s-1. 

Therefore, it may be concluded that for CO2 trans-critical system with air cooled gas cooler, 
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optimization of gas cooler face velocity along with operating high side pressure is necessary and 

leads to significant improvement in the performance. The obtained optimized parameters, as well 

as the predicted COP, are listed in Table. 5.2. The percentage improvement with respect to 

experimental observations are also listed. A possibility of 5.31% improvement in COP is 

predicted using simulation-based optimization of critical parameters viz high side pressure and 

air velocity over the gas cooler. which can be established with an automated control system.     

Table 5.2 Optimized operating parameters and COP for CO2 refrigeration system 

CO2 refrigeration system without IHX 

Input  Output 

Te [oC] Tamb [oC] pgc [MPa] Va [m∙s-1]  COPopt % improvement to COP 

-5 

32 9.32 1.54  2.031 5.26 

35 9.61 1.37  1.766 2.29 

40 10.52 1.12  1.491 1.21 

45 11.00 1  1.21 0 

       

0 

32 9.39 1.61  2.308 5.31 

35 9.76 1.48  1.996 2.31 

40 10.71 1.14  1.667 1.33 

45 11.00 1  1.35 0 

CO2 refrigeration system with IHX 

-5 

32 9.28 1.51  2.047 5.12 

35 9.58 1.35  1.792 2.26 

40 10.47 1.08  1.533 1.01 

45 11.00 1  1.27 0 

       

0 

32 9.31 1.59  2.314 5.15 

35 9.74 1.43  2.018 2.28 

40 10.66 1.11  1.703 1.11 

45 11.00 1  1.42 0 
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5.5 Summary 

The performance of CO2 trans-critical refrigeration system with and without IHX are 

investigated based on physics-based model and an ANN model. COP is predicted for a set of 

input parameters which include evaporation temperature, ambient temperature, gas cooler 

pressure and gas cooler face velocity. Output in terms of COP from both modelling approaches 

are compared with experimental outcome. The mean relative error is found below ±10% for 

physics-based model and below ±1% for ANN model. The trained and validated ANN model is 

further utilized to investigate the effect of change of input parameters, gas cooler pressure and 

face velocity, on COP to optimize cycle performance. A possibility of 5.31% improvement in 

COP is predicted based on the optimization of parameters, which can be established with an 

automated control system.  


