
Compiler Assisted Parallelization and Optimization for

Multicore Architecture

THESIS

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

 by

D.C.KIRAN

Under the Supervision of

Prof. S. GURUNARAYANAN

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

2014

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN)

CERTIFICATE

This is to certify that the thesis entitled “Compiler Assisted Parallelization

and Optimization for Multicore Architecture" submitted by D. C. Kiran

ID. No. 2007PHXF013P for award of Ph.D. Degree of the Institute,

embodies original work done by him under my supervision.

 (Signature of the supervisor)

 Prof. S Gurunarayanan

 Professor

Date: Department of Electrical Electronics and Instrumentation Engineering

 Dean Work Integrated Learning Programmes Division

 Birla Institute of Technology and Science-Pilani

 Pilani – 333 031 (Rajasthan) INDIA

Dedication

To my father Channaiah and mother Sulochana who believed and

allowed me to achieve whatever I thought in my life.

 iv

Acknowledgements

Thanking my god who kept his promise by being with me throughout my research

expedition, I would like to acknowledge the efforts of my supervisor

Prof. S. Gurunarayanan who has been more to me than just an adviser in technical

matters. A friend, a mentor, and a guide for life, he gave me the flexibility to pursue

whatever I felt was appropriate, provided me with continuous guidance even beyond his

areas of interest to help me work efficiently and remain focused, and gave me the ability

to form a vision.

 I am very thankful to Prof Janardan Prasad Misra who stepped in at the right time

to work with me, and without his continuous encouragement, inspiring dedication, and

organized approach to research, I couldn't have completed this thesis. He is the most

sincere teacher and guide I have come across, and I consider myself extremely lucky to

have gotten his attention.

 Special gratitude to Prof Sudeept Mohan, the ACO course for which I was

attached with him gave me a deep understanding of processor design. He has also been

kind to provide useful suggestion and feedback on all part of my work.

 I would like to thank Prof. B. N. Jain, Vice Chancellor, Prof. G. Raghurama,

Director, Prof. S K Verma, Dean, Academic Research Division, Prof Rahul Banerjee,

Head of Department, Computer Science & Information Systems, Birla Institute of

Technology and Science, Pilani (BITS-Pilani), (Raj.), for giving me an opportunity for

PhD program.

 Further, I sincerely acknowledge the encouragement and help received from

Prof Shanmuga Sundar Balasubramaniam and Prof. Navneet Goyal, at various stages of

the work.

 v

 My wife N. Mehala with whom I closely shared much of my experience,

especially as PhD student, the contradictions, the disappointments at innumerable paper

rejections, the sporadic joyous moments at papers acceptances, probably she is the only

one who understands what made this road really long, and gave me company all along.

 To my son Mano Srijan who missed many stories when I worked till late night.

Over the last almost-nine enriching years at BITS Pilani, so many other people and things

have been a part of this experience as well, that it is hard to choose and name only a few.

My colleagues in department and friends and the time we spent together will forever

remain precious to me.

 vi

Abstract

Compiler Assisted Parallelization and Optimization for Multicore

Architecture

Continuous improvement of VLSI technology coupled with need for faster processing

capability has led to several innovations in the field of computer architecture resulting in

development of multicore processors. A multicore processor has multiple processor cores

on a single chip. Each individual core has separate register file and is capable of

executing complete ISA (Instruction Set Architecture). In order to exploit the computing

capabilities of multicore processors, significant amount of research in the area of code

parallelization and multiprocessing has been carried out. An application running on a

multicore system does not guarantee the performance improvement until the application

has been explicitly designed to take advantage of multicore processor. To develop an

application that exploits computing capabilities of multicore, two approaches are

followed. The first approach is to develop an explicitly parallel code that can be

scheduled on multiple cores of a given processor and the other approach is using a

compiler to extract fine grained parallelism by identifying the sets of instructions that can

be executed in parallel. Current focus by researcher and programming language

developers is to exploit coarse grain thread and data-level parallelism. There is very little

effort from the research community toward the exploitation of compiler driven fine

grained parallelism of a sequential program.

 The multicore processors can be made to exploit fine grained parallelism of a

given code by exposing the low level architectural details to the compiler and operating

systems. Several multicore architectures are proposed and are being designed such that it

supports the minimal set of operations required for executing an instruction, and other

tasks including extracting the fine grained parallelism are left for compilers and run time

environment. The runtime environment can manage resource allocation, extracting

 vii

parallel constructs for different cores, and scheduling based on information generated by

the compiler.

 The challenge in achieving a performance gain from fine-grain parallelism is

identification of the fine grained thread from a given single threaded application and

scheduling these threads on different cores of the multicore processor.

 To avoid the congestion on small shared register file as in other parallel

architectures, the memory hierarchy of multicore architecture generally has private

register files. The fine grained threads that are scheduled on to different cores need to be

allocated registers from respective register file of the core on which they are scheduled.

 To effectively utilize the potential benefits of the multi-core processor, the thesis

focuses on improving performance through automated fine-grain parallelization, where a

sequential program is split into parallel fine grained threads and are scheduled on to

multiple cores. It is also proposed to develop register allocation strategy for fine grained

threads which are scheduled on multicore processor. The register allocation is performed

by considering individual register files of each core of multicore processor.

 This thesis modifies the flow of current compiler by splitting the sequential

program to create fine grained threads, proposes five scheduling heuristics (1 local and 4

global), and register allocating heuristics for fine grained threads which are scheduled on

multiple cores. The work is evaluated using speed-up, power consumption, performance

per power, communication cost, and spilling as metrics. The RAW benchmark suite is

used to compare the results.

 viii

Table of Contents

List of Tables .. xi

List of Figures ... xii

List of Abbreviations ...xv

Chapter 01 Introduction ..17

1.1 Challenges In Multicore Environment ..19

 Parallelizing The Sequential Program ..19

 Memory Management and Data Communication19

 Register Allocation ...19

 Memory Bandwidth ..20

 Locality of References ..20

 Memory Contention ..20

 Scalability ...21

 Power Consumption ..21

1.2 State Of Art of Exploiting Parallelism ..24

1.2 Objectives and Contributions ..25

1.4 Organization of Thesis ..26

Chapter 02 Literature Survey ...28

2.1 Parallel Architectures, ILP & Compiler..28

2.2 Background Of Instruction Scheduling ..31

2.3 Scheduler Requirement for Multicore Architecture35

2.4 Survey On Register Allocation ...37

2.5 Recent Developments ...42

2.5 Conclusion ..46

Chapter 03 Experimental Framework ...47

3.1 Multicore Architecture ..47

3.2 Compiler ...48

3.3 Benchmarks...51

 ix

3.2 Experimental Evaluation ...52

Chapter 04 Compiler Optimization and Support for Multicore Architecture54

4.1 Fine Grain Thread Extractor ...55

4.2 Scheduling...58

4.2.1 General Criteria To Create Schedule ..59

4.2.2 Sequential Program Execution and Its Analysis61

4.2.3 Power Optimization ..62

4.3 Register Allocation ..63

Chapter 05 Fine Grain Thread Extractor ..67

5.1 Creating Disjoint Sub-blocks ..67

5.1.1 Approach 1 To Create Disjoint Sub-blocks67

5.1.2 Approach 2 To Create Disjoint Sub-blocks69

5.2 Sub-block Dependency Graph (SDG) ..71

5.2.1 Approach 1 To Create SDG ..71

5.2.2 Approach 2 To Create SDG ..72

5.3 Compiler Time Analysis of Approach 1 and Approach 274

Chapter 06 Intra Block Scheduling ..77

6.1 Introduction to Intra Block Scheduling...77

6.1.1 Sub-block Merging ...78

6.1.2 Intra Block Scheduler ...81

6.2 Results ..82

Chapter 07 Inter Block Scheduling ..86

7.1 Height Instruction Count Based Scheduler ...87

7.2 Dependent Sub-block Based Scheduler ..87

7.3 Maximum Dependent Sub-block Based Scheduler88

7.4 Longest Latency Sub-block Based Scheduler...89

7.5 Results ...89

7.5.1 Discussion ...94

7.6 Conclusion ..97

 x

Chapter 08 Register Allocation for Multicore Processors99

8.1 Integrated Scheduling and Register Allocation100

8.2 Global Register Allocation ..102

8.2.1 Merge Operator ...103

8.2.2 Observation on Number of Registers ..104

8.2.3 Capturing Live Variables ..105

8.2.4 Register Assignment ...105

8.2.5 Insert Spill Code ...105

8.3 Algorithm Complexity Analysis ..106

8.4 Results ..106

8.5 Conclusion ...109

Chapter 09 Achievements, Limitations, Future Work and Summary 110

9.1 Summery of Achievement ..110

9.2 Limitations ...111

9.3 Future Work ...112

9.4 Summary ...112

Appendix A More Results on Scalability ...115

Appendix B Preliminaries and Definitions of JackCC Compiler120

List of References ..137

List of Publication by Author ..146

Biography of the Candidate ...149

Biography of the Supervisor ..149

 xi

List of Tables

Table I: Power Consumption Comparison ...22

Table II: Scheduling Techniques For Parallel Architectures 33

Table III: Comparison Of Register Allocation Approaches38

Table IV: Pros and Cons of Various Register Allocation Approaches40

Table V: Recent Development in the Area of Multicore42

Table VI: Raw Benchmark Suite ..51

Table VII: List of Sub-blocks Generated by MDS Scheduler58

Table VIII: (a) Sub-block List Generated for Dual Core Processor

(b) Hyper Sub-blocks Whose Interference Graph is K Colorable.65

Table IX: Sub-blocks ..65

Table X: Number of Basic Blocks and Sub-block for the Test Cases71

Table XI: Algorithm Complexity Comparison

of Different Register Allocation Heuristics ...107

Table XII: Spill Comparison of Different Register Allocation Heuristics.................107

Table XIII: Communication Cost of Intra Block, Inter Block ..

and Integrated Schedulers. ..107

Table XIV: Files in JackCC ...120

Table XV: Supporting Files in JackCC ..121

Table XV: Abstract Data Types in Jackcc and Corresponding Files121

Table XVII: Instructions Used to Generate Assembly Code by Jackcc122

 xii

List of Figures

Figure 1: N Base Core Equivalent Processors ..18

Figure 2: Compiler vs Hardware Support for Exploiting ILP...................................30

Figure 3: Register Allocation Approaches..35

Figure 4: Compiler Generated Code and Their Relation with

Architecture(Core/Processor)..48

Figure 5: On-chip Multiprocessors (Core) Interconnections.....................................48

Figure 6: Original Flow of Compiler...49

Figure 7: Sequence of Functional Call in Compiler to Generate SSA

 form Program...49

Figure 8: Register Allocation Framework...50

Figure 9: Run Time Support..51

Figure 10: Modified Flow of Compiler to Create Disjoint Sub-block And

 to Perform Scheduling ..54

Figure 11: Control Flow Graph With Basic Block Bp Sub-block SBi.........................55

Figure 12: (a) Non SSA Program (b) SSA Form Program

 (c) Disjoint Sub-blocks..56

Figure 13: (a) Sub-block Dependency Graph

 (b) Dependency Matrix...57

Figure 14: Results of Testcases Compiled by Original Jackcc

 for Dual Core Processor...61

Figure 15: Results of Testcases Compiled by Original Jackcc

 for Dual Core Processor...62

Figure 16: Power Optimization...63

Figure 17: Modified Register Allocation Framework...64

 xiii

Figure 18: ((a) Interference Graph of Sub-block SB2B1

 (b) Interference Graph of Sub-block SB2B3

 (c) Interference Graph of Merged Sub-blocks66

Figure 19: Steps in Creating Disjoint Sub-blocks...69

Figure 20: Integrated SSA Translation and Fine Grain Thread Extraction................69

Figure 21: Modified Flow of Compiler to Create Disjoint Sub-blocks

 and SDG During SSA Creation...74

Figure 22: Example Sub-blocks of Basic Block Bp...80

Figure 23: Steps In Merging Sub-blocks of Basic Block ...80

Figure 24: Schedules Created by Intra Block Scheduler...82

Figure 25: Speed-up Analysis For Intra Blocks Scheduling.......................................83

Figure 26: Power Analysis For Intra Blocks Scheduling..83

Figure 27: Performance Per Power Analysis For Intra Blocks Scheduling................84

Figure 28: Communication Cost For Intra Blocks Scheduling...................................84

Figure 29: Speed-up Analysis For Inter Blocks Schedulers..91

Figure 30: Power Analysis For Inter Blocks Schedulers...92

Figure 31: Performance Per Power Analysis For Inter Blocks Schedulers.................93

Figure 32: Communication Cost For Inter Blocks Schedulers....................................93

Figure 33: Speed-up vs Power Consumed..94

Figure 34: Power Vs Performance per Power...94

Figure 35: Speed-up vs Communication Cost...95

Figure 36: Analysis Of Test Case 2...95

Figure 37: Analysis Of Test Case 3...95

Figure 38: Analysis Of Test Case 4...96

Figure 39: Proposed Register Allocation Heuristics...99

 xiv

Figure 40: Modified Flow of Compiler to Integrate Scheduler and Register

 Allocation...101

Figure 41: Speed-up, Power and Perf/power Comparison on Dual Core..................108

Figure 42: Speed-up, Power and Perf/power Comparison on Quad Core.................108

Figure 43: Speed up Achieved on 4,8,16 cores by Executing Multiple

 Instances of Test Case 1...116

Figure 44: Speed up Achieved on 4,8,16 cores by Executing Multiple

 Instances of Test Case 2...116

Figure 45: Speed up Achieved on 4,8,16 cores by Executing Multiple

 Instances of Test Case 3...117

Figure 46: Speed up Achieved on 4,8,16 cores by Executing Multiple

 Instances of Test Case 4...117

Figure 47: Speed-up Analysis by Executing 3 Instances of Test Case 1

 on 12, 13, 14, 15 and 16 core for Power Optimization 118

Figure 48: Speed-up Analysis by Executing 4 Instances of Test Case 1

 on 12, 13, 14, 15 and 16 core for Power Optimization 119

 xv

List of Abbreviations

Abbreviation Details or Expanded Form

ISA Instruction Set Architecture

BCE Base Core Equivalent

ILP Instruction Level Parallelism

DAG Directed Acyclic Graph

CFG Control Glow Graph

QUAD Three address code format of instruction

ARENA Name of structure of Basic Block of CFG

SSA Static Single Assignment

SAME A function used to identify copy related instructions

Phi (ɸ) A data structure which stores the information of copy related instructions.

DSB Dependent Sub-block First Scheduler

MDS Most Dependent Sub-block First Scheduler

LLSF Least Latency Sub-block First Scheduler

HIB Height Based Scheduler

IBS Intra Block Scheduler

IRS Integrated Register Allocation and Scheduling

SBi i
th

 Sub-block

Bp p
th

 Basic block

SBiBp i
th

 Sub-block in p
th

 Basic block

Perfm(r), Perfs(r), Perfd(r), Perfq(r)
Performance on multicore, single core, dual core, and quad core

processor respectively.

Pwm(r), Pws(r), Pwd(r), Pwq(r)
Power consumed by multicore, single core, dual core, and quad core

processor respectively.

Pfi Power consumed by cores of powerful multicore processor in idle state

Pli Power consumed by cores of less efficient multicore processor in idle

state

pd
Extra power consumed by dual core processor to execute non-

parallelized program

pq Extra power consumed by quad core processor to execute non-

parallelized program

wc
Total power consumed by a core in multicore processor to execute non-

parallelized program

 xvi

Abbreviation Details or Expanded Form

TRdy Ready Time

TFns Finish Time

TSct Schedule Time of Core

TSch Schedule Time of Sub-block

Heighti Height of i
th

 sub-block

Li Latency i
th

 sub-block

Ci Total Cycle time required by i
th

 sub-block

TIc Total Instruction Count

Rreq i Register Required by i
th

 sub-block

HSBjBP j
th

 Hyper sub-block of p
th

basic block

Ravlj Register available in j
th

 hyper sub-block

 17

CHAPTER

 Introduction 01

Coupled with technological advancement in the field of computer architecture and relentless

demand for faster processing has led to development of several innovative technologies and

products. Semiconductor industry had kept pace with Moore’s law in terms of doubling the

number of transistor on a chip and increased clock speed [1]. R. Dennard, et al., in 1974

proposed that with scaling ratio of 1/√2, the transistors count will double on a chip and clock

frequency can be increased by 40% keeping the power consumption constant [2][3]. But with

current feature size, the Dennard’s law does not hold true any longer [4]. The continuous

increase in number of transistor and clock speed has thrown design challenges for handling

larger amount of heat dissipation. The power dissipation and thermal issues severely restricts the

ability to continuously increase operating clock frequency of a processor [5][6]. This has led to

development of homogeneous multicore architecture. A multicore chip supports multiple

processor core on a single chip. The idea was to replace power hungry powerful processor with

less powerful multiple cores [7][8]. Such developments lead to greater focus on exploiting the

explicit parallelism by executing multi threaded applications or multiple tasks on multiple

processor core to gain performance [9]. Since the approach tries to exploit explicit parallelism,

the processor cores can be operated at lower clock frequency to achieve the same or better

performance as compared to single core processor operating at higher frequency thus solving the

heat dissipation problem.

 The cores on a chip can be homogeneous or heterogeneous [10]. In case of homogeneous

multicore processor chip, each core is equally capable and therefore allows any thread to execute

on any core. Figure 1 provides an overview of the most common design of on chip

multiprocessors used in today's system. Figure 1.c, Figure 1.d and Figure 1.e, depict

homogeneous multicore processors and Figure 1.f is an example of heterogeneous multicore

processor. A homogeneous architecture is undoubtedly easier to program for parallelism,

because a program can make use of the all cores than in a heterogeneous architecture where all

the cores do not support the same instruction set.

 18

(a) Base Core

(b) n BCE Single Core

Processor

(c) n BCE 2core Processor

(d) n BCE 16 core

Homogeneous Multicore

Processor

(e) n BCE 4 core

Homogeneous Multicore

Processor

(f) n BCE (12+1) core

Heterogeneous Multicore

Processor.

Figure 1. n Base Core Equivalent Processors

The design philosophy of multicore processor says that the cores on chip should be resource

equivalent and power equivalent [11]. The Base Core in Figure 1.a, is a unit core made up of

some r resources and consume some power to achieve some performance. A n BCE (base core

equivalent) processor P is made up of r times the resources used for base core and consume k

power budget to get the performance Perf(r). To build a n BCE processor r and k should be

shared equally. If r of a single core is increased, sequential performance is increased. If r is

distributed among multiple execution units, parallel performance is increased. So in multicore

processor r resources are distributed to achieve n BCE processor. A homogeneous multicore

processor can have n/r cores to have n BCE processor. For example, a single core processor with

capability of 16 BCE (1*16 BCE) or a homogeneous multicore processor with 16 BCE cores

(16*1 BCE) or a homogeneous multicore processor with 4 4BCE cores (4*4 BCE) are

equivalent. Similarly, heterogeneous multicore processor 12*1 BCE + 1*4 BCE processor is

equivalent to 16 BCE in terms of resources and power consumption.

 The performance increases as number of cores increases, that is, Perfq(r) > Perfd(r) >

Perfs(r). Where Perfs(r) , Perfd(r) & Perfq(r) are performance of single core, dual core and quad

core processors respectively. Ideally, Perfd(r) is 2*Perfs(r) and Perfq(r) is 4*Perfs(r). But

according to Amdahl's law [12], performance (Pref) from N number of cores depends on a

fraction f (0≤f≤1) of computation that can be parallelized. The fraction f is also responsible for

increase in power consumption. The challenge of multicore programming involves making the

C1 C2

C5

C3 C4

C6

C7

C9 C10

C8

C11 C12

C13

C1 C2

C3 C4

C1 C2

C5 C6

C3 C4

C7 C8

C9

C13 C14

C11 C12

C15 C16

C10

C1 C2
Base Core

Single Core

Processor(P)

 19

fraction f equal or closer to 1. The challenges and issues associated with the multicore

environment are discussed in next section.

1.1 Challenges In Multicore Environment

i. Parallelizing the Sequential Program

Though multicore technology offers clear benefits against the single core processor, the

general understanding of researchers is that finding an effective way to exploit the

parallelism or concurrency inherent in an application is one of the most daunting

challenges. The multicore processors are general extension of shared memory

multiprocessors whose computation power can be utilized effectively only by the

applications with coarse grain threads. These designs provide real benefits for server-class

applications that are explicitly multi-threaded. However, for desktop and other systems

where single-thread applications dominate, multicore systems are yet to offer much benefit.

There is a mismatch with current multicore hardware and applications, as most of the

applications are single threaded and are unable to exploit the fine grained parallelism

offered by multicore processors. To fully exploit the architectural capability and inherent

fine grained parallelism of an application, it is desired to have parallel code. Writing

parallel code is a tedious and requires expertise. Most of the features provided by explicit

programming languages concentrate on parallelizing loops or iterative statements. It is

essential to develop or convert existing sequential codes to parallel implementations. The

support from compilers and run-time systems for the development of parallel application

for multicore is vital.

ii. Memory Management and Data Communication

Memory hierarchy of multicore architecture generally has shared memory, second level

shared cache, first level private cache, and private register files [13]. Issues related to

memory can be classified as follows,

 Register allocation

To avoid the congestion on small shared register file as in other parallel architecture

(Pipelined, VLIW), the memory hierarchy of multicore architecture generally has

private register files. The threads that are scheduled on to different cores need to be

allocated registers from respective register file of the core on which they are scheduled.

 20

 Memory bandwidth

Memory bandwidth remains the bottleneck on multicore platform, although computing

is cheap since there are many processing cores [14]. The existence of the memory

bandwidth bottleneck is because of the use of shared bus by all CPU cores. Efficient

memory management is very critical for a scalable application on multicore CPU.

 Locality of reference

In a multicore processor with non-uniform cache architectures with distributed cache

banks, data access latency is a limiting factor to performance. To mitigate this effect, it

is necessary to leverage the data access locality and choose an optimum data placement

so that the volume of inter-core messages is minimized. This requires a study of data

accesses behaviors among multiple cores.

 Memory Contention

Memory systems have been under a lot of pressure to keep up with the increasing

demand for parallelism [15]. Memory Contention increases the need of synchronizing

data among different cores, which has a big performance penalty because of bus traffic

contention, locking cost and cache miss. Lock based synchronization has several

limitations, including sensitivity to preemption and possibility of deadlock. A

synchronization approach without lock is desirable. In multicore environment lock free

synchronization is achieved using transactional memories. Regardless of which

synchronization (lock based or non lock based synchronization) is used contention over

shared data hamper the scalability.

 The current cache hierarchy has been unable to support high level demand for

parallelism. Existing architectures employ lock-up free caches to avoid stalling the

CPU and allow the cache miss to be serviced in the background. The Miss

Information/Status Holding Register (MSHR) Files are responsible for keeping track of

the outstanding concurrent misses. These types of caches are very costly in terms of

chip area and power usage. This limits the size of the MSHR file that can be included,

even for today’s large transistor budgets. For example, the L1 cache of an Intel Pentium

4 processor supports only eight outstanding misses.

 21

iii. Scalability

Traditionally only super computers and high end servers needed major software

scalability work, as they used many CPU sockets. The major scalability work was not

needed in the low end computer systems as they had less CPU’s. Scaling up the number

of cores in multicore processors has provided a new dimension to scale up performance

and requires extensive scalability work.

The factors which stop scalability are listed below.

 Programs may not inherently exhibit parallelism.

 Application program cannot scale up to meet the time bound constraints due to

some physical constraints like memory. As number of cores increase, memory

contention may increase leading to sequential access of data by deteriorating

parallelism.

The expectation w.r.t increase in performance in multicore era is kept alive by the

recent study on reevaluating Amdahl's law [16][17].

iv. Power Consumption

It was expected that the power consumption will remain same with the paradigm shift

from single core to multicore processor, as the r resources used to design a n-BCE

single core processor is distributed to design multicore processor with multiple slow

cores (reduced clock speed). Though the slow cores of a multicore processor are energy

efficient, the combined power consumption of cores is increased when used for parallel

execution than sequential execution on single core processor to complete the task.

The fundamental reasons for increased power consumption are as follows.

 The core is less powerful (runs at reduced clock) than n BCE single core so it

takes more time to execute thereby may consume more power.

 The second reason is due to Amdahl's law. According to Amdahl's law, the

performance (Pref) from N of cores depend on fraction f (0≤f≤1) of computation

that can be parallelized.

The power model proposed by Woo-Lee suggest [12] that if a program is executed on a

single core processor the power consumption is Pws = 1. If the same program is executed

on a multicore processor with n cores by parallelizing it 100% i.e., f=1 power

 22

consumption should be n*wc where wc is power consumed by slow core in multicore

processor with n cores. But based on f and reduced strength (reduced clock) the power

consumption of dual core processor should be (Pws ≤ Pwd ≤2 Pws). Similarly, when

executed on quad core processor it is (Pws ≤ Pwd ≤ 4 Pws).

 The power consumed by single core, dual core and quad core processor to execute

the sequential and parallel version of the same program is summarized in Table1. Let Pfi

& Pli be the power consumed in idle state by powerful core & less efficient core

respectively. Let pd & pq be the extra power consumed by the less efficient n-BCE dual

core and n-BCE quad core processor respectively and wc be the total power consumed by

each core of less efficient n-BCE multicore processor.

TABLE I. POWER CONSUMPTION COMPARISON

Cores when fully

utilized.

When

sequential

program runs

on single core

keeping other

cores idle.

Ideal power

consumption

When

sequential

program

(parallelized)

runs on all the

cores.

Time Energy

Real Single core Pws = 1 W Pws = 1 W Pws = 1 W 5

5

Theoretical

Dual core as

powerful as single

core

2* Pws =2 W 1 + Pfi W
0.5+ 0.5

= 1 W

2.5 2.5

Expected

Dual core 50% less

powerful than single

core (Expected)

i.e. wc =0.5

2*(wc) + 2 pd

= 1+ 2 pd W

ws + Pli W
(2*wc) W

= 1W
2.5 2.5

Real

Dual core 30% less

powerful than single

core

i.e. wc =0.7

2*(wc) + 2 pd

 =1.4+ 2 pd W

ws + Pli W
(2*wc) W

= 1.4 W
2.5 3.5

Theoretical
Quad core as

powerful as single

core

4* Pws = 4 W 1 + 3 Pfi W

0.25 + 0.25 +

0.25 + 0.25

= 1 W

1.25 1.25

Expected

Quad core 25% less

powerful than single

core (Expected)

i.e. wc = .25

4*(wc) + 4 pq

=1+ 4 pq W

ws + 3 Pli W
4*(wc)

= 1 W
1.25 1.25

Real

Quad core 50% less

powerful than single

core

i.e. wc =.5

4*(wc)) + pq

 = 2 + 4 pq W
ws + 3 Pli W

(4*wc) W

= 2 W
1.25 2.5

 23

 The third column of the table depict the power consumed by different n BCE (single core, dual

and quad core) processor to execute the sequential program. It can be observed that power

consumption increases as the number of core is increased either by keeping r resources constant

to create n-BCE multicore processor or by creating more than one n-BCE processor when all the

cores are fully utilized.

 The fourth column gives the amount of power consumed when a program is executed on

multicore processor without parallelizing the program. The program is executed on a single core

keeping other cores idle. If a non parallelized program (f=0) is executed on a multicore processor

with n cores, only one core with r/n resources will execute the program while other (n-1) core

will be idle consuming (n-1)*z unit of power where z is fraction of power that a core consume in

idle state (0 ≤ z ≤ 1) [4]. If it is assumed that a core in active state consumes a power of 1 unit,

i.e., the amount of power consumed by one core during the sequential computation phase is 1

unit, while the remaining (n − 1) cores consume (n − 1)*z units, during the sequential

computation phase, the n core processor consumes 1 + (n − 1)*z units of power. In the parallel

computation phase, n core processor consumes n units of power, because it takes (1 − f) and f/n

to execute the sequential and parallel code respectively.

 In general, the power consumed by the dual core and quad core processor where each

core is n-BCE core is Pws + Pfi unit of power and Pws + 3 Pfi unit of power respectively. The

power consumed by the dual core and quad core n-BCE processor is ws + Pli unit of power and

ws+ 3Pli unit of power respectively where ws= wc + pd . It is observed that the power consumed

by multicore processor is greater than Pws.

 The fifth column gives the amount of power consumed by a program to execute on single

and multicore (dual and quad core) after parallelizing the program. The power consumed by the

dual core and quad core processor where each core is n-BCE core is Pws unit of power which is

theoretically possible. The power consumed by the dual core and quad core n-BCE processor is

2*wc unit of power and 4*wc unit of power respectively. If it is possible to execute the program

in half the execution time taken by single core processor by reducing the strength of cores by

50%, then the power consumption of a n-BCE single core processor and a n-BCE multicore

processor will be equal. But, ideally the strength of the cores is not reduced by 50% thus

increases the power consumption to execute the same program. It is observed that the power

consumed by multicore processor is greater than Pws. For example, if the power consumed by a

 24

program when executed for 5 unit time on a full blown single core processor Pws is 1. The

energy consumed by the processor is 5 units. If the same program is executed on dual core

processor whose strength is reduced by 30% compared to single core processor and if we assume

the time taken is reduced to half i.e, 2.5 unit time. The power consumed wc of each core is 0.7

unit and total power consumed is 1.4 W, but the energy spent is 2*(2.5*0.7) = 3.5 units.

 The performance per power (Perf/W), which represents the performance achievable at the

same cooling capacity is based on the average power (W). This metric is reciprocal of energy,

because the definition of performance is the reciprocal of execution time.

 In other words, a sequential execution and its parallel execution version will consume the

same amount of power only when the performance improvement through parallelization scales

linearly. Otherwise Pwq > Pwd > Pws to finish the same task.

 Furthermore maximizing and balancing parallelization among cores is important, not

only for higher performance but also for power supply efficiency and extended battery life.

1.2 State-of-the-Art of Exploiting Parallelism

All computer systems today, from embedded devices to petascale computing systems, are being

developed using multicore processors.

Following are possible approaches available to exploit parallelism:

 Allow programmers to use parallel programming constructs to explicitly specify which

parts of the program can run in parallel.

 Allow operating system (OS) to schedule different tasks on different cores.

 Allow hardware to extract parallelism and schedule them dynamically.

 Allow the compiler to extract parallelism and schedule them.

In first approach, developing and verifying an explicitly parallel program is expensive and

doesn’t scale with the number of cores [9].

 In the second approach, the operating system realize each core as a separate processor

and OS scheduler schedules coarse grain threads on to different cores. In the thread style

approach, two explicit parallel primitives are independent unless an explicit communication

primitive (for synchronization) are added to stress what is inside the original code. Further the

multicore processor architecture differs from traditional multi processors in terms of having

 25

shared caches, memory controllers, smaller cache sizes available for each computational unit,

and low communication latency between cores [18]. Owing to the architectural difference, it is

desirable to extract fine grained thread and schedule them on to multiple cores instead of

scheduling coarse grained thread as done in multi chip multiprocessing systems (SMP system).

 In hardware-centric approach, detecting parallel execution opportunities and creating

schedules for parallel regions dynamically by effectively utilizing all available resources is

responsibility of the hardware [19]. This approach adds more circuits, which results in complex

hardware implementations of algorithms such as branch prediction, instruction level parallelism

detection, and register renaming. The hardware based approach work under heavy resources and

time constraints.

 In software-centric approach, a compiler analyzes the program for the possibilities of

parallelism, identifies the code which could be executed in parallel and uses suitable scheduler to

schedule the parallel constructs on to multiple cores. Using the various kind of dependency

analysis, the compiler can identify the independent instructions that can run in parallel [20]. The

compilation being offline one time activity, rigorous analysis to achieve optimal amount of code

parallelization can be carried out.

1.3 Objectives and Contribution

The proposed research aims to provide compiler support to exploit parallelism by extracting fine

grained threads from a sequential program and creating schedules for multiple cores.

The proposed work involves

 Parallel region formation or Extracting fine grain threads.

 Scheduling parallel regions or fine grain threads on to multiple cores. and

 Global register allocation.

The proposed work introduces two additional passes to the original flow of compiler: Fine grain

thread extractor pass and scheduler pass. The fine grain thread extractor pass of the compiler

splits the sequential program into parallel regions (fine grain threads) termed as sub-blocks. To

facilitate global scheduling new data structure called sub-block dependency graph (SDG) is

proposed. Efforts are made to reduce the compilation time for performing fine grain extraction

pass. The sub-blocks are created such that they ensure spatial and temporal locality.

 26

The fine grained threads can be scheduled using scheduler. One local scheduling heuristic,

termed as Intra block scheduling and four global scheduling heuristics, termed as Inter block

scheduling are proposed in the thesis. The scheduler ensures that the sub-blocks scheduled on

different cores at same time will not communicate nor access same data, thus provide lock free

synchronization. The schedulers are designed to perform power optimization.

 The fine grained threads that are scheduled on to different cores need to be allocated

registers from respective register file of the core on which they are scheduled. The register

allocator perform the global register allocation on each list of sub-blocks dedicated to individual

core. Two novel register allocation heuristics are proposed. The first approach proposes a

register allocation technique which is performed after scheduling and the second approach

integrates register allocation and scheduling pass to mitigate the phase order problem. In first

heuristic, the interference graph is constructed incrementally by merging the sub-blocks to create

hyper sub-blocks. Hyper sub-blocks are created before register allocation to ensure temporal

locality by pushing maximum instructions on to a core for execution. Hyper sub-blocks also

ensures that instructions will do zero spills (k-colorable) and will remain in cores private

memory till it is commited without doing memory reference during execution.

1.4 Organization of the Thesis

A brief introduction to design philosophy behind multicore architecture, challenges and issues in

multicore environment, state of art of exploiting parallelism, and objective of the thesis are

discussed in the introductory chapter.

 In Chapter 2, we investigate several existing parallel architectures to understand how

multicore is different from them. Several hardware and compiler support to exploit ILP

(Instruction Level Parallelism) on these existing parallel architectures are presented and

compared. An effort is made to understand the pros and cons of hardware and compiler

approaches. A detailed survey on register allocation approaches is presented in the later

part of this chapter.

 Chapter 3 describes the experimental framework used in this thesis. The framework

includes a Compiler, Multicore architecture, the metrics used to evaluate the performance

and the benchmark suites used in the proposed work. The phases of compiler are

explained. A brief description on how to embed the SSA module in the given compiler is

 27

explained. A short description of Transactional Memories (TM) which provide run time

support in terms of lock free transactions is presented.

 Chapter 4 aims to provide the details of the support and optimizations achieved in the

proposed work. Section 4.1 provide the detailed description of fine grain thread extractor

module. Section 4.2 provide details of schedulers and Section 4.3 details the register

allocation techniques. The optimizations includes creating power aware schedules and

finding compile time efficient approaches.

 Chapter 5 discusses the parallel region formation techniques. Two different approaches

are proposed to obtain disjoint sets (parallel regions). To facilitate global scheduling new

data structure called sub-block dependency graph (SDG) is proposed and efficient

technique to create it is discussed in detail.

 Chapter 6 explains the implementation details of local scheduling heuristics (Intra Block

Scheduling) which creates schedules for the parallel regions within the basic blocks of

CFG. Results in terms of speed-up, power consumption, performance per power and

communication cost is presented at the end of this chapter.

 Chapter 7 introduces four global scheduling heuristics (Inter Block Scheduling) which

schedules the parallel regions formed across the basic block of the CFG. The brief

discussion on merits and demerits of each heuristics are presented by comparing the

results obtained by them. The results obtained by Inter block scheduling is also compared

with the results obtained by Intra block scheduling technique.

 In Chapter 8, two register allocation techniques for multicore architecture are proposed.

The first approach proposes a register allocation technique after scheduling and the

second approach introduces a technique of integrated register allocation and scheduling

approach to mitigate the phase order problem. The results obtained by the normal register

allocation approach and integrated approach is compared and presented at the end of the

chapter.

 Chapter 9 concludes the thesis by summarizing the achievements of the work, providing

limitations and suggests future direction.

Appendix A, Appendix B, List of references and List of publications by author is

appended to chapter 9.

 28

CHAPTER

Literature Survey 02

To achieve high performance computing, a single core processor with parallel processing

features were developed during 1975–2000 before multicore architecture was introduced by IBM

in 2001. These parallel architectures either had multiple instruction processing units or multiple

functional units. As computer architecture started becoming more complex, the compiler

technology has also equally became an important factor. The success of each innovation in

computer architecture is dependent on the ability of compiler technology to generate efficient

code for these architectures. Parallelism has become one of the distinguishing factor in the

design of high-performance computers. Parallelism comes in different form, namely instruction

level parallelism (ILP), Task / Thread level parallelism (TLP), Memory level parallelism etc. A

compiler was used by the parallel architectures to exploit parallelism as required by them to

squeeze more performance.

 This chapter discusses the relationship between parallel architectures, Instruction Level

Parallelism (ILP) extraction techniques and compiler support to exploit ILP for corresponding

architecture. Several existing parallel architectures such as pipeline, VLIW, and superscalar

architectures are investigated to understand how multicore is different from them. Several

techniques in both form, dynamic (hardware) and static (compiler) support to exploit ILP on

these existing parallel architectures are presented and compared. In section (2.4) a detailed

survey on register allocation approaches is presented and examines the register allocation

requirement for multicore architectures.

2.1 Parallel Architecture, ILP & Compiler

The principle behind RISC architecture is to move the architecture boundary closer to the

hardware, exposing key performance features to the compiler. By doing so, it can take advantage

of the compiler by off-loading the task like choreographing complex instructions from the

hardware to compiler, to get high performance processor. Some of the new generation of the

microprocessors have implemented branch prediction, ILP detection, register allocation or

renaming and hazard detection logic in hardware to achieve ILP and faster execution.

 29

The analysis at compile time can simplify and eliminate many of the complex algorithms in the

hardware. Some architecture such as Power4 [21], Cyclops [22], RAW [23][24] and TRIPS

[25][26] aims to maximally utilize the compiler by fully exposing the hardware and giving

control to the software systems. Furthermore, the rigorous compiler-based analysis can lead to

improved optimizations as compared to hardware-based approaches which work under heavy

resource and time constraints. The current day compilers can analyze the complete program to

infer detailed information about ILP in a given program code.

 Instruction level parallelism (ILP) is a technique used to speed up the execution of code

by allowing parallel execution of sequence of instructions derived from a sequential program

[27]. The exploitation of ILP in a code is majorly hampered by conditional branch instructions

and dependent instructions. The dependency analysis can be carried out to identify the set of

independent instructions that can be executed in parallel. The instruction dependency is of three

types, namely the name dependency, the control dependency and the data dependency. There are

two types of name dependencies, Write after Write dependency (WAW) or anti dependency and

Write after Read dependency (WAR) also known as output dependency. The name dependency

can be eliminated by register renaming. Dynamic register renaming (by hardware) can eliminate

WAW and WAR dependencies. But when an intermediate representation of program in static

single assignment (SSA) form is used, WAW and WAR dependencies are removed without any

need of hardware [28]. SSA form is an intermediate representation of a program in which each

variable is defined only once. The control dependencies can be removed by using the hardware

to predict conditional branches. Read after Write (RAW) dependency also known as true

dependency falls under the data dependency category. It can be removed at run time using data

collapsing [29] and re-association [30] technique. These techniques require specialized hardware

elements. The compilers can be used for carrying out in-depth code analysis to determine the

data dependency. Compiler driven optimizations are likely to significantly improve the execution

performance of a processor.

 To exploit the instruction level parallelism, first in-depth data dependency analysis is

carried out. This analysis is used for segregating dependent and independent set of instructions

for scheduling & resource binding. The advancement in the field of VLSI technology has led to

design of parallel architecture, and the compiler is used for exploiting ILP on such architectures

[31]. The nature of ILP support offered by compiler is heavily dependent on the architecture and

 30

varies for different architecture. The interplay between compiler support and available

architectural features is shown in Figure 2. Compiler developed for sequeintal architectures such

as superscalar architectures, does not perform any machine level optimizations and does not

convey any explicit information regarding parallelsim, special hardware performs machine

specific optimizations.

In Dependence and Indipendent architectures such VLIW and Horizon architectures, the

responsibility is of machin level optimization is shared between compiler and hardware.

Compiler explicily indicates the dependences that exist between operations.

In fully indipendent architectures such as RAW architecture, compiler will be fully aware of

features of the processor and will take full responsibility of machine level optimization. The

adventage of these type of architectures is that, execution time and power is saved.

Figure 2. Compiler vs Hardware Support for Exploiting ILP

The hardware approach for achieving ILP is being able to execute multiple instructions

simultaneously either by pipelining the instructions or by providing multiple execution units.

Pipelined processor, VLIW (Very Long Instruction Word) and super-scalar processors exploit

ILP to improve execution time. In pipelined processor, a task is broken into stages, and stages

are executed on different (shared) processing units by overlapping the execution of instructions

in time [32]. The performance resulting from pipelining is expected to increase with increase in

Front End Determine

Dependency

Determine

Independency

Bind

Resources

Compiler

Bind

Resources

Execute

Hardware

Determine

Independency

Determine

Dependency

Sequential

Architecture

Dependence

Architecture
Independence

Architecture

Independence

Architecture

 31

pipeline stages. However, pipelined operations are required to be continuous without interruption

throughout the program execution. Unfortunately, the processor sometimes stalls as a result of

data dependency and branch instructions. RISC solution to this problem is code reordering [33].

The task of code reordering is generally left to the compiler, which recognizes data dependencies

and attempts to minimize performance stalls by reordering the program instructions.

 VLIW processor follows the static scheduling. VLIW issues one long instruction per

cycle. Each long instruction consists of many tightly coupled independent operations. These

independent operations are simultaneously processed by suitable execution units in a small and

statically predictable number of cycles. The task of grouping independent operations into a long

instruction is done by a compiler [34]. The major drawback with VLIW is that it uses the fixed

number of instructions. The availability of multiple execution units is not utilized completely,

because the execution unit which has completed its processing will be idle until all the execution

units have completed their processing. Super-scalar processor overcomes the drawback of VLIW

by working on variable number of instructions using simultaneous multithreading, where

independent threads will run in parallel [35]. The major drawback with the super-scalar

processor is that all the execution units share the same memory leading to more register spilling,

and race condition due to limited availability of registers.

 The multicluster VLIW embedded processor is made up of multiple small processing

elements (PEs) [36][37][38]. These PE's are individual groups designed by decentralizing the

computing resources to improve the scalability problem. Each tightly interconnected PE's help to

reduce the communication cost & power. The instructions partitioned by compiler analysis are

executed in parallel on these PEs [39]. The main difference between today's multicore processors

and multicluster VLIW processor is that later has shared data cache, while each core in multicore

processor will have private caches. The compiler should also be aware of data which are brought

into private cache of the core.

 VLIW and superscalar machines, both benefit from code reordering. In VLIW, all

dependencies are checked during compile time, and the search for independent instructions and

scheduling is done exclusively by the compiler. The hardware has no responsibility on the final

scheduling. On the other hand, superscalar machines depend on hardware for scheduling the

instructions. But it is accepted that compiler techniques for exploiting parallelism must be used

in superscalar machines to achieve better performance.

 32

2.2 Background of Instruction Scheduling

In case of Superscalar and VLIW machine, the scheduling of instruction is dependent on

identification of set of independent instructions that can be executed in parallel. The scheduler

only addresses the issues associated with temporal parallelism leading to exploitation of ILP but

it may increase register pressure [40]. These schedulers do not take care of spatial issues as

superscalar and VLIW processors exchange the shared/dependent operands through shared

register file which is absent in multicore system. For the pipeline based machines, scheduler

reorders instructions to minimizes pipeline stalls. The reordering of the instructions should not

change the set of operations performed and should make sure that interfering operations are

performed in order.

 In the past, researchers have proposed several instruction scheduling techniques which

includes List scheduling, Trace scheduling, Superblock scheduling and Hyper block scheduling.

All these scheduling techniques can be classified based on the nature of the control flow graph

used, i.e. whether it uses multiple or single basic blocks, and whether it is cyclic or acyclic

control flow graph.

 The scheduler that schedules single acyclic basic block is known as local scheduling. List

scheduling is an example of local scheduling [41] and is based on highest level priority scheme.

Trace scheduling, superblock and hyper-block scheduling are global scheduling techniques that

work on regions known as traces which consists of contiguous set of basic blocks [42]. Trace

scheduling combines the most common trace of basic blocks and schedule them as a single block

[43]. Superblock scheduling is same as trace scheduling without side entrances [44]. Hyper-

block scheduling combines basic blocks obtained from multiple paths of control flow graph [45].

In run-time scheduling, an instruction is issued after it is decoded and when its operands are

available [46]. The run-time scheduling mechanisms exhibit adaptive behavior which leads to

higher degree of load balancing. The run-time scheduling policies incur high run time overhead

which may lead to degradation of execution performance. The logic to make decision at run time

should be simple and constant time heuristics, otherwise it leads to expensive and complex

hardware design which requires relatively large amount of silicon area. The complex hardware in

turn results in increased power consumption. The advantage of compile time scheduling over the

run-time scheduling is that it can carry out rigorous dependency analysis. The complexity of the

 33

scheduling techniques will affect the compile time of a program but has no adverse impact on its

execution time.

 Scheduling techniques for various parallel architectures are summarized in Table II

illustrating the advantage, drawbacks and algorithm complexity of these techniques.

TABLE II. SCHEDULING TECHNIQUES FOR PARALLEL ARCHITECTURE

Scheduling

Technique

Architectur

e

Type

Details

Complexity

Basic Block

Scheduling

[47]

Pipeline

Static

Topological sort of Dependence graph. Simple

and easy to implement.

Restricted to a single block.

O(N log N)

Region

Scheduling

[48]

Pipeline

Static

Creation of regions from blocks and then

topologically sorting the regions.

Inter block scheduling is made possible.

Operations within a loop cannot overlap with

those of another loop.

O(N
2
)

Gibbons-

Muchnick

method [49

]

Pipeline

Static

Creation of DAG. Then choosing the instruction

to be scheduled according to heuristics such as:-

the node with the max no of children or which

interlocks with its children or which is on the

longest path from the leaves.

Heuristic approach makes scheduling simple.

Dependency DAG’s can be used for other code

optimizations. Deadlocks are prevented.

Much of the hazard detection is assumed to be

done by the hardware to make things simple.

Also, scheduling across basic blocks is not

considered.

O(N
2
)

Bernstein’s

method [50]

Pipeline

Static

First a level is assigned to each instruction. Next

a list scheduling is performed in decreasing

order of priority.

Nodes on the critical path are assigned higher

priorities and therefore scheduled first.

Structural hazards cannot be avoided as the

DAG is not weighted i.e. it does not take into

account the latency of each operation.

O(Nlog N)

 34

Shieh-

Papachristou

method

[51][52]

Pipeline

Static

Construction of priority list using several

heuristics and then assigning time slots based on

the priorities.

Using multiple heuristics reduces the probability

of choosing a wrong node for scheduling.

The greedy heuristics used can schedule two

floating point operations in consecutive cycles

even when the processor is not pipelined.

O(N + E)

Superblock

Scheduling

[53]

Pipeline

Static

Involves finding the most frequently executed

path using trace selection. Then superblocks are

formed from these traces and DAG is formed,

after which list scheduling is performed.

Reduces the complexity associated with side

entrances by removing them. Also, it focuses on

the frequently executed paths.

Cannot deal with the situation when different

execution paths have equal frequencies of

execution.

O(N*E)

The

Scoreboard

[54][55]

Pipeline

Dynamic

Used multiple execution units for out of order

execution. A centralized control unit called the

scoreboard is responsible for instruction issue

and execution, including the detection of

hazards.

Enables out of order execution. Allowed

instructions behind stalls to proceed.

Structural hazards stall the pipeline. Limited to

instructions in basic block.

Tomasulo

Algorithm

[56]

Pipeline

Dynamic

Two floating point units are used – add and

multiply/divide. Buffers called reservation

stations are used for fetching and storing

instruction operands. The result of an operation

is stored at reservation stations to remove WAW

and WAR hazards.

Register renaming removes structural hazards.

Limited to instructions in a basic block. A

common data bus limits the amount of data

transfer.

 35

List

Scheduling

[57]

VLIW and

Superscalar

(but mainly

for

superscalar)

Static

It finds ILP within a single basic block and fills

data stalls (if any) by instructions in other basic

blocks.

O(N)

Trace

Scheduling

[58]

VLIW

Static

It exploits ILP across basic block boundaries

and tries to locate the most frequently executed

path called trace by preserving program

semantics (book-keeping).

O(N
2
)

Software

Pipelining

[59]

VLIW

Static

It tries to find the maximum ILP through the

loop unrolling and scheduling the iterations of

the loop every initiation interval.

O(N
2
)

Enhanced

Modulo

Scheduling

[60]

VLIW and

Superscalar

Static

It schedules the loops by maintaining an optimal

value of initiation interval.

O(N
2
)

Speculative

Execution

[61][62]

VLIW and

Superscalar

Static

It tries to speculatively execute instructions that

are moved upward of conditional branches.

O(N
2
)

Superblock

Scheduling

[63]

VLIW and

Superscalar

Static

It is derived from trace scheduling. It schedules

the instructions from most frequently executed

and optimized superblock (a trace with no side

entrance is called a superblock).

O(N
2
)

Next section explains the motivation to carry out the research in the area of multicore

architecture.

2.3 Scheduler Requirement for Multicore Architecture

i. All the existing techniques find it difficult to make good decision on scheduling because,

scheduling algorithms are strongly dependent on the machine model for which they are

developed. The instruction scheduling techniques are NP-complete and follow heuristics.

Some of the heuristic/ practices are loop transformations, static branch prediction,

 36

speculative code motion, predicated execution, software pipelining, and clustering.

Different heuristics work well with different types of graph.

ii. In the existing local scheduling techniques, ILP is achieved by scheduling one instruction

at a time on multiple execution units. To perform this task, a critical path of instructions is

created by analysing the dependencies. The instruction with lengthy critical path is

scheduled first to enable other instructions to get scheduled. This technique cannot be

applied on multi-core environments because two dependent instructions may get

scheduled on different cores resulting in increased communication latency. The ILP on

multicore architecture can be fully exploited only if all dependent instructions are

scheduled on to same core.

iii. The existing global scheduling techniques work on multiple basic blocks of a CFG and try

to group them based on the dependency analysis. Since there are three dependencies to

look for, the output of these techniques were discouraging for most of the applications.

The programs in static single assignment (SSA) have proved useful by eliminating false

dependencies in traditional code. Removing false dependencies allows more flexibility in

scheduling since data independent operations can move close to each other during

instruction scheduling. Along with simplifying the dependency analysis among the

instructions, SSA form programs gives solutions to the class of NP-complete problems

like register allocation and enables various optimizations [64][65]. The proposed work is

performed on SSA form program, which forms the backbone of further analysis.

iv. In most of the traditional instruction scheduling algorithms the goal is to improve

performance in terms of execution time by increasing the amount of instruction-level

parallelism in program code. Since communication between distant computing resources

may invite delays, instruction scheduler is expected to take care of spatial problem along

with temporal problem in multicore environment. The instruction scheduler needs to

partition instructions across the computing resources. Based on the parallel schedule

generated by compiler, the power consumption may vary [66]. Power reduction without

impeding the speedup is an important scheduling constraint for parallel architecture. The

proposed work involves power-aware scheduling strategies which minimizes the

switching activities between instructions and use reduced number of cores to achieve

performance per power.

 37

2.4 Survey on Register Allocation

Register allocation is a crucial phase of compilation. It maps unbounded number of variables of a

program to a fixed number of physical registers of a processor. Values stay in registers as long as

variables are live, In general, register allocation problem is NP-complete from the fact that

number of registers available is small and some of them are special purpose registers. Due to

limited number of available registers, the register allocation to all variables will not be possible,

and hence are required to be stored in memory. These variables are called spilled variables. The

cost of spilling is minimized by spilling the least frequently used variables. The commonly used

register allocation approaches are shown in Figure 3.

Figure 3. Register Allocation Approaches

Most of the register allocation algorithms assume that the CPU has regular register files and

these algorithms fail to adopt themselves for irregular architectures. Several solutions have been

proposed for irregular architectures, but without considering the specific implementation details,

Register
Allocation

Local Register
Allocation

Inter-Procedural
Register

Allocation

Global Register
Allocation

Graph Coloring

Chaitin's
Heuristic

Brigg's
Improvement

Graph Fusion
Based

For Multicore

Priority Based
Coloring

Linear Scan

Traub's
Binpacking

Model

Extended Linear
Scan

Linear Scan on
SSA

SSA Based
Allocation

Integer
Programming

Based

Optimal Register
Allocator

Partitioned
Quadratic

Programming

Probabilistic
Allocation

Multi-Flow of
Commodities

 38

it is difficult to achieve optimal register allocation [67][68][69]. The following section discusses

the various register allocation approaches for single core processors [70, 71, 72, 73, 74, 75, 76,

77, 78, 79, 80, 81, 82]. In case of multicore processor, each core of the processor has individual

register file and optimal register allocation is of utmost importance. Multicore architecture

requires new strategies for register allocation. A brief summary of comparison of the various

register allocation algorithms is given in the Table II1. The Pros and Cons of these register

allocation approaches are given in Table IV.

 Static single assignment (SSA) is an improvement on the idea of def-use chains. The

advantages of SSA form programs for register allocation are:

i. Coloring the interference graph of SSA form can be accomplished in polynomial time

[83,84]. The interference graph of SSA form program is a chordal graph and it inherits all

the properties such as [85].

 Chordal graphs are perfect, whose chromatic number is equal to size of the maximal

clique.

 Chordal graphs have a simplical vertex which facilitates perfect elimination order

(PEO). PEO assists the simplification process of interference graph during coloring.

 The key to good spill-code generation lies in splitting the live-range of a variable at

the right places. Splitting is obvious in SSA form program as every variable has a

single contiguous live range. This reduces the register pressure.

ii. In case of register allocation using linear scan, the lifetime intervals can be constructed

easily from SSA form [82].

TABLE III. COMPARISON OF REGISTER ALLOCATION APPROACHES

Allocation

Approach

Interferenc

e Graph

Notion

Region

Notion

Live Range

Notion

Spilling

Approach

Design

 Paradigm

Complexity

Chaitin’s

Per

Function

Basic Block,

Super Block

Program

Points

Aggressive

Approximation

O(|V|*

log(V))

V = num of

live-ranges

Brigg’s

Per

Function

Basic Block,

Super Block

Program

Points

Delayed;

Optimistic

Approximation

O(|V|*

log(V))

V = num of

live-ranges

 39

Priority

Based

Per

Function

Basic Block,

Super Block

Set of Basic

Blocks

Lower

priority,

constrained

live ranges;

Incrementally

Add live-

ranges till

colourable.

Greedy

O(r * (V-r))

r = no of

registers

V = no of

live-ranges

Graph Fusion

Per Region

Basic Block,

Super Block,

Function

Program

Points

Delayed;

Optimistic

Combine-and-

Conquer

O(f * (V + E))

f = #fusion-

ops

V =

#liverange

E =

#interference

Edges

Linear Scan

Per

Function

Basic Block,

Super Block

Program

Point:

relaxed, with

first def/use to

last def/use,

without

considering

discontinuity.

Aggressive

Greedy

O(V * E)

V =

#liveIntervals

E =

#interference

Edges

Traub’s Bin-

Packing

Linear Scan

Per

Function

Basic Block,

Super Block

Program

Points: strict,

with first

def/use to last

def/use, but,

considering

discontinuity.

Spills only if

the current

live range

does not fits

into an

existing live-

range’s hole.

Greedy

O(V * E)

V =

#liveIntervals

E =

#interference

edges

Multi-Flow

of

Commodities

Per

Function

Basic Block,

Super Block

Program

Points

Takes spill

decisions at a

point subject

to minimizing

the overall

cost of the

flow graph.

Incremental,

 Heuristic

Based, Network

Flow.

O(|V| + |E|)

V =

#liverange

E =

#interference

edges

Integer

Programming

Per

Function

Basic Block,

Super Block

Program

Points

Takes spill

decisions at a

point subject

to minimizing

the overall

cost of

variable usage

and imposed

constraints.

Linear

Programming

O(V3)

V =

#liverange

Partitioned

Quadratic

Programming

Per

Function

Basic Block,

Super Block

Program

Points

Takes spill

decisions at a

point subject

to minimizing

the overall

cost of

variable usage

and imposed

constraints.

Numerical

Programming

O(V * |k|3)

V =

#variables

k = #registers

 40

TABLE IV. PROS AND CONS OF VARIOUS REGISTER ALLOCATION APPROACHES

Allocation Approach

Pros

Cons

Chaitin’s

Simple and intuitive

In case a live range is spilled

due to lack of registers at a

program point, all uses of that

live range go through memory

even though some parts of the

live range could have been

allocated a register.

Brigg’s

May alleviate the problem with

Chaitin’s approach for certain

programs.

Does not eliminate the above

problem with Chaitin’s

approach.

Priority Based

Attempts to assign registers to

the most important live ranges

and to spill the least important

ones if necessary; maintains the

simplicity of the graph colouring

based allocation approaches.

Takes neither execution

frequency nor program

structure into account when

splitting live ranges, and there

is no guarantee that splitting

points do not end up along

frequently executed edges

raising code execution time.

Graph Fusion

For small programs, provides

results identical to Chaitin’s, in

lesser time usually; For

programs with huge register

pressure, uses profile

information to produce better

register assignment, which

cannot be done in other graph

colouring or linear scan

algorithms.

May result in partial

redundancies.

Linear Scan

Simple, Faster than graph

colouring based approaches,

used with JIT compilation.

Non-Optimal; Does not

handle “holes” in live-ranges.

Extended Linear Scan

Guarantees minimal number of

Register usage; Simple; Faster

than graph colouring based

approaches; used with JIT

compilation.

May insert too many copy-

swap instructions

Traub’s Bin Packing

Linear Scan

Simple, Faster than graph

colouring based approaches,

Used with JIT, Handles “holes”

in live-ranges, Better allocation

than simple Linear Scan.

Non-Optimal.

 41

SSA Based Approaches

Colouring & Spilling can be de-

coupled, Colouring can be done

in polynomial time, Lower

register pressure.

Additional time and

complexities (lost copies etc)

arising out of use of SSA

form.

Integer Programming

Based

Powerful design paradigm;

Produces very good quality

code; Separation of spilling &

code generation makes process

faster; Reduces code size.

Runs into exponential time in

worst case (Linear

Programming is NP-

Complete); May produce

large number of “move”

instructions; Complex to

represent Interference graph

as a set of 0-1 linear

equations.

Partitioned Quadratic

Programming

Can find optimal allocation in

97.5% of cases; Heuristics can

be used in rest of the cases; runs

in polynomial time.

PQP is NP-Complete in

general; May not be able to

handle non-disjoint register

aliases; Complex to represent

Interference graph as a set of

quadratic equations.

Multi-Flow of

Commodities

Produces reduced size programs

than graph-coloring based

approaches; Quickly finds initial

allocation using heuristics.

May take a long time to get to

the most optimal register

allocation.

Instruction scheduling and register allocation phases have received wide attention in industrial

and academic research, but are generally considered as separate problems. Traditionally,

instruction scheduling and register allocation are performed independently. Either scheduling or

register allocation can be performed first followed by the other. These two phases have

conflicting goals and work in an opposing manner. Instruction scheduling aims at keeping the

functional units busy by executing maximum number of parallel instructions in a short period of

time. This requires a large number of values to be held in registers causing numerous spills. On

the contrary, the register allocator aims at keeping the register pressure optimum by holding a

small number of values in registers for a long period, leading to decreased utilization of the CPU.

 Phase ordering problem has severe impact on code optimization. At times to exploit the

ILP, instruction scheduling phase precedes the register allocation. This approach sometimes

increases the register pressure. Alternatively in order to achieve efficient utilization of register

file, register allocation phase can be carried out before the instruction scheduling phase. Though

 42

this approach will result in efficient register utilization but during the instruction scheduling

phase, it may create empty slot schedule causing increased execution time. Studies on the phase

ordering problem have tried to combine the instruction scheduling and register allocation phases

to address the issues related to register spilling and loss of ILP [86][87].

 Integrated pre-pass scheduling (IPS) combines a pre-pass scheduler with a liveness

analysis to estimate register pressure at the beginning of each basic block in the program [88].

When a variable is defined, it increases register pressure by getting allotted a register and when it

is done with its last use, the register pressure decreases by freeing that register. The register

pressure is monitored continuously and when the pressure crosses a threshold, IPS prefers to

shorten live ranges resulting in spills.

The parallel interference graph approach uses an extended interference graph to detect excessive

register demands and guide schedule sensitive register allocation (PIR) [89]. The reduction in

register demands is achieved through live range spilling.

 The unified resource allocation (URSA) method is based on register reuse direct acyclic

graph (DAG) [90]. Edges in a register reuse DAG connect two instructions if the target

instruction can reuse a register freed by the source. It is based on the measure and reduce

paradigm. Groups of instructions that use too many registers if scheduled in parallel are

identified. These are called excessive sets and they are then used to drive reductions of the

excessive demands for resources. Live range splitting is used for reducing the register pressure.

Various groups have implemented code generators integrating optimal instruction selection,

instruction scheduling and register allocation, based on formulations such as integer linear

programming.

2.5 Recent Developments

The multicore processors offer abundant computing resources offering opportunity to exploit

ILP. The thesis, presents the techniques for exploiting the fine grained parallelism for multicore

processor using compiler. This is the first attempt of its kind to exploit a fine grain parallelization

using compiler.

Currently the research community is trying to counter the challenges either by designing new

schedulers (both dynamic & static), Data access partitioning to extract fine grain threads, pre-

 43

fetching data on to private caches of the core, and load balancing. These work are being done in

parallel to the work presented in this thesis and are summarized in Table V.

TABLE V. RECENT DEVELOPMENT IN THE AREA OF MULTICORE

Approach Type Year Description

Space-Time

Scheduling of

Instruction-Level

Parallelism on a Raw

Machine [91]

Static

1998

This work was proposed as part of RAW project. The RAWCC

compiler was developed to compile general purpose sequential

programs to distributed RAW architecture. The scheduler was

used to assign instructions in basic block and data belong to that

instruction to processing unit. The technique to exploit ILP in this

work is an improved version of the concept what is used for

pipelined processors.

Extending Multicore

Architectures to

Exploit Hybrid

Parallelism

in Single-thread

Applications [92]

Dynamic

2007

Proposes a multicore architecture, referred to as Voltron, that

extends traditional multicore systems in two ways. First, it

provides a dual-mode scalar operand network to enable efficient

inter-core communication and lightweight synchronization.

Second, Voltron can organize the cores for execution in either

coupled or decoupled mode. In coupled mode, the cores execute

multiple instruction streams in lock-step to collectively function as

a wide-issue VLIW. In decoupled mode, the cores execute a set of

fine-grain communicating threads extracted by the compiler.

Data Access

Partitioning for Fine

grain

Parallelism on

Multicore

Architectures [93]

Static

2007

The work aims to reduce dispersal of data accesses across the

cores. A profile-guided method is proposed for partitioning

memory accesses across distributed data caches. The profiler

determines affinity relationships between memory accesses and

working set characteristics of individual memory operation in

program. The compiler uses the profiled information to perform

program-level partition of the memory operations to divide the

memory accesses across the data caches. As a result, the data

accesses are proactively dispersed to reduce memory stalls.

 44

Fine-grain Parallelism

using Multi-core,

Cell/BE, and GPU

Systems:

Accelerating the

Phylogenetic

Likelihood Function

[94]

Static

2009

This work focuses on exploiting fine-grain parallelism in Mr

Bayes, a well-known Bioinformatics application as loop-level

parallelism is a common characteristic of such scientific

applications. Three different existing architectures such as general

purpose multicore processor, Cell/BE, and Graphics Processor

Units (GPU) systems are analyzed in terms of execution

performance, scalability and

programmability.

Compiler Assisted

Dynamic Scheduling

for Effective

Parallelization of Loop

Nests on Multicore

Processors

[95]

Static

2009

Proposes an automatic parallelization approach for transforming

input affine sequential codes into efficient parallel codes such as

OpenMP, that can be executed on a multi-core system in a load-

balanced manner. This approach employs a compile-time

technique that enables dynamic extraction of inter-tile

dependences at run-time, and dynamic scheduling of the parallel

tiles on the processor cores for improved scalable execution.

Compiler-assisted

Data Distribution for

Chip Multiprocessors

[96]

Static

2010

Presents a compiler-based approach for analyzing data access

behavior in multi-threaded applications to mitigate the effect of

data access latency. As in traditional data access analyses such as

reuse, dependence and locality analysis which focus on affine

array subscript patterns in loop nests of a single threaded

application. They propose a technique to find the relationships of

memory locations accessed by different loop iterations in a

parallel programming context.

Resource-Aware

Compiler Perfecting

for Many-Cores [97]

Static

2010

Try to address the memory level parallelism issues thrown by the

shared caches in multi and many core environment. Propose and

evaluate a compiler loop pre-fetching algorithm targeted at many-

core architectures and is aware of the number of simultaneous pre-

fetches supported.

Dynamic Scheduler

for Multi-core

Systems [98]

Dynamic

2010

This paper propose a dynamic scheduling algorithm in which the

scheduler resides on all cores of a multi-core processor and

accesses a shared Task Data Structure (TDS) to pick up ready-to-

execute tasks. In this method the processor has the onus of picking

up tasks whenever it is idle.

 45

Contention-Aware

Scheduling

on Multicore Systems

[99]

Static

2010

This work investigates how and to what extent contention for

shared resource can be mitigated via thread scheduling. The work

identifies a classification scheme for threads to determine how

they affect each other when competing for shared resources. The

classification scheme, along with contention for cache space

addresses the contention for other shared resources, such as the

memory controller, memory bus and pre-fetching hardware.

Compiler and

Runtime Techniques

for Automatic

Parallelization of

Sequential

Applications

[100]

Static

2011

This work is carried out by Compilers Creating Custom Processors

(CCCP) group in The University of Michigan. This dissertation

tackles many challenges faced in automatic parallelization of

sequential applications. The first phase of the work identifies the

parallelizable portion in the program and converts it to parallel

version. In the second phase they propose a runtime system

STMLite to monitor the parallelized program behavior.

An automatic parallel

code generation tool

for data translation of

non-uniform FFT

(NuFFT) application

for multicore

processors is proposed

in this paper [101]

Static

2012

Two scalable parallelization strategies, namely, the source-driven

parallelization and the target-driven parallelization is used. To

improve data locality while trying to balance workloads across the

cores, equally sized geometric tiling and binning strategies are

employed. This tool also consists of a code generator and a code

optimizer for the data translation.

Compilers for Low

Power with Design

Patterns on Embedded

Multicore Systems

[102]

Static

2013

In this work case studies are presented to investigate compilers for

low power with parallel design patterns on embedded multicore

systems. Two major parallel design patterns: Pipe & Filter and

Map Reduce with Iterator are evaluated. Authors has attempted to

devise power optimization schemes in compilers by exploiting the

opportunities of the recurring patterns of embedded multicore

programs. In all two cases of the patterns investigated, the

common recurring patterns of programs are exploited to seek the

opportunity for compiler optimizations for low power. Proposed

optimization schemes are rate-based optimization for Pipe & Filter

pattern and early-exit power optimization for Map Reduce with

Iterator pattern.

 46

Increasing Off-Chip

Bandwidth

in

Multi-Core

Processors

with

Switchable

Pins

[103]

Dynamic

2014

This work address the bottleneck due to slow memory accesses by

increasing off-chip memory bandwidth by enabling more memory

channels. The main contributions in the work includes, devising a

memory controller that can dynamically increase the off-chip

bandwidth at the cost of a lower core frequency and a switchable

pin design which can convert a power pin to a signal pin or the

other way around. The switching policy is dynamic which will

identify the memory intensive phases. This switches the system to

prioritize memory bandwidth or core performance according to the

identified phase.

2.6 Conclusion

Exploiting ILP from a sequential program is a combined effort of hardware and compiler. This

chapter provides an overview of various parallel computer architectures and compiler for these

architectures. The parallel architectures include pipelined processors, VLIW, superscalar, and

clustered VLIW processors.

 The computer architectects of these parallel architectures were aware of support offered

by compiler at different levels to exploit ILP, i.e. compiler support is one of the design issues to

be considered while designing these parallel architectures.

 To generate high quality code for these architectures scheduling and register allocation

need to be efficiently implemented along with various analysis, optimization and transformations

of the program written in high level language. A detailed study of scheduling techniques and

various register allocation techniques are studied and presented in this chapter. The outcome is

the knowledge required to understand the research gap in multicore and many core architecture.

 47

CHAPTER

Experimental Framework 03

In this chapter a generic compiler frame work for multicore architecture has been proposed with

a view to exploit instruction level parallelism. A sample benchmark program is used for analysis

of the performance of proposed framework. The speedup, power consumption, performance per

power and communication cost is used as performance metric. The proposed frame work is

generic and is independent of architecture.

 The experimental setup uses Jackcc an optimizing C Compiler that generates code using

Jackal ISA. Without loss of generality, for the ease of computation, it is assumed that each core

of the multicore processor takes on an average one cycle for executing an instruction. Each core

of multi core processor is considered to be equivalent to the single core processor. It is also

assumed that there is no context switch while executing a parallel region on a multicore

processor.

3.1 Multicore Architecture

The target multicore architecture model used is a fine grained architecture. This architecture

exposes the low level details of hardware to compiler. The architecture supports minimal set of

mechanisms in the hardware and these mechanisms are fully exposed to runtime software

environment and compiler. The runtime system manages mechanisms historically managed by

hardware, and compiler has responsibility of managing issues like resource allocation, extracting

parallel constructs or fine grain threads for different cores, and creating schedules.

 The multicore environment has multiple interconnected tiles and on each tile there can be

one RISC processor or core as shown in Figure 4 & Figure 5. Each core has instruction memory,

data memory, PC, functional units, register files, configurable logic and source clock. FIFO is

used for communication. The register files are distributed, eliminating the small register name

space problem. The cores are assumed to be homogeneous. Such architectures can be seen in

Power4 [21], Cyclops [22], RAW [23][24] and TRIPS [25][26] architecture.

 48

Figure 4. Compiler Generated Code and Their Relation with Architecture (Core/Processor)

Figure 5. On Chip Multiprocessors (Cores) Interconnections

3.2 Compiler

The proposed work uses Jackcc Compiler [102]. This is an open source compiler developed at

university of Virginia. The work flow of the compiler is shown in Figure 6. The compilation

process is divided into manageable units called phase. The front end module of the compiler

takes the source code as input and produces the DAG. The DAG2CFG module extracts the quads

and then it forms the CFG consisting of basic block. The basic block in CFG of Jackcc is called

Arena, and instruction inside the block is called Quad.

C1 C2 C3

C4 C6 C5

C7 C8

Core FIFO

Compiler

Static Code

Processor Data

Configurable Logic

Description

Input Program

CL

DMEM IMEM

REGS P

C

FIFO for communication

ALU

 49

Figure 6. Original Flow of Compiler

Instructions are in SSA form. The original Jackcc compiler used SAME function instead of

implementing Φ functions. The register allocator places two live ranges in the same physical

register. A SSA conversion module has been integrated within in Jackcc compiler. The process

of converting a Non-SSA form program to SSA form program has two steps and these steps are

shown in Figure 7.

Step 1: Placing Phi (ɸ) statements by computing iterated dominance frontier.

 Step2: Renaming variables in original program and Phi (ɸ) functions, using dominator tree and

rename stack to keep track of the current names.

Figure 7. Sequence of Functional Call in Compiler to Generate SSA form Program

Register allocation is achieved by color_graph module of Jackcc compiler which is based on

Chaitin's register allocation approach. The various phases of color_graph module is shown in

Figure 8.

finding_dominators()

dominator_list()

calculating_dominance_frontier()

forcers_on_a_Block()

phi_function()

variable_renaming()

Input in the form of CFG

Output: SSA form program

CFG with phi functions

inserted

Step 1

Step 2

Parsing

Symbol

Table

Dag

Dag2CFG

Register

allocation

Optimizations

Front End

C

Program SSA

Translation

Quad2Asm

 .asm

 50

Figure 8. Register Allocation Framework

Live range of the variable is computed by performing liveness analysis using def-use chains and

each live range’s are numbered uniquely. An interference graph is constructed with the help of

live ranges. The resulting interference graph may not be k-colorable. Coalescing and

simplification are done to make this interference graph k-colorable. The Coalesce phase removes

redundant copy instructions by combining the sources of the target live ranges. Spill cost

computation provides the cost of load and store instruction (spill code) that is required to spill a

live variable. Simplification is a technique for determining the minimum number of registers

required by a particular interference graph and the order in which live ranges are assigned

registers. It determines if a graph can be assigned with given set of registers. If interference

graph is not simplifiable, a live variable with less spill cost is spilled i.e., Load and Store

instructions are inserted in the program code. The variables in simplified interference graph are

assigned register at the register assignment phase and spill code is inserted for the spilled

instructions.

 The dead code elimination, peephole optimization, common sub-expression elimination,

etc, are done by appropriate modules. Assembly level program is generated by Quad2Asm

module. The detail description of original Jackcc compiler and modifications made in the

proposed work is given in Appendix B.

 The work proposed in this thesis includes the modification of Jackcc compiler to extract

fine grain threads and to create schedules for multicore processors. Once compiler successfully

identifies parallelization opportunities (fine grain threads) in the program and creates the

schedules for multicore processors, a runtime system is required to monitor the execution

behavior of parallelized program and fix any miss-speculations that might happen. The runtime

speculation engine follow the static parallelization frame work as shown in Figure 9. The

parallelized code generated during compile time is later executed along with a runtime

speculation engine to monitor execution and roll-back in case of any miss-speculations.

Find Live

Range

Build

Interference

graph

Coalesce Spill Cost

Simplify
Register

Assignment
Insert Spill Code

 51

Figure 9. Run Time Support

3.3 Benchmarks

The test cases that are used to evaluate the proposed work are taken from RAW benchmark suite

[104][105], and are modified to make it compatible with Jackcc compiler. RAW benchmark suite

is designed as part of RAW project in MIT and are maintained under CVS (Concurrent Versions

Systems), to facilitate benchmarking and comparing reconfigurable computing systems.

 The RAW benchmark suite contains twelve programs designed to facilitate comparing,

validating, and improving reconfigurable computing.

TABLE VI. RAW BENCH MARK SUITE

Benchmarks Used

Bheap X

Bubble sort X

DES encryption √

FFT (Integer fast fourier transform) √

Graph Problem (ssp-single source shortest path, spm-

multiplicative shortest path)
X

Integer Matrix Multiplication √

Jacobi Relaxation X

Live (Game based on matrix) X

Merge Sort √

NQueens X

Customized

Speculation
Parallelized

Binary

Memory and

Data Flow

Analysis

Profiling and

Parallel Region

Selection

Parallel Code

Generation

Compile Time

Run Time

 52

3.4 Experiment Evaluation

The result discussed in this thesis is based on the simulated model of the target architecture, with

Dual core and Quad core. The results are shown for four extreme test cases of the benchmark

suite such as DES, Integer matrix multiplication, Fast Fourier transform and Merge sort. The

results with three active cores on a quad core machine are presented to illustrate the power

optimization possibility.

Definition of work and time

Definition 1: The work is defined as unit of task involving execution of finite number of

instructions of a given program. A work with n instruction will usually have a mix of

computation instructions and data access instructions. We assume that out of n instructions p is

number of computational instructions and c is number of data access instructions.

Definition 2: The execution time is defined as the number of CPU cycles spent for completing

the work. The total execution time tn is summation of total computation time tp and total data

access time tc.

The execution time is computed by multiplying the number of instructions in the sub-block and

average time taken to execute an instruction. Though each instruction execution may take

different amount of time, without loss of generality, it is assumed that average time taken to

execute an instruction is constant.

 Amdahl’s law for multicore architecture proposed by Hill-Marty [11] is used for

analyzing the speedup performance. The result is normalized with respect to “Base Core

Equivalents (BCE) proposed in the Hill-Marty model. The speedup performance of n-BCE single

core processor is 1.

 Woo-Lee model [12] is used for checking the energy efficiency of the proposed

approach, and performance per power. The model for power consumption with n-cores considers

the fraction of power k that a core consume in idle state (0 ≤ k ≤ 1). It is assumed that a core in

active state consumes 1 unit of power, i.e., the amount of power consumed by one core during

the sequential computation of program is 1 unit, while the remaining (n − 1) cores consume (n −

1) * k units. Thus, during the sequential computation phase, the n-core processor consumes 1 +

 53

(n − 1) * k units of power. In the parallel computation phase, n core processor consume n units of

power. Because it takes (1 − f) and f/n to execute the sequential and parallel code, respectively,

the formula for average power consumption W in watt is given in equation (02), where f is the

fraction of computation that can be parallelized (0≤ f ≤ 1).

 The model for performance per watt (Perf / W), represents the performance achievable at

the same cooling capacity and is reciprocal of energy, as the performance is reciprocal of

execution time. The Perf / W for multicore is given in equation (03). The Perf / W of single

core processor is 1.

The communication cost is calculated if the dependent fine grain threads are executed on

different cores. The cost of communication depends on the total number of variables shared by

the fine grain threads (Nv), total number of times a core communicates with a different core

(Ntc), and architecture dependent communication latency (cf). The communication cost is

formalized as in equation (04).

v.

The equations given in Section 3.4 used to show the result in later chapters.

 Zero: if all dependent fine grain threads are scheduled on to

 same core.

Communication cost is

 Nv*Ntc*cf: Otherwise (04)

 54

CHAPTER

Compiler Assisted Parallelization and

Optimization for Multicore Architecture
04

This chapter briefly explains the techniques to achieve the proposed research objectives

excluding the implementation details and results. The implementation details and results are

presented in later chapters.

 The proposed work introduces two additional phases to the normal flow of compiler as

shown in Figure 10. A fine grain thread extractor phase to create parallel regions and the

scheduler phase to create schedules for multiple cores. The register allocation phase is modified

to view the private register files of individual cores.

Figure 10. Modified Flow of Compiler to Create Disjoint Sub-blocka and to Create Schedules

Front end of a compiler converts a high level language source code (C Program) to Direct

Acyclic Graph (DAG). The DAG is used for creating control flow graph consisting of basic

blocks. CFG is utilized for loop unrolling, dead code elimination, common sub expression

elimination and generation of SSA form program. The fine grained thread extractor carries out

the dependency analysis on SSA form program and creates parallel regions (sub-block) within

the basic block. Since the sub-blocks within a basic block can be executed in parallel, are termed

as fine grained thread. The fine grained extractor module produces the Sub-block Dependency

Graph (SDG) for global scheduling and sub-blocks for local scheduling. The fine grained thread

can be scheduled using scheduler. The schedules are utilized for identifying the individual

threads for the individual core and for these thread register allocation is carried out by register

allocator module. Finally assembly code generator module produces the assembly code.

 As indicated in the diagram, the sub-blocks / SDG are created from SSA form program

after analyzing the dependencies. Instead of creating SSA form and then carrying out the

DAG2CFG

Convertor

Optimizations

.asm
Register

Allocator

Fine Grain

Thread

Extractor

Assembly Code

Generator

Front End
DAG CFG

Schedule Scheduler

sub-blocks

Source

Code

SSA Translation

CFG

 55

analysis to form the sub-blocks / SDG which requires two separate passes to perform the

operation, SSA translation and Fine grained extraction module is merged where the sub blocks

are formed at the time of SSA form generation resulting into compilation time reductions.

 Since the sub-blocks are disjoint, when scheduled on different cores do not communicate

with each other resulting into reduced communication latency and preventing race condition

[03][05].

 In order to reduce the power consumption, an approach to find the optimal number of

cores required for execution of a program without compromising with the speed-up [02][05] has

been proposed.

4.1 Fine Grain Thread Extractor

The fine grain thread extractor module acts upon the basic blocks (Bp) of control flow graph

(CFG). The instructions in each basic block of CFG are analyzed for dependency to create

disjoint sub-blocks. In Figure 11, the CFG has four basic blocks B1, B2, B3 and B4. The disjoint

set operations are applied on each basic block to form sub-blocks SBi. The sub-block SBi

belonging to basic block Bp is refereed as SBiBp.

Figure 11. Control Flow Graph with of Basic Block Bp Sub-blocks SBi

In general programs have three kinds of data dependence [6]: true dependencies (Read-after-

Write), anti-dependencies (Write-after-Read), and output dependencies (Write-after-Write).

Static single assignment (SSA) is an intermediate representation of the program, wherein each

variable has only one definition in the program text. This is an improvement on the idea of def-

SB 1

SB 3

SB 2

SB 1 SB2 SB 1 SB 2

SB 1

SB 3

SB 2

SB 4

B 1

B 2

B 4

B 3

 56

use chains. The advantages of SSA form program is that it removes output dependency and anti

dependency between instructions. Compiler only needs to look for true dependencies while

extracting parallelism. Figure 12.a gives a program segment which is converted to SSA form

program and is shown in Figure 12.b. The SSA form program is analyzed and disjoint set

operations are applied to produce two sub blocks which are shown in Figure 12.c.

Figure 12. (a) Non SSA Program (b) SSA Form Program (c) Disjoint sub-blocks

Definition 3: Disjoint sub-block

Let S be a list of disjoint sub-blocks. That is, for all sub-blocks {SBi : i ϵ I} in S indexed by I, the

intersection of these sub-blocks is empty: SBi∩SBj=Ø. The union of all sub-blocks in list is

given by,

Where i serves as an auxiliary index that indicates which SBi the instruction x came from.

Creating sub-blocks has some positive offshoots.

 This conforms to the principal of spatial locality as the closely related or dependent

instructions are grouped together in sub-blocks.

 Minimizes the cache coherence problems as the instruction stream of a sub-block

scheduled to a core is not dependent on what is scheduled on the other cores at a time.

 This in turn reduces the need for communication among the cores.

 Since for the instruction stream, dependency analysis is done in the compilation phase the

hardware level reordering overhead is reduced. This makes the technique power aware.

R=234
S=436

H=0

I=332
T=R*S

U=T+R

S=R+T

T=U*S

J=H+I

R=U/S
T=R+S

U=R-S

S=T+U
H=J*I

J=I*I

R0=234
S0=436

H0=0

I0=332
T0=R0*S0

U0=T0+R0

S1=R0+T0

T1=U0*S1

J0=H0+I0

R1=U0/S1
T2=R1+S1

U1=R1-S1

S2=T2+U1
H1=J0*I0

J1=I0*I0

Sub-block 1

R0=234
S0=436

T0=R0*S0

U0=T0+R0
S1=R0+T0

T1=U0*S1

R1=U0/S1
T2=R1+S1

U1=R1-S1

S2=T2+U1

Sub-block 2

H0=0

I0=332

J0=H0+I0
H1=J0*I0

J1=I0*I0

(a) (b) (c)

 57

The sub-blocks are disjoint within a basic block of CFG, but the sub-blocks across the basic

blocks need not be disjoint. The non-disjoint sub-blocks should be executed in order. Inter block

scheduling is a process of finding the non-disjoint sub-blocks across the basic blocks and define

AFTER relation between them.

Definition 4: AFTER

The sub-block SBj of block Bq should be scheduled after SBi of basic block Bp where p≠q, if one

or more instructions in SBj has true dependency with the instruction in SBi. The SBj is AFTER

related with SBi and it is denoted as SBi SBj.

A sub-block dependency graph (SDG) is constructed to guide the inter block scheduler.

Definition 5: Sub-block Dependency Graph (SDG)

The SDG is graph G (V, E), where vertex vi ϵ V is a sub-block SBiBp, and the directed edge e ϵ

E, is drawn between vertex SBi ϵ Bp and vertex SBj ϵ Bq where p≠q. We say SBjBq is AFTER

related to SBiBp. SDG is represented as dependency matrix. In dependency matrix all sub-blocks

are arranged in first column and rest of the columns entry indicates dependency list. If the sub-

block SBjBq is dependent on sub-block SBiBp, then SBiBp is added in the dependency list of

SBjBq, meaning SBjBq should be scheduled only after SBiBp completes its execution. The sub-

block SBjBq can be scheduled only if the list is empty otherwise it should wait till the list

becomes empty.

 (a)

(b)

 Sub-

blocks

Dependency List

1 SB1B1

2 SB2B1

3 SB3B1

4 SB1B2 SB1B1

5 SB2B2 SB3B1

6 SB1B3 SB3B1

7 SB2B3 SB2B1

8 SB1B4 SB1B2

9 SB2B4 SB1B3 SB2B2

10 SB3B4

11 SB4B4 SB2B2 SB2B3

Figure 13. (a) Sub-block Dependency Graph (b) Depenedency Matrix

SB 1

SB 3

SB 2

SB 1 SB2 SB 1 SB 2

SB 1

SB 3

SB 2

SB 4

B 1

B 2

B 4

B 3

 58

4.2 Scheduling

In the proposed compiler framework, scheduling phase follows the SSA translation and sub-

block creation phases. The scheduler generates schedule for each core. Each schedule consists of

list of sub-blocks that can be scheduled on a core. Table VII shows, generation of two schedules

for a dual core machine. Scheduling sub-block may be local or global. The local scheduling is

termed as Intra block scheduling, where only sub-blocks inside a basic block are considered for

scheduling. Global scheduler (Inter block scheduler) identifies all the independent sub-blocks in

a CFG and formulates the schedule. Four novel inter block schedulers are proposed in the current

research. The Height Instruction Count Based scheduler (HIB), Dependent Sub-block First based

scheduler (DBS), Most Dependent Sub-block First scheduler (MDS) and Largest Latency Sub-

block First scheduler (LLSF).

TABLE VII. LIST OF SUB-BLOCKS GENERATED BY MDS SCHEDULER

Dual Core 3 Active Cores Quad Core

Core 1 Core 2 Core 1 Core 2 Core 3 Core 1 Core 2 Core 3 Core 4

SB3B1

SB1B1

SB1B3

SB2B3

SB1B4

SB2B4

SB2B1

SB2B2

SB1B2

SB3B4

SB4B4

SB1B1

SB2B3

SB1B2

SB1B4

SB2B1

SB2B2

SB3B4

SB2B4

SB3B1

SB1B3

SB4B4

SB1B1

SB2B3

SB1B4

SB2B1

SB2B2

SB2B4

SB3B1

SB1B3

SB4B4

SB3B4

SB1B2

In general the global scheduler selects the sub-block i of basic block Bp (SBiBp) from the sub-

block dependency matrix if its dependency list is empty. Sub-block dependency matrix is jagged

matrix representation of SDG as shown in Figure 13.b. Once SBiBp is scheduled and completes

its execution, its corresponding entries are removed from dependency list.

 The decision of scheduling a sub-block on a core is based on the invariants such as

scheduling latency, computed ready time (TRdy) & finish time (TFns) of the sub-block SBiBp.

The schedule time (TSch) of sub-block and total scheduled time of core (TSct) are also taken into

consideration to check the availability of a core to schedule the sub-blocks. Height and schedule

latency of sub-blocks are computed in bottom-up fashion. The total scheduled time of core

(TSct) is the time taken by a core to complete the execution of the sub-blocks currently

scheduled on it. TSct is computed in top-down fashion on SDG. TSct suggests the time at which

next sub-block could be scheduled on to the core. The ready sub-block is scheduled on a core

with lower TSct.

 59

The height of the sub-block SBiBp is one more than maximum height of all its immediate

successors (AIS).

Heighti = Maximum(Height(AIS)) + 1 (06)

The equation (07) gives the predicted finish time (TFns) of a sub-block SBiBp.

TFnsi= Ci + TSchi (07)

Where Ci is total cycle time of i
th

 sub-block and TSchi is schedule time of i
th

 sub- block.

The ready time (TRdy) of a sub-block SBiBp is given below in equation (08). Ready time of a

sub-block is the time at which sub-block is free from all its dependencies and ready to be

scheduled on a core. i.e. maximum finish time of all its immediate predecessors (AIP).

TRdyi = Maximum(TFns(AIP)) (08)

The schedule latency (Li) of a sub-block is given in equation (09). The schedule latency of leaf

sub-block in SDG is, total number of instruction inside the leaf sub-block. The schedule latency

of SBiBp is sum of maximum latency of all its immediate successors (AIS) and total number of

instructions inside the sub-block SBiBp or total cycle time of i
th

 sub-block SBiBp.

Li = Maximum (L(AIS)) + Ci (09)

The total scheduled time of a core k (TSct) is given in equation (10).

TSctk = TSctk-1 + (10)

Where TSctk-1 is current schedule time of the core and Ci is total cycle time required by SBiBp.

4.2.1 General Criteria To Create Schedule

Case 1: All sub-blocks are dependent

If all the sub-blocks are dependent then they need to be scheduled on the same

core which result in poor utilization of multicore environment.

We follow global scheduling heuristics such as Dependent Sub-block Based

(DSB), Most Dependent Sub-block First (MDS), Height and Instruction Count

Based (HIB) and Lowest Latency First (LLFS), scheduling heuristics to schedule

the sub-blocks on the core.

By following certain heuristics like DBS, MDS, LLSF and HIB optimal execution

time can be achieved.

 60

Case 2: All sub-block are independent

The sub-blocks inside the basic blocks are independent and can be scheduled in

parallel. In this case schedule is created taking number of cores into consideration.

Here, the sub-blocks are merged such that resulting execution time is low.

It should be noted that all sub-blocks across the basic blocks are not independent.

Case 3: Not all sub-blocks are dependent

i. Schedule all dependent sub-blocks on to same core

Facilitate less communication latency but results in imbalance usage of

core.

ii. Schedule heuristically

 We follow global scheduling heuristics such as Dependent Sub-block

Based (DSB), Most Dependent Sub-block First (MDS), Height and

Instruction Count Based (HIB) and Lowest Latency First (LLFS),

scheduling heuristics to schedule the sub-blocks on the core.

Case 4: Instruction in the sub-block depend on branch instruction.

i. Predict branch taken or not taken and schedule accordingly

Predicting a branch taken or not taken is difficult at compile time. Few

compiler prediction technique are proposed in history but they have

proved not efficient.

ii. Schedule the sub-blocks in both path of branch instruction (branch taken

or not taken) on different cores without worrying the branch result and let

the runtime environment decide whether to schedule the sub-block or not.

iii. Keep option to schedule the sub-blocks of the branch instruction on same

cores and let the runtime environment decide either of them based on

result of branch.

 Option ii and iii need runtime support and we follow second option.

 61

4.2.2 Sequential Program Execution and Its Analysis

This section, presents the results of executing sequential program compiled using original Jackcc

compiler on n-BCE multicore processor. The relative results in terms of speed-up, power

consumption and performance per power achieved by executing sequential program on one of

the core of dual core and quad core processor is shown in the Figure 14 and Figure 15.

 The equations used for computing the results are explained in Section 3.4. The result

shown is relative to n-BCE single core processor. The speed-up performance (Perfs(r)) of n-BCE

single core processor is 1. The amount of power consumed by n-BCE single core processor

during the sequential computation of program is 1 unit. The performance per watt (Perf /W) of

single core processor is 1. If the program is compiled for single core and executed on n-BCE

multicore processor (either dual or quad core processor) the speed-up (Perfm(r)) decreases. The

speed-up will be (0≤ Perfm(r) < 1), this is because, a core in multicore processor is less

powerful than n-BCE single core processor. This results in increased execution time and power

consumption as shown in Table I. The performance per watt also decreases and will be less than

1 compared to n-BCE single core processor.

Figure 14. Results of Testcases Compiled by Original Jackcc for Dual Core Processor

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

1 2 3 4

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Test Cases

Speed-up Power Perf/power

 62

Figure 15. Results of Testcases Compiled by Original Jackcc for Quad Core Processor

4.2.3 Power Optimization

The output of the proposed schedulers is a list of sub-blocks (schedules) to be scheduled on the

cores. For a N core machine the scheduler generates M schedules, where M ≤ N. The Intra block

scheduler and Inter block schedulers are designed to perform power optimization. It tries to find

the optimal number of cores on which sub-blocks can be scheduled thus resulting in reduced

power consumption. For example, if the speed-up achieved using N cores can be achieved using

N-1 cores, then only N-1 cores of the N core machine are used to execute the given program,

either by keeping the N
th

 core idle or utilizing it for some other computation. This is true for any

N number of cores where N= 2,4,8,16....

 The Intra block scheduler and Inter block scheduler follow the strategy of merging the

sub-blocks scheduled on different cores to reduce the usage of number of cores without

compromising much with the speed-up. This is possible when the total execution (Ti+m) of one

core is

 where Ti,Ti+1, Ti+2, Ti+3..... Tn are execution time of n cores and i+m

≠ i+n. As sub-blocks in different schedules may not be necessarily disjoint, the scheduler cannot

merge the sub-blocks in different schedules randomly. Instead it heuristically distribute the sub-

blocks onto different schedules by keeping total execution time of cores equal.

0

0.5

1

1.5

2

2.5

1 2 3 4

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Test Cases

Speed-up Power Perf/power

 63

 The scheduler generate schedules iteratively starting from 2 core to N core. If the total

execution time Ti of i
th

core is same as total execution time of Ti-1 (i-1)
th

 core for 0<i≤N the

scheduler stops creating schedules for other cores.

Figure 16. Power Optimization

The graph given in Figure 16 shows the speed-up achieved by scheduling a sequential program

on 8 core processor. The gain in speed-up will reach its threshold on four cores. Performance

per power will start declining as power consumption increases when all 8 available cores are

utilized. The proposed schedulers will stop creating schedules for other cores when threshold in

speed-up is reached. i.e., the scheduler will create 4 schedules. For power critical architectures

the compiler can be tuned to stop creating schedules for three core alone. This is done at the cost

of speed-up.

4.3 Register Allocation

The fine grained threads that are scheduled on to different cores need to be allocated registers

from respective register file of the core on which they are scheduled. It is proposed to develop

register allocation strategy for fine grained threads which can be scheduled on multicore

processor. Four different register allocation heuristics for multicore processor architecture is

explained in this section.

The first heuristic uses schedule generated by the scheduler for register allocation. Instructions in

each sub-block are allocated locally using Chaitin's approach and are scheduled as directed by

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Cores

Speed-Up Power Perf-power

 64

the scheduler. This approach leads to reduced compilation time but execution time is increased

as individual sub-blocks are to be assigned thread requiring data movement.

 The second heuristics integrates register allocation with global scheduling [34]. The goal

is to eliminate the phase ordering problem and to overcome limitations which lead to poor

optimizations. The scheduler allocates the sub-blocks in the dependency graph to multiple cores

selectively, taking register requirement, dependencies and the order of execution into account.

Figure 17. Modified Register Allocation Framework

Heuristic 3 and heuristic 4, follow the proposed register allocation framework as shown in Figure

17. To facilitate the global scheduling, these heuristics incrementally merges the sub-blocks in

the sub-block list generated by scheduler to produce a hyper sub-block list H (h1,h2,h3....hx).

The global interference graph is constructed incrementally by merging individual local

interference sub-graphs one by one and checking if the resulting sub-graph is k-colorable. The

algorithm incrementally merges the sub-blocks to form hyper sub-blocks using merge operator.

Since the Hyper sub-blocks are scheduled on a single core, it ensures temporal locality and

reduces memory reference. The Hyper sub-blocks are k-colorable which cause zero spilling and

instructions remain inside private memory of individual cores till all the instruction commits

without doing external memory reference. The variables in hyper sub-block are assigned register

at the register assignment phase. These heuristics help to produce the optimized code at cost of

increased compilation time.

 In heuristic 3 the hyper sub-blocks are created by merging the sub-blocks. Merging of

sub-block is carried out by coalescing the interference graph of the sub-blocks and by checking

the sub-block dependency, Ready_time (TRdy) and Finish_time (TFns) of the sub-blocks that are

being merged. In this heuristics, similar to Chaitin's approach, initially a global interference

graph (hyper sub-block) is built and then the interference graph is simplified to make it k-

Capture Live

Ranges

Build Local

Interference graph Coalesce Check Simplify

Insert Spill Code

Merge Subblocks Register

Assignment

Merge Operator

 65

colorable. If the interference graph is not k-colorable, it is simplified and spill code is inserted.

Since each hyper sub-block can be assigned a thread, it improves the execution time as compared

to approach 1 but may add more spill code as interference graph may not be k-colorable. The

proposed fourth heuristic overcome the limitations of heuristic 1 & 3. In this approach the hyper

sub-blocks are created by adding simplifiability condition to the heuristic 3. The simplifiability

condition ensures that the interference graph of the hyper sub-blocks are k-colorable resulting in

zero spill code.

 An example to illustrate the proposed register allocation approach for the cores having

four registers is given Figure 18. The schedule created by the global scheduler for dual core

machine is shown in Table VIII (a). The hyper sub-block generated by using the schedule list is

shown in Table VIII(b). Table IX exposes the instructions in sub-blocks SB2B1 and SB2B3

scheduled on core 2 of dual core machine. The 3-colorable interference graphs for sub-blocks

SB2B1 and SB2B3 is shown in Figure 18.a and Figure 18 b respectively. The 3-colorable

interference graph of merged sub-blocks is shown in Figure 18 c.

TABLE VIII. (A)SUB-BLOCK LIST GENERATED FOR DUAL CORE PROCESSOR (B) HYPER SUB-BLOCKS

WHOSE INTERFERENCE GRAPH IS K-COLORABLE

 (a) (b)

Dual Core Dual Core

Core1 Core2 Core1 Core2

SB3B1

SB1B1

SB1B2

SB1B3

SB1B4

SB2B4

SB2B1

SB2B3

SB2B2

SB4B4

SB3B4

SB3B1

SB1B1

SB1B2

SB1B3

SB1B4

SB2B4

SB2B1

SB2B3

SB2B2

SB4B4

SB3B4

TABLE IX. SUB-BLOCKS

SUB-BLOCK

SB2B1

SUB-BLOCK

SB2B3

F0=11;

G0=42;

H0=F0/G0;

I0=G0+H0;

G1=G0-I0;

H1=G1+I0;

F1=G1+H1;

U0=G1+F1;

V0=G1+H1;

W0=U0+V0;

V1=W0*V0;

U1=W0-V1;

W1=U1*W0;

 66

 (a)

 (b)

 (c)

Figure 18. (a) Interference Graph of Sub-block SB2B1 (b) Interference Graph of Sub-block

SB2B3 (c) Interference Graph of merged Sub-blocks

The details of the steps involved in implementing scheduling and register allocation techniques

are explained in chapters 5, 6,7, and 8.

I0

G1

G0

F0

H0

F1

H1

U0
V0

V1
U1

W1

W0

U0

F1

G1

H1

W0

W1

V1 U1

V0 F0

G0

H0

I0 G1

H1 F1

 67

CHAPTER

Fine Grain Thread Extractor 05

The implementation details of fine grain thread extractor module is discussed in this chapter. The

Figure 10 in chapter 4 depict the steps involved in this process. The fine grain thread extractor

module creates the disjoint sub-blocks and sub-block dependency graph (SDG). The sub-block

dependency graph (SDG) is used for global scheduling (Inter block Scheduling).

5.1 Creating Disjoint Sub-blocks

Two approaches to create the disjoint sub-blocks or fine grain threads has been proposed and is

briefly discussed in following sections.

i. In the first approach, a SSA form program is taken as input. A separate pass is used for

dependency analysis and sub-blocks creation.

ii. In the second approach, dependency analysis and sub-block creation is done along with

variable renaming step in the generation of SSA form program. This approach has benefit

in terms of compilation time as it avoids the need for an extra pass.

5.1.1 Approach 1 To Create Disjoint Sub-blocks

The operations for creating disjoint sub-blocks is performed after SSA translation phase of the

compiler. In this approach, disjoint set operation is performed on instructions which are

represented using quad data structure belonging to basic block also known as Arena to create a

list S of sub-blocks. The list S is given to scheduler to create schedules for cores of a multicore

processor.

 The disjoint set operations such as makeSet, Union, and groupQuads are applied on

instructions in each basic block Bp. Each sub-blocks are identified by one of the designated

instruction, which is called as representative instruction of the sub block. An example to depict

the steps involved in sub-blocks creation is shown in Figure 19.

Let the basic block Bp contains n instructions i.e. x1, x2. ..xn.

 The makeSet operates upon a basic block Bp containing n instructions and divides it into n

sub-blocks with each sub-block containing one instruction. These sub-blocks are

represented in form of a list Sp {SB1BP, SB2BP, SB3BP.... SBnBP} containing n sub blocks.

Since the sub-blocks are disjoint, it is required that instruction xi is present in only one sub

 68

block say SBiBP. The instruction xi is designated as representative of the sub-blocks

SBiBP. The output of makeSet module when applied on basic block with 15 instructions is

shown in Figure 19.

 The groupQuads module operates on the list Sp with n instructions. This module checks for

true dependency between the instructions and uses Union operation to create m disjoint

sub-blocks, where m≤n.

 The Union operation merges the dependent sub-blocks to form m number of disjoint sub-

blocks. If two dynamic sets (sub-blocks) SBiBP and SBjBP contains the instruction xi and xj,

the two sub-blocks are assumed to be disjoint prior to the Union operation and hence their

set representatives are different. The union operation is performed by changing the

representative of the sub-block, i.e. one representative is selected from either of the sub-

blocks as shown in Figure 19.

 Algorithm1: To create initial list of sub-blocks with one quad in each sub-block.

makeSet(Arena A,List S)

 begin

 for each quad in A

 repeat

Create N sub-block making itself as representative to form the list S;

 End for

 call groupQuads(List S);

End

Algorithm2: To group the quads based on true dependency
groupQuads(List S, number of quads)

begin

 for each sub-block i =0 to number of quads in the list S repeat

 for each sub-block j=i+1 to number of quads in the list s

repeat

 if there is true dependency between i
th
 & j

th
 instruction

then

 if the sub-block representative are not same

then

 call Union(S, i, j);

 return S;

 End for

 End for

End

Algorithm3: To perform disjoint union operation

Union(List S,index i,index j)

begin

copy the j
th

instruction to the sub-block to which i
th
 instruction belong to;

change the j
th
sub-block_rep to i

th
 instructions sub-block_rep;

 End

 69

Instruction Representative

R0=234 1

S0=436 2

H0=0 3

I0=332 4

T0=R0*S0 5

U0=T0+R0 6

S1=R0+T0 7

T1=U0*S1 8

J0=H0+I0 9

R1=U0/S1 10

T2=R1+S1 11

U1=R1-S1 12

S2=T2+U1 13

H1=J0*I0 14

J1=I0*I0 15

Instruction Representative

R0=234 1

S0=436 2

H0=0 3

I0=332 4

T0=R0*S0 1

U0=T0+R0 1

S1=R0+T0 1

T1=U0*S1 8

J0=H0+I0 9

R1=U0/S1 10

T2=R1+S1 11

U1=R1-S1 12

S2=T2+U1 13

H1=J0*I0 14

J1=I0*I0 15

Instruction Representative

R0=234 1

S0=436 1

H0=0 3

I0=332 4

T0=R0*S0 1

U0=T0+R0 1

S1=R0+T0 1

T1=U0*S1 1

J0=H0+I0 9

R1=U0/S1 11

T2=R1+S1 1

U1=R1-S1 1

S2=T2+U1 1

H1=J0*I0 14

J1=I0*I0 15

Instruction Representative

R0=234 1

S0=436 1

H0=0 3

I0=332 3

T0=R0*S0 1

U0=T0+R0 1

S1=R0+T0 1

T1=U0*S1 1

J0=H0+I0 3

R1=U0/S1 1

T2=R1+S1 1

U1=R1-S1 1

S2=T2+U1 1

H1=J0*I0 3

J1=I0*I0 3

a. After Makeset b. 1st Iteration of
union and groupQuad

c. 2nd Iteration of
union and groupQuad

d. 3rd Iteration of
union and groupQuad

Figure 19. Steps in Creation of Disjoint Sub-blocks

5.1.2 Approach 2 To Create Disjoint Sub-blocks

The approach presented in this section creates the disjoint sub-blocks while translating non SSA

program to SSA form program eliminating extra pass requirement of Approach 1 and thus

resulting in reduced compilation time. The modified work flow of compiler for this approach is

shown in Figure 20.

Figure 20. Integrated SSA Translation and Fine Grain Thread Extraction

The modified version of variable renaming algorithm of SSA translation pass is presented. The

proposed algorithm performs variable renaming and sub-blocks creation tasks simultaneously

during the SSA translation pass. The first task is accomplished by traversing each basic block of

the CFG which has Phi (ɸ) functions inserted by Phi_function() module and rename each

variable in a way that each use corresponds to exactly one definition. Each definition is renamed

with a new version of that variable. Second job is accomplished by updating the use of the

renamed variable, which in turn helps in identifying the instructions having true dependency

(RAW). These dependent instructions are collected to form disjoint sub- blocks.

DAG2CFG
Convertor

.asm
Register

Allocator

Assembly Code
Generator

Front End DAG
Source

Code
Integrated SSA Translation

and Fine Grain Thread

Extraction

Scheduler

sub-blocks

CFG

Schedule

 70

Algorithm 4: Integrated variable renaming and sub-block creation

Start from first statement in the block

 Loop until all statements are parsed

 Scan current statement in the block

 Rename the definition and use in current statement

Now check in current statement, variables on right hand side

 if(number of variables on right hand side=0)

 Create new sub-block(SBBn) // nth sub-block

 SBBn[0]=current statement number

 Number of statements in current sub-block +=1;

 End if

 else if(number of variables on right hand side y0 ==1)

 if(y0 is defined in the current block)

 find(sub-block in which statement defining y0 is residing)

 //Suppose this returns SBBy

 SBBy[Number of statements in sub-block SBBy++]=current statement number

 End if

 else

 Create new sub-block(SBBn) // nth sub-block

 SBBn[0]=current statement number

 Number of statements in current sub-block +=1;

 End else

 End else if

 else if(number of variables on right hand side==2)

 if(y0 and z0 are defined in the current block)

 SBBy=find(sub-block in which statement defining y0 is residing)

 SBBz=find(sub-block in which statement defining z0 is residing)

 if(SBBy==SBBz) //Both are defined in same block

 SBBy[Number of statements in sub-block SBBy++]=current statement number

 Endif

 else //Both are defined in different block

 Copy all statements in SBBz to SBBy

 Number of statements in SBBy=No of statements in SBBy + No of

statements in SBBz

 SBBy[Number of statements in sub-block SBBy++]=current statement number

 Delete SBBz

 End else

 End if

 else if(only y0(or z0) is defined in current block)

 find(sub-block in which statement defining y0 is residing)

 //Suppose this returns SBBy

 SBBy[Number of statements in sub-block SBBy++]=current statement number

 End elseif

 else //In this case neither of y0 or z0 is defined in current block

 Create new sub-block(SBBn) //n stands for nth sub-block

 SBBn[0]=current statement number

 Number of statements in current sub-block +=1;

 End else

End

The sub-blocks created for four extreme test cases of the benchmark suite such as DES, Integer

matrix multiplication, Fast Fourier transform and Merge sort are given in Table X.

 71

TABLE X. NUMBER OF BASIC BLOCKS AND SUB-BLOCKS FOR THE TEST CASES

Test Cases Number of Basic Blocks Sub-blocks

Test Case 1 6 B1= 3 B2= 3 B3= 2 B4= 3 B5= 2 B6= 6

Test Case 2 5 B1= 4 B2= 3 B3= 3 B4= 4 B5= 3

Test Case 3 4 B1= 3 B2= 3 B3= 3 B4= 3

Test Case 4 6 B1= 2 B2= 2 B3= 2 B4= 3 B5= 2 B6=2

5.2 Sub-block Dependency Graph (SDG)

The global scheduling or Inter block scheduling is a technique for creating schedules for multiple

cores by considering the sub-blocks across the CFG. A sub-block dependency graph (SDG) is

constructed to facilitate the global scheduling.

Two approaches are proposed to construct the SDG.

i. In the first approach the sub-block dependency graph is created using the sub-

blocks. The approach to create sub-blocks has been discussed in Section 5.1. This

approach requires an extra pass for creating SDG.

ii. In the second approach, dependency analysis, sub-block creation and SDG creation

is done along with variable renaming of SSA form program translation step. This

approach eliminates the need for an extra pass as required in the first approach.

5.2.1 Approach 1 To Create SDG

The basic block is split into sub-blocks. The array subbl_phi[] stores the sub-block number to

which each Φ function belongs. The dependencies of each sub-block is computed and are stored

in dependency_Block and dependency_SubBlock – while former stores pointers to basic blocks to

which a sub-block is dependent upon, latter stores the corresponding sub-block number. The

depcount stores the number of dependencies. subBlockGraph[] is an array of nodes of sub-block

dependency graph – one node corresponding to each sub-block. The sub-block (node) in Sub-

block Dependence Graph has list of quads, Sub-block number, size, list of children, list of

parents, Φ functions belonging to the sub-block and a pointer to the basic block of CFG to which

the sub-block belongs.

 Constructing sub-block dependence graph involves two steps. The first step involves

identification of AFTER dependency between sub-blocks . In second step SDG is created .

 72

Step1:– The basic blocks of CFG are used for computing the dependency. The function

computeDependency() takes a basic block Bp as input. Each basic block Bp can have

number of sub blocks represented in the form of a list Sp{SB1, SB2, SB3.... SBn}. For

each sub-block SBi in Bp it will mark all sub-blocks SBj belonging to any other basic

block Bq on which it is AFTER dependent. The Use and Def of each basic block is

used in this analysis. If sub-block SBiBp contains Φ functions, the Use list of that sub-

block is updated with the variables vi in that Φ(v1,v2...) function. For each Use of the

sub-block, the sub-block SBj and basic block Bq in which that variable is defined is

found. It then adds the sub-block SBiBp to the list of dependencies of SBjBq. It repeats

the process for each quad in the sub-block SBiBp, computing Use and finding where it

was defined. The def list is also updated by examining each instruction's definition. The

function addToDependencyList() will take a sub-block SBiBp and the sub-block SBjBq

on which it is dependent upon and update dependency_Bloc and dependency_SubBlock.

Algorithm 5: Compute Dependency

ComputeDependency()

begin

 for each subBlock SBi in SetList Sp

 begin

 for each Ø function belonging to sub-block SBi

 begin

 for each column of Ø function, j=1 to numparents

 begin

 add Ø[j] to the list use[SBi]

 end for

 end for

 for each quad Q in sub-block SBi

 begin

 add srca and srcb of Q to the list use[SBi]

 end for

 for each variable v in use[SBi]

 begin

 Sp = find sub-block in which v is defined

 addToDependencyList(SBiBp,SBjBq)

 end for

End

Step 2: SDG is created by calling a function createSDG() which takes basic block Bp and sub-

block list Sp as input. Based on dependency computation of the sub-blocks, it creates

nodes for each sub-block SBi in Bp by adding an edge to the sub-blocks on which it is

AFTER dependent making it its parents. The dependency edges are created between the

sub-blocks SBiBp and those sub-blocks SBjBq by adding SBiBp to the dependency list of

 73

SBjBq in dependency matrix. The Figure 13 a in Chapter 4 depicts an example SDG and

its corresponding dependency matrix.

Algorithm 6: Create SDG
createSDG()

begin

 for each subBlockSBi in SetList Sp

 begin

 Create a node of SDG, say v corresponding to SBi

 for j=1 to depcount[SBj]

 begin

 u=SDG node corresponding to dependencyblock[SBi][j] and sub-block

 dependencyblock[SBi][j]

 add the edge uv

 include v in list of u’s children

 include u in the list of v’s parents

 end for

 end for

End

5.2.2 Approach 2 To Create SDG

The technique discussed to create SDG in this section is an extension of Approach 2 of creating

sub-block along with SSA renaming module described in Section 5.1.2. This approach is

compiler efficient, because it is performed during SSA translation phase itself as shown in

Figure 21.

 Algorithm 7: Creating Sub-block Dependency Graph
Scan the current instruction or quad

if(variables on right hand side==0)

 if statement has phi function

 for each predecessor of this block do

 find_sub-block_and_block

 add_sub-block_to_dependency_list

 endfor

 endif

endif

else if(number of variables on right hand side==1)

 find where this variable is defined

 if(variable is not defined in the current block)

 find_sub-block_and_block

 add_sub-block_to_dependency_list

 endif

endelseif

else if(number of variables on right hand side==2)

find where these variables are defined

 if(one variable is not defined in current block)

 find_sub-block_and_block

 add_sub-block_to_dependency_list

 endif

 else if(no variable is defined here)

 find_sub-block_and_block_for_both_variables

 add_sub-blocks_to_dependency_list

 endelseif

endelseif

 74

Here each instruction or quad in a sub-block SBi in basic block Bp is scanned and analyzed for its

AFTER. If instruction has got Φ function in its RHS, then there would be AFTER dependencies

coming from the predecessors of basic block Bp as per definition of phi function. While

observing every predecessor Bq, dependency edges are created between the sub-blocks SBiBp and

those sub-blocks SBjBq by adding SBiBp to the dependency list of SBjBq in dependency matrix.

 A non Φ instruction can have one Use which is not defined in sub block SBiBp indicating

that it is defined in one of its predecessor sub block SBjBq and hence the existence of

dependency between SBiBp and SBjBq. The graph is traversed upwards covering all predecessor

sub-blocks SBjBq for finding the AFTER dependency. For each dependency, one edge is added

and the dependency matrix is updated. Similar action is taken for the case when RHS of quad

contains two variables, both of which are defined in predecessors of the given basic block.

Figure 21. Modified Flow of Compiler to Create Disjoint Sub-blocks and SDG During SSA

Translation

5.3 Compile Time Analysis of Approach 1 and Approach 2

This section analyses the compilation time requirement and algorithmic complexity of the

proposed algorithms. Two different approaches to create disjoint sub-blocks and SDG is

discussed.

 A code has been developed to translate a non SSA form of the program to SSA form

program. The code uses functions for finding dominators, dominance frontier, inserting Φ

function and variable renaming.

 75

The function to find dominators, dominance frontier and inserting Φ function are used in both

the approach used for creating disjoint sub-blocks. Let the time taken to run these function be T1,

T2 and T3 then T1+T2+T3 would be a common time factor in both approaches.

 Let T4 be the time taken by variable_renaming() function. T4 is much greater in

comparison to T1 and T2 as variable renaming is done for each variable belonging to every basic

block, where as the operations, find_dominator and dominance frontier are done at basic block

level. T4 is also larger than T3 even though the function to insert Φ is performed at instruction

level as Φ function insertion is carried out in selected basic blocks only .

 In the first approach to create sub-blocks, all basic blocks of CFG is traversed by making

one extra pass [1]. In this pass, true dependency (RAW) between the instructions is computed

inside each basic block and disjoint sub-blocks are created. Let the time taken for creating the

disjoint sub-block be T5 and the time taken perform this task is almost same as time spent for

variable renaming i.e., T5≥T4. The overall compilation is equal to summation of time T1, T2,

T3, T4 and T5. Since T4 and T5 are much greater than T1, T2 and T3, the total compilation time

can be considered to be proportional to summation of time T4 and T5.

 In second approach for creating disjoint sub-blocks, the time taken for the variable

renaming (T4) will remain same as renaming of variables are still performed by analyzing each

instruction. The variable renaming and disjoint sub-blocks creation operations are done

simultaneously by eliminating T5 factor. If T4' is the new time for performing variable renaming

and disjoint sub-block creation, it is slightly more than T4. The overall compiler time dedicated

for these operation is reduced to summation of time T1, T2, T3, and T4'. Since T4' is much

greater than T1, T2 and T3, the total compilation time can be considered to be proportional to

T4'.

 The first approach to create SDG requires extra pass to check the AFTER dependency

and insert edge between the two dependent sub-blocks. Let the time taken to perform this pass be

T6. The second approach to create SDG does not require extra pass as operation to create the

SDG is carried out at the time of variable renaming operation causing slight increase in variable

renaming time from T4' to T4". The overall compilation time to create SDG in second approach

is summation of time T1, T2, T3, and T4".

 To discuss the complexity of the algorithms, consider the CFG with N basic blocks, E

number of edges. Let T be the total number of ordinary assignment and total number of Φ

 76

functions, |DF| be total size of dominance frontier, and V be total number of variables. The

complexity of SSA generation algorithm is linear O(E+T+|DF|), finding dominator has

complexity O(E), finding DF's for CFG is O(E+∑n |DF(n)|), Inserting Φ function is O(∑n

(T*|DF(n)|), and variable renaming is O(V).

 The algorithmic complexity of functions involved in disjoint sub-block creation such as

makeSet, Union and Find set are as follows. The makeSet can be performed in constant time so it

is O(1). The union operation is O(N
2
) or O(NlogN), depending on the size of the sub-block with

other sub-block is getting merged. If larger sub-block is merged with smaller sub-block then it is

O(NlogN) otherwise it is O(N
2
). The complexity of groupSet operation is O(N). Thus the overall

complexity to create disjoint sub-blocks is O(N
2
).

 To create SDG from the sub-blocks in N different basic blocks first AFTER dependency

is computed and edge is inserted between the dependent sub-blocks. The algorithmic complexity

of these two function is O(N
4
) in worst case when iterated on each basic block. By performing

good ordering on sparse set of basic blocks these operations can be performed in O(N
2
). These

two processes are common to both the approaches to create SDG described in Section 5.2.1 and

Section 5.2.2 respectively.

5.4 Conclusion

The techniques to create the sub-blocks / SDG is discussed in this chapter. The schedule for

these sub-blocks in the basic blocks and the SDG are created by local scheduler and global

scheduler respectively. The implementation details of these schedulers are explained in Chapter

6 and Chapter 7.

 77

CHAPTER

 Intra Block Scheduling 06

The Intra block scheduling is an approach to schedule the sub-blocks belonging to a basic block.

This chapter discusses the proposed intra block scheduling. The scheduler is termed as local

scheduler or intra block scheduler. The intra block scheduler uses the disjoint sub-blocks created

by fine grained thread extractor module to produce schedules for multiple cores of a multicore

processor. The sub-blocks within the basic block are scheduled on different cores in a manner

that balances the overall execution time and power consumption.

6.1 Introduction to Intra Block Scheduling

The problem of scheduling for parallel architecture by minimizing the overall execution time has

been proven to be NP-Complete problem. A number of heuristics have been proposed with a

view to find an optimal schedule that results in reduced execution time. The proposed intra block

scheduler uses bin-packing approach to schedule the sub-blocks. The number of bins used are

taken to be equal to the number of cores. The bin-packing problem is a NP-complete problem, an

approximation algorithm with approximation factor of 2, with small running time O(n logn) is

used. This algorithm runs in time O(nlogn+n*c), where c is number of cores and n is number of

sub-blocks.

 Let Sp ={SB1,SB2,SB3,…SBn} be the list of sub-blocks belonging to basic block Bp. Each

sub block can have varying number of SSA form instructions. For each sub-block SBiBp

belonging to a basic block Bp, sub-block identifier and sub-block size information is maintained.

Sub-block size is the number of instructions Ic in the sub-block SBiBp. The sub-blocks are sorted

in non increasing order of their size so that the sub-block with higher size is given higher priority

for scheduling.

 Before the creation of schedule, at times sub-block merging is required. The two or more

sub-blocks are merged to form a bigger sub-block which is named as hyper sub-block. The hyper

sub-blocks are created to achieve below mentioned objectives.

i. While splitting basic blocks into sub-blocks, sometimes, we get number of sub-blocks

with small number of instructions which use a small subset of available registers, leaving

 78

large pool of registers unutilized. The hyper sub-block creation results in efficient

utilization of available register set. However, if the number of sub-blocks is less than

number of cores, hyper sub blocks are not created.

ii. Let Ti, Ti+1, Ti+2, Ti+3..... Ti+n be the execution time of a set of sub-blocks Si, Si+1, Si+2,

Si+3.........Si+n. If Ti ≥ Ti+1 + Ti+2 + Ti+3.....+ Ti+n, then scheduling the sub-blocks

Si+1,Si+2,Si+3.........Si+n on multiple cores may not benefit in terms of speed-up as the total

execution time will remain Ti. Substantial power is utilized by all these cores as all cores

are active. If the sub-blocks Si+1, Si+2, Si+3.........Si+n are merged and is executed on any

one of the cores by making all other core idle, power consumption can be reduced

without compromising with the speedup.

iii. The sub-blocks could also be merged in a manner such that each merged sub-block has

equal or nearly equal number of instructions. With this when the schedule is created, all

the cores finish execution almost at same time.

6.1.1. Sub-block Merging

The merging algorithm to create hyper sub-block is given in algorithm 8. The algorithm takes a

list Sp containing sub-blocks belonging to basic block BP as input. The sub-blocks are arranged

in descending order of their size i.e., number of instructions in each sub-blocks. The algorithm

creates the hyper sub-blocks by merging the sub-blocks. Let TIC be the total number of

instructions in basic block BP, SICi and Rreqi be the instruction count and register requirement of

sub-block SBiBP.

 The bins are used for creating the hyper sub-blocks. The hyper sub-block HSBjBP is

created using j
th

 bin by merging one or more sub-blocks belonging to the basic block BP. Ravlj is

total number of registers available for j
th

bin which is initialized to number of registers in a core.

Ravlj is updated whenever a new sub-block is inserted into the bins or merged with the existing

sub-blocks in the bin. The value of Ravlj is modified by subtracting the register requirement of i
th

sub-block (Rreqi). The proposed algorithm initially begins by creating two bins and populating it

with first two sub-blocks from the list Sp. After this initialization, the algorithm picks up next

sub-block from the list Sp and tries to merge it with sub-block present in any of the bin satisfying

the first merge condition listed above. For all j bins, if Ravlj is zero or less then the Rreqi of the

sub-block then the sub-block cannot be merged with sub-blocks present in any of the bins then

 79

one more bin is created and sub-block is placed in it. The process is repeated for all the sub-

block in the list. For ensuring the second and third condition of the algorithm, the bins are

arranged in descending order of number of instructions in each bin in the beginning of every

iteration. The basis for selecting two bins is the fact that multicore processor will have at least

two cores. The first fit bin strategy is followed in the proposed algorithm, where a sub-block is

merged with the first available bin which satisfies merge conditions. The sub-block list SP is

arranged in descending order to simplify the merge operation. The worst case algorithmic

complexity of the merge algorithm with n sub-blocks in basic block BP is O(n*log n) as smaller

size sub-blocks are merged with bigger size sub-blocks in the bin (hyper sub-blocks). The hyper

sub-blocks are sorted in descending order in the last step to reduce the search time of the

scheduler while creating schedules.

 Algorithm 8: Sub-block Merging
mergeSubblock(Sp, no_of_sub-blocks, num_of_quads)

begin

 No_bins=2;

 bins[i] = 0 for all bins initially;

 binsize[i]= 0 for all bins initially;

 RAvlj = register in each core.

 for each sub-block SBiBp

 repeat

 Arrange bins in descending order of size

 for each bin j=1 to No_bins

 repeat

 if (Ravlj of HSBjBP > Rreqi of SBiBp)

 then

 break inner for loop

 end if

 end for

 if j is same as No_bins

 then

 bins[j]= SBiBp;

 No_bins++;

 else

 Call Union (S,bins[j], SBiBp)

 Ravlj of HSBjBP = Ravlj of HSBjBP - Rreqi of SBiBp
 end for

End

 An example depicting the merge operation is given Figure 22. The list SP consists of ten

disjoint sub-blocks with TIc = 57. The steps in creating hyper sub-blocks using proposed merging

algorithm is shown in Figure 23 for a multicore processor with each core having four registers.

Initially Ravlj value of the j
th

 bin to create the hyper sub-block HSBjBP is initialized to four.

 80

List

Sp

SB8BP

SIC8= 12

Rreq8=4

SB2BP

SIC2= 10

Rreq 2=5

SB9BP

SIC9= 6

Rreq 9=2

SB4BP

SIC4= 5

Rreq 4=2

SB1BP

SIC1= 5

Rreq1=2

SB10BP

SIC10= 4

Rreq 10=2

SB6BP

SIC6= 4

Rreq 6=2

SB5BP

SIC5= 4

Rreq 5=2

SB3BP

SIC3= 4

Rreq 3=2

SB7BP

SIC7= 3

Rreq 7=2

Figure 22. Sub-blocks of Basic Block BP

j Bins to create Hyper

Sub-blocks HSBjBP

HSB1BP

HSB2BP

HSB3BP

HSB4BP

 HSB5BP

HSB6BP

Iteration 1

SB8BP

HIC1= 12

Ravl1=0

SB2BP

HIC2= 10

Ravl2=0

Iteration 3

SB8BP

HIC1= 12

Ravl1=0

SB2BP

HIC2= 10

Ravl2=0

SB9BP

HIC3= 6

Ravl3=2

Iteration 4

SB8BP

HIC1= 12

Ravl1=0

SB2BP

HIC2= 10

Ravl2=0

SB9BP

SB4BP

HIC3= 11

Ravl3=0

Iteration 5

SB8BP

HIC1= 12

Ravl1=0

SB2BP

HIC2= 10

Ravl2=0

SB9BP

SB4BP

HIC3= 11

Ravl3=0

SB1BP

HIC4= 5

Ravl4==2

Iteration 6

SB8BP

HIC1= 12

Ravl1=0

SB2BP

HIC2= 10

Ravl2=0

SB9BP

SB4BP

HIC3= 11

Ravl3=0

SB1BP

SB10BP

HIC4= 9

Ravl4=0

Iteration 7

SB8BP

HIC1= 12

Ravl1=0

SB2BP

HIC2= 10

Ravl2=0

SB9BP

SB4BP

HIC3= 11

Ravl3=0

SB1BP

SB10BP

HIC4= 9

Ravl4=0

SB6BP

HIC5= 4

Ravl5=2

Iteration 8

SB8BP

HIC1= 12

Ravl1=0

SB2BP

HIC2= 10

Ravl2=0

SB9BP

SB4BP

HIC3= 11

Ravl3=0

SB1BP

SB10BP

HIC4= 9

Ravl4=0

SB6BP

SB5BP

HIC5= 8

Ravl5=0

Iteration 9

SB8BP

HIC1= 12

Ravl1=0

SB2BP

HIC2= 10

Ravl2=0

SB9BP

SB4BP

HIC3= 11

Ravl3=0

SB1BP

SB10BP

HIC4= 9

Ravl4=0

SB6BP

SB5BP

HIC 5= 8

Ravl5=0

SB3BP

HIC6= 4

Ravl6=2

Iteration 10

(Final Hyper sub-blocks)

SB8BP

HIC1= 12

Ravl1=0

SB2BP

HIC2= 10

Ravl2=0

SB9BP

SB4BP

HIC3= 11

Ravl3=0

SB1BP

SB10BP

HIC4= 9

Ravl4=0

SB6BP

SB5BP

HIC5= 8

Ravl5=0

SB3BP

SB7BP

IC6= 7

Ravl6=0

Figure 23. Steps in Merging Sub-blocks of Basic Block BP

 The algorithm begins with creating two bins to create hyper sub-blocks HSB1BP and

HSB2BP using the sub-block SB8BP and SB2BP respectively. In the second iteration a new bin to

 81

create hyper sub-block HSB3BP is created for the sub-block SB9BP as the register availability of

the bins having hyper sub-block HSB1BP and HSB2BP is zero, i.e,. Ravl1=0 and Ravl2=0. The

sub-block SB4BP is merged with the sub-block SB9BP in the bin which is creating hyper sub-

block HSB3BP as its merge condition is satisfied. We can observe that the size of all three bins in

fourth iteration are almost equal. This process is repeated for the other sub-blocks. At the end of

9
th

 iteration six hyper sub-blocks are created by the merge algorithm. These six hyper sub-blocks

are sorted in descending order of their size and are used by scheduler to create schedules for

multicore processor.

6.1.2. Intra Block Scheduler

The hyper sub-blocks created by the sub-block merge module is taken as input to create schedule

for the multicore processor. The execution time TStc and available time TAvl of each is core is

maintained to create schedule. Each hyper sub-blocks in the ready queue is scheduled on to the

core which has minimum TStc at that instance. After scheduling the hyper sub-block HSBiBp on

to the core its TStc is updated.

Algorithm 9: Intra Block Scheduler

scheduleBlock(Basic Block Bp, Hyper sub-block List HSList)

begin

 for

 for each core i

 repeat

 TStc[i]=0; TAvl[i]=0;

 end for

 for each hyper sub-block HSB in HSList in sorted order

 repeat

 find min_core such that TStc[min_core] is minimum among all cores

 Schedule the Hsub-block HSB on to min_core

 TStc[min_core]= TStc[min_core] + HSubBlockSize[HSB]

 end for

end

Let HSList be the list of hyper sub-blocks created by merging the sub-blocks in the basic block

Bp. The hyper sub-blocks are sorted in non-increasing order of their size. If L is the number of

hyper sub-blocks in the HSList and N is the number of cores in the processor. The scheduler

first check if the L ≤ N. The scheduler creates L schedules if the condition is true. Otherwise the

scheduler creates M schedules for N cores where is M≤N. In the first iteration the scheduler

creates N schedules for N cores. In the next iteration it checks if it can create schedules for N-1

cores without compromising with the speed-up. If it is possible it will create schedules for N-1

 82

cores. Similarly it will keep reducing the number of cores till speed-up of two consecutive

iteration are same and choose the value of iteration before failure as M and creates M schedules.

This exercise is done to utilize only required number of cores in order to reduce power

consumption and to increase performance per power.

 The Schedules created for Dual core, Quad core and three active core processors by Intra

block scheduler is shown in Figure 24. When the hyper sub-blocks are scheduled, it takes 29, 19

and 19 clock cycles against 32, 22, and 22 clock cycles on Dual core, Quad core and Three

active core respectively when sub-blocks are scheduled without merging. The difference between

three active core and quad core processor is that that performance per power of three active core

will be more than quad core processor.

Dual Core Quad Core Three Active Core
HSB1BP

HSB4BP

HSB6BP

TSct=28

HSB3BP

HSB2BP

HSB5BP

TSct = 29

HSB1BP

TSct =12

HSB2BP

HSB4BP

TSct = 19

HSB3BP

HSB5BP

TSct = 19

HSB6BP

TSct = 7

HSB1BP

HSB6BP

TSct =19

HSB2BP

HSB4BP

TSct = 19

HSB3BP

HSB5BP

TSct = 19

Figure 24. Schedules Created by Intra Block Scheduler

6.2 Results

The result and observations on execution of benchmark programs when scheduled using

proposed Intra block scheduler is discussed in this section. The equations used for computing the

results are explained in Section 3.4. The relative results in terms of speed-up, power

consumption and performance per power achieved by executing benchmark programs on dual

core and quad core processor is shown.

 The result in Figure 25 shows that the speed-up increases as number of cores increase,

which makes it evident that all the cores are utilized towards achieving maximum gain. The gain

in speed-up was the expected output from multicore processor but was not obvious for the non

multithreaded applications.

 The speed-up decreases when the same code is run on 3 active cores, however the

performance per power improves as is shown in Figure 27.

 The power consumed to execute the test cases is captured and performance per power of

each test case is calculated as shown in Figure 26 and Figure 27 respectively. It is observed that

power increases as the number of cores increase. The power consumption is lower when 3 cores

are used instead of 4 cores. Thus the performance per power of quad core machine is higher

 83

when 3 cores are used instead of 4 cores. The effect of using 3 cores by slightly compromising

with speed-up is shown in Figure 25. The communication costs of the proposed algorithms are

shown in Figure 28.

Figure 25. Speed-up analysis For Intra Block Scheduling

Figure 26. Power Consumption For Intra Block Scheduling

 84

Figure 27. Performance / Power For Intra Block Scheduling

Figure 28. Communication Cost For Intra Block Scheduling

 85

The Intra block scheduler (IBS) was designed for locally scheduling the disjoint sub-blocks. The

IBS will not ensure that the dependent sub-blocks in rest of the basic block of CFG are scheduled

on same core. This may lead to high communication and data movement between sub-blocks

scheduled on different cores, which intern can have serious impact on speed-up and power

consumption. To overcome these limitations Inter block scheduler is proposed in Chapter 07.

The results of Intra block scheduler is compared with Inter block scheduler in Chapter 07.

 86

CHAPTER

 Inter Block Scheduling 07

The implementation details of global scheduler is given in this chapter. The global scheduler is

termed as Inter Block scheduler. Similar to local scheduler (Intra Block Scheduler), the schedule

generated by global scheduler for each core consists of list of sub-blocks. In contrast to local

scheduler, the global scheduler identifies all the independent sub-blocks across the basic blocks

in a CFG to formulate the schedule

 In this chapter, four novel global scheduling heuristics are proposed. These heuristics are

designed to obtain high performance, low communication cost, and high performance per power.

The scalability issues with increasing number of cores are also been explored. The novelty of

proposed algorithms is in its efficient scheduling strategies, which translates into improved

performance without increasing the algorithmic complexity.

 The proposed global scheduling algorithms uses the sub-block dependency graph (SDG)

to schedule sub-block on to multiple cores. The first algorithm, called the Height Instruction

Count Based (HIB) algorithm, is based on priority calculated using the height and instruction

count of the sub-block in the SDG. It is a linear-time algorithm which uses an effective search

strategy to schedule the sub-block on to the core with minimum schedule time. The second

scheduling algorithm is based on dependency between sub-blocks and has been named as

Dependent Sub-Block scheduler (DSB). All the paths from a given block to leaf node of SDG is

identified and schedule latency for each path is computed. The sub-blocks in the path with

highest schedule latency are chosen for scheduling on different cores. The third algorithm is

Maximum Dependency Sub-block First (MDSF). It calculates the priority of the sub-block based

on maximum dependencies and minimum execution time. The fourth algorithm is Longest

Latency Sub-block First (LLSF) which schedules considering only latency of the sub-block. The

proposed algorithms have been evaluated through extensive experimentations and results have

been compared with existing algorithms.

 In General, the global scheduler selects the sub-block SBiBp from the sub-block dependency

matrix if dependency list of SBiBp is empty. Once SBiBp is scheduled and completes its execution, it is

removed from all dependency lists. The scheduler uses the values of height (Heighti) of sub block

in SDG, predicted finish time (TFns), ready time (TRdy), schedule latency (Li) of a sub-block, and

 87

total schedule time of core (Tsct) and are computed using equations 6, 7, 8, 9, and 10

respectively.

7.1 Height-Instruction Count Based (HIB)

The HIB scheduler uses the sub-block dependency graph represented in the form of matrix to

take scheduling decision. The scheduler creates a priority queue using SDG, and schedules the

sub-blocks on to multiple cores. Scheduler will schedule the sub-block with highest priority in

the priority queue on the core with minimum Tsct. The scheduler updates the priority queue with

new sub-blocks and remove their entry from dependency matrix. A sub-blocks can be added in

priority queue if dependency list of that sub-block is NULL. Priority of the node is computed

based on height (Heighti) and instruction count. The node at highest level and more instruction

count is given highest priority.

Algorithm 10 : Height Instruction Count Based Scheduler

Calculate height of each sub-block

 Height of sub-block i= max(height of all immediate successors) + 1)

Initialize a Priority Queue

 Q={All head node i.e nodes having only out going edges}

Schedule:

 If single core

i. Remove highest priority node from queue.

ii. Insert those nodes which are ready to schedule after scheduling this node.

iii. Schedule the node on core.

iv. Repeat same Process until queue gets empty.

 If multiple cores

i. Repeat steps ii) to v) until queue gets empty.

ii. Select a core with minimum schedule time.

iii. Select a node with highest priority (see above).

If ready-time of all nodes present in queue is greater than current core schedule

time then insert 1 free cycle.

Goto step ii)

iv. Schedule node on core and increment current core time.

v. Update finish time of this node and reay-time of all its immediate successor.

vi. Place its immediate successors in queue if they are ready to schedule (see above)

and revise the priorities of old nodes according to the priorities for new nodes.

Goto step i)

vii. END.

7.2 Dependent Sub-block Based (DSB)

The DSB scheduler collects all the sub-blocks and stores them in non-increasing order of their schedule

latency. Initially the scheduler picks the sub-block with the highest schedule latency and schedules it on

to any one of the cores. Later scheduler picks the immediate ready successor of the previously scheduled

sub-block in the SDG. The successor sub-block is scheduled on to the same core if the TSct of core is less

than other core, otherwise it will switch to core with lowest TSct. After scheduling each sub-block, the

 88

TSct of the core is updated. The advantage of scheduling dependent sub-blocks on to same core is that it

results into reduced communication between the cores.

Algorithm 11: Dependent Sub-block Based Scheduler

 Find Latency
 Sort sub-blocks by descending latency.
Schedule :-
a. Single Core – in order of sorted list.
b. Multi Core :
i. Repeat steps (ii) to (viii) until list gets empty
ii. temp top (list) (ready sub-block)
iii. Schedule temp & increment schedule time of this core.
iv. Update finish-time of temp and ready-time for all immediate successors.
v. If any immediate successor of temp is ready (check in order of list) & list is non-
empty
 temp immediate successor
 goto step (iii)
vi. If schedule time of current core is less than max schedule time & list is non-empty
 goto step (ii)
vii. Max schedule time schedule time of current core
viii. If list is non-empty switch core
 goto step (ii)
ix. END

7.3 Maximum Dependent Sub-block First (MDS)

The scheduling decision of MDS algorithm is purely based on the structure of the SDG. The sub-

block having maximum successors is given higher priority and is picked by the scheduler for

scheduling it on to the core with least TSct. The MDS scheduler maintains the ready list. Priority

of sub-block SBiBp in ready list is computed based on TRdy, TFns and its dependencies.

 A sub-block SBiBp can be inserted into ready list if its dependency list is empty, i.e. all

the sub-block on which SBiBp was depending have finished there execution.

Algorithm 12: Maximum Dependent Sub-block First Scheduler

1. Collect all the sub-blocks which are ready for execution.
2. Find out the priorities for all the sub-blocks in the ready list
3. Schedule :
Single Core:
i. Schedule the sub-block with highest priority on to the core.
ii. Update the adjacency matrix.
 Multi Core:
i. Find out the core which is free.
ii. Schedule the sub-block with highest priority to the core which is selected.
iii. Update the adjacency matrix.
4. Goto step 1
5. END

 89

7.4 Longest Latency Sub-block First (LLSF)

LLSF scheduler is similar to the DSB scheduler except the choice made to schedule the

successor sub-block on to the same core. The only choice of selecting sub-block is its schedule

latency, The scheduler picks the sub-block with the highest schedule latency (Li) and schedules

it on the core with lowest TSct.

Algorithm 13: Longest Latency Sub-block First Scheduler

Find Latency
Sort sub-blocks by descending latency.
Schedule :-
Single Core – in order of sorted list.
Multi Core :
i. Repeat steps (ii) to (vii) until list gets empty
ii. temp top (list) (ready sub-block)
iii. Schedule temp & increment schedule time of this core.
iv. Update finish-time of temp and ready-time for all immediate successors.
v. If schedule time of current core is less than max schedule time & list is non-
empty
 Goto step (ii)
vi. Max schedule time schedule time of current core
vii. If list is non-empty switch core
 goto step (ii)
viii. END

This scheduler has advantage over other proposed global schedulers in terms of speed-up, but

has penalty of communication cost and power. This scheduler can be used in environment where

performance is crucial and no other optimization is required. Scheduler uses sorted list of sub-

blocks. Sorting is based on descending order of scheduling latency. Each node in list contains

sub-block and its respective latency.

7.5 Results

The main aim of the proposed work was to equally utilize all the available cores. The relative

results in terms of speed-up, power consumption and performance per power achieved by

executing benchmark programs on dual core and quad core processor is shown. The equations

used for computing the results are explained in Section 3.4. The result in Figure 29 shows that

the speed-up increases as number of cores increase, which makes it evident that all the cores are

utilized towards achieving maximum gain. The speed-up decreases when the same code is run on

3 active cores, and at the same time per power performance improves as is shown in Figure 31.

The power consumed to execute the test cases is captured and performance per power of each

test case is calculated as shown in Figure 30 and Figure 31 respectively. It is observed that power

 90

increases as the number of cores increase. The power consumption is lower when 3 cores are

used instead of 4 cores. Thus the performance per power of quad core machine is higher when 3

cores are used instead of 4 cores. The effect of using 3 cores by slightly compromising with

speed-up is shown in Figure 29. This power optimization can be used in an environment where

power is critical. The communication costs of the proposed algorithms are shown in Figure 32,

and are compared with the communication cost of intra block scheduler.

The general observations on execution of benchmark programs when scheduled using proposed

schedulers are as follows. These observation were the expected output from multicore processor

but was not obvious for the non-multithreaded applications.

 Speed up increases as number of cores increase.

 Power consumption increases with increased utilization of cores..

 Performance per power decreases when more cores are used.

 Performance per power increases with 3 active cores compared to 4 active cores in a quad

core machine with slight compromise on speed-up.

 Power increases and speed-up decreases when communication between cores increases.

 Performance per power increase when communication decreases.

Intra block scheduler (IBS) was designed for locally scheduling the disjoint sub-blocks within

the basic block. But when whole program (CFG) is to be scheduled, sub-blocks in other basic

blocks may communicate with sub-blocks scheduled on a different core. Thus communication

cost is higher when intra block scheduler is used.

 91

Figure 29. Speed-up Analysis For Inter Block Schedulers

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

DCT1 DCT2 DCT3 DCT4 QCT1 QCT2 QCT3 QCT4 3ACT1 3ACT2 3ACT3 3ACT4

S
p

ee
d

-u
p

IBS HIB DSB MDSF LLSF

DCT i : Dual Core Test case (1, 2, 3 & 4), QCTi: Quad Core Test case (1, 2, 3 & 4)
 3ACT i : 3 Active Core Test case (1,2,3 and 4)

 92

Figure 30. Power Analysis For Inter Block Schedulers

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

DCT1 DCT2 DCT3 DCT4 QCT1 QCT2 QCT3 QCT4 3ACT1 3ACT2 3ACT3 3ACT4

P
o

w
er

 C
o

n
su

m
ed

IBS HIB DSB MDS LLSF

DCT i : Dual Core Test case (1, 2, 3 & 4), QCTi: Quad Core Test case (1, 2, 3 & 4)
 3ACT i : 3 Active Core Test case (1,2,3 & 4)

 93

Figure 31. Performance Per Power Analysis for Inter Block Schedulers

Figure 32. Communication Cost For Inter Block Schedulers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

DCT1 DCT2 DCT3 DCT4 QCT1 QCT2 QCT3 QCT4 3ACT1 3ACT2 3ACT3 3ACT4

P
er

f
/

W
at

t
IBS HIB DSB MDS LLSF

DCT i : Dual Core Test case (1, 2, 3 & 4), QCTi: Quad Core Test case (1, 2, 3 & 4)
 3ACT i : 3 Active Core Test case (1,2,3 and 4)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

DCT1 DCT2 DCT3 DCT4 QCT1 QCT2 QCT3 QCT4 3ACT1 3ACT2 3ACT3 3ACT4

C
o

m
m

u
n

ic
at

io
n

 C
o

st

IBS HIB DSB MDS LLSF

DCT i : Dual Core Test case (1, 2, 3 & 4), QCTi: Quad Core Test case (1, 2, 3 & 4)
 3ACT i : 3 Active Core Test case (1,2,3 and 4)

 94

7.5.1 Discussion

 This section discusses various results obtained using test case 1. In Figure 33, the speed-up and

power consumed is compared. Power and performance per power are compared in Figure 34, and

the speed-up and communication cost are compared in Figure 35. The same is applicable to other

3 test cases as is shown in Figure 36, Figure 37 & Figure 38 and other benchmark programs that

are used to evaluate the proposed work.

Figure 33. Speed-up vs Power Consumed

Figure 34. Power vs Performance Per Power

0

0.5

1

1.5

2

2.5

3

3.5

4

IBS HIB DSB MDS LLSF IBS HIB DSB MDS LLSF IBS HIB DSB MDS LLSF

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Speedup Power Consumed

Dual Core Quad Core 3 Active Core

0

0.5

1

1.5

2

2.5

3

3.5

4

IBS HIB DSB MDS LLSF IBS HIB DSB MDS LLSF IBS HIB DSB MDS LLSF

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

 Power Consumed Performance Per Power

Dual Core Quad Core 3 Active Core

 95

Figure 35. Speed-up vs Communication Cost

Figure 36. Analysis of Test Case 2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

IBS HIB DSB MDS LLSF IBS HIB DSB MDS LLSF IBS HIB DSB MDS LLSF

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Speedup Communication Cost
Dual Core Quad Core 3 Active Core

0
0.75

1.5
2.25

3
3.75

4.5
5.25

6
6.75

7.5
8.25

9
9.75
10.5

11.25
12

12.75
13.5

14.25
15

15.75
16.5

17.25
18

18.75
19.5

20.25
21

21.75
22.5

23.25
24

24.75
25.5

26.25

IBS HIB DSB MDS LLSF IBS HIB DSB MDS LLSF IBS HIB DSB MDS LLSF

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Speedup Power Consumed Performance Per Power Communication Cost

Dual Core Quad Core 3 Active Core

 96

Figure 37. Analysis of Test Case 3

Figure 38. Analysis of Test Case 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

IBS HIB DSB MDS LLSF IBS HIB DSB MDS LLSF IBS HIB DSB MDS LLSF

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Speedup Power consumed Performance Per Power Communication Cost

Dual Core Quad Core 3 Active Core

0
0.75

1.5
2.25

3
3.75

4.5
5.25

6
6.75

7.5
8.25

9
9.75
10.5

11.25
12

12.75

IBS HIB DSB MDS LLSF IBS HIB DSB MDS LLSF IBS HIB DSB MDS LLSF

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Speedup Power Consumed Performance Per Power Communication Cost

Dual Core Quad Core 3 Active Core

 97

The speed-up gain of HIB scheduler is slightly high compared to other schedulers on all the

machines. The communication cost of HIB scheduler is high which influence increase in power

consumption and decreases the performance per power.

 The dependent sub-block based (DSB) scheduler is made memory efficient by scheduling

connected sub graphs in SDG, i.e. dependent sub-blocks on to same core. Thus the DSB

scheduler reduces the communication between the cores. But, as number of core increases this

heuristic suffers. This scheduler will not schedule the ready sub-block on the other idle cores, but

would wait to schedule the ready sub-block on to the core on which its ancestor sub-block in

SDG executed. This may lead to unbalanced scheduling. The DSB scheduler is suitable when

SDG is dense and benefits only when less cores are used by applying power optimization

technique.

 Maximum dependent sub-block first (MDS) scheduler tries to balance the communication

cost, power consumption and speed up. The values of speed up, power consumption and the

communication cost lie between the values of those metrics achieved using HIB and DSB

schedulers. Similar to DSB scheduler, MDS will suffer when SDG is dense and the scheduler

doesn't apply power optimization.

 Longest latency sub-block first (LLSF) will overcome the limitations of DSB and MDS

schedulers. LLSF scheduler picks the sub-block with longest latency and schedules it on to the

core with least execution time. The communication cost is less as compared to HIB scheduler but

slightly higher than DBS and MDS schedulers. Thus the values for LLSF scheduler in terms of

speed-up and performance per power gain lie between the HIB and DSB/MDS. This scheduler is

scalable in terms of number of cores. LLSF when compared with HIB may not be compiler

efficient as it perform linear search to find the sub-block with the longest latency.

7.6 Conclusion

The work in the chapter proposes various compiler level global scheduling techniques for

multicore processors. The goal underlying these techniques is to promote extraction of ILP

without explicitly specifying parallelizable fraction of the program by the programmer. To

achieve this, the basic blocks of the control flow graph of a program are subdivide into the

multiple sub-blocks and there by a sub-block dependency graph is constructed. The proposed

schedulers, depending on sub-block dependency and their order of execution, allocate the sub-

 98

blocks in the dependency graph to multiple cores selectively. These schedulers also carry out

locality optimization to minimize communication latency among the cores and to minimize the

overhead of hardware based instruction reordering. A comparative analysis of performance

and the inter-core communication latency has been presented. The results obtained thereof also

indicate how these schedulers perform in terms of power consumption and the speed up

achieved when the number of active cores varies. From the results it can be observed that a

better and balanced speedup per watt consumption can be obtained. Though the results are

shown for dual core, quad core and active 3 core processors, the proposed scheduler

theoretically can scale to handle larger number of cores as the sub-block formation technique

is independent of number of cores and memory access. Memory contention can have impact

on scalability which would need to be further investigated.

 99

CHAPTER

Register Allocation For Multicore Processor 08

Register allocation phase of compiler maps the unbounded number of program variables to a

fixed number of physical registers of a processor. In a parallel processing environment, register

file is shared among the processors which increases register pressure. To avoid the disadvantages

of shared register files, each core in a multicore processors contains private register files. The

compiler is responsible for allocating registers from the respective core for a program code or

parallel regions of program which is scheduled to execute on that core.

 The schedulers proposed in the chapter 6 & 7 creates schedules for cores in multicore

processors. Each schedule contains sub-blocks. The register allocation for the instruction in the

sub-blocks need to be done from private register file of each core.

 The register demand of the sub-blocks can be either detected during scheduling

(integrated approach) or after scheduling as shown in Figure 39.

Figure 39. Proposed Register Allocation Heuristics

Four register allocation approaches are identified and investigated.

 A local register allocation heuristic (Heuristic 1) which follow Chaitin's approach.

 An integrated register allocation with global scheduling (Heuristic 2).

Front End,

DAG2CFG convertor,

SSA Translator and

Fine Grain Thread Extractor.

Scheduler

Code Generator

Register Allocator

Integrated Scheduling

Register Allocator

sub-blocks

Hyper

sub-blocks

.asm

 100

 A global register allocation heuristic (Heuristic 3) without simplifiability.

 A global register allocation heuristic (Heuristic 4) with simplifiability.

In Heuristic 2 register demand is also considered to make scheduling decisions. In heuristic 3 &

4 register allocation are performed after creating schedules for cores. The classification of these

register allocation approaches are also based on region used to perform register allocation, i.e.,

whether the register allocation is done on individual sub-block or on hyper sub-block (merged

sub-blocks). The Local register allocation approach uses sub-block and the global register

allocation approach uses hyper sub-blocks formed by merging the sub-blocks in the schedule.

This chapter discusses the implementation details of the proposed register allocation heuristic 2,

3 and 4 for multicore processor. The significance of these heuristics are explained in Section 4.3

and implementation details are explained in section 8.1 and 8.2.

 In general, the proposed register allocation heuristics creates a list of hyper sub-blocks H

(h1,h2,h3....hx) whose interference graph is k-colorable as shown in Figure 18. Since the hyper

sub-blocks are scheduled on a single core, it ensures temporal locality and reduces memory

reference. The hyper sub-blocks which are k-colorable cause zero spilling and instructions

remain inside private memory of individual cores till all the instruction commits without doing

external memory reference.

8.1.Integrated Scheduling and Register Allocation (Heuristic 2)

This approach integrates register allocation pass with global scheduling [34]. The goal is to get

away with the phase ordering problem and to overcome limitations which lead to poor

optimizations. The scheduler schedules the sub-blocks in the dependency graph to multiple cores

selectively, taking register requirement, dependencies and the order of execution into account.

 The scheduler proposed here is a modified Dependent Sub-block based scheduler (DSB)

[14], which keeps track of dependency between the sub-blocks in different basic blocks while

scheduling onto the cores. The proposed work ensures that integrating register allocation phase

with scheduling phase will not affect the performance of DSB scheduler.

 The modified flow of the compiler after including fine grain extractor model to create

disjoint sub-block and integrated scheduling phase is shown in Figure 40. The disjoint sub-

blocks and sub-block dependency graph (SDG) are formed as discussed in section 5.1. The

 101

coloring module in the original compiler is removed and is integrated with the scheduling phase

of the compiler.

Figure 40. Modified Flow of Compiler To Integrate Scheduler and Register Allocator

Generally, the global scheduler selects the sub-block SBiBp from the sub-block dependency

matrix if the dependency list of SBiBp is empty. Once SBiBp is scheduled and completes its

execution, its entry is removed in all dependency lists. The decision of selecting sub-block are

based on the invariants discussed in the section 4.2. The output of the scheduler is the list of sub-

blocks to be scheduled on each core. The scheduler generates N schedules for a machine with N

cores.

 The integrated scheduler collects all the ready to execute sub-blocks to create ready list in

non-incrementing order of the scheduling latencies of the sub-block (Li). The register allocation

algorithm is applied to check if the instructions in the sub-block are k-colorable. Live range of

each operand in the instructions are computed locally in each sub-block. The scheduler creates

the global interference graph incrementally by merging the live ranges of the sub-blocks while

creating schedule for cores.

 Initially the scheduler picks the sub-block with the highest schedule latency and

schedules it on to any one of the core. Next scheduler picks the immediate ready successor of the

scheduled sub-block in the SDG. If more than one immediate successor’s are ready then, (a) The

successor sub-block with the highest schedule latency is scheduled on to the same core. (b) If the

schedule latency of successor sub-blocks are same, then the successor sub-block which results

with minimum spill during register allocation is selected to schedule on the same core, while the

other successor is scheduled on other core with least TStc. If ready list is not empty and TStc of the

current core is more than TStc of all the cores, the scheduler switches to the core with minimum

TStc.

DAG2CFG

Convertor

.asm Assembly Code
Generator

Front End DAG CFG

Schedule

Source

Code
Fine Grain

Thread

Extractor

Integrated

Scheduler with

Register Allocation

sub-blocks

 102

The sub-blocks which are in same schedule are merged to form the hyper sub-blocks if following

conditions are satisfied.

 The merged sub-blocks will not affect the execution of the sub-block scheduled on

other cores.

 The hyper sub-block is k-colorable.

Algorithm 14: Integrated Scheduling and Register Allocation
1. Find Latency

2. Sort sub-blocks by descending latency

3. Schedule & allot Registers:

 a. Single Core – in order of sorted list

 b. Multi Core:

i. temp top (list) (ready sub-block)

ii. Schedule temp & increment schedule time of this core

iii. Remove temp from list

iv. Update finish-time of temp and ready-time for all immediate successors

v. If any immediate successor of temp is ready (check in order of list) & list is non-empty

If number of immediate successors > 1 and their latencies are equal

temp immediate successor which when scheduled results in colorable interference graph

else
temp immediate successor not scheduled with highest latency

goto step (ii.)
vi. If schedule time of current core is less than max schedule time & list is non-empty.

 goto step (i.)

vii. If the scheduled group is not colorable

Spill to make interference graph colorable.

Update schedule time of the core, finish-time of scheduled sub-blocks and ready-time for all the

immediate successors of sub-blocks present in the scheduled group.

else Merge the sub-blocks in the schedule to create hyper sub-block by checking simplifiability.

viii. Max schedule time schedule time of current core

ix. If list is non-empty switch core goto step (i.)

x. END

The limitation of integrated scheduler is that, it works well when the sub-blocks exhibit high

dependency in SDG. Dependency between sub-blocks facilitates creating larger hyper sub-

blocks in the schedules. It is observed that integrating register allocation phase with other

schedulers such as HIB, MDS and LLSF will not give desired gain in speed-up. As they increase

the waiting time of other sub-blocks scheduled on other cores and increases the communication

cost.

8.2. Global Register Allocation (Heuristics 4)

In this register allocation heuristic, the schedules generated by the scheduler is used. The

algorithm incrementally merges the sub-blocks using Merge Operator to produces a list of hyper

sub-blocks H (h1,h2,h3....hx) whose interference graph is k-colorable.

 103

8.2.1 Merge Operator

The merge operator produces k-colorable hyper sub-blocks by merging the interference graphs of

sub-blocks listed in schedule. While creating the hyper sub-blocks, the sub-block dependency

and simplifiability conditions must be checked and satisfied. The algorithm for merge operator is

given below. Algorithm begins by selecting two sub-blocks SBi and SBj which is followed by

dependency constraint check. The constraints are enforced through the condition C1, C2 and C3

given below. These conditions are derived from the invariants used by the global scheduler (in

Section 4.2).

 Assuming that SBj is listed in schedule of processor core Cra, the condition C1,C2 and C3

are checked to find if the sub-block SBj can be merged with its predecessor sub-block SBi to

form hyper sub-block.

 The sub-block SBj can be merged with its predecessor SBi iff it is not dependent on sub-

block(s) SBk where sub-block SBk is scheduled on different core Crb where a ≠ b. In case SBj is

dependent on sub-block SBk it can be merged with its predecessor iff SBk and SBi have non

overlapping execution i.e, finish time of SBk is less than ready time of SBi. The condition C1

and C2 are used for checking these two possibilities.

 Condition C3 helps in reducing the wait time of sub-block SBk. If a sub-block SBk is

scheduled on core Crb and is dependent on SBi, merging of SBi with its successors to form a

hyper sub-block will cause SBk to wait till the hyper sub-block execution is completed. To

ensure zero spilling of the hyper sub-blocks, simplifiability condition C4 is checked. An example

illustrating the merge operation is discussed in Section 4.3.

The conditions (C) and decisions (D) used in Algorithm 15 are given below.

I1: Let SBj be the successor of SBi in the schedule for core Cra.

Let SBk be the sub-block in the schedule of other core Crb.

C1: If SBj is dependent on SBk.

C2: If Tfns of sub-block SBk < Trdy of SBi.

C3: If SBk is dependent on SBi and Trdy of SBk is > Tfns of SBj.

C4: If the interference graph of SBi and SBj are simplifiable and resulting interference graph

after merging is also simplifiable.

D1: Merge the sub-blocks to schedule and allocate register together.

D2: Do not merge the sub-blocks.

 104

Algorithm15 : Merge Operator

MergeOperation(sub-block SBi , sub-block SBj)

begin

 initialize

 SBj be the successor of SBi in the schedule for core Cra.

 SBk be the sub-block in the schedule of other core Crb.

 if(C1 & C2 & C4)

 begin

 Merge the sub-blocks to schedule and allocate register.

 End if

 else if(!C1)

 begin

 if(C3 & C4)

 begin

 Merge the sub-blocks to schedule and allocate register.

 End if

 End else if

 else

 begin

 Do not merge the sub-blocks (D1).

 End else

End

The disjoint-set forests [107] algorithm can be used for merging the interference graph. The

union-by-rank heuristic is used to improve the runtime of union operation and path-compression

is used to improve the runtime of the find set operation.

8.2.2 Observation on Number of Registers

This section discusses the effectiveness of proposed register allocation when the number of

registers are varied. The results shown in the section 8.4 is for the cores having 8 general purpose

register each. The effect of increasing the number of registers leads to reduced spilling when

heuristics 1, 2 and 3 are used which is obvious.

 As interference graphs are built incrementally by checking dependency and simplifiablity

conditions. Increasing the number of registers can cause increased number of instructions in the

hyper sub-block resulting into optimized code generation requiring lesser execution time. The

improved execution time can be attributed to the fact that larger hyper sub-block will require less

data movement to and from memory.

 According to chromatic polynomial theory for the Chordal graph, a fully connected

Chordal graph with k nodes need k colors. The interference graph of the SSA form program will

never be fully connected and most of the time it is 3 colorable.

 105

The interference graph of the benchmark programs used in this work shows either of the

following coloring pattern for k+1≤ 8 where k range from 3 to 7.

 sub-blocks are k colorable and hyper sub-block is also k colorable.

 sub-blocks are k colorable and hyper sub-block is k+1 colorable.

There will be no change in performance if number of registers used is reduced to 3. Further, the

performance will not change if more than 8 registers are used, because of dependencies between

the sub-blocks scheduled on different cores.

8.2.3 Capturing Live Variable

The Live variables are captured during SDG creation. In the SDG, the sub-blocks are

represented as vertices V and dependency between the sub-blocks are represented by directed

edges E. The total number of Live_in variables of the sub-block SBjBq is the degree of

dependency between SBjBq and SBiBp, i.e. total number of variables involved in the

dependency. Live variables in a sub-block SBjBq is the sum of degree of dependency of all

incoming edges and variables that are defined in the sub-block.

8.2.4 Register Assignment

In this phase, the live variables in the hyper sub-blocks are assigned register. As the

simplifiability condition is checked during the formation of hyper sub-block, the need to insert

spill code is eliminated. The choice of the order of coloring is simplified due to the fact that the

interference graph is Chordal with simplical vertex. The edge projecting out of the simplical

vertex is pushed on to the color stack first and continued till all the edges are pushed on to the

stack. Once all the edges are pushed on to the stack, the color assignment module pops out the

edges from the stack to assign different color for the conflicting edges. The color stack is used to

prioritize the coloring i.e the edge in higher position in the stack is given higher priority.

8.2.5 Insert Spill Code

In this phase, the spill code load/store is inserted for the spilled variable which are captured

during construction of initial interference graph of the sub-blocks. However the interference

graphs of the hyper sub-blocks are k-colorable which eliminates the need of spill code. The spill

codes are inserted after creation of hyper sub-blocks and register assignment phase to retain the

properties of SSA.

 106

8.3. Algorithm Complexity

 In this section complexity analysis for the proposed register allocation heuristic is presented.

The complexity of the other three heuristics are compared and presented in Table XI.

 Let m and n be the number of sub-blocks and number of live-ranges or variables. The

time consumed per sub-block to check the presence of dependent sub-blocks or parental sub-

blocks on other cores is O(m). The mergeSubblock module has O(n log n) complexity. Thus, for

heuristic 3 the complexity of all the iterations (for m sub-blocks) is O(m*nlogn). In heuristic 4,

the time consumed to verify the individual interference graphs for simplifiability, merging of the

two interference graphs, and verifying if the new graph is simplifiable is O(n
2
). The complexity

of coloring module is O(n log n). Thus, the overall complexity of the checkSimplifiable and

mergeSubblocks modules is the order of O(n
2
 + n log n) i.e., O(n

2
). Thus, the complexity

of all the iterations (for m sub-blocks) is O(m*n
2
).

TABLE XI. ALGORITHM COMPLEXITY COMPARISON OF DIFFERENT REGISTER ALLOCATION

HEURISTICS

 Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4

Complexity

O(n*log(n))

O(m
2
 * n

2
)

O(m *nlog(n))

O(m* n
2
)

At first sight, it might appear that heuristic 4 has big increase in compilation time. But this

complexity is acceptable, when overall compilation process is considered, as the complete code

generator including register allocation contributes less than 20% of the total compilation time.

8.4. Results

The amount of spill caused by four different register allocation heuristics is computed and its

effect on speed-up, power consumption and performance per power are compared.

 Heuristic 1 does not contribute spill code as the interference graph of the sub-blocks are

k-colorable. This heuristic requires the runtime environment to assign threads to

individual sub-blocks and handles corresponding frequent data movement from the

memory.

 Heuristic 2 tries to solve the phase ordering problem by allocating register during

scheduling by compromising a little with the performance. This heuristic results in

reasonable amount of spill code as well as increases the compilation time.

 107

 The heuristic 3 overcomes the problem faced with heuristic 1 by allocating threads to

hyper sub-blocks instead of sub-blocks. But this heuristic results in greater amount of

spill code.

 Heuristic 4 by checking the simplifiablity conditions for the hyper sub-block, combines

the feature of heuristic 1 and 3 resulting into spill code elimination and reduced runtime

environment overhead.

 The amount of spilling when the four heuristics are used is shown in Table XII. The

spilling is almost zero when register allocation is done on the list of sub-blocks using

heuristic 1 as sub-blocks are created by taking register requirement. Similarly spill is zero

in the proposed heuristic 4 as interference graph of hyper sub-blocks are k-colorable.

TABLE XII. SPILL COMPARISON OF DIFFERENT REGISTER ALLOCATION HEURISTICS

TABLE XIII. COMMUNICATION COST OF INTRA BLOCK, INTER BLOCK AND INTEGRATED

SCHEDULER

Test case

No

Communication Cost

Intra block

Scheduling

Inter block

Scheduling

Integrated

Scheduling

T1 – Dual 13 7 5

T2 – Dual 19 10 8

T3 – Dual 11 0 0

T4 – Dual 10 4 4

T1 – Quad 15 10 9

T2 – Quad 26 18 22

T3 – Quad 9 0 0

T4 – Quad 22 4 4

Algorithm Heuristics 1 Heuristic 2 Heuristic 3 Heuristics 4

Test Case 1 Dual Core 0 1 0 0

Quad Core 0 1 1 0
3- Active Cores 0 ####### 1 0

Test Case 2 Dual Core 0 1 3 0
Quad Core 0 1 0 0
3- Active Cores 0 ####### 0 0

Test Case 3 Dual Core 0 0 3 0
Quad Core 0 0 0 0
3- Active Cores 0 ####### 0 0

Test Case 4 Dual Core 0 1 2 0
Quad Core 0 0 2 0
3- Active Cores 0 ####### 2 0

 108

Figure 41. Speed-up, Power and Perf/Power Comparison on Dual Core Machine

Figure 42. Speed-up, Power and Perf/Power Comparison on Quad Core Machine

0
0.15

0.3
0.45

0.6
0.75

0.9
1.05

1.2
1.35

1.5
1.65

1.8
1.95

Test
Case 1

Test
Case 2

Test
Case 3

Test
Case 4

Test
Case 1

Test
Case 2

Test
Case 3

Test
Case 4

Test
Case 1

Test
Case 2

Test
Case 3

Test
Case 4

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Heuristics 1 Heuristic 2 Heuristic 3 Heuristics 4

Speed-Up Power Perf/ Watt

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

4

Test
Case 1

Test
Case 2

Test
Case 3

Test
Case 4

Test
Case 1

Test
Case 2

Test
Case 3

Test
Case 4

Test
Case 1

Test
Case 2

Test
Case 3

Test
Case 4

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Heuristics 1 Heuristic 2 Heuristic 3 Heuristics4

Speed-Up Power Perf/ Watt

 109

The performance gain is a combined effort of scheduler and register allocation approach. The

results in Figure 41 and 42 depict the effect of spilling on speed up, power and Perf/watt on dual

core and quad core processor.

 The speed-up and performance per watt of heuristic 1 is lower even with zero spills. This

is because of limitation of the local scheduler. The local scheduler assigns thread to each

sub-block resulting in higher data movement.

 Heuristic 2 shows better speed-up for Test Case 2, this is because the integrated scheduler

is able to create a schedule for dual core processor efficiently. The performance of the

heuristic 2 is deteriorated for test case 2 on quad core processor due to memory

contention.

 Speed up-decreases when spill increases, due to insertion of extra spill instructions. When

heuristic 3 is applied on Test Case 2, 3 and 4 to execute on dual core machine, the speed-

up decreases due to spilling. This results in higher power consumption and reduced

performance per watt in comparison to heuristic 4.

 Test case 3 on quad core processor shows same performance on all the heuristics in terms

of speed up as there is no spill in either of the heuristics.

 Heuristic 4 performs better for all the test case on quad core processor.

 It is clear from Figure 41 and 42 that the overall performance of heuristic 4 is better with

respect to performance per watt.

 Heuristic 4 tries to achieve better performance with improved compilation time.

8.5. Conclusion

The work proposes a register allocation mechanism to be used for multicore processors. The

proposed mechanism promises to give better results than those obtained using a conventional

register allocation mechanism built for single core processors. The experimental results presented

in this chapter endorse this fact. The algorithm takes into account the presence of multiple cores

and the presence of their separate register files, and exploits this avenue to achieve better register

allocation results. Four heuristics for allocating registers for fine grained threads are discussed.

The spills, speed-up, power consumption and performance per power are compared.

 110

CHAPTER

Achievements, Limitations, Future Work, and
Summary

9

In this chapter, we conclude our research work by summarizing the achievements, providing

limitations and suggest directions for future research.

9.1 Summary of Achievements

i. The sub-blocks are created from sequential program by checking the true dependencies

between the instructions. The instructions inside the sub-blocks are true dependent on

each other which ensures the spatial locality.

ii. The Local and Global schedulers are proposed to achieve high speed-up and low power

consumption.

iii. Cache coherence is a major concern in multicore environment where L2 cache is shared.

Since sub-blocks in a basic block of CFG are disjoint, it solves the problem of cache

coherence when scheduled locally on multiple cores. However indirect cache coherence

exists which our method will not identify.

iv. Schedulers also provide the solution to memory contention as the dependent sub-blocks

are not scheduled together at same time.

iii and iv mitigate the runtime overheads like, locking, synchronizing....etc.

v. To ensure temporal locality, all the data belonging to sub-block are moved on to

Instruction and Data cache/memory of the core on which sub-block is scheduled and

remain their till it commits.

vi. To reduce data movement between core and memory as sub-blocks are merged to create

Hyper sub-blocks. Hyper sub-blocks ensure more instructions provided for execution in

one fetch.

Sub-blocks are also merged for the other two reasons

 To perform power optimization.

 To ensure efficient register allocation.

vii. The schedulers are designed to perform power optimization i.e., if the speed-up achieved

using n cores can be achieved using n-1 cores, then only n-1 cores of the n core machine

 111

are used to execute the given task, either by keeping the n
th

 core idle or utilizing it for

some other computation.

viii. When the sub-blocks are scheduled individually on to the multiple cores, we see that

number of registers required by the sub-block is less than or equal to number of register

in each core. If number of register required is less than the registers available, scheduler

tries to combine the sub-blocks whose register requirement is almost equal to register

available in the core. This ensures there is no register spill during execution when

individual sub-blocks are scheduled.

ix. Hyper sub-blocks are created before register allocation to ensure temporal locality by

pushing maximum instructions on to core for execution. Hyper sub-blocks also ensures

that instructions will do zero spills (k-colorable) and will remain in cores private memory

till it commit without doing memory reference during execution.

9.2 Limitations

 The idea of creating disjoint sub-blocks and creating schedules for multicore processor is

successfully implemented on Jackcc compiler. Though the Jackcc compiler is capable of

compiling C program, the experiments are done using limited set of instructions and

operators. Due to this limitation of Jackcc, the scalability test for the proposed schedulers

were not performed for different Test Cases. Our results shows that our schedulers scale

on dual and quad cores but did not scale well on 8 and 16 cores as the scalability of our

technique is directly proportional to the amount of inherent ILP within the target

program.

 The scalability test is performed by creating schedule for multiple instances of the

test cases. The speed-up achieved are shown in Appendix A

 The explicit parallel programming techniques and compiler to compile these explicit

parallel programs has reached a different height and are able to scale for the processors

with accelerators. This is because, researchers are concentrating on developing

programmer friendly technique to write parallel program. The work proposed in this

thesis is an alternative and a complimentary technique where programmers need not write

parallel program, instead depend on compiler to extract parallelism in the sequential

 112

program. This work is just an initiative and lot of work need to be performed to catch the

speed to multicore design.

9.3 Future Work

 The future work involves porting the proposed techniques onto LLVM or GCC compiler

and to make it open source so that hackers can contribute to improve the technique.

 To extract fine grained threads that can be scheduled on multicore processors with

multiple functional units and to allocate register based on type operand and frequency of

its use.

 To profile a sequential program to pre-fetch the data required by fine grained threads to

facilitate parallel access of the data.

 To design the inter procedural scheduling.

 To analyze the scheduling algorithm specific to memory contention.

 To develop a STM to monitor the schedule created by the compiler.

9.4 Summary

Multicore has emerged as the mainstream processor design paradigm in the field of computer

architecture. For most of the existing applications the performance is not directly translated. The

existing application need to rewritten using explicitly parallel programming techniques or need

to depend on tools such as compilers to parallelize the sequential code and runtime environment

execute utilizing all computational capabilities in multicore environment.

 The proposed research provides compiler support to exploit parallelism by extracting fine

grained threads from a sequential program. The fine grained threads are heuristically scheduled

on multiple cores to achieve speed-up by effectively utilizing computing capability of multicore

environment. The fine grained threads that are scheduled on to different cores are allocated

registers from respective register file of the core on which they are scheduled.

 Thesis starts with a brief introduction to design philosophy and challenges in multicore

architecture. Several dynamic and static support to exploit ILP in the existing parallel

architectures such as Pipeline, VLIW, Superscalar and Multi clustered VLIW architectures are

investigated as part of literature study. An effort is made to understand the pros & cons of

hardware and compiler approaches. The challenges in multicore environment, motivations and a

brief description of the steps involved in the proposed work to face the challenge is given.

 113

 The work proposes various compiler level scheduling techniques for multicore

processors. The goal underlying these techniques is to promote exploiting of ILP in multicore

environment without explicitly specifying parallelizable fraction of the program by the

programmer. To achieve it, the basic blocks of the control flow graph of a program are

formulated into multiple sub-blocks. The compilation time efficient technique to form disjoint

sub-blocks using two different approaches are proposed. To facilitate global scheduling new data

structure called sub-block dependency graph (SDG) is proposed and efficient technique to create

it is discussed in detail.

 The scheduler’s prepares the schedule for multiple cores selectively, taking the

dependencies among the sub-blocks into account to maintain the order of execution. The local

scheduling heuristics (Intra Block Scheduling) which schedules the parallel regions within the

basic blocks of CFG is discussed in Chapter 06 and four global scheduling heuristics (Inter

Block Scheduling) which schedules the parallel regions formed across the basic block of the

CFG is discussed in chapter 07. The brief discussion on merits and demerits of each heuristics

are presented by comparing the results obtained by them. The results obtained by Intra block

scheduling is compared with the results obtained by Inter block scheduling technique. These

schedulers also carry out locality optimizations to minimize communication latency among the

cores and to minimize the overhead of hardware based instruction reordering.

 A detailed survey on register allocation approaches are presented in chapter 2 and register

allocation technique for multicore architecture is presented in chapter 8. The proposed

mechanism, which has been tailor made for use on a multicore processor, promises to give better

results than those obtained using a conventional register allocation mechanism built for single

core processors. The experimental results presented endorse this fact. To mitigate the phase order

problem a new approach to integrate register allocation with global scheduler is presented. The

goal of underlying technique is to overcome limitations which lead to poor optimizations and had

bad impact on ILP. The proposed scheduler creates schedule for the cores by taking register

requirement of sub-blocks and dependencies among the sub-block into consideration. The results

obtained by the normal register allocation approach and integrated approach is compared and

presented in the end of the chapter 08. The efficiency of register allocation technique is measured

in terms of spills done by four different heuristics and their effect on speed-up, power and

performance per power is also shown.

 114

 The code generated for the programs in RAW benchmark suite is analyzed and compared

for outcome of inter block and intra block scheduler. The performance analysis is based on the

metrics such as speed-up, power consumption, performance per power and inter-core

communication latency.

 The schedulers also do locality optimizations to minimize communication latency among

the cores. Though the results are shown on dual core and quad core processors, the proposed

schedulers are scalable to any number of cores which are available in the modern architectures.

The results which illustrate the scalability is given in Appendix A.

 115

APPENDIX

More Results on Scalability A

Scalability of the proposed work is analyzed by creating schedule for multiple instances of test

cases for 8 core and 16 core processor. The Figure 43, 44, 45 and 46 illustrate the speed-up

achieved and observations are listed as follows.

 Executing multiple instances on Dual core and Quad core processor does not change the

speed-up as it is proportional to time and number of instruction getting executed in that

time. Similar type of observation can be made on power and performance per power by

following Woo-Lee model.

 The single instance of test cases does not scale much on 8 and 16 core processors.

 Two instance of all four test cases scale well on 8 cores.

 Speed-up decreases when three instances of all four test cases are executed on 8 cores.

This is because the third instance adds extra execution time. Similar observation can be

done on executing four instances on the eight core processor.

 Speed-up is gained when 3 instances and 4 instances of all four test cases are executed on

16 cores.

 It can also be observed that, the proposed schedulers can perform active power

optimization. For example, if three instance of application or program is compiled for 16

core processor, the speed-up achieved may not be so pleasing compared to executing it

on 12 cores. In such case, the compiler creates schedule for 12 cores instead of 16 cores

keeping 4 cores idle or allowing operating system or STM to schedule other application

on these 4 cores. Figure 47 and Figure 48 illustrate this fact. The schedule for four

instances of test case 1 is created for 12,13,14,15 and 16 cores and the schedule which

requires minimum number of core to achieve maximum speed up is selected.

With these observations, it can be concluded that the proposed work scale well with number of

cores if the application or program exhibit parallelism. The fine grain thread extractor module

exploit as much parallelism compared to explicit parallel program written by programmer.

 116

Figure 43. Speed-up Achieved on 4, 8 and 16 cores by Executing Multiple Instances of Test Case 1

Figure 44. Speed-up Achieved on 4, 8 and 16 cores by Executing Multiple Instances of Test Case 2

0
0.75

1.5
2.25

3
3.75

4.5
5.25

6
6.75

7.5
8.25

9
9.75
10.5

11.25
12

12.75
13.5

14.25
15

15.75

DBS
4

cores

DBS
8

cores

DBS
16

cores

LLSF
4

cores

LLSF
8

cores

LLSF
16

cores

HIB
4

cores

HIB
8

cores

HIB
16

cores

MDS
4

cores

MDS
8

cores

MDS
16

cores

Sp
ee

d
-U

p

1 Instance 2 Instance 3 Instance 4 Instance

0
0.75

1.5
2.25

3
3.75

4.5
5.25

6
6.75

7.5
8.25

9
9.75
10.5

11.25
12

12.75
13.5

14.25
15

15.75

DBS
4

cores

DBS
8

cores

DBS
16

cores

LLSF
4

cores

LLSF
8

cores

LLSF
16

cores

HIB
4

cores

HIB
8

cores

HIB
16

cores

MDS
4

cores

MDS
8

cores

MDS
16

cores

Sp
ee

d
-U

P

1 Instance 2 Instance 3 Instance 4 Instance

 117

Figure 45. Speed-up on 4, 8 and 16 cores Acheived Executing Multiple Instances of Test Case 3

Figure 46. Speed-up on 4, 8 and 16 cores Acheived Executing Multiple Instances of Test Case 4

0
0.75

1.5
2.25

3
3.75

4.5
5.25

6
6.75

7.5
8.25

9
9.75
10.5

11.25
12

12.75
13.5

14.25
15

15.75

DBS
4

cores

DBS
8

cores

DBS
16

cores

LLSF
4

cores

LLSF
8

cores

LLSF
16

cores

HIB
4

cores

HIB
8

cores

HIB
16

cores

MDS
4

cores

MDS
8

cores

MDS
16

cores

Sp
ee

d
-U

p

1 Instance 2 Instance 3 Instance 4 Instance

0
0.75

1.5
2.25

3
3.75

4.5
5.25

6
6.75

7.5
8.25

9
9.75
10.5

11.25
12

12.75
13.5

14.25
15

15.75

DBS
4

cores

DBS
8

cores

DBS
16

cores

LLSF
4

cores

LLSF
8

cores

LLSF
16

cores

HIB
4

cores

HIB
8

cores

HIB
16

cores

MDS
4

cores

MDS
8

cores

MDS
16

cores

Sp
ee

d
-U

p

1 Instance 2 Instance 3 Instance 4 Instance

 118

Figure 47. Speed-up Analysis by Executing 3 Instances of Test Case 1 on 12, 13, 14, 15 and 16

core for Power Optimization

8.01
8.08
8.15
8.22
8.29
8.36
8.43

8.5
8.57
8.64
8.71
8.78
8.85
8.92
8.99
9.06
9.13

9.2
9.27
9.34
9.41
9.48
9.55
9.62
9.69
9.76
9.83

9.9

DBS LLSF HIB MDS

Sp
ee

d
-U

p

12 core 13 core 14 core 15 core 16 core

 119

Figure 48. Speed-up Analysis by Executing 4 Instances of Test Case 1 on 12, 13, 14, 15 and 16

core for Power Optimization

10.5
10.55

10.6
10.65

10.7
10.75

10.8
10.85

10.9
10.95

11
11.05

11.1
11.15

11.2
11.25

11.3
11.35

11.4
11.45

11.5
11.55

11.6
11.65

11.7
11.75

11.8
11.85

11.9
11.95

12
12.05

12.1
12.15

12.2
12.25

12.3
12.35

12.4
12.45

12.5
12.55

12.6
12.65

12.7
12.75

12.8
12.85

12.9
12.95

13
13.05

13.1
13.15

13.2
13.25

13.3
13.35

13.4
13.45

13.5
13.55

DBS LLSF HIB MDS

12 core 13 core 14 core 15 core 16 core

 120

APPENDIX

Preliminaries and Definitions of Jackcc Compiler B
This section is to provide the details of Jackcc compiler. The Jackcc compiler is an Optimizing C

Compiler. Jackcc generate assembly code using the Jackal 3.0 ISA, whose instructions are listed

below. Jackcc is developed by Nick Johnson to use in the University of Virginia. Additionally,

this project has developed an assembler and simulator, Jackas for the Jackal 3.0 ISA.

 The Jackcc is written in C language. The different compilation phases and optimization

pass are designed and implemented as set of reusable libraries. The Table XIV provide the list of

files of Jackcc compiler. The flow of compiler and detail description are provided in Figure 6

and section 3.2 of Chapter 3. The supporting files are listed in Table XV (interfaces with .h

extension).

TABLE XIV. FILES IN JACKCC

arith.c jump.c symtab.c lex.yy.c

color.c scav.c toofar.c dist-lex.yy.c

cse.c loops.c util.c dist-y.tab.c

dag.c parser.y vars.c scanner.l

dag2quad.c peep.c t.tab.c ytab.c

ioc.c quads.c fcn.c

parms.c semantic.c

 121

TABLE XV. SUPPORTING FILES IN JACKCC

arith.h jump.h symtab.h lex.yy.h

color.h scav.h toofar.h dist-lex.yy.h

cse.h loops.h util.h dist-y.tab.h

dag.h parser.y vars.h scanner.l

dag2quad.h peep.h t.tab.h ytab.h

ioc.h quads.h fcn.h

parms.h semantic.h

The ADT's defined in Jackcc are listed in Table XVI. The corresponding files containing these

definitions are also provided in the table. The type whose names prefixed with s are defined

using structure of C language. Similarly, the names prefixed with e and u are defined using

enumeration and union of C language.

TABLE XVI. ABSTRACT DATA TYPES DEFINED IN JACKCC AND CORRESPONDING FILES

 Structure

Name
Data type Containing File

s_live Live color.h

s_graph Graph color.h

s_quad Quad quads.h

s_arena Arena quads.h

s_symbol Symbol symtab.h

s_dag Dag dag.h

s_annot DataAnnotation dag.h

s_stack Stack util.h

s_bst Bst util.h

 122

B1. Instructions Supported and Their Meaning

Instructions used to create assembly code (ISA) is provided in Table XVII. The dest, sa, sb are

all registers.(sa) means the memory pointed to by the memory address in register sa. Instructions

are shown on the left and their meanings on the right.

TABLE XVII. INSTRUCTIONS USED TO GENERATE ASSEMBLY CODE BY JACKCC

Instruction

Meaning

ADD dest, sa, sb

destsa +sb

SUB dest, sa, sb

destsa - sb

MUL dest, sa, sb

destsa * sb

AND dest, sa, sb

destsa && sb

OR dest, sa, sb

destsa || sb

NAND dest, sa, sb

destsa NAND sb

SLA dest, sa, imm

destsa<<#imm

SRA dest, sa, imm

destsa<<#imm

e_quad type QuadType Quads.h

e_live type LiveType Color.h

e_symtype Symtype Symtab.h

e_dagtpe DatType Dag.h

u_dual Dual util.h

 123

LD dest, sa

dest (sa)

ST sa, sb

(sa)sb

CONST dest, imm

dest#imm

OFFSET dest, imm, sym

dest#imm + OFFSET of label(sym->name)

CMP sa, sb

compare register contents of sa and sb

JPOS sym

jump id positive flag is set to label sym->name

JNEG sym

jump id positive flag is set to label sym->name

JZERO sym

jump id positive flag is set to label sym->name

JUMP sym

jump to label sym->name

JREG sa

jump to address in register sa

MOVE dest, sa

destsa

LABEL sym

this converts to assembly as a label statement

LABEL sym->name

SAME

For internal purpose. To specify to instruction

are copy instruction. (Used to represent SSA

form programs)

LINE

Used for internal purpose

TOUCH Used for internal purpose

 124

B2. Basic Abstract Data Types

B3.1. Stack type.

union u_dual

{

 int ival;

 void *pval;

};

typedef union u_dual Dual;

struct s_stack

{

Dual value;

struct s_stack *next;

};

typedef struct s_stack Stack;

B3.2. Binary Search Tree Type.

 This forms the basic block of the Tree, it can either contain an integer value, or a void pointer.

struct s_bst

{

 Dual value;

 struct s_bst * left, * right;

};

typedef struct s_bst Bst;

typedef Dual (*BstCallBack)(Dual, Dual);

This is a function pointer which can call a function with two DUAL arguments and return a

DUAL value.

B3.3. Triangular Bit Matrix data type

typedef int Tbm

 125

B3.4. Symbol Table:

This is to store what is the type of the value stored in the symbol table.

struct s_symbol

{

 int id;

 SymType type; // The type that is defined in the structure above

 char *name; // The particular name of the symbol table entry

 int offset;

 //The offset of the record from the particular start point, could be the frame pointer position

 int value; //The integer value, if it has an integer value

 struct s_symbol * mode;

 int size; // the number of entries that are there in the table, the cardinality.

 int flat_uses;

 int weighted_uses; //count for number of times used.

 struct s_symbol * parent; //Pointer to the structure, or function or block of code which

contains this symbol, for back referencing

 // The following fields are only used for functions

 Bst *called_by;

 Bst *returns_to;

 Bst *call_to;

 struct s_symbol * structure_fields;

//Head pointer to the list of fields in the function. I don’t think this is the most optimized way of

keeping the fields

struct s_symbol * function_formals; //Head pointer to the linked list of formal parameters

 struct s_symbol * function_locals; //Head Pointer to the list of local parameters

 int can_put_in_register; //Can this value be stored in a register or not

 int constant_in_register;

 int dirty; //To reduce the number of caller saves for this particular variable.

};

typedef struct s_symbol Symbol;

 126

B3.5. Symbol Type:

enum e_symtype

{

 // an unused entry ST_UNUSED=0,

 // a global variable ST_GLOBAL,

 // a formal parameter ST_FORMAL,

 // a local variable ST_LOCAL,

 // a structure definition ST_STRUCTURE,

 // a union definition ST_UNION,

 // a field in a structure or union ST_FIELD,

 // integer type ST_INTEGER,

 // array-of type ST_ARRAY,

 // a function ST_FUNCTION,

 // a function prototype ST_PROTOTYPE,

 // a constant ST_CONSTANT,

 // a label ST_LABEL

};

typedef enum e_symtype SymType;

B3.6. Quad Type (for Instruction):

enum e_quadtype

{

 // declare a label at this position QT_LABEL=0,

 // make note of line numbes QT_LINE,

 // do nothing but affect register colorer

 // i.e. pretends to read a register QT_TOUCH,

 // affect register colorer -- demand that its

 // two args occupy the same register. QT_SAME,

 // arithmetic operations QT_ADD,

 QT_SUB,

 QT_AND,

 QT_OR,

 QT_NAND,

 QT_SLA,

 127

 QT_SRA,

 QT_MOVE,

 // memory access QT_LD,

 QT_ST,

 // constants QT_CONST,

 QT_OFFSET,

 // control flow QT_CMP,

 QT_JPOS,

 QT_JNEG,

 QT_JZERO,

 QT_JUMP,

// two optional instructions

 QT_MUL,

 QT_JREG

};

typedef enum e_quadtype QuadType;

//It explains what basically the Quad accomplishes.

struct s_quad

{

 QuadType type; //What is the function of this Quad.

 int dest;

 int sa, sb;

 Symbol * sym;

 int imm; // the loop depth of this quad

 int loop_weight;

 struct s_quad *next,* prev;

};

typedef struct s_quad Quad;

B3.7. Basic Block Type:

struct s_arena

{

 Quad *first, * last; //Pointers to the first and last Quad in this particular Arena

 int num_quads; //Count for the total number of Quads in this arena

 int code_unreachable; //Used when appending to the arena, so that unreachable code can

 automatically be removed

 int last_line;

};

typedef struct s_arena Arena;

 //An Arena is a collection of Quads, helping us to describe a Block.

 128

B3.8. DAG – Data Structure

A lot of optimizations can easily be done on the graph, such as constant folding, common sub

expression elimination, and reduction in strength.

Each node has an associated mode type (mode), and optionally a pointer to a symbol table entry.

Each node has a unique id number too, of course.

struct s_annot

{

 // we have 32-booleans that we can use.

 int flags; // the depth of this instruction in loops

 int loop_weight; // the line of code that generated this instruction

 int source_line;

};

typedef struct s_annot DagAnnotation;

enum e_dagType

{

 // two sequential statements DT_SEQ=0,

 // two sequential statements, and the value of the right

 // subtree is caried on. DT_RSEQ,

 // two sequential statements which can be emitted in

 // abitrary order (for parameters)... DT_PSEQ,

 // used during building

 // should not appear in final dag DT_PLACEHOLDER,

 // a function DT_FUNC,

 // a label DT_LABEL,

 // an unconditional jump DT_JUMP,

 // jump if expression true DT_JTRUE,

 // name of a global DT_GLOBAL,

 // name of a formal DT_FORMAL,

 // name of a local DT_LOCAL,

 // dereference by a star DT_DEREF,

 // perform function call DT_CALL,

 // perform addition DT_ADD,

 129

 // perform subtraction DT_SUB,

 // perform multiplication DT_MUL,

 // perform arithmetic right shift DT_RSH,

 // perform arithmetic left shift DT_LSH,

 // perform bitwise and operation DT_BAND,

 // perform bitwise or operation DT_BOR,

 // perform bitwise nand operation DT_BNAND,

 // perform assignment DT_GETS,

 // load integer constant DT_CONSTANT,

 // pass a parameter DT_PASS,

 // return a value DT_RETURN,

 // equality operator DT_EQ,

 // inequality operator DT_NE,

 // greater than equal operator DT_GTE,

 // greater than operator DT_GT,

 // less than or equal operator DT_LTE,

 // less than operator DT_LT,

 // short-circuit disjunction DT_AND, DT_OR

};

typedef enum e_dagType DagType;

struct s_dag

{

 int id;

 DagType type;

 int refCount;

 DagAnnotation notes;

 int offset;

 Symbol *mode, *symbol;

 struct s_dag * left, * right;

};

typedef struct s_dag Dag;

 130

B3. List of Some Important Functions

B4.1. Stack Functions

Stack * empty_stack();

Stack * push_stack(Stack *l, Dual v);

Stack * pop_stack(Stack *l, Dual *v);

Dual top_stack(Stack *l);

void free_stack(Stack *l);

int inclusion_stack(Stack *l, Dual v, BstCallBack cmp);

B4.2. Binary Search Tree or Set Functions

Bst * insert_set(Bst *set, Dual val, BstCallBack cmp);

// Set-wise insertion into a bst
int size_bst(Bst *rt);

Dual first_bst(Bst *rt);

void free_bst(Bst *bst);

Bst * copy_bst(Bst *orig);

Bst * merge_set(Bst *a, Bst *b, BstCallBack cmp);

Bst * remove_bst(Bst *bst, Dual v, BstCallBack cmp);

int inclusion_bst(Bst *bst, Dual d); // uses default callback

// iterate over each element in the bst and stops if any of them

return non-zero.

// Return said non-zero value.

// user is passed as second parameter to call back function

Dual each_bst(Bst *bst, Dual user, BstCallBack cb);

// perform binary search

// cb() should return as would comparison to guide the search.

// User will be passed as the second parameter to the callback fcn

Dual search_bst(Bst *bst, Dual user, BstCallBack cb);

B4.3. Triangular Bit Matrix Functions

Tbm ** new_tbm(int width);

void free_tbm(Tbm **tbm, int width);

void add_tbm(Tbm **tbm, int x, int y);

int check_tbm(Tbm **tbm, int x, int y);

void remove_tbm(Tbm **tbm, int x, int y);

B4.4. Register Allocation Functions

void graph_color(Arena *a);

int scavenger(Arena *a); // to alert unused registers

B4.5. Optimizations

int perform_cse(Arena *a);

int perform_mem_optimization(Arena *a);

int perform_peephole(Arena *a);

 131

int perform_dce(Arena *a);

int perform_loopunroll(Arena *a);

B4.6. Function Used During Code Generation

void quads2asm(Arena *a);

void sym2asm(Arena *a);

B4.7. Functions to Create and Iterate on Basic-blocks

Arena *new_arena();

void free_arena(Arena *a);

void dump_quads(Arena *a);

void dump_quad(Quad *cursor);

void remove_quad(Arena *a, Quad *q);

void insert_before(Arena *a, Quad *q, QuadType type, int dest, int sa,

int sb, Symbol *sym, int imm, int weight);

void insert_after(Arena *a, Quad *q, QuadType type, int dest, int sa,

int sb, Symbol *sym, int imm, int weight);

void insert_label(Arena *a, Symbol *label);

void insert_block(Arena *a);

void insert_line_number(Arena *a, int lin);

void insert_add(Arena *a, int dest, int sa, int sb, int weight);

void insert_sub(Arena *a, int dest, int sa, int sb, int weight);

void insert_and(Arena *a, int dest, int sa, int sb, int weight);

void insert_or(Arena *a, int dest, int sa, int sb, int weight);

void insert_nand(Arena *a, int dest, int sa, int sb, int weight);

void insert_sla(Arena *a, int dest, int sa, int imm, int weight);

void insert_sra(Arena *a, int dest, int sa, int imm, int weight);

void insert_ld(Arena *a, int dest, int sa, int weight);

void insert_st(Arena *a, int sa, int sb, int weight);

void insert_const(Arena *a, int dest, int imm, int weight);

void insert_offset(Arena *a, int dest, Symbol *label, int imm, int

weight);

void insert_jeq(Arena *a, int sa, int sb, Symbol *label, int weight);

void insert_jne(Arena *a, int sa, int sb, Symbol *label, int weight);

void insert_jgt(Arena *a, int sa, int sb, Symbol *label, int weight);

void insert_jgte(Arena *a, int sa, int sb, Symbol *label, int weight);

void insert_jlt(Arena *a, int sa, int sb, Symbol *label, int weight);

void insert_jlte(Arena *a, int sa, int sb, Symbol *label, int weight);

void insert_jump(Arena *a, Symbol *label, int weight);

void insert_move(Arena *a, int dest, int sa, int weight);

void insert_mul(Arena *a, int dest, int sa, int sb, int weight);

void insert_jreg(Arena *a, int sa, int weight);

void insert_touch(Arena *a, int sourcereg);

void insert_same(Arena *a, int sa, int sb, Symbol *sm);

void recalculate_usage_counts(Arena *a);

void printQuad(Quad * temp);

void myPrintQuads(Arena * a);

char * quadToString(QuadType q);

 132

void printQuadSimple(Quad * temp);

//This will look over an arena and assert that every temporary is

defined at most once. A debugging tool.

void assert_ssa(Arena *a);

// determine if the runtime values of temporaries $x and $y are

equivalent,

int cmp_runtime_vals(int x, Quad *rx, int y, Quad *ry);

void fix_jump_too_far(Arena *a);

B4.8. Function Used to Create and Access Symbol Table

void init_symtab(int count);

void finish_symtab();

void dump_symtab();

void dump_histograms();

void dump_offsets();

void dump_call_graph();

int check_recursion();

void note_call(Symbol *from, Symbol *to, Symbol *ret);

Symbol *lookup_symbol(const char *name);

Symbol *search_symbol(const char *name, Symbol *parent, SymType type);

Symbol *install_symbol(const char *name, SymType type);

Symbol *lookup_constant(int v);

// generate a new mode type as an n-ary array of something

Symbol * array_of(Symbol *mode, int n);

const char *mode2str(Symbol *mode);

// determine if two modes are compatible

int compatible_modes(Symbol *a, Symbol *b);

Symbol *create_special_global(const char *name, int p);

// get a structure by name

Symbol * mode_struct(char *name);

// get a union by name

Symbol * mode_union(char *name);

// get the integer mode

Symbol * mode_int();

Symbol * find_last_global();

// deprecated

int find_most_common_constant();

// assign constants to registers

void assign_constants_to_registers();

int get_element_size(Symbol *md);

int get_sizeof(Symbol *md);

// a lot of constants are used for accessing variables on the stack

frame. Therefore, in order to keep our usage count of constants up-

to-date, we add n uses to each offset k, where n is the number of uses

of a variable at frame offset k.

void update_const_freqs_with_frame_offsets();

 133

B4. Flow Control of The Code, Starting from the file Driver.c

Driver.c :

i. Contains the function main(). The series of operations done in main() are :

ii. Initialise the symbol table.

iii. Parse the file. If parsing error, then that is reported.

iv. Make sure main() is defined.

v. If all the components : Symbol Table, DAG etc. have been successful printed, dump

them.

vi. Convert DAG to Quad by calling the function dag2quad(ast)

vii. DO graph coloring by calling graph_color(quads).

viii. If every variable, can be safely allotted a register, then just break off successfully, else

ix. Free some symbols in the registers and try again, increment the number of passes.

x. The first function called is dag2quad(asm) which returns a pointer to an Arena

B5. Modified Fields in ADT's and Functions in Jackcc Compiler to Accommodate

Proposed Changes in the Thesis

B6.1. Fine Grain Thread Creation Pass

The structure Arena and Quad are appended with few more fields to create disjoint sub-block in

fine grain thread extraction phase.

struct Arena

{

Quad * first,* last;

int *SubBlockIndex

int *SubBlockSize;

int num_quads

int no_subblock;

};

struct Quad

{

int dest

int srcb, srca;

int oper;

int loop_weight;

struct Quad *next,*prev;

};

 134

In Arena, the instructions in corresponding basic block are stored as a linked list of Quads

represented by first and last of the structure. Number of quads is stored in num_quads.

In Quad, the instruction stored is of the form dest = srca oper srcb where dest, srca, srcb are

indices in the symbol table corresponding to the variables.

 We divide the Arena into sub-blocks using disjoint-set operations based on true-

dependencies. Instructions having true-dependency are grouped together. Let us assume that an

arena has instructions. To begin with, this arena is divided into N distinct sets (sub-blocks),

each having one instruction. Two sets are combined into a collection of instructions (to form sub-

blocks) if they have true-dependency. Structure of each sub-block is shown below.

struct sub_block

{

 Quad * q;

 struct sub_block * next;

 struct sub_block *sub_block_rep;

 int block_no;

 int task_no;

 int sub_block_no;

 int no_regs_block;

};

In the structure sub-block, we maintain the information task_no, sub_block_no, and block_no,

which are task number, sub-block number of the block, and basic block number of that task of

newly created sub-block. Above information are required by the instruction scheduler to

schedule these sub-blocks on to different cores in out-of-order and produce the output in in-

order. The no_reg_block will store the information of number of register required to the

variables in that sub-block used by instruction scheduler and register allocation algorithm. The

set_rep is the representative of a sub_block, used for disjoint union operation. We store the list of

sub-blocks in an arena in the form of SetList S. Prototype of functions used to create disjoint

sub-blocks.

//Approach 1 to Create sub-block

void makeSet(Arena A,List S);

void groupQuads(List S, number of quads);

void Union(List S,index i,index j);

//Approach 2 to Create sub-block

void Findind_Dominators(Basic Block Bp, sub-block List SList);
void Dominators_List();

 135

void Dominniance_Frontier_calculation();

void Forcers_on_A_Node();

void PHI_function();

void Variable_renaming_Subblock_creation();

B6.2. Intra Block Scheduling

The function used for intra block scheduling is given below.
void mergeSubblock(List Sp,int no_of_sub-blocks,int num_of_quads);

void scheduleBlock(Basic Block Bp, Hyper sub-block List HSList);

B6.3. Inter Block Scheduling

Next, we shall see the data structures and functions used to compute the Sub-block Dependency

Graph (SDG). The data structure of a node of CFG is very similar to data structure of Arena (of

previous section) with extra pointers to its children and parents in CFG. Data Structure of SDG is

also given.

struct CFG

{

Quad * first,* last;

int SubBlockIndex[], SubBlockSize[];

CFG *dependency_Block[];

int dependency_SubBlock[][];

int num_quads, no_subblock;

int depcount;

CFG *child1, *child2, *parents[];

int no_parents;

int *phi[];

int subbl_phi[];

int no_rows;

SDG subBlockGraph[];

};

struct SDG

{

Quad * first,* last;

int SubBlockIndex

int SubBlockSize;

CFG *Block;

SDG children[];

SDG parents[];

int no_parents;

int no_child;

int *phi[];

int no_rows;

};

 136

In structure for CFG, apart from the data elements present in Arena, we also have pointers

child1, child2 and parents[], list of children and parents the CFG node can have. phi[] is the list

of functions, each row corresponds to the function of one variable. It has as many columns as

number of parents to the node. Each entry stores the version number of the variable from the

corresponding branch. no_rows indicates the number of functions. Once we split the block into

sub-blocks using Algorithm 1 of section 3, the array subbl_phi[] stores the sub-block number to

which each function belongs. When we compute the dependencies of each sub-block, we store

them in structures dependency_Block and dependency_SubBlock – while former stores pointers

to blocks to which a sub-block is dependent upon, latter stores the corresponding sub-block

number. depcount stores the number of dependencies. subBlockGraph[] is an array of nodes of

sub-block dependency graph – one node corresponding to each sub-block.

The structure for SDG – a node in Sub-block Dependence Graph has list of quads, Sub-block

number, size, list of children, list of parents, functions belonging to the sub-block and a pointer

to the node of CFG to which the sub-block belongs.

//Approach 1 to SDG

ComputeDependency(Basic Block Bp, sub-block List SList);

SDG createSDG(Sub-block SBp, Sub-block SBq);

//Approach 2 to SDG

Variable_renaming_SDG_creation();

// Global Schedulers

InterBlockHIB(CFG C,SDG G);

InterBlockDBS(CFG C, SDG G);

InterBlockLLSF(CFG C, SDG G);

InterBlockMDS(CFG C, SDG G);

B6.4. Functions Used in Register Allocation

// Integrated Register Allocation and Scheduling

IntegratedScheulder(CFG C, SDG G);

// Register Allocation

MergeOperation(sub-block SBi , sub-block SBj);

void graph_color(Sub-block SBp);

 137

List of References

[1] G. E. Moore, “Cramming More Components Onto Integrated Circuits", Reprinted from

Electronics, volume 38, number 8, April 19, 1965, pp.114 -117, IEEE Solid-State

Circuits Newsletter, vol. 11, no. 5, pp. 33 –35, September. 2006.

[2] R. Dennard “Design of Ion-implanted MOSFETs With Very Small Physical Dimensions”

IEEE Journal of Solid State Circuits , vol. SC-9, no. 5, pp. 256-268, October. 1974.

[3] Gustafson, J." Reevaluating Amdahl's Law". Communications of the ACM 31(5), pp.532-

533, 1988.

[4] H. Esmaeilzadeh, ‘‘Dark Silicon and the End of Multicore Scaling’’ 38th International

Symposium. Computer Architecture, ACM Press, 2011.

[5] F. J. Pollack, “New Micro-architecture Challenges In The Coming Generations of

CMOS Process Technologies” in Proceedings of the 32nd annual ACM/IEEE

international symposium on Micro-architecture (MICRO 32), 1999.

[6] V. Agarwal, M. Hrishikesh, S. W. Keckler, and D. Burger. "Clock rate Versus IPC: The

End Of The Road For Conventional Microarchitectures". In Proceedings of the 27th

International Symposium on Computer Architecture , pp 248–259, June 2000.

[7] D. Geer, "Chip Makers Turn To Multicore Processors" IEEE Computer, vol. 38, no. 5,

pp. 11-13, 2005.

[8] J. Held,, J. Bautista, and S. Koehl, “From a Few Cores to Many: A Tera-Scale Computing

Research Overview,” white paper, Intel;

http://download.intel.com/research/platform/terascale/terascale_overview_paper.pdf

[9] Andras Vajda, "Programming Many-Core Chips", Springer, pp 9-44, 2011.

[10] Sergio Saponara and Luca Fanucci, “Homogeneous and Heterogeneous MPSoC

Architectures with Network-On-Chip Connectivity for Low-Power and Real-Time

Multimedia Signal Processing,” VLSI Design, vol. 2012.

[11] M.D. Hill and M.R. Marty. "Amdahlʼs Law In The Multicore Era". IEEE Computer, pp.

33–38, 2008.

[12] Dong Hyuk Woo, Hsien-hsin S. Lee, "Extending Amdahl’s Law for Energy-Efficient

Computing in the Many-Core Era", IEEE Computer, pp. 24-31, 2008.

[13] Quad-Core and Dual-Core Intel ® Xeon ® Processor 5000 Sequence and Intel ® 5100

Memory Controller Hub Chipset Development Kit User Guide.

 138

http://download.intel.com/design/intarch/manuals/319157.pdf

[14] B.M.Rogers, A.Krishna, G.B.Bell, K.Vu, X.Jiang, and Y. Solihin, “Scaling The

Bandwidth Wall: Challenges In and Avenues For CMP scaling,” SIGARCH Computer

Architecture News , vol. 37, no. 3, pp. 371–382, 2009.

[15] Sergey Blagodurov , Sergey Zhuravlev , Alexandra Fedorova , Ali Kamali, " A Case For

NUMA-Aware Contention Management On Multicore Systems", 19th international

conference on Parallel architectures and compilation techniques, pp.11-15, September,

2010.

[16] Sun, X.H., Chen, Y. "Reevaluating Amdahl's Law in the Multicore Era". J. Parallel and

Distributed Computing 70(2), pp.183-188, 2010.

[17] Sun, X.H., Chen, Y., Byna, S."Scalable Computing in Multicore Era". International

Symposium on Parallel Algorithms, Architectures and Programming, 2008.

[18] Pai, V.S, Ranganathan, P, Adve, S.V, "The Impact Of Instruction-Level Parallelism On

Multiprocessor Performance and Simulation Methodology", High-Performance

Computer Architecture, 1997., Third International Symposium on , vol., no., pp.72-83,

1997.

[19] StallingsWilliam, "Computer Organization and Architecture, Pearson Education", 8
th

Ed., 2010.

[20] V. S. Pai, P. Ranganathan, H. Abdel-Shafi, and S. Adve, "The Impact of Exploiting

Instruction-Level Parallelism on Shared-Memory Multiprocessors", IEEE Transactions

on Computers, vol. 48, pp. 218–226, February 1999.

[21] J.M.Tendler, J.S. Dodson, J.J.S.Fields, H. Le, and B. Sinharoy. "Power 4 System Micro-

architecture". IBM Journal of Research and Development, 46(1), pp 5-6, January 2002.

[22] P. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. R. Gao, “A Study Of The On-

Chip Interconnection Network For The IBM Cyclops64 MultiCore Architecture”

International Parallel Distributed Processing Symposium, 2006.

[23] M. Taylor. The Raw Prototype Design Document. 2002.

http://groups.csail.mit.edu/cag/raw/documents/RawSpec99.pdf.

[24] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,M. Frank, P.

Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. "Baring It All to Software:

Raw Machines". Computers, 30(9), pp 86-93, 1997.

 139

[25] K. Sankaralingam, R. Nagarajan, P. Gratz, R. Desikan, D. Gulati, H. Hanson, C. Kim, H.

Liu, N. Ranganathan, S. Sethumadhavan, S. Sharif, P. Shivakumar, W. Yoder, R.

McDonald, S.W. Keckler, and D.C. Burger, "The Distributed Microarchitecture of the

TRIPS Prototype Processor" 39th International Symposium on Microarchitecture

(MICRO), December, 2006.

[26] A. Smith, J. Burrill, J. Gibson, B. Maher, N. Nethercote, B. Yoder, D.C. Burger, and K.S.

McKinley. "Compiling for EDGE Architectures" International Conference on Code

Generation and Optimization (CGO), March, 2006.

[27] S. Muchnick. "Advanced Compile Design and Implementation". Morgan Kaufmann,

1997.

[28] R,Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. "Efficient

Computing Static Single Assignment Form and The Control Dependence Graph". ACM

Transaction on Programming Languages and Systems, 13(4),pp.451-490,1991.

[29] Y. Sazeides, S. Vassiliadis, J. E. Smith, "The Performance Potential of Data Dependence

Speculation& Collapsing", ACM/IEEE 29th International Symposium on

Microarchitecture, pp.238-247,December 1996.

[30] D. Friendly, S. Patel, Y. Patt, "Putting the Fill Unit to Work: Dynamic Optimizations for

Trace Cache Microprocessors", ACM/IEEE 31st International Symposium on Micro-

architecture, pp.173-181,November 1998.

[31] B. Ramakrishna Rau and Joseph A. Fisher. "Instruction Level Parallel Processing:

History, Overview, and Perspective", Journal of Supercomputing 7, pp.9-50, May 1993.

[32] Dennis, J.B, Gao, G.R, "An Efficient Pipelined Dataflow Processor Architecture",

Supercomputing '88. [Vol.1]. Proceedings. , vol., no., pp.368-373, 14-18 November

1988.

[33] David A. Patterson, "Reduced Instruction Set Computers", Communications of the ACM,

v.28 n.1, p.8-21, January. 1985.

[34] Fisher, J.A. "The VLIW Machine: A Multiprocessor for Compiling Scientific Code,

Computer" , vol.17, no.7, pp.45-53, July 1984.

[35] Smith, J.E, Sohi, G.S, "The Micro architecture of Superscalar Processors", Proceedings

of the IEEE , vol.83, no.12, pp.1609-1624, December 1995.

 140

[36] R. Colwell, "Architecture and implementation of a VLIW supercomputer", International

Conference on Super computing , pp 910–919, June 1990.

[37] Hongtao Zhong, Steven A. Lieberman, and Scott A. Mahlke, "Extending Multicore

Architectures to Exploit Hybrid Parallelism in Single-thread Applications", International

Symposium on High Performance Computer Architecture (HPCA), pp. 25-36, February

2007.

[38] H. Zhong, K. Fan, S. Mahlke, and M. Schlansker, "A Distributed Control Path

Architecture For VLIW Processors", 14th International Conference on Parallel

Architectures and Compilation Techniques, pp. 197–206, September. 2005.

[39] Michael Chu and Scott Mahlke, "Compiler-Directed Data Partitioning for Multicluster

Processors" 4th International Symposium on Code Generation and Optimization (CGO),

pp. 208-218,Mar. 2006.

[40] Faraboschi P, Fisher J.A, and Young C, "Instruction Scheduling For Instruction Level

Parallel Processors", Proceedings of the IEEE , vol.89, no.11, pp.1638-1659, November

2001.

[41] Thomas L. Adam, K.M. Chandy and J.R. Dickson. "A Comparison of List Schedules for

Parallel Processing Systems". In Communications of the ACM volume 17 Issue 12,

December 1974.

[42] Golumbic, M.C., and Rainish, V. "Instruction Scheduling Beyond Basic Blocks". IBM

Journal of Research and Development, Vol. 34, No. 1, January 1990.

[43] Robert P. Colwell, Robert P. Nix, John J. O'Donnell, David B. Papworth and Paul K.

Rodman. "A VLIW Architecture for a Trace Scheduling Computer". In ASPLOS-II

Proceedings of the second international conference on Architectural support for

programming languages and operating systems IEEE Computer Society Press Los

Alamitos, CA, USA 1987.

[44] Lee, M, Tirumalai, P, Ngai, T.F, "Software Pipelining and Superblock Scheduling:

Compilation Techniques for VLIW Machines", System Sciences, Proceeding of the

Twenty-Sixth Hawaii International Conference on vol.1, 5, pp. 202- 213, 1993.

[45] S.A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank, and R.A. Bringmann. "Effective

Compiler Support for Predicated Execution Using the Hyperblock". IEEE 25th

International Symposium on Micro-architecture, pp. 45-54, December 1992.

 141

[46] Cathy McCann , Raj Vaswani , John Zahorjan, "A Dynamic Processor Allocation Policy

for Multi-programmed Shared-Memory Multiprocessors", ACM Transactions on

Computer Systems (TOCS), v.11 n.2, pp.146-178,1993.

[47] A. M. Malik, J. McInnes, and P. van Beek. "Optimal Basic Block Instruction Scheduling

for Multiple-issue Processors Using Constraint Programming". Technical Report CS-

2005- 19, School of Computer Science, University of Waterloo, 2005.

[48] R. Gupta and M. L. Soffa, “Region Scheduling: An Approach For Detecting and

Redistributing Parallelism” IEEE Transaction . Sofhyare Eng., vol. 16, April. 1990.

[49] Phillip B. Gibbons and Steven S. Muchnick, "Efficient Instruction Scheduling for a

Pipelined Architecture". Proceedings of ACM SIGPLAN'86 Symposium on Compiler

Construction. SIGPLAN Notices, 21 (7): 11-16, July 1986.

[50] David Bernstein, Micheal Rodeh, "Global Instruction Scheduling of Superscalar

Machine", Conference on Programming Language Design and Implementation,

Proceedings of ACM SIGPLAN, 241-255, 1991.

[51] David Bernstein and Izidor Gertner. "Scheduling Expressions on a Pipelined Processor

With a Maximal Delay of One Cycle". ACM Transaction. Programming Languages and

System 1, January, 1989.

[52] Jong-Jiann Shieh and Christos A. Papachristou. "An Instruction Reorder For Pipelined

Computers". In Proceedings of the 23rd annual workshop and symposium on

Microprogramming and micro-architecture (MICRO 23). IEEE Computer Society Press,

Los Alamitos, CA, USA, PP,135-142, 1990.

[53] M. Heffernan, K. Wilken and G. Shobaki. "Data Dependency Graph Transformations

For Superblock Scheduling". In Proceedings of the 39th Annual IEEE/ACM International

Symposium on Micro-architecture, pp. 77-88, 2006.

[54] Thornton, J. E. "Parallel Operation in the Control Data 6600", Proceeding Fall

Joint Computer. Conference, Part 2, Vol. 26, pp. 33 - 40, 1964.

[55] J. Hennessy and T. Gross, “Postpass Code Optimization of Pipeline Constraints” ACM

Transaction. Programming Languages and Systems, vol. 5, no. 3, pp. 422-448, 1983.

[56] R. M. Tomasulo. "An Efficient Algorithm for Exploiting Multiple Arithmetic Units". IBM

Journal of Research and Development. pp 25-33, 1967.

 142

[57] C. Chekuri, R. Motwani, R. Johnson, B. Ramakrishna Rau, B. Natarajan. "Profile-Driven

Instruction Level Parallel Scheduling", HP Laboratories Technical Report, HPL-96-16,

January 1996.

[58] A. Fisher, “Trace Scheduling: A Technique for Global Microcode Compaction” IEEE

Transaction. Computers, vol. 30, no. 7, pp. 478-490, July 1981.

[59] M. Lam. "Software Pipelining: An Effective Scheduling Technique For VLIW

Machines". SIGPLAN Not, June 1988.

[60] Nancy J. Warter, Grant E. Haab, Krishna Subramanian, and John W. Bockhaus.

"Enhanced Modulo Scheduling For Loops With Conditional Branches". 25th annual

international symposium on Microarchitecture (MICRO 25). IEEE Computer Society

Press, pp.170-179, 1992.

[61] S. A. Mahlke. “Sentinel Scheduling: A Model For Compiler-Controlled Speculative

Execution” ACM Transaction Computer and System., vol. 11, pp. 376–408, November.

1993.

[62] F. W. Burton, “Speculative Computation, Parallelism, and Functional Programming”

IEEE Transaction. Computation. vol. C-34, pp.1190–1193, 1985.

[63] W.W. Hwu, S.A. Mahlke, W.Y. Chen, P.P. Chang, N.J. Warter, R.A. Bringmann, R.G.

Ouellette, R.E. Hank, T. Kiyohara, G.E. Haab, J.G. Holm, and D.M. Lavery, “The

Superblock: An Effective Technique for VLIW and Superscalar Compilation” J. Super-

computing, vol. 7, no. 1, pp. 229-248, 1993.

[64] Dietmar Ebner, Florian Brandner, Bernhard Scholz, Andreas Krall, Peter Wiedermann,

and Albrecht Kadlec. "Generalized Instruction Selection Using SSA-graphs". ACM

SIGPLAN-SIGBED conference on Languages, compilers, and tools for embedded

systems (LCTES '08). pp.31-40, 2008.

[65] McConnell, C. and R. Johnson. "Using Static Single Assignment Form in a Code

Optimizer". ACM Letters on Programming Languages and Systems, 1(2), p. 152-160,

1992.

[66] J. Donald and M. Martonosi, "Techniques for Multicore Thermal Management:

Classification and New Exploration", SIGARCH Computer Architecture News, vol. 34,

no. 2, pp. 78-88, 2006.

 143

[67] Bernhard Scholz and Erik Eckstein. "Register Allocation for Irregular Architectures". In

LCTES/SCOPES, ACM, pp 139–148, 2002.

[68] Timothy Kong and Kent D Wilken. "Precise Register Allocation for Irregular

Architectures". In International Symposium on Micro-architecture, ACM, pp 297–307,

1998.

[69] David Koes and Seth Copen Goldstein. "A Progressive Register Allocator for Irregular

Architectures". In CGO, pp 269–280, 2005.

[70] G. Chaitin. "Register Allocation and Spilling via Graph Coloring". In Proceedings of the

SIGPLAN Symposium on Compiler Construction, pp 98-105, June 1982.

[71] Briggs, P., Cooper, K. D., Kennedy, K., and Torczon, L. "Coloring Heuristics for

Register Allocation". In Proc. ACM SIGPLAN Conference on Programming Language

Design and Implementation. ACM, pp. 275-284, 1989.

[72] Fredrick Chow and John Hennessy, "Register Allocation by Priority-based Coloring",

Proceedings of the ACM SIGPLAN Symposium on Compiler Construction SIGPLAN

Notices Vol. 19, No. 6, June 1984.

[73] Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai, "Fusion-Based Register

Allocation", ACM Transactions on Programming Languages and Systems, Vol. 22, No.

3, pp 431-470, May 2000.

[74] Massimiliano Poletto and Vivek Sarkar, "Global Linear Scan Register Allocation", ACM

Transactions on Programming Languages and Systems, Vol. 21, No. 5, pp 895-913,

September 1999.

[75] Hanspeter Mossenbock and Michael Pfeiffer. "Linear Scan Register Allocation in the

Context of SSA Form and Register Constraints". In CC, LNCS, pp 229–246, 2002.

[76] Cindy Norris and Lori. L. Pollock, "Register Allocation over the Program Dependence

Graph". SIGPLAN 94-6/94.

[77] Rajiv Gupta, Mary Lou Soffa, Denise Ombres, "Efficient Register Allocation via

Coloring Using Clique Separators", ACM Transactions on Programming Languages and

Systems, Vol 16, No 3, pp 370- 386, May 1994.

[78] David Callahan, Brian Koblenz, "Register Allocation via Hierarchical Graph Coloring".

In Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation Toronto Ontario, Canada, pp. 26-28, June, 1991.

 144

[79] Changqing Fu, Kent Wilk, "A Faster Optimal Register Allocator", Proceedings of the

35th Annual IEEE/ACM International Symposium on Micro-architecture (MICRO-35),

2002.

[80] Rainer E. Burkard, Eranda C¸ ela, Panos M. Pardalos, and Leonidas S. Pitsoulis.

"Quadratic Assignment Problems". European Journal of Operational Research, 15:pp

283–289, 1984.

[81] Todd A. Proebsting and Charles N. Fischer, "Probabilistic Register Allocation", ACM

SIGPLAN ’92 PLD1-6/92/CA.

[82] Christian Wimmer and Michael Franz, "Linear Scan Register Allocation on SSA Form".

CGO, pp. 24–28, April, 2010.

[83] S. Hack and G. Goos. "Optimal Register Allocation for SSA-form Programs in

Polynomial Time". Information Processing Letters, 98(4):pp.150–155, 2006.

[84] Fernando Magno Quintao Pereira and Jens Palsberg. "Register Allocation After Classic

SSA Elimination Is NP-Complete". In Foundations of Software Science and Computation

Structures. Springer, 2006.

[85] Fernando Magno Quintao Pereira and Jens Palsberg. "Register Allocation via Coloring of

Chordal Graphs". In APLAS, Springer, pp 315–329. 2005.

[86] David A. Berson, Rajiv Gupta, and Mary Lou Soffa, "Integrated Instruction Scheduling

and Register Allocation Techniques", LCPC’98, LNCS 1656, pp. 247–262, 1999.

[87] Rajeev Motwani, Krishna V. Palem, Vivek Sarkar, and Salem Reyen. "Combining

Register Allocation and Instruction Scheduling", Stanford Reports, 1995.

[88] Tatsushi Inagaki, Hideaki Komatsu, and Toshio Nakatani. "Integrated Pre Pass

Scheduling For a Java Just-In-Time Compiler On The IA-64 Architecture". In

Proceedings of the international symposium on Code generation and optimization, pp.

159-168, 2003.

[89] Cindy Norris and Lori L. Pollock. "A scheduler Sensitive Global Register Allocator".

Proceedings of Supercomputing’93, pages 804-813, pp.248-253, 1993.

[90] David A. Berson, Rajiv Gupta, and Mary Lou Soffa. "URSA: A Unified Resource

Allocator for Registers and Functional Units in VLIW Architectures". IFIP WG 10.3

Working Conference on Architectures and Compilation Techniques for Fine and Medium

Grain Parallelism, pages 243–254, 1993.

 145

[91] Walter Lee , Rajeev Barua , Matthew Frank , Devabhaktuni Srikrishna , Jonathan Babb ,

Vivek Sarkar , Saman Amarasinghe. "Space-Time Scheduling of Instruction-Level

Parallelism on a Raw Machine". In Proceedings of the Eighth ACM Conference on

Architectural Support for Programming Languages and Operating Systems. pp. 46-57,

1998.

[92] H. Zhong, S. A. Lieberman, and S. A. Mahke, “Extending Multicore Architectures To

Exploit Hybrid Parallelism In Single-Thread Applications,” International Symposium.

High Performance Computer Architecture , pp. 25–36, March, 2007.

[93] Michael Chu, Rajiv Ravindran, and Scott Mahlke. "Data Access Partitioning For Fine-

grain Parallelism on Multicore Architectures". In Proceedings of the 40th Annual

IEEE/ACM International Symposium on Micro-architecture (MICRO 40). pp 369-380,

2007.

[94] F. Pratas, P. Trancoso, A. Stamatakis, and L. Sousa, “Fine-Grain Parallelism Using

Multi-Core, Cell/BE, and GPU Systems: Accelerating the Phylogenetic Likelihood

Function” International Conference on Parallel Processing, pp. 9-17, 2009.

[95] Muthu Manikandan Baskaran , Nagavijayalakshmi Vydyanathan , Uday Kumar Reddy

Bondhugula , J. Ramanujam , Atanas Rountev , P. Sadayappan, "Compiler Assisted

Dynamic Scheduling for Effective Parallelization Of Loop Nests On Multicore

Processors", Proceedings of the 14th ACM SIGPLAN symposium on Principles and

practice of parallel programming, February 14-18, 2009.

[96] Yong Li , Ahmed Abousamra , Rami Melhem , Alex K. Jones, "Compiler Assisted Data

Distribution for Chip Multiprocessors", Proceedings of the 19th international conference

on Parallel architectures and compilation techniques, pp 11-15, September, 2010.

[97] George C. Caragea, Alexandros Tzannes, Fuat Keceli, Rajeev Barua, and Uzi Vishkin.

"Resource-Aware Compiler Prefetching for Many-Cores". Ninth International

Symposium on Parallel and Distributed Computing (ISPDC '10). IEEE, pp 133-140,

2010.

[98] Vinay G. Vaidya, Priti Ranadive and Sudhakar Sah, “Dynamic Scheduler for Multicore

Systems” 2nd International Conference on Software Technology and Engineering, Puerto

Rico, USA, pp. 13-16, 2010.

 146

[99] Sergey Blagodurov, Sergey Zhuravlev, and Alexandra Fedorova. "Contention-Aware

Scheduling on Multicore Systems". ACM Transaction Computing System. December

2010.

[100] Mojtaba Mehrara. " Compiler and Runtime Techniques for Automatic Parallelization of

Sequential Applications". PhD. Dissertation. University of Michigan, Ann Arbor, MI,

USA. (ACM) 2011. http://cccp.eecs.umich.edu/theses/mehrara-thesis.pdf

[101] Yuanrui Zhang, Jun Liu, Emre Kultursay, Mahmut Kandemir, Nikos Pitsianis, and

Xiaobai Sun. "Automatic Parallel Code Generation for Data Translation on Multicore".

Journal of Circuits, Systems and Computers, World Scientific, 2012.

[102] Cheng-Yen Lin; Chi-Bang Kuan; Jenq Kuen Lee, "Compilers for Low Power with Design

Patterns on Embedded Multicore Systems" Journal of Signal Processing Systems,

Springer, US, 1-17, 2014

[103] Shaoming Chen, Vue Ru, Ying Zhang, Lu Peng, Jesse Ardonne, Samuel Irving, Ashok

Srivastava. "Increasing Off-Chip Bandwidth in Multicore Processors with Switchable

Pins", 41st annual international symposium on Computer architecture (ISCA '14). IEEE

Press, pp. 385-396, 2014.

[104] The Jack Compiler, http://jackcc.sourceforge.net.

[105] J. Babb , M. Frank , V. Lee , E. Waingold , R. Barua , M. Taylor , J. Kim , S.

Devabhaktuni , A. Agarwal, "The RAW Benchmark Suite: Computation Structures For

General Purpose Computing", Proceedings of the 5th IEEE Symposium on FPGA-Based

Custom Computing Machines, pp.134, 1997

[106] The Raw Benchmark Suit, http://groups.csail.mit.edu/cag/raw/benchmark/

[107] Cormen, T., Leiserson, C., and Rivest, R. "Introduction to Algorithms". The MIT Press

Cambridge MA 2001.

[108] C, Cascaval, J. Castanos. L. Ceze, M. Denneau, M. Gupta, D. Lieber, J.E. Moreira, K.

Strauss, and H. S. W. Jr. "Evaluation of Multithreaded Architecture for Cellular

Computing". In proceedings of the 8th International Symposium on High Performance

Computer Architecture, page 311-322, January 2002.

 147

List of Publication by Author

Conferences

[01] D.C. Kiran, S. Gurunarayanan, and J.P.Misra, "Taming Compiler to Work with Multicore

Processors". IEEE Conference on Process Automation, Control and Computing. 2011.

[02] D.C.Kiran, B. Radheshyam. S. Gurunarayanan, and J.P.Misra, "Compiler Assisted

Dynamic Scheduling for Multicore Processors". IEEE Conference on Process

Automation, Control and Computing. 2011.

[03] D.C. Kiran, S. Gurunarayanan, J.P.Misra and Faizan Khaliq, "An Efficient Method to

Compute Static Single Assignment Form for Multicore Architecture". In 1st IEEE

International Conference on Recent Advances in Information Technology, pp. 776-789,

March 2012.

[04] D.C. Kiran, S. Gurunarayanan, and J.P.Misra, "Compiler Driven Inter Block Parallelism

for Multicore Processors". In 6th International Conference on Information Processing,

published in the Communications in Computer and Information Science (CCIS),

Springer-Verlag, August 2012.

[05] D.C. Kiran, S. Gurunarayanan, Faizan Khaliq, and Abhijeet Nawal, "Compiler Efficient

and Power Aware Instruction Level Parallelism for Multicore Architectures". In The

International Eco-friendly Computing and Communication Systems, published in the

Communications in Computer and Information Science (CCIS), Springer-Verlag, pp.9-17

August 2012.

[06] D.C. Kiran, S. Gurunarayanan, J.P.Misra, and D.Yashas "Integrated Scheduling and

Register Allocation For Multicore Architecture". In IEEE Conference on Parallel

Computing Technologies PARCOMPTECH-2013, Organized by C-DAC in IISC

Bangalore, February 2013.

[07] Munish Bhathia, D.C.Kiran, S Gurunarayanan, and J.P.Misra, "Fine Grain Thread

Scheduling on Multicore Processors: Cores With Multiple Functional Units". ACM

Compute. Aug 2013.

 148

Journals

[01]. D. C. Kiran, S. Gurunarayanan, Janardan Prasad Misra, and Abhijeet Nawal, “Global Scheduling

Heuristics for Multicore Architecture,” Scientific Programming, vol. 2015, Article ID 860891, 12

pages, 2015. doi:10.1155/2015/860891.

http://www.hindawi.com/journals/sp/2015/860891/cta/ (This paper is sited in ACM Digital library)

[02]. D.C. Kiran, S. Gurunarayanan, J.P.Misra & Munish Bhathia "Register Allocation for Fine

Grained Threads on Multicore Processors". Journal of King Saud University - Computer and

Information Sciences, Elsevier (Accepted) To appear in Volume 27, Issue 3 2015.

PhD. Forum

[01] D.C. Kiran "Compiler Support and Optimization for Multicore Processors" PhD Forum -

organized in conjunction with ICDCN 2013 at Tata Institute of Fundamental Research,

Mumbai, January 3-6, 2013.

http://www.hindawi.com/journals/sp/2015/860891/cta/

 149

Biographies

Brief Biography of the Candidate

Mr. D.C.Kiran is a faculty in department of Computer Science and

Information Systems at Birla Institute of Technology and Science Pilani

(BITS-Pilani), Pilani campus, India. He obtained his B.E (CSE) from

VTU Karnataka in 2002, and M.E (CSE) from Anna University Chennai

 in 2004. He is teaching at BITS-Pilani since 2005. His research and

teaching interests include Compiler Construction & Optimization,

Programming Language Design and Computer Architecture. He has

published his works in two national and six international conferences.

Contact him at dck@pilani.bits-pilani.ac.in.

http://universe.bits-pilani.ac.in/pilani/dck/profile

Brief Biography of the Supervisor

Professor S Gurunarayanan is a Professor in the department of

Electrical and Electronics Engineering and Dean of Work Integrated

Learning Program Division at Birla Institute of Technology and Science

Pilani (BITS-Pilani), Pilani campus, India.

He obtained his M.E and Ph.D from BITS-Pilani.

He is with BITS-Pilani since 1987.

His research and teaching interests include VLSI Design, Digital Design,

Embedded Systems and Computer Architecture.

Contact him at sguru@pilani.bits-pilani.ac.in.

http://universe.bits-pilani.ac.in/Pilani/sguru/profile

http://universe.bits-pilani.ac.in/pilani/dck/profile
http://universe.bits-pilani.ac.in/Pilani/sguru/profile

