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Abstract 

 

Compiler Assisted Parallelization and Optimization for Multicore 

Architecture 

 

Continuous improvement of VLSI technology coupled with need for faster processing 

capability has led to several innovations in the field of computer architecture resulting in 

development of multicore processors. A multicore processor has multiple processor cores 

on a single chip. Each individual core has separate register file and is capable of 

executing complete ISA (Instruction Set Architecture). In order to exploit the computing 

capabilities of multicore processors, significant amount of research in the area of code 

parallelization and multiprocessing has been carried out. An application running on a 

multicore system does not guarantee the performance improvement until the application 

has been explicitly designed to take advantage of multicore processor. To develop an 

application that exploits computing capabilities of multicore, two approaches are 

followed. The first approach is to develop an explicitly parallel code that can be 

scheduled on multiple cores of a given processor and the other approach is using a 

compiler to extract fine grained parallelism by identifying the sets of instructions that can 

be executed in parallel. Current focus by researcher and programming language 

developers is to exploit coarse grain thread and data-level parallelism. There is very little 

effort from the research community toward the exploitation of compiler driven fine 

grained parallelism of a sequential program.  

 The multicore processors can be made to exploit fine grained parallelism of a 

given code by exposing the low level architectural details to the compiler and operating 

systems. Several multicore architectures are proposed and are being designed such that it 

supports the minimal set of operations required for executing an instruction, and other 

tasks including extracting the fine grained parallelism are left for compilers and run time 

environment. The runtime environment can manage resource allocation, extracting 
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parallel constructs for different cores, and scheduling based on information generated by 

the compiler.   

 The challenge in achieving a performance gain from fine-grain parallelism is 

identification of the fine grained thread from a given single threaded application and 

scheduling these threads on different cores of the multicore processor.  

 To avoid the congestion on small shared register file as in other parallel 

architectures, the memory hierarchy of multicore architecture generally has private 

register files. The fine grained threads that are scheduled on to different cores need to be 

allocated registers from respective register file of the core on which they are scheduled.  

 To effectively utilize the potential benefits of the multi-core processor, the thesis 

focuses on improving performance through automated fine-grain parallelization, where a 

sequential program is split into parallel fine grained threads and are scheduled on to 

multiple cores. It is also proposed to develop register allocation strategy for fine grained 

threads which are scheduled on multicore processor. The register allocation is performed 

by considering individual register files of each core of multicore processor.  

 This thesis modifies the flow of current compiler by splitting the sequential 

program to create fine grained threads, proposes five scheduling heuristics (1 local and 4 

global), and register allocating heuristics for fine grained threads which are scheduled on 

multiple cores. The work is evaluated using speed-up, power consumption, performance 

per power, communication cost, and spilling as metrics. The RAW benchmark suite is 

used to compare the results.  
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CHAPTER 

                                                                Introduction 01 
 

Coupled with technological advancement in the field of computer architecture and relentless 

demand for faster processing has led to development of several innovative technologies and 

products. Semiconductor industry had kept pace with Moore’s law in terms of doubling the 

number of transistor on a chip and increased clock speed [1]. R. Dennard, et al., in 1974 

proposed that with scaling ratio of 1/√2, the transistors count will double on a chip and clock 

frequency can be increased by 40% keeping the power consumption constant [2][3]. But with 

current feature size, the Dennard’s law does not hold true any longer [4]. The continuous 

increase in number of transistor and clock speed has thrown design challenges for handling 

larger amount of heat dissipation. The power dissipation and thermal issues severely restricts the 

ability to continuously increase operating clock frequency of a processor [5][6]. This has led to 

development of homogeneous multicore architecture. A multicore chip supports multiple 

processor core on a single chip. The idea was to replace power hungry powerful processor with 

less powerful multiple cores [7][8]. Such developments lead to greater focus on exploiting the 

explicit parallelism by executing multi threaded applications or multiple tasks on multiple 

processor core to gain performance [9]. Since the approach tries to exploit explicit parallelism, 

the processor cores can be operated at lower clock frequency to achieve the same or better 

performance as compared to single core processor operating at higher frequency thus solving the 

heat dissipation problem. 

 The cores on a chip can be homogeneous or heterogeneous [10]. In case of homogeneous 

multicore processor chip, each core is equally capable and therefore allows any thread to execute 

on any core. Figure 1 provides an overview of the most common design of on chip 

multiprocessors used in today's system. Figure 1.c, Figure 1.d and Figure 1.e, depict 

homogeneous multicore processors and Figure 1.f is an example of heterogeneous multicore 

processor. A homogeneous architecture is undoubtedly easier to program for parallelism, 

because a program can make use of the all cores than in a heterogeneous architecture where all 

the cores do not support the same instruction set. 
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(b) n BCE Single Core 

Processor 

 
 

(c) n BCE 2core Processor 

 
(d) n BCE 16 core 

Homogeneous Multicore 

Processor 

 
(e) n BCE 4 core 

Homogeneous Multicore 

Processor 

 
(f) n BCE (12+1) core 

Heterogeneous Multicore 

Processor. 

Figure 1.  n Base Core Equivalent Processors  

The design philosophy of multicore processor says that the cores on chip should be resource 

equivalent and power equivalent [11]. The Base Core in Figure 1.a, is a unit core made up of 

some r resources and consume some power to achieve some performance. A n BCE (base core 

equivalent) processor P is made up of r times the resources used for base core and consume k 

power budget to get the performance Perf(r). To build a n BCE processor r and k should be 

shared equally. If r of a single core is increased, sequential performance is increased. If r is 

distributed among multiple execution units, parallel performance is increased. So in multicore 

processor r resources are distributed to achieve n BCE processor. A homogeneous multicore 

processor can have n/r cores to have n BCE processor. For example, a single core processor with 

capability of 16 BCE (1*16 BCE) or a homogeneous multicore processor with 16 BCE cores 

(16*1 BCE) or a homogeneous multicore processor with 4 4BCE cores (4*4 BCE) are 

equivalent. Similarly, heterogeneous multicore processor 12*1 BCE + 1*4 BCE processor is 

equivalent to 16 BCE in terms of resources and power consumption.  

 The performance increases as number of cores increases, that is, Perfq(r) > Perfd(r) > 

Perfs(r). Where Perfs(r) , Perfd(r) & Perfq(r) are performance of single core, dual core and quad 

core processors respectively. Ideally, Perfd(r) is 2*Perfs(r) and Perfq(r) is 4*Perfs(r). But 

according to Amdahl's law [12], performance (Pref) from N number of cores depends on a 

fraction f (0≤f≤1) of computation that can be parallelized. The fraction f is also responsible for 

increase in power consumption. The challenge of multicore programming involves making the 
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fraction f equal or closer to 1. The challenges and issues associated with the multicore 

environment are discussed in next section. 

1.1 Challenges In Multicore Environment 

i. Parallelizing the Sequential Program 

 

Though multicore technology offers clear benefits against the single core processor, the 

general understanding of researchers is that finding an effective way to exploit the 

parallelism or concurrency inherent in an application is one of the most daunting 

challenges. The multicore processors are general extension of shared memory 

multiprocessors whose computation power can be utilized effectively only by the 

applications with coarse grain threads. These designs provide real benefits for server-class 

applications that are explicitly multi-threaded. However, for desktop and other systems 

where single-thread applications dominate, multicore systems are yet to offer much benefit. 

There is a mismatch with current multicore hardware and applications, as most of the 

applications are single threaded and are unable to exploit the fine grained parallelism 

offered by multicore processors. To fully exploit the architectural capability and inherent 

fine grained parallelism of an application, it is desired to have parallel code. Writing 

parallel code is a tedious and requires expertise. Most of the features provided by explicit 

programming languages concentrate on parallelizing loops or iterative statements. It is 

essential to develop or convert existing sequential codes to parallel implementations. The 

support from compilers and run-time systems for the development of parallel application 

for multicore is vital. 

ii. Memory Management and Data Communication 

Memory hierarchy of multicore architecture generally has shared memory, second level 

shared cache, first level private cache, and private register files [13]. Issues related to 

memory can be classified as follows, 

 Register allocation  

To avoid the congestion on small shared register file as in other parallel architecture 

(Pipelined, VLIW), the memory hierarchy of multicore architecture generally has 

private register files. The threads that are scheduled on to different cores need to be 

allocated registers from respective register file of the core on which they are scheduled. 
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 Memory bandwidth 

Memory bandwidth remains the bottleneck on multicore platform, although computing 

is cheap since there are many processing cores [14].  The existence of the memory 

bandwidth bottleneck is because of the use of shared bus by all CPU cores. Efficient 

memory management is very critical for a scalable application on multicore CPU. 

 Locality of reference 

In a multicore processor with non-uniform cache architectures with distributed cache 

banks, data access latency is a limiting factor to performance. To mitigate this effect, it 

is necessary to leverage the data access locality and choose an optimum data placement 

so that the volume of inter-core messages is minimized. This requires a study of data 

accesses behaviors among multiple cores.  

 Memory Contention 

Memory systems have been under a lot of pressure to keep up with the increasing 

demand for parallelism [15]. Memory Contention increases the need of synchronizing 

data among different cores, which has a big performance penalty because of bus traffic 

contention, locking cost and cache miss. Lock based synchronization has several 

limitations, including sensitivity to preemption and possibility of deadlock.  A 

synchronization approach without lock is desirable. In multicore environment lock free 

synchronization is achieved using transactional memories. Regardless of which 

synchronization (lock based or non lock based synchronization) is used contention over 

shared data hamper the scalability.  

 The current cache hierarchy has been unable to support high level demand for 

parallelism. Existing architectures employ lock-up free caches to avoid stalling the 

CPU and allow the cache miss to be serviced in the background. The Miss 

Information/Status Holding Register (MSHR) Files are responsible for keeping track of 

the outstanding concurrent misses. These types of caches are very costly in terms of 

chip area and power usage. This limits the size of the MSHR file that can be included, 

even for today’s large transistor budgets. For example, the L1 cache of an Intel Pentium 

4 processor supports only eight outstanding misses. 
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iii. Scalability  

Traditionally only super computers and high end servers needed major software 

scalability work, as they used many CPU sockets. The major scalability work was not 

needed in the low end computer systems as they had less CPU’s. Scaling up the number 

of cores in multicore processors has provided a new dimension to scale up performance 

and requires extensive scalability work.  

The factors which stop scalability are listed below. 

 Programs may not inherently exhibit parallelism. 

 Application program cannot scale up to meet the time bound constraints due to 

some physical constraints like memory. As number of cores increase, memory 

contention may increase leading to sequential access of data by deteriorating 

parallelism. 

The expectation w.r.t increase in performance in multicore era is kept alive by the 

recent study on reevaluating Amdahl's law [16][17]. 

iv. Power Consumption  

It was expected that the power consumption will remain same with the paradigm shift 

from single core to multicore processor, as the r resources used to design a n-BCE 

single core processor is distributed to design multicore processor with multiple slow 

cores (reduced clock speed). Though the slow cores of a multicore processor are energy 

efficient, the combined power consumption of cores is increased when used for parallel 

execution than sequential execution on single core processor to complete the task. 

The fundamental reasons for increased power consumption are as follows. 

 The core is less powerful (runs at reduced clock) than n BCE single core so it 

takes more time to execute thereby may consume more power. 

 The second reason is due to Amdahl's law. According to Amdahl's law, the 

performance (Pref) from N of cores depend on fraction f (0≤f≤1) of computation 

that can be parallelized. 

The power model proposed by Woo-Lee suggest [12 ] that if a program is executed on a 

single core processor the power consumption is Pws = 1. If the same program is executed 

on a multicore processor with n cores by parallelizing it 100% i.e., f=1 power 
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consumption should be n*wc where wc is power consumed by slow core in multicore 

processor with n cores. But based on f and reduced strength (reduced clock) the power 

consumption of dual core processor should be (Pws ≤ Pwd ≤2 Pws). Similarly, when 

executed on quad core processor it is (Pws ≤ Pwd ≤ 4 Pws). 

 The power consumed by single core, dual core and quad core processor to execute 

the sequential and parallel version of the same program is summarized in Table1. Let Pfi 

& Pli be the power consumed in idle state by powerful core & less efficient core 

respectively. Let pd & pq be the extra power consumed by the less efficient n-BCE dual 

core and n-BCE quad core processor respectively and wc be the total power consumed by 

each core of less efficient n-BCE multicore processor.     

TABLE I.  POWER CONSUMPTION COMPARISON 

  

Cores when fully 

utilized. 

When 

sequential 

program runs 

on single  core 

keeping other 

cores idle. 

Ideal power 

consumption 

When 

sequential 

program  

( parallelized) 

runs on all the 

cores. 

Time  Energy 

Real Single core Pws = 1 W Pws = 1 W Pws = 1 W 5 

 

5  

 

 

Theoretical  

Dual core as 

powerful as single 

core 

2* Pws =2 W 1 + Pfi W 
0.5+ 0.5 

 

= 1 W 

2.5 2.5 

 

Expected 

Dual core 50% less 

powerful than single 

core (Expected) 

i.e. wc =0.5 

2*( wc) + 2 pd 

 

= 1+ 2 pd W 

ws + Pli W 
(2*wc  ) W 

= 1W 
2.5 2.5 

 

Real 

Dual core 30% less 

powerful than single 

core 

i.e. wc =0.7 

2*( wc)  + 2 pd 

 

 =1.4+ 2 pd W 

ws +  Pli W 
(2*wc  ) W 

= 1.4 W 
2.5 3.5 

 

Theoretical 
Quad core as 

powerful as single 

core 

4* Pws = 4 W 1 + 3 Pfi W 

0.25 + 0.25 + 

0.25 + 0.25 

 

= 1 W 

1.25 1.25 

 

Expected 

Quad core 25% less 

powerful than single 

core (Expected) 

i.e. wc = .25 

4*( wc)  + 4 pq  

 

=1+ 4 pq W 

ws + 3 Pli W 
4*( wc) 

= 1 W 
1.25 1.25 

 

Real 

Quad core 50% less 

powerful than single 

core 

i.e. wc =.5 

4*( wc) ) + pq 

 = 2 + 4 pq W 
ws + 3 Pli W 

(4*wc )  W 

= 2 W 
1.25 2.5 



 23 

 The third column of the table depict the power consumed by different n BCE (single core, dual 

and quad core) processor to execute the sequential program. It can be observed that power 

consumption increases as the number of core is increased either by keeping r resources constant 

to create n-BCE multicore processor or by creating more than one n-BCE processor when all the 

cores are fully utilized. 

  The fourth column gives the amount of power consumed when a program is executed on 

multicore processor without parallelizing the program. The program is executed on a single core 

keeping other cores idle. If a non parallelized program (f=0) is executed on a multicore processor 

with n cores, only one core with r/n resources will execute the program while other (n-1) core 

will be idle consuming (n-1)*z unit of power where z is fraction of power that a core consume in 

idle state (0 ≤ z ≤ 1) [4]. If it is assumed that a core in active state consumes a power of 1 unit, 

i.e., the amount of power consumed by one core during the sequential computation phase is 1 

unit, while the remaining (n − 1) cores consume (n − 1)*z units, during the sequential 

computation phase, the n core processor consumes 1 + (n − 1)*z units of power.  In the parallel 

computation phase, n core processor consumes n units of power, because it takes (1 − f) and f/n 

to execute the sequential and parallel code respectively.  

 In general, the power consumed by the dual core and quad core processor where each 

core is n-BCE core is Pws + Pfi unit of power and Pws + 3 Pfi unit of power respectively. The 

power consumed by the dual core and quad core n-BCE processor is ws + Pli unit of power and 

ws+ 3Pli unit of power respectively where ws= wc + pd . It is observed that the power consumed 

by multicore processor is greater than Pws.    

 The fifth column gives the amount of power consumed by a program to execute on single 

and multicore (dual and quad core) after parallelizing the program. The power consumed by the 

dual core and quad core processor where each core is n-BCE core is Pws unit of power which is 

theoretically possible. The power consumed by the dual core and quad core n-BCE processor is 

2*wc unit of power and 4*wc unit of power respectively. If it is possible to execute the program 

in half the execution time taken by single core processor by reducing the strength of cores by 

50%, then the power consumption of a n-BCE single core processor and a n-BCE multicore 

processor will be equal. But, ideally the strength of the cores is not reduced by 50% thus 

increases the power consumption to execute the same program. It is observed that the power 

consumed by multicore processor is greater than Pws. For example, if the power consumed by a 
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program when executed for 5 unit time on a full blown single core processor Pws is 1. The 

energy consumed by the processor is 5 units. If the same program is executed on dual core 

processor whose strength is reduced by 30% compared to single core processor and if we assume 

the time taken is reduced to half  i.e, 2.5 unit time. The power consumed wc of each core is 0.7 

unit and total power consumed is 1.4 W, but the energy spent is 2*(2.5*0.7) = 3.5 units. 

 The performance per power (Perf/W), which represents the performance achievable at the 

same cooling capacity is based on the average power (W). This metric is reciprocal of energy, 

because the definition of performance is the reciprocal of execution time.  

 In other words, a sequential execution and its parallel execution version will consume the 

same amount of power only when the performance improvement through parallelization scales 

linearly. Otherwise Pwq > Pwd > Pws to finish the same task.  

 Furthermore maximizing and balancing parallelization among cores is important, not 

only for higher performance but also for power supply efficiency and extended battery life. 

 

1.2 State-of-the-Art of Exploiting Parallelism 

All computer systems today, from embedded devices to petascale computing systems, are being 

developed using multicore processors.  

Following are possible approaches available to exploit parallelism: 

 Allow programmers to use parallel programming constructs to explicitly specify which 

parts of the program can run in parallel. 

 Allow operating system (OS) to schedule different tasks on different cores. 

 Allow hardware to extract parallelism and schedule them dynamically.  

 Allow the compiler to extract parallelism and schedule them. 

In first approach, developing and verifying an explicitly parallel program is expensive and 

doesn’t scale with the number of cores [9].  

 In the second approach, the operating system realize each core as a separate processor 

and OS scheduler schedules coarse grain threads on to different cores. In the thread style 

approach, two explicit parallel primitives are independent unless an explicit communication 

primitive (for synchronization) are added to stress what is inside the original code. Further the 

multicore processor architecture differs from traditional multi processors in terms of having 
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shared caches, memory controllers, smaller cache sizes available for each computational unit, 

and low communication latency between cores [18].  Owing to the architectural difference, it is 

desirable to extract fine grained thread and schedule them on to multiple cores instead of 

scheduling coarse grained thread as done in multi chip multiprocessing systems (SMP system). 

  In hardware-centric approach, detecting parallel execution opportunities and creating 

schedules for parallel regions dynamically by effectively utilizing all available resources is 

responsibility of the hardware [19]. This approach adds more circuits, which results in complex 

hardware implementations of algorithms such as branch prediction, instruction level parallelism 

detection, and register renaming. The hardware based approach work under heavy resources and 

time constraints.  

 In software-centric approach, a compiler analyzes the program for the possibilities of 

parallelism, identifies the code which could be executed in parallel and uses suitable scheduler to 

schedule the parallel constructs on to multiple cores. Using the various kind of dependency 

analysis, the compiler can identify the independent instructions that can run in parallel [20]. The 

compilation being offline one time activity, rigorous analysis to achieve optimal amount of code 

parallelization can be carried out. 

1.3 Objectives and Contribution 

The proposed research aims to provide compiler support to exploit parallelism by extracting fine 

grained threads from a sequential program and creating schedules for multiple cores.  

The proposed work involves 

 Parallel region formation or Extracting fine grain threads. 

 Scheduling parallel regions or fine grain threads on to multiple cores.  and 

 Global register allocation. 

The proposed work introduces two additional passes to the original flow of compiler: Fine grain 

thread extractor pass and scheduler pass. The fine grain thread extractor pass of the compiler 

splits the sequential program into parallel regions (fine grain threads) termed as sub-blocks. To 

facilitate global scheduling new data structure called sub-block dependency graph (SDG) is 

proposed. Efforts are made to reduce the compilation time for performing fine grain extraction 

pass. The sub-blocks are created such that they ensure spatial and temporal locality. 
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The fine grained threads can be scheduled using scheduler. One local scheduling heuristic, 

termed as Intra block scheduling and four global scheduling heuristics, termed as Inter block 

scheduling are proposed in the thesis. The scheduler ensures that the sub-blocks scheduled on 

different cores at same time will not communicate nor access same data, thus provide lock free 

synchronization. The schedulers are designed to perform power optimization.   

 The fine grained threads that are scheduled on to different cores need to be allocated 

registers from respective register file of the core on which they are scheduled. The register 

allocator perform the global register allocation on each list of sub-blocks dedicated to individual 

core. Two novel register allocation heuristics are proposed. The first approach proposes a 

register allocation technique which is performed after scheduling and the second approach 

integrates register allocation and scheduling pass to mitigate the phase order problem. In first 

heuristic, the interference graph is constructed incrementally by merging the sub-blocks to create 

hyper sub-blocks. Hyper sub-blocks are created before register allocation to ensure temporal 

locality by pushing maximum instructions on to a core for execution. Hyper sub-blocks also 

ensures that instructions will do zero spills (k-colorable) and will remain in cores private 

memory till it is commited without doing memory reference during execution. 

1.4 Organization of the Thesis 

A brief introduction to design philosophy behind multicore architecture, challenges and issues in 

multicore environment, state of art of exploiting parallelism, and objective of the thesis are 

discussed in the introductory chapter.  

 In Chapter 2, we investigate several existing parallel architectures to understand how 

multicore is different from them. Several hardware and compiler support to exploit ILP 

(Instruction Level Parallelism) on these existing parallel architectures are presented and 

compared. An effort is made to understand the pros and cons of hardware and compiler 

approaches. A detailed survey on register allocation approaches is presented in the later 

part of this chapter.  

 Chapter 3 describes the experimental framework used in this thesis. The framework 

includes a Compiler, Multicore architecture, the metrics used to evaluate the performance 

and the benchmark suites used in the proposed work. The phases of compiler are 

explained. A brief description on how to embed the SSA module in the given compiler is 



 27 

explained. A short description of Transactional Memories (TM) which provide run time 

support in terms of lock free transactions is presented.  

 Chapter 4 aims to provide the details of the support and optimizations achieved in the 

proposed work. Section 4.1 provide the detailed description of fine grain thread extractor 

module. Section 4.2 provide details of schedulers and Section 4.3 details the register 

allocation techniques. The optimizations includes creating power aware schedules and 

finding compile time efficient approaches.  

 Chapter 5 discusses the parallel region formation techniques. Two different approaches 

are proposed to obtain disjoint sets (parallel regions). To facilitate global scheduling new 

data structure called sub-block dependency graph (SDG) is proposed and efficient 

technique to create it is discussed in detail.      

 Chapter 6 explains the implementation details of local scheduling heuristics (Intra Block 

Scheduling) which creates schedules for the parallel regions within the basic blocks of 

CFG. Results in terms of speed-up, power consumption, performance per power and 

communication cost is presented at the end of this chapter.  

 Chapter 7 introduces four global scheduling heuristics (Inter Block Scheduling) which 

schedules the parallel regions formed across the basic block of the CFG. The brief 

discussion on merits and demerits of each heuristics are presented by comparing the 

results obtained by them. The results obtained by Inter block scheduling is also compared 

with the results obtained by Intra block scheduling technique. 

 In Chapter 8, two register allocation techniques for multicore architecture are proposed. 

The first approach proposes a register allocation technique after scheduling and the 

second approach introduces a technique of integrated register allocation and scheduling 

approach to mitigate the phase order problem. The results obtained by the normal register 

allocation approach and integrated approach is compared and presented at the end of the 

chapter. 

 Chapter 9 concludes the thesis by summarizing the achievements of the work, providing 

limitations and suggests future direction. 

Appendix A, Appendix B, List of references and List of publications by author is 

appended to chapter 9. 

 



 28 

CHAPTER 

Literature Survey  02 
 

To achieve high performance computing, a single core processor with parallel processing 

features were developed during 1975–2000 before multicore architecture was introduced by IBM 

in 2001. These parallel architectures either had multiple instruction processing units or multiple 

functional units. As computer architecture started becoming more complex, the compiler 

technology has also equally became an important factor. The success of each innovation in 

computer architecture is dependent on the ability of compiler technology to generate efficient 

code for these architectures. Parallelism has become one of the distinguishing factor in the 

design of high-performance computers. Parallelism comes in different form, namely instruction 

level parallelism (ILP), Task / Thread level parallelism (TLP), Memory level parallelism etc. A 

compiler was used by the parallel architectures to exploit parallelism as required by them to 

squeeze more performance.  

 This chapter discusses the relationship between parallel architectures, Instruction Level 

Parallelism (ILP) extraction techniques and compiler support to exploit ILP for corresponding 

architecture. Several existing parallel architectures such as pipeline, VLIW, and superscalar 

architectures are investigated to understand how multicore is different from them. Several 

techniques in both form, dynamic (hardware) and static (compiler) support to exploit ILP on 

these existing parallel architectures are presented and compared. In section (2.4) a detailed 

survey on register allocation approaches is presented and examines the register allocation 

requirement for multicore architectures.  

2.1 Parallel Architecture, ILP & Compiler 

 

The principle behind RISC architecture is to move the architecture boundary closer to the 

hardware, exposing key performance features to the compiler. By doing so, it can take advantage 

of the compiler by off-loading the task like choreographing complex instructions from the 

hardware to compiler, to get high performance processor. Some of the new generation of the   

microprocessors have implemented branch prediction, ILP detection, register allocation or 

renaming and hazard detection logic in hardware to achieve ILP and faster execution.   
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The analysis at compile time can simplify and eliminate many of the complex algorithms in the 

hardware. Some architecture such as Power4 [21], Cyclops [22], RAW [23][24] and TRIPS 

[25][26] aims to maximally utilize the compiler by fully exposing the hardware and giving 

control to the software systems. Furthermore, the rigorous compiler-based analysis can lead to 

improved optimizations as compared to hardware-based approaches which work under heavy 

resource and time constraints. The current day compilers can analyze the complete program to 

infer detailed information about ILP in a given program code.    

 Instruction level parallelism (ILP) is a technique used to speed up the execution of code 

by allowing parallel execution of sequence of instructions derived from a sequential program 

[27]. The exploitation of ILP in a code is majorly hampered by conditional branch instructions 

and dependent instructions. The dependency analysis can be carried out to identify the set of 

independent instructions that can be executed in parallel. The instruction dependency is of three 

types, namely the name dependency, the control dependency and the data dependency. There are 

two types of name dependencies, Write after Write dependency (WAW) or anti dependency and 

Write after Read dependency (WAR) also known as output dependency. The name dependency 

can be eliminated by register renaming. Dynamic register renaming (by hardware) can eliminate 

WAW and WAR dependencies. But when an intermediate representation of program in static 

single assignment (SSA) form is used, WAW and WAR dependencies are removed without any 

need of hardware [28].  SSA form is an intermediate representation of a program in which each 

variable is defined only once. The control dependencies can be removed by using the hardware 

to predict conditional branches. Read after Write (RAW) dependency also known as true 

dependency falls under the data dependency category. It can be removed at run time using data 

collapsing [29] and re-association [30] technique. These techniques require specialized hardware 

elements. The compilers can be used for carrying out in-depth code analysis to determine the 

data dependency. Compiler driven optimizations are likely to significantly improve the execution 

performance of a processor.    

 To exploit the instruction level parallelism, first in-depth data dependency analysis is 

carried out. This analysis is used for segregating dependent and independent set of instructions 

for scheduling & resource binding. The advancement in the field of VLSI technology has led to 

design of parallel architecture, and the compiler is used for exploiting ILP on such architectures 

[31]. The nature of ILP support offered by compiler is heavily dependent on the architecture and 
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varies for different architecture. The interplay between compiler support and available 

architectural features is shown in Figure 2. Compiler developed for sequeintal architectures such 

as superscalar architectures, does not perform any machine level optimizations and does not 

convey any explicit information regarding parallelsim, special hardware performs machine 

specific optimizations.  

In Dependence and Indipendent architectures such  VLIW and Horizon architectures, the 

responsibility is of machin level optimization is shared between compiler and hardware. 

Compiler explicily indicates the dependences that exist between operations.  

In fully indipendent architectures such as RAW architecture, compiler will be fully aware of  

features of the processor and will take full responsibility of machine level optimization. The 

adventage of these type of architectures is that, execution time and power is saved. 

 

Figure 2.  Compiler vs Hardware Support for Exploiting ILP  

The hardware approach for achieving ILP is being able to execute multiple instructions 

simultaneously either by pipelining the instructions or by providing multiple execution units. 

Pipelined processor, VLIW (Very Long Instruction Word) and super-scalar processors exploit 

ILP to improve execution time. In pipelined processor, a task is broken into stages, and stages 

are executed on different (shared) processing units by overlapping the execution of instructions 

in time [32]. The performance resulting from pipelining is expected to increase with increase in 
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pipeline stages. However, pipelined operations are required to be continuous without interruption 

throughout the program execution. Unfortunately, the processor sometimes stalls as a result of 

data dependency and branch instructions. RISC solution to this problem is code reordering [33]. 

The task of code reordering is generally left to the compiler, which recognizes data dependencies 

and attempts to minimize performance stalls by reordering the program instructions. 

 VLIW processor follows the static scheduling. VLIW issues one long instruction per 

cycle. Each long instruction consists of many tightly coupled independent operations. These 

independent operations are simultaneously processed by suitable execution units in a small and 

statically predictable number of cycles. The task of grouping independent operations into a long 

instruction is done by a compiler [34]. The major drawback with VLIW is that it uses the fixed 

number of instructions. The availability of multiple execution units is not utilized completely, 

because the execution unit which has completed its processing will be idle until all the execution 

units have completed their processing. Super-scalar processor overcomes the drawback of VLIW 

by working on variable number of instructions using simultaneous multithreading, where 

independent threads will run in parallel [35]. The major drawback with the super-scalar 

processor is that all the execution units share the same memory leading to more register spilling, 

and race condition due to limited availability of registers.  

 The multicluster VLIW embedded processor is made up of multiple small processing 

elements (PEs) [36][37][38]. These PE's are individual groups designed by decentralizing the 

computing resources to improve the scalability problem. Each tightly interconnected PE's help to 

reduce the communication cost & power. The instructions partitioned by compiler analysis are 

executed in parallel on these PEs [39]. The main difference between today's multicore processors 

and multicluster VLIW processor is that later has shared data cache, while each core in multicore 

processor will have private caches.  The compiler should also be aware of data which are brought 

into private cache of the core. 

 VLIW and superscalar machines, both benefit from code reordering. In VLIW, all 

dependencies are checked during compile time, and the search for independent instructions and 

scheduling is done exclusively by the compiler. The hardware has no responsibility on the final 

scheduling. On the other hand, superscalar machines depend on hardware for scheduling the 

instructions. But it is accepted that compiler techniques for exploiting parallelism must be used 

in superscalar machines to achieve better performance. 
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2.2 Background of Instruction Scheduling 
 

In case of Superscalar and VLIW machine, the scheduling of instruction is dependent on 

identification of set of independent instructions that can be executed in parallel. The scheduler 

only addresses the issues associated with temporal parallelism leading to exploitation of ILP but 

it may increase register pressure [40]. These schedulers do not take care of spatial issues as 

superscalar and VLIW processors exchange the shared/dependent operands through shared 

register file which is absent in multicore system. For the pipeline based machines, scheduler 

reorders instructions to minimizes pipeline stalls. The reordering of the instructions should not 

change the set of operations performed and should make sure that interfering operations are 

performed in order. 

 In the past, researchers have proposed several instruction scheduling techniques which 

includes List scheduling, Trace scheduling, Superblock scheduling and Hyper block scheduling. 

All these scheduling techniques can be classified based on the nature of the control flow graph 

used, i.e. whether it uses multiple or single basic blocks, and whether it is cyclic or acyclic 

control flow graph.  

 The scheduler that schedules single acyclic basic block is known as local scheduling. List 

scheduling is an example of local scheduling [41] and is based on highest level priority scheme. 

Trace scheduling, superblock and hyper-block scheduling are global scheduling techniques that 

work on regions known as traces which consists of contiguous set of basic blocks [42]. Trace 

scheduling combines the most common trace of basic blocks and schedule them as a single block 

[43]. Superblock scheduling is same as trace scheduling without side entrances [44]. Hyper-

block scheduling combines basic blocks obtained from multiple paths of control flow graph [45]. 

In run-time scheduling, an instruction is issued after it is decoded and when its operands are 

available [46]. The run-time scheduling mechanisms exhibit adaptive behavior which leads to 

higher degree of load balancing. The run-time scheduling policies incur high run time overhead 

which may lead to degradation of execution performance. The logic to make decision at run time 

should be simple and constant time heuristics, otherwise it leads to expensive and complex 

hardware design which requires relatively large amount of silicon area. The complex hardware in 

turn results in increased power consumption. The advantage of compile time scheduling over the 

run-time scheduling is that it can carry out rigorous dependency analysis.  The complexity of the 
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scheduling techniques will affect the compile time of a program but has no adverse impact on its 

execution time.  

 Scheduling techniques for various parallel architectures are summarized in Table II 

illustrating the advantage, drawbacks and algorithm complexity of these techniques.  

TABLE II.  SCHEDULING TECHNIQUES FOR PARALLEL ARCHITECTURE 

 

 

Scheduling 

Technique 

 

 

 

Architectur

e 

 

 

Type 

 

 

 

Details 

 

 

 

Complexity 

 

Basic Block 

Scheduling 

[47] 

 

 

Pipeline 

 

 

Static 

 

Topological sort of Dependence graph. Simple 

and easy to implement. 

 

Restricted to a single block. 

 

  

 

 

O(N log N) 

 

 

Region 

Scheduling 

[48] 

 

 

 

Pipeline 

 

 

 

Static 

 

Creation of regions from blocks and then 

topologically sorting the regions. 

 

Inter block scheduling is made possible. 

 

Operations within a loop cannot overlap with 

those of another loop. 

 

 

 

 

O(N
2
) 

 

 

 

 

Gibbons-

Muchnick 

method  [49 

] 

 

 

 

 

Pipeline 

 

 

 

 

Static 

 

Creation of DAG. Then choosing the instruction 

to be scheduled according to heuristics such as:- 

the node with the max no of children or which 

interlocks with its children or which is on the 

longest path from the leaves. 

 

Heuristic approach makes scheduling simple. 

Dependency DAG’s can be used for other code 

optimizations. Deadlocks are prevented. 

 

Much of the hazard detection is assumed to be 

done by the hardware to make things simple. 

Also, scheduling across basic blocks is not 

considered.  

 

 

 

O(N
2
) 

 

 

Bernstein’s 

method  [50] 

 

 

Pipeline 

 

 

Static 

 

First a level is assigned to each instruction. Next 

a list scheduling is performed in decreasing 

order of priority. 

Nodes on the critical path are assigned higher 

priorities and therefore scheduled first. 

Structural hazards cannot be avoided as the 

DAG is not weighted i.e. it does not take into 

account the latency of each operation. 

 

 

 

 

 

O(Nlog N) 
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Shieh-

Papachristou 

method          

[51][52] 

 

 

 

 

 

Pipeline 

 

 

 

Static  

 

Construction of priority list using several 

heuristics and then assigning time slots based on 

the priorities. 

 

Using multiple heuristics reduces the probability 

of choosing a wrong node for scheduling. 

 

The greedy heuristics used can schedule two 

floating point operations in consecutive cycles 

even when the processor is not pipelined. 

 

 

 

 

 

 

 

O( N + E) 

 

 

 

Superblock 

Scheduling 

[53] 

 

 

 

Pipeline 

 

 

 

Static 

 

Involves finding the most frequently executed 

path using trace selection. Then superblocks are 

formed from these traces and DAG is formed, 

after which list scheduling is performed. 

 

Reduces the complexity associated with side 

entrances by removing them. Also, it focuses on 

the frequently executed paths. 

 

Cannot deal with the situation when different 

execution paths have equal frequencies of 

execution. 

 

 

 

 

 

 

O(N*E) 

 

 

 

The 

Scoreboard 

[54][55] 

 

 

 

 

Pipeline 

 

 

 

 

Dynamic 

 

Used multiple execution units for out of order 

execution. A centralized control unit called the 

scoreboard is responsible for instruction issue  

and execution, including the detection of 

hazards. 

 

Enables out of order execution. Allowed 

instructions behind stalls to proceed. 

 

Structural hazards stall the pipeline. Limited to 

instructions in basic block. 

 

  

 

 

 

 

 

 

Tomasulo 

Algorithm 

[56] 

 

 

 

 

 

Pipeline 

 

 

 

 

 

Dynamic 

 

Two floating point units are used – add and 

multiply/divide. Buffers called reservation 

stations are used for fetching and storing 

instruction operands. The result of an operation 

is stored at reservation stations to remove WAW 

and WAR hazards.  

 

Register renaming removes structural hazards. 

 

Limited to instructions in a basic block. A 

common data bus limits the amount of data 

transfer. 
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List 

Scheduling 

[57] 

 

VLIW and 

Superscalar 

(but mainly 

for 

superscalar) 

 

 

Static 

 

It finds ILP within a single basic block and fills 

data stalls (if any) by instructions in other basic 

blocks. 

 

 

O(N) 

 

Trace 

Scheduling 

[58] 

 

VLIW 

 

Static 

 

It exploits ILP across basic block boundaries 

and tries to locate the most frequently executed 

path called trace by preserving program 

semantics (book-keeping). 

 

 

O(N
2
) 

 

Software 

Pipelining 

[59] 

 

VLIW 

 

Static 

 

It tries to find the maximum ILP through the 

loop unrolling and scheduling the iterations of 

the loop every initiation interval. 

 

 

 

O(N
2
) 

 

 

Enhanced 

Modulo 

Scheduling 

[60] 

 

 

 

VLIW and 

Superscalar 

 

 

Static 

 

 

It schedules the loops by maintaining an optimal 

value of initiation interval. 

 

 

 

 

O(N
2
) 

 

Speculative 

Execution 

[61][62] 

 

VLIW and 

Superscalar 

 

Static 

 

It tries to speculatively execute instructions that 

are moved upward of conditional branches. 

 

 

 

O(N
2
) 

 

 

 

Superblock 

Scheduling 

[63] 

 

 

 

VLIW and 

Superscalar 

 

 

 

Static 

 

 

 

It is derived from trace scheduling. It schedules 

the instructions from most frequently executed 

and optimized superblock (a trace with no side 

entrance is called a superblock). 

 

 

 

 

O(N
2
) 

 

Next section explains the motivation to carry out the research in the area of multicore 

architecture.  

2.3 Scheduler Requirement for Multicore Architecture  

 

i. All the existing techniques find it difficult to make good decision on scheduling because, 

scheduling algorithms are strongly dependent on the machine model for which they are 

developed. The instruction scheduling techniques are NP-complete and follow heuristics. 

Some of the heuristic/ practices are loop transformations, static branch prediction, 
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speculative code motion, predicated execution, software pipelining, and clustering. 

Different heuristics work well with different types of graph.  

ii. In the existing local scheduling techniques, ILP is achieved by scheduling one instruction 

at a time on multiple execution units. To perform this task, a critical path of instructions is 

created by analysing the dependencies. The instruction with lengthy critical path is 

scheduled first to enable other instructions to get scheduled. This technique cannot be 

applied on multi-core environments because two dependent instructions may get 

scheduled on different cores resulting in increased communication latency. The ILP on 

multicore architecture can be fully exploited only if all dependent instructions are 

scheduled on to same core.  

iii. The existing global scheduling techniques work on multiple basic blocks of a CFG and try 

to group them based on the dependency analysis. Since there are three dependencies to 

look for, the output of these techniques were discouraging for most of the applications. 

The programs in static single assignment (SSA) have proved useful by eliminating false 

dependencies in traditional code. Removing false dependencies allows more flexibility in 

scheduling since data independent operations can move close to each other during 

instruction scheduling. Along with simplifying the dependency analysis among the 

instructions, SSA form programs gives solutions to the class of NP-complete problems 

like register allocation and enables various optimizations [64][65]. The proposed work is 

performed on SSA form program, which forms the backbone of further analysis. 

iv. In most of the traditional instruction scheduling algorithms the goal is to improve 

performance in terms of execution time by increasing the amount of instruction-level 

parallelism in program code. Since communication between distant computing resources 

may invite delays, instruction scheduler is expected to take care of spatial problem along 

with temporal problem in multicore environment. The instruction scheduler needs to 

partition instructions across the computing resources. Based on the parallel schedule 

generated by compiler, the power consumption may vary [66]. Power reduction without 

impeding the speedup is an important scheduling constraint for parallel architecture. The 

proposed work involves power-aware scheduling strategies which minimizes the 

switching activities between instructions and use reduced number of cores to achieve 

performance per power. 
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2.4 Survey on Register Allocation 
 

Register allocation is a crucial phase of compilation. It maps unbounded number of variables of a 

program to a fixed number of physical registers of a processor. Values stay in registers as long as 

variables are live, In general, register allocation problem is NP-complete from the fact that 

number of registers available is small and some of them are special purpose registers. Due to 

limited number of available registers, the register allocation to all variables will not be possible, 

and hence are required to be stored in memory. These variables are called spilled variables. The 

cost of spilling is minimized by spilling the least frequently used variables. The commonly used 

register allocation approaches are shown in Figure 3.  

  

 

Figure 3.  Register Allocation Approaches  

Most of the register allocation algorithms assume that the CPU has regular register files and 

these algorithms fail to adopt themselves for irregular architectures. Several solutions have been 

proposed for irregular architectures, but without considering the specific implementation details, 
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it is difficult to achieve optimal register allocation [67][68][69]. The following section discusses 

the various register allocation approaches for single core processors [70, 71, 72, 73, 74, 75, 76, 

77, 78, 79, 80, 81, 82]. In case of multicore processor, each core of the processor has individual 

register file and optimal register allocation is of utmost importance. Multicore architecture 

requires new strategies for register allocation. A brief summary of comparison of the various 

register allocation algorithms is given in the Table II1. The Pros and Cons of these register 

allocation approaches are given in Table IV. 

 Static single assignment (SSA) is an improvement on the idea of def-use chains. The 

advantages of SSA form programs for register allocation are: 

i. Coloring the interference graph of SSA form can be accomplished in polynomial time 

[83,84]. The interference graph of SSA form program is a chordal graph and it inherits all 

the properties such as [85].  

 Chordal graphs are perfect, whose chromatic number is equal to size of the maximal 

clique. 

 Chordal graphs have a simplical vertex which facilitates perfect elimination order 

(PEO). PEO assists the simplification process of interference graph during coloring.  

 The key to good spill-code generation lies in splitting the live-range of a variable at 

the right places. Splitting is obvious in SSA form program as every variable has a 

single contiguous live range. This reduces the register pressure.  

ii. In case of  register allocation using linear scan, the lifetime intervals can be constructed 

easily from SSA form [82]. 

TABLE III.  COMPARISON OF REGISTER ALLOCATION APPROACHES 

Allocation 

Approach 

 

Interferenc

e Graph 

Notion 

 

 

Region 

Notion 

 

Live Range 

Notion 

 

Spilling 

Approach 

 

Design 

 Paradigm 

 

Complexity 

 

 

Chaitin’s 

 

 

Per 

Function 

 

 

Basic Block, 

Super Block 

 

 

Program 

Points 

 

 

 

Aggressive 

 

 

Approximation 

 

O(|V|* 

log(V)) 

V = num of 

live-ranges 

 

Brigg’s 

 

 

Per 

Function 

 

 

Basic Block, 

Super Block 

 

 

Program 

Points 

 

 

Delayed; 

Optimistic 

 

 

Approximation 

 

O(|V|* 

log(V)) 

V = num of 

live-ranges 
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Priority 

Based 

 

 

 

 

Per 

Function 

 

 

 

 

Basic Block, 

Super Block 

 

 

 

Set of Basic 

Blocks 

Lower 

priority, 

constrained 

live ranges; 

Incrementally 

Add live-

ranges till 

colourable. 

 

 

 

Greedy 

 

O(r * (V-r)) 

 

r = no of 

registers 

 

V = no of 

live-ranges 

Graph Fusion 

 

 

 

 

Per Region 

 

 

 

Basic Block, 

Super Block, 

Function 

 

 

 

Program 

Points 

 

 

Delayed; 

Optimistic 

 

 

 

Combine-and-

Conquer 

 

O(f * (V + E)) 

f = #fusion-

ops 

V = 

#liverange 

E = 

#interference 

Edges 

Linear Scan 

 

 

 

 

Per 

Function 

 

 

 

Basic Block, 

Super Block 

Program 

Point: 

relaxed, with 

first def/use to 

last def/use, 

without 

considering 

discontinuity. 

 

 

 

Aggressive 

 

 

 

Greedy 

 

O(V * E) 

 

V = 

#liveIntervals 

E = 

#interference 

Edges 

 

 

Traub’s Bin-

Packing 

Linear Scan 

 

 

 

Per 

Function 

 

 

 

Basic Block, 

Super Block 

 

Program 

Points: strict, 

with first 

def/use to last 

def/use, but, 

considering 

discontinuity. 

 

Spills only if 

the current 

live range 

does not fits 

into an 

existing live-

range’s hole.  

 

 

 

Greedy 

 

O(V * E) 

 

V = 

#liveIntervals 

E = 

#interference 

edges 

 

Multi-Flow 

of 

Commodities 

 

Per 

Function 

 

Basic Block, 

Super Block 

 

Program 

Points 

 

Takes spill 

decisions at a 

point subject 

to minimizing 

the overall 

cost of the 

flow graph. 

 

Incremental, 

 Heuristic 

Based, Network 

Flow. 

 

O(|V| + |E|) 

V = 

#liverange 

E = 

#interference 

edges 

Integer 

Programming 

 

 

 

 

Per 

Function 

 

 

 

Basic Block, 

Super Block 

 

 

 

Program 

Points 

 

Takes spill 

decisions at a 

point subject 

to minimizing 

the overall 

cost of 

variable usage 

and imposed 

constraints. 

 

 

 

Linear  

Programming 

 

 

 

O(V3) 

 

V = 

#liverange 

 

 

Partitioned 

Quadratic 

Programming 

 

 

 

Per 

Function 

 

 

 

Basic Block, 

Super Block 

 

 

 

Program 

Points 

 

Takes spill 

decisions at a 

point subject 

to minimizing 

the overall 

cost of 

variable usage 

and imposed 

constraints. 

 

 

 

Numerical 

Programming 

 

 

O(V * |k|3) 

 

V = 

#variables 

k = #registers 



 40 

 

TABLE IV.  PROS AND CONS OF VARIOUS REGISTER ALLOCATION APPROACHES 

 

Allocation Approach 

 

 

Pros 

 

Cons 

 

 

 

Chaitin’s 

 

 

 

Simple and intuitive 

 

In case a live range is spilled 

due to lack of registers at a 

program point, all uses of that 

live range go through memory 

even though some parts of the 

live range could have been 

allocated a register. 

 

 

 

Brigg’s 

 

 

May alleviate the problem with 

Chaitin’s approach for certain 

programs. 

 

 

 

Does not eliminate the above 

problem with Chaitin’s 

approach. 

 

 

 

 

Priority Based 

 

Attempts to assign registers to 

the most important live ranges 

and to spill the least important 

ones if necessary; maintains the 

simplicity of the graph colouring 

based allocation approaches. 

 

 

 

Takes neither execution 

frequency nor program 

structure into account when 

splitting live ranges, and there 

is no guarantee that splitting 

points do not end up along 

frequently executed edges 

raising code execution time. 

 

 

 

 

 

 

Graph Fusion 

 

For small programs, provides 

results identical to Chaitin’s, in 

lesser time usually; For 

programs with huge register 

pressure, uses profile 

information to produce better 

register assignment, which 

cannot be done in other graph 

colouring or linear scan 

algorithms. 

 

 

 

 

 

May result in partial 

redundancies. 

 

Linear Scan 

 

Simple, Faster than graph 

colouring based approaches, 

used with JIT compilation. 

 

 

Non-Optimal; Does not 

handle “holes” in live-ranges. 

 

 

 

Extended Linear Scan 

 

Guarantees minimal number of 

Register usage; Simple; Faster 

than graph colouring based 

approaches; used with JIT 

compilation. 

 

 

 

May insert too many copy-

swap instructions 

 

 

 

Traub’s Bin Packing 

Linear Scan 

 

Simple, Faster than graph 

colouring based approaches, 

Used with JIT, Handles “holes” 

in live-ranges, Better allocation 

than simple Linear Scan. 

 

 

 

 

Non-Optimal. 
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SSA Based Approaches 

 

 

 

Colouring & Spilling can be de-

coupled,  Colouring can be done 

in polynomial time, Lower 

register pressure. 

 

 

 

Additional time and 

complexities (lost copies etc) 

arising out of use of SSA 

form. 

 

Integer Programming 

Based 

 

Powerful design paradigm; 

Produces very good quality 

code; Separation of spilling & 

code generation makes process 

faster; Reduces code size. 

 

Runs into exponential time in 

worst case (Linear 

Programming is NP-

Complete); May produce 

large number of “move” 

instructions; Complex to 

represent Interference graph 

as a set of 0-1 linear 

equations. 

 

 

 

Partitioned Quadratic 

Programming 

 

Can find optimal allocation in 

97.5% of cases; Heuristics can 

be used in rest of the cases; runs 

in polynomial time. 

 

PQP is NP-Complete in 

general; May not be able to 

handle non-disjoint register 

aliases; Complex to represent 

Interference graph as a set of 

quadratic equations. 

 

 

 

Multi-Flow of 

Commodities 

 

Produces reduced size programs 

than graph-coloring based 

approaches; Quickly finds initial 

allocation using heuristics. 

 

 

May take a long time to get to 

the most optimal register 

allocation. 

 

Instruction scheduling and register allocation phases have received wide attention in industrial 

and academic research, but are generally considered as separate problems. Traditionally, 

instruction scheduling and register allocation are performed independently. Either scheduling or 

register allocation can be performed first followed by the other. These two phases have 

conflicting goals and work in an opposing manner. Instruction scheduling aims at keeping the 

functional units busy by executing maximum number of parallel instructions in a short period of 

time. This requires a large number of values to be held in registers causing  numerous spills. On 

the contrary, the register allocator aims at keeping the register pressure optimum by holding a 

small number of values in registers for a long period, leading to decreased utilization of the CPU.  

 Phase ordering problem has severe impact on code optimization. At times to exploit the 

ILP, instruction scheduling phase precedes the register allocation. This approach sometimes 

increases the register pressure.  Alternatively in order to achieve efficient utilization of register 

file, register allocation phase can be carried out before the instruction scheduling phase. Though 



 42 

this approach will result in efficient register utilization but during the instruction scheduling 

phase, it may create empty slot schedule causing increased execution time. Studies on the phase 

ordering problem have tried to combine the instruction scheduling and register allocation phases 

to address the issues related to register spilling and loss of ILP [86][87].  

 Integrated pre-pass scheduling (IPS) combines a pre-pass scheduler with a liveness 

analysis to estimate register pressure at the beginning of each basic block in the program [88]. 

When a variable is defined, it increases register pressure by getting allotted a register and when it 

is done with its last use, the register pressure decreases by freeing that register. The register 

pressure is monitored continuously and when the pressure crosses a threshold, IPS prefers to 

shorten live ranges resulting in spills. 

The parallel interference graph approach uses an extended interference graph to detect excessive 

register demands and guide schedule sensitive register allocation (PIR) [89]. The reduction in 

register demands is achieved through live range spilling. 

 The unified resource allocation (URSA) method is based on register reuse direct acyclic 

graph (DAG) [90]. Edges in a register reuse DAG connect two instructions if the target 

instruction can reuse a register freed by the source. It is based on the measure and reduce 

paradigm. Groups of instructions that use too many registers if scheduled in parallel are 

identified. These are called excessive sets and they are then used to drive reductions of the 

excessive demands for resources. Live range splitting is used for reducing the register pressure. 

Various groups have implemented code generators integrating optimal instruction selection, 

instruction scheduling and register allocation, based on formulations such as integer linear 

programming.  

2.5 Recent Developments 
 

The multicore processors offer abundant computing resources offering opportunity to exploit 

ILP. The thesis, presents the techniques for exploiting the fine grained parallelism for multicore 

processor using compiler. This is the first attempt of its kind to exploit a fine grain parallelization 

using compiler.  

Currently the research community is trying to counter the challenges either by designing new 

schedulers (both dynamic & static), Data access partitioning to extract fine grain threads, pre-
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fetching data on to private caches of the core, and load balancing. These work are being done in 

parallel to the work presented in this thesis and are summarized in Table V. 

 

TABLE V.  RECENT DEVELOPMENT IN THE AREA OF MULTICORE 

Approach Type Year Description 

 

 

 

Space-Time 

Scheduling of 

Instruction-Level 

Parallelism on a Raw 

Machine [91] 

 

 

 

 

 

 

Static 

 

 

 

 

 

1998 

 

 

This work was proposed as part of RAW project. The RAWCC 

compiler was developed to compile general purpose sequential 

programs to distributed RAW architecture. The scheduler was 

used to assign instructions in basic block and data belong to that 

instruction to processing unit. The technique to exploit ILP in this 

work is an improved version of the concept what is used for 

pipelined processors.  

 

 

 

 

 

Extending Multicore 

Architectures to 

Exploit Hybrid 

Parallelism 

in Single-thread 

Applications [92] 

 

 

 

 

Dynamic 

 

 

 

 

2007 

 

 

Proposes a multicore architecture, referred to as Voltron, that 

extends traditional multicore systems in two ways. First, it 

provides a dual-mode scalar operand network to enable efficient 

inter-core communication and lightweight synchronization. 

Second, Voltron can organize the cores for execution in either 

coupled or decoupled mode. In coupled mode, the cores execute 

multiple instruction streams in lock-step to collectively function as 

a wide-issue VLIW. In decoupled mode, the cores execute a set of 

fine-grain communicating threads extracted by the compiler. 

 

 

 

Data Access 

Partitioning for Fine 

grain 

Parallelism on 

Multicore 

Architectures [93] 

 

 

 

 

 

Static 

 

 

 

 

 

2007 

 

 

The work aims to reduce dispersal of data accesses across the 

cores. A profile-guided method is proposed for partitioning 

memory accesses across distributed data caches. The profiler 

determines affinity relationships between memory accesses and 

working set characteristics of individual memory operation in 

program. The compiler uses the profiled information to perform 

program-level partition of the memory operations to divide the 

memory accesses across the data caches. As a result, the data 

accesses are proactively dispersed to reduce memory stalls. 
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Fine-grain Parallelism 

using Multi-core, 

Cell/BE, and GPU 

Systems: 

Accelerating the 

Phylogenetic 

Likelihood Function 

[94 ] 

 

 

 

 

Static 

 

 

 

 

2009 

 

This work focuses on exploiting fine-grain parallelism in Mr 

Bayes, a well-known Bioinformatics application as loop-level 

parallelism is a common characteristic of such scientific 

applications. Three different existing architectures such as general 

purpose multicore processor, Cell/BE, and Graphics Processor 

Units (GPU) systems are analyzed in terms of execution 

performance, scalability and  

programmability. 

 

Compiler Assisted 

Dynamic Scheduling 

for Effective 

Parallelization of Loop 

Nests on Multicore 

Processors 

[ 95] 

 

 

 

 

Static 

 

 

 

 

2009 

 

Proposes an automatic parallelization approach for transforming 

input affine sequential codes into efficient parallel codes such as 

OpenMP, that can be executed on a multi-core system in a load-

balanced manner. This approach employs a compile-time 

technique that enables dynamic extraction of inter-tile 

dependences at run-time, and dynamic scheduling of the parallel 

tiles on the processor cores for improved scalable execution. 

 

 

 

 

Compiler-assisted 

Data Distribution for 

Chip Multiprocessors 

[ 96] 

 

 

 

 

 

Static 

 

 

 

 

 

2010 

 

Presents a compiler-based approach for analyzing data access 

behavior in multi-threaded applications to mitigate the effect of 

data access latency. As in traditional data access analyses such as 

reuse, dependence and locality analysis which focus on affine 

array subscript patterns in loop nests of a single threaded 

application. They propose a  technique to find the relationships of 

memory locations accessed by different loop iterations in a 

parallel programming context. 

 

 

Resource-Aware 

Compiler Perfecting 

for Many-Cores [97] 

 

 

 

Static 

 

 

 

2010 

 

Try to address the memory level parallelism issues thrown by the 

shared caches in multi and many core environment. Propose and 

evaluate a compiler loop pre-fetching algorithm targeted at many-

core architectures and is aware of the number of simultaneous pre-

fetches supported. 

 

 

Dynamic Scheduler 

for Multi-core 

Systems [ 98] 

 

 

 

Dynamic 

 

 

 

2010 

 

This paper propose a dynamic scheduling algorithm in which the 

scheduler resides on all cores of a multi-core processor and 

accesses a shared Task Data Structure (TDS) to pick up ready-to-

execute tasks. In this method the processor has the onus of picking 

up tasks whenever it is idle. 
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Contention-Aware 

Scheduling 

on Multicore Systems 

[99] 

 

 

 

 

 

 

Static 

 

 

 

 

 

 

2010 

 

This work investigates how and to what extent contention for 

shared resource can be mitigated via thread scheduling.  The work 

identifies a classification scheme for threads to determine how 

they affect each other when competing for shared resources. The 

classification scheme, along with contention for cache space 

addresses the contention for other shared resources, such as the 

memory controller, memory bus and pre-fetching hardware.  

 

Compiler and  

Runtime Techniques 

for Automatic 

Parallelization of 

Sequential 

Applications 

[100 ] 

 

 

 

 

Static 

 

 

 

 

2011 

 

This work is carried out by Compilers Creating Custom Processors 

(CCCP) group in The University of Michigan. This dissertation 

tackles many challenges faced in automatic parallelization of 

sequential applications. The first phase of the work identifies the 

parallelizable portion in the program and converts it to parallel 

version. In the second phase they propose a runtime system 

STMLite to monitor the parallelized program behavior.  

 

An automatic parallel 

code generation tool 

for data translation of 

non-uniform FFT 

(NuFFT) application 

for multicore 

processors is proposed 

in this paper [101] 

 

 

 

 

Static 

 

 

 

 

 

2012 

 

Two scalable parallelization strategies, namely, the source-driven 

parallelization and the target-driven parallelization is used. To 

improve data locality while trying to balance workloads across the 

cores, equally sized geometric tiling and binning strategies are 

employed. This tool also consists of a code generator and a code 

optimizer for the data translation. 

 

 

 

Compilers for Low 

Power with Design 

Patterns on Embedded 

Multicore Systems 

[102] 

 

 

 

 

 

 

 

 

 

Static 

 

 

 

 

 

 

 

2013 

 

In this work case studies are presented to investigate compilers for 

low power with parallel design patterns on embedded multicore 

systems. Two major parallel design patterns: Pipe & Filter and 

Map Reduce with Iterator are evaluated. Authors has attempted to 

devise power optimization schemes in compilers by exploiting the 

opportunities of the recurring patterns of embedded multicore 

programs. In all two cases of the patterns investigated, the 

common recurring patterns of programs are exploited to seek the 

opportunity for compiler optimizations for low power. Proposed 

optimization schemes are rate-based optimization for Pipe & Filter 

pattern and early-exit power optimization for Map Reduce with 

Iterator pattern. 



 46 

 

 

Increasing Off-Chip 

Bandwidth 

in 

Multi-Core 

Processors 

with 

Switchable 

Pins 

[103] 

 

 

 

 

Dynamic 

 

 

 

 

2014 

 

This work address the bottleneck due to slow memory accesses by 

increasing off-chip memory bandwidth by enabling more memory 

channels. The main contributions in the work includes, devising a 

memory controller that can dynamically increase the off-chip 

bandwidth at the cost of a lower core frequency and  a switchable 

pin design which can convert a power pin to a signal pin or the 

other way around. The switching policy is dynamic which will 

identify the memory intensive phases.  This switches the system to 

prioritize memory bandwidth or core performance according to the 

identified phase. 

2.6 Conclusion 
 

Exploiting ILP from a sequential program is a combined effort of hardware and compiler. This 

chapter provides an overview of various parallel computer architectures and compiler for these 

architectures. The parallel architectures include pipelined processors, VLIW, superscalar, and 

clustered VLIW processors.  

 The computer architectects of these parallel architectures were aware of support offered 

by compiler at different levels to exploit ILP, i.e. compiler support is one of the design issues to 

be considered while designing these parallel architectures.  

 To generate high quality code for these architectures scheduling and register allocation 

need to be efficiently implemented along with various analysis, optimization and transformations 

of the program written in high level language. A detailed study of scheduling techniques and 

various register allocation techniques are studied and presented in this chapter. The outcome is 

the knowledge required to understand the research gap in multicore and many core architecture.  
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CHAPTER 

Experimental Framework 03 
 

In this chapter a generic compiler frame work for multicore architecture has been proposed with 

a view to exploit instruction level parallelism. A sample benchmark program is used for analysis 

of the performance of proposed framework. The speedup, power consumption, performance per 

power and communication cost is used as performance metric. The proposed frame work is 

generic and is independent of architecture. 

 The experimental setup uses Jackcc an optimizing C Compiler that generates code using 

Jackal ISA. Without loss of generality, for the ease of computation, it is assumed that each core 

of the multicore processor takes on an average one cycle for executing an instruction.  Each core 

of multi core processor is considered to be equivalent to the single core processor. It is also 

assumed that there is no context switch while executing a parallel region on a multicore 

processor. 

3.1 Multicore Architecture  

 

The target multicore architecture model used is a fine grained architecture. This architecture 

exposes the low level details of hardware to compiler. The architecture supports minimal set of 

mechanisms in the hardware and these mechanisms are fully exposed to runtime software 

environment and compiler. The runtime system manages mechanisms historically managed by 

hardware, and compiler has responsibility of managing issues like resource allocation, extracting 

parallel constructs or fine grain threads for different cores, and creating schedules. 

 The multicore environment has multiple interconnected tiles and on each tile there can be 

one RISC processor or core as shown in Figure 4 & Figure 5. Each core has instruction memory, 

data memory, PC, functional units, register files, configurable logic and source clock. FIFO is 

used for communication. The register files are distributed, eliminating the small register name 

space problem. The cores are assumed to be homogeneous. Such architectures can be seen in 

Power4 [21], Cyclops [22], RAW [23][24] and TRIPS [25][26] architecture. 
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Figure 4.  Compiler Generated Code and Their Relation with Architecture (Core/Processor)  

 

 

Figure 5.  On Chip Multiprocessors (Cores) Interconnections  

3.2 Compiler 

 

The proposed work uses Jackcc Compiler [102]. This is an open source compiler developed at 

university of Virginia. The work flow of the compiler is shown in Figure 6. The compilation 

process is divided into manageable units called phase. The front end module of the compiler 

takes the source code as input and produces the DAG. The DAG2CFG module extracts the quads 

and then it forms the CFG consisting of basic block. The basic block in CFG of Jackcc is called 

Arena, and instruction inside the block is called Quad.  
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Figure 6.  Original Flow of Compiler  

Instructions are in SSA form. The original Jackcc compiler used SAME function instead of 

implementing Φ functions. The register allocator places two live ranges in the same physical 

register. A SSA conversion module has been integrated within in Jackcc compiler. The process 

of converting a Non-SSA form program to SSA form program has two steps and these steps are 

shown in Figure 7.  

Step 1: Placing Phi (ɸ) statements by computing iterated dominance frontier.  

    Step2: Renaming variables in original program and Phi (ɸ) functions, using dominator tree and 

rename stack to keep track of the current names. 

 

Figure 7.  Sequence of Functional Call in Compiler to Generate SSA form Program  

Register allocation is achieved by color_graph module of Jackcc compiler which is based on 

Chaitin's register allocation approach. The various phases of color_graph module is shown in 

Figure 8. 
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Figure 8.  Register Allocation Framework  

Live range of the variable is computed by performing liveness analysis using def-use chains and 

each live range’s are numbered uniquely. An interference graph is constructed with the help of 

live ranges. The resulting interference graph may not be k-colorable. Coalescing and 

simplification are done to make this interference graph k-colorable. The Coalesce phase removes 

redundant copy instructions by combining the sources of the target live ranges. Spill cost 

computation provides the cost of load and store instruction (spill code) that is required to spill a 

live variable. Simplification is a technique for determining the minimum number of registers 

required by a particular interference graph and the order in which live ranges are assigned 

registers. It determines if a graph can be assigned with given set of registers. If interference 

graph is not simplifiable, a live variable with less spill cost is spilled i.e., Load and Store 

instructions are inserted in the program code. The variables in simplified interference graph are 

assigned register at the register assignment phase and spill code is inserted for the spilled 

instructions. 

 The dead code elimination, peephole optimization, common sub-expression elimination, 

etc, are done by appropriate modules. Assembly level program is generated by Quad2Asm 

module. The detail description of original Jackcc compiler and modifications made in the 

proposed work is given in Appendix B. 

 The work proposed in this thesis includes the modification of Jackcc compiler to extract 

fine grain threads and to create schedules for multicore processors. Once compiler successfully 

identifies parallelization opportunities (fine grain threads) in the program and creates the 

schedules for multicore processors, a runtime system is required to monitor the execution 

behavior of parallelized program and fix any miss-speculations that might happen. The runtime 

speculation engine follow the static parallelization frame work as shown in Figure 9. The 

parallelized code generated during compile time is later executed along with a runtime 

speculation engine to monitor execution and roll-back in case of any miss-speculations. 
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Figure 9.  Run Time Support  

3.3 Benchmarks 
 

The test cases that are used to evaluate the proposed work are taken from RAW benchmark suite 

[104][105], and are modified to make it compatible with Jackcc compiler. RAW benchmark suite 

is designed as part of RAW project in MIT and are maintained under CVS (Concurrent Versions 

Systems), to facilitate benchmarking and comparing reconfigurable computing systems.  

 The RAW benchmark suite contains twelve programs designed to facilitate comparing, 

validating, and improving reconfigurable computing.  

TABLE VI.  RAW BENCH MARK SUITE 

Benchmarks Used 

Bheap X 

Bubble sort X 

DES encryption √ 

FFT (Integer fast fourier transform) √ 

Graph Problem (ssp-single source shortest path, spm- 

multiplicative shortest path) 
X 

Integer Matrix Multiplication √ 

Jacobi Relaxation X 

Live (Game based on matrix) X 

Merge Sort √ 

NQueens X 
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Memory and 

Data Flow 
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Parallel Code 

Generation 
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3.4 Experiment Evaluation 
 

The result discussed in this thesis is based on the simulated model of the target architecture, with 

Dual core and Quad core. The results are shown for four extreme test cases of the benchmark 

suite such as DES, Integer matrix multiplication, Fast Fourier transform and Merge sort. The 

results with three active cores on a quad core machine are presented to illustrate the power 

optimization possibility. 

Definition of work and time 

Definition 1: The work is defined as unit of task involving execution of finite number of 

instructions of a given program. A work with n instruction will usually have a mix of 

computation instructions and data access instructions. We assume that out of n instructions p is 

number of computational instructions and c is number of data access instructions. 

Definition 2: The execution time is defined as the number of CPU cycles spent for completing 

the work. The total execution time  tn is summation of total  computation time tp and total data 

access time tc.  

                                                           

 

   

     

 

   

                                                                                 

The execution time is computed by multiplying the number of instructions in the sub-block and 

average time taken to execute an instruction. Though each instruction execution may take 

different amount of time, without loss of generality, it is assumed that average time taken to 

execute an instruction is constant. 

 Amdahl’s law for multicore architecture proposed by Hill-Marty [11] is used for 

analyzing the speedup performance. The result is normalized with respect to “Base Core 

Equivalents (BCE) proposed in the Hill-Marty model. The speedup performance of n-BCE single 

core processor is 1.  

 Woo-Lee model [12] is used for checking the energy efficiency of the proposed 

approach, and performance per power. The model for power consumption with n-cores considers 

the fraction of power k that a core consume in idle state (0 ≤ k ≤ 1). It is assumed that a core in 

active state consumes 1 unit of power, i.e., the amount of power consumed by one core during 

the sequential computation of program is 1 unit, while the remaining (n − 1) cores consume (n − 

1) * k units. Thus, during the sequential computation phase, the n-core processor consumes 1 + 
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(n − 1) * k units of power. In the parallel computation phase, n core processor consume n units of 

power. Because it takes (1 − f) and f/n to execute the sequential and parallel code, respectively, 

the formula for average power consumption W in watt is given in equation (02), where f is the 

fraction of computation that can be parallelized (0≤ f ≤  1).  

 

                                           
             

      
 
 

                                                           

 The model for performance per watt (Perf / W), represents the performance achievable at 

the same cooling capacity and is reciprocal of energy, as the performance is reciprocal of 

execution time. The Perf / W for multicore  is given  in equation (03). The Perf  / W of single 

core processor is 1. 

 

                                             
    

 
 

 

             
                                                  

 

The communication cost is calculated if the dependent fine grain threads are executed on 

different cores. The cost of communication depends on the total number of variables shared by 

the fine grain threads (Nv), total number of times a core communicates with a different core 

(Ntc), and architecture dependent communication latency (cf). The communication cost is 

formalized as in equation (04).  

 

 

  

v.  

 

The equations given in Section 3.4 used to show the result in later chapters. 

 

 

 

 

 

 

                                            Zero: if all dependent  fine grain threads are scheduled on to  

     same core. 

Communication  cost is  

                                           Nv*Ntc*cf:     Otherwise                                                       (04) 
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CHAPTER 

Compiler Assisted Parallelization and 

Optimization for Multicore Architecture 
04 

 

This chapter briefly explains the techniques to achieve the proposed research objectives 

excluding the implementation details and results. The implementation details and results are 

presented in later chapters.  

 The proposed work introduces two additional phases to the normal flow of compiler as 

shown in Figure 10. A fine grain thread extractor phase to create parallel regions and the 

scheduler phase to create schedules for multiple cores. The register allocation phase is modified 

to view the private register files of individual cores.  

 

Figure 10.  Modified Flow of Compiler to Create Disjoint Sub-blocka and to Create Schedules  

Front end of a compiler converts a high level language source code (C Program) to Direct 

Acyclic Graph (DAG). The DAG is used for creating control flow graph consisting of basic 

blocks. CFG is utilized for loop unrolling, dead code elimination, common sub expression 

elimination and generation of SSA form program. The fine grained thread extractor carries out 

the dependency analysis on SSA form program and creates parallel regions (sub-block) within 

the basic block. Since the sub-blocks within a basic block can be executed in parallel, are termed 

as fine grained thread. The fine grained extractor module produces the Sub-block Dependency 

Graph (SDG) for global scheduling and sub-blocks for local scheduling. The fine grained thread 

can be scheduled using scheduler. The schedules are utilized for identifying the individual 

threads for the individual core and for these thread register allocation is carried out by register 

allocator module. Finally assembly code generator module produces the assembly code. 

 As indicated in the diagram, the sub-blocks / SDG are created from SSA form program 

after analyzing the dependencies. Instead of creating SSA form and then carrying out the  
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analysis to form the sub-blocks / SDG which requires two separate passes to perform the 

operation, SSA translation and Fine grained extraction module is merged where the sub blocks 

are formed at the time of SSA form generation resulting into compilation time reductions. 

 Since the sub-blocks are disjoint, when scheduled on different cores do not communicate 

with each other resulting into reduced communication latency and preventing race condition 

[03][05].  

 In order to reduce the power consumption, an approach to find the optimal number of 

cores required for execution of a program without compromising with the speed-up [02][05] has 

been proposed. 

4.1 Fine Grain Thread Extractor  

The fine grain thread extractor module acts upon the basic blocks (Bp) of control flow graph 

(CFG). The instructions in each basic block of CFG are analyzed for dependency to create 

disjoint sub-blocks. In Figure 11, the CFG has four basic blocks B1, B2, B3 and B4. The disjoint 

set operations are applied on each basic block to form sub-blocks SBi. The sub-block SBi 

belonging to basic block Bp is refereed as SBiBp.  

 
  

Figure 11.  Control Flow Graph with of Basic Block Bp Sub-blocks SBi 

In general  programs have three kinds of data dependence [6]: true dependencies (Read-after-

Write), anti-dependencies (Write-after-Read), and output dependencies (Write-after-Write). 

Static single assignment (SSA) is an intermediate representation of the program, wherein each 

variable has only one definition in the program text. This is an improvement on the idea of def-
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use chains. The advantages of SSA form program is that it removes output dependency and anti 

dependency between instructions. Compiler only needs to look for true dependencies while 

extracting parallelism. Figure 12.a gives a program segment which is converted to SSA form 

program and is shown in Figure 12.b. The SSA form program is analyzed and disjoint set 

operations are applied to produce two sub blocks which are shown in Figure 12.c. 

 

Figure 12.  (a) Non SSA Program (b) SSA Form Program (c) Disjoint sub-blocks  

Definition 3: Disjoint sub-block 

Let S be a list of disjoint sub-blocks. That is, for all sub-blocks {SBi : i ϵ I} in S indexed by I, the 

intersection of these sub-blocks is empty: SBi∩SBj=Ø. The union of all sub-blocks in list is 

given by,  

                                                                                                        

Where i serves as an auxiliary index that indicates which SBi the instruction x came from. 

Creating sub-blocks has some positive offshoots. 

 This conforms to the principal of spatial locality as the closely related or dependent 

instructions are grouped together in sub-blocks. 

 Minimizes the cache coherence problems as the instruction stream of a sub-block 

scheduled to a core is not dependent on what is scheduled on the other cores at a time. 

 This in turn reduces the need for communication among the cores.  

 Since for the instruction stream, dependency analysis is done in the compilation phase the 

hardware level reordering overhead is reduced. This makes the technique power aware. 
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The sub-blocks are disjoint within a basic block of CFG, but the sub-blocks across the basic 

blocks need not be disjoint. The non-disjoint sub-blocks should be executed in order. Inter block 

scheduling is a process of finding the non-disjoint sub-blocks across the basic blocks and define 

AFTER relation between them.   

Definition 4: AFTER  

The sub-block SBj of block Bq should be scheduled after SBi of basic block Bp where p≠q, if one 

or more instructions in SBj has true dependency with the instruction in SBi. The SBj is AFTER 

related with SBi and it is denoted as SBi  SBj. 

A sub-block dependency graph (SDG) is constructed to guide the inter block scheduler.  

Definition 5: Sub-block Dependency Graph (SDG) 

The SDG is graph G (V, E), where vertex vi ϵ V is a sub-block SBiBp, and the directed edge e ϵ 

E, is drawn between vertex SBi ϵ Bp and vertex SBj ϵ Bq where p≠q. We say SBjBq is AFTER 

related to SBiBp. SDG is represented as dependency matrix. In dependency matrix all sub-blocks 

are arranged in first column and rest of the columns entry indicates dependency list. If the sub-

block SBjBq is dependent on sub-block SBiBp, then SBiBp is added in the dependency list of 

SBjBq, meaning SBjBq should be scheduled only after SBiBp completes its execution. The sub-

block SBjBq can be scheduled only if the list is empty otherwise it should wait till the list 

becomes empty.  

 
 (a) 

 

(b) 

 Sub-

blocks 

Dependency List 

1 SB1B1   

2 SB2B1   

3 SB3B1   

4 SB1B2 SB1B1  

5 SB2B2 SB3B1  

6 SB1B3 SB3B1  

7 SB2B3 SB2B1  

8 SB1B4 SB1B2  

9 SB2B4 SB1B3 SB2B2 

10 SB3B4   

11 SB4B4 SB2B2 SB2B3 

Figure 13.  (a) Sub-block Dependency Graph (b) Depenedency Matrix  
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4.2 Scheduling   

In the proposed compiler framework, scheduling phase follows the SSA translation and sub-

block creation phases. The scheduler generates schedule for each core. Each schedule consists of 

list of sub-blocks that can be scheduled on a core. Table VII shows, generation of two schedules 

for a dual core machine. Scheduling sub-block may be local or global. The local scheduling is 

termed as Intra block scheduling, where only sub-blocks inside a basic block are considered for 

scheduling. Global scheduler (Inter block scheduler) identifies all the independent sub-blocks in 

a CFG and formulates the schedule. Four novel inter block schedulers are proposed in the current 

research. The Height Instruction Count Based scheduler (HIB), Dependent Sub-block First based 

scheduler (DBS), Most Dependent Sub-block First scheduler (MDS) and Largest Latency Sub-

block First scheduler (LLSF). 

TABLE VII.  LIST OF SUB-BLOCKS GENERATED BY MDS SCHEDULER 

Dual Core 3 Active Cores Quad Core 

Core 1 Core 2 Core 1 Core 2 Core 3 Core 1 Core 2 Core 3 Core 4 

SB3B1 

SB1B1 

SB1B3 

SB2B3 

SB1B4 

SB2B4 

SB2B1 

SB2B2 

SB1B2 

SB3B4 

SB4B4 

SB1B1 

SB2B3 

SB1B2 

SB1B4 

SB2B1 

SB2B2 

SB3B4 

SB2B4 

SB3B1 

SB1B3 

SB4B4 

SB1B1 

SB2B3 

SB1B4 

SB2B1 

SB2B2 

SB2B4 

SB3B1 

SB1B3 

SB4B4 

SB3B4 

SB1B2 

  

In general the global scheduler selects the sub-block i of basic block Bp (SBiBp) from the sub-

block dependency matrix if its dependency list is empty. Sub-block dependency matrix is jagged 

matrix representation of SDG as shown in Figure 13.b. Once SBiBp is scheduled and completes 

its execution, its corresponding entries are removed from dependency list. 

 The decision of scheduling a sub-block on a core is based on the invariants such as 

scheduling latency, computed ready time (TRdy) & finish time (TFns) of the sub-block SBiBp. 

The schedule time (TSch) of sub-block and total scheduled time of core (TSct) are also taken into 

consideration to check the availability of a core to schedule the sub-blocks. Height and schedule 

latency of sub-blocks are computed in bottom-up fashion. The total scheduled time of core 

(TSct) is the time taken by a core to complete the execution of the sub-blocks currently 

scheduled on it. TSct is computed in top-down fashion on SDG. TSct suggests the time at which 

next sub-block could be scheduled on to the core. The ready sub-block is scheduled on a core 

with lower TSct.   
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The height of the sub-block SBiBp is one more than maximum height of all its immediate 

successors (AIS).  

Heighti = Maximum(Height(AIS)) + 1                                                           (06) 

The  equation (07)  gives the  predicted finish time (TFns) of  a sub-block SBiBp.  

TFnsi= Ci + TSchi                                                                                                                          (07) 

Where Ci  is  total  cycle time of i
th

  sub-block  and TSchi is schedule time of i
th

 sub- block.  

The ready time (TRdy) of a sub-block SBiBp is given below in equation (08). Ready time of a 

sub-block is the time at which sub-block is free from all its dependencies and ready to be 

scheduled on a core. i.e. maximum finish time of all its immediate predecessors (AIP).   

TRdyi = Maximum(TFns(AIP))                                                                       (08) 

The schedule latency (Li) of a sub-block is given in equation (09). The schedule latency of leaf 

sub-block in SDG is, total number of instruction inside the leaf sub-block. The schedule latency 

of SBiBp is sum of maximum latency of all its immediate successors (AIS) and total number of 

instructions inside the sub-block SBiBp or total cycle time of i
th

 sub-block SBiBp.  

Li = Maximum (L(AIS)) + Ci                                                                                                                (09) 

The total scheduled time of a core k (TSct) is given in equation (10).  

TSctk = TSctk-1 +                                                                                      (10) 

Where TSctk-1 is current schedule time of the core and Ci  is total cycle time required by SBiBp. 

 

4.2.1 General Criteria To Create Schedule 

 

Case 1: All sub-blocks are dependent 

If all the sub-blocks are dependent then they need to be scheduled on the same 

core which result in poor utilization of multicore environment. 

We follow global scheduling heuristics such as Dependent Sub-block Based 

(DSB), Most Dependent Sub-block First (MDS), Height and Instruction Count 

Based (HIB) and Lowest Latency First (LLFS), scheduling heuristics to schedule 

the sub-blocks on the core. 

By following certain heuristics like DBS, MDS, LLSF and HIB optimal execution 

time can be achieved.  
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Case 2: All sub-block are independent 

The sub-blocks inside the basic blocks are independent and can be scheduled in 

parallel. In this case schedule is created taking number of cores into consideration. 

Here, the sub-blocks are merged such that resulting execution time is low. 

It should be noted that all sub-blocks across the basic blocks are not independent. 

Case 3: Not all sub-blocks are dependent 

i. Schedule all dependent sub-blocks on to same core 

Facilitate less communication latency but results in imbalance usage of 

core. 

ii. Schedule heuristically 

  We follow global scheduling heuristics such as Dependent Sub-block 

Based (DSB), Most Dependent Sub-block First (MDS), Height and 

Instruction Count Based (HIB) and Lowest Latency First (LLFS), 

scheduling heuristics to schedule the sub-blocks on the core. 

Case 4: Instruction in the sub-block depend on branch instruction.  

i. Predict branch taken or not taken and schedule accordingly 

Predicting a branch taken or not taken is difficult at compile time. Few 

compiler prediction technique are proposed in history but they have 

proved not efficient. 

ii. Schedule the sub-blocks in both path of branch instruction (branch taken 

or not taken) on different cores without worrying the branch result and let 

the runtime environment decide whether to schedule the sub-block or not. 

iii. Keep option to schedule the sub-blocks of the branch instruction on same 

cores and let the runtime environment decide either of them based on 

result of branch. 

   Option ii and iii need runtime support and we follow second option.  
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4.2.2 Sequential Program Execution and Its Analysis 

 

This section, presents the results of executing sequential program compiled using original Jackcc 

compiler on n-BCE multicore processor. The relative results in terms of speed-up, power 

consumption and performance per power achieved by executing sequential program on one of 

the core of dual core and quad core processor is shown in the Figure 14 and Figure 15.  

 The equations used for computing the results are explained in Section 3.4. The result 

shown is relative to n-BCE single core processor. The speed-up performance (Perfs(r)) of n-BCE 

single core processor is 1. The amount of power consumed by n-BCE single core processor 

during the sequential computation of program is 1 unit. The performance per watt  (Perf /W)  of 

single core processor is 1. If the program is compiled for single core and executed on n-BCE 

multicore processor (either dual or quad core processor) the speed-up (Perfm(r)) decreases. The 

speed-up will be (0≤  Perfm(r)  <  1), this is because, a core in multicore processor is less 

powerful than n-BCE single core processor. This results in increased execution time and power 

consumption as shown in Table I. The performance per watt also decreases and will be less than 

1 compared to n-BCE single core processor.   

 

Figure 14.  Results of Testcases Compiled by Original Jackcc for Dual Core Processor 
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Figure 15.  Results of Testcases Compiled by Original Jackcc for Quad Core Processor 

 

4.2.3 Power Optimization 

The output of the proposed schedulers is a list of sub-blocks (schedules) to be scheduled on the 

cores. For a N core machine the scheduler generates M schedules, where M ≤ N. The Intra block 

scheduler and Inter block schedulers are designed to perform power optimization. It tries to find 

the optimal number of cores on which sub-blocks can be scheduled thus resulting in reduced 

power consumption.  For example, if the speed-up achieved using N cores can be achieved using 

N-1 cores, then only N-1 cores of the N core machine are used to execute the given program, 

either by keeping the N
th

 core idle or utilizing it for some other computation. This is true for any 

N number of cores where N= 2,4,8,16.... 

 The Intra block scheduler and Inter block scheduler follow the strategy of merging the 

sub-blocks scheduled on different cores to reduce the usage of number of cores without 

compromising much with the speed-up. This is possible when the total execution (Ti+m) of one 

core is             
 
       where Ti,Ti+1, Ti+2, Ti+3..... Tn are execution time of n cores and i+m 

≠ i+n. As sub-blocks in different schedules may not be necessarily disjoint, the scheduler cannot 

merge the sub-blocks in different schedules randomly. Instead it heuristically distribute the sub-

blocks onto different schedules by keeping total execution time of cores equal.  
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 The scheduler generate schedules iteratively starting from 2 core to N core. If the total 

execution time Ti of  i
th 

core is same as total execution time of Ti-1  (i-1)
th 

 core for 0<i≤N  the 

scheduler stops creating schedules for other cores.  

 

Figure 16.  Power Optimization  

The graph given in Figure 16 shows the speed-up achieved by scheduling a sequential program 

on 8 core processor. The gain in speed-up will reach its threshold on four cores. Performance 

per power will start declining as power consumption increases when all 8 available cores are 

utilized. The proposed schedulers will stop creating schedules for other cores when threshold in 

speed-up is reached. i.e., the scheduler will create 4 schedules. For power critical architectures 

the compiler can be tuned to stop creating schedules for three core alone. This is done at the cost 

of speed-up. 

4.3 Register Allocation 

The fine grained threads that are scheduled on to different cores need to be allocated registers 

from respective register file of the core on which they are scheduled. It is proposed to develop 

register allocation strategy for fine grained threads which can be scheduled on multicore 

processor. Four different register allocation heuristics for multicore processor architecture is 

explained in this section.  

The first heuristic uses schedule generated by the scheduler for register allocation. Instructions in 

each sub-block are allocated locally using Chaitin's approach and are scheduled as directed by 
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the scheduler. This approach leads to reduced compilation time but execution time is increased 

as individual sub-blocks are to be assigned thread requiring data movement. 

 The second heuristics integrates register allocation with global scheduling [34]. The goal 

is to eliminate the phase ordering problem and to overcome limitations which lead to poor 

optimizations. The scheduler allocates the sub-blocks in the dependency graph to multiple cores 

selectively, taking register requirement, dependencies and the order of execution into account. 

 

 

Figure 17.  Modified Register Allocation Framework 

Heuristic 3 and heuristic 4, follow the proposed register allocation framework as shown in Figure 

17. To facilitate the global scheduling, these heuristics incrementally merges the sub-blocks in 

the sub-block list generated by scheduler to produce a hyper sub-block list H (h1,h2,h3....hx). 

The global interference graph is constructed incrementally by merging  individual local 

interference sub-graphs one by one and checking if the resulting sub-graph is k-colorable. The 

algorithm incrementally merges the sub-blocks to form hyper sub-blocks using merge operator. 

Since the Hyper sub-blocks are scheduled on a single core, it ensures temporal locality and 

reduces memory reference. The Hyper sub-blocks are k-colorable which cause zero spilling and 

instructions remain inside private memory of individual cores till all the instruction commits 

without doing external memory reference. The variables in hyper sub-block are assigned register 

at the register assignment phase. These heuristics help to produce the optimized code at cost of 

increased compilation time. 

 In heuristic 3 the hyper sub-blocks are created by merging the sub-blocks. Merging of 

sub-block is carried out by coalescing the interference graph of the sub-blocks and by checking 

the sub-block dependency, Ready_time (TRdy) and Finish_time (TFns) of the sub-blocks that are 

being merged. In this heuristics, similar to Chaitin's approach, initially a global interference 

graph (hyper sub-block) is built and then the interference graph is simplified to make it k-
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colorable. If the interference graph is not k-colorable, it is simplified and spill code is inserted. 

Since each hyper sub-block can be assigned a thread, it improves the execution time as compared 

to approach 1 but may add more spill code as  interference graph may not be k-colorable. The 

proposed fourth heuristic overcome the limitations of heuristic 1 & 3. In this approach the hyper 

sub-blocks are created by adding simplifiability condition to the heuristic 3. The simplifiability 

condition ensures that the interference graph of the hyper sub-blocks are k-colorable resulting in 

zero spill code.  

 An example to illustrate the proposed register allocation approach for the cores having 

four registers is given Figure 18. The schedule created by the global scheduler for dual core 

machine is shown in Table VIII (a). The hyper sub-block generated by using the schedule list is 

shown in Table VIII(b). Table IX exposes the instructions in sub-blocks SB2B1 and SB2B3 

scheduled on core 2 of dual core machine. The 3-colorable interference graphs for sub-blocks 

SB2B1 and SB2B3 is shown in Figure 18.a and Figure 18 b respectively. The 3-colorable 

interference graph of merged sub-blocks is shown in Figure 18 c. 

TABLE VIII.   (A)SUB-BLOCK LIST GENERATED FOR DUAL CORE PROCESSOR  (B) HYPER SUB-BLOCKS 

WHOSE INTERFERENCE GRAPH IS K-COLORABLE 
 

 

          (a)                            (b)  

Dual Core  Dual Core 

Core1 Core2 Core1 Core2 

SB3B1 

SB1B1 

SB1B2 

SB1B3 

SB1B4 

SB2B4 

SB2B1 

SB2B3 

SB2B2 

SB4B4 

SB3B4 

 

SB3B1 

SB1B1 

SB1B2 

SB1B3 

SB1B4 

SB2B4 

SB2B1 

SB2B3 

SB2B2 

SB4B4 

SB3B4 

 

 

 

TABLE IX.  SUB-BLOCKS 

SUB-BLOCK 

SB2B1 

SUB-BLOCK 

SB2B3 

F0=11;  

G0=42;  

H0=F0/G0;  

I0=G0+H0;  

G1=G0-I0;  

H1=G1+I0;  

F1=G1+H1;  

U0=G1+F1;  

V0=G1+H1;  

W0=U0+V0;  

V1=W0*V0;  

U1=W0-V1;  

W1=U1*W0; 

 



 66 

 
                              

                             (a) 
     

                              (b) 

 
 (c) 

Figure 18.  (a) Interference Graph of Sub-block SB2B1  (b) Interference Graph of Sub-block 

SB2B3  (c) Interference Graph of merged Sub-blocks 

The details of the steps involved in implementing scheduling and register allocation techniques 

are explained in chapters 5, 6,7, and 8.  
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CHAPTER 

Fine Grain Thread Extractor 05 
 

The implementation details of fine grain thread extractor module is discussed in this chapter. The 

Figure 10 in chapter 4 depict the steps involved in this process. The fine grain thread extractor 

module creates the disjoint sub-blocks and sub-block dependency graph (SDG). The sub-block 

dependency graph (SDG) is used for global scheduling (Inter block Scheduling). 

5.1 Creating Disjoint Sub-blocks 

Two approaches to create the disjoint sub-blocks or fine grain threads has been proposed and is 

briefly discussed in following sections.   

i. In the first approach, a SSA form program is taken as input. A separate pass is used for 

dependency analysis and sub-blocks creation.  

ii. In the second approach, dependency analysis and sub-block creation is done along with 

variable renaming step in the generation of SSA form program. This approach has benefit 

in terms of compilation time as it avoids the need for an extra pass.  

5.1.1 Approach 1 To Create Disjoint Sub-blocks 

The operations for creating disjoint sub-blocks is performed after SSA translation phase of the 

compiler. In this approach, disjoint set operation is performed on instructions which are 

represented using quad data structure belonging to basic block also known as Arena to create a 

list S of sub-blocks. The list S is given to scheduler to create schedules for cores of a multicore 

processor.  

 The disjoint set operations such as makeSet, Union, and groupQuads are applied on 

instructions in each basic block Bp. Each sub-blocks are identified by one of the designated 

instruction, which is called as representative instruction of the sub block. An example to depict 

the steps involved in sub-blocks creation is shown in Figure 19.  

Let the basic block Bp contains n instructions i.e.  x1, x2. ..xn.   

 The makeSet operates upon a basic block Bp containing n instructions and divides it into n 

sub-blocks with each sub-block containing one instruction. These sub-blocks are 

represented in form of a list Sp {SB1BP, SB2BP, SB3BP.... SBnBP} containing n sub blocks. 

Since the sub-blocks are disjoint, it is required that instruction xi is present in only one sub 
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block say SBiBP. The instruction xi is designated as representative of the sub-blocks 

SBiBP. The output of makeSet module when applied on basic block with 15 instructions is 

shown in Figure 19.  

 The groupQuads module operates on the list Sp with n instructions. This module checks for 

true dependency between the instructions and uses Union operation to create m disjoint 

sub-blocks, where m≤n. 

 The Union operation merges the dependent sub-blocks to form m number of disjoint sub-

blocks. If two dynamic sets (sub-blocks) SBiBP and SBjBP contains the instruction xi and xj, 

the two sub-blocks are assumed to be disjoint prior to the Union operation and hence their 

set representatives are different. The union operation is performed by changing the 

representative of the sub-block, i.e. one representative is selected from either of the sub-

blocks as shown in Figure 19. 

 Algorithm1: To create initial list of sub-blocks with one quad in each sub-block. 

makeSet(Arena A,List S) 

 begin  

  for each quad in A 

  repeat  

Create N sub-block making itself as representative to form the list S; 

  End for 

  call groupQuads(List S);    

End 

 

Algorithm2: To group the quads based on true dependency 
groupQuads(List S, number of quads) 

begin  

   for each sub-block i =0 to number of  quads in the list S repeat  

   for each sub-block j=i+1 to number of quads in the list s 

repeat 

   if there is true dependency between i
th
 & j

th
 instruction  

then 

   if the sub-block representative are not same 

then 

    call Union(S, i, j); 

     return S; 

  End for 

  End for 

End 

 

Algorithm3: To perform disjoint union operation 

Union(List S,index i,index j) 

begin 

copy the j
th 

instruction to the sub-block to which i
th
 instruction belong to;  

change the j
th 
sub-block_rep to i

th
 instructions sub-block_rep; 

 End 
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Figure 19.  Steps in Creation of Disjoint Sub-blocks  

5.1.2 Approach 2 To Create Disjoint Sub-blocks 

The approach presented in this section creates the disjoint sub-blocks while translating non SSA 

program to SSA form program eliminating extra pass requirement of Approach 1 and thus 

resulting in reduced compilation time. The modified work flow of compiler for this approach is 

shown in Figure 20. 

 

Figure 20.  Integrated SSA Translation and Fine Grain Thread Extraction  

The modified version of variable renaming algorithm of SSA translation pass is presented. The 

proposed algorithm performs variable renaming and sub-blocks creation tasks simultaneously 

during the SSA translation pass. The first task is accomplished by traversing each basic block of 

the CFG which has Phi (ɸ) functions inserted by Phi_function( ) module and rename each 

variable in a way that each use corresponds to exactly one definition. Each definition is renamed 

with a new version of that variable. Second job is accomplished by updating the use of the 

renamed variable, which in turn helps in identifying the instructions having true dependency 

(RAW). These dependent instructions are collected to form disjoint sub- blocks. 
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Algorithm 4:  Integrated  variable renaming and sub-block creation 

 
Start from first statement in the block 

 Loop until all statements are parsed  

 Scan current statement in the block 

 Rename the definition and use in current statement 

Now check in current statement, variables on right hand side 

    if(number of variables on right hand side=0) 

       Create new sub-block(SBBn) // nth sub-block 

       SBBn[0]=current statement number 

       Number of statements in current sub-block +=1; 

    End if 

    else if(number of variables on right hand side y0 ==1) 

            if(y0 is defined in the current block)   

               find(sub-block in which statement defining y0 is residing)            

                 //Suppose this returns SBBy 

     SBBy[Number of statements in sub-block SBBy++]=current statement number 

            End if 

            else  

               Create new sub-block(SBBn) // nth sub-block 

               SBBn[0]=current statement number 

               Number of statements in current sub-block +=1; 

            End else 

     End else if 

     else if(number of variables on right hand side==2)   

          if(y0 and z0 are defined in the current block) 

             SBBy=find(sub-block in which statement defining y0 is residing) 

             SBBz=find(sub-block in which statement defining z0 is residing) 

            if(SBBy==SBBz)  //Both are defined in same block 

     SBBy[Number of statements in sub-block SBBy++]=current statement number 

            Endif 

            else            //Both are defined in different block 

              Copy all statements in SBBz to SBBy  

              Number of statements in SBBy=No of statements in SBBy + No of 

statements in SBBz 

     SBBy[Number of statements in sub-block SBBy++]=current statement number 

             Delete SBBz 

          End else 

        End if 

        else if(only y0(or z0) is defined in current block) 

             find(sub-block in which statement defining y0 is residing)  

             //Suppose this returns SBBy 

     SBBy[Number of statements in sub-block SBBy++]=current statement number 

       End elseif 

       else  //In this case neither of y0 or z0 is defined in current block 

           Create new sub-block(SBBn)   //n stands for nth sub-block 

           SBBn[0]=current statement number 

           Number of statements in current sub-block +=1; 

      End else 

End 

 

The sub-blocks created for four extreme test cases of the benchmark suite such as DES, Integer 

matrix multiplication, Fast Fourier transform and Merge sort are given in Table X. 
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TABLE X.  NUMBER OF BASIC BLOCKS AND SUB-BLOCKS FOR THE TEST CASES 

 
Test Cases Number of Basic Blocks Sub-blocks 

Test Case 1 6 B1= 3 B2= 3 B3= 2 B4= 3 B5= 2 B6= 6 

Test Case 2 5 B1= 4 B2= 3 B3= 3 B4= 4 B5= 3  

Test Case 3 4 B1= 3 B2= 3 B3= 3 B4= 3   

Test Case 4 6 B1= 2 B2= 2 B3= 2 B4= 3 B5= 2 B6=2 

 

5.2 Sub-block Dependency Graph (SDG)  

The global scheduling or Inter block scheduling is a technique for creating schedules for multiple 

cores by considering the sub-blocks across the CFG. A sub-block dependency graph (SDG) is 

constructed to facilitate the global scheduling.  

Two approaches are proposed to construct the SDG. 

i. In the first approach the sub-block dependency graph is created using the sub-

blocks. The approach to create sub-blocks has been discussed in Section 5.1. This 

approach requires an extra pass for creating SDG.  

ii. In the second approach, dependency analysis, sub-block creation and SDG creation 

is done along with variable renaming of SSA form program translation step.  This 

approach eliminates the need for an extra pass as required in the first approach. 

5.2.1 Approach 1 To Create SDG 

The basic block is split into sub-blocks. The array subbl_phi[] stores the sub-block number to 

which each Φ function belongs. The dependencies of each sub-block is computed and are stored 

in dependency_Block and dependency_SubBlock – while former stores pointers to basic blocks to 

which a sub-block is dependent upon, latter stores the corresponding sub-block number.  The 

depcount stores the number of dependencies. subBlockGraph[] is an array of nodes of sub-block 

dependency graph – one node corresponding to each sub-block. The sub-block (node) in Sub-

block Dependence Graph has list of quads, Sub-block number, size, list of children, list of 

parents, Φ functions belonging to the sub-block and a pointer to the basic block of CFG to which 

the sub-block belongs. 

 Constructing sub-block dependence graph involves two steps. The first step involves 

identification of AFTER dependency between sub-blocks . In second step SDG is created .   
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Step1:– The basic blocks of CFG are used for computing the dependency. The function 

computeDependency() takes a basic block Bp as input. Each basic block Bp can have 

number of sub blocks represented in the form of a list Sp{SB1, SB2, SB3.... SBn}.  For 

each sub-block SBi in Bp  it will mark all sub-blocks SBj belonging to any other basic 

block Bq on which it is AFTER dependent. The Use and Def of each basic block is 

used in this analysis. If sub-block SBiBp contains Φ functions, the Use list of that sub-

block is updated with the variables vi in that  Φ(v1,v2...) function. For each Use of the 

sub-block, the sub-block SBj and basic block Bq in which that variable is defined is 

found. It then adds the sub-block SBiBp to the list of dependencies of SBjBq. It repeats 

the process for each quad in the sub-block SBiBp, computing Use and finding where it 

was defined. The def list is also updated by examining each instruction's definition. The 

function addToDependencyList() will take a sub-block SBiBp and the sub-block SBjBq 

on which it is dependent upon and update dependency_Bloc and dependency_SubBlock. 

 
Algorithm 5: Compute Dependency 

 

ComputeDependency() 

begin 

    for each subBlock SBi in SetList Sp 

    begin 

        for each Ø function belonging to sub-block SBi 

        begin 

            for each column of  Ø  function, j=1 to numparents 

            begin 

                add Ø[j] to the list use[SBi] 

            end for 

       end for 

       for each quad Q in sub-block SBi 

       begin 

           add srca and srcb of Q to the list  use[SBi] 

       end for 

       for each variable v in  use[SBi] 

       begin 

           Sp = find sub-block in which v is defined  

           addToDependencyList(SBiBp,SBjBq) 

       end for  

End 

Step 2: SDG is created by calling a function createSDG() which takes basic block Bp and sub-

block list Sp as input. Based on dependency computation of the sub-blocks, it creates 

nodes for each sub-block SBi in Bp by adding an edge to the sub-blocks on which it is 

AFTER dependent making it its parents. The dependency edges are created between the 

sub-blocks SBiBp and those sub-blocks SBjBq by adding SBiBp to the dependency list of 
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SBjBq in dependency matrix. The Figure 13 a in Chapter 4 depicts an example SDG and 

its corresponding dependency matrix. 

Algorithm 6: Create SDG 
createSDG( ) 

begin 

    for each subBlockSBi in SetList Sp 

    begin 

        Create a node of SDG, say v corresponding to SBi 

        for j=1 to depcount[SBj] 

        begin 

            u=SDG node corresponding to dependencyblock[SBi][j] and sub-block      

              dependencyblock[SBi][j] 

            add the edge uv 

            include v in list of u’s children 

            include u in the list of v’s parents 

        end for 

    end for 

End 

5.2.2 Approach 2 To Create SDG 

The technique discussed to create SDG in this section is an extension of Approach 2 of creating 

sub-block along with SSA renaming module described in Section 5.1.2. This approach is 

compiler efficient, because it is performed during SSA translation  phase itself as shown in 

Figure 21.    

 Algorithm 7: Creating Sub-block Dependency Graph  
Scan the current instruction or quad 

if(variables on right hand side==0) 

  if statement has phi function 

  for each predecessor of this block do  

   find_sub-block_and_block 

   add_sub-block_to_dependency_list 

  endfor 

 endif 

endif 

else if(number of variables on right hand side==1)  

 find where this variable is defined 

 if(variable is not defined in the current block)    

          find_sub-block_and_block 

  add_sub-block_to_dependency_list 

    endif 

endelseif 

else if(number of variables on right hand side==2)  

find where these variables are defined 

 if(one variable is not defined in current block) 

  find_sub-block_and_block 

  add_sub-block_to_dependency_list 

  endif 

 else if(no variable is defined here)     

  find_sub-block_and_block_for_both_variables 

  add_sub-blocks_to_dependency_list 

    endelseif 

endelseif  
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Here each instruction or quad in a sub-block SBi in basic block Bp is scanned and analyzed for its 

AFTER. If instruction has got Φ function in its RHS, then there would be AFTER dependencies 

coming from the predecessors of basic block Bp as per definition of phi function. While 

observing every predecessor Bq, dependency edges are created between the sub-blocks SBiBp and 

those sub-blocks SBjBq by adding SBiBp to the dependency list of SBjBq in dependency matrix.  

 A non Φ instruction can have one Use which is not defined in sub block SBiBp indicating 

that it is defined in one of its predecessor  sub block SBjBq and  hence the existence of 

dependency between SBiBp and  SBjBq. The graph is traversed upwards covering all predecessor 

sub-blocks SBjBq for finding the AFTER dependency. For each dependency, one edge is  added 

and the dependency matrix is updated. Similar action is taken for the case when RHS of quad 

contains two variables, both of which are defined in predecessors of the given basic block. 

 

Figure 21.  Modified Flow of Compiler to Create Disjoint Sub-blocks and SDG During SSA 

Translation  

5.3 Compile Time Analysis of Approach 1 and  Approach 2 

This section analyses the compilation time requirement and algorithmic complexity of the 

proposed algorithms. Two different approaches to create disjoint sub-blocks and SDG is 

discussed. 

  A code has been developed to translate a non SSA form of the program to SSA form 

program. The code uses functions for finding dominators, dominance frontier, inserting Φ 

function and variable renaming.  
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The function to find dominators, dominance frontier and inserting Φ function are used in both 

the approach used for creating disjoint sub-blocks. Let the time taken to run these function be T1, 

T2 and T3 then T1+T2+T3 would be a common time factor in both approaches.  

 Let T4 be the time taken by variable_renaming( ) function. T4 is much greater in 

comparison to T1 and T2 as variable renaming is done for each variable belonging to every basic 

block, where as the operations, find_dominator and dominance frontier are done at basic block 

level. T4 is also larger than T3 even though the function to insert Φ is performed at instruction 

level as Φ  function insertion is carried out in selected  basic blocks only .  

 In the first approach to create sub-blocks, all basic blocks of CFG is  traversed by making 

one extra pass [1]. In this pass, true dependency (RAW) between the instructions is computed 

inside each basic block and disjoint sub-blocks are created. Let the time taken for creating the 

disjoint sub-block be T5 and the time taken perform this task is almost same as time spent for 

variable renaming i.e., T5≥T4. The overall compilation is equal to summation of time T1, T2, 

T3, T4 and T5. Since T4 and T5 are much greater than T1, T2 and T3,  the total compilation time 

can be considered to be proportional to summation of time  T4 and T5. 

 In second approach for creating disjoint sub-blocks, the time taken for the variable 

renaming (T4) will remain same as renaming of variables are still performed by analyzing each 

instruction. The variable renaming and disjoint sub-blocks creation operations are done 

simultaneously by eliminating T5 factor. If T4' is the new time for performing variable renaming 

and disjoint sub-block creation, it is slightly more than T4. The overall compiler time dedicated 

for these operation is reduced to summation of time T1, T2, T3, and T4'. Since T4' is much 

greater than T1, T2 and T3, the total compilation time can be considered to be proportional to 

T4'. 

 The first approach to create SDG requires extra pass to check the AFTER dependency 

and insert edge between the two dependent sub-blocks. Let the time taken to perform this pass be 

T6. The second approach to create SDG does not require extra pass as operation to create the 

SDG is carried out at the time of variable renaming operation causing slight increase in variable 

renaming time from T4' to T4". The overall compilation time to create SDG in second approach 

is summation of time T1, T2, T3, and T4".  

 To discuss the complexity of the algorithms, consider the CFG with N basic blocks, E 

number of edges. Let T be the total number of ordinary assignment and total number of Φ 
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functions, |DF| be total size of dominance frontier, and V be total number of variables. The 

complexity of SSA generation algorithm is linear O(E+T+|DF|), finding dominator has 

complexity O(E), finding DF's for CFG is O(E+∑n |DF(n)|), Inserting Φ function is O(∑n 

(T*|DF(n)|), and variable renaming is O(V). 

 The algorithmic complexity of functions involved in disjoint sub-block creation such as 

makeSet, Union and Find set are as follows. The makeSet can be performed in constant time so it 

is O(1). The union operation is O(N
2
) or O(NlogN), depending on the size of the sub-block with 

other sub-block is getting merged. If larger sub-block is merged with smaller sub-block then it is 

O(NlogN) otherwise it is O(N
2
). The complexity of groupSet operation is O(N). Thus the overall 

complexity to create disjoint sub-blocks is O(N
2
).  

 To create SDG from the sub-blocks in N different basic blocks first AFTER dependency 

is computed and edge is inserted between the dependent sub-blocks. The algorithmic complexity 

of these two function is O(N
4
) in worst case when iterated on each basic block. By performing 

good ordering on sparse set of basic blocks these operations can be performed in O(N
2
). These 

two processes are common to both the approaches to create SDG described in Section 5.2.1 and 

Section 5.2.2 respectively.  

5.4 Conclusion 

The techniques to create the sub-blocks / SDG is discussed in this chapter. The schedule for 

these sub-blocks in the basic blocks and the SDG are created by local scheduler and global 

scheduler respectively. The implementation details of these schedulers are explained in Chapter 

6 and Chapter 7.  
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CHAPTER 

                                           Intra Block Scheduling 06 
 

The Intra block scheduling is an approach to schedule the sub-blocks belonging to a basic block.  

This chapter discusses the proposed intra block scheduling. The scheduler is termed as local 

scheduler or intra block scheduler. The intra block scheduler uses the disjoint sub-blocks created 

by fine grained thread extractor module to produce schedules for multiple cores of a multicore 

processor. The sub-blocks within the basic block are scheduled on different cores in a manner 

that balances the overall execution time and  power consumption. 

6.1 Introduction to Intra Block Scheduling  

The problem of scheduling for parallel architecture by minimizing the overall execution time has 

been proven to be NP-Complete problem. A number of heuristics have been proposed with a 

view to find an optimal schedule that results in reduced execution time. The proposed intra block 

scheduler uses bin-packing approach to schedule the sub-blocks. The number of bins used are 

taken to be equal to the number of cores. The bin-packing problem is a NP-complete problem, an 

approximation algorithm with approximation factor of 2, with small running time O(n logn) is 

used. This algorithm runs in time O(nlogn+n*c), where c is number of cores and n is number of 

sub-blocks. 

 Let Sp ={SB1,SB2,SB3,…SBn} be the list of sub-blocks belonging to basic block Bp. Each 

sub block can have varying number of SSA form instructions. For each sub-block SBiBp 

belonging to a basic block Bp, sub-block identifier and sub-block size information is maintained. 

Sub-block size is the number of instructions Ic  in the sub-block SBiBp. The sub-blocks are sorted 

in non increasing order of their size so that the sub-block with higher size is given higher priority 

for scheduling.  

 Before the creation of schedule, at times sub-block merging is required. The two or more 

sub-blocks are merged to form a bigger sub-block which is named as hyper sub-block. The hyper 

sub-blocks are created to achieve below mentioned objectives.    

i. While splitting basic blocks into sub-blocks, sometimes, we get number of sub-blocks 

with small number of instructions which use a small subset of available registers, leaving 
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large pool of registers unutilized. The hyper sub-block creation results in efficient 

utilization of available register set. However, if the number of sub-blocks is less than 

number of cores, hyper sub blocks are not created. 

ii. Let Ti, Ti+1, Ti+2, Ti+3..... Ti+n be the execution time of a set of sub-blocks Si, Si+1, Si+2, 

Si+3.........Si+n. If Ti ≥ Ti+1 + Ti+2 + Ti+3.....+ Ti+n, then scheduling the sub-blocks 

Si+1,Si+2,Si+3.........Si+n on multiple cores may not benefit in terms of speed-up as the total 

execution time will remain Ti. Substantial power is utilized by all these cores as all cores 

are active. If  the sub-blocks Si+1, Si+2, Si+3.........Si+n are merged  and is  executed on any 

one of the cores by making all other core idle, power consumption can be reduced 

without compromising with the speedup. 

iii.  The sub-blocks could also be merged in a manner such that each merged sub-block has 

equal or nearly equal number of instructions. With this when the schedule is created, all 

the cores finish execution almost at same time.  

6.1.1. Sub-block Merging  

 

The merging algorithm to create hyper sub-block is given in algorithm 8. The algorithm takes a 

list Sp containing sub-blocks belonging to basic block BP as input. The sub-blocks are arranged 

in descending order of their size i.e., number of instructions in each sub-blocks. The algorithm 

creates the hyper sub-blocks by merging the sub-blocks. Let TIC be the total number of 

instructions in basic block BP, SICi and Rreqi be the instruction count and register requirement of 

sub-block SBiBP.  

 The bins are used for creating the hyper sub-blocks. The hyper sub-block HSBjBP is 

created using j
th

 bin by merging one or more sub-blocks belonging to the basic block BP. Ravlj is 

total number of registers available for j
th 

bin which is initialized to number of registers in a core. 

Ravlj is updated whenever a new sub-block is inserted into the bins or merged with the existing 

sub-blocks in the bin. The value of Ravlj is modified by subtracting the register requirement of i
th 

sub-block (Rreqi).  The proposed algorithm initially begins by creating two bins and populating it 

with first two sub-blocks from the list Sp. After this initialization, the algorithm picks up next 

sub-block from the list Sp and tries to merge it with sub-block present in any of the bin satisfying 

the first merge condition listed above. For all j bins, if Ravlj  is zero or less then the Rreqi of the 

sub-block then the sub-block cannot be merged with sub-blocks present in any of the bins then 
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one more bin is created and sub-block is placed in it. The process is repeated for all the sub-

block in the list. For ensuring the second and third condition of the algorithm, the bins are 

arranged in descending order of number of instructions in each bin in the beginning of every 

iteration. The basis for selecting two bins is the fact that multicore processor will have at least 

two cores. The first fit bin strategy is followed in the proposed algorithm, where a sub-block is 

merged with the first available bin which satisfies merge conditions. The sub-block list SP is 

arranged in descending order to simplify the merge operation. The worst case algorithmic 

complexity of the merge algorithm with n sub-blocks in basic block BP is O(n*log n) as smaller 

size sub-blocks are merged with bigger size sub-blocks in the bin (hyper sub-blocks). The hyper 

sub-blocks are sorted in descending order in the last step to reduce the search time of the 

scheduler while creating schedules. 

 Algorithm 8: Sub-block Merging  
mergeSubblock(Sp, no_of_sub-blocks, num_of_quads) 

begin 

 No_bins=2; 

 bins[i] = 0 for all bins initially; 

       binsize[i]= 0 for all bins initially; 

       RAvlj = register in each core. 

        

       for each sub-block SBiBp  

 repeat 

             Arrange bins in descending order of size 

    

              for each bin j=1 to No_bins 

  repeat 

   if (Ravlj of HSBjBP > Rreqi of SBiBp ) 

                    then 

      break inner for loop 

                    end if      

             end for 

  if  j is same as No_bins 

  then 

   bins[j]= SBiBp; 

   No_bins++; 

  else 

   Call Union (S,bins[j], SBiBp) 

             Ravlj of HSBjBP = Ravlj of HSBjBP - Rreqi of SBiBp  
     end for 

End 

 An example depicting the merge operation is given Figure 22. The list SP consists of ten 

disjoint sub-blocks with TIc = 57. The steps in creating hyper sub-blocks using proposed merging 

algorithm is shown in Figure 23 for a multicore processor with each core having four registers. 

Initially Ravlj value of the j
th

 bin to create the hyper sub-block HSBjBP is initialized to four.  
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Figure 23.  Steps in Merging Sub-blocks of Basic Block BP  

  The algorithm begins with creating two bins to create hyper sub-blocks HSB1BP and 

HSB2BP using the sub-block SB8BP  and SB2BP respectively. In the second iteration a new bin to 
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create hyper sub-block HSB3BP is created for the sub-block SB9BP as the register availability of 

the bins having hyper sub-block HSB1BP and HSB2BP is zero, i.e,. Ravl1=0 and Ravl2=0. The 

sub-block SB4BP is merged with the sub-block SB9BP in the bin which is creating hyper sub-

block HSB3BP as its merge condition is satisfied. We can observe that the size of all three bins in 

fourth iteration are almost equal. This process is repeated for the other sub-blocks. At the end of 

9
th

 iteration six hyper sub-blocks are created by the merge algorithm. These six hyper sub-blocks 

are sorted in descending order of their size and are used by scheduler to create schedules for 

multicore processor.  

6.1.2. Intra Block Scheduler 

The hyper sub-blocks created by the sub-block merge module is taken as input to create schedule 

for the multicore processor. The execution time TStc and available time TAvl of each is core is 

maintained to create schedule. Each hyper sub-blocks in the ready queue is scheduled on to the 

core which has minimum TStc at that instance. After scheduling the hyper sub-block HSBiBp on 

to the core its TStc is updated. 

  

Algorithm 9: Intra Block Scheduler 

 

 

scheduleBlock(Basic Block Bp, Hyper sub-block List HSList) 

begin   

  for  

  for each core i 

  repeat 

    TStc[i]=0; TAvl[i]=0; 

  end for 

  for each hyper sub-block HSB in HSList in sorted order 

  repeat   

    find min_core such that TStc[min_core] is minimum among all cores 

    Schedule the Hsub-block HSB on to min_core 

    TStc[min_core]= TStc[min_core] + HSubBlockSize[HSB] 

  end for 

end 

Let HSList be the list of hyper sub-blocks created by merging the sub-blocks in the basic block 

Bp. The hyper sub-blocks are sorted in non-increasing order of their size. If L is the number of 

hyper sub-blocks in the HSList and N is the number of cores in the processor.  The scheduler 

first check if the L ≤ N. The scheduler creates L schedules if the condition is true. Otherwise the 

scheduler creates M schedules for N cores where is M≤N. In the first iteration the scheduler 

creates N schedules for N cores. In the next iteration it checks if it can create schedules for N-1 

cores without compromising with the speed-up. If it is possible it will create schedules for N-1 
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cores. Similarly it will keep reducing the number of cores till speed-up of two consecutive 

iteration are same and choose the value of iteration before failure as M and creates M schedules.  

This exercise is done to utilize only required number of cores in order to reduce power 

consumption and to increase performance per power. 

 The Schedules created for Dual core, Quad core and three active core processors by Intra 

block scheduler is shown in Figure 24. When the hyper sub-blocks are scheduled, it takes 29, 19 

and 19 clock cycles against 32, 22, and 22 clock cycles on Dual core, Quad core and Three 

active core respectively when sub-blocks are scheduled without merging. The difference between 

three active core and quad core processor is that that performance per power of three active core 

will be more than quad core processor. 
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Figure 24.  Schedules Created by Intra Block Scheduler 

6.2 Results 

 

The result and observations on execution of benchmark programs when scheduled using 

proposed Intra block scheduler is discussed in this section. The equations used for computing the 

results are explained in Section 3.4. The relative results in terms of speed-up, power 

consumption and performance per power achieved by executing benchmark programs on dual 

core and quad core processor is shown.  

 The result in Figure 25 shows that the speed-up increases as number of cores increase, 

which makes it evident that all the cores are utilized towards achieving maximum gain. The gain 

in speed-up was the expected output from multicore processor but was not obvious for the non 

multithreaded applications.  

 The speed-up decreases when the same code is run on 3 active cores, however the  

performance per power improves as is shown in Figure 27.  

  The power consumed to execute the test cases is captured and performance per power of 

each test case is calculated as shown in Figure 26 and Figure 27 respectively. It is observed that 

power increases as the number of cores increase. The power consumption is lower when 3 cores 

are used instead of 4 cores. Thus the performance per power of quad core machine is higher 
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when 3 cores are used instead of 4 cores. The effect of using 3 cores by slightly compromising 

with speed-up is shown in Figure 25. The communication costs of the proposed algorithms are 

shown in Figure 28. 

 

Figure 25.  Speed-up analysis For Intra Block Scheduling  

 

Figure 26.  Power Consumption For Intra Block Scheduling 
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Figure 27.  Performance / Power For Intra Block Scheduling  

 

  

Figure 28.  Communication Cost For Intra Block Scheduling  
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The Intra block scheduler (IBS) was designed for locally scheduling the disjoint sub-blocks. The 

IBS will not ensure that the dependent sub-blocks in rest of the basic block of CFG are scheduled 

on same core. This may lead to high communication and data movement between sub-blocks 

scheduled on different cores, which intern can have serious impact on speed-up and power 

consumption.  To overcome these limitations Inter block scheduler is proposed in Chapter 07. 

The results of Intra block scheduler is compared with Inter block scheduler in Chapter 07. 
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CHAPTER 

                                               Inter Block Scheduling 07 
 

The implementation details of global scheduler is given in this chapter. The global scheduler is 

termed as Inter Block scheduler. Similar to local scheduler (Intra Block Scheduler), the schedule 

generated by global scheduler for each core consists of list of sub-blocks. In contrast to local 

scheduler, the global scheduler identifies all the independent sub-blocks across the basic blocks 

in a CFG to formulate the schedule 

 In this chapter, four novel global scheduling heuristics are proposed. These heuristics are 

designed to obtain high performance, low communication cost, and high performance per power. 

The scalability issues with increasing number of cores are also been explored. The novelty of 

proposed algorithms is in its efficient scheduling strategies, which translates into improved 

performance without increasing the algorithmic complexity.   

 The proposed global scheduling algorithms uses the sub-block dependency graph (SDG) 

to schedule sub-block on to multiple cores. The first algorithm, called the Height Instruction 

Count Based (HIB) algorithm, is based on priority calculated using the height and instruction 

count of the sub-block in the SDG. It is a linear-time algorithm which uses an effective search 

strategy to schedule the sub-block on to the core with minimum schedule time. The second 

scheduling algorithm is based on dependency between sub-blocks and has been named as 

Dependent Sub-Block scheduler (DSB). All the paths from a given block to leaf node of SDG is 

identified and schedule latency for each path is computed. The sub-blocks in the path with 

highest schedule latency are chosen for scheduling on different cores. The third algorithm is 

Maximum Dependency Sub-block First (MDSF). It calculates the priority of the sub-block based 

on maximum dependencies and minimum execution time. The fourth algorithm is Longest 

Latency Sub-block First (LLSF) which schedules considering only latency of the sub-block. The 

proposed algorithms have been evaluated through extensive experimentations and results have 

been compared with existing algorithms.  

 In General, the global scheduler selects the sub-block SBiBp from the sub-block dependency 

matrix if dependency list of SBiBp is empty. Once SBiBp is scheduled and completes its execution, it is 

removed from all dependency lists.  The scheduler uses the values of height (Heighti) of sub block 

in SDG, predicted finish time (TFns), ready time (TRdy), schedule latency (Li)   of a sub-block, and 
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total schedule time of core (Tsct) and  are computed using equations 6, 7, 8, 9, and 10 

respectively.   

7.1 Height-Instruction Count Based (HIB) 

The HIB scheduler uses the sub-block dependency graph represented in the form of matrix to 

take scheduling decision. The scheduler creates a priority queue using SDG, and schedules the 

sub-blocks on to multiple cores. Scheduler will schedule the sub-block with highest priority in 

the priority queue on the core with minimum Tsct. The scheduler updates the priority queue with 

new sub-blocks and remove their entry from dependency matrix. A sub-blocks can be added in 

priority queue if dependency list of that sub-block is NULL. Priority of the node is computed 

based on height (Heighti) and instruction count. The node at highest level and more instruction 

count is given highest priority.  

Algorithm 10 :  Height Instruction Count Based Scheduler 

Calculate height of each sub-block 

     Height of sub-block i= max( height of all immediate successors) + 1) 

Initialize a Priority Queue 

    Q={All head node i.e nodes having only out going edges} 

Schedule: 

 If single core 

i. Remove highest priority node from queue. 

ii. Insert those nodes which are ready to schedule after scheduling this node. 

iii. Schedule the node on core. 

iv. Repeat same Process until queue gets empty. 

 If multiple cores 

i. Repeat steps ii) to v) until queue gets empty. 

ii. Select a core with minimum schedule time. 

iii. Select a node with highest priority (see above). 

If ready-time of all nodes present in queue is greater than current core schedule 

time then insert 1 free cycle. 

Goto step ii) 

iv. Schedule node on core and increment current core time. 

v. Update finish time of this node and reay-time of all its immediate successor. 

vi. Place its immediate successors in queue if they are ready to schedule (see above) 

and revise the priorities of old nodes according to the priorities for new nodes. 

Goto step i) 

vii. END. 

7.2 Dependent Sub-block Based (DSB) 

 
The DSB scheduler collects all the sub-blocks and stores them in non-increasing order of their schedule 

latency. Initially the scheduler picks the sub-block with the highest schedule latency and schedules it on 

to any one of the cores. Later scheduler picks the immediate ready successor of the previously scheduled 

sub-block in the SDG. The successor sub-block is scheduled on to the same core if the TSct of core is less 

than other core, otherwise it will switch to core with lowest TSct. After scheduling each sub-block, the 
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TSct of the core is updated. The advantage of scheduling dependent sub-blocks on to same core is that it 

results into reduced communication between the cores.  

Algorithm 11:  Dependent Sub-block Based Scheduler 

 Find Latency  
 Sort sub-blocks by descending latency.  
Schedule :-  
a. Single Core – in order of sorted list.  
b. Multi Core :  
i. Repeat steps (ii) to (viii) until list gets empty  
ii. temp top (list) (ready sub-block)  
iii. Schedule temp & increment schedule time of this core.  
iv. Update finish-time of temp and ready-time for all immediate successors.  
v. If any immediate successor of temp is ready (check in order of list) & list is non-
empty 
    temp immediate successor 
    goto step (iii)  
vi. If schedule time of current core is less than max schedule time & list is non-empty  
   goto step (ii)  
vii. Max schedule time schedule time of current core  
viii. If list is non-empty    switch core  
   goto step (ii)  
ix. END   

7.3 Maximum Dependent Sub-block First (MDS) 

The scheduling decision of MDS algorithm is purely based on the structure of the SDG. The sub-

block having maximum successors is given higher priority and is picked by the scheduler for  

scheduling it on to the core with least TSct. The MDS scheduler maintains the ready list. Priority 

of sub-block SBiBp in ready list is computed based on TRdy, TFns and its dependencies.  

 A sub-block SBiBp can be inserted into ready list if its dependency list is empty, i.e. all 

the sub-block on which SBiBp was depending have finished there execution.  

Algorithm 12:  Maximum Dependent Sub-block First Scheduler 

1. Collect all the sub-blocks which are ready for execution.  
2. Find out the priorities for all the sub-blocks in the ready list  
3. Schedule :  
Single Core:  
i. Schedule the sub-block with highest priority on to the core.  
ii. Update the adjacency matrix.  
 Multi Core:  
i. Find out the core which is free.  
ii. Schedule the sub-block with highest priority to the core which is selected.  
iii. Update the adjacency matrix.  
4. Goto step 1  
5. END  
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7.4 Longest Latency Sub-block First (LLSF) 

 

LLSF scheduler is similar to the DSB scheduler except the choice made to schedule the 

successor sub-block on to the same core. The only choice of selecting sub-block is its schedule 

latency, The scheduler picks the sub-block with the highest schedule latency (Li) and  schedules 

it on the core with lowest TSct.  

 
Algorithm 13:  Longest Latency Sub-block First Scheduler 

Find Latency  
Sort sub-blocks by descending latency.  
Schedule :-  
Single Core – in order of sorted list.  
Multi Core :  
i. Repeat steps (ii) to (vii) until list gets empty  
ii. temp top (list) (ready sub-block)  
iii. Schedule temp & increment schedule time of this core.  
iv. Update finish-time of temp and ready-time for all immediate successors.  
v. If schedule time of current core is less than max schedule time & list is non-
empty  
    Goto step (ii)  
vi. Max schedule time schedule time of current core  
vii. If list is non-empty switch core  
    goto step (ii)  
viii. END  

 

This scheduler has advantage over other proposed global schedulers in terms of speed-up, but 

has penalty of communication cost and power. This scheduler can be used in environment where 

performance is crucial and no other optimization is required. Scheduler uses sorted list of sub-

blocks. Sorting is based on descending order of scheduling latency. Each node in list contains 

sub-block and its respective latency. 

7.5 Results 
 

The main aim of the proposed work was to equally utilize all the available cores. The relative 

results in terms of speed-up, power consumption and performance per power achieved by 

executing benchmark programs on dual core and quad core processor is shown. The equations 

used for computing the results are explained in Section 3.4. The result in Figure 29 shows that 

the speed-up increases as number of cores increase, which makes it evident that all the cores are 

utilized towards achieving maximum gain. The speed-up decreases when the same code is run on 

3 active cores, and at the same time per power performance improves as is shown in Figure 31. 

The power consumed to execute the test cases is captured and performance per power of each 

test case is calculated as shown in Figure 30 and Figure 31 respectively. It is observed that power 
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increases as the number of cores increase. The power consumption is lower when 3 cores are 

used instead of 4 cores. Thus the performance per power of quad core machine is higher when 3 

cores are used instead of 4 cores. The effect of using 3 cores by slightly compromising with 

speed-up is shown in Figure 29. This power optimization can be used in an environment where 

power is critical. The communication costs of the proposed algorithms are shown in Figure 32, 

and are compared with the communication cost of intra block scheduler.   

The general observations on execution of benchmark programs when scheduled using proposed 

schedulers are as follows. These observation were the expected output from multicore processor 

but was not obvious for the non-multithreaded applications.  

 Speed up increases as number of cores increase. 

 Power consumption increases with increased utilization of cores.. 

 Performance per power decreases when more cores are used. 

 Performance per power increases with 3 active cores compared to 4 active cores in a quad 

core machine with slight compromise on speed-up. 

 Power increases and speed-up decreases when communication between cores increases. 

 Performance per power increase when communication decreases. 

Intra block scheduler (IBS) was designed for locally scheduling the disjoint sub-blocks within 

the basic block. But when whole program (CFG) is to be scheduled, sub-blocks in other basic 

blocks may communicate with sub-blocks scheduled on a different core. Thus communication 

cost is higher when intra block scheduler is used. 
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Figure 29.  Speed-up Analysis For Inter Block Schedulers  

 

 

 

 

 

 

 

 

 

 

 

0 

0.25 

0.5 

0.75 

1 

1.25 

1.5 

1.75 

2 

2.25 

2.5 

2.75 

3 

3.25 

3.5 

3.75 

4 

DCT1 DCT2 DCT3 DCT4 QCT1 QCT2 QCT3 QCT4 3ACT1 3ACT2 3ACT3 3ACT4 

S
p

ee
d

-u
p

 

IBS HIB DSB MDSF LLSF 

DCT i : Dual Core Test case (1, 2, 3 & 4),  QCTi:  Quad Core Test case (1, 2, 3 & 4)  
 3ACT i : 3 Active Core Test case (1,2,3 and 4) 



 92 

 

 

 

 

 

 

 

 

Figure 30.  Power Analysis For Inter Block Schedulers  
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Figure 31.  Performance Per Power Analysis for Inter Block Schedulers  

 

 

Figure 32.  Communication Cost For Inter Block Schedulers  
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7.5.1 Discussion 

 

 This section discusses various results obtained using test case 1. In Figure 33, the speed-up and 

power consumed is compared. Power and performance per power are compared in Figure 34, and 

the speed-up and communication cost are compared in Figure 35. The same is applicable to other 

3 test cases  as is shown in Figure 36, Figure 37 & Figure 38 and  other benchmark programs that 

are used to evaluate the proposed work.  

 

Figure 33.  Speed-up vs Power Consumed  

 

Figure 34.  Power vs Performance Per Power  
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Figure 35.  Speed-up vs Communication Cost  

 

Figure 36.  Analysis of Test Case 2  
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Figure 37.  Analysis of Test Case 3  

 

Figure 38.  Analysis of Test Case 4  
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The speed-up gain of HIB scheduler is slightly high compared to other schedulers on all the 

machines. The communication cost of HIB scheduler is high which influence increase in power 

consumption and decreases the  performance per power.   

 The dependent sub-block based (DSB) scheduler is made memory efficient by scheduling 

connected sub graphs in SDG, i.e. dependent sub-blocks on to same core. Thus the DSB 

scheduler reduces the communication between the cores. But, as number of core increases this 

heuristic suffers. This scheduler will not schedule the ready sub-block on the other idle cores, but 

would wait to schedule the ready sub-block on to the core on which its ancestor sub-block in 

SDG executed. This may lead to unbalanced scheduling. The DSB scheduler is suitable when 

SDG is dense and benefits only when less cores are used by applying power optimization 

technique. 

 Maximum dependent sub-block first (MDS) scheduler tries to balance the communication 

cost, power consumption  and speed up. The values of speed up, power consumption and the 

communication cost lie between the values of those metrics achieved using HIB and DSB 

schedulers. Similar to DSB scheduler, MDS will suffer when SDG is dense and the scheduler 

doesn't apply  power optimization. 

 Longest latency sub-block first (LLSF) will overcome the limitations of DSB and MDS 

schedulers. LLSF scheduler picks the sub-block with longest latency and schedules it on to the 

core with least execution time. The communication cost is less as compared to HIB scheduler but 

slightly higher than DBS and MDS schedulers. Thus the values for LLSF scheduler in terms of  

speed-up and performance per power gain lie between the HIB and DSB/MDS. This scheduler is 

scalable in terms of number of cores. LLSF when compared with HIB may not be compiler 

efficient as it perform linear search to find  the sub-block with the longest latency. 

7.6 Conclusion 

 

The work in the chapter proposes various compiler level global scheduling techniques for 

multicore processors. The goal underlying these techniques is to promote extraction of ILP 

without explicitly specifying parallelizable fraction of the program by the programmer. To 

achieve this, the basic blocks of the control flow graph of a program are subdivide into the 

multiple sub-blocks and there by a sub-block dependency graph is constructed. The proposed 

schedulers, depending on sub-block dependency and their order of execution, allocate the sub-
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blocks in the dependency graph to multiple cores selectively. These schedulers also carry out 

locality optimization to minimize communication latency among the cores and to minimize the 

overhead of hardware based instruction reordering. A comparative analysis of performance 

and the inter-core communication latency has been presented. The results obtained thereof also 

indicate how these schedulers perform in terms of power consumption and the speed up 

achieved when the number of active cores varies. From the results it can be observed that a 

better and balanced speedup per watt consumption can be obtained. Though the results are 

shown for dual core, quad core and active 3 core processors, the proposed scheduler 

theoretically can scale to handle larger number of cores as the sub-block formation technique 

is independent of number of cores and memory access. Memory contention can have impact 

on scalability which would need to be further investigated.  
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CHAPTER 

Register Allocation For Multicore Processor 08 
 

Register allocation phase of compiler maps the unbounded number of program variables to a 

fixed number of physical registers of a processor. In a parallel processing environment, register 

file is shared among the processors which increases register pressure. To avoid the disadvantages 

of shared register files, each core in a multicore processors contains private register files. The 

compiler is responsible for allocating registers from the respective core for a program code or 

parallel regions of program which is scheduled to execute on that core. 

  The schedulers proposed in the chapter 6 & 7 creates schedules for cores in multicore 

processors. Each schedule contains sub-blocks. The register allocation for the instruction in the 

sub-blocks need to be done from private register file of each core.  

 The register demand of the sub-blocks can be either detected during scheduling 

(integrated approach) or after scheduling as shown in Figure 39.  

 

 

Figure 39.  Proposed Register Allocation Heuristics  
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 A global register allocation heuristic (Heuristic 3) without simplifiability. 

 A global register allocation heuristic (Heuristic 4) with simplifiability. 

In Heuristic 2 register demand is also considered to make scheduling decisions. In heuristic 3 & 

4 register allocation are performed after creating schedules for cores. The classification of these 

register allocation approaches are also based on region used to perform register allocation, i.e., 

whether the register allocation is done on individual sub-block or on hyper sub-block (merged 

sub-blocks). The Local register allocation approach uses sub-block and the global register 

allocation approach uses hyper sub-blocks formed by merging the sub-blocks in the schedule.  

This chapter discusses the implementation details of the proposed register allocation heuristic 2, 

3 and 4 for multicore processor. The significance of these heuristics are explained in Section 4.3 

and implementation details are explained in section 8.1 and 8.2.  

 In general, the proposed register allocation heuristics creates a list of hyper sub-blocks H 

(h1,h2,h3....hx) whose interference graph is k-colorable as shown in Figure 18. Since the hyper 

sub-blocks are scheduled on a single core, it ensures temporal locality and reduces memory 

reference. The hyper sub-blocks which are k-colorable cause zero spilling and instructions 

remain inside private memory of individual cores till all the instruction commits without doing 

external memory reference.  

8.1.Integrated Scheduling and Register Allocation (Heuristic 2) 

This approach integrates register allocation pass with global scheduling [34]. The goal is to get 

away with the phase ordering problem and to overcome limitations which lead to poor 

optimizations. The scheduler schedules the sub-blocks in the dependency graph to multiple cores 

selectively, taking register requirement, dependencies and the order of execution into account. 

 The scheduler proposed here is a modified Dependent Sub-block based scheduler (DSB) 

[14], which keeps track of dependency between the sub-blocks in different basic blocks while 

scheduling onto the cores. The proposed work ensures that integrating register allocation phase 

with scheduling phase will not affect the performance of DSB scheduler.   

 The modified flow of the compiler after including fine grain extractor model to create  

disjoint sub-block and integrated scheduling phase is shown in Figure 40. The disjoint sub-

blocks and sub-block dependency graph (SDG) are formed as discussed in section 5.1. The 
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coloring module in the original compiler is removed and is integrated with the scheduling phase 

of the compiler. 

  

Figure 40.  Modified Flow of Compiler To Integrate Scheduler and Register Allocator 
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The sub-blocks which are in same schedule are merged to form the hyper sub-blocks if following 

conditions are satisfied. 

 The merged sub-blocks will not affect the execution of the sub-block scheduled on 

other cores.  

 The hyper sub-block is k-colorable.  

Algorithm 14: Integrated Scheduling and Register Allocation 
1. Find Latency 

2. Sort sub-blocks by descending latency 

3. Schedule & allot Registers: 

  a. Single Core – in order of sorted list 

  b. Multi Core: 

i. temp  top (list) (ready sub-block) 

ii. Schedule temp & increment schedule time of this core 

iii. Remove temp from list 

iv. Update finish-time of temp and ready-time for all immediate successors 

v. If any immediate successor of temp is ready (check in order of list) & list is non-empty 

If number of immediate successors > 1 and their latencies are equal 

temp  immediate successor which when scheduled results in colorable interference graph 

else 
temp  immediate successor not scheduled with highest latency 

goto step (ii.) 
vi. If schedule time of current core is less than max schedule time & list is non-empty. 

   goto step (i.) 

vii. If the scheduled group is not colorable 

Spill to make interference graph colorable. 

Update schedule time of the core, finish-time of scheduled sub-blocks and ready-time for all the 

immediate successors of sub-blocks present in the scheduled group. 

else     Merge the sub-blocks in the schedule to create hyper sub-block by checking simplifiability. 

viii. Max schedule time  schedule time of current core 

ix. If list is non-empty switch core goto step (i.) 

x. END 

The limitation of integrated scheduler is that, it works well when the sub-blocks exhibit high 

dependency in SDG. Dependency between sub-blocks facilitates creating larger hyper sub-

blocks in the schedules. It is observed that integrating register allocation phase with other 

schedulers such as HIB, MDS and LLSF will not give desired gain in speed-up. As they increase 

the waiting time of other sub-blocks scheduled on other cores and increases the communication 

cost.  

8.2. Global Register Allocation (Heuristics 4) 

 

In this register allocation heuristic, the schedules generated by the scheduler is used. The 

algorithm incrementally merges the sub-blocks using Merge Operator to produces a list of hyper 

sub-blocks H (h1,h2,h3....hx) whose interference graph is k-colorable. 
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8.2.1  Merge Operator 

 

The merge operator produces k-colorable hyper sub-blocks by merging the interference graphs of 

sub-blocks listed in schedule. While creating the hyper sub-blocks, the sub-block dependency 

and simplifiability conditions must be checked and satisfied. The algorithm for merge operator is 

given below. Algorithm begins by selecting two sub-blocks SBi and SBj which is followed by 

dependency constraint check. The constraints are enforced through the condition C1, C2 and C3 

given below. These conditions are derived from the invariants used by the global scheduler (in 

Section 4.2).  

 Assuming that SBj is listed in schedule of processor core Cra, the condition C1,C2 and C3 

are checked to find  if the sub-block SBj can be merged with its predecessor sub-block SBi to 

form hyper sub-block.  

 The sub-block SBj can be merged with its predecessor SBi iff it is not dependent on sub-

block(s) SBk where sub-block SBk is scheduled on different core Crb where a ≠ b. In case SBj is 

dependent on sub-block SBk it can be merged with its predecessor iff SBk and SBi have non 

overlapping execution i.e, finish time of SBk is less than  ready time of SBi. The condition C1 

and C2 are used for checking  these two possibilities.  

 Condition C3 helps in reducing the wait time of sub-block SBk. If a sub-block SBk is 

scheduled on core Crb and  is dependent on SBi, merging of SBi with its successors to form a 

hyper sub-block will cause SBk to wait till the hyper sub-block execution is completed. To 

ensure zero spilling of the hyper sub-blocks, simplifiability condition C4 is checked. An example 

illustrating the merge operation is discussed in Section 4.3. 

The conditions (C) and decisions (D) used in Algorithm 15 are given below. 

I1: Let SBj be the successor of SBi  in the schedule for core Cra.  

Let SBk be the sub-block in the schedule of other core Crb.   

C1: If SBj is dependent on SBk. 

C2: If Tfns of sub-block SBk  <  Trdy of SBi. 

C3: If SBk is dependent on SBi and  Trdy of SBk is > Tfns of SBj. 

C4: If the interference graph of SBi and SBj are simplifiable and resulting   interference graph 

after merging is also simplifiable. 

D1: Merge the sub-blocks to schedule and allocate register together.  

D2: Do not merge the sub-blocks.  
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Algorithm15 : Merge Operator 

MergeOperation(sub-block SBi , sub-block SBj) 

begin 

   initialize  

     SBj be the successor of SBi in the schedule for core Cra.  

     SBk be the sub-block in the schedule of other core Crb.   

    if(C1 & C2 & C4) 

    begin 

       Merge the sub-blocks to schedule and allocate register.  

    End if   

    else if(!C1) 

    begin       

       if(C3 & C4) 

       begin 

          Merge the sub-blocks to schedule and allocate register.  

       End if 

    End else if 

    else 

    begin 

       Do not merge the sub-blocks (D1).  

    End else 

End 

 

The disjoint-set forests [107] algorithm can be used for merging the interference graph. The 

union-by-rank heuristic is used to improve the runtime of union operation and path-compression 

is used to improve the runtime of the find set operation. 

8.2.2 Observation on Number of Registers 

 

This section discusses the effectiveness of proposed register allocation when the number of 

registers are varied. The results shown in the section 8.4 is for the cores having 8 general purpose 

register each. The effect of increasing the number of registers leads to reduced spilling when 

heuristics 1, 2 and 3 are used which is obvious.  

 As interference graphs are built incrementally by checking dependency and simplifiablity 

conditions. Increasing the number of registers can cause increased number of instructions in the 

hyper sub-block resulting into optimized code generation requiring lesser execution time. The 

improved execution time can be attributed to the fact that larger hyper sub-block will require less 

data movement to and from memory.   

 According to chromatic polynomial theory for the Chordal graph, a fully connected 

Chordal graph with k nodes need k colors. The interference graph of the SSA form program will 

never be fully connected and most of the time it is 3 colorable.  
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The interference graph of the benchmark programs used in this work shows either of the 

following coloring pattern for k+1≤ 8 where k range from 3 to 7. 

 sub-blocks are k colorable and hyper sub-block is also k colorable.  

 sub-blocks are k colorable and hyper sub-block is k+1 colorable.  

There will be no change in performance if number of registers used is reduced to 3. Further, the 

performance will not change if more than 8 registers are used, because of dependencies between 

the sub-blocks scheduled on different cores. 

8.2.3 Capturing Live Variable 

  

The Live variables are captured during SDG creation. In the SDG, the sub-blocks are 

represented as vertices V and dependency between the sub-blocks are represented by directed 

edges E. The total number of Live_in variables of the sub-block SBjBq is the degree of 

dependency between SBjBq and SBiBp, i.e. total number of variables involved in the 

dependency. Live variables in a sub-block SBjBq is the sum of degree of dependency of all 

incoming edges and variables that are defined in the sub-block. 

8.2.4 Register Assignment 

 

In this phase, the live variables in the hyper sub-blocks are assigned register. As the 

simplifiability condition is checked during the formation of hyper sub-block, the need to insert 

spill code is eliminated. The choice of the order of coloring is simplified due to the fact that the  

interference graph is Chordal with simplical vertex. The edge projecting out of the simplical 

vertex is pushed on  to the color stack first and continued till all the edges are pushed on to the 

stack. Once all the edges are pushed on to the stack, the color assignment module pops out the 

edges from the stack to assign different color for the conflicting edges. The color stack is used to 

prioritize the coloring i.e the edge in higher position in the stack is given higher priority.  

8.2.5 Insert Spill Code 

In this phase, the spill code load/store is inserted for the spilled variable which are captured 

during construction of initial interference graph of the sub-blocks. However the interference 

graphs of the hyper sub-blocks are k-colorable which eliminates the need of spill code. The spill 

codes are inserted after creation of hyper sub-blocks and register assignment phase to retain the 

properties of SSA.  
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8.3. Algorithm Complexity 

 In this section complexity analysis for the proposed register allocation heuristic is presented. 

The complexity of the other three heuristics are compared and presented in Table XI. 

 Let m and n be the number of sub-blocks and number of live-ranges or variables. The 

time consumed per sub-block to check the presence of dependent sub-blocks or parental sub-

blocks on other cores is O(m). The mergeSubblock module has O(n log n) complexity. Thus, for 

heuristic 3 the complexity of all the iterations (for m sub-blocks) is O(m*nlogn). In heuristic 4, 

the time consumed to verify the individual interference graphs for simplifiability, merging of the 

two interference graphs, and verifying if the new graph is simplifiable is O(n
2
). The complexity 

of coloring module is O(n log n). Thus, the overall complexity of the checkSimplifiable and 

mergeSubblocks modules is the order of O(n
2
 + n log n) i.e., O(n

2
). Thus, the complexity 

of all the iterations (for m sub-blocks) is  O(m*n
2
). 

TABLE XI.  ALGORITHM COMPLEXITY COMPARISON OF DIFFERENT REGISTER ALLOCATION 

HEURISTICS  

 Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4 

 

Complexity 

 

 

O(n*log(n))  

 

O(m
2
 * n

2
) 

 

 

O(m *nlog(n)) 

 

O(m* n
2
) 

 

At first sight, it might appear that heuristic 4 has big increase in compilation time. But this 

complexity is acceptable, when overall compilation process is considered, as the complete code 

generator including register allocation contributes less than 20% of the total compilation time. 

8.4. Results 

 

The amount of spill caused by four different register allocation heuristics is computed and its 

effect on speed-up, power consumption and performance per power are compared.  

 Heuristic 1 does not contribute spill code as the interference graph of the sub-blocks are 

k-colorable. This heuristic requires the runtime environment to assign threads to 

individual sub-blocks and handles corresponding frequent data movement from the 

memory.  

 Heuristic 2 tries to solve the phase ordering problem by allocating register during 

scheduling by compromising a little with the performance. This heuristic results in 

reasonable amount of spill code as well as increases the compilation time.  
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 The heuristic 3 overcomes the problem faced with heuristic 1 by allocating threads to 

hyper sub-blocks instead of sub-blocks. But this heuristic results in greater amount of  

spill code.  

 Heuristic 4 by checking the simplifiablity conditions for the hyper sub-block, combines 

the feature of heuristic 1 and 3 resulting into spill code elimination and reduced runtime 

environment overhead. 

 The amount of spilling when the four heuristics are used is shown in Table XII. The 

spilling is almost zero when register allocation is done on the list of sub-blocks using 

heuristic 1 as sub-blocks are created by taking register requirement. Similarly spill is zero 

in the proposed heuristic 4 as interference graph of hyper sub-blocks are k-colorable. 

 

TABLE XII.  SPILL COMPARISON OF DIFFERENT REGISTER ALLOCATION HEURISTICS 
 

 

 

 

 

 

 

 
 

 

 

 

 

TABLE XIII.  COMMUNICATION COST OF INTRA BLOCK, INTER BLOCK  AND INTEGRATED 

SCHEDULER 

Test case 

No 

Communication Cost 

Intra block 

Scheduling 

Inter block 

Scheduling 

Integrated 

Scheduling 

T1 – Dual 13 7 5 

T2 – Dual 19 10 8 

T3 – Dual 11 0 0 

T4 – Dual 10 4 4 

T1 – Quad 15 10 9 

T2 – Quad 26 18 22 

T3 – Quad 9 0 0 

T4 – Quad 22 4 4 

 

 

 

 

Algorithm Heuristics 1 Heuristic 2 Heuristic 3 Heuristics 4 

Test Case 1 Dual Core 0 1 0 0 

Quad Core 0 1 1 0 
3- Active Cores 0 ####### 1 0 

Test Case 2 Dual Core 0 1 3 0 
Quad Core 0 1 0 0 
3- Active Cores 0 ####### 0 0 

Test Case 3 Dual Core 0 0 3 0 
Quad Core 0 0 0 0 
3- Active Cores 0 ####### 0 0 

Test Case 4 Dual Core 0 1 2 0 
Quad Core 0 0 2 0 
3- Active Cores 0 ####### 2 0 
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Figure 41.  Speed-up, Power and Perf/Power Comparison on Dual Core Machine  

   

Figure 42.  Speed-up, Power and Perf/Power Comparison on Quad Core Machine  
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The performance gain is a combined effort of scheduler and register allocation approach. The 

results in Figure 41 and 42 depict the effect of spilling on speed up, power and Perf/watt on dual 

core and quad core processor. 

 The speed-up and performance per watt of heuristic 1 is lower even with zero spills. This 

is because of limitation of the local scheduler. The local scheduler assigns thread to each 

sub-block resulting in higher data movement.  

 Heuristic 2 shows better speed-up for Test Case 2, this is because the integrated scheduler 

is able to create a schedule for dual core processor efficiently. The performance of the 

heuristic 2 is deteriorated for test case 2 on quad core processor due to memory 

contention. 

 Speed up-decreases when spill increases, due to insertion of extra spill instructions. When 

heuristic 3 is applied on Test Case 2, 3 and 4 to execute on dual core machine, the speed-

up decreases due to spilling. This results in higher power consumption and reduced 

performance per watt in comparison to heuristic 4.  

 Test case 3 on quad core processor shows same performance on all the heuristics in terms 

of speed up as there is no spill in either of the heuristics. 

 Heuristic 4 performs better for all the test case on quad core processor. 

 It is clear from Figure 41 and 42 that the overall performance of heuristic 4 is better with 

respect to performance per watt. 

 Heuristic 4 tries to achieve better performance with improved compilation time. 

  

8.5. Conclusion 

The work proposes a register allocation mechanism to be used for multicore processors. The 

proposed mechanism promises to give better results than those obtained using a conventional 

register allocation mechanism built for single core processors. The experimental results presented 

in this chapter endorse this fact. The algorithm takes into account the presence of multiple cores 

and the presence of their separate register files, and exploits this avenue to achieve better register 

allocation results. Four heuristics for allocating registers for fine grained threads are discussed. 

The spills, speed-up, power consumption and performance per power are compared.  
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CHAPTER 

Achievements, Limitations, Future Work, and 
Summary  

9 

 

In this chapter, we conclude our research work by summarizing the achievements, providing 

limitations and suggest directions for future research. 

9.1 Summary of Achievements 
 

i. The sub-blocks are created from sequential program by checking the true dependencies 

between the instructions. The instructions inside the sub-blocks are true dependent on 

each other which ensures the spatial locality. 

ii. The Local and Global schedulers are proposed to achieve high speed-up and low power 

consumption.  

iii. Cache coherence is a major concern in multicore environment where L2 cache is shared. 

Since sub-blocks in a basic block of CFG are disjoint, it solves the problem of cache 

coherence when scheduled locally on multiple cores. However indirect cache coherence 

exists which our method will not identify. 

iv. Schedulers also provide the solution to memory contention as the dependent sub-blocks 

are not scheduled together at same time.  

iii and iv  mitigate the runtime overheads like, locking, synchronizing....etc.   

v. To ensure temporal locality, all the data belonging to sub-block are moved on to 

Instruction and Data cache/memory of the core on which sub-block is scheduled and 

remain their till it commits. 

vi. To reduce data movement between core and memory as sub-blocks are merged to create 

Hyper sub-blocks. Hyper sub-blocks ensure more instructions provided for execution in 

one fetch.  

Sub-blocks are also merged for the other two reasons 

 To perform power optimization. 

 To ensure efficient register allocation. 

vii. The schedulers are designed to perform power optimization i.e., if the speed-up achieved 

using n cores can be achieved using n-1 cores, then only n-1 cores of the n core machine 
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are used to execute the given task, either by keeping the n
th

 core idle or utilizing it for 

some other computation. 

viii. When the sub-blocks are scheduled individually on to the multiple cores, we see that 

number of registers required by the sub-block is less than or equal to number of register 

in each core. If number of register required is less than the registers available, scheduler 

tries to combine the sub-blocks whose register requirement is almost equal to register 

available in the core. This ensures there is no register spill during execution when 

individual sub-blocks are scheduled. 

ix. Hyper sub-blocks are created before register allocation to ensure temporal locality by 

pushing maximum instructions on to core for execution. Hyper sub-blocks also ensures 

that instructions will do zero spills (k-colorable) and will remain in cores private memory 

till it commit without doing memory reference during execution.  

9.2 Limitations 

 

 The idea of creating disjoint sub-blocks and creating schedules for multicore processor is 

successfully implemented on Jackcc compiler. Though the Jackcc compiler is capable of 

compiling C program, the experiments are done using limited set of instructions and 

operators. Due to this limitation of Jackcc, the scalability test for the proposed schedulers 

were not performed for different Test Cases. Our results shows that our schedulers scale 

on dual and quad cores but did not scale well on 8 and 16 cores as the scalability of our 

technique is directly proportional to the amount of inherent ILP within the target 

program. 

 The scalability test is performed by creating schedule for multiple instances of the 

test cases. The speed-up achieved are shown in Appendix A 

 The explicit parallel programming techniques and compiler to compile these explicit 

parallel programs has reached a different height and are able to scale for the processors 

with accelerators. This is because, researchers are concentrating on developing 

programmer friendly technique to write parallel program. The work proposed in this 

thesis is an alternative and a complimentary technique where programmers need not write 

parallel program, instead depend on compiler to extract parallelism in the sequential 
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program. This work is just an initiative and lot of work need to be performed to catch the 

speed to multicore design.    

9.3 Future Work 

 

 The future work involves porting the proposed techniques onto LLVM or GCC compiler 

and to make it open source so that hackers can contribute to improve the technique. 

 To extract fine grained threads that can be scheduled on multicore processors with 

multiple functional units and to allocate register based on type operand and frequency of 

its use. 

 To profile a sequential program to pre-fetch the data required by fine grained threads to 

facilitate parallel access of the data.   

 To design the inter procedural scheduling. 

 To analyze the scheduling algorithm specific to memory contention.  

 To develop a STM to monitor the schedule created by the compiler. 

9.4 Summary  

Multicore has emerged as the mainstream processor design paradigm in the field of computer 

architecture. For most of the existing applications the performance is not directly translated. The 

existing application need to rewritten using explicitly parallel programming techniques or need 

to depend on tools such as compilers to parallelize the sequential code and runtime environment 

execute utilizing all computational capabilities in multicore environment.  

 The proposed research provides compiler support to exploit parallelism by extracting fine 

grained threads from a sequential program. The fine grained threads are heuristically scheduled 

on multiple cores to achieve speed-up by effectively utilizing computing capability of multicore 

environment. The fine grained threads that are scheduled on to different cores are allocated 

registers from respective register file of the core on which they are scheduled. 

 Thesis starts with a brief introduction to design philosophy and challenges in multicore 

architecture. Several dynamic and static support to exploit ILP in the existing parallel 

architectures such as Pipeline, VLIW, Superscalar and Multi clustered VLIW architectures are 

investigated as part of literature study. An effort is made to understand the pros & cons of 

hardware and compiler approaches. The challenges in multicore environment, motivations and a 

brief description of the steps involved in the proposed work to face the challenge is given. 
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 The work proposes various compiler level scheduling techniques for multicore 

processors. The goal underlying these techniques is to promote exploiting of ILP in multicore 

environment without explicitly specifying parallelizable fraction of the program by the 

programmer. To achieve it, the basic blocks of the control flow graph of a program are 

formulated into multiple sub-blocks. The compilation time efficient technique to form disjoint 

sub-blocks using two different approaches are proposed. To facilitate global scheduling new data 

structure called sub-block dependency graph (SDG) is proposed and efficient technique to create 

it is discussed in detail. 

 The scheduler’s prepares the schedule for multiple cores selectively, taking the 

dependencies among the sub-blocks into account to maintain the order of execution. The local 

scheduling heuristics (Intra Block Scheduling) which schedules the parallel regions within the 

basic blocks of CFG is discussed in Chapter 06 and four global scheduling heuristics (Inter 

Block Scheduling) which schedules the parallel regions formed across the basic block of the 

CFG is discussed in chapter 07. The brief discussion on merits and demerits of each heuristics 

are presented by comparing the results obtained by them. The results obtained by Intra block 

scheduling is compared with the results obtained by Inter block scheduling technique. These 

schedulers also carry out locality optimizations to minimize communication latency among the 

cores and to minimize the overhead of hardware based instruction reordering. 

 A detailed survey on register allocation approaches are presented in chapter 2 and register 

allocation technique for multicore architecture is presented in chapter 8. The proposed 

mechanism, which has been tailor made for use on a multicore processor, promises to give better 

results than those obtained using a conventional register allocation mechanism built for single 

core processors. The experimental results presented endorse this fact. To mitigate the phase order 

problem a new approach to integrate register allocation with global scheduler is presented. The 

goal of underlying technique is to overcome limitations which lead to poor optimizations and had 

bad impact on ILP. The proposed scheduler creates schedule for the cores by taking register 

requirement of sub-blocks and dependencies among the sub-block into consideration. The results 

obtained by the normal register allocation approach and integrated approach is compared and 

presented in the end of the chapter 08. The efficiency of register allocation technique is measured 

in terms of spills done by four different heuristics and their effect on speed-up, power and 

performance per power is also shown. 
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 The code generated for the programs in RAW benchmark suite is analyzed and compared 

for outcome of inter block and intra block scheduler. The performance analysis is based on the 

metrics such as speed-up, power consumption, performance per power and inter-core 

communication latency.   

 The schedulers also do locality optimizations to minimize communication latency among 

the cores. Though the results are shown on dual core and quad core processors, the proposed 

schedulers are scalable to any number of cores which are available in the modern architectures. 

The results which illustrate the scalability is given in Appendix A.    
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APPENDIX 

More Results on Scalability A 
 

Scalability of the proposed work is analyzed by creating schedule for multiple instances of test 

cases for 8 core and 16 core processor. The Figure 43, 44, 45 and 46 illustrate the speed-up 

achieved and observations are listed as follows. 

 Executing multiple instances on Dual core and Quad core processor does not change the 

speed-up as it is proportional to time and number of instruction getting executed in that 

time. Similar type of observation can be made on power and performance per power by 

following Woo-Lee model. 

 The single instance of test cases does not scale much on 8 and 16 core processors. 

 Two instance of all four test cases scale well on 8 cores. 

 Speed-up decreases when three instances of all four test cases are executed on 8 cores. 

This is because the third instance adds extra execution time. Similar observation can be 

done on executing four instances on the eight core processor. 

 Speed-up is gained when 3 instances and 4 instances of all four test cases are executed on 

16 cores. 

 It can also be observed that, the proposed schedulers can perform active power 

optimization. For example, if three instance of application or program is compiled for 16 

core processor, the speed-up achieved may not be so pleasing compared to executing it 

on 12 cores. In such case, the compiler creates schedule for 12 cores instead of 16 cores 

keeping 4 cores idle or allowing operating system or STM to schedule other application 

on these 4 cores. Figure 47 and Figure 48 illustrate this fact. The schedule for four 

instances of test case 1 is created for 12,13,14,15 and 16 cores and the schedule which 

requires minimum number of core to achieve maximum speed up is selected.  

With these observations, it can be concluded that the proposed work scale well with number of 

cores if the application or program exhibit parallelism. The fine grain thread extractor module 

exploit as much parallelism compared to explicit parallel program written by programmer.  
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Figure 43.  Speed-up Achieved on 4, 8 and 16 cores by Executing Multiple Instances of Test Case 1 

 

Figure 44.  Speed-up Achieved on 4, 8 and 16 cores by Executing Multiple Instances of Test Case 2 
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Figure 45.  Speed-up on 4, 8 and 16 cores Acheived Executing Multiple Instances of Test Case 3 

 

Figure 46.  Speed-up on 4, 8 and 16 cores Acheived Executing Multiple Instances of Test Case 4 
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Figure 47.  Speed-up Analysis by Executing 3 Instances of Test Case 1 on 12, 13, 14, 15 and 16 

core for Power Optimization  
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Figure 48.  Speed-up Analysis by Executing 4 Instances of Test Case 1 on 12, 13, 14, 15 and 16 

core for Power Optimization  
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APPENDIX 

Preliminaries and Definitions of Jackcc Compiler B 
This section is to provide the details of Jackcc compiler. The Jackcc compiler is an Optimizing C 

Compiler. Jackcc generate assembly code using the Jackal 3.0 ISA, whose instructions are listed 

below. Jackcc is developed by Nick Johnson to use in the University of Virginia. Additionally, 

this project has developed an assembler and simulator,  Jackas for the Jackal 3.0 ISA.   

 The Jackcc is written in C language. The different compilation phases and optimization 

pass are designed and implemented as set of reusable libraries. The Table XIV provide the list of 

files of Jackcc compiler. The flow of compiler and detail description are provided in Figure 6 

and section 3.2 of Chapter 3. The supporting files are listed in Table XV (interfaces with .h 

extension). 

 

TABLE XIV.   FILES IN JACKCC 

arith.c jump.c symtab.c lex.yy.c 

color.c scav.c toofar.c dist-lex.yy.c 

cse.c loops.c util.c dist-y.tab.c 

dag.c parser.y vars.c scanner.l 

dag2quad.c peep.c t.tab.c ytab.c 

ioc.c quads.c fcn.c  

parms.c semantic.c  
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TABLE XV.   SUPPORTING FILES IN JACKCC 

arith.h jump.h symtab.h lex.yy.h 

color.h scav.h toofar.h dist-lex.yy.h 

cse.h loops.h util.h dist-y.tab.h 

dag.h parser.y vars.h scanner.l 

dag2quad.h peep.h t.tab.h ytab.h 

ioc.h quads.h fcn.h  

parms.h semantic.h  

 

The ADT's defined in Jackcc are listed in Table XVI. The corresponding files containing these 

definitions are also provided in the table. The type whose names prefixed with s are defined 

using structure of C language. Similarly, the names prefixed with e and u are defined using 

enumeration and union of C language. 

TABLE XVI.  ABSTRACT DATA TYPES DEFINED IN JACKCC AND CORRESPONDING FILES  

 Structure 

Name 
Data type Containing File 

s_live Live color.h 

s_graph Graph color.h 

s_quad Quad quads.h 

s_arena Arena quads.h 

s_symbol Symbol symtab.h 

s_dag Dag dag.h 

s_annot DataAnnotation dag.h 

s_stack Stack util.h 

s_bst Bst util.h 
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B1. Instructions Supported and Their Meaning 

Instructions used to create assembly code (ISA) is provided in Table XVII.  The dest, sa, sb are 

all registers.(sa) means the memory pointed to by the memory address in register sa. Instructions 

are shown on the left and their meanings on the right. 

TABLE XVII.  INSTRUCTIONS USED TO GENERATE ASSEMBLY CODE BY JACKCC  

 

Instruction 

 

Meaning 

 

ADD dest, sa, sb 

 

destsa +sb 

 

SUB dest, sa, sb 

 

destsa - sb 

 

MUL dest, sa, sb 

 

destsa  * sb 

 

AND dest, sa, sb 

 

destsa && sb 

 

OR dest, sa, sb 

 

destsa || sb 

 

NAND dest, sa, sb 

 

destsa  NAND sb 

 

SLA dest, sa, imm 

 

destsa<<#imm 

 

SRA dest, sa, imm 

 

destsa<<#imm 

e_quad type QuadType Quads.h 

e_live type LiveType Color.h 

e_symtype Symtype Symtab.h 

e_dagtpe DatType Dag.h 

u_dual Dual util.h 
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LD dest, sa 

 

dest (sa) 

 

ST  sa, sb 

 

(sa)sb 

 

CONST dest, imm 

 

dest#imm 

 

OFFSET dest, imm, sym 

 

dest#imm + OFFSET of label(sym->name) 

 

CMP sa, sb 

 

compare register contents of sa and sb 

 

JPOS sym 

 

jump id positive flag is set to label sym->name 

 

JNEG sym 

 

jump id positive flag is set to label sym->name 

 

JZERO sym 

 

jump id positive flag is set to label sym->name 

 

JUMP sym 

 

jump to label sym->name 

 

JREG sa 

 

jump to address in register sa 

 

MOVE dest, sa 

 

destsa 

LABEL sym 

 

this converts to assembly as a label statement 

LABEL sym->name 

 

SAME 

 

For internal purpose. To specify to instruction 

are copy instruction. (Used to represent SSA 

form programs) 

 

 

LINE 

 

Used for internal purpose 

TOUCH Used for internal purpose 
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B2.  Basic Abstract Data Types 

B3.1. Stack type. 

 
union u_dual 

{ 

 int ival; 

 void *pval; 

}; 

typedef union u_dual Dual; 

 

 
struct s_stack 

{ 

Dual value; 

struct s_stack *next; 

}; 

typedef struct s_stack Stack; 

 

B3.2. Binary Search Tree Type. 

 This forms the basic block of the Tree, it can either contain an integer value, or a void pointer.  

struct s_bst 

{ 

 Dual value; 

 struct s_bst *   left,  *   right; 

}; 

 

typedef struct s_bst Bst; 

 

typedef Dual (*BstCallBack)(Dual, Dual); 

 

This is a function pointer which can call a function with two DUAL arguments and return a 

DUAL value. 

B3.3. Triangular Bit Matrix data type 

 

 
typedef  int Tbm 
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B3.4. Symbol Table:  

 

This is to store what is the type of the value stored in the symbol table. 

 
struct s_symbol 

{ 

 int   id; 

  

 SymType type; //  The type that is defined in the structure above 

  

 char *name; // The particular name of the symbol table entry 

  

 int offset; 

              //The offset of the record from the particular start point, could be the frame pointer position 

 int   value; //The integer value, if it has an integer value 

   

 struct s_symbol    *   mode; 

  

            int size; // the number of entries that are there in the table, the cardinality. 

  

 int flat_uses; 

  

            int weighted_uses;  //count for number of times used. 

  

         struct s_symbol       * parent; //Pointer to the structure, or function or block of code which 

contains this symbol, for back referencing 

 

 // The following fields are only used for functions 

  

 Bst *called_by; 

  

             Bst *returns_to; 

  

             Bst *call_to; 

 

 struct s_symbol       *  structure_fields; 

//Head pointer to the list of fields in the function. I don’t think this is the most optimized way of 

keeping the fields 

 

struct s_symbol       * function_formals; //Head pointer to the linked list of formal parameters 

  

            struct s_symbol      * function_locals;  //Head Pointer to the list of local parameters 

  

            int  can_put_in_register;  //Can this value be stored in a register or not 

  

           int constant_in_register; 

  

           int dirty;  //To reduce the number of caller saves for this particular variable. 

}; 

typedef struct s_symbol  Symbol; 
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B3.5. Symbol Type: 

 
enum  e_symtype 

{ 

 // an unused entry     ST_UNUSED=0, 

 // a global variable     ST_GLOBAL, 

 

 // a formal parameter     ST_FORMAL, 

  

 // a local variable     ST_LOCAL, 

 

 // a structure definition                   ST_STRUCTURE, 

 

 // a union definition     ST_UNION, 

   

 // a field in a structure or union                  ST_FIELD, 

       

 // integer type      ST_INTEGER, 

  

 // array-of type      ST_ARRAY, 

  

 // a function      ST_FUNCTION, 

  

 // a function prototype     ST_PROTOTYPE, 

  

 // a constant      ST_CONSTANT, 

       

 // a label      ST_LABEL 

 

}; 

 

typedef enum e_symtype SymType; 

 

 

B3.6. Quad Type (for Instruction): 

 
enum e_quadtype 

{ 

 // declare a label at this position                   QT_LABEL=0, 

 // make note of line numbes     QT_LINE, 

 // do nothing but affect register colorer 

 // i.e. pretends to read a register                  QT_TOUCH, 

 // affect register colorer -- demand that its 

           // two args occupy the same register.             QT_SAME, 

          // arithmetic operations                    QT_ADD, 

         QT_SUB, 

         QT_AND, 

         QT_OR, 

         QT_NAND, 

         QT_SLA, 
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         QT_SRA, 

         QT_MOVE, 

           // memory access       QT_LD, 

         QT_ST, 

         // constants       QT_CONST, 

         QT_OFFSET, 

        // control flow       QT_CMP, 

         QT_JPOS, 

         QT_JNEG, 

         QT_JZERO, 

         QT_JUMP, 

// two optional instructions 

         QT_MUL, 

         QT_JREG 

}; 

 

typedef enum e_quadtype QuadType; 

//It explains what basically the Quad accomplishes. 

 

 
struct s_quad 

{ 

 QuadType type;  //What is the function of this Quad. 

 int  dest; 

 int  sa, sb; 

 Symbol * sym; 

 int  imm;  // the loop depth of this quad 

 int loop_weight; 

 struct s_quad *next,* prev; 

}; 

 

typedef struct s_quad Quad; 

 

B3.7. Basic Block Type: 

 
struct s_arena 

{ 

 Quad *first, * last;   //Pointers  to the first and last Quad in this particular Arena 

  

 int num_quads;     //Count for the total number of Quads in this arena 

 int code_unreachable;     //Used when appending to the arena, so that unreachable code can   

                                                            automatically be removed 

 int last_line; 

}; 

 

typedef struct s_arena Arena; 

 //An Arena is a collection of Quads, helping us to describe  a Block. 
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B3.8. DAG  –  Data Structure 

A lot of optimizations can easily be done on the graph, such as constant folding, common sub 

expression elimination, and reduction in strength. 

Each node has an associated mode type (mode), and optionally a pointer to a symbol table entry.  

Each node has a unique id number too, of course. 

struct s_annot 

{ 

      // we have 32-booleans that we can use. 

 int flags;     // the depth of this instruction in loops 

 int loop_weight;    // the line of code that generated this  instruction 

 int source_line; 

}; 

typedef struct s_annot DagAnnotation; 

 
enum e_dagType 

{ 

 // two sequential statements     DT_SEQ=0, 

 

 // two sequential statements, and the value of the right 

 // subtree is caried on.      DT_RSEQ, 

 

 // two sequential statements which can be emitted in 

 // abitrary order (for parameters)...    DT_PSEQ, 

 

 // used during building 

 // should not appear in final dag                   DT_PLACEHOLDER, 

      

 // a function       DT_FUNC, 

  

 // a label       DT_LABEL, 

  

 // an unconditional jump                    DT_JUMP, 

  

 // jump if expression true     DT_JTRUE, 

  

 // name of a global      DT_GLOBAL, 

  

 // name of a formal      DT_FORMAL, 

 

 // name of a local                  DT_LOCAL, 

 

 // dereference by a star                  DT_DEREF, 

  

 // perform function call                   DT_CALL, 

 

 // perform addition      DT_ADD, 
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 // perform subtraction      DT_SUB, 

 

 // perform multiplication     DT_MUL, 

  

 // perform arithmetic right shift                   DT_RSH, 

  

 // perform arithmetic left shift     DT_LSH, 

 

 // perform bitwise and operation                 DT_BAND, 

  

 // perform bitwise or operation                  DT_BOR, 

         

 // perform bitwise nand operation    DT_BNAND, 

  

 // perform assignment      DT_GETS, 

 

 // load integer constant                   DT_CONSTANT, 

 

 // pass a parameter      DT_PASS, 

 

 // return a value                   DT_RETURN, 

 

 // equality operator      DT_EQ, 

  

 // inequality operator      DT_NE, 

  

 // greater than equal operator     DT_GTE, 

 

 // greater than operator                   DT_GT, 

  

 // less than or equal operator     DT_LTE, 

 

 // less than operator      DT_LT, 

  

 // short-circuit disjunction     DT_AND, DT_OR 

}; 

typedef enum e_dagType DagType; 

 
struct s_dag 

{ 

 int               id; 

 DagType            type; 

 int              refCount; 

 DagAnnotation notes; 

 int          offset; 

 Symbol           *mode, *symbol; 

 struct s_dag           * left, * right; 

}; 

typedef struct s_dag Dag; 
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B3. List of Some Important Functions 

 

B4.1. Stack Functions 
 

Stack * empty_stack(); 

Stack * push_stack(Stack *l, Dual v); 

Stack * pop_stack(Stack *l, Dual *v); 

Dual top_stack(Stack *l); 

void free_stack(Stack *l); 

int  inclusion_stack(Stack *l, Dual v, BstCallBack cmp); 

 

B4.2. Binary Search Tree or Set Functions 
 

Bst * insert_set(Bst *set, Dual val, BstCallBack cmp); 

// Set-wise insertion into a bst 
int  size_bst(Bst *rt); 

Dual first_bst(Bst *rt); 

void free_bst(Bst *bst); 

Bst * copy_bst(Bst *orig); 

Bst * merge_set(Bst *a, Bst *b, BstCallBack cmp); 

Bst * remove_bst(Bst *bst, Dual v, BstCallBack cmp); 

int  inclusion_bst(Bst *bst, Dual d); // uses default callback 

// iterate over each element in the bst and stops if any of them 

return non-zero. 

// Return said non-zero value. 

// user is passed as second parameter to call back function 

Dual each_bst(Bst *bst, Dual user, BstCallBack cb); 

// perform binary search  

// cb() should return as would comparison to guide the search. 

// User will be passed as the second parameter to the callback fcn 

Dual search_bst(Bst *bst, Dual user, BstCallBack cb); 

 

B4.3. Triangular Bit Matrix Functions 
 

Tbm ** new_tbm(int width); 

void free_tbm(Tbm **tbm, int width); 

void add_tbm(Tbm **tbm, int x, int y); 

int check_tbm(Tbm **tbm, int x, int y); 

void remove_tbm(Tbm **tbm, int x, int y); 

 

B4.4. Register Allocation Functions 
 

void graph_color(Arena *a); 

int scavenger(Arena *a); // to alert unused registers 

 
B4.5. Optimizations 

 
int perform_cse(Arena *a); 

int perform_mem_optimization(Arena *a); 

int perform_peephole(Arena *a); 
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int perform_dce(Arena *a); 

int perform_loopunroll(Arena *a); 

 

 

B4.6. Function Used During Code Generation 

  
void quads2asm(Arena *a); 

void sym2asm(Arena *a); 

 

B4.7. Functions to Create and Iterate on Basic-blocks 
 

Arena *new_arena(); 

void free_arena(Arena *a); 

void dump_quads(Arena *a); 

void dump_quad(Quad *cursor); 

void remove_quad(Arena *a, Quad *q); 

void insert_before(Arena *a, Quad *q, QuadType type, int dest, int sa, 

int sb, Symbol *sym, int imm, int weight); 

void insert_after(Arena *a, Quad *q, QuadType type, int dest, int sa, 

int sb, Symbol *sym, int imm, int weight); 

void insert_label(Arena *a, Symbol *label); 

void insert_block(Arena *a); 

void insert_line_number(Arena *a, int lin); 

void insert_add(Arena *a, int dest, int sa, int sb, int weight); 

void insert_sub(Arena *a, int dest, int sa, int sb, int weight); 

void insert_and(Arena *a, int dest, int sa, int sb, int weight); 

void insert_or(Arena *a, int dest, int sa, int sb, int weight); 

void insert_nand(Arena *a, int dest, int sa, int sb, int weight); 

void insert_sla(Arena *a, int dest, int sa, int imm, int weight); 

void insert_sra(Arena *a, int dest, int sa, int imm, int weight); 

void insert_ld(Arena *a, int dest, int sa, int weight); 

void insert_st(Arena *a, int sa, int sb, int weight); 

void insert_const(Arena *a, int dest, int imm, int weight); 

void insert_offset(Arena *a, int dest, Symbol *label, int imm, int 

weight); 

void insert_jeq(Arena *a, int sa, int sb, Symbol *label, int weight); 

void insert_jne(Arena *a, int sa, int sb, Symbol *label, int weight); 

void insert_jgt(Arena *a, int sa, int sb, Symbol *label, int weight); 

void insert_jgte(Arena *a, int sa, int sb, Symbol *label, int weight); 

void insert_jlt(Arena *a, int sa, int sb, Symbol *label, int weight); 

void insert_jlte(Arena *a, int sa, int sb, Symbol *label, int weight); 

void insert_jump(Arena *a, Symbol *label, int weight); 

void insert_move(Arena *a, int dest, int sa, int weight); 

void insert_mul(Arena *a, int dest, int sa, int sb, int weight); 

void insert_jreg(Arena *a, int sa, int weight); 

void insert_touch(Arena *a, int sourcereg); 

void insert_same(Arena *a, int sa, int sb, Symbol *sm); 

void recalculate_usage_counts(Arena *a); 

void printQuad(Quad * temp); 

void myPrintQuads(Arena * a); 

char * quadToString(QuadType q); 
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void printQuadSimple(Quad * temp); 

 

//This will look over an arena and assert that every temporary is 

defined at most once. A debugging tool. 

void assert_ssa(Arena *a); 

 

// determine if the runtime values of temporaries $x and $y are 

equivalent, 

int cmp_runtime_vals(int x, Quad *rx, int y, Quad *ry); 

void fix_jump_too_far(Arena *a); 

 
B4.8. Function Used to Create and Access Symbol Table 
 

void init_symtab(int count); 

void finish_symtab(); 

void dump_symtab(); 

void dump_histograms(); 

void dump_offsets(); 

void dump_call_graph(); 

int check_recursion(); 

void note_call(Symbol *from, Symbol *to, Symbol *ret); 

Symbol *lookup_symbol(const char *name); 

Symbol *search_symbol(const char *name, Symbol *parent, SymType type); 

Symbol *install_symbol(const char *name, SymType type); 

Symbol *lookup_constant(int v); 

// generate a new mode type as an n-ary array of something 

Symbol * array_of(Symbol *mode, int n); 

const char *mode2str(Symbol *mode); 

// determine if two modes are compatible 

int compatible_modes(Symbol *a, Symbol *b); 

 

Symbol *create_special_global(const char *name, int p); 

// get a structure by name 

Symbol * mode_struct(char *name); 

// get a union by name 

Symbol * mode_union(char *name); 

// get the integer mode 

Symbol * mode_int(); 

Symbol * find_last_global(); 

// deprecated 

int find_most_common_constant(); 

// assign constants to registers 

void assign_constants_to_registers(); 

int get_element_size(Symbol *md); 

int get_sizeof(Symbol *md); 

// a lot of constants are used for accessing variables on the stack 

frame.  Therefore, in order to keep our usage count of constants up-

to-date, we add n uses to each offset k, where n is the number of uses 

of a variable at frame offset k. 

void update_const_freqs_with_frame_offsets(); 
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B4.  Flow Control of The Code, Starting from the file Driver.c 

 

Driver.c : 

 

i. Contains the function main(). The series of operations done in main() are : 

ii. Initialise the symbol table. 

iii. Parse the file. If parsing error, then that is reported. 

iv. Make sure main() is defined. 

v. If all the components : Symbol Table,  DAG etc. have been successful printed, dump 

them. 

vi. Convert DAG to Quad by calling the function dag2quad(ast) 

vii. DO graph coloring by calling graph_color(quads). 

viii. If every variable, can be safely allotted a register, then just break off successfully, else 

ix. Free some symbols in the registers and try again, increment the number of passes. 

x. The first function called is  dag2quad(asm) which returns a pointer to an Arena 

B5.  Modified Fields in ADT's and Functions in Jackcc Compiler to Accommodate  

Proposed Changes in the Thesis 

B6.1. Fine Grain Thread Creation Pass 

The structure Arena and Quad are appended with few more fields to create disjoint sub-block in 

fine grain thread extraction phase. 

struct Arena 

{ 

Quad * first,* last; 

int *SubBlockIndex 

int *SubBlockSize; 

int num_quads 

int no_subblock; 

}; 

 

struct Quad 

{ 

int dest 

int srcb, srca; 

int oper; 

int loop_weight; 

struct Quad *next,*prev; 

}; 
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In Arena, the instructions in corresponding basic block are stored as a linked list of Quads 

represented by first and last of the structure. Number of quads is stored in num_quads.  

In Quad, the instruction stored is of the form dest = srca oper srcb where dest, srca, srcb are 

indices in the symbol table corresponding to the variables. 

 We divide the Arena into sub-blocks using disjoint-set operations based on true-

dependencies. Instructions having true-dependency are grouped together. Let us assume that an 

arena has   instructions. To begin with, this arena is divided into N distinct sets (sub-blocks), 

each having one instruction. Two sets are combined into a collection of instructions (to form sub-

blocks) if they have true-dependency. Structure of each sub-block is shown below. 

struct sub_block 

{ 

 Quad * q; 

 struct sub_block * next; 

 struct sub_block *sub_block_rep; 

 int block_no; 

 int task_no; 

 int sub_block_no; 

 int no_regs_block; 

}; 

 

In the structure sub-block, we maintain the information task_no, sub_block_no, and block_no, 

which are task number, sub-block number of the block, and basic block number of that task of 

newly created sub-block. Above information are required by the instruction scheduler to 

schedule these sub-blocks on to different cores in out-of-order and produce the output in in-

order. The no_reg_block will store the information of number of register required to the 

variables in that sub-block used by instruction scheduler and register allocation algorithm. The 

set_rep is the representative of a sub_block, used for disjoint union operation. We store the list of 

sub-blocks in an arena in the form of SetList S. Prototype of functions used to create disjoint 

sub-blocks. 

//Approach 1 to Create sub-block 

 

void makeSet(Arena A,List S); 

void groupQuads(List S, number of quads); 

void Union(List S,index i,index j); 

//Approach 2 to Create sub-block 

 

void Findind_Dominators(Basic Block Bp, sub-block List SList); 
void Dominators_List(); 
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void Dominniance_Frontier_calculation(); 

void Forcers_on_A_Node(); 

void PHI_function(); 

void Variable_renaming_Subblock_creation(); 

B6.2. Intra Block Scheduling 

The function used for intra block scheduling is given below. 
void mergeSubblock(List Sp,int  no_of_sub-blocks,int num_of_quads); 

void scheduleBlock(Basic Block Bp, Hyper sub-block List HSList); 

 
B6.3. Inter Block Scheduling 

Next, we shall see the data structures and functions used to compute the Sub-block Dependency 

Graph (SDG). The data structure of a node of CFG is very similar to data structure of Arena (of 

previous section) with extra pointers to its children and parents in CFG. Data Structure of SDG is 

also given.  

struct CFG  

{ 

Quad * first,* last; 

int SubBlockIndex[], SubBlockSize[]; 

CFG *dependency_Block[]; 

int dependency_SubBlock[][]; 

int num_quads, no_subblock; 

int depcount; 

CFG *child1, *child2, *parents[]; 

int no_parents; 

int *phi[];  

int subbl_phi[]; 

int no_rows; 

SDG subBlockGraph[]; 

}; 

 

struct SDG  

{ 

Quad * first,* last; 

int SubBlockIndex 

int SubBlockSize; 

CFG *Block; 

SDG children[]; 

SDG parents[]; 

int no_parents; 

int no_child; 

int *phi[];  

int no_rows; 

}; 
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In structure for CFG, apart from the data elements present in Arena, we also have pointers 

child1, child2 and parents[], list of children and parents the CFG node can have. phi[] is the list 

of   functions, each row corresponds to the function of one variable. It has as many columns as 

number of parents to the node. Each entry stores the version number of the variable from the 

corresponding branch. no_rows indicates the number of   functions. Once we split the block into 

sub-blocks using Algorithm 1 of section 3, the array subbl_phi[] stores the sub-block number to 

which each   function belongs. When we compute the dependencies of each sub-block, we store 

them in structures dependency_Block and dependency_SubBlock – while former stores pointers 

to blocks to which a sub-block is dependent upon, latter stores the corresponding sub-block 

number. depcount stores the number of dependencies. subBlockGraph[] is an array of nodes of 

sub-block dependency graph – one node corresponding to each sub-block. 

The structure for SDG – a node in Sub-block Dependence Graph has list of quads, Sub-block 

number, size, list of children, list of parents,   functions belonging to the sub-block and a pointer 

to the node of CFG to which the sub-block belongs. 

 

//Approach 1 to SDG 

 

ComputeDependency(Basic Block Bp, sub-block List SList); 

SDG createSDG(Sub-block SBp, Sub-block SBq); 

 

//Approach 2 to SDG 

Variable_renaming_SDG_creation(); 

 

// Global Schedulers 

InterBlockHIB(CFG C,SDG G); 

InterBlockDBS(CFG C, SDG G); 

InterBlockLLSF(CFG C, SDG G); 

InterBlockMDS(CFG C, SDG G); 
 

B6.4. Functions Used in Register Allocation  

 
// Integrated Register Allocation and Scheduling 

 
IntegratedScheulder(CFG C, SDG G); 

 
// Register Allocation 
 

MergeOperation(sub-block SBi , sub-block SBj); 

void graph_color(Sub-block SBp); 
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