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Abstract 

Plates are used as structural elements in major engineering applications. It is common 

to see openings in these plated structures for various reasons. For example, openings are 

needed for electric wiring, water pipes, plumbing etc. In case of the perforated plates, 

openings are often introduced in the regular array. Industrial applications use both the 

rectangular and triangular array of the perforations. The existence of large open area can 

change the mass distribution and stiffness around the opening regions, thus changing the 

vibration characteristics of the plates. The extent to which the perforations can change the 

vibration behavior of the plated structures depends on the size, shape, locations, numbers and 

type of the perforation pattern. Existing literature on free vibration of the perforated plate 

lacks formulation of the analytical models. Existing studies are more related to the 

determination of the equivalent material properties and their use in calculation of the 

fundamental frequency. In this thesis, analytical models are formulated to determine the 

fundamental frequency of the thin perforated plates. Approximate analytical methods such as 

the Rayleigh’s method, Rayleigh’s–Ritz method and the Galerkin method are used to 

formulate the analytical models. For analytical models different aspects are considered for 

plates with clamped all edges. Analytical models are formulated for the rectangular plates 

with circular/rectangular/square openings arranged in the regular array. Proposed analytical 

models are based on the special functions to express the variation of the material properties due to 

the perforations, negative mass concept for perforation and replacing circular perforation with the 

equivalent square perforation. Expression for modal constant for fundamental frequency of 

perforated plate is also determined. To establish this modal constant, experimental vibration 

data is used. The parameters of interest are the size of the opening, the ratio of the area of full 

solid plate to that of perforated plate, type of perforation pattern and the aspect ratio of the 

plate. A simple approximate formula for the fundamental natural frequency of flexural 

vibration of rectangular isotropic perforated plate is developed using this modal constant. 

New analytical models proposed for thin plates are validated by comparing numerical results with 

FEM (Finite Element Method) and experimental results. Also one analytical model is formulated 

for the moderately thick perforated plates by using the Mindlin plate theory. Results obtained are 

compared with those obtained from the Kirchhoff plate theory and FEM. It is observed from the 

validation, proposed models with proper cautions can be used to predict the fundamental 

frequency.  
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Chapter 1 

Introduction 

1.1 Background 

Plates are important structural elements in engineering applications such as pressure 

vessels, missiles, liquid containers, ship structures, and nuclear power equipments. Since 

perforated products reduce the weight and improve certain properties, they are used in the 

products. The perforated plates are used in the construction of heat exchangers where these 

are called as tube sheets. The boiler is a well-known example for industrial application of the 

perforated plates. The perforated sheets have a multitude of functions. Their versatility 

includes screening, filtering, apportioning, ventilating, deflocculating, regulating, protecting, 

rasping, ordering and forming. Cutouts are found in mechanical, civil, marine and aerospace 

structures commonly as access ports for mechanical and electrical systems, or simply to the 

reduce weight. Cutouts are also made to provide ventilation and for modifying the resonant 

frequency of the structures. In addition, the designers often need to incorporate cutouts or 

openings in a structure to serve as doors and windows.  

The holes in plate are arranged in various regular perforation patterns. Industrial 

applications include both square and triangular array perforation patterns.  Behavior of the 

perforated component is drastically different from those of non-perforated component. Since 

the dynamic performance is always of interest, perforated rectangular plates having 

rectangular/triangular pattern with the circular/rectangular/square perforations are chosen and 

analytical, experimental models are formulated to find the fundamental frequency.    

1.2   Advantages of the Perforated Plate  

Advantages of perforated plates are discussed below (Europerf, 2013). 

 Enhanced Acoustic Performance 

The Perforated plate is used for soundproofing and for reducing acoustic emissions. Almost 

all results required can be achieved by defining the open area accurately. The perforated sheet 

is even ideal as a supporting material for other sound-insulating applications. 
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 Radiation Containment 

The Perforated plate is used to enclose electrical appliances in order to attenuate the emitted 

EMI /RFT radiation and to ventilate the appliances at the same time. Test results show that a 

shielding effectiveness of 40 dB provides 99% percent attenuation of the electromagnetic 

radiation while a shielding effectiveness of 92 dB – the highest one in the tests – provides 

99.997 percent attenuation. 

 Reduction in Weight 

Reducing weight is becoming more and more important in areas such as the aerospace 

industry. The perforated metal is the ideal way to meet this requirement. In addition, 

machining a perforated plate (bending etc.) does not leave its load-carrying capacity at a 

disadvantage compared to the unperforated specimen.  

 Ease in Separating Materials 

The perforation and open area can be specified exactly, making the perforated sheet ideal for 

filtering, separating, or sorting goods. The open area can be varied in numerous ways to 

affect the flow rate, size sorting etc. accurately. Filter elements made from perforated metal 

are of major benefit to the user.  

 Enhanced Heat Dissipation  

Components made from perforated plate play a valuable role in regulating temperature by 

heat dissipation in cold shelves, hot-air ventilators or complex heating units. The combination 

of useful functions with an appealing design gives rise to solutions in which a unique 

aesthetic touch complements the actual function of the application. 

 Improved Skid Resistance / Anti-Skid 

Floor coverings made from the perforated or stamped plates have special anti-skid properties 

to ensure safety in many areas. Especially in areas with high exposure to wetness, dirt etc., 

perforated floor coverings and steps etc. offer excellent skid-resistance so you can walk 

across these dangerous surfaces safely.  

The uses of perforated metal plates are given in Appendix ‘A’ 

1.3 Perforation Types and patterns  

Commonly used types of perforations and perforation patterns are discussed below (New 

Metals, Inc., 2013). 
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1.3.1 Perforation Types 

 Round: Round perforations are produced with the greatest efficiency with less 

expensive and more durable tooling. Round holes are the most popular shape in the 

perforated metal industry. Round perforations are the strongest and most versatile of 

all perforation patterns. 

 Squares/ Rectangular: These types of perforations are very useful in sorting and 

grading of solid objects, such as grains or minerals. It has most common use in 

ventilation and protective guards. Squares are the simplest of all decorative design 

perforations. The advantages that square and rectangular holes offer are maximum 

open area for ventilation, excellent visibility and excellent protection. 

Square/rectangular perforations are weaker than round ones.  

1.3.2 Perforation Patterns 

There are three types of standard distribution patterns. 60
o
 Staggered, 45

o
 staggered and 

rectangular/square (90
o
).  

 

 Staggered:   Distribution of perforations in a triangular pattern, forming a 45° or 60° 

angle when joining centre lines of three adjacent holes with a straight line (Figure 

1.1a). 

 Rectangular/Square: Distribution of perforations in a rectangular/square pattern, 

forming a 90° angle when joining centre lines of three adjacent holes with a straight 

line (Figure 1.1b). 

 

Figure 1.1 Perforation patterns (a) Staggered (b) Rectangular  

These regular arrays are characterized by their ligament efficiency (ηl), which is defined as  
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  

(1.1) 

1.4 Motivation and Research Hypothesis  

1.4.1 Motivation 

From above section 1.1 to 1.2 the problem of free vibration of plates with 

perforations/cutouts is very important since these plates are extensively used in various 

applications. The problems of plates with perforations are generally more difficult to be 

described easily and accurately. Moreover, there is little information about the free vibration 

problem of the plates having rectangular or triangular array of holes. Dynamic behavior of 

perforated plates is different from homogeneous isotropic plate structure. In order to 

understand the dynamic behavior of such a structure, a precise and efficient method is needed 

for the thin plate. Thus to design and manufacture these new types of structural components 

safely and economically, it is important to develop a simple and quick method for 

determining the fundamental frequency. 

1.4.2 Research Hypothesis 

It is possible to determine the fundamental frequency of perforated plates by 

considering the variation in its material properties due to holes. The fundamental frequency is 

a function of the perforated plate material properties such as Young’s modulus and density 

distribution. 

1.5 Objective and Scope 

In the present research, the problems of the “free flexural vibrations of thin 

rectangular perforated plates with circular/rectangular/square perforations” are formulated for 

determining the fundamental frequency. The parameters like, size of perforation hole, 

ligament efficiency and perforation pattern are considered in the problem formulation. The 

theoretical formulations of the problem are based on the classical thin plate theory. Thus, the 

transverse shear deformations, the transverse and the rotary moments of inertia of the plates 

are not included in the formulation. The damping effects in the plates are neglected. In this 

study boundary condition considered is all edges clamped. However, the analytical models 

formulated for the material property variation in this thesis can be extended to other edge 

conditions. Also one extensional model is given for the moderately thick plates by using 

Mindlin plate theory. In all the analytical models standard available shape functions are used 
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in the approximate methods suitable for the boundary condition. The formulation of new 

shape function is not within the scope of this work. The main objectives of the present work 

are as follows: 

 

1. To formulate the functions to express the variation of the Young’s modulus and the 

density of the perforated plate having rectangular/square and staggered pattern (60
o 

and
 
45

o
) of the perforations. 

2. To develop an analytical model for determining the fundamental frequency of the 

perforated plate by incorporating the special functions to express the non 

homogeneity in the Young’s modulus and density with approximate methods such as 

Rayleigh’s method, Rayleigh’s-Ritz method. 

3. To develop an analytical model for determining the fundamental frequency of 

perforated plate by using the “added concentrated negative mass” approach to express 

the effect of the perforation. 

4. To obtain an expression for the modal constant of the fundamental frequency of the 

perforated plate experimentally. Modal constant will permit the ready determination 

of the natural frequencies for a plate involving any combination of ligament efficiency 

and perforation diameter. 

5. To analyze the dynamic behavior of the rectangular perforated plates with the 

rectangular or triangular perforation pattern for the varying sizes of the circular 

perforation holes and the ligament efficiencies.  

6. To validate the analytical models developed by comparing results of the numerical 

analysis with the FEM simulations and the experimental results for representative 

specimens 

1.6 Organization of the Thesis 

This thesis is organized as follows. The Chapter 2 describes the existing work in the 

areas relevant to this thesis. At the end of the chapter gaps existing in the current literature are 

given. In the Chapter 3 the equation of motion governing the free vibration of the isotropic 

plates is given based on the classical plate theory, assumptions used in the derivation are also 

given. Further approximate methods i.e. Rayleigh’s method, Rayleigh’s-Ritzs method and 

Galerkin method used for obtaining the fundamental frequency are discussed. The theoretical 

models which are explained in the subsequent chapters are based on these methods. In this 

chapter problem formulation is also discussed in detail. Chapter 4 is devoted to the 
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experimental details to obtain the fundamental frequency, as the results of this analysis are 

used to validate proposed analytical models. This chapter gives details of the test fixture, 

specimen dimensions, experimental set up and test procedure.  

Further work in thesis related to the formulation of analytical models to determine the 

fundamental frequency is categorized in three parts  

i) Thin rectangular plates with the rectangular/square perforations (Chapter 5 

and 6) 

ii) Thin rectangular plates with the circular perforation (Chapter 7,8 9 and 10) 

iii) Moderately thick rectangular plates with the rectangular/square perforations 

(Chapter 11) 

The Chapter 5 presents the analytical models to determine the fundamental frequency of 

plates with rectangular/ square array of perforations where as the Chapter 6 presents 

analytical models for plates with staggered array of perforations. In the Chapters 7, 8, 9 and 

10 the models are formulated to determine the fundamental frequency of plates with 

rectangular array of perforations. In the Chapter 7 analytical model is formulated by using 

concept of negativ concentrated mass for the perforations. In Chapter 8 analytical model is 

formulated by using concept of equivalent square perforation to replace the circular 

perforation. The Chapter 9 presents the hybrid method to obtain expression for modal 

constant for the fundamental frequency. In the Chapter 10 analytical model is formulated by 

considering unit step function to map exactly the circular perforations. Extension of the 

approach presented in the chapter 5 is given in the chapter 11 for moderately thick plates. 

Mindlin plate theory is used in this chapter for the analytical modeling. Finally conclusions 

about the work presented in thesis along with the recommendations for the future work to 

extend this research are given in the Chapter 12. 
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Chapter 2 

Literature Review 

2.1 Introduction 

Many researchers have studied vibration behavior of the plates, using a wide range of 

methods. However, for the rectangular plates having rectangular or triangular array of 

perforations, published literature is limited. This may be because of the complications 

involved due to geometry. Focusing our attention on the available literature on the perforated 

plate vibration, it is convenient to classify it into three categories based on the analytical 

models formulated in this thesis. Thus this chapter gives detailed review of the literature 

related to the analytical models formulated in the further chapters. The literature review is 

classified in to the following categories 

1. Work directly dealing with the vibration of plates having cut outs and the perforated 

plates  

2. Work dealing with the vibration of plates with the non homogeneous material 

properties. 

3. Work dealing with the vibration of plates with the added concentrated mass. 

2.2 Vibration of Plates with Cut Outs and Perforations 

The problem of free vibration of the plates with the cut outs and perforations has 

attracted many researchers and engineers; hence many relevant papers have been published. 

Majority of the literature reviewed utilize approximating techniques to formulate the problem 

of free vibration of the plates with cut out or perforations. Most of the studies have been 

directed towards the plates with simply supported edges and very little regard is given to the 

clamped edges. O’Donnell and Langer (1962) obtained values of effective elastic constant for 

the plates having triangular perforation pattern of circular holes. Effective elastic constants 

were derived from strain measurement and photo-elastic tests. It was then proposed that these 

equivalent elastic constants can be used for analyzing perforated plates with concept of an 

“equivalent” solid plate. Equivalent plate is same as the solid plate, but it has fictitious elastic 

constants E* and n* instead of actual constants of the material E and n.  Figure 2.1 shows 

variation of the ratio of the effective elastic constants (values with * as superscript) with the 

ligament efficiency. 
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Figure 2.1 Effective elastic constants given by O’Donnel and Langer (1962)  

Meijers (1967) also determined from experimental measurement of strain, values of 

the effective elastic constants for the rectangular plates having circular holes in rectangular 

array and diagonal array.  Finite element analysis of a clamped plate with different cutout 

sizes, along with experiments using holographic interferometry, was carried out by Monahan 

(1970) et al. Paramsivam (1970) used a finite difference approach in analyzing the effects of 

openings on the fundamental frequencies of the plates with simply supported and clamped 

boundary conditions. O’Donnell (1973) determined the effective elastic constants for the thin 

perforated plates with the triangular and the square perforation patterns by equating the 

strains in an equivalent solid material to the average strains in the perforated material.  

Free vibrations of the rectangular elastic plate, either clamped or simply supported, 

with a central circular hole has been investigated by Hegarty (1975) using least-squares 

point-matching method.  Soler and  Hill (1976) proposed a simple analytical expression 

which is suitable for determination of the effective bending stiffness of a perforated circular 

plate having both rectangular and triangular array of circular holes. Aksu and Ali (1976) 

obtained dynamic characteristics of the rectangular plates with one or two cutouts using a 

finite difference formulation along with experimental verifications. Ali and Atwal (1980) 

studied the natural frequencies of the simply supported rectangular plates and rectangular 

cutouts using the Raleigh Ritz method. Reddy (1982) studied linear and large amplitude 

http://asmedl.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Soler%2C+A.+I.&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://asmedl.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Hill%2C+W.+S.&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
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flexural vibration of the isotropic and the composite plates with cutout by using the finite 

element method. Chang and Chiang (1988) studied the vibration of the rectangular plate with 

an interior cutout by using the finite element method. Lam et al. (1989) presented an efficient 

and accurate numerical method in the study of the vibration of the rectangular plates with 

cutouts and non-homogeneity. The deflection function for the originally complex domain was 

found by dividing the problem domain into appropriate rectangular segments. Lam and Hung  

(1990) investigated flexural vibrations of the plates with discontinuities in the form of the 

cracks and the cutouts using a scheme which combines the flexibility of dividing the problem 

domain into appropriate segments and the high accuracy resulting from the use of orthogonal 

polynomial functions, generated using the Gram-Schmidt process. Lee, Lim and Chow 

(1990) predicted the natural frequencies of the rectangular plates with an arbitrarily located 

rectangular cutout. Forskitt et. al. (1991) introduced the concept of perpendicular and parallel 

ligament efficiency, XLE and YLE respectively to allow for different spacing between the 

layers of the holes in an array of perforations. For a diagonal array of circular holes of 

diameter d, perpendicular pitch Lh and parallel pitch Lv as shown in Figure 1.1, the 

perpendicular and parallel ligament efficiencies, XLE and YLE are defined as  

( 2 )h

h

L r
XLE

L


  (2.1) 

( 2 )v

v

L d
YLE

L


  (2.2) 

The effective density ϱ* according to Forskitt et. al.(1991) is based on the solid area fraction 

of the plate  and can be expressed by a function of XLE and YLE as given by equation (2.3) 

and (2.4) for the regular triangular and rectangular array respectively. 

*
1 (1 )(1 )

8
XLE YLE

 



 
    

 
 (2.3) 

*
1 (1 )(1 )

16
XLE YLE

 



 
    

 
 (2.4) 

 

It was then proposed for a simply supported rectangular perforated panel, the effective 

resonance frequency of the (m, n) mode can be given as below by introducing the effective 

material properties, 
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 (2.5) 

According to Burgemeister and Hansen (1994) equation (2.5) does not provide correct 

resonance frequencies when using the effective material properties. Burgemeister and Hansen 

(1994) showed that the effective material constants can not be used in the classical equations 

to predict accurately the resonance frequencies of the simply supported perforated panel. 

Instead it is much more accurate to fit the results from ANSYS to a simple cubic function. 

This function can be used to determine the effective resonance frequency ratio for large range 

of the panel geometries with an error of less than 3%. The cubic function is given by  

3 2

3 2

*
a XLE b XLE c XLE

d YLE e YLE f YLE g




      

     

 

 

(2.6) 

Coefficients of above function are listed in Table2.1. 

Table 2.1 Coefficients for the cubic function in equation 2.6 

Coefficient Value 

a 0.0399 

b -0.0727 

c 0.1161 

d -0.1295 

e 0.1013 

f 0.1096 

g 0.8395 

 

Mundkur et al. (1994) studied the vibration of the square plate with the square cutouts 

by using boundary characteristics orthogonal polynomials satisfying the boundary conditions. 

Young et al. (1996) presented the free vibration of the thick rectangular plates with 

depression, grooves or cutouts using three-dimensional elasticity and Ritz method. Kaap's 

(1997) literature review of the methods for predicting the perforated plate vibrations showed 

that no design curves for this analysis have been developed. He showed from the review of 

literature that, there are no analytical, numerical, or experimental data available that would 
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enable a designer to predict the dynamic response of the perforated plates. Choi et al. (1998) 

performed the finite element modal analysis for the perforated plates having square and 

triangular hole patterns. Choi et al. (1998) studied vibration of the simply supported 

perforated plates by using the concept of the equivalent solid plate. They found that the 

values of equivalent elastic constants are different from the static problems to get accurate 

results. Further they noticed the difference between equivalent elastic properties for the static 

and dynamic analysis become significant as the ligament width gets smaller. 

Sivasubramonian et. al.(1997,1999) investigated the free vibration characteristics of 

the unstiffened and longitudinally stiffened square panels with the symmetrical square 

cutouts by using the finite element method. The optimized Rayleigh-Ritz method was applied 

by Ricardo et al. (1997) to generate values of the fundamental frequency coefficient and the 

one corresponding to the first fully antisymmetric mode for the rectangular plates elastically 

restrained against rotation and with located circular holes. Huang and Sakiyama (1998) 

analyzed the free vibration of the rectangular plates with variously shaped holes. Sahu and 

Datta (2003) studied the parametric instability behavior of the curved panels with cutouts 

subjected to the in-plane static and periodic compressive edge loadings using the finite 

element analysis. The first order shear deformation theory was used to model the curved 

panels, considering the effects of transverse shear deformation and rotary inertia. Avalos and 

Laura (2003) performed series of the numerical experiments on the vibrating simply 

supported rectangular plate with two rectangular holes and free edges. Liew et al. (2003) 

presented analysis of free vibration of the plates with internal discontinuities due to central 

cut-outs. A numerical formulation for the basic L- shaped element which was divided in to 

the appropriate sub domains that were dependent upon the location of cut out was used as the 

basic building element.  Wang and Lai (2003) adopted the hybrid method, which combines 

the experimental and the numerical methods, to investigate the dynamic behavior of the 

perforated plates. The equivalent material properties of the perforated plates were also 

obtained by the hybrid method. In addition, the curve-fitting technique was utilized to find 

the relationship of the mass remnant ratio (i.e. the ratio of surface area of the perforated plate 

to that of the solid plate for the same dimension) with the parameter ratio. Since the 

equivalent material properties of the perforated plate can be determined via the specimen 

dimensions, hole size, and hole arrangement, the mass remnant ratio (MRR) was defined in 

terms of the geometric parameters shown in Figure 2.2, and expressed as  
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Here Lx and Ly are the horizontal and vertical lengths of the plate, respectively; Lh and Lv are 

the horizontal and vertical spacing between the centers of the holes of two neighboring 

columns and rows, respectively; r is the radius of a hole. 

 

 

Figure 2.2 Schematic of the perforated plate with 60
o
 staggered patterns (Wang and 

Lai, 2003) 

They (Wang and Lai, 2003) obtained functions from the curve fitting and used, to predict 

accurately the equivalent material properties and the resonant frequencies of the perforated 

plates of the diagonal array. Sinha et al. (2003) suggested a formula for added mass of the 

vibrating perforated plate-type structures submerged in the fluid based on the experimental 

and the analytical studies on a number of test specimens.  Wu et al. (2003) developed a 

mathematical model of the axisymmetric elastic/plastic perforated circular plate for the 

bending and stretching. Bhattacharya and Venkat Raj (2003) analyzed a quarter symmetric 

part of a perforated plate containing a 3×3 square array of the circular holes by the finite 

element method (FEM) to obtain the peak stress multipliers under membrane and bending 

loads for different biaxiality ratios.  Britan and  Karpov et al. (2004) studied experimentally 

and theoretically/numerically the flow and wave pattern resulted from the interaction of an 

incident shock wave with a few different types of barriers, all having the same porosity but 

different geometries.  Bhattacharya, Venkat Raj (2004) developed second and fourth order 

polynomials describing the yield criterion for the perforated plates with square perforation 

pattern. They have not considered the effect of out-of-plane stresses in the investigation as 

these are found to be negligible in case of the thin perforated plates, for which plane stress 

condition was assumed in the finite element formulation. Pedersen (2004) studied the 

optimization of a hole of given area which is placed in the interior of a plate with an arbitrary 

http://www.asmedl.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Britan%2C+A.&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://www.asmedl.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Karpov%2C+A.+V.&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://www.asmedl.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Bhattacharya%2C+A.&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://www.asmedl.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Raj%2C+V.+Venkat&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
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external boundary. The objectives of the optimization were the eigenfrequencies of the plate 

with the hole. The optimization was performed in relation to maximizing the first 

eigenfrequency or maximizing the gap between the first and second eigenfrequency. Lee and 

Kim (2005) studied the validity of the Eshelby-type model for predicting the effective 

Young’s modulus and in-plane Poisson’s ratio of the two dimensional perforated plates in 

terms of the porosity size and its arrangement. Rezaeepazhand and Jafari (2005) used 

analytical investigation to study the stress analysis of the plates with different central cutout. 

Particular emphasis was placed on the flat square plates subjected to a uni-axial tension load. 

They compared results based on the analytical solution with the results obtained using the 

finite element methods. Hung and Jo (2006) studied free vibration characteristics of a circular 

perforated plate submerged in the fluid with the rectangular and square perforation patterns. 

The natural frequencies were obtained by the theoretical calculations and three dimensional 

finite element analysis. The effect of holes on the modal characteristics was investigated; they 

also proposed new equivalent elastic constants for the modal analysis of a perforated plate. 

Figure 2.3 shows the effective elastic constants proposed for the modal characteristics of a 

perforated plate with triangular and square perforation patterns. The Young’s moduli 

proposed by Hung and Jo (2006) for the modal analysis of the perforated circular plates with 

triangular and square perforation patterns are as follows ,where   is ligament efficiency and 

*E  is equivalent Young’s Modulus. 

2 3 4*
0.6106 1.1253 2.7118 4.0812 2.1128

E

E
          (2.8) 

2 3 4*
0.5280 2.0035 5.478 7.7474 3.8968

E

E
          (2.9) 

Work of Kathagea et. al.  (2006) deals with the design of perforated trapezoidal 

sheeting. They calculated the effective stiffness values for the perforated sheeting with 

different arrays of the holes based on the numerical analysis and graphs. Patil et al. (2007) 

also gave an expression for the effective resonance frequency of the rectangular perforated 

plate with the staggered perforation pattern. They used curve fitting technique to obtain an 

expression for the effective resonance frequency. They used the FEM (Finite Element 

Method) simulation data of resonance frequencies for the five perforated plates. The formula 

is a function of the mass remnant ratio. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V59-4N2M6KR-1&_user=1556284&_coverDate=12%2F31%2F2006&_alid=790293129&_rdoc=79&_fmt=full&_orig=search&_cdi=5781&_st=13&_docanchor=&view=c&_ct=519&_acct=C000053686&_version=1&_urlVersion=0&_userid=1556284&md5=9fa01f3632411290b9347273de75e3f1#aff1
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Figure 2.3 Effective elastic constants of perforated plates (Hung and Jo, 2006) 

Tong Liu et al. (2009) studied effect of the cracks on the natural frequencies and 

modal strain energy of a perforated plate with ligament fractured cracks by the finite element 

analysis. Romero et al. (2010) used digital speckle interferometry technique for tuning 

resonant frequencies of the vibrating plates in order to investigate the dynamical behavior of 

the perforated plates. Experimental natural frequencies and modal shapes were compared to 

those obtained by an analytical approximate solution. Analytical approximate solution was 

based on the Rayleigh–Ritz method with the use of orthogonal polynomials as coordinate 

function. 

2.3 Vibration of the Plates with the Non Homogeneous Material Properties 

Leissa (1969, 1977, 1981, and 1987) compiled some works done in the field of the 

homogeneous and the non-homogeneous plates. Sobczyk (1972) studied free transverse 

vibrations of elastic rectangular plates with random material properties. Laura et al. (1984) 

studied non-homogeneous rectangular plates. Mishra and Das (1971) proposed a method of 

the characteristic orthogonal polynomials in one dimension to handle the rectangular plates. 

Pan (1976) developed characteristic orthogonal polynomials in two variables to study the 

flexural vibrations of the polygonal plates. Rao et al. (1974, 1976) studied vibrations of the 

inhomogeneous thin plates using a high precision triangular element, and vibration of the 
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inhomogeneous rectangular plates by using perturbation solution. Tomar et al. (1982, 1983, 

and 1984) studied vibrations of the plates of variable thickness having non homogeneity. 

Chakraverty et al. (1999, 2007) used two-dimensional orthogonal polynomials as shape 

functions in the Rayleigh-Ritz method to study vibration of the non-homogeneous plates; 

they also studied effect of the non-homogeneity on the natural frequencies of vibration of 

elliptic plates.  Lal et al. (2009) studied free transverse vibrations of the uniform 

nonhomogeneous rectangular plates using boundary characteristic orthogonal polynomials in 

the Rayleigh-Ritz method on the basis of the classical plate theory for four different 

combinations of clamped, simply supported and free edges. Lal and Dhanpati (2010) studied 

the effect of nonhomogeneity on the vibration of the orthotropic rectangular plates of varying 

thickness resting on the pasternak foundation. 

2.4 Vibration of the Plates with the Added Concentrated Mass 

Low (1993, 2001) determined the vibration frequencies of the rectangular plates with 

weights mounted at various locations. He also developed improved model to determine the 

frequency of the vibrating plates carrying multiple masses at various positions. Low et al. 

(1997, 1998) obtained natural frequencies of the rectangular plates carrying a single and 

multiple concentrated masses by using the Rayleigh-Ritz method for different boundary 

conditions. Results obtained from the analytical study using the energy method are compared 

with those measured experimentally. Chai Gin Boay (1995) analyzed free vibration of the 

rectangular isotropic plates carrying a concentrated mass. The Ritz approach is applied to the 

rectangular plates with various edge support combinations of clamped and simple support 

conditions. The effect of different locations of the concentrated mass on the fundamental 

frequency of the plate is presented in detail. Wu and Luo (1997) determined the natural 

frequencies and the corresponding mode shapes of a uniform rectangular flat plate carrying 

any number of point masses and translational springs by means of the analytical and the 

numerical combined method (ANCM). Avalos et al.  (1997) studied transverse vibrations of 

the simply supported rectangular plates with rectangular cutouts carrying an elastically 

mounted concentrated mass. Ostachowicz et al. (2002) presented new results for the 

identification of the location of a concentrated mass on the isotropic plates by means of a 

genetic algorithm search technique based on changes in the natural frequencies. Li (2003) 

presented an exact approach for free vibration of an isotropic rectangular plate carrying a 

line-concentrated mass and with a line-translational spring support or carrying a line-spring-

mass system. Altintas (2009) investigated the special behaviors of the linear vibrating plates 
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with the special parameters near degenerate modes. The special parameters considered in this 

study are the location and quantity of an additional mass, which have an effect on removing 

the system symmetry. Yin Zhang (2011) presented and compared different methods on the 

eigenfrequency computation of a beam and a plate carrying arbitrary number of concentrated 

mass/spring. The advantages and disadvantages of these methods are analyzed and discussed. 

Amabili (2010) studied nonlinear forced vibrations of the rectangular plates carrying a central 

concentrated mass. Amabili et al. (2006, 2012) studied effect of concentrated masses with 

rotary inertia on vibrations of the rectangular plates and large-amplitude vibrations of the 

rectangular plates carrying concentrated masses. 

2.5 Gaps in the Existing Research 

From review of the literature it is observed that, more studies have been done, 

especially on the subject of vibration of the plates with few cut outs in the plate than the 

perforated plates. Also design guidelines are available for the static problem of the perforated 

plates. According to these guidelines elastic modulus of the plate can be replaced by an 

artificial or an effective elastic constant to accommodate the average decrease in stiffness 

(Kaap, 1997). However such guidelines or procedures do not exist for the dynamic design of 

the perforated plates. There are no analytical, numerical, or experimental data available that 

would enable a designer to predict the dynamic response of the perforated plates (Kaap, 

1997). The effect of hole geometry, hole size and the ligament efficiency on the dynamic 

behavior of the rectangular plates is not studied in combination so far experimentally and also 

by using the FEM.  

The key findings from the literature leading the gap existing in the research are as follows: 

1. The effects of cutout size, ligament efficiency, and the equivalent elastic properties on 

the natural frequencies of the plates for different boundary conditions by experimental 

analysis have been treated sparsely in the literature. In the literature, much of the 

research has discussed the analytical or the numerical solutions of the plate with few 

cut outs. 

2. No literature is reportedly dealing with the analytical solutions of the plate with the 

rectangular/square perforations arranged in the rectangular/triangular perforation 

pattern.  
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3. Values of the effective elastic constants suggested by O’Donnell et. al. (1962, 1973) 

are not valid from the modal characteristic point of view for the perforated plate 

because these are applicable under certain conditions (Hung and Jo, 2006). 

4. From review of the literature, authors have found no work dealing with the analytical 

formulation by considering unit step function or using greatest integer function i.e. 

floor function to express the non homogeneity due to the holes (in the Young’s 

modulus and density). 

5. From the literature on vibration of the perforated plates and vibration of the plates 

with the added concentrated mass, it is found that, there is no evidence on the 

analytical formulation for the perforated plate vibration problem by considering 

negatively added concentrated mass approach for the holes. 

6. There is no evidence on formulation of the modal constants, functions from curve 

fitting or empirical equations to predict accurately the effective resonance frequencies 

of wide range of the perforation geometries, for the rectangular plates with the 

rectangular perforation pattern for all edges clamped support condition. 

2.6 Concluding Remark 

The studies demonstrating practical applicability of the analytical methods to 

vibration analysis problem of the plate with multiple perforations are lacking in the 

professional literature. Present approaches in the literature use homogenization which aims 

for the equivalent stiffness (e.g. E, G, EI) and strength properties that can be used in the 

assessment of the structural systems, the response of homogenized solution is often not 

accurate for the dynamic problem. Thus there is need of the some analytical approach that 

will lead to at least an estimate of the answer of the problem. Further, proposed analytical 

methods should be simple and quick for the solutions.  
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Chapter 3 

Governing Equations and Formulation of the Problem 

3.1 Introduction 

The deflection of the thin plate is governed by the fourth order partial differential 

equation. In this chapter the equations of motion for free vibration of the plate is given with 

underlying assumptions. The order of mathematical complexity increases when the flexural 

rigidity, D varies for the plate. As in the present problem of the plate with perforations 

arranged in the rectangular/triangular array flexural rigidity do not remain same all over the 

plate domain. Thus approximate techniques for the solution of the problem are required. The 

approximate methods used in this thesis for the analytical modeling are discussed in this 

chapter. In section 3.4 of the present chapter detailed formulation of the problem is given. 

3.2 Governing Equation of the Free Vibration of the Plate 

The work presented in this thesis considers only the classical plate theory in the 

analysis along with the solution of the rectangular plates of various sizes of the perforations 

and the different perforation patterns. Here, first classical plate theory is addressed. Classical 

thin plate theory or Kirchhoff plate theory is based on the following assumptions 

(Chakraverty, 2009) known as the Love-Kirchhoff hypotheses. 

 The plate material is linear elastic and follows Hooke's law. 

 The plate material is homogeneous and isotropic. Its elastic deformation is 

characterized by the Young's modulus and the Poisson's ratio. 

 The constant thickness of the plate is small compared to its lateral dimensions. That 

is, the smallest lateral dimension of the plate is at least 10 times larger than its 

thickness. 

  The normal stress in the transverse direction can be neglected compared to the 

normal stresses in the plane of the plate. 

 Points that lie on a line perpendicular to the center plane of the plate remain on a 

straight line perpendicular to the center plane after deformation. 

 The deflection of the plate is small compared to the plate thickness. A maximum 

deflection of one-tenth of the thickness is considered the limit of the small-deflection 

theory.  

 The center plane of the plate is stress free, i.e., we can neglect the membrane stresses 
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in the plate.  

 Loads are applied in a direction perpendicular to the center plane of the plate 

 Effect of rotatory inertia is negligible. 

 

 

 

 

 

 

 

Figure 3.1 Rectangular plate co-ordinates 

The partial differential equation governing the free transverse vibration of an isotropic thin 

plate with dimensions a, b and transverse dimension is h, the plate thickness shown in Figure 

3.1, is ( Ventsel and Krauthammer, 2001), 
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Where h is the uniform plate thickness, ρ is the density, w is transverse displacement, and D 

is the flexural rigidity, 
2 is two-dimensional Laplacian operator. D and 

2  are given as 

(Ventsel and Krauthammer , 2001; Chakraverty S., 2009), 
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(3.3)    

where E is modulus of elasticity and ν is the Poisson’s ratio.     

3.3 Approximate Solution Methods 

In the plate vibration problems, sometimes it is not possible to get the exact solutions 

due to the complexity of the domain occupied by the plate and sometimes specified boundary 

conditions make the problem more complex. Therefore, we need to use the approximate 

methods (Chakraverty, 2009).There exist various approximate methods to handle plate 

vibration problems. The approximate methods, viz., Rayleigh, Rayleigh–Ritz method and 
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Galerikin method, are discussed to handle the vibration of the plate problems in this section, 

because only these methods are mainly used in the rest of the chapters of this thesis by using 

a newly developed solution methodology for vibration of the perforated plate problems. 

These approximate methods have been emphasized in this work because of their relative ease 

in understanding in comparison with some of the other methods, their historical significance, 

and widespread usage in the published literature of free vibrations, and the capability to 

obtain truly accurate frequencies in majority of the cases.  

3.3.1 Rayleigh’s Method 

The Rayleigh’s method may be applied to all continuous systems. This method 

requires expressions for maximum kinetic and potential energies of a system. Rayleigh’s 

principle is based on the statement ‘If the vibrating system is conservative (no energy is 

added or lost), then the maximum kinetic energy, ‘Tmax’, must be equal to the maximum 

potential (strain) energy, ‘umax’ For applying this principle, elastic plate undergoing free 

vibrations, with fundamental mode, is considered as system with one degree of freedom. This 

gives us a quotient known as Rayleigh’s quotient. This methodology for finding the 

fundamental frequency of the plate is shown below (Chakraverty, 2009).  

Kinetic energy of the plate T is given as,  

2.1
( , , )

2
R

T h w x y t dxdy   
                                                      

(3.4) 

Assuming that the plate is undergoing harmonic vibrations, and then vibrating middle surface 

of the plate can approximated by equation), 

    tyxWtyxw 11 cos,,,   (3.5) 

Where W1(x, y) is a continuous function that approximately represents the shape of the plate’s 

deflected middle surface and satisfies at least the kinematic boundary conditions and ω1 

represents the natural frequency of the plate pertinent to the assumed shape function.  

Assume ω = ω1 be its fundamental frequency  

Maximum value of Kinetic energy is obtained at, 
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Maximum Strain energy is given as, 

 

 
(3.8) 

For conservative system by the Rayleigh’s principal, 

maxmax uT   (3.9) 

From equation (3.7) and (3.8) 
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
  is the integral over the plate area without the frequency. 

(3.10) 
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where , 

  
 

 

             

(3.12) 

Equation (3.12) is called as the Rayleigh’s Quotient and gives the fundamental natural 

frequency of the plate. For constant thickness and homogeneous plate, D, ρ and h are 

constant. Hence the Rayleigh’s Quotient becomes, 

  
 

 

 

(3.13) 

If shape function W1 satisfies boundary conditions of the problem, as well as if it 

happens to be a good approximation to the fundamental mode shape, then the first frequency 

as given by the Rayleigh’s method will give better approximation of the fundamental 

frequency (Chakraverty, 2009). 
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3.3.2 Rayleigh-Ritz’s Method 

The Rayleigh’s Ritz method utilizes a series of the admissible functions to represent 

the vibratory displacement of a two-dimensional continuous system. That is, W1(x, y) in the 

equation (3.5) is written as (Leissa and Qatu, 2011) 

1

( , ) ( , )
n

i i

i

W x y C x y


  (3.14) 

Each of the φi in above equations satisfies at least the geometric boundary conditions. 

Geometric boundary conditions for the plate are those imposed on the displacements and 

slopes. If the set of admissible function is capable of representing any arbitrary displaced 

shape consistent with the geometric boundary conditions as n → ∞ in equation (3.14), then 

the Rayleigh-Ritz procedure will converge monotonically to the exact frequencies as 

sufficient terms in equation (3.14) are taken. If not, then it will converge to the frequencies 

which are upper bounds on the exact frequencies (Leissa and Qatu, 2011). 

To use the Rayleigh’s-Ritz method one formulates umax and Tmax in terms of Ci and ϕi of 

equation (3.14), and then minimizes the frequency with respect to Ci. That is, one lets the 

method determine Ci so as to obtain the best upper bounds for the frequencies. The frequency 

minimizing equations are  

2( )
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i
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
 (3.15) 

Substituting (3.10) into (3.15), 
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2 *

max maxu T  from equation (3.10) 
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Because T
*

max is never zero except in a trivial solution, the foregoing equation (3.18) may be 

divided through by it to yield the following more useful set of the minimizing equations  

 2 *

max max 0
i

u T
C




 


, ( 1,2,..... )i n  (3.19) 

This is a set of n simultaneous, linear, algebraic equations in the unknown Ci. However, the 

equations are homogeneous (zero righthand-sides). For a nontrivial solution, the determinant 

of the coefficient matrix is set equal to zero. The roots of the determinant are the n values of 

ω
2
. The lowest value of ω

2
 is an upper bound approximation to the fundamental frequency, 

and the higher values are also upper bound approximations (usually less accurate) to the 

higher frequencies for the plate (Leissa and  Qatu, 2011). If we have n constants, we obtain n 

homogeneous equations, n-1 equations can be solved to express n-1 constants in terms of one 

arbitrarily selected constant. These constants are used to get mode shape by considering the 

material property distribution function f(x). 

3.3.3 Galerkin Method 

In this section the general idea of the Galerkin method from the mathematical point of 

view is given with application to the plate vibration problem (Ventsel and Krauthammer, 

2001). 

Let a differential equation of a given two dimensional boundary value problem be of the 

form, 

[ ( , )] ( , )L W x y p x y  in some two dimensional domain   (3.20) 

Where ( , )W x y  is an unknown function of two variables and p is a given load term defined 

also in the domain . The symbol L indicates either a linear or nonlinear differential 

operator. The function W must satisfy the prescribed boundary conditions on the boundary   

of that domain. An approximate solution of the equation (3.20) is sought in the following 

form (Ventsel and Krauthammer, 2001), 

1

( , ) ( , )
N

N i i

i

W x y f x y


  (3.21) 

Where i are unknown coefficients to be determined and ( , )if x y are the linearly independent 

coordinate functions also called trial functions, which satisfy all the prescribed boundary 

conditions but not necessarily satisfy the equation (3.20). From calculus, any two functions 
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1( )f x  and 2 ( )f x  are called mutually orthogonal in the interval (a, b) if they satisfy the 

condition. 

1 2( ) ( ) 0

b

a

f x f x dx   (3.22) 

If a function ( , )W x y is an exact solution of the given boundary value problem, then the 

function [ ( ) ]L W p will be orthogonal to any set of functions. Since the deflection function 

( , )NW x y in the form of the equation (3.21) is an approximate solution of the equation (3.20), 

thus[ ( ) ] 0L W p  , and it is no longer orthogonal to any set of functions. However, we can 

require that the magnitude of the function [ ( ) ]L W p be minimum. This requirement is 

equivalent to the condition that the above function should be orthogonal to some bounded set 

of the functions: first of all, to the trial functions ( , )if x y . It leads to the following Galerkin 

equation. 

[ ( ) ] ( , ) 0N i

A

L W p f x y dxdy   (3.23) 

Substituting for NW  from equation (3.21), we obtain, 
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Introducing the residual error function ( )NE W , as follows, 
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Rewriting the above Galerkin equation in the form, 

 , ( , ); ( , ) 0;( 1,2,..., .)i i j

A

E f x y p f x y dxdy j N    (3.26) 

The requirement in the above equation (3.26) is used as a condition for determining the 

coefficients i . Replacing the integral in the equation (3.26) by the sum of integrals, the 

following system of linear algebraic equations is obtained: 
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 (3.27) 

Where, 
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( ). ; . , ( , 1,2,....., .)ij i j i j

A A

a L f f dxdy b p f dxdy i j N     
(3.28) 

Solving equations (3.27), we can determine the unknown coefficients i .Which, in 

conjunction with the equation (3.21), gives the N-parameter Galerkin approximation of the 

equation (3.20). If N → ∞, the Galerkin solution approaches the exact solution if the system 

of functions f1; f2; . . . is complete and linearly independent. 

3.4 Formulation of the Problem 

To describe the free vibration of the plate with array of holes, need of the approximate 

solution techniques is apparent as mathematical complexity involved is more due to the 

variation of the material properties in the solid area and in the area occupied by hole.  

Equations describing free vibration of the rectangular homogeneous thin solid plate are 

simple and exact solutions are possible. But for the rectangular thin plates with the array of 

holes, solution becomes impractical due to the varying flexural rigidity. Most of the 

engineering applications do not involve simple solid rectangular plates.  The perforated plates 

being not amenable by the exact solution techniques, one has to choose the approximate 

techniques for the solution of such problems. A satisfactory analytical solution first requires a 

suitable function to describe the variation of the material properties due to the perforations. 

The ratio of the thickness of the plate to its average lateral dimensions is taken not to exceed 

1/20 to represent its fundamental vibration mode reasonably accurately with the classical thin 

plate theory. 

 In this thesis, problem of determining the fundamental frequency of free vibration of 

the perforated rectangular plate is studied in the two main categories. 

1. The rectangular plates with the rectangular/square perforations 

2. The rectangular plates with the circular perforations 

3.4.1 The Rectangular Plates with the Rectangular/Square Perforations 

 For the analytical formulation of this type of the problem the Rayleigh’s and 

Rayleigh-Ritz method with proper trial functions satisfying the given boundary conditions is 

used. These methods are applied to the following subcategories of the problem. 

a) Plates with the rectangular/square perforations arranged in the rectangular/square 

array. 

For the solution of this type of the problem unit step functions are used to describe the 

variation of the material properties due to the perforations. 
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b) Plates with the rectangular/square perforations arranged in the staggered 

(triangular) arrays. 

For the solution of this type of the problem unit step functions are used to describe the 

variation of the material properties by introducing expressions for phase differences 

due to the perforations. 

c) Plates with the square perforations arranged in the square array. 

For the solution of this type of the problem greatest integer functions are used to 

describe the variation of the material properties due to the perforations. 

d) Moderately thick plates with the rectangular/square perforations arranged in the 

rectangular/square array. 

For the solution of this type of the problem unit step functions are used to describe 

the variation of the material properties due to the perforations. Mindlin plate theory 

is used for the analytical formulation. 

3.4.2 The Rectangular Plates with the Circular Perforations 

 The solution of this category of the problem is obtained by three methods. Perforation 

pattern considered is rectangular. According to the methods used for modeling, problem is 

further classified in to following subcategories.  

a) Concept of the added concentrated negative mass to represent the hole  

Equation of the plate vibration is obtained by substituting the inertia force for the holes in 

the equations of Galerkin formulation. Here perforations are considered as the 

concentrated negative mass. 

b) Circular perforations replaced by the equivalent square perforations 

 In this approach circular perforations are replaced by equivalent square perforations 

and unit step functions are used to express the variation of the material properties due 

to the perforations. The Rayleigh’s method is used to formulate the analytical model. 

c) Determination of the modal constant expression for the fundamental frequency.  

This is hybrid approach in which analytical formulation and experimental results are 

combined. In the Rayleigh’s formulation the fundamental frequency values are taken 

from the experimental analysis. This problem is solved in reverse order by 

considering known experimental values of the fundamental frequency. 

d) Use of the Heaviside function to exactly map the circular perforations to represent the 

material property variation. 
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In this approach material property variation function is formulated by using the 

Heaviside function. Heaviside function is exactly maping the multiple circular 

perforations. 

3.5 Validation of the Results Obtained by the Analytical Models 

 To access the accuracy and applicability of the analytical models formulated, the 

fundamental frequency results of the numerical analysis were compared with the FEM 

analysis results for the every specimen and the experimental results obtained for the 

representative specimens. 

3.5.1 Validation by the Experimental Results of the Fundamental Frequency 

Representative specimens of the perforated plates were constructed with the same 

perforation configuration as those analyzed numerically. The plates were securely mounted in 

a heavy frame to obtain the clamped all edges boundary condition.  PCB Piezotronics Ltd., 

model number 086C03 Impact Hammer, PCB Piezotronics  Ltd., model number 352C68  

accelerometer and Larson and Davis 3000+ Vrite,  dual channel signal analyzer  were used to 

record the frequency response data at various locations on the plate. These data were 

transferred to a PC running the analysis software where the resonant frequencies of the 

vibration were determined and recorded.  

3.5.2 Validation by the FEM Results of the Fundamental Frequency 

The modal analysis is carried out by ANSYS 11 using Shell 63 element. Shell 63 has 

both bending and membrane capabilities. Both in-plane and normal loads are permitted. The 

element has six degrees of freedom at each node: translations in the nodal x, y, and z 

directions and rotations about the nodal x, y, and z axes. Meshing is done by free meshing 

with smart size option and quadrilateral elements are used. Mesh convergence for the FEM 

results is checked for the every specimen. This is checked by running different simulations. 

Final solution is chosen based on the mesh quality as well as mesh size. Thus converged 

solution is one with the lowest eigenfrequencies.  It is assumed that the structure is formed of 

an isotropic homogeneous elastic material, i.e. Mild Steel with the material properties same 

as used in the numerical analysis.  

3.6 Concluding Remark 

 For the formulation of the analytical models to determine the fundamental frequency 

of the perforated plates approximate methods are more suitable. These methods require 

http://ans2.vm.stuba.sk/html/elem_55/chapter4/ES4-63.htm
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special functions to express the variation of the material properties. Also appropriate shape 

functions are to be chosen to represent the deflection of the plate’s middle surface. Also 

based on the experimental results, it is possible to find an expression for the modal constant 

for the fundamental frequency. In this work analytical models formulated to determine the 

fundamental frequency of the perforated rectangular plates are classified in to the two broad 

categories, i.e. plates with the rectangular/ square perforations and the plates with the circular 

perforations. Table 3.1 gives the summary of the plate configurations for which the analytical 

models are formulated. 

Table 3.1 Summary of the problems considered 

Sr. 

no. 

Type of problem/Approach of solution Perforation 

type 

Perforation 

pattern 

Rectangular plates with the rectangular/square perforations 

1 Rectangular/square perforations arranged in the 

rectangular/square array 

Rectangular/

Square 

Rectangular/Square 

2 Rectangular/square perforations arranged in the 

staggered (triangular) arrays 

Rectangular/

Square 

Staggered 60
o
 and 

45
 o
 

3 Square perforations arranged in the square array Square Square 

Rectangular plates with the circular perforations 

4 Concept of added the concentrated negative mass to 

represent the hole  

Circular Rectangular/ Square 

5 Circular perforations replaced by the equivalent 

square perforations 

Circular Rectangular/ Square 

6 Determination of the modal constant expression for 

fundamental frequency.  

Circular Rectangular/ Square 

7 Use of the Heaviside function to map circular 

perforations 

Circular Rectangular/ Square 

Moderately thick rectangular plates with the rectangular/square perforations 

8 Rectangular/square perforations arranged in the 

rectangular/square array 

Rectangular/

Square 

Rectangular/Square 
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Chapter 4 

Experimental Determination of the Fundamental Frequency 

4.1 Introduction 

The fundamental frequency results obtained by the experimental modal analysis are 

used to validate the analytical models developed. In this chapter detail of the experimental set 

up and the procedure of the experimentation are given. Procedure given here is uniformly 

followed for the testing of the specimens discussed in the further chapters of this thesis. For 

each of the representative plate specimen considered in the experiments boundary condition 

considered is clamped on all the edges. This boundary condition was applied as the analytical 

predictions of the fundamental frequency are calculated for the clamped all edges boundary 

condition. 

4.2 Parameters of the Perforated Plate Specimens 

In order to have sufficiently representative results, a representative specimen of the 

plates was selected in which the various parameters were varied, i.e. perforation size, 

perforation pattern, ligament efficiency. All the plates are made of the mild steel. The outer 

dimensions of all the specimens are 259 mm X 207 mm X 2 mm, but effective outer 

dimensions of the perforated area are 216 mm X 138 mm X 2 mm. All specimens are of the 

mild steel with aspect ratio (b/a) = 1.564. The material properties assumed for the plate are 

listed in  Table 4.1. (Armenakas, 2006).The plate outer dimensions were kept constant so that 

all the plates could be supported in a single fixture frame manufactured to achieve clamped 

all edges boundary condition. Details of the geometric parameters of the perforated plate 

specimens tested experimentally are given in the respective chapters. Photo graphs of the 

perforated plates used in the experiment are also given in the respective chapters. 

Table 4.1 Material properties assumed for the steel plate (Armenakas, 2006) 

Sr. No. Material property Value 

1 Young’s modulus (Eo) 2.1 X 10 
11

 N/m
2
 

2 Poisson’s ratio (o) 0 .3 

3 Density (ρo) 7850 kg/m
3
 



30 

 

4.3 Details of the Fixture Used for Clamping the Plate Specimens 

Figure 4.1 shows the schematic of the specimens used for the testing and the fixture 

plate. The margin with the holes, outside the effective area, is kept to clamp the specimens 

between two fixture plates to get the clamed-clamped boundary condition on all the four 

edges of the specimen. The test fixture mainly consists of the two rectangular plates of outer 

dimensions 259 mm X 207 mm X 9.2 mm. Both these fixture plates have central rectangular 

cut outs of dimension 216 mm X 138 mm, which are aligned concentrically one over the 

other. The test specimen with all four outside edges fixed was held centrally between these 

fixture plates. Figure 4.1 shows one of the two similar fixture plates with the central 

rectangular cut-out and holes, along circumference for bolting the plates firmly. These fixture 

plates, with the test specimen sandwiched, were clamped together by using the nut bolt 

assembly in the holes provided along the circumference of the fixture plates as shown in 

Figure 4.2, thus required boundary condition of all four outside edges fixed was achieved. 

 

 

Figure 4.1 (a) Schematic of the fixture plate 



31 

 

 

Figure 4.1 (b) Schematic of the 2 mm thick representative specimen 

 

Figure 4.1 Schematic of fixture the plate and the representative specimen used for 

experimentation  

 

 

  

  

Figure 4.2 The fixture and specimen 

  

 

Figure 4.3 Experimental set up 
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Figure 4.4 Schematic of the experimental set up 

4.4 Experimental Set up and Procedure 

Experimentation was carried with the help of two channel FFT analyzer, impact 

hammer and accelerometer (Harris, 2002; Larson and Davis Inc., 2008). Specifications of the 

instruments used are given in Appendix ‘C’.  Figure 4.3 shows the experimental set up used 

for the testing and Figure 4.4 shows schematic of the experimental set up. The assembly of 

the fixture plates with the test specimen placed centrally between them was clamped firmly to 

the rigid foundation of a machine tool. For clamping the test fixture firmly to the rigid 

foundation, bolt heads were inserted in the horizontal T slots of foundation and were passed 

through the holes provided along the circumference of the fixture plates. Hexagonal nuts 

were tightened over the bolts for firmly holding the test fixture. Care was taken in applying 

uniform pressure at all the bolts with the help of torque wrench.  Uniform torque of 

magnitude 28 N/m was applied to all the bolts for tightening (Fastenal Technical reference 

Guide, 2005) Four sampling points were chosen for mounting the accelerometer from driving 

point survey, such that node will not occur at these points. Fixed response method was used 

for taking the readings. The transfer function of each sampling point was calculated by the 

spectrum analyzer and was recorded for the sixteen impacts to get the final spectrum for the 

each specimen plate. Such experiments were repeated for ten times for each specimen plate. 

Final results of the natural frequencies for each specimen plate were mean values of the ten 

readings. Final values of the natural frequency are tabulated in the result tables. The weight 

of the accelerometer (Model: 352C68, PCB Co., USA) is 2 g. The approximate weight of the 

specimen ranges from 303.51g (specimen 6.15) to 467 g (full solid plate). The dynamic mass 

of accelerometer is much less than that of the plate so influence of the mass of the 

accelerometer on the dynamic behavior of the specimen can be neglected. A general rule is, 

the accelerometer mass should be less than one-tenth from the effective mass of the structure 
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to which it is attached ( Wang  and Lai , 2003; Baharin 2008, Baharin and Rahman, 2009; 

Harris, 2002) 

4.5 Clamped All Edges Boundary Condition 

Clamped all edges boundary condition is quite frequently used in the experiments. To 

achieve this boundary condition displacements and rotations at the edges were restricted. The 

realization of such a boundary condition in practice can’t be perfectly achieved. However it is 

found from the reported literature that (Kaap, 1997; Baharin, 2008; Wang and Wereley, 2005; 

Wang and Lai 2003; Bellés and Pombo, 2007) attempts have been made to achieve clamped 

all edges boundary condition. Similar to the methods used in the above references a frame 

259 mm X 207 mm was constructed to clamp the plate. The frame was made of cast iron and 

mass was also large and further plate and fixture both were bolted (with M12 bolts) to the 

machine tool base. Thus it prevented the frame moving together with the plate as shown in 

Figure 4.2 and 4.5. Further effects of spacing and number of bolts, fit of the bolts in the plate 

fixture assembly used for clamping, on the natural frequency were determined.  

 

(a)        (b) 

Figure 4.5 Diagram of the frame (side view) for the clamped boundary condition 

 4.5.1 Effect of Fit of the Bolts in the Plate-Fixture Assembly, On the Natural Frequency 

In this exercise, we found out the effect that the size of the bolts or type of the fit 

obtained due to the clamping bolts will have on the natural frequency of the perforated plate. 

We achieved this by varying the dimensions of the clamping bolts. The solid rectangular 

plate was clamped to the machine bed sandwiched between two fixtures as shown in Figure 

4.6. The fundamental frequency of the solid plate (138 mm x 216 mm x 2 mm) was obtained 

experimentally three times by using three sets of the clamping bolts one by one in each 

experiment. A set of 12 bolts were used at a time to secure plate-fixture arrangement to the 
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machine bed. Out of the three sets one set used was standard M12 coarse bolts where as we 

prepared two sets of the bolts by machining, each set with the different diameter of the bolt to 

obtain required fit. Details of the dimensions of the M12 coarse bolt are given in  Table 4.2. 

 

(a) 

 

(b) 

Figure 4.6 Solid plate specimen used in the experiments 

Table 4.2 Details of the dimensions of M12 course bolt 

Nominal Diameter, mm Pitch, mm Root radius, mm Pitch diameter, mm 

12 1.75 0.253 10.863 

 

Using the above dimensions and tolerances, we obtained two different sets of the bolts 

machined to a length of 43.6 mm from bottom of the head, according to the following 

criteria:  

1. Normal Running fit-Difference of 30 to 50 μ 

2. Loose running fit-Difference of 80 to 100 μ 

The Nominal diameter obtained for the individual criteria are: 

Table 4.3 Details of the nominal diameter dimensions of the bolts for three sets 

Set Type of fit Nominal Diameter, mm 

Set1 Interference 12 

Set2 Normal running fit 11.45 

Set3 Loose running fit 11.40 

4.5.2 Results and Discussions 

The rectangular solid plate of thickness 2 mm having effective dimensions 138 mm x 

216 mm was tested experimentally to find the fundamental frequency by using each set of the 

bolts given in Table 4.3. Figure 4.6 shows the specimen plate used in the experiments. 
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Experiments were performed three times using one set of the bolts at a time and following the 

procedure given in the section 4.4. Figure 4.7 shows the FRF (Frequency response Function) 

obtained from one of the experimental run for solid plate clamped with the Set1 Bolts. 

Results obtained are tabulated in Table 4.4. 

 

Figure 4.7 Frequency response Function (FRF) obtained with the Set1 Bolts 

Table 4.4 Fundamental frequency results for the solid rectangular plate 

Sr. No. Set of bolts Fundamental Frequency(Hz) Absolute error(Hz) 

1 Set1 663.071 - 

2 Set2 659.898 3.173 

3 Set3 659.898 3.173 

Thus from the fundamental frequency results it is found that the effect of fit of the bolts on 

the fundamental frequency obtained is negligible. It gives maximum discrepancy of 0.47% in 

the results obtained. For the Set 1 bolts the fundamental frequency obtained is more by 3.172 

hertz compared to other as it closely resembles the required boundary condition of the 

clamped all edges. Hence in all the experimental tests M12 coarse bolts with Interference fit 

are used i.e. the Set 1 bolts. 

4.5.3 Effect of the Spacing and the Number of Bolts Used To Clamp the Plate-Fixture 

Assembly, On the Natural Frequency 

  We analyzed effect of the bolt spacing (Number of bolts) used for clamping the 

fixture, on the natural frequency of the plate. This effect was analyzed by conducting an 

experimental modal test on the solid plate of size 138 mm x 216 mm x 2 mm. The Solid plate 
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was tested three times with different arrangement of the bolt spacing in each test. The 

arrangements used for clamping the fixture are shown in Figure 4.8 to 4.10. 

 

Figure 4.8 Bolt spacing arrangement 

first 

 

Figure 4.9 Bolt spacing arrangement 

second 

 

 

Figure 4.10 Bolt spacing arrangement third 

In first arrangement as shown in Figure 4.8 only four bolts were used to clamp the 

plate at the four corners of the fixture. In this case spacing between the bolts is largest. 

Clamping arrangements second and third were obtained by eight and twelve bolts as shown in 

Figure 4.9 and Figure 4.10 respectively. In second arrangement one bolt was added on each 

side in between the two corner bolts giving intermediate spacing, where as in third 

arrangement, on each larger side of the fixture two more bolts were added to get the five 

clamping bolts on each larger side. Due to the unavailability of the slots on the machine bed it 

was not possible to accommodate more than three clamping bolts on each of the small side of 
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the fixture. Thus we obtained three different clamped all edges arrangements to check the 

influence of the bolt spacing on the natural frequency of the plate. 

4.5.3 Results and Discussion 

 Experiments were performed on the solid plate by following the procedure given in 

the Section 4.4. Results obtained from the experiment with each of the arrangements shown 

in Figure 4.8 to 4.10 are given in Table 4.5. Corresponding Frequency response functions are 

shown in Figure 4.11 to 4.13.  

Table 4.5 Experimental natural frequencies with the different bolt spacing 

Bolt spacing 

Arrangement 

Experimental 

fundamental 

frequency ω1,Hz 

Analytical 

fundamental 

frequency ω1,Hz 

% Deviation 

1 512.5 

694.882 

26.24 

2 612.5 11.85 

3 663.071 4.57 

  

 The experimentally obtained fundamental frequencies are compared with the 

analytical fundamental frequency obtained by the Rayleigh’s method with shape function  

2 2
2 2

2 2

1( , )
4 4

a b
W x y x y

   
     
   

 (4.1) 

It is observed that the bolt spacing influences the fundamental frequency significantly. From 

the Table 4.5, the bolt spacing arrangement first gives the maximum discrepancy in the 

results where as the bolt spacing arrangement third gives the minimum discrepancy of 4.57 % 

in the results. Thus as the bolts spacing decreased the fundamental frequency increased. 

Decreasing space between the bolts makes the plate more and more stiff which increases the 

strain energy of the plate, due to which the fundamental frequency goes on increasing. Thus 

to obtain close resemblance to the clamped boundary condition the bolt spacing should be 

minimum as possible. Due to the influence of the bolt spacing on the fundamental frequency 

we have used the bolt spacing arrangement as shown in Figure 4.10 in all the experiments. 
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Figure 4.11 Sample frequency response function (FRF) obtained with the bolts 

spacing arrangement first 

 

Figure 4.12 Sample frequency response function (FRF) obtained with the bolts 

spacing arrangement second 

 

Figure 4.13 Sample frequency response function (FRF) obtained with the bolts 

spacing arrangement third 
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4.6 Effect of the Impact Location and the Hammer Tip on the Frequency 

Response Function (FRF)  

4.6.1 Effect of the Impact Location: 

This section discusses the effect of the impact location on the resulting frequency 

response function (FRF). While performing impact testing, the input impact location can have 

a very significant effect on the resulting frequency response function. For this study, solid 

rectangular plate is divided in to a grid of 10 x 10 points. Top diagonally symmetric portion 

with encircled points which has 15 node points is considered for study as shown in Figure 

4.14 & 4.15. Points 1, 5, 12 and 15 were chosen for accelerometer positions and for each of 

the accelerometer position; excitation was given at the remaining three nodes.  For example if 

accelerometer is at position 1 then excitation was given at the points 5,12 and 15. 

 

Figure 4.14 Layout of the experimental grid points on the plate 

 

 

Figure 4.15 The experimental set up  



40 

 

 

The following two aspects were focused for the discussion: 

1. Effect on the relative amplitude of the first three frequencies for the different hammer 

locations 

2. Effect on the relative amplitude of the first three frequencies for the different 

accelerometer locations  

The experimentation was conducted for analyzing above two aspects by using, roving 

excitation method i. e. excitation is roving and the response is fixed. The transfer function of 

each impact location was calculated by the spectrum analyzer (Spider-81 vibration controller 

system, Crystal Instruments) and was recorded for the eight impacts to get the final spectrum 

for each impact location. Such experiments were repeated for each point 1,5,12, and 15. Final 

results of the FRF for each point for the particular accelerometer location are given in Figures 

4.16. The impact hammer and accelerometer used are the same as given in the section 4.4. 

4.6.2 Results and Discussion 

The FRF plots are obtained for the accelerometer locations at the point 1, 5, 12 and 15 

and are given in Figure 4.16. For each accelerometer location the impact points are chosen at 

the three remaining nodes. Thus for the each accelerometer location three FRF’s are obtained 

and are superposed as shown in Figure 4.16. These cases are presented here because effect of 

the accelerometer and the impact location on the amplitude of the resonance peaks in the 

FRF, is a very common problem during the impact testing.  

From the FRF’s obtained it can be observed that, for a particular accelerometer 

location amplitude of the resonance peak depends on the impact location. It is also important 

to include sufficient points in the test to describe modes of the interest. If the excitation point 

has not been chosen carefully or if enough response points are not measured, then a particular 

mode may not be adequately represented. This can be observed for the accelerometer location 

at point 12 where the second frequency peak is not distinctive. This may be because of a node 

at point 12 for mode 2. Thus at times it may become necessary to include more than one 

excitation location in order to adequately describe all of the modes of the interest. The 

frequency responses can be measured independently with single-point excitation or 

simultaneously with the multiple-point excitations. 

It is observed that the response level tend to increase as the impact location moves towards a 

response transducer, or a response transducer moves towards the impact location, and tend to 
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decrease as the impact location and the response transducer move further apart. In the 

following figures it appears that the impulse hammer hit location has, no effect on the 

eigenfrequency, yet a difference in amplitude of the eigenfrequencies is observed. The 

amplitude of the peak at each location describes the mode shape for the associated resonant 

frequency. The results indicate that for the first mode and the third mode, the fixed plate has 

maximum deflection at the middle. 

 

  
(a) FRF’s for the accelerometer location 

at point-1 
 

(b) FRF’s for the accelerometer location 

at point -5 

  
(c) FRF’s for the accelerometer location 

at point -12 

(d) FRF’s for the accelerometer location 

at point -15 

 

Figure 4.16 FRF’s for different accelerometer locations on the plate 
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 Some Key Observations: 

1. It can be noted that when the hammer position is at point-12 (centre of the plate) and 

the accelerometer location is varied, the overall amplitude of the FRF is maximum for 

the first and third resonant peak.   

2. Also a common observation for all the roving locations is that for any particular FRF, 

the relative amplitude of the first three frequencies is as follows: 3st Frequency > 1st 

Frequency > 2nd Frequency. 

3. When the accelerometer is kept at Point-12, the FRF is almost the same irrespective 

of the hammer location. 

4. More modes were excited when the impact was given at the corner positions 

compared to when it was given at the center position (Point-12). 

5. Resonant peak amplitudes vary due to the inconsistency of the impact location 

whether it be not impacting the same location for each measurement or for not 

maintaining a consistent strike angle for the each measurement. 

6. For each average that makes up the complete measurement, a very well controlled, 

precise impact excitation needs to be maintained. 

4.6.3 Effect of the Impact Hammer Tip: 

The selection of the hammer tip can have a significant effect on the FRF acquired. 

The impulse force excites all the resonances within its useful frequency range. The frequency 

content of the energy applied to the structure is a function of the stiffness of the contacting 

surfaces and, to a less extent, the mass of the hammer. The stiffness of the contacting surfaces 

affects the shape of the force pulse, which in turn determines the frequency content. It is not 

feasible to change the stiffness of the test object; therefore the frequency content is controlled 

by varying the stiffness of the hammer tip. ( Agilent Technologies, 2001; Halversen, and 

David L. Brown,1977) 

The effect of the hammer tip on the pulse and the force spectrum is illustrated in 

Figure 4.17 and Figure 4.18 respectively. The effect is studied for three types of tips metal, 

plastic and rubber.  A solid rectangular plate was excited by using these tips one by one in 

three different tests. It is observed from the comparison of the pulse durations that the pulse 

duration for rubber tip is more where as for metal tip and the plastic tip pulse duration shows 

small variation i.e. slightly more for plastic tip. From Figure 4.18 it can be seen that if too 

soft a tip is selected then all the modes will not be excited adequately in order to obtain a 
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good measurement as in case of the rubber tip. The input power spectrum does not excite all 

of the frequency ranges of interest. Further it can be seen from input power spectrum of metal 

tip that harder the tip, the shorter the pulse duration and thus the higher the frequency content. 

Too hard a hammer tip can cause problems; energy is imparted to the structure beyond the 

frequency range of the interest and may overload the response (Avitabile, 2001). In all the 

experiments for the perforated plates we have used plastic tip as this tip excites the useful 

frequency range.  

 

 

Figure 4.17 Force pulse with the different impact tips on the impact hammer 
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Figure 4.18 Force spectrums with the different impact tips on the impact hammer 

4.7 Calculation of the Damping by Half Power Bandwidth Method 

To calculate the damping ratio from the FRF, we have used half-power bandwidth 

method. In this method, first FRF amplitude is obtained. Corresponding to each natural 

frequency, there is a peak in the FRF amplitude, 3 dB down from the peak , 

(Peak amplitude / 2  for linear scale of amplitude) there are two points corresponding to the 

half power point, as shown in Figure 4.19. The more the frequency range between these two 

points, more the damping.  

Vibration theory shows that (Rao, 1986; Thomson, 1997) the damping ratio is related 

to the sharpness of the peak of the magnitude plot. The damping ratio, ζ, can be determined 

by computing Q, i.e. quality factor defined as the resonant frequency divided by the 

bandwidth. Q is computed as:  
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2 1

nQ


 



 (4.2) 

The damping ratio  is then given by 

1

2Q
    or 2 1

2 n

 





  (4.3) 

Where n  is the resonant frequency at the peak in Hz; 1  and 2  are the half power points at 

max

2

A
 for linear scale of the amplitude or measured -3 dB down from the peak for log scale of 

magnitude as shown in Figure 4.19.  

 

 

Figure 4.19 Half power bandwidth method 

The damping factors (ζ) for the first two modes are calculated for each specimen plate 

tested experimentally. Results of these (ζ) are given in the Apendix “D” along with first two 

FEM and experimental frequencies. However damping factors for first two modes for the 

solid rectangular plate are given in Table 4.6 below. 

Table 4.6 Damping factors for the first two modes of the solid plate specimen 

1 (Hz) 

ζ1 
2 (Hz) 

ζ2 
Experi. FEM Experi FEM 

663.071 693.62 0.0105 974 1040.5 0.0069 
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 It can be observed from the damping factors that the structure is lightly damped. 

Damping factor for first mode is 0.0105 and decreases in the sequence ζ1> ζ2. 

4.8 Concluding Remark 

To validate the results obtained by the analytical models formulated in the 

forthcoming chapters, the experimental natural frequencies are used. Experimentation is 

carried out as explained in the section 4.4. Experimentation is carried out for one or two 

representative specimens only wherever possible, due to the limitations of the fixture 

dimensions. 

Though the experimentation is carried out for the representative specimens, each of 

the specimens analyzed numerically is validated by comparing results with the results 

obtained from the FE simulation.



 

 

 

 

 

 

 

Section One 

Analytical Models to Determine the Fundamental Frequency of 

the Rectangular Plates with the Rectangular/Square Perforations 

(Chapter 5 and 6)
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Chapter 5 

Analytical Models for the Rectangular Plate with the Rectangular 

and Square Patterns of the Perforations 

5.1 Introduction 

In this chapter the analytical models to determine the fundamental frequency of the 

perforated plate are formulated. The perforations considered are the rectangular / square 

whereas perforation patterns considered are the rectangular and square.  The non 

homogeneity in the Young’s modulus and the density due to the perforation is expressed by 

using the unit step functions and the greatest integer functions in the Rayleigh’s Quotient. In 

the present analysis boundary condition considered is clamped at all edges. The perforated 

plate is considered as the plate with uniformly distributed mass and the holes are considered 

as the non homogeneous patches. The deflected middle surface of the plate is approximated 

by a function which satisfies the boundary conditions. Proposed models are validated by 

comparing the numerical analysis results with the Finite Element (FE) analysis and the 

experimental results. 

5.2. Analytical Formulation 

The fundamental frequency expression of a thin uniform thickness plate is formulated 

by the Rayleigh’s principle (Leissa, 1969; Chakraverty, 2009).The Rayleigh’s quotient for the 

fundamental frequency of the homogeneous thin plate is given by equation (3.11):  

   
2

2 2 2
2

2 1 1 1
0 1 2 2

2

2

1

2 1
R

R

W W W
D W dxdy

x y x y

h W dxdy





         
          

            






 (5.1)                                     

Where ω is the fundamental frequency, h is the uniform plate thickness, ρo is the density, νo is 

the Poisson’s ratio, W1 is the shape function, and R is the rectangular area over which 

integration is performed. Do is the flexural rigidity, 2 is the two-dimensional Laplacian 

operator. Do and 
2  are given as,  

 
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E h
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
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2 2x y

 
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 
 (5.2) 

 Where Eo is the modulus of elasticity.     
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The Rayleigh’s quotient depends on the form of the function W1. The function W1(x, y) is a 

continuous function that approximately represents the shape of the plate’s deflected middle 

surface and satisfies at least the kinematic boundary conditions and ω represents the natural 

frequency of the plate pertinent to the assumed shape function. Assume ω = ω1 be its 

fundamental frequency. 

5.3 Rectangular Plates with the Square/Rectangular Perforations Arranged 

In the Square/Rectangular Array 

In the present analysis, square plate with the square perforations is considered as 

shown in Figure 5.1. The ligament efficiency ηl, considered for the perforation is,  

(p / (d + p)) = 0.5, where p is the ligament length (px or py) and d is the side length of the 

square perforation. Model in the present work does not consider any rotary inertia of the 

plate. To approximate the shape of the plate’s deflected middle surface, function W1(x, y) 

used with the one term and the 5 terms is given as (Laura and Saffell, 1967; Szilard, 2004):  

2 2
2 2

2 2

1( , )
4 4

a b
W x y x y

   
     
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 (5.3a) 

The polynomial shape function 
1( , )W x y  for a rectangular plate with the 5 terms is of the form 

(Laura, and Saffell, 2005) 
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Where a and b are the side dimensions of the plate along x and y directions respectively. 

The shape function W1(x, y) satisfies the following boundary conditions for the plate clamped 

on all the edges. 
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(5.4) 

1 2( , ) | 0x aW x y    , 1 2( , ) | 0y bW x y    

From the equation (5.1) the Rayleigh’s quotient depends on the material properties like 

density (ρo), modulus of elasticity (Eo), Poisson’s ratio (νo). For a perforated plate as shown in 

Figure 5.1, the density (ρ), and modulus of elasticity (E) are changing along the surface of the 

plate with geometric pattern of the holes. The pattern of the variation of these parameters 

along the surface resembles that of the square waves. To evaluate the integrals involved in the 
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Rayleigh’s quotient the density and the modulus of elasticity need to be expressed as a 

function of the cartesian co- ordinates x and y. 

If the function F(x, y) represents the variation of these parameters along the surface, then the 

density and the modulus of elasticity can be expressed as: 

0

0

( , )

( , )

F x y

E E F x y
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
 (5.5) 

where, E0 and ρ0 are the modulus of elasticity and the density for a homogeneous plate. 

 

Figure 5.1 Coordinates of the perforated plate 

Once the function F(x, y) is constructed the integrals can be evaluated using above equations 

(5.1 to 5.3). The Rayleigh’s quotient now becomes (Chakraverty, 2009): 
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 (5.6) 

For the function F(x, y) to represent the variation of the density and the modulus of elasticity 

it must satisfy the following requirements. 

( ) = 0 in the region corresponding to a perforationF x,y  

( ) = 1 otherwiseF x,y  
(5.7) 
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The function F(x, y) is constructed as per the geometry of the plates considered. To construct 

the function F(x, y) we assume that the density at any point (x, y) is the superposition of the 

density along x direction and y direction, this superposition is also considered for the modulus 

of elasticity. The functions f(x) and g(y) represent variation of the density and the modulus of 

elasticity along x and y axes respectively. The Equations (5.9) and (5.10) shows the 

rectangular Heaviside function used to express the non homogeneity in the Young’s modulus 

and the density of the plate due to the perforations. The functions f(x) and g(y) are formed by 

using the unit step functions and are superimposed to obtain the function F(x, y). 

The unit step as a function of a discrete variable n is given as: 

0, 0
( )

1, 0

n
H n

n


 



       Where n is an integer. (5.8) 

( ) ( ) ( ) ( ) (( ( ) ( ) ( ))
2 2 2 2 2 2

x x x x

d d d d d d
f x H x H x p H x p d H x H x p H x p d                    

 
(5.9) 

( ) ( ) ( ) ( ) (( ( ) ( ) ( ))
2 2 2 2 2 2

y y y y

d d d d d d
g y H y H y p H y p d H y H y p H y p d                    

 
(5.10) 

where d is the side length of the square perforation,    px  and  py are the ligament lengths in x 

and y directions respectively.                                                                         

In the present analytical model a square plate having the square perforations is considered as 

shown in Figure 5.1. For the plate with ηl =0.5, px = py = d the above expressions for the f(x) 

and g(y) becomes as: 

3 5 3 5
( ) ( ) ( ) ( ) (( ( ) ( ) ( ))

2 2 2 2 2 2

d d d d d d
f x H x H x H x H x H x H x                (5.11) 

3 5 3 5
( ) ( ) ( ) ( ) (( ( ) ( ) ( ))

2 2 2 2 2 2

d d d d d d
g y H y H y H y H y H y H y                (5.12) 

According to the set theory the Boolean operation of union of two sets A and B is represented 

by  A U B and their intersection is represented by A ∩ B, where: 

( ) ( ) ( ) ( )n A B n A n B n A B      

      ( ) ( ) ( ) for two independent sets A and Bn A B n A n B    

 

(5.13) 

The superposition of the f(x) and g(y) to obtain F(x, y) is analogous to this Boolean operation 

of union as the functions f(x) and g(y) are independent. Using the above equations F(x, y) for 

the square perforation pattern can be obtained by the relation: 

http://en.wikipedia.org/wiki/Integer
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( , ) ( ) ( ) ( ). ( )F x y f x g y f x g y    (5.14) 

The F(x, y) thus obtained is used in the Rayleigh’s quotient, equation (5.6) to obtain the 

fundamental frequency. These calculations were done for the plates of the different sizes.  

5.4 Numerical Analysis 

An analytical model developed in the section 5.3 is applicable to the rectangular 

perforated plates with the different side dimensions and having the rectangular/square 

perforations and, provided that the perforation pattern is rectangular or square and all the 

perforations are of the same size. A square plate with the simple geometry was considered for 

convenience of the computation. By virtue of the symbolic forms presented in this work, the 

method can be applied to the analytical studies of the perforated plates with the different 

boundary conditions. The numerical results have been computed for the five specimens listed 

in Table 5.1 and the fundamental natural frequencies are tabulated in Table 5.2. The 

fundamental frequencies are obtained by the Rayleigh’s method using one term shape 

function and by using the Rayleigh-Ritz method with the 5 term shape function. The material 

properties considered for all the specimen plates analyzed are same as given in Table 4.1. 

Table 5.1 Specimen parameters 

Specimen 

No. 

Plate Size 

(a mm x b mm) 

Cutout Size 

(d mm x d mm) 

h, (mm) px = py(mm) 

5.1 400 x 400 80 x 80 2 80 

5.2 500 x 500 100 x 100 2 100 

5.3 600 x 600 120 x 120 2 120 

5.4 700 x 700 140 x 140 2 140 

5.5 800 x 800 160 x 160 2 160 

 

5.5 Validation of the Approach  

To verify the validity of the proposed model, modal analysis is carried out using the 

FEM, for clamped steel plates having 2 mm thickness and carrying nine holes at the positions 

shown in Figure 5.1. Parameters of the plate specimen considered in this study are shown in 

Table 5.1. Modal analysis is carried out by ANSYS 11 using Shell63 element. The converged 

solution of the eigenfrequencies is given in Table 5.2. Convergence summary is given in 
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“Appendix B” Table B.1. The material properties considered are same as used in the 

numerical analysis.  

The numerical results obtained are also validated by comparing the results with the 

experimental natural frequencies.  

 

                                         

Figure 5.2 Perforated plate specimens no. 5.6 (d = 16 mm) tested experimentally 

The experimental analysis was carried out for the one specimen with the square 

perforations of the size 16 mm. Specimen used for experimentation is shown in Figure 

5.2.Thickness of the specimens is 2 mm.  The fixture for performing experiments was as 

discussed in the chapter 4, section 4.3. Due to the size limitation of the fixture, experimental 

validation of the analytical results is done for the one plate with size 135 mm x 216 mm only 

as given in Table 5.3. The experimental result obtained is given in Table 5.3. 

5.6 Results and Discussions 

The proposed analytical model, for the plates with the square/rectangular holes, 

considers the effects of both the different holes and their locations on the frequency. This has 

been accounted by constructing the special function consisting of unit step function, to 

express the variation in the density and the Young’s modulus. Figure 5.3 shows 

representative plot for the variation of the function f(x) and g(y) given by equations (5.11) and 

(5.12) for the plate of size 700 mm X 700 mm. This plot is a square wave dipcting the actual 

variation of the material properties varition along x and y directions. Figure 5.4 shows the 

representative plot of the density for function F(x,y) given by an equation (5.14) for the plate 

of size 700 mm X 700 mm. This plot resembles the actual perforated plate configuration 

where dark square patches shows the perforations. 
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Figure 5.3 Plot of the unit step functions f(x) and g(y) for plate of size 700 mm X 700 mm 

 

 

Figure 5.4 Plot of the functions F(x,y) for the plate of size 700 mm X 700 mm 

 

Comparison of the natural frequency of the first mode of vibration between the 

proposed analytical model and the FEM is given in Table 5.2.  
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Table 5.2 Comparison of the FEM and analytical results  

Specimen 

No. 

Fundamental frequency ω1, (Hz) % Error 

Analytical, 

Rayleigh 

(1 term shape 

function) 

Analytical, 

Rayleigh-Ritz 

(5 term shape 

function) 

FEM 

1 Term & 

FEM 

5 Term & 

FEM 

5.1 102.269 101.0383 94.411 8.32 7.019 

5.2 65.452 64.664 60.421 8.32 7.022 

5.3 45.452 44.905 41.961 8.31 7.019 

5.4 33.393 32.992 30.828 8.32 7.019 

5.5 25.567 25.259 23.602 8.32 7.020 

The agreement between the analytical approach and the finite element results is 

reasonably good. It is observed that the difference between the numerical and the FEM 

results gives systematic error of 8.32 % for one term shape function with the Rayleigh’s 

method. Whereas these maximum differences in case of 5 term shape function using the 

Rayleigh-Ritz method is 7.022%. In numerical simulation mass matrix is formed using same 

shape function as used to generate stiffness matrix that is the two matrices are consistent with 

each other. Thus numerical simulation predicts higher values of the frequencies. It is 

observed that the analytical results obtained by the Rayleigh-Ritz method with 5 term shape 

function has 1.3% less error compared to the results from the Rayleigh’s method with 1 term 

shape function. 

Systematic error of 8.32 % and 7.019% occurs between the numerical and FEM results 

because of following reasons. 

1) All the specimens are having same mass remnant ratio (MRR = 0.64) i.e ratio of the 

mass of the perforated plate to the mass of the solid plate of equal outer effective 

dimensions.  

2) The mass remnant ratio depends upon the geometrical parameters such as specimen 

aspect ratio (a/b), perforation aspect ratio (d/d), thickness (h) of the specimen and 

ligament efficiency (ηl). All these geometrical parameters are identical for the 

specimens considered. 

3) Due to the geometrical similarity of the specimens same amount of percentage (%) 

error occur between the numerical and the FEM results for each specimen, though 

absolute error is different. 
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This systematic error demonstrates that the analytical model as given, for the square plate 

with the square perforations having ηl = 0.5 gives results with same accuracy for the plates 

with geometrical similarity, but variation in the dimensions. 

Table 5.3 Comparison of the experimental and analytical results  

Spe. 

No. Plate Size 

(a mm x b 

mm) 

Cutout Size 

(d mm x d 

mm) 

px = 

py(mm) 

ω1, (Hz) % Deviation 

 

Analy Experi. FEM Analy 

& Exp  

Analy 

& FEM 

5.6 138 x 216 16 x 16 16 620. 

969 

537.5 590.374 13.44 5.182 

 

Table 5.3 shows comparison of the analytical, experimental and FEM results, error 

between the analytical and FEM results is 5.182% whereas error between the analytical and 

experimental results is 13.44%. This percent error is associated with the numerical difference 

of 83.469 Hz between analytical and FEM results. Thus error is more this could be due to the 

following discussed reasons. 

5.6.1 Inferences About the Experimental Results  

 Results obtained by the experimental analysis differ from the results obtained by 

proposed method. Possible sources of the error could be as follows 

1. Except in very special situations boundary conditions can’t be practically 

achieved. Following parameters can influence the fundamental frequency 

readings, 

 Spacing of the bolts on the fixture and their arrangement. 

 Dimensional inaccuracies in size of the fixture plates and specimen. 

 Clamping pressure of the bolts on the fixture. 

 Fit of the bolts inside the clamping fixture holes. 

2. Environmental effects (dirt, dust, oil, and moisture). 

3. Sensitivity values of the accelerometer and impact hammer are given for standard 

environmental condition, but these values change with change in temperature. 

4. Cable noise generation, which may be generated when a cable is flexed, bent, 

struck, squeezed, or otherwise distorted. 
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5. Contamination of the cable connectors as a result of handling, the contamination 

can create low impedance between the signal path and ground. 

6. Impact hammer double hits can also influence the fundamental frequency readings 

.Double hits occur when the hammer strikes the test item twice. Double hits 

render measurement errors. Double hits are difficult to avoid at measurement 

points. 

7. Impact hammer off axis hits influences the measurements. It has following effects 

 Off axis hits result in reduced energy in the intended direction. This 

causes errors in measurement. 

    Off axis hits may excite modes(resonances) that would not normally be 

excited 

 The actual force that the test item experiences is less than the measured 

force that the load cell sees. The amplitude of the frequency response 

function will be too high. 

8. In analytical modeling structure is assumed to be linear, isotropic, homogeneous 

and time invariant. Material may not exhibit such behavior practically.  

9. An analytical solution neglect the rotary inertia terms and shear effects. 

10. The analytical models are formulated for undamped natural frequency, but 

practically structural damping is always present in the system (Refer Table 4.6 

and Appendix ‘D’ for damping values). 

11. Additional mass effects of the accelerometer used to measure the response in the 

experiment. 

5.6.2 Comparison of the Analytical and FEM Mode Shapes 

Mode shape pattern obtained analytically for all the specimens are identical and are 

matching with those obtained from the FEM analysis. Table 5.4 shows the representative 

comparison of the analytical and FEM mode shapes contours for the Specimen no. 5.2 and 

5.6. Analytical mode shapes are extracted from the Rayleigh-Ritz method with the shape 

function given by equation (5.3b). 
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Table 5.4 Comparison of the mode shapes obtained from analytical and FEM analysis  

Analytical FEM 

Specimens no. 5.2 Dimensions 500 mm x 500 mm and d = 100 mm x 100 mm  

 

 

 

Specimens no. 5.6 Dimensions 138 mm x 216 mm and d = 16 mm x 16 mm 
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5.7 Square Plates with the Square Perforations Arranged In the Square 

Array  

The present section gives formulation for determining the fundamental frequency of the 

square plates with the square perforations with ligament efficiency (hr / (d + hr)) = 0.5 as 

shown in Figure 5.5. Boundary condition considered is all edges clamped. To express 

variations in the material properties due to the perforations greatest integer functions are 

used. To approximate the shape of the plate’s deflected middle surface, function W1(x, y) used as 

given by equation (5.3a) and (5.3b). 

2 2
2 2

2 2

1( , )
4 4

a b
W x y x y

   
     
     

(5.15a) 
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n nn n

iW x y c x a y b


     
     (5.15b) 

The shape function W1(x, y) satisfies the following boundary conditions for the plate clamped 

on all the edges. 
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(5.16) 

Density and modulus of elasticity can be expressed as: 

0

0

( , )

( , )

F x y

E E F x y

  

  

(5.17) 

where, E0 and ρ0 are the modulus of elasticity and density for a homogeneous plate.  

Once the function F(x, y) is constructed the integrals in the Rayleigh’s quotient equation (5.3) 

can be evaluated. The function F(x, y) represents the variation of the density and modulus of 

elasticity. For the function F(x, y) to represent these parameters it must satisfy the 

requirements given by equation (5.7). 
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Figure 5.5 Orientation of the co-ordinates of the perforated square plate 

The function F(x, y) is constructed as per the geometry of the plates considered in 

Figure 5.5. To construct the function F(x, y) we assume that the material property (Density 

and Young’s modulus) at any point (x, y) is the superposition of the material property along x 

direction and y direction. The functions f(x) and g(y) represent variation of the material 

property along x and y axes respectively. The functions f(x) and g(y) are formed by using the 

greatest integer functions as given by equations (5.18) and (5.19).The functions f(x) and g(y) 

are superimposed to obtain the function F(x, y).  

3
f(x) = floor 1+cos

x

a

  
  

  
  

(5.18) 

3
( ) floor 1+cos

y
g y

b

  
   

  
  (5.19) 

F(x, y) can be obtained by equation (5.14) given as: 

( , ) ( ) ( ) ( ) ( )F x y f x g y f x g y    (5.20) 

F(x, y) thus obtained is used in the Rayleigh’s quotient equation (5.6) to obtain the 

fundamental frequency.  Figure 5.6 shows the representative plot of the greatest integer 

function variation in x and y direction given by equation (5.18) and (5.19) for the specimen 
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with dimension 500 mm x 500 mm. Figure 5.7 shows the representative density plot of the 

greatest integer function f(x, y) given by equation (5.20) in x and y direction for the specimen 

with dimension 500 mm x 500 mm.  

 

Figure 5.6. Plot of the greatest integer functions f(x) and g(y)  

 

Figure 5.7. Density plot of the greatest integer function f(x,y)  

Density plot of the function exactly depicts the geometry of the plate specimen. Thus 

variation of the material properties expressed by greatest integer functions given by equation 

(5.18) to (5.20) is a valid representation of actual variation. 
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5.8 Numerical Analysis   

The model developed in the Section 5.7 is applicable to the square perforated plates with 

different side dimensions and having square perforation and, provided that the perforation 

pattern is also square and all the perforations of same size. To study applicability of the 

proposed model, Numerical analysis was carried out for clamped steel plates having 2 mm 

thickness and carrying the four holes at positions shown in Figure 5.5. The geometrical 

parameters and the effective outer dimensions of the plate specimen considered in this study 

are shown in Table 5.4 for the rectangular perforated plate. The material properties for all the 

specimen plates analyzed are as given in Table 4.1except the Young’s modulus which is 

taken as E = 2 x 10
11

 N/m
2
. The numerical analysis is separately carried out for two shape 

functions given by equation (5.15a) and (5.15b) by using the Rayleigh and Rayleigh-Ritz 

method respectively. 

5.9 Model Validation with the FEM Results  

The validity of the proposed model has been verified by comparing the predictions 

with the FEM results. To investigate the vibration response, the FEM modal analysis is 

carried out for the clamped steel plate specimens having 2 mm thickness and carrying four 

holes with geometrical parameters given in Table 5.5. The FEM analysis is carried out using 

Shell63 element with ANSYS11. The converged FEM solution with the lowest 

eigenfrequencies is given in Table 5.5.Convergency summary is given in Appendix B, Table 

B.2.  

Table 5.5 Specimen parameters 

Specimen 

No. 

Plate Size 

(a mm x b mm) 

Cutout Size 

(d mm x d mm) 

h, (mm) 

5.8 400 x 400 133.33 x 133.33 2 

5.9 500 x 500 166.66 x 166.66 2 

5.10 600 x 600 200 x 200 2 

5.11 700 x 700 233.33 x 233.33 2 

5.12 800 x 800 266.66 x 266.66 2 
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5.10 Results and Discussions 

Comparison between the FEM and numerically obtained natural frequencies of the 

plate for first mode is given in Table 5.6. All calculations have been performed for a 

clamped-clamped rectangular plate of 2 mm thickness.  

Table 5.6 Comparison of the FEM and analytical results  

Specimen 

No. 

Fundamental frequency ω1, (Hz) % Error 

Analytical  

(1 term shape 

function) 

Analytical  

(5 term shape 

function) 

FEM 1 Term 

& FEM 

5 Term 

& FEM 

5.8 97.958 96.792 93.052 5.272 4.019 

5.9 62.693 61.947 59.55 5.277 4.025 

5.10 43.537 43.018 41.354 5.278 4.023 

5.11 31.986 31.605 30.383 5.275 4.021 

5.12 24.489 24.198 23.262 5.274 4.023 

The agreement between the analytical approach and the finite element results is 

reasonably good when plate size increases. The maximum difference is of the order 5.278 % 

for case of 600 mm x 600 mm size thin plate when one term shape function is used. When the 

five term shape function is used with the Rayleigh-Ritz method maximum difference is of the 

order 4.025 % for case of 500 mm x 500 mm size thin plate. Thus when shape function given 

by equation (5.15b) is used error reduced by 1.25%.  The improved performance of the 

proposed model, for the small holes as demonstrated in Table 5.6, is due to the fact that the 

effects of both the different holes and their locations on the frequency have been accounted 

by using the greatest integer functions. Variation in the density and Young’s modulus due to 

holes is represented as a non homogeneity by constructing special function consisting of 

greatest integer function. Model in the present work does not consider any rotary inertia of 

the plate. A square plate with simple geometry was considered for convenience of the 

computation. By virtue of the symbolic forms presented in this work, the method can be 

applied to the analytical studies of the perforated plates with different boundary conditions. 

5.10.1 Comparison of the Analytical and FEM Mode Shapes 

Extracted mode shapes from the Rayleigh-Ritz method are compared to those of the 

finite element model (FEM) and are shown to have agreement between them. Contour plots 
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are compared in Table 5.7 for representative specimen no. 5.9. It can be observed that 

displacement pattern obtained analytically matches approximately with that obtained by the 

FEM analysis. Analytical mode shapes of the entire specimens shows identical displacement 

pattern as all the specimens are geometrically similar. 

Table 5.7 Comparison of the analytical and FEM mode shapes 

Analytical FEM 

Specimen no.5.9 Dimensions 500 mm x 500 mm and d = 166.66 mm x 166.66mm 

 

 

5. 11 Concluding Remarks 

This work presents analytical models to estimate the fundamental frequency of the 

uniform thickness plates carrying square perforations in the square and staggered pattern. The 

effect of the nonhomogeneity in the Young’s modulus and density due to the holes on the 

natural frequency of the perforated plate has been modeled using unit step functions and the 

greatest integer functions. The Heaviside step function can be used to express the variation of 

the material properties of the perforated plates with different types of perforation pattern, 

whereas the greatest integer functions can be used to express the variation of the material 

properties of the perforated plates with square perforation pattern.  

The material properties variation functions thus obtained can be used to determine the 

fundamental frequency of the plates using approximate techniques such as the Rayleigh’s and 

Rayleigh-Ritz method. The proposed models have been verified by comparing the numerical 

results with the FEM results. Also proposed approaches can be applied to the plates subjected 

to other boundary conditions with appropriate choice of the shape function to represent the 

deflection of the mid plane of the plate.  
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Chapter 6 

Analytical Model for the Rectangular Plate with the Triangular  

Pattern of Perforations 

6.1 Introduction 

In this chapter an analytical model to determine the fundamental frequency of the 

rectangular plate with the staggered array of the perforations is formulated. Perforations 

considered are square / rectangular whereas the perforation pattern considered are 60
o
 and 45

o
 

staggered, triangular. The variation of the material properties like density and the modulus of 

elasticity for a plate with a generalized staggered perforation pattern are expressed using the 

Heaviside step function in the Rayleigh’s Quotient. In the present analysis boundary 

condition considered is clamped all edges. The perforated plate is considered as the plate with 

a uniformly distributed mass and the holes are considered as the non homogeneous patches as 

considered in the chapter 5. The deflected middle surface of the plate is approximated by a 

simple polynomial function which satisfies the boundary conditions. The fundamental 

frequency of vibration is determined by the numerical analysis from proposed approach for 

the different plate specimens varying in the effective outer dimensions and the perforation 

sizes.  The results of the numerical analysis are validated by comparing results of the Finite 

Element Method modal analysis and the experimental results. It is found that results obtained 

from proposed approach are in reasonably good agreement with the results of the finite 

element analysis.   

6.2 Clamped Rectangular Plates with the 60 
o
 Triangular Perforation 

Pattern 

In this section the rectangular plates with the rectangular/square perforations arranged 

in a regular 60
o 
triangular pattern are considered. As shown in Figure 6.1, the plate with edges 

of the effective lengths a and b along x and y axes respectively has the rectangular 

perforations of width dx and dy along x and y axes respectively. The centre to centre distance 

of the two adjacent perforations in the pattern in x and y directions are px and py respectively:  

To evaluate the integrals involved in the Rayleigh’s quotient, the density and the 

modulus of elasticity need to be expressed as a function of the x and y co-ordinates. If the 
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function F(x, y) represents the variation of the material properties along the surface, then the 

density (ρ) and modulus of elasticity (E) can be expressed by equation (5.5)  

 

Figure 6.1 Generalized triangular perforation pattern 

Comparison of the geometry of plate with staggered perforation pattern as shown in 

Figure 6.1 and a square perforation pattern in the Figure 5.1 shows that alternate rows of the 

regular 60
o
 triangular pattern are displaced with respect to the previous rows. This deviation 

from the square pattern can be interpreted as a phase difference and it can be incorporated 

into the material property function F(x, y). To obtain the variation of the material properties 

for a plate with triangular perforation pattern, initially the function F(x, y) for a square pattern 

is obtained and appropriate phase difference is introduced in the expressions for f(x) and g(y). 

If φ1 and φ2 represent the phase difference to be introduced in the density or Young’s 

modulus functions, as a result of the rows displaced. The resultant density or Young’s 

modulus in x direction becomes f(x-φ1) and the resultant density or Young’s modulus in y 

direction becomes g(y-φ2). Thus for a staggered pattern from equation (5.14) we have: 

1 2 1 2( , ) ( ) ( ) ( ) ( )F x y f x g y f x g y            (6.1) 

The functions f(x), g(y), φ1=φ1(y) and φ2=φ2(x) are obtained using the Heaviside unit step 

function. These functions are expressed as a series of rectangular pulses which represent the 

material property variations along the x and y axes respectively. From Figure 6.1 it can be 
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seen that the alternate rows of the perforations along x direction are shifted by distance px/2 

and the perforations along y direction are shifted by distance py. Thus, the phase difference φ1 

and φ2 are px/2 and py respectively for the alternate shifted rows of the perforations and zero 

otherwise. The expressions for φ1 and φ2 can be obtained using the Heaviside step function 

with amplitudes px/2and py respectively. Considering the geometry of the plate shown in 

Figure 6.1, the function f(x) for the central row of the perforations along x axis can be 

expressed as:  
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(6.2) 

Similarly the function g(y) for a central column of the perforations along y axis in a square 

pattern can be expressed as: 
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(6.3) 

The above expressions for f(x) and g(y) are valid for a square pattern. The phase difference to 

be introduced in these expressions is a function of x and y co-ordinates (φ1=φ1(y) and 

φ2=φ2(x)). The expressions for phase difference can be obtained as follows: 
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(6.5) 

 

The generalized expressions for f(x), g(y), φ1(y) and φ2(x) are evaluated as an infinite series. 

These can be truncated to finite number of terms depending upon the dimensions and the 

geometry. These expressions can be written in a compact form as follows: 
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(6.10) 

The function F(x, y) for a generalized staggered pattern can be obtained from equation (6.10) 

using the above equations (6.6) to (6.9). This function can be used in equation (5.6) to 

compute the fundamental frequency of the plates having staggered perforation pattern. 

6.3   Numerical Analysis 

An analytical model developed in Section 6.2 is applicable to the rectangular plates 

with the regular 60
o
 staggered arrays of the rectangular perforations provided all the 

perforations are of the same size. Analytical model developed is based on the thin plate 

theory thus does not consider effects of the rotary inertia. Proposed model can be applied to 
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the analytical study of the perforated plates with different boundary condition by proper 

choice of the shape function W1, satisfying the boundary conditions. Analytical model can be 

used for the rectangular plates with a rectangular/ square array of the holes where φ1(y) = 0 

and φ2(x) = 0. To study applicability and accuracy of the proposed model numerical analysis 

is carried out and the fundamental frequency is obtained with the proposed approach for the 

different plate specimens with all edges clamped boundary condition. The numerical analysis 

involves following two distinctive cases of the perforated plate specimens with 60
o
 staggered 

arrays of holes. 

 Rectangular plates with the varying effective outer dimensions as well as the 

perforation sizes. 

 Rectangular plates with the fixed effective outer dimensions and the variable 

perforation sizes. 

For all the plate specimens analyzed a thickness of h = 2 mm is considered with the material 

properties given in Table 4.1.  

6.3.1 Analysis of the Plates with a Unit Cell of the Square Perforations  

In this analysis the clamped rectangular plates having a single unit cell of the square 

perforations arranged in a regular 60
o 

staggered pattern are considered. Figure 6.2 shows the 

geometrical parameters of the plate. 

 

Figure 6.2 Unit cell of the 60
o
 staggered pattern 
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  Since the perforations are square shaped we get the following relations for the 

dimensions shown in Figure 6.2.  
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(6.11) 

The unit cell, shown in Figure 6.2 represents a basic unit of a regular 60
o
 staggered 

pattern. The whole pattern can be obtained by repeating this unit cell all over the surface. The 

variation of the density and modulus of elasticity is obtained using equation (6.10) by 

incorporating the relations given in equation (6.6) to (6.9). The density plot of the function 

F(x, y) obtained is shown in Figure 6.3. The density plot resembles the geometry of the plate 

considered. The dark area represents the region where F(x, y) = 0 which is the region 

corresponding to a perforation. The density plot shows that F(x, y) is a valid representation of 

the variation of the material properties of the plate. 

 

Figure 6.3 Density plot of the function F(x, y) 

  The function F(x, y) obtained as above by equation (6.10) and W1(x, y) from equation 

(5.3) is used in the Rayleigh’s quotient given by equation (5.3) to obtain the fundamental 

frequency. The numerical analysis is done for the rectangular plates of the different side 

dimensions ranging from 10 mm to 100 mm with the geometry as shown in Figure 6.2.  
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6.3.2 Analysis of the Plates with Fixed Outer Dimensions and Varying the Perforation 

Size 

In this analysis clamped rectangular plates with the square perforations in a regular 

60
o
 staggered pattern and having fixed effective outer dimensions a = 216 mm, b = 138 mm 

and thickness h = 2 mm are considered. Size of the square perforations considered for each 

specimen is different.  Thus for each specimen, different numbers of perforation holes are 

obtained. The mass remnant ratio (MRR) which is the ratio mass of the perforated plate to the 

mass of the homogeneous plate with the same effective outer dimensions is calculated for 

each specimen as follows: 

2a b N d
MRR

a b

  



 

(6.12) 

Where N is the ratio of total perforated area to area of a single perforation and d is the size of 

each square perforation. The specimens considered have square perforations; therefore the 

relations in equation (6.11) are applicable in this analysis. When all the perforations are 

included within boundary of effective outer dimensions N becomes equal to total number of 

the holes.  

The function F(x, y) given by equation (6.10) is obtained from equations (6.6) to (6.9) and 

W1(x, y) from equation (5.3) is used in the Rayleigh’s quotient given by equation (5.6) to 

obtain the fundamental frequency of each specimen. Numerical calculations were done for 

the plate specimens with different size of the perforations, followed by validation of the 

numerical results. The results of the numerical analysis have been tabulated in Table 6.1 and 

6.2.  

6.4. Validation of the Approach 

To validate the results obtained by the numerical analysis, FEM modal analysis of the 

same plate specimens was carried out using ANSYS 11. The thickness (h = 2mm) and 

material properties of the plates considered for the finite element analysis are same as those 

considered for the numerical analysis given by equation (5.25). Modal analysis was carried 

out using Shell 63 as the element type. The analysis was repeated with successive refinement 

in the mesh until convergence was obtained. Summary of the convergence is given in 

Appendix “B” Table B.3 and B.4. Table 6.1 and 6.2 shows the fundamental frequency results 

obtained from the numerical analysis as well as the FE modal analysis.  
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The numerical results obtained are also validated by comparing results with the experimental 

natural frequencies. An experimental analysis was carried out for the two specimens with the 

square perforations of size 7.33 mm and 30.86 mm respectively. Specimens used for the 

experimentation are shown in Figure 6.4. Specimen’s thickness is 2 mm. The experimental 

results obtained are given in Table 6.3. 

  

         Specimen No. 6.14(d = 7.33 mm)                    Specimen No. 6.15(d = 30.86 mm) 

Figure 6.4 Perforated plate specimens with the staggered pattern tested 

experimentally 

6.5 Results and Discussion 

Table 6.1 shows the results of the numerical as well as the FEM modal analysis for 

the plates with a single unit cell of 60
o
 staggered perforations. Comparison between the 

results of the numerical and finite element analysis (FEA) shows that the fundamental 

frequency obtained using the proposed approach is higher than that obtained by the FEM. All 

the specimens tabulated in Table 6.1 are geometrically similar. Thus the mass remnant ratio 

MRR (0.65359) is same for each specimen. Therefore the proposed approach gives result 

with nearly same accuracy for each specimen. In this analysis a systematic error in the range 

8 to 9 % is observed for the range of the perforation sizes considered. From the Table 6.1 it is 

observed that, as the perforation size becomes larger, frequency decreases. According to Sun 

choi et al., (1998) this occurs, as the stiffness drops more rapidly than mass and due to this 

frequency decreases. Table 6.2 shows the results of the numerical as well as FE modal 

analysis for the plates with fixed outer dimensions and the variable perforation size. The mass 

remnant ratio for each plate specimen considered is different. The distribution of the mass 
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and thus the stiffness for each specimen is different. No inference can be drawn from the 

results as particular trend for variation in the fundamental frequency is not observed. This is 

because dimensions of the perforation for each specimen are chosen so as to perfectly 

accommodate all the perforations within the effective outer dimensions. 

Table 6.1 Results of the numerical and FE analysis for the plates with a single unit cell of 

60 
0
 staggered perforation pattern 

Specimen 

No. 

Perforation 

Size, d 

(mm) 

Plate size 

(a mm x b mm) 

Frequency ω1 

by FEM modal 

analysis (Hz) 

Frequency ω1 

by numerical 

analysis (Hz) 

% Error 

6.1 10 50 x 44.64102 6657.000 7269.251 9.197 

6.2 20 100 x 89.28203 1664.300 1817.312 9.193 

6.3 30 150 x 133.9230 739.660 807.694 9.198 

6.4 40 200 x 178.5641 416.070 454.328 9.195 

6.5 50 250 x 223.2051 266.280 287.630 8.017 

6.6 60 300 x 267.8461 184.920 199.823 8.059 

6.7 70 350 x 312.4871 135.860 146.814 8.063 

6.8 80 400 x 357.1281 104.020 112.404 8.060 

6.9 90 450 x 401.7691 82.185 89.326 8.689 

6.10 100 500 x 446.4102 66.570 72.435 8.810 

 

Table 6.2 Results of the numerical and FE analysis for the plates with the fixed outer 

dimensions 

Specimen 

No. 

Perforatio

n Size, d 

(mm) 

No.  of 

perforations, 

N 

MRR Frequency 

ω1 (Hz) by 

FEM 

Frequency 

ω1(Hz) by 

numerical 

analysis 

% 

Error 

6.11 7.330 159 0.7134 607.150 671.168 10.544 

6.12 12.71 54.7223 0.7034 601.020 650.907 8.300 

6.13 30.86 11 0.6486 586.740 621.966 6.003 
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From comparison of the FEM and numerical analysis results given in Table 6.1 and 

Table 6.2 it is observed that, for all specimen the fundamental frequency values obtained by 

the numerical analysis are higher than values obtained by the FEM analysis. This is because 

frequency values depend upon type and the form of the shape function chosen. In present 

analysis only one term approximation is used for shape function which results in higher 

values of the fundamental frequency obtained by numerical analysis. The approximate 

representation of the deflection of the plate given by equation (5.3) is used for the ease of 

computations involved in the analysis. For the specimen 6.11from Table 6.2 percent error 

between the FEM and numerical results is 10.544% but actual numerical difference between 

the results is 64.018 Hz which is significant.  

Table 6.3 Results of the numerical and experimental analysis for the plates with the fixed 

outer dimensions 

Specimen 

No. 

Perforation 

Size, d 

(mm) 

No.  of 

perforations

, N 

MRR Frequency ω1 

(Hz) by 

Experimental 

analysis 

Frequency 

ω1(Hz) by 

numerical 

analysis 

% 

Devia

tion 

6.14 7.330 159 0.7134 575 671.168 14.32 

6.15 30.86 11 0.6486 545 621.966 12.37 

 

6.5.1 Inferences about Experimental Readings  

Results of the experimental analysis are given in Table 6.3. One of the sample 

frequency response function (FRF) plot is given for each of the two experimentally tested 

specimens. Figure 6.5 and Figure 6.6 shows the sample FRF for the specimen 6.14 and 

specimen 6.15 respectively. It is observed that the maximum discrepancy between the 

numerical and experimental natural frequency is 14.32% for specimen 6.14 and 12.37% for 

specimen 6.15. Actual numerical difference between the FEM and numerical analysis results 

is 96.168 and 76.966 for specimen 6.14 and 6.15 respectively. This large numerical 

difference may be due to the possible sources of the error as discussed in Section 5.6.1. 

Comparison of the FEM and experimental results gives discrepancy of 5.29% and 7.11% for 

the specimens 6.14 (or 6.11) and 6.15(or 6.13) respectively.  
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Figure 6.5 Frequency response function for the Specimen no. 6.14 (d =7.33 mm) 

 

Figure 6.6 Frequency response function for the Specimen no. 6.15 (d = 30.86 mm) 

 

6.5.2 Comparison of the Analytical and FEM Mode Shapes 

Contour plots of the mode shapes obtained analytically and by the FEM are compared 

in Table 6.3a and Table 6.3b. The Table 6.3a shows representative mode shape for the 

specimen 6.10 with a unit cell of the staggered 60
0
 pattern given in Table 6.1. Analytical and 

the FEM Modes for the specimens 6.1 to 6.10 are similar as shown in Table 6.3a. The Table 

6.3b shows comparison of the analytical and FEM modes for the specimens with fixed outer 

dimensions given in Table 6.2. Comparison in Table 6.3a and Table 6.3b shows agreement 

between the analytical and FEM mode shapes for the fundamental frequency. 
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Table 6.3a Comparison of the analytical and FEM mode shapes for unit cell of 60 
0
 

staggered perforation pattern 

Speci. 

No. 

Mode shapes 

Analytical FEM 

Specimens with the dimensions (138 mm x 216 mm) 
 

6.10 

 

 

 

 

 

Table 6.3b Comparison of the analytical and FEM mode shapes for the plates with the 

fixed outer dimensions 

Speci. 

No. 

Mode shapes 

Analytical FEM 

Specimens with the dimensions (138 mm x 216 mm) 
 

6.11 
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6.6 Clamped Rectangular Plates with the 45 
o
 Triangular Perforation 

Pattern 

6.6.1 Plates with the square perforations in a staggered 45
 o

 perforation pattern:  

A square plate with 45 degree staggered pattern of the square perforation is shown in 

Figure 6.4. Coordinate system (O; x, y, z), having the origin O at the center is considered. The 

displacement of an arbitrary point of coordinates (x, y) on the middle surface of the plate is 

denoted by w, in out-of-plane (z) direction. The boundary conditions considered here, are all 

edges clamped.  The geometric parameter, hole size d is uniform for all the perforations. The 

assumptions made in the following formulation are that transverse defections are small so 

that the dynamic behavior of the plate is governed by the classical thin plate theory. 

Analytical model in the present work does not consider any rotary inertia of the plate. For the 

specimen shown in Figure 6.4 side dimensions are   a and b and the square perforation size is d mm × 

d mm. If each hole is a square of width d, then each unit cell of the pattern is of width 4d. The 

whole pattern may be obtained by repeating this unit cell all over the surface. 

 

 
 
 

Figure 6.4 Geometry of the 45
o
 staggered pattern 
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6.6.2 Construction of the Material Property Variation Function 

The function F(x, y) represents the variation of the density and modulus of elasticity 

then for the perforated plate the density and modulus of elasticity can be given by equation 

(5.5). For the function F(x, y) to represent these parameters it must satisfy the requirement 

given by equation (5.7). If f(x) represents the variation in x direction and g(y) represents variation in 

y direction. Then superimposing these functions will give the resultant density and Young’s modulus 

at any point (x, y) for square pattern.  

For a square pattern we have from equation (5.14), 

                             (6.13) 

If we consider the geometry of the plates with 45 degree staggered pattern we observe 

that alternate rows of the pattern are displaced with respect to the previous rows. This 

deviation from the square pattern can be interpreted as a phase difference and it can be 

incorporated into the density and modulus of elasticity function. If φ1 and φ2 represent the 

phase difference to be introduced in the density functions as a result of the rows displaced, 

the resultant density in x direction becomes f(x- φ1) and the resultant density in y direction 

becomes g(y- φ2). Thus for a staggered pattern we have from equation (6.1). 

                                         (6.14) 

First the individual functions along the x axis and y axis are computed separately. 

Appropriate phase difference is introduced in the functions so as to consider the phase shift in 

the alternate rows. To construct the functions along the individual axes we represent the 

variation as a series of pulses constructed using the Heaviside step function. From the 

geometry of plate given in Figure 6.4 material is present in between the intervals x ϵ {-7d/2, -

d/2}, {d/2, 7d/2} and similarly for y ϵ {-7d/2, -d/2}, {d/2, 7d/2}. So the resultant property 

variation function can be given as: 

    
 

 
      

  

 
      

  

 
      

 

 
  

(6.15) 

This expression can be written in a compact form as: 

     
       

 
      

       

 
 

 

    

 

(6.16) 

The function representing the phase difference in the property variation function can 

be obtained from the fact that alternate rows of a square pattern are shifted by a distance 2d to 



79 

 

get the 45 degree staggered pattern. Thus for the particular geometry considered we have the 

phase difference equal to 2d when we have y ϵ {-5d/2, -3d/2}, {3d/2, 5d/2} and similarly for 

x ϵ {-5d/2, -3d/2}, {3d/2, 5d/2}. Thus the function for the phase difference can be obtained as 

a series of pulses of amplitude 2d which can be given by the following expression: 

    
  

 
      

  

 
      

  

 
      

  

 
  

(6.17) 

This expression can be written in a compact form as: 

     
       

 
      

       

 
 

 

    

 

   

(6.18) 

Thus we get the following expressions for φ1, φ2, f(x), g(y) and F(x, y) respectively. 
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Density plot of the function F(x, y) is given for the specimen plate with the side dimensions  

a = b = 90 mm and the square perforation size is 10 mm in Figure 6.5. 

To determine the fundamental frequency the Rayleigh’s method discussed in section 

(3.3.1) of the thesis is used. F(x, y) obtained in by equation (6.14) is used to obtain the energy 

expressions.  

The Rayleigh’s quotient now becomes, as given by equation (5.6) from thesis. 
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
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(6.23) 
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6.7 Numerical Analysis and Validation 

Numerical analysis is carried for the five specimens with the different sizes of the 

square perforations ranging from 10 mm to 30 mm. Thickness of the plate considered is 2 mm 

for each specimen. The material properties considered are Eo = 2.1 × 10 
11

 N/ m
2
, o = 0 .3, ρo = 

7850 kg/ m
3
. For each specimen the fundamental frequency is obtained by the Rayleigh’s method. The 

shape function W(x, y) is given by equation (6.24). Only First term approximation is considered for the 

Rayleigh’s method. Shape function W(x, y) satisfies clamped boundary condition on all edges. 

 

2 2
2 2

2 2

1( , )
2 2

a b
W x y C x y

      
                 

 
  (6.24) 

For validation the FEM modal analysis of the same specimens was done using ANSYS 

(Element type: Shell 63) using the same material properties as used in the numerical analysis. 

Comparison of the results by both the methods is given in Table 6.4. 

 

 

Figure 6.5 Density plot of the function F(x, y) for the 45
o
 staggered pattern 



81 

 

6.8 Results and Discussion 

Table 6.4 Numerical and FEM analysis results for the 45
o
 staggered pattern 

 

Speci.  

No. 

Plate size, 

(mm ×mm) 

Hole Size 

(mm x mm) 

ω1, ( Hz) 

Numerical 

ω1, FEM  

( Hz) 

%Error 

Rayleigh  Rayleigh 

&FEM 

6.16 90 × 90 10 × 10 2057.548 2030.4 1.337 

6.17 135 × 135 15 × 15 914.465 902.42 1.334 

6.18 180 × 180 20 × 20 514.387 507.62 1.333 

6.19 225 × 225 25 × 25 329.841 324.91 1.517 

6.20 270 × 270 30 × 30 229.493 225.62 1.716 

 

  The agreement between the numerical and FEM results is reasonably good; 

differences are mainly due to the use of approximate methods and limitations of the 

Heaviside function used. The procedure developed in this approach is straightforward and 

allows for immediate solution. We found computation time is exceptionally good with one 

term of the shape function. The function f j (x ,y) can be slightly extended beyond the actual 

domain , which will not change the maximum potential and kinetic energy as integrals will be 

calculated over actual domain i.e. x∈{-a/2, a/2} and y∈{-b/2,b/2}. This helps greatly in 

reducing computation time.  

 The expressions obtained for the material property variation function in both the cases can 

be extended to the plates with similar geometry and the different outer dimensions. The 

material property variation function which is used for a plate with staggered pattern seems to 

be computationally less effective when more number of terms are used in the shape function 

and solved by the Rayleigh’s - Ritz method. It involves the computation of the phase 

difference at each point which itself is a function of the position of the point; and then this 

phase difference is further used to compute the density along the individual axes. These 

values of density are then superimposed to give the resultant density at point. Thus we have 

used the Rayleigh’s quotient and only one term approximation to minimize the complexity 

and the number of computation steps and the results can be obtained within few seconds. One 

term approximations are readily obtained and provide a good estimate of the fundamental 

frequency as seen from Table 6.4.  
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6.8.1 Comparison of the Analytical and FEM Mode Shapes 

Contour plots of the mode shape obtained from the analytical method are compared 

with that obtained from the FEM analysis in Table 6.5.  The specimens numerically analyzed 

are geometrically similar hence representative comparison is shown for the specimen 6.18. 

From comparison of the mode shapes it is observed that both the analytical and FEM modes 

are in agreement with each other. 

Table 6.5 Comparison of the analytical and FEM mode shapes for a unit cell of 60 
0
 

staggered perforation pattern 

Analytical FEM 

Specimen no.6.18 Dimensions 180 mm x 180 mm and d = 20 mm x 20 mm 

 

 

6.9 Concluding Remark 

The Heaviside step function can be used to express the variation of material properties 

of the perforated plates with the staggered array of perforation pattern.  An approach 

presented here is an extension of the approach proposed in the chapter 5. An analytical model 

formulated in present work is more versatile, as the same model is applicable to the plates 

with the staggered and rectangular/square array of the rectangular/square perforations. If the 

expressions for phase difference in the equations governing the variation of the material 

properties for a staggered pattern are set to zero, the resultant expressions obtained for the 

material properties are valid for a rectangular pattern. The material properties variation 

functions thus obtained can be used to determine the fundamental frequency of the plates 

using approximate techniques such as the Rayleigh’s method. Also proposed approach can be 
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applied to the plates subjected to the other boundary conditions with appropriate choice of the 

shape function to represent the deflection of the mid plane of the plate. 



 

 

 

 

 

 

 

Section Two 

Analytical Models to Determine the Fundamental Frequency of 

the Rectangular Plates with the Circular Perforations 

(Chapter 7, 8, 9 and 10) 
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Chapter 7 

The Concentrated Negative Mass Approach  

7.1 Introduction 

The work given in this chapter is concerned with the vibration analysis of the 

perforated rectangular plates with the rectangular perforation pattern of the circular holes. 

Free vibration of the perforated plate with the rectangular perforation pattern of the nine 

circular perforations is studied.  Boundary condition used for the plate is clamped on all four 

edges. In the current approach the Galerkin method is used for determining the fundamental 

frequency of the rectangular perforated plate with the rectangular perforation pattern of the 

circular holes. The perforated plate is considered as a plate with a uniformly distributed mass 

and holes are considered as concentrated negative masses. The deflected surface of the plate 

is approximated by the cosine series which satisfies the boundary conditions. Ten specimens 

are analyzed numerically with different perforation diameters to obtain the fundamental 

frequency. To validate the proposed model the FEM and experimental results have been used. 

The comparisons show that the analytical model predicts the natural frequencies reasonably 

well for the holes of small size.  

  Percentage error in the fundamental frequency obtained by comparing the numerical 

and FEM results is plotted against ratio of the plate area (A) to the perforation hole area (Ap). 

For the variation of the percent error in the fundamental frequency, trend line is established 

by regression analysis. Further from the equation of the trend line limiting condition in terms 

of the ratio of the plate area (A) to the perforation hole area (Ap) is established, to obtain 

accuracy in the fundamental frequency is obtained. Present analytical model is thus useful for 

predicting accurately the fundamental frequencies of wide range of the small size perforation 

geometries, for the rectangular plates with the rectangular perforation pattern for all edges 

clamped support condition.  

7.2 Analytical Formulations 

7.2.1 Equation of the Motion for an Isotropic Rectangular Plate 

The Galerkin method is applied to the plate vibration problems (Ventsel and 

Krauthammer, 2001) to get the equation of motion. The partial differential equation 
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governing the free transverse vibration of an isotropic thin plate with dimensions a, b shown 

in Figure. 7.1, is (Ventsel and Krauthammer, 2001), 

4 2 2 4 4

4 2 2 4 2
( 2 +  )+ 0

w w w w w
D ρh

x x y y t

    
 

    
 

(7.1) 

4
2 2

2
( , , ) ( , , ) 0

w
D w x y t h x y t

t



   


 

(7.2) 

Where h is the uniform plate thickness, ρ is the density, w is the transverse displacement, and 

D is the flexural rigidity, 2 is two-dimensional Laplacian operator. D and 
2  are given as  

 

3

212 1

Eh
D 


,

   

2 2
2

2 2x y

 
  

 
 

(7.3)    

Where E is the modulus of elasticity and ν is the Poisson’s ratio.     

To solve equation (7.2) and obtain ( , , )w x y t  in general, the following solution can be assumed  

( , , ) ( cos cos ) ( , )w x y t A t B t W x y    (7.4) 

This is separable solution of the shape function ( , )W x y describing the modes of the vibration 

and some harmonic function of time;   is the natural frequency of the plate vibration which 

is related to the vibration period T by the relationship,  

2 /T   (7.5) 

 

 

 

 

 

 

 

 

 

Figure 7.1 Rectangular plate co-ordinates 
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Introducing equation (7.4) in to equation (7.2) we get, 

2 2 2( , ) 0D w x y hW      (7.6) 

The shape function satisfying the boundary conditions for the rectangular plate with 

dimensions a and b is assumed in the form of series as below. 

n

i i

i=1

W(x, y) = CW (x , y)  
(7.7) 

Where, Ci are unknown coefficients. 

Now following the general procedure of the Galerkin method the unknown coefficients Ci 

can be determined from the orthogonality conditions. 

For the plate problem vibration given by equation (7.6), the orthogonality conditions together 

with the equation (7.7) result in equation (7.8) as given below  

2 2 2

1 1

( ) 0; 1,2,......
n n

i i i i k

i iA

D C W h CW W dxdy k n 
 

       
(7.8) 

The above conditions when implemented numerically leads to the Galerkin system of linear 

algebraic equations of the form 

11 1 12 2

1 1 2 2

0

0,n n

a C a C

a C a C

   



   

 

(7.9) 

Where 

2 2 2[ ]ik ki i i k

A

a a D W hW W dxdy       (7.10) 

This system of homogeneous equations has a nontrivial solution if its determinant ( )  

made up of the coefficients ika  is equal to zero. Therefore we obtain n
th

 order characteristic 

equation for determining the natural frequencies as,  

( ) 0   (7.11) 

This equation will have an infinite number of solutions which constitute the frequency 

spectrum for the given plate. In general, the frequencies will depend on two parameters: m 

and n (m = 1, 2……; n = 1, 2……). For each frequency mn , there is a corresponding shape 

function ( , )W x y , which on the basis of the homogeneous equations, is determined by a 

constant multiplier (which can be assumed as being equal to unity). 
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7.2.2 Determination of the Fundamental Frequency of the Plates with the Circular 

Perforations 

A rectangular plate with coordinate system (O; x, y, z), having the origin O at one 

corner is considered as shown in Figure. 7.2 Co-ordinates of the plate clamped on all edges 

carrying circular holes. The displacement of an arbitrary point of coordinates (x, y) on the 

middle surface of the plate is denoted by w, in out-of-plane (z) direction. The boundary 

conditions considered here, are all edges clamped.  Geometric parameters, hole diameter d is 

uniform for all perforations. The assumptions made in the following formulation are that 

transverse deflections are small so that the dynamic behavior of the plate is governed by the 

classical thin plate theory. Mass of the plate, (m) is considered as uniformly distributed with 

the nine concentrated negative masses denoted as ‘-M’. The negative sign indicates that the 

concentrated mass ‘-M’ cancels out the effect of the same amount of mass of the homogenous 

plate at the position of the cut-outs. This is an equivalent approach to apply the Galerkin 

method for the given perforated plate vibration problem. Analytical model in the present 

work does not consider any rotary inertia of the plate. 

 

Figure 7.2 Co-ordinates of the plate clamped on all edges carrying circular holes 

The middle surface displacement is approximated by using the shape function W(x, y) 

in the form of a series, which satisfy the boundary conditions on the edges x = 0, x = a, and y 

= 0, y = b. Let us represent the shape function W(x, y) for a rectangular plate with dimensions 

a and b in the form (Ventsel and Krauthammer, 2001), 
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( , ) ( , )ik ik

i k

W x y C W x y  (7.12) 

where ikC are unknown coefficients representing the amplitudes of the free vibration modes 

and ( , )ikW x y is the product of the pertinent eigenfunctions of the lateral beam vibrations. 

( , ) ( ) ( )ik i kW x y F x F y  (7.13) 

Which satisfy the prescribed boundary conditions on the edges x = 0, x = a, and y = 0, y = b. 

In equation (7.13) ( )iF x  and ( )kF y represent the i th and k th modes of freely vibrating 

beams of spans a and b, respectively. 

By applying the Galerkin method for determining the fundamental frequency, equation (7.10) 

can be modified for the coefficients ika of the Galerkin’s system of equations, to the present 

problem, as follows (Ventsel and Krauthammer , 2001), 

2 2 2 2[ )ik ki i i k i k

A

a a D W hW W dxdy M WW         
                                              

(7.14) 

The deflected surface of the vibrating plate is approximated by the series, 

1 1

2 2
( , ) (1 cos )(1 cos )ik

i k

i x k y
W x y C

a b

  

 

    
(7.15) 

This satisfies the boundary condition clamped all edges. 

For the first approximation retaining only the first term in the expansion of equation (7.15) 

we obtain from equation (7.14), 

4 2 2 4
2 2 21 1 1 1

11 1 1 14 2 2 4

0 0

[ ( 2 + ) ]

a b
W W W W

a D m W W dxdy M W
x x y y

 
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   
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   (7.16) 

Introducing in equation (7.16) W1 as below  

1

2 2
(1 cos )(1 cos )

x y
W

a b

 
     (7.17) 

After simplification of equation (7.16) following expressions are obtained 

4 4 4
2 2

3 3

12 12 8 9
( ) ( ) 32 0

4

b a a ab
D m M

a b ab

  
       

 (7.18) 
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(7.19) 
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7.3 Numerical Simulation 

An analytical model developed in section 7.2.2 is applicable to the rectangular 

perforated plates with the different side dimensions, provided that the perforations are of the 

same size. By virtue of the symbolic forms presented in this work, the method can be applied 

to the analytical studies of the perforated plates with different boundary conditions. To 

estimate the sensitivity of the method for various cases of the hole sizes and plate sizes, the 

numerical analysis is carried out for the ten different plate specimens listed in Table 7.1. 

Third column of the Table 7.2 lists the ratio of the plate area (A) to the area of perforation 

hole (Ap).  

A a b   (7.20) 

2

4
p

d
A


  (7.21) 

Co-ordinates of the perforation centers (x mm, y mm) are given in Table 7.1. The material 

properties considered for all 2 mm thick specimen plates analyzed are as given in Table 4.1.  

Table 7.1.Co-ordinates of the perforation centers 

Specimen 

size (mm 

x mm) 

Co ordinates of the perforation centers  (x mm ,y mm) 

a x b a/4,b/4 a/4,2b/4 a/4,3b/4 2a/4,b/4 2a/4,2b/4 2a/4,3b/4 3a/4,b/4 3a/4,2b/4 3a/4,3b/4 

138 x 216 34.5,54 34.5,108 34.5,162 69,54 69,108 69,162 103.5,54 103.5,108 103.5,162 

276 x 432 69,108 69,216 69,324 138,108 138,216 138,324 207,108 207,216 207,324 

7.4 Validation of the Proposed Approach 

The proposed analytical model is validated by comparing the numerical analysis 

results with FE modal analysis results. The FE Modal analysis is carried out by ANSYS 11 

using Shell 63 element. Parameters of the plate specimen considered in this study are shown 

in Table 7.2. Analysis is carried out for the clamped steel plates having 2 mm thickness and 

carrying nine holes at the positions shown in Figure.7.2. Mesh convergence for the FEM 

results is checked for every specimen. Thus converged solution is given in Table 

7.3.Summary of the mesh convergence is given in Appendix “B”, Table B.5 and Table B.6. 

The numerical results obtained are also validated by comparing results with the 

experimental natural frequencies. An experimental analysis was carried out for two 

specimens with circular perforations of diameter 5 mm and 10 mm respectively. The 
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specimens used for the experimentation are shown in Figure 7.3. Thickness of the specimens 

is 2 mm.  The fixture for performing experiments was as discussed in the chapter 4, section 

4.3. Due to the size limitation of the fixture, experimental validation of the analytical results 

is done for two plates only, as given in Table 7.3. The experimental results obtained are given 

in Table 7.3. 

                

Specimen no.7.11 (d = 5 mm)                                    Specimen no.7.12 (d = 10 mm) 

Figure 7.3 Perforated plate specimens used in the experiment 

7.5 Results and Discussions 

Comparison of the numerical and FEM natural frequencies of the plate specimens for 

first mode is given in Table 7.2. Last column of the Table 7.2 shows percentage error in the 

fundamental frequency values obtained by the numerical analysis and by the FEM analysis. 

The agreement between the analytical approach and the finite element results is within 7.5% 

when perforation size is small, (A/Ap) = 168.683. The maximum difference is of the order 

25.33% especially for the specimen having A/Ap = 35.932. Figure.7.3 shows the variation of 

the percent error in the fundamental frequency with respect to (A/Ap ) ratio. Dotted line shows 

the trend line for this variation. The power trend line clearly demonstrates the decrease in 

percentage error with increase in (A/Ap ) ratio. An equation used to calculate the least squares 

fit through points for the trend line is, 

%

g

p

A
Error f

A

 
  

 
 

 (7.22) 

In above expression f and g are constants. For the percentage error, (A/Ap) ratio data given in 

Table 7.2 values of the constants f and g are found to be 123.97 and - 0.51 respectively. Thus 

equation of the trend line shown in Figure 7.4 is, 

0.51123.97y x  (7.23) 
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where y and x are values of percentage error and (A/Ap) ratio respectively. 

R-squared value shown in Figure.7.4 is a correlation coefficient which reveals how closely 

the estimated values for the trend line correspond to actual data. 

2 0.9371R   (7.24) 

It is observed that the percent error increases above 10%, when the (A/Ap) ratio goes below 

the value 139.238. Thus present approach has limitation in predicting the value of the 

fundamental frequency, as it is based on the basic assumption of the concentrated negative 

mass. It is found that the error in the fundamental frequency is of order of 5% when ratio of 

the area of the plate (A) to the area of single perforation (Ap) is 542.017.  As size of the 

perforation increases, present approach deviates more. Further from Table 7.2 it is observed 

that for the specimens of different configuration but having approximately the same (A/Ap ) 

ratio analytical model gives results with similar accuracy (Specimen 7.1, 7.6 and 7.2, 7.7).  

Table 7.2 Fundamental frequency results of the numerical and FE simulations 

Specimen 

No. 

d  (mm) (A/Ap) ω, Numerical ( Hz) ω, FEM ( Hz) % Error 

Specimens with dimensions (138 mm x 216 mm) 

7.1 5 1518.154 718.63 693.38 3.64 

7.2 10 379.5384 729.04 693.85 5.07 

7.3 15 168.6837 747.46 695.97 7.40 

7.4 25 60.72615 817.34 710.17 15.09 

7.5 30 42.17094 878.60 724.94 21.20 

Specimens with dimensions (276 mm x 432 mm) 

7.6 10 1518.154 179.65 173.37 3.62 

7.7 20 379.5384 182.26 173.46 5.07 

7.8 25 242.9046 184.29 173.65 7.13 

7.9 50 60.72615 204.33 177.53 15.10 

7.10 65 35.93263 230.04 183.55 25.33 

Comparison of the numerical and experimental natural frequency for the first mode is 

given in Table 7.3. Last column of the Table 7.3 shows percentage error in the fundamental 
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frequency values obtained by the numerical analysis and by the experimental analysis. The 

agreement between the analytical approach and the experimental results is reasonably good 

when perforation size is small. As demonstrated in Table 7.2 and Figure 7.4 variation of the 

percent error in the fundamental frequency with (A/Ap) ratio, is due to the fact that the effects 

of both the different holes and their locations on the frequency have been accounted.  

 

Figure 7.4 Variation of the percent error in the fundamental frequency with A/Ap ratio 

Table 7.3 Fundamental frequency results of the numerical and experimental analysis 

Specimen No. d  

(mm) 

(A/Ap) ω, Numerical 

( Hz) 

ω, Experimental 

( Hz) 

% Deviation 

Specimens with dimensions (138 mm x 216 mm) 

7.11 5 1518.154 718.63 650 9.5 

7.12 10 379.5384 729.04 637 12.62 

Experimentally obtained natural frequencies are compared with the numerical results 

obtained from the proposed model. Table 7.3 shows the comparison of these results. Figure 

7.5 and Figure 7.6 shows the sample FRF obtained experimentally for the specimen 7.11 and 

7.12 respectively. It is observed that the discrepancy between the numerical and experimental 

results is 9.5% for the specimen 7.11 and 12.62% for specimen 7.12. Thus it shows that as the 

perforation size increases results obtained by the proposed method deviates more. This occurs 

because as perforation size increases it changes the stiffness also significantly, but proposed 

model considers only change in/reduction in the mass or kinetic energy but not in the strain 

energy thus deviation between the numerical and experimental fundamental frequencies 
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becomes more. Further possible reasons for the deviation of the experimental results are as 

discussed in the Chapter 5, Section 5.6.1. 

 

Figure 7.5 Frequency response function for the Specimens no. 7.11 (d =5 mm) 

 

Figure 7.6 Frequency response function for the Specimens no. 7.12 (d =10 mm) 

7.6 Concluding Remarks 

This chapter presents an analytical model to estimate the fundamental frequency of 

the uniform thickness plates carrying circular perforations in the rectangular pattern. The 

effect of perforation on the natural frequency of the plate has been modeled using concept of 

the concentrated negative mass in the Galerkin method. The proposed model has been 

verified by comparing the numerical results with the FEM and experimental results. It is 

found that the error in the fundamental frequency is of order of 5% when ratio of the area of 

the plate (A) to the area of single perforation (Ap) is 542.017. It is found that the error in the 

fundamental frequency is more when the perforation size increases. Thus, the fundamental 

frequency of perforated plate can be obtained for small size of the perforation by a proper 

choice of the plate parameters and shape function depending on the boundary condition.  
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Chapter 8 

An Equivalent Square Perforation Approach 

8.1 Introduction 

In this chapter an analytical models to determine the fundamental frequency of the 

perforated plate with the circular perforation is formulated. The circular perforations which 

are arranged in the rectangular array are replaced by an equivalent square hole and the non 

homogeneity in the Young’s modulus and density due to an equivalent square perforation is 

expressed by using the unit step function. An analytical formulation is based on the Rayleigh-

Ritz method. This approach is extension of the approach given in chapter 5 to the plates with 

the circular perforations. In present analysis the rectangular perforation pattern is considered 

for the plates with all edges clamped boundary condition. The perforated plate is considered 

as plate with uniformly distributed mass and the holes are considered as non homogeneous 

patches. The deflected middle surface of the plate is approximated by a two term polynomial 

function which satisfies the boundary conditions. Proposed approach is validated by 

comparing results with the Finite Element Method (FEM) modal analysis. 

8.2. Analytical Formulation 

8.2.1 Concept of an equivalent Square Hole for the Circular Perforation 

Circular hole can be replaced by a square hole of same area with centre of the square 

same as the centre of the circular hole. Consider a circular hole of radius rc as shown in 

Figure 8.1. 

 

Figure 8.1 An equivalent square hole for the circle of radius rc 
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Area of the circular perforation having radius rc is given as, 

2

c cA r  (8.1) 

For a square perforation of the side length dc, area can be given as, 

2

c cA d  (8.2) 

For an equivalent square perforation, from equation (8.1) and (8.2) 

2 2

c cd r  (8.3) 

Thus for an equivalent square perforation the side dimension dc can be given as, 

c cd r   (8.4) 

8.2.2 Formulation of the Function to Express Non-Homogeneity in the Material 

Properties of the Plates with the Circular Perforations 

A rectangular plate with coordinate system (O; x, y, z), having the origin O at one 

corner is considered as shown in Figure 8.2. Co-ordinates of the plate clamped on all edges 

carrying the circular holes are a and b along x and y axis respectively. The displacement of an 

arbitrary point of coordinates (x, y) on the middle surface of the plate is denoted by W, in out-

of-plane (z) direction. The boundary conditions considered here, are all edges clamped.  

Geometric parameters of the perforated plate rc i.e. the radius of hole is uniform for all the 

perforations arranged in the rectangular array. The assumptions made in the following 

formulation are that transverse deflections are small so that the dynamic behavior of the plate 

is governed by the classical thin plate theory. Equivalent square holes replacing the circular 

holes are shown with the side dimension as dc. This concept of an equivalent square hole is 

used to   apply the, unit step functions to express the non-homogeneity in the material 

properties. The Rayleigh-Ritz method for the plate vibration problem discussed in section 

(3.3.2) is used for the given perforated plate vibration problem. An analytical model in the 

present work does not consider any rotary inertia of the plate. 

The function F(x, y) represents the variation of the density and modulus of elasticity due to 

the equivalent square perforations. For the function F(x, y) to represent these parameters it 

must satisfy the following requirements as given by equation (5.7). 

( ) = 0 in the region corresponding to a perforationF x,y  

( ) = 1 otherwiseF x,y  
(8.5) 
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The function F(x, y) is constructed as per the geometry of the plates considered with the 

equivalent square perforations. To construct the function F(x, y) we assume that the density at 

any point (x, y) is the superposition of the density along x direction and y direction, this 

superposition is also considered for the modulus of elasticity.  

 

Figure 8.2 Orientation of the perforated plate with equivalent square perforations.  

The functions f(x) and g(y) given by equation (8.7) and (8.8) represent variation of the density 

and modulus of elasticity along x and y axes respectively. Equations (8.7) and (8.8) show the 

rectangular Heaviside function used to express the non homogeneity in the Young’s modulus 

and density of the plate due to the perforations. The functions f(x) and g(y) are formed by 

using the unit step functions and are superimposed to obtain the function F(x, y) as given by 

equation (5.7) and (8.9). 

The unit step as a function of a discrete variable n is given as: 

0, 0
( )

1, 0

n
H n

n


 



       Where n is an integer. 
(8.6) 

2
( ) ( )

4 2 4 2 4 2

2 3 3

4 2 4 2 4 2

a dc a dc a dc
f x H x H x H x H x

a dc a dc a dc
H x H x H x

          
                   

          

          
                  

          

 

 

    (8.7) 

 

http://en.wikipedia.org/wiki/Integer
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2
( ) ( ) -

4 2 4 2 4 2

2 3 3

4 2 4 2 4 2

b dc b dc b dc
g y H y H y H y H y

b dc b dc b dc
H y H y H y

          
                  

          

          
                  

          

 
(8.8) 

For center origin of the plate above equations can be written as 

( )
2 4 2 4 2

2 4 2 4 2

dc a dc a dc
f x H x H x H x

dc a dc a dc
H x H x H x

        
               

        

         
                   

         

 (8.7a) 

( )
2 4 2 4 2

2 4 2 4 2

dc b dc b dc
g y H y H y H y

dc b dc b dc
H y H y H y

        
               

        

         
                   

         

 (8.8a) 

Using the above equations F(x, y) for a square perforation pattern can be obtained by the 

relation, 

( , ) ( ) ( ) ( ). ( )F x y f x g y f x g y    (8.9) 

Plots of the functions f(x) and g(y) are shown in Figure 8.3 and Figure 8.4 respectively when 

origin is at lower left corner as shown in Figure 8.2. The Figure 8.6 and Figure 8.7 show plots 

of the functions f(x) and g(y) when origin is at the centre of the plate.  The nature of the plots 

of f(x) and g(y) is same as the rectangular waves with amplitude unity. The density plot for 

the function F(x, y) (for a =276 mm, b = 432 mm and rc= 25 mm) shown in Figure 8.5 and 

Figure 8.8 for corner and center origin respectively. The density plot of the function F(x, y) 

resembles the geometry of the plate considered. The dark area represents the region where 

F(x, y) = 0 which is the region corresponding to the perforation. The density plot indicates 

that F(x, y) is a valid representation of the density and elastic modulus variation for the plate. 



98 

 

 

Figure 8.3 Plot of the function f(x) for the specimen 276 mm x 432 mm with  

rc= 25 from equation (8.7) 

 

Figure 8.4 Plot of the function g(y) for the specimen 276 mm x 432 mm with  

rc= 25 from equation (8.8) 
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Figure 8.5 Density plot of the function F(x, y) for the specimen 276 mm x 432 mm with 

  rc = 25 with corner origin 

 

  

Figure 8.6 Plot of the function f(x) for the specimen 276 mm x 432 mm with  

rc= 25from equation (8.7a) 
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Figure 8.7 Plot of the function g(y) for the specimen 276 mm x 432 mm with 

 rc= 25 from equation (8.8a) 

 

Figure 8.8 Density plot of the function F(x, y) for the specimen 276 mm x 432 mm with  

 rc = 25 with center origin 
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8.2.3 Determination of the Fundamental Frequency of the Plates with the Circular 

Perforations 

To determine the fundamental frequency the Rayleigh’s-Ritz method discussed in 

section (3.3.2) is used (Leissa and Qatu, 2011; Chakraverty, 2009). The Rayleigh’s-Ritz 

method is based on the maximum Kinetic energy and maximum Strain energy of the plate. 

The function F(x, y) obtained in section (8.2.2.) is used to obtain the energy expressions 

given as below.  

Maximum value of the Kinetic Energy is given as,  

 
 

 
(8.10) 

The maximum Strain Energy is given as, 

 

 
(8.11) 

The middle surface displacement W in above expressions is approximated by using the shape 

function W(x, y) in the form of a series, which satisfy the clamped boundary conditions on the 

edges x = 0, x = a, and y = 0, y = b as given by equation (5.4). 

Let us represent the shape function ( , )W x y  for a rectangular plate with dimensions a and b in 

the form, 

1

( , ) ( , )
n

i i

i

W x y C x y


  
(8.12) 

where iC are the unknown coefficients representing the amplitudes of the free vibration 

modes and ( , )i x y  is the product of the pertinent eigenfunctions of the lateral beam 

vibrations. 

Each of the φi in above equations satisfies at least the geometric boundary conditions. The 

geometric boundary conditions for the plate are those imposed on the displacements and 

slopes. 

For clamped all edges the two term deflection function W, is considered as (Johri and   Johri, 

2011), 
2 2 2 2 3 3 3 3

1 2( , ) 1 1 1 1
x y x y x y x y

W x y C C
a b a b a b a b

                
                     

                 

 
 

(8.13) 

2 2

max 1

0 0

1
( , )[ ( , , )]

2

a b

T F x y h W x y dxdy   

2 2 2
2 2 2

max

0 0

1
( , ) [( ) 2(1 ){( ) }]

2

a b
W W W

u F x y D W dxdy
x y x y


  

    
    
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In order to apply the Rayleigh-Ritz procedure, the maximum Strain energy must be equal to 

the maximum Kinetic energy i.e. 

max max( ) 0u T    (8.14) 

maxmax uT   (8.15) 

From equation (8.10) and (8.11) 

2 max

*

max

u

T
   (8.16) 

where 
* max

max 2

T
T


  is the integral over the plate area without the frequency. 

To use the Rayleighs-Ritz method umax and Tmax expressions are formulated in terms 

of Ci and ϕi, and then the frequency is minimized with respect to Ci. Thus Ci are determined 

so as to obtain the best upper bounds for the fundamental frequency. The frequency 

minimizing equations are, 

2( )
0, ( 1,2)

i

i
C


 


 (8.17) 

Substituting (8.17) into (8.18), following set of minimizing equations can be obtained.  

 2 *

max max 0
i

u T
C




 


, ( 1,2)i   (8.18) 

This is a set of 2 simultaneous, linear, algebraic equations in the unknown C1 and C2. 

For a nontrivial solution, the determinant of the coefficient matrix is set equal to zero. The 

roots of the determinant are the 2 values of ω
2
. The lowest value of ω

2
 is an upper bound 

approximation to the fundamental frequency. 

The above explained analytical method can be extended to the different shape 

function having more number of terms. In the present study a higher degree polynomial 

function with 5 terms is also considered (Laura, and Saffell, 2005). This function needs co-

ordinate system having origin at the centre of the plate and is given by equation (8.19). 

     
5 2 2

2 22 2

1

, / 2 / 2
n

n nn n

iW x y c x a y b


     
      (8.19) 

The material property distribution function ( , )F x y in equation (8.9) is formulated by 

equation (8.7a) and (8.8a). An energy expression given by equation (8.10) and (8.11) are 

integrated for x = -a/2 to x = a/2, and y = -b/2 to y = b/2. Frequency minimization equation 

(8.18) in this case gives the set of 5 simultaneous, linear, algebraic equations in terms of the 



103 

 

unknowns C1 … C5. Which can be solved to get the fundamental frequency and with known 

frequency further mode shapes can be extracted. 

8.3 Numerical Simulation 

To estimate the sensitivity of the proposed approach for various cases of the 

perforation sizes and the plate sizes numerical simulation is carried out. The numerical 

simulation is carried out separately for each specimen with the two different shape functions 

given by equation (8.13) and (8.19). All the plate specimens analyzed numerically have 

thickness of 2 mm.  Total ten specimens with different sizes of the uniform perforations 

arranged in the rectangular array are considered for the numerical simulation.  Two sets of the 

plates are analyzed; first set of the plates is having outer effective dimensions as 138 mm x 

216 mm and second set of the plates is having outer effective dimensions as 276 mm x 432 

mm. The diameter of the perforation in first set varies over range 5 mm to 30 mm where as in 

second set it varies over range 10 mm to 65 mm. The side dimensions of the equivalent 

square perforations for range of the circular holes considered is given in Table 8.1. The 

material properties considered for all the specimen plates analyzed numerically are same as 

given in Table 4.1.  

8.4 Validation of the Proposed Approach 

The proposed analytical model is validated by comparing the numerical analysis 

results with the FEM and experimental analysis results. The FEM Modal analysis is carried 

out for each specimen by ANSYS 11 using Shell 63 element. The parameters of the plate 

specimen considered in this study are shown in Table 8.1. An analysis is carried out for the 

clamped steel plates having 2 mm thickness and carrying the nine holes at positions shown in 

Figure 8.2. Mesh convergence results for the every specimen are tabulated in Appendix “B”, 

Table B.5 and Table B.6. The converged solution is given in Table 8.1.  It is assumed that the 

structure is formed of an isotropic homogeneous elastic material, i.e. mild Steel with the 

material properties same as used in numerical analysis (Table 4.1). 

An experimental analysis was carried out for the two specimens with the circular 

perforations of the diameter 5 mm and 10 mm respectively. The specimens used for 

experimentation are shown in Figure 7.3. The thickness of the specimens is 2 mm.  The 

fixture for performing the experiments was as discussed in chapter 4, section 4.3. Due to the 

size limitation of the fixture, experimental validation of the analytical results is done for the 
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two plates only as given in Table 7.3.  The experimental results obtained are given in Table 

8.3. 

 8.5 Results and Discussion 

The results obtained by proposed approach and the FEM modal analysis are tabulated 

in Table 8.1. Comparison between the results of FEM and numerical calculations shows that 

the frequency obtained by proposed approach is higher than that obtained by the FEM. This is 

because the frequency values depend upon the type and the form of the shape function 

chosen. In the present numerical analysis the shape functions with 2 and 5 term 

approximation are used. The approximate representation of the deflection of the plate given 

by equation (8.13) provides the ease of the computations involved in the analysis. Increasing 

the number of terms will increase the accuracy of the numerical results. This can be observed 

from Table 8.1. In this study size of the circular perforations considered for each specimen is 

different.  The mass remnant ratio (MRR) which is the ratio of mass of the perforated plate to 

the mass of the homogeneous plate with the same effective outer dimensions is calculated for 

the each specimen as follows: 

2

ca b N d
MRR

a b

  



 

(8.20) 

where N is the total number of perforations.    

From Table 8.1 it can be observed that the mass remnant ratio for the each plate specimen 

considered is different. The distribution of the mass and thus the stiffness for the each 

specimen is different. 

Results obtained from the numerical analysis are reasonably in good agreement with 

the FEM results, for the plate having MRR more than or equal to 0.852.  It is observed from 

the fundamental frequency results given in Table 8.1 that, as the MRR decreases error in the 

fundamental frequency obtained by proposed approach becomes more. It shows that the mass 

distribution pattern approximated by an equivalent square perforation deviates more from the 

actual mass distribution pattern due to the circular perforations. This deviation gives 

maximum error of 10% in the fundamental frequency obtained by the proposed approach for 

the plate specimens having MRR less than 0.852. For plate specimens having the MRR 

greater than 0.946 present approach give results with more accuracy with maximum 

discrepancy of 2.7 %. Thus present approach can be used for the plate specimens having the 

MRR greater than or equal to 0.852 with maximum error of 6-7%. Further it can be noticed 
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that with the proposed analytical model results obtained for the specimens having 

approximately same MRR but different geometrical parameters, accuracy in the results 

obtained is almost same (Specimen Nos.8.1 and 8.6, Specimen Nos.8.2 and 8.7, Specimen 

Nos.8.4 and 8.9). 

Table 8.1 Fundamental frequency results obtained by the numerical and FE simulations 

Spe. 

No. 

dc  

(mm) 
MRR 

rc 

(mm) 

ω1, Numerical 

( Hz) 

ω1, 

FEM 

 ( Hz) 

 

% Error 

2 Term 
( , )W x y  

5 Term 
( , )W x y  

FEM & 

2 Term 
( , )W x y  

FEM & 

5 Term 
( , )W x y  

Specimens with dimensions (138 mm x 216 mm) 

8.1 4.431 0.9940 2.5 696.790 696.688 693.38 0.391 0.377 

8.2 8.862 0.9762 5 703.043 702.888 693.85 1.370 1.302 

8.3 13.293 0.9466 7.5 714.042 713.744 695.97 2.701 2.553 

8.4 22.155 0.8517 12.5 755.054 753.820 710.17 6.909 6.146 

8.5 26.586 0.7865 15 802.215 787.522 724.94 10.354 8.632 

Specimens with dimensions (276 mm x 432 mm) 

8.6 8.862 0.9940 5 174.197 174.172 173.37 0.477 0.462 

8.7 17.724 0.9762 10 175.760 175.722 173.46 1.326 1.304 

8.8 22.155 0.9629 12.5 176.975 176.922 173.65 1.914 1.884 

8.9 44.311 0.8517 25 188.763 188.455 177.53 6.327 6.153 

8.10 57.604 0.7495 32.5 203.390 202.442 183.55 10.809 10.292 

8.5.1 Comparison of the Analytical and FEM Mode Shapes 

Analytical modes shapes are extracted by using the five term shape function and 

contour plot are compared with the FEM mode shape contours plots. Table 8.2 shows the 

comparison of the mode shapes. It can be observed that though the analytical mode shapes 

are similar to the FEM, perforations are of square shape. This aspect gives slight variation 

and thus modes are not exactly identical. However the first mode of is same for all the cases, 

considered.
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Table 8.2 Comparison of the analytical and FEM mode shapes 

Specimen 

no 

Mode shapes Specimen 

no 

Mode shapes 

Analytical FEM Analytical FEM 

Specimens with the dimensions (138 mm x 216 mm) Specimens with the dimensions (276 mm x 432 mm) 

8.1 

 

 8.6 

 
 

8.2 

 
 

8.7 
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Specimen 

no 

Mode shapes Specimen 

no 

Mode shapes 

Analytical FEM Analytical FEM 

Specimens with the dimensions (138 mm x 216 mm) Specimens with the dimensions (276 mm x 432 mm) 

8.3 

 
 

8.8 

 
 

8.4 

 
 

8.9 
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Specimen 

no 

Mode shapes Specimen 

no 

Mode shapes 

Analytical FEM Analytical FEM 

Specimens with the dimensions (138 mm x 216 mm) Specimens with the dimensions (276 mm x 432 mm) 

8.5 

 
 

8.10 
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Table 8.3 Fundamental frequency results obtained by the numerical and experimental 

analysis 

Specimen No. d  

(mm) 

(A/Ap) ω, Numerical 

( Hz) ,2 Term 

( , )W x y  

ω, Experimental 

( Hz) 

% Deviation 

Specimens with dimensions (138 mm x 216 mm) 

7.11/8.11 5 1518.154 696.790 650 6.71 

7.12/8.12 10 379.5384 703.043 637 9.39 

  

It is observed from the comparison of the experimental and numerical results that both 

results are within reasonable agreement. Maximum discrepancy of 9.39% occurs between the 

experimental and numerical fundamental frequency for the specimen 8.11, reasons for this 

discrepancy may be same as discussed in section Chapter 5, Section5.6. 

8.6 Concluding Remark 

In the present work an analytical model to determine the fundamental frequency of the 

perforated rectangular plate is formulated. The plates considered for study are having the 

rectangular array of the circular perforations. For modeling of the material property variation 

function due to the perforation, circular perforations are replaced by equivalent square 

perforations. With this approximation the Heaviside step functions are used to express the 

variation of the material properties of the perforated plate. Further analytical model to determine 

the fundamental frequency is formulated by using the Rayleigh’s-Ritz method. The numerical 

analysis is carried out for the plate with all edges clamped boundary condition. From the 

comparison of the FEM and numerical analysis results it is found that the proposed approach can 

be used for the perforated plates with the MRR  more than or equal to 0.852 with maximum error 

of 6-7% in the fundamental frequency. For the MRR greater than 0.946 present approach give 

results with more accuracy with maximum discrepancy of 2.7 %. Present approach can be 

equally applied to the perforated plates with other boundary conditions also. 
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Chapter 9 

Determination of the Modal Constant for the Fundamental 

Frequency  

9.1 Introduction 

In this chapter, an expression for the modal constant of the fundamental frequency of the 

perforated plate is determined by the hybrid approach, combining the experimental and 

analytical methods. For calculating the modal constant the Rayleigh’s formulation is used. The 

displacement solution is considered as a linear combination of the cosines. In the Rayleigh’s 

formulation the fundamental frequency values are taken from the experimental analysis. This 

problem is solved in reverse order by considering the known experimental values of the 

fundamental frequency. Thus the modal constant expression for the fundamental frequency is 

found out. Proposed approach gives alternative method to the existing equivalent material 

properties approach. This modal constant can be directly used to calculate the fundamental 

frequency, by using the actual material properties instead of the equivalent material properties. In 

this work the perforation pattern considered is the rectangular with the circular perforations. The 

boundary condition considered is clamped-clamped. Thus proposed approach permits the ready 

determination of the reasonably good natural frequencies for a plate involving any combination 

of the ligament efficiency and the perforation diameter. To illustrate the applicability and 

accuracy of the approach, the Finite element method (FEM) analysis by ANSYS 11and the 

experimental analysis results for the two plates within given test envelope and outside test 

envelope are presented.  

9.2 Analytical Formulation  

The fundamental frequency expression of a plate is formulated by the Rayleigh’s 

principle as discussed in section (3.3.1). This formulation is carried out by considering the 

perforated plate as a solid plate with the same outer dimensions as, that of the perforated plate. 

Further, the Rayleigh’s formulation for the fundamental frequency is modified with known value 

of the fundamental frequency obtained from an experimental modal analysis. Then actual 

geometrical parameters of the perforated plate are considered in the modified expression and 

rearranged to get an expression for the modal constant. 
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For constant thickness and the homogeneous plate, D, ρ and h are constant. Hence the Rayleigh’s 

Quotient (Chakraverty , 2009) from equation (3.13), 

 

 

 

 

(9.1) 

where, 

 

 

(9.2) 

Equation (9.1) is called as the Rayleigh’s Quotient and gives the fundamental natural frequency  

( 1S )  of  the solid plate. 

From the equation (3.5) and for the orientation of the plate shown in Figure 9.1, assuming 

solution of the form,  
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Figure 9.1 Co ordinates of the plate 

9.2.1 Analytical Solution 

The fundamental frequency ω1s, is obtained by substituting equation (9.3) in equation 

(9.1) as follows 
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   
4

2 2 2 2 2 2 2 2 2 2 2 2

1 4 4

9
3 2 2 (1 )S

D
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 (9.4) 

This, fundamental frequency equation is further modified by including the perforation 

parameters given by equation (9.11) to get the fundamental frequency ( 1P ) equation (9.14) for 

the perforated plate. The expression given by equation (9.1) is further modified by considering 

the geometrical parameters of the perforated plate to calculate values of the correction factor (A), 

from the known natural frequencies, obtained by an experimental analysis.   

9.2.2 Geometry of the Perforated Plate with the Rectangular Perforation Pattern  

From Figure 9.2, consider triangle ABC with area, (J)  

 

 (9.5) 

                                                                 

 

 

 

 

 

 

 

 

Figure 9.2 Geometry of the perforated plate  
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Total area of perforated plate, K = NJ   

 

 
(9.7) 

The Mass remnant ratio (MRR) is defined as ratio of the perforated plate area to the area of the 

full solid plate of the same outer dimensions. It can be expressed as, 

MRR = K / (Lx Ly) (9.8) 

 where (Lx Ly) is area of the full solid plate 

 

 
(9.9) 

 

 

 

(9.10) 

 

Thus relation between the perforation parameters MRR, Lh, Lv, r and the plate dimensions a, b is 

  

(9.11) 

The relation between the ligament efficiency, the pitch and the ligament width is: 
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(9.12) 

For case under study Lh = Lv = (d+ hr) (9.13) 

9.3 Materials and methods 

The fundamental frequency is obtained experimentally and by the FEM, for the four 

specimens with the configurations shown in Table 9.1. The Effective dimensions of the 

perforated area for all the specimens are 216 mm X 138 mm and the thickness of the plates is 2 

mm. All the specimens are analyzed for the boundary condition clamped on all four edges. The 

correction factor is determined from equation (9.15) for each specimen from the values of the 

fundamental frequencies obtained from an experimental analysis. 
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Table 9.1 Details of the specimens analyzed 

Specimen 

No. 

l   Pitch (d + hr), 

(mm) 

hr ,(mm) MRR 

For d = 6 mm hole 

9.1 0.2 7.5 1.5 0.4973 

9.2 0.6 15 9 0.874 

For d = 9 mm hole 

9.3 0.4 15 6 0.7172 

For d = 12 mm hole 

9.4 0.6 30 18 0.8743 

 

9.3.1 Experimental Analysis  

The clamping details and the experimental set up used in the experimental vibration 

analysis is same as discussed in section (4.3) and (4.5). The specimens are prepared for the 

ligament efficiency 0.2, 0.4 and 0.6 and the perforation diameters 6 mm, 9mm and 12 mm. Each 

specimen is tested ten times and average value of the fundamental frequency is obtained. 

Experimentation is carried out as per the procedure given in section (4.4).  The outer dimensions 

of all the specimens are 255 mm X 213 mm X 2 mm, but the effective dimensions of the 

perforated area are 216 mm X 138 mm. All the specimens are of mild steel material with the 

aspect ratio b/a = 1.565. The material properties considered for all the specimens are same as 

given in Table 4.1. (i. e.  E = 2.1 X 10 
11

 N/m
2
, υ = 0 .3, ρ = 7850 kg/m

3
). 

9.3.2 FE Analysis 

The experimental results are validated by comparing them with the FEM results. To 

determine the fundamental frequency of the specimens with configurations given in Table 9.1, 

modal analysis is carried out by using Shell63 element. The converged solution is given in Table 

9.3. Details of the convergence are summarized in Table B.7, given in Appendix “B”. It is 

assumed that the structure is formed of an isotropic homogeneous elastic material, i.e. Mild 
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Steel. The material properties for all the specimen plates analyzed are same as given in Table 

4.1. 

9.4 Results and Discussion 

Results obtained from the experimental runs conducted for the each specimen are 

tabulated in Table 9.2. The fourth column of the Table 9.2 shows mean values of the 

fundamental frequency for the respective specimen. The FE results and the experimental results 

are compared in Table 9.2. The FE results obtained for the fundamental frequency exceeds the 

experimental results, except for the first specimen. Maximum discrepancy is of 8% in the FEM 

and the experimental results. 

An average value of the experimental fundamental frequency of the each specimen from Table 

9.2 is used to calculate, the value of the correction factor (A) for the respective specimen.  

Table 9.2   Natural frequencies of the fundamental mode by the FE and experimental analysis 

Specimen 

No. 
l  

d, mm Fundamental frequency ω1P (Hz) % 

Deviation FEM Experimental 

9.1 0.2 6 546.52 590.7 8.083 

9.2 0.6 6 650.33 616.2 5.248 

9.3 0.4 9 612.65 571 6.798 

9.4 0.6 12 637.9 587.6 7.885 

 

 

Figure 9.3 Sample frequency response function (FRF) obtained for the Specimen No. 9.1 
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Figure 9.4 Sample frequency response function (FRF) obtained for the Specimen No. 9.2 

 

 

Figure 9.5 Sample frequency response function (FRF) obtained for the Specimen No. 9.3 

 

 

Figure 9.6 Sample frequency response function (FRF) obtained for the Specimen No. 9.4 
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9.4.1 Determination of the Modal Constant  

The expression for the fundamental natural frequency of the solid plate given by equation 

(9.4) can be modified by considering the actual geometrical parameters of the perforated plate. 

The geometrical parameters of the perforated plate are related to the full solid plate dimensions 

by relation given in equation (9.11). 

 

   

   
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(9.14) 

An expression in equation (9.14) can not be used directly to calculate the fundamental frequency 

of the perforated plate unless the correction factor is considered. 

After simplification and considering the correction factor equation (9.14) becomes as follows  

 

6 4
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h MRR L L ab
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
      

  

 (9.15) 

Where, ‘A’ introduced as the correction factor. Values of the correction factor are calculated 

from equation (9.15), by using the fundamental frequencies determined experimentally, tabulated 

in Table 9.2. The correction factor values are tabulated in Table 9.3 for the different specimens. 

Equation (9.15) can be used for calculating the fundamental frequency of the perforated plate by 

substituting average value of the correction factor ‘A’, from Table 9.3. 

Table 9.3 Values of the correction factor for the different specimens 

Sr. 

no. 
ηl 

d, 

mm 
MRR 

Lh, 

mm 

Lv, 

mm 

ω1P 

Expeiment 
ω1P FEM 

Value of ‘A 

‘Experimental 

1 0.2 6 0.4973 7.5 7.5 590.7 546.52 0.009099 

2 0.6 6 0.8743 15 15 616.2 650.33 0.009906 

3 0.4 9 0.7172 15 15 571 612.65 0.008504 

4 0.6 12 0.8743 30 30 587.6 637.9 0.009007 

Average Value of ‘A’ = 0.009129 
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A simple approximate formula for the fundamental natural frequency of the flexural vibration of 

the rectangular isotropic perforated plate is given as  

1
1

P
P

D

h





  (9.16) 

where, 1P  is called as the modal constant.  

Thus modal constant 1P for the fundamental frequency is obtained from equation (9.15) & (9.16)  
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    (9.17) 

The modal constant ( 1P ) expression by considering an experimentally obtained value of the 

correction factor ‘A’ becomes as follows 

or  
 

6 4
2 2 2

1 2
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3 2 2(1 ) (0.009129)
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(9.18) 

An expression given by equation (9.18) can be used to calculate the modal constant 1P  for the 

fundamental natural frequency of the perforated plates with the rectangular perforation patterns 

of the circular perforations, having different configurations.                                                                                                                                                                    

9.5 Application and Accuracy of the Approach 

The proposed approach is validated by additional experimental analysis and running the 

FEM simulations with ANSYS11. Configuration of the specimens is given in Table 9.4. The 

criteria’s followed to select the plate dimensions in the analysis are  

1) Validating the results of the proposed approach within the test envelope, i.e. the effective 

outer dimensions (a, b) same as the specimens given in Table 9.1.  

2) Validating the results of the proposed approach outside the test envelope i.e. the effective 

outer dimensions, (a, b) different from the specimens given in Table 9.1.  

  The FEM analysis is carried out by using shell63 element for both the specimens. It is 

assumed that, the structure is formed of an isotropic homogeneous elastic material, i.e. mild 
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steel. The effective outside dimensions, thickness and the material properties of the first 

specimen analyzed are same as that used in the test envelope and within the fixture limit but 

configuration is different from the test envelope. However for the second specimen thickness and 

the material properties are same as that used in the test envelope but the effective outside 

dimensions (a, b) and the configuration is different from the test envelope.  

Table 9.4 Comparison of the results obtained by the proposed approach with the experimental 

and FE simulation results 

a, 

mm 

b, 

mm 

d, 

mm 

ηl Lh = Lv , 

mm 

MRR 
1P  With modal 

Constant( 1Exp ), 

Hz
 

1P From FEM 

Simulation, Hz 

% Deviation 

138 216 12 0.2 15 0.4973 590.82 563 4.94 

550 860 50 0.6 125 0.87433 47.07 42 11.9 

From comparison it is found that the results obtained for the first specimen from present 

the approach (9.18), vary from the FEM simulation results by 4.94% and for the second 

specimen by 11.9% respectively.  

Thus results obtained from the proposed experimental modal constant ( 1Exp ) method are 

reasonably in good agreement with the FEM simulation results within the test envelope. 

9.6 Concluding Remark  

In the present work, an expression for the modal constant for the fundamental frequency 

of the perforated plate is determined. To establish this modal constant, experimental vibration 

data is used. A simple approximate formula for the fundamental natural frequency of the flexural 

vibration of the rectangular isotropic perforated plate is developed. The Rayleigh's method is 

used in combination with the experimental values of the natural frequency to establish the 

expression for the modal constant. The fundamental frequency calculated by using the proposed 

experimental modal constant ( 1Exp ) is in reasonably good agreement with the ANSYS result 

within the test envelope. Thus this approach provides alternative method to the equivalent elastic 

properties method of the perforated plate for finding the natural frequency. 
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Chapter 10 

Plates with the Circular Perforations in the Rectangular Array 

10.1 Introduction 

In this chapter a rectangular plate with nine perforations is considered. All the 

perforations are circular with the same size arranged in the rectangular array. The material 

property distribution function F(x, y) constructed by using the Heaviside function to map circular 

areas. The Rayleigh Ritz method is used to formulate an analytical model to obtain the 

fundamental frequencies. The shape function used is a polynomial. The numerical simulation is 

carried out for the eight specimens with different sizes of the uniform perforations. Two sets of 

the fundamental frequency results are obtained from the numerical simulation one for the single 

term shape function and other for the five terms of the shape function. Finally results are 

compared with those obtained from the FEM analysis.  

10.2 Analytical formulation 

A rectangular plate with coordinate system (O; x, y, z), having the origin O at the center 

is considered as shown in Figure.10.1 which is similar to Figure.7.2 of the thesis. The 

displacement of an arbitrary point of coordinates (x, y) on the middle surface of the plate is 

denoted by w, in out-of-plane (z) direction. The boundary conditions considered here, are all 

edges clamped.  The geometric parameters, the hole radius r is uniform for all the perforations. 

The assumptions made in the following formulation are that transverse defections are small so 

that the dynamic behavior of the plate is governed by the classical thin plate theory. An 

analytical model in the present work does not consider any rotary inertia of the plate. The model is 

applicable to the rectangular perforated plates with the different side dimensions and having the circular 

perforation and, provided that all the perforations are of the same size. 

The function F(x, y) represents the variation of the density and modulus of elasticity due 

to the perforations. For the function F(x, y) to represent these parameters it must satisfy the 

following requirements as given by equation (5.7). 

( ) = 0 in the region corresponding to a perforationF x,y  

( ) = 1 otherwiseF x,y  
  (10.1) 
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0

( )

( )

0= F x, y

E E F x, y

 


 

Above equation is same as equation (5.5) of the thesis. Where 0 and 0E are the 

density and the Young’s modulus of the homogeneous plate 

(10.2) 

The function F(x, y) is constructed by using the Heaviside functions. 

9

1

( ) = ( , ) ( ( , ))j i

i

F x, y f x y f x y


    
(10.3) 

       

Functions ( , )if x y  and  ( , )jf x y are as follows, 

 

 2 2 2

i i( , ) Heaviside r - (x - x ) - (y - y )if x y   (10.4) 
 

 Where xi  and yi are the co-ordinates of the centre of i
th

 circular hole. 

 

a a b b
( , ) Heaviside x + x - y + y - 

2 2 2 2
jf x y

            
             

            
 

(10.5) 
 

The density plot of the function F(x, y) for the plate specimen with dimensions 138 mm × 216 

mm and the perforation diameter 25 mm is shown in Figure10.2. 

To determine the fundamental frequency the Rayleigh’s-Ritz method discussed in section (3.3.2) 

of the thesis is used. The Rayleigh’s-Ritz method is based on the maximum Kinetic energy and 

maximum Strain energy of the plate. F(x, y) obtained in by equation (10.3) is used to obtain the 

energy expressions given as given by equations (8.10) and (8.11) where integral limits are from x 

= -a/2, x = a/2, and y = -b/2, y = b/2. 

The middle surface displacement W in above expressions is approximated by using the 

shape function W(x, y) in the form of a series given by equation (10.6) , which satisfy the 

clamped boundary conditions on the edges x = -a/2, x = a/2, and y = -b/2, y = b/2 . 
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Figure 10.1 Co-ordinates of the plate clamped on all edges carrying circular holes 

For clamped all edges the five term of deflection function W, is considered as (Laura, and 

Saffell, 2005), 
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(10.6) 

To use the Rayleighs-Ritz method umax and Tmax expressions are formulated in terms of Ci 

and ϕi, and then the frequency is minimized with respect to Ci. Thus Ci are determined so as to 

obtain the best upper bounds for the fundamental frequency. The frequency minimizing 

equations are from equations (8.17) and (8.18), 

2( )
0, ( 1,2..5)

i

i
C


 


 (10.7) 

Substituting (10.7) into (10.8), set of minimizing equations can be obtained.  

 2 *

max max 0
i

u T
C




 


, ( 1,2..5)i   (10.8) 

This is a set of 5 simultaneous, linear, algebraic equations in the unknown C1, C2, C3 C4, 

and C5. For a nontrivial solution, the determinant of the coefficient matrix is set equal to zero. 
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The roots of the determinant are the values of ω
2
. The lowest value of ω is approximation to the 

fundamental frequency. 

10.3 Numerical Analysis and Validation 

All the plate specimens analyzed numerically have thickness of 2 mm.  Ten specimens 

with the different sizes of uniform perforations arranged in the rectangular array are considered 

for the numerical simulation.  Two sets of the plates are analyzed; first set of the plates is having 

outer effective dimensions as 138 mm x 216 mm and second set of the plates is having outer 

effective dimensions as 276 mm x 432 mm. The diameter of the perforation in first set varies 

over the range 5 mm to 30 mm where as in second set it varies over the range 10 mm to 65 mm. 

The material properties considered for all the specimen plates analyzed numerically are Eo = 

2.1×10 
11

 N/ m
2
, o = 0 .3, ρo = 7850 kg/ m

3
. 

Validation of the results is done by comparing the FEM Modal analysis (Using ANSYS, Shell 63 

element) results which are given in Table 10.1. The parameters of the plate specimen considered 

in this study are shown in Table 10.1.  

 
Figure 10.2 Density plot of the function F(x, y) for the specimen size 138 mm × 216 mm 

and d = 25 mm 
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10.4 Results and Discussion  

  The numerical analysis and FEM analysis results are compared in Table 10.1. The 

numerical analysis results are obtained by considering the one term and five term approximation 

of the shape function given by equation (10.6). The agreement between the numerical and FEM 

results is reasonably good, differences are mainly due to the use of the approximate methods and 

limitations of the Heaviside function used. The procedure developed in this approach is 

straightforward and allows for immediate solution. We found computation time is exceptionally 

good. The function f j (x ,y) can be slightly extended beyond the actual domain , which will not 

change the maximum potential and kinetic energy as integrals will be calculated over the actual 

domain i.e. x∈{-a/2, a/2} and y∈{-b/2,b/2}. This helps greatly in reducing computation time.  

Table 10.1 Numerical and FEM analysis results 

 

Specim

en No. 

r (mm) ω1One term, 

Numerical 

( Hz) 

One term 

shape 

function 

ω1Five term, 

Numerical 

( Hz) 

Five term 

shape 

function 

ω1, FEM ( Hz) % Error 

ω1, FEM 

and 

ω1One term   

% Error 

ω1, FEM 

and 

ω1Five term   

Specimens with dimensions (138 mm x 216 mm) 

10.1 2.5 695.726 695.490 693.38 0.338 0.304 

10.2 5 696.617 696.356 693.85 0.398 0.361 

10.3 7.5 697.560 697.271 695.97 0.228 0.186 

10.4 12.5 699.617 699.259 710.17 -1.485 -1.536 

10.5 15 700.739 700.339 724.94 -3.338 -3.393 

Specimens with dimensions (276 mm x 432 mm) 

10.6 5 173.931 173.872 173.37 0.323 0.289 

10.7 10 174.154 174.089 173.46 0.400 0.362 

10.8 12.5 174.270 174.201 173.65 0.357 0.317 

10.9 25 174.904 174.814 177.53 -1.479 -1.529 

10.10 32.5 175.331 175.225 183.55 -4.477 -4.535 
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The expression obtained for the material property variation function can be extended to the plates 

with similar geometry and the different outer dimensions. Table 10.1 shows that with this 

approach for MRR more than 0.851 error is less than 1.5%. It can be concluded from above 

results that by using the proposed approach one may get maximum error of -4.477% where the 

hole size is significantly large compared to the plate size i.e. ratio of the plate area to the 

perforation hole area  is 35.932. This approach offers solution to the vibration problems for a 

wide spectrum of the perforated plates as the plates with the non-uniform diameter perforations 

can also be modeled.  

10.4.1 Comparison of the Analytical and FEM Mode Shapes 

 Contour plots of the mode shapes obtained from the analytical method and FEM are 

compared in Table 10.2. Analytical mode shapes are obtained by considering the five term shape 

function as given by equation (10.6). It is observed that displacement pattern of the analytical 

mode shapes is in close agreement with that of the FEM. 

10.5 Concluding Remark 

The approach in this chapter presents how the array of circular multi-perforations in a 

plate structure can be modeled in the vibration problems of a plate structure. It has provided a 

simple single expression for the exact bidirectional material property variation given by an 

equation 10.3. Further this model can easily handle the variation in the size of the perforations. 

This approach gives results with discrepancy less than 1.5% for MRR more than 0.851. 

Maximum error of -4.477% obtained for the specimen having ratio of the plate area to the 

perforation hole area equal to 35.932.  
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Table 10.2 Analytical and FEM mode shapes 

Specimen 

no 

Mode shapes Specimen 

no 

Mode shapes 

Analytical FEM Analytical FEM 

 Specimens with the dimensions (138 mm x 216 mm)  Specimens with the dimensions (276 mm x 432 mm) 

10.1 

 
 

10.6 

 
 

10.2 

 
 

10.7 
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Specimen 

no 

Mode shapes Specimen 

no 

Mode shapes 

Analytical FEM Analytical FEM 
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Section Three 

Analytical Models to Determine the Fundamental Frequency of 

the Moderately thick Plates with the Circular Perforation 

(Chapter 11) 
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Chapter 11 

Vibration Analysis of the Mindlin Perforated Plates  

11.1 Introduction 

This chapter presents extension of the approach presented in chapter 5 to the Mindlin 

plates. Work in this chapter presents the numerical calculations of the natural frequencies for 

elastic perforated rectangular plates with variable width to thickness ratios. The boundary 

conditions considered is all edges clamped condition. The material property variation in two 

directions of the plate due to the perforations is taken in same form by superposition as given 

in the chapter 5 Equation (5.14). The first-order shear deformation plate theory of the Mindlin 

has been applied to the plate analysis. The solution is obtained by the Rayleigh Ritz method. 

Free vibrations of the rectangular thick plates are analyzed by varying the width to thickness 

ratio. The numerical examples demonstrate the applicability of the present method. The 

results obtained by both the classical thin plate (CPT) and Mindlin (MPT) plate theories are 

compared with those obtained by the FEM analysis. 

11.2 Theoretical formulation for the Mindlin Plate 

 Consider an isotropic, elastic, perforated rectangular plate of length a, width b, 

modulus of elasticity E, Poisson’s ratio υ and the shear modulus [2(1 )]G E   . The plate is 

of constant thicknesses in the z-direction, with the thickness h (see Figure 10.1). The edges of 

the plate are assumed to be clamped. The origin of the coordinate system is set at the centre 

plate as shown in Figure 11.1. The problem at hand is to determine the fundamental 

frequency of vibration for such a rectangular plate. In present analysis, the square plate with 

the square perforations is considered, same as shown in Figure 5.1. The ligament efficiency 

ηl, considered for the perforation is, (p / (d + p)) = 0.5, where p is the ligament length (px or 

py) and d is the side length of the square perforation. The natural frequencies of the plates are 

determined via the Ritz method using the Mindlin plate theory. The effects of the rotary 

inertia, and the transverse shear deformations, which cannot be considered in the Kirchhoff 

theory, become significant in thick plates. The simplest one is the first-order shear 

deformation plate theory (FSDT) that is famous as the Mindlin theory (MPT). (Mindlin, 

1951; Shufrin, Eisenberger, 2006). This approach extends the kinematic assumptions of the 

CPT by releasing the restriction on the angle of the shearing deformations (J.N. Reddy, 1999; 
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C.M. Wang et. al., 2000). In the Mindlin plate theory, it is assumed that a plane originally 

normal to the plate middle surface remains straight but not generally normal to the middle 

surface after deformation, and hence a shear correction factor is introduced. Thus the Mindlin 

plate theory is suitable for the moderately thick plates. The three fundamental, independent 

quantities involved in MPT are the transverse deflection W and the two cross-sectional 

rotations yx and yy. (Liew, Hung and Lim, 1995). Maximum strain energy Umax and the 

maximum kinetic energy Tmax for  the Mindlin Plate are given as (Karunasena, Kitipornchai 

and Al-Bermani, 1996; Liew, Wang, Xiang and Kitipornchai, 1998) 

2 2
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41
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 
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 
  (11.2) 

 

Where, A = Area of the plate; W(x,y) = Transverse deflection; yx = Rotation about the y-axis;  

yy = Rotation about the x-axis; ω = Angular frequency;   = Plate density per unit volume;  

D = Flexural rigidity of the plate = Eh
3
/ [12(1 - υ

2
)]; 2 is the shear correction factor. 

The transverse shear stresses are assumed as constant through the plate thickness in FSDT. 

Due to the fact that the transverse shear stresses are parabolic through the plate thickness 

(Wang, Reddy, Lee, 2000) shear correction factor is introduced to modify the transverse 

shear stresses.  Mindlin (1951) pointed out that for an isotropic plate, the shear correction 

factor ( 2 ) depends on the Poisson ratio υ and it may vary from 2 = 0.76 for υ = 0 to 2  = 

0.91 for υ = 0.5. Shear corrections factor considered here is to be 2  = 5/6 = 0.833 which is 

commonly used for υ = 0.3 (Wei, and Xiang, 2005; Zhou and Xiang, 2011). 

http://www.sciencedirect.com/science/article/pii/0020740395000607
http://www.sciencedirect.com/science/article/pii/0020740395000607
http://www.sciencedirect.com/science/article/pii/0020740395000607
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Figure 11.1 Geometry and the coordinate system of the perforated rectangular plate  

 

11.3 Formulation for the material properties of the perforated Mindlin 

plate 

If the function F(x, y) represents the variation of the material properties along the 

surface, then the density and modulus of elasticity can be expressed as given by equation 

(5.5) 

0

0

( , )

( , )

F x y

E E F x y

  



 
(11.3) 

where, E0 and ρ0 are the modulus of elasticity and the density for a homogeneous plate. 

The function F(x, y) for the square perforation pattern can be obtained by the relation given 

by equation (5.14) 

( , ) ( ) ( ) ( ). ( )F x y f x g y f x g y    (11.4) 

The functions f(x) and g(y) represent variation of the density and modulus of elasticity along 

x and y axes respectively. Equations (5.9) and (5.10) shows the rectangular Heaviside 
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function used to express the non homogeneity in the Young’s modulus and density of the 

plate due to the perforations.  

In present analytical model, the square plate having the square perforation is considered as 

shown in Figure 11.1. For the plate with ηl =0.5, px = py = d the above expressions for f(x) 

and g(y) becomes as given by equation (5.11) and (5.12): 

3 5 3 5
( ) ( ) ( ) ( ) (( ( ) ( ) ( ))

2 2 2 2 2 2

d d d d d d
f x H x H x H x H x H x H x                (11.5) 

3 5 3 5
( ) ( ) ( ) ( ) (( ( ) ( ) ( ))

2 2 2 2 2 2

d d d d d d
g y H y H y H y H y H y H y              

 (11.6) 

11.4 Determination of the fundamental frequency of the perforated 

Mindlin plate 

The Rayleigh-Ritz approximate procedure is employed to obtain the fundamental 

frequency of the Mindlin plates. The energy functional   can be written in terms of strain 

energy and the kinetic energy of vibration as follow 

 

max maxU T     (11.7) 

In the Ritz method, the displacement function, ℜ(x, y) is approximated by a finite linear 

combination of the trial functions in the form (Liew et al., 1998) 

 

1

( , ) ( , )
m

i i

i

x y c x y


    (11.8) 

Where ( , )i x y are the approximate functions, which individually satisfy at least the 

geometric boundary conditions. By minimizing the energy functional Π with respect to each 

of the unknown coefficients ci, a set of homogeneous equations is obtained as follows. 

0; 1,2,3.....
i

i m
c


 


  (11.9) 

The problem is reduced to the following eigenvalue and eigenvector problem: 
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     2( ) 0K M c    (11.10) 

Where  K is the stiffness matrix and  M is the mass matrix given as 

   ;
i i

U T
K M

c c

 
 
 

  (11.11) 

 The geometrical boundary conditions for clamped edges of the rectangular Mindlin plate can 

be expressed as (Liew et al., 1998) 

0, 0, 0x y W      (11.12) 

The adopted admissible functions which satisfy above geometric boundary conditions for the 

deflection and rotations of the plate are given by equations (11.13) to (11.15) 

The polynomial shape function ( , )W x y  for a rectangular plate with 3 terms is of the form 

(Laura, and Saffell, 2005) 

     
3 2 2

2 22 2

1

, / 2 / 2
n

n nn n

iW x y c x a y b


     
      (11.13) 

The one term trigonometric admissible functions for x   and y that satisfies the required 

boundary conditions are taken as (Meera Saheb and  Shasikanth,  2014), 

 

   2 x-(a/2) 2 -(b/2)
( , ) 1 cosx i

y
x y d sin

a b

 


      
       

         

  (11.14) 

   2 -(b/2) 2 -(a/2)
( , ) 1 cosy i

y x
x y e sin

b a

 


      
       

         

 (11.15) 

Substituting equations (11.13) to (11.15) into equations (11.1) and (11.2) and then 

minimizing the energy functional Π with respect to the unknown coefficients leads to 

   

 

 

 

2( ) 0

c

K M d

e



 
 

  
 
 

 (11.16) 

Thus the fundamental circular frequency   of the Mindlin plate is obtained by solving the 

generalized eigenvalue problem defined by equation (11.16). 
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11.5 Numerical Analysis  

An analytical model developed in  section 11.2 to 11.4 is applicable to the Mindlin 

rectangular perforated plates with the different side dimensions and having the 

rectangular/square perforation and, provided that the perforation pattern is rectangular or 

square and all the perforations are of the same size. By virtue of the symbolic forms 

presented in this work, the method can be applied to the analytical studies of the Mindlin 

perforated plates with the different boundary conditions. The numerical results for the 

fundamental frequency have been computed for the specimen with side dimension 500 mm x 

500 mm and the perforation size 100 mm x 100 mm by varying the thickness of the 

specimen. Total 21 specimens are analyzed having the side length to thickness ratio (a/h) 

range from 5 to 250. The material properties considered for all the specimen plates analyzed 

are same as given in Table 4.1. (i. e. Eo = 2.1×10 
11

 N/ m
2
, o = 0 .3, ρo = 7850 kg/ m

3 
). Table 

11.1. shows the geometrical parameters of the plate specimen considered in this study.  

11.6 Results and Discussion  

Results obtained from the numerical analysis for the different specimens with 

clamped all edges boundary conditions are given in Table 11.1.  Results obtained from the 

MPT are compared with those obtained from the CPT and FEM. In Table 11.1 results are 

listed as ratio of the fundamental frequency obtained numerically to the fundamental 

frequency obtained by the FEM and last column gives ratio of the MPT and CPT results. 

Results obtained from the CPT are by using the Rayleigh Ritz method with same the shape 

function ( , )W x y as given by equation (11.13) but with the number of terms (n) equal to 5. 

Results from the FEM analysis are obtained with Shell 63 element by running ANSYS 

simulations. For all the specimens analyzed number of elements and nodes used for the 

converged solution are 48368 and 49264. The fundamental frequency results obtained by the 

MPT, CPT and FEM are plotted and are shown in Figure 11.2 for all the specimens. 

From the result Table 11.1 and Figure 11.2 it is observed that discrepancy in the 

results obtained by the MPT and FEM exceeds 21% as the a/h ratio increases more than 

33.333 i.e. for the plate thickness less than 0.015 m. Hence results are plotted for the a/h ratio 

from 5 to 33.333 and are shown in Figure 10.3. Further it is observed that the error between 

the CPT and FEM results remains constant for all the specimens and it is 6.92 % it can be 

observed from Figure 10.3 curves for the CPT and FEM results are similar with constant gap.  
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Error between the MPT and FEM as well as the MPT and CPT results varies with the a/h 

ratio. It shows influence of the plate thickness on the results obtained by the MPT. Results 

obtained by the MPT also depend upon the shear correction factor ( 2 ), in present analysis 

this factor is taken as 5/6. 

Table 11.1 Results obtained from the MPT, CPT and FEM  

Specimen 

No. 
Thickness (m) a/h 

Fundamental Frequency (Hz) 

 

 

1

1

MPT

FEM




 

 

 

1

1

CPT

FEM




 

 

 

1

1

MPT

CPT




 

11.1 0.002 250 2.609 1.069 2.440 

11.2 0.005 100 1.463 1.069 1.369 

11.3 0.01 50 1.213 1.069 1.134 

11.4 0.015 33.333 1.155 1.069 1.080 

11.5 0.02 25 1.129 1.069 1.056 

11.6 0.025 20 1.110 1.069 1.038 

11.7 0.03 16.666 1.094 1.069 1.023 

11.8 0.035 14.285 1.078 1.069 1.008 

11.9 0.04 12.5 1.061 1.069 0.993 

11.10 0.045 11.111 1.044 1.069 0.977 

11.11 0.05 10 1.027 1.069 0.960 

11.12 0.055 9.090 1.008 1.069 0.943 

11.13 0.06 8.333 0.990 1.069 0.925 

11.14 0.065 7.692 0.971 1.069 0.907 

11.15 0.07 7.142 0.951 1.069 0.889 

11.16 0.075 6.666 0.932 1.069 0.871 

11.17 0.08 6.25 0.912 1.069 0.853 

11.18 0.085 5.882 0.893 1.069 0.835 

11.19 0.09 5.555 0.874 1.069 0.817 

11.20 0.095 5.263 0.855 1.069 0.799 

11.21 0.1 5 0.835 1.069 0.781 

 



137 

 

 

Figure 11.2 Results obtained from the MPT, CPT and FEM for all the specimens 

 

Figure 11.3 Results from the MPT, CPT and FEM for the specimens with  

a/h ≤ 33.333 
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Figure 11.4 Results from the MPT, CPT and FEM for the specimens  

with 10 ≤ a/h ≤ 20 

From Figure 11.4 it is observed that the MPT over estimates the fundamental 

frequency values compared to the CPT and FEM results as the a/h ratio increases above 12.5 

i.e the plate thickness values less than 0.04 m. The numerical difference between the 

fundamental frequency values goes on increasing as the a/h ratio increases above 12.5. 

Results from Table 11.1 shows that, discrepancy between the MPT and FEM results is less 

than 10% for 6.25 ≤ a/h ≤ 16.666. The MPT gives discrepancy of the 15.56 %, 21.36%, 

46.39% and 160.91% for the a/h ratio 33.333(h = 0.015 m), 50(h = 0.01 m), 100(h = 0.005 

m), and 250(h = 0.002 m), compared to the FEM results. Further the fundamental frequency 

values from Table 11.1 shows that the CPT over estimates the results for the a/h ≤12.5 than 

those obtained by the MPT and FEM. Thus for the perforated plates having the a/h ratio more 
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than 12.5, the CPT results can be preferred over the MPT results as error between the MPT 

and FEM increases above 6.19%. 

 

Figure 11.5 Plot of the % error vs. a/h ratio for the specimens with 6 ≤ a/h ≤ 14.285 

 The plot of the percent error between the CPT and FEM results vs. a/h ratio and 

percent error between the MPT and FEM results vs. a/h ratio for the specimens with 6 ≤ a/h ≤ 

14.285 is shown in Figure 11.5. The percent error between the CPT and FEM results is 

constant and is shown by a straight line of constant slope i.e. parallel to the axis showing the 

a/h ratio values. This error is 6.92 percent. The numerical difference between the CPT and 

FEM results increases as the a/h ratio decreases below 12.5, though the percent error is 

constant.  

From Figure 11.5 it can be seen that the percent error between the MPT and FEM 

results is below ± 5% when 7.142 ≤ a/h ≤ 11.111. Thus within this range results given by the 

MPT are reasonably good. For the a/h ratio 9.090 (h = 0.055 m) both the FEM and MPT 

results are matching with discrepancy of 0.88 %.  Further it is observed that as the a/h ratio 

decreases below 9, the FEM over estimates the fundamental frequencies compared to the 

MPT and percent error becomes negative.  
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Comparison of the CPT and MPT results from last column of the Table11.1 shows 

that for 9.090 ≤ a/h ≤ 25, error varies from - 0.689% for the specimen having the a/h = 12.5 

to 5.310 % and -5.988% for the specimens having the a/h = 25 and 9.09 respectively. Thus 

within  the range 9.090 ≤ a/h ≤ 25 error between the MPT and CPT results is less than 6%. 

 

Figure 11.6 3D mode shape for the specimen 11.10 (h = 0.045 and a/h =11.111) 

Table 11.2 Mode shapes obtained from the MPT and FEM for the specimen 11.10 

Spe. 

no 

Mode shapes From MPT and FEM 

Analytical, MPT FEM 

11.10 
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11.5.1 Comparison of the Analytical and FEM Mode Shapes 

It is observed that the mode shapes obtained from the MPT and FEM are similar for 

all the specimens. Representative deflection contour plots have been presented for the 

specimen 11.10 (h = 0.045 and a/h =11.111) in Table 11.2 which sows the similarity of the 

modes. The 3D mode shape for the specimen 11.10 is shown in Figure 11.6. Also the mode 

shapes obtained from the CPT are matching with those obtained from the MPT. 

11.6 Concluding Remark  

In this study the applicability of the proposed approach for modeling of the material 

properties of the perforated plates has been confirmed for the Mindlin plate by comparison 

studies. A study has been conducted for the perforated plates with the different thickness to 

width ratios for the clamped boundary condition. It can be concluded that the effect of 

transverse shear deformation depresses the fundamental frequency significantly with 

decreasing the a/h ratio below 12.5. Thus within the range 7.142 ≤ a/h ≤ 11.111 results given 

by the MPT are reasonably good because percent error between the MPT and FEM results is 

below ± 5%. 
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Chapter 12 

Conclusions  

12.1 Specific Contributions 

The objective of this research is focused on the solution of the vibration problems of 

the perforated plates, and to validate all the analytical results with the FE simulations and 

experimental data. To this end, the original contributions of this study are: 

1. Formulation of the analytical models to determine the fundamental frequency of the 

perforated plates by using the 

• Special functions to express variation of the material properties for thin plates. 

• Concept of replacing the small perforations by the negatively concentrated mass. 

• Concept of replacing the small circular perforations by the equivalent square 

perforations. 

2. Development of the modal constant expressions to determine the fundamental 

frequency of the perforated plates with the rectangular array of the circular 

perforations. 

3. Validations of the analytical models developed by comparing results of the numerical 

analysis with the FE simulations and experimental results for the representative 

specimens. 

4. Formulation of the analytical model to determine the fundamental frequency of the 

perforated Mindlin (moderately thick) plate by using the unit step function to express 

variation of the material properties. 

Thus goals of our research have been achieved. This is the first attempt of development of the 

analytical models for the multi-perforated plates to determine the fundamental frequency. 

12.2 Conclusions 

In this thesis, new analytical models of a perforated rectangular isotropic plate 

subjected to the transverse free vibrations have been proposed, based on the classical plate 

theory. Also one example is given for the moderately thick plates by using the Mindlin plate 

theory. Proposed models can be used to determine the fundamental frequency of the 

perforated plates. These models can be applied to the rectangular plates having the 

rectangular/triangular array of the square/rectangular and circular perforations. These 
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analytical models of the perforated plate provide alternate approaches to the well known 

equivalent material properties approach to determine the fundamental frequency. In 

particular, the analytical models are formulated for the clamped all edges boundary condition, 

and validated both experimentally and by the FE simulations, but models can be extended to 

other cases of the boundary conditions. Conclusions of the thesis are summarized into two 

categories.  

i) The rectangular plates with the square/rectangular perforations 

ii) The rectangular plates with the circular perforations 

12.2.1 The Rectangular Plates with the Square/Rectangular Perforations 

Under this category total five models are proposed. Four models are developed for the 

thin plates and one for moderately thick plates. The first two models are introduced to 

determine the fundamental frequency of plates with the rectangular/square array of the 

perforations. The third and fourth model is formulated for the plates having the staggered 60
o
 

and 45
o
 array of the perforations. In all four models first, the functions are formulated to 

express the variations in the material properties due to the perforations. The special functions, 

Heaviside functions and greatest integer functions are employed for this purpose. Further 

these expressions are used in the approximate analytical methods to determine the 

fundamental frequency. The fifth analytical model in chapter 11 presents extension of the 

approach presented in the chapter 5 to the Mindlin plates.  

 The first analytical model (Section 5.3) is developed for the plates having the 

rectangular array of the rectangular perforations. The Heaviside (Unit step) functions 

are used to express variation of the material properties. The numerical analysis is 

carried out for the plates with the square perforations arranged in the square array as a 

special case for the different specimens. From comparison of the FEM and 

experimental results with numerical results, it is found that this model gives 

maximum discrepancy of the order of 8.32% between the FEM and numerical results 

for single term shape function and 7.022% for five term shape function, where as 

between an experimental and numerical result, it is of the order of 13.44%.  

 The second analytical approach (Section 5.7) given is applicable to the plates having 

the square array of the square perforations. The greatest integer functions are used to 

express variation of the material properties. The numerical analysis is carried out for 



144 

 

the five specimen and results are compared with the FEM results. The maximum 

discrepancy between the FEM and numerical results is of the order of 5.278% for 

single term shape function and 4.025% for five term shape function. Thus this model 

gives closer results compared to first model, but this approach is limited to the square 

array of the square perforations. 

 The third and fourth analytical models (Section 6.2 and 6.6) proposed in this category 

are more versatile as these models are equally applicable to the rectangular /square 

and the staggered array of the perforations. The Heaviside (Unit step) functions are 

used to express variation of the material properties. Deviation from the square pattern 

(Introduced in first analytical model, Section 5.3) is interpreted as a phase difference 

and it is incorporated into the material property function F(x, y). For 60
o
 staggered 

pattern maximum discrepancy between the FEM and numerical results is of the order 

of 8 to 10.54% where as between the experimental and numerical results is 14.32%. 

The numerical results were found to be stable over broad range. For 45
o
 staggered 

pattern maximum discrepancy between the FEM and numerical results is of the order 

of 1.716%. So we can conclude that model for 45
o
 staggered pattern works better with 

proposed approach.  

 The fifth analytical model is proposed for the moderately thick perforated plates. The 

Mindlin plate theory is used and the numerical calculations of the natural frequencies 

are presented for the rectangular plates with the variable width to thickness ratios. 

Within the range 7.142 ≤ a/h ≤ 11.111 results given by the MPT are reasonably good 

because percent error between the MPT and FEM results is below ± 5%. Thus 

applicability of the approach for modeling of the material properties in thin plate 

models has been confirmed for the Mindlin plate by comparison studies. 

12.2.2 The Rectangular Plates with the Circular Perforations 

Under this category four models are developed. Out of the four, three models are 

formulated by using only the approximate analytical methods. Model given in the chapter 9 is 

a hybrid model which is combination of the analytical and experimental method.  All the four 

models are developed for the rectangular perforation pattern but these models can be 

extended to the staggered array of the perforations. 

 Formulation of the first analytical model (Section 7.2) is based on the concept of 

replacing the small perforations by the negatively concentrated mass. Thus inertia 
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force due to the hole is considered in the Galerkin formulation to obtain the 

fundamental frequency. This model yields results with good accuracy when the 

perforation size is small. It is found that the error in the fundamental frequency is of 

the order of 5% when ratio of the area of plate (A) to the area of single perforation 

(Ap) is 542.017.  

 The second analytical model (Section 8.2) proposed gives good results from the point 

of view of the accuracy and computational time. This model is based on the concept 

of replacing the small circular perforations by the equivalent square perforations. 

Further the Heaviside step functions are used to express variations of the material 

properties. The numerical analysis is carried out for the ten specimens to get the 

fundamental frequency. From the comparison of the FEM and numerical analysis 

results it is found that the proposed approach is more suitable for the perforated plates 

with the MRR  more than or equal to 0.852. When the MRR is in this range maximum 

error of 6-7% is observed in the fundamental frequency. The discrepancy between the 

FEM and numerical results is less than 2.56 % when (A/ Ap) is greater than 169. Thus 

for wide range of (A/ Ap) ratio this model gives reasonably good results. 

 In third approach (Chapter 9) the modal constant expression for the fundamental 

frequency is proposed, which gives alternative method to the existing equivalent 

material properties approach. This modal constant can be directly used to calculate the 

fundamental frequency, by using the actual material properties instead of the 

equivalent material properties. In this approach experimentally obtained fundamental 

frequency is used in the Rayleigh’s method to get an expression for the modal 

constant. Maximum discrepancy between the results obtained from the modal 

constant and the FEM is 11.9%. 

 The fourth analytical model is given in Chapter 10 which is for array of the circular 

multi-perforations in a plate structure. It has provided a simple single expression for 

exact bidirectional material property variation. Further this model can easily handle 

the variation in the size of the perforations. The maximum error of the order of 

0.338% to -4.477% is obtained for the specimens having the ratio of the plate area to 

the perforation hole area within the range 1518.154 to 35.932. This model gives very 

good agreement with the FEM results over broad range of the ratio of the plate area to 

the perforation hole area. Out of all the models developed this model ives the best 

results. 
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12.3 Note on the Accuracy of the Analytical Models Proposed 

From a practical point of view almost any success by using the global admissible 

function methods depends on the selection of the functions. Increasing the number of terms 

“n” in the shape function increases the accuracy of the fundamental frequency but it worsen 

the higher ones as the number of terms used increases, thus we have confined ourselves to the 

fundamental frequency only. But the Ritz eigensolutions approaches the actual eigensolutions 

as n →∞ and the functions form a mathematically complete set (i.e., capable of representing 

any possible deflected shape of the beam) However, this increases greatly the problem 

complexity and computational time required. This means that a compromise must be made 

for a suitable choice of the function so that good convergence is assured while the necessary 

effort is kept within bounds. But, the fact that completeness guarantees convergence as the 

number of terms in the series approaches infinity is not particularly meaningful, because in 

deriving the approximate solutions the interest lies in convergence with as few terms as 

possible [Leonard Meirovitch, 2010]. When objective is to estimate the fundamental 

frequency of distributed parameter system one must choose a function resembling the first 

eigenfunction as closely as possible [Leonard Meirovitch, 2010]. Also none of the functions 

are unique and one may use his/her ingenuity to conceive functions best for the solution of 

the particular problem. It should be pointed out that the trial functions considered in our work 

are taken from standard references, testing them by trial and error, consider only few terms of 

the functions.  

 Thus in spite of above discussed limitations we show from proposed models that 

methods using global admissible functions can obtain reasonably good results without a great 

deal of computational effort. The shape Functions used provides a good estimate of the 

fundamental frequency. Few terms of the admissible functions in these cases suffice to yield 

results near the desired solution. 

12. 4 Effect of Perforations on the Damping 

Modal damping is calculated for first two modes, for all the specimens tested 

experimentally. Appendix “D” shows the values of the damping factors. Results show that 

plate specimens are lightly damped as damping factor values are less than 1.51% for all of the 

cases. For all the specimens damping factor for first mode is greater than second mode (ζ1 > 

ζ2 ). It can be seen that the damping factor values are slightly more for the perforated plates 

compared to the solid plate. No consistent effect on damping can be clearly observed, except 
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for specimen no. 9.1 to 9.4, where the ζ1 and ζ2 decreases with increasing MRR. As only 

representative specimens are analyzed experimentally no significant change in the extent of 

the variation of damping was observed. The noticeable differences can only be observed in 

damping values of specimen no.s 8.11/7.11 and 9.1. For these specimens perforation 

(circular) size is small compared to all other specimens. It can also be seen that due to small 

number of specimens analyzed, there is no significant change in the extent of the variation of 

the damping observed. The MRR of the perforated plate may not be the only factor that 

determines ζ1 and ζ2. Both the shape and distribution of perforation may affect the damping 

coefficient; however, it is premature to conclude that the change in shape and distribution of 

perforation has marginal influence on the magnitude of the damping factor. 

12.5 Recommendations for Future Research 

The following are recommendations for future studies on the plates with the array of 

perforations. 

• This study only considered the rectangular plates with the array of 

rectangular/square and circular openings. Future studies can consider different 

types of the plates and openings. 

• This study only considered uniform thickness for the plates. Future studies can 

consider different types of the thickness variation such as linear, parabolic and 

exponential in one direction and bidirectional. 

• This study only evaluated the fundamental frequencies for clamped all edges 

boundary condition. Future studies can investigate on the free vibration for a 

variety of different types of mixed boundary conditions. 

• A future study could apply the thermal gradient on the plates with the array of 

perforations and study the free vibrations. 

• Structural plates have a multitude of applications in the shipbuilding, aerospace, 

building and automobile industries. In these industries, complex real-life plate 

problems may need higher eigenfrequencies to be calculated rather than only the 

fundamental frequency. Theoretical foundations of the proposed approaches can 

be further extended to find out the higher eigenfrequencies by using properly 

chosen shape functions.   
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Appendix:A 

Applications of Perforated Plates 

 Agriculture  

 For bee hives  

 For grain dryers  

 For wine vat  

 For fish farming  

 For hammer mill screens  

 For silo ventilation  

 For sorting machines (screens and drums)  

 For threshing machine screens  

 For winnowing machine screens  

 For bent and folded perforated sheets as elements for conveyor belts  

 For stainless steel juice channels for wine presses  
 

 Brewing Industry  

 For malting Floors  

 For hop Screen  

 Food Industry  

 For vegetable and fruit presses  

 For cheese moulds  

 For baking trays  

 For cookers  

 For boilers  

 For frying ranges  

 For fruit & vegetable separators  

 For crushing machines  

 For coffee screens and pulpers  

 For tea sifters  

 For trays for vegetable and fruit dryers  
 

 Sugar and Distilling Industry  

 For filters  

 For centrifuges  

 For diffuser lining  

 For elevator buckets  

 For sugar beet washers  

 For pulp presses  

 Chemicals  

 For centrifuges  

 For drying machine baskets  

 For filters  

 For pulverizers  

 For perforated cathodes for electrolysis  

 Support tubes for filter industry  
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 Electricity  

 For base panels for distribution boards  

 For battery separator plates  

 For cable trays  

 For radiator covers  

 For water screens  

 For cable winding drums  

 For electronic switch cabinets with components made of perforated metal  
 

 Water Works  

 For well screens  

 For filters  

 

 Gas Works  

 For gas purifiers  

 For rotary and vibrating screens  

 For liquid gas burner tubes  
 

 Mines And Collieries  

 For elevator buckets  

 For mine cages  

 For panels for dust extractors  

 For coal washing  

 For rotary and vibrating screens  

 For flocculation screens  
 

 Glue Manufacturers  

 For bone screen  

 Glass Industries  

 For glass reinforcement  

 Cement Industry  

 For slurry screens  

 Paper Industry  

 For filters  

 For paper paste diffuser floors  

 For washing and grading  

 Textile Industry  

 For tannery machines  

 For yeing machines  

 For drying machines  

 For felt mills and textile printers  

 Steel Industry  

 For cinder screens  

 For blast furnace screens 

 Shipbuilding Industry  

 For embossed or perforated plates for floors, stairs and gangways  

 For filters  

 For cable trays  
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 For silencers  

 Automotive Industry  

 For ventilation for tractor engine  

 For casing  

 For ventilation grid  

 For perforated tubes for sound isolation  

 For silencer for motorcycles  

 For flooring and running boards  

 For oil filters  

 For silencer tubes  

 For radiator grilles  

 For air filters  

 Mechanical Handling  

 For sand dewatering buckets  

 For conveyor flight panels 

 Building Industry  

 For embossed plates for floors and stairs  

 For folded and perforated plates for gangways and stairs  

 For decorative perforated or embossed or indented plates  

 For perforated pipe guards  

 For radiator covers  

 For sign-boards  

 For acoustic panels  

 For ventilation grilles  

 For decorative perforated benchs or chairs  

 Building Architecture  

 For façades made of perforated stainless steel sheets  

 For noise protection ceiling made of micro perforated aluminium sheets  

 For sunscreen slats for sun protection  

 Waste Disposal  

 For electrical precipitator trays  

 For refuse screens  

 For screening and sorting drum for different kinds of recycling  

 Plating and Finishing  

 For perforated dipping baskets  

 Quarries and Brick Making  

 For drying trays  

 For elevator buckets  

 For roller mill runways  

 For oven trays  

 For rotary and vibrating screens  

 Railways  

 For embossed floors  

 For embossed plates for containers and carriages  

 For embossed running boards  

 For ventilation grilles  

 For acoustic panels  

 For filters  

 For radiator covers  

 For luggage racks  
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 For spark arrestors  
 

 Cryogenics  

 For beat diffuser screens  
 

 Printing Industry  

 For copying machine drums  
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Appendix:B 

FE Simulation Convergence Summary 

Table B.1 

Spec. 

No. 

Plate Size 

(a mm x b 

mm) 

Cutout Size 

(d mm x d mm) 

px = py 

(mm) 

Simulation 

no. 

No. of 

nodes 

No. of 

elements 

ω1, (Hz) 

5.1 400 x 400 80 x 80 80 1 3309 3086 94.533 

    2 12788 12342 94.444 

    3 50256 49364 94.411 

5.2 500 x 500 100 x 100 100 1 3251 3028 60.496 

    2 12556 12110 60.442 

    3 109582 108306 60.421 

5.3 600 x 600 120 x 120 120 1 3314 3091 42.016 

    2 12808 12362 41.975 

    3 50336 49444 41.961 

5.4 700 x 700 140 x 140 140 1 3235 3011 30.865 

    2 12492 12044 30.838 

    3 49072 48176 30.828 

5.5 800 x 800 160 x 160 160 1 3286 3063 23.631 

    
2 12696 12250 23.61 

        3 49888 48996 23.602 
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Table B.2 

Specimen 

No. 

Plate Size 

(a mm x b mm ) 
Cutout Size 

(d mm x d mm) 

Simulation 

no. 
No. of 

nodes 

No. of 

elements 

ω1, (Hz) 

5.8 400x400 133.33 x 133.33 1 1016 931 93.197 

   
2 3893 3724 93.094 

   
3 8632 8379 93.065 

   
4 15233 14896 93.052 

5.9 500x500 166.66 x 166.66 1 1081 996 59.627 

   
2 4153 3984 59.572 

   
3 9217 8964 59.557 

   
4 16273 15936 59.550 

5.10 600x600 200 x 200 1 1049 964 41.407 

   
2 4025 3856 41.369 

   
3 8929 8676 41.359 

   
4 15761 15424 41.354 

5.11 700x700 233.33 x 233.33 1 1033 948 30.423 

   
2 3961 3792 30.394 

   
3 8785 8532 30.386 

   
4 15505 15168 30.383 

5.12 800x800 266.66 x 266.66 1 1041 956 23.292 

 
  

2 3993 3824 23.270 

 
  

3 8857 8604 23.264 

 
  

4 15633 15296 23.262 
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Table B.3 

Spec. 

No. 

Plate Size 

(a mm x b mm) 

Perforation 

Size d(mm) 

Simulation 

no. 

 

No. of 

nodes 

No.  of 

elements 

ω1 (Hz) 

6.1 50 x 44.64102 10 1 1497 1339 6676.9 

  
 

2 5672 5356 6662.3 

  
 

3 12525 12051 6658.6 

  
 

4 22056 21424 6657.0 

6.2 100 x 89.28203 20 1 1497 1339 1669.2 

  
 

2 5672 5356 1665.6 

  
 

3 12525 12051 1664.7 

  
 

4 22056 21424 1664.3 

6.3 150 x 133.9230 30 1 1498 1340 741.77 

  
 

2 5676 5360 740.22 

  
 

3 12534 12060 739.83 

  
 

4 22072 21440 739.66 

6.4 200 x 178.5641 40 1 1497 1339 417.30 

  
 

2 5672 5356 416.39 

  
 

3 12525 12051 416.16 

  
 

4 22056 21424 416.07 

6.5 250 x 223.2051 50 1 1519 1361 267.03 

  
 

2 5670 5444 266.48 

  
 

3 12723 12249 266.34 

  
 

4 22408 21776 266.28 

6.6 300 x 267.8461 60 1 1498 1340 185.44 

  
 

2 5676 5360 185.06 

  
 

3 12534 12060 184.96 

  
 

4 22072 21440 184.92 

6.7 350 x 312.4871 70 1 1510 1352 136.25 

  
 

2 5724 5408 135.96 

  
 

3 12642 12168 135.89 

  
 

4 22264 21632 135.86 

6.8 400 x 357.1281 80 1 1497 1339 104.33 

  
 

2 5672 5356 104.10 

  
 

3 12525 12051 104.04 

  
 

4 22056 21424 104.02 

6.9 450 x 401.7691 90 1 1478 1320 82.422 

  
 

2 5596 5280 82.248 

  
 

3 12354 11880 82.204 

  
 

4 21752 21120 82.185 

6.10 500 x 446.4102 100 1 1519 1361 66.757 

  
 

2 5670 5444 66.620 

  
 

3 12723 12249 66.584 

  
 

4 22408 21776 66.570 

 



164 

 

Table B.4 

Specimen 

No. 

Plate Size 

(a mm x b mm) 

Perforation 

Size, d 

(mm) 

Simulation 

no. 

Number 

of nodes 

Number 

of 

elements 

ω1,(Hz) 

6.11 36.650 x 32.720 7.33 1 14639 12803 608.68 

   2 20461 18301 607.40 

   3 37547 34413 607.15 

6.12 63.355 x 56.732 12.71 1 6563 5788 604.84 

   2 24733 23147 601.82 

   3 54471 52074 601.02 

6.13 154.30 x 137.762 30.86 1 1433 1265 588.79 

   2 5396 5058 587.30 

   3 11887 11379 586.91 

   4 20906 20228 586.74 
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Table B.5 

Specimen 

No. 

d  (mm) (A/Ap) Simulation  

No. 

No. of 

 nodes 

No. of 

elements 

ω1, ( Hz) 

Specimens with dimensions (138 mm x 216 mm) 

7.1 5 1518.15 1 2776 2476 692.95 

   2 10479 9871 693.38 

   3 40632 39408 693.48 

7.2 10 379.538 1 2754 2457 694.00 

   2 10390 9788 693.90 

   3 40276 39064 693.85 

7.3 15 168.684 1 2703 2394 695.74 

   2 9890 9268 696.16 

   3 38268 37016 695.97 

7.4 25 60.7262 1 2072 1789 712.18 

   2 7720 7146 710.62 

   3 29720 28564 710.17 

7.5 30 42.1709 1 1980 1691 727.23 

   
2 7372 6786 725.42 

   
3 28320 27140 724.94 
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Table B.6 

Specimen 

No. 

d  (mm) (A/Ap) Simulation  

No. 

No. of 

 nodes 

No. of  

elements 

ω1, ( Hz) 

Specimens with dimensions (276 mm x 432 mm) 

7.6 10 1518.15 1 2768 2455 173.27 

   2 10444 9810 173.36 

   3 40492 39216 173.37 

7.7 20 379.538 1 2718 2420 173.47 

   2 10246 9642 173.47 

   3 39700 38484 173.46 

7.8 25 242.905 1 2535 2231 173.70 

   2 9508 8892 173.66 

   3 36740 35500 173.65 

7.9 50 60.7262 1 2095 1814 177.93 

   2 7813 7243 177.62 

   3 30092 28944 177.53 

7.10 65 35.9326 1 1807 1518 184.23 

   

2 6646 6060 183.70 

   

3 25408 24228 183.55 
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Table B.7 

Specimen 

No. 

ηl Simulation 

No. 

No. of  

elements 

No. of  

Nodes 

ω1,,Hz 

Perforation diameter 6mm 

9.1 
0.2 2 59185 70473 548.23 

 
 4 81789 95200 547.7 

 
 5 151382 170122 546.52 

Perforation diameter 6mm 

9.2 
0.6 1 14448 17697 653.45 

 
 2 19356 31838 652.92 

 
 3 25392 30534 652.13 

 
 4 101565 111983 650.33 

 
 5 129983 139998 650.55 

Perforation diameter 9mm 

9.3 
0.4 1 16040 19906 615.99 

 
 2 23980 28978 614.6 

 
 3 95956 106068 612.71 

 
 4 113489 123066 612.65 

 
 5 144268 156098 615.14 

Perforation diameter 12mm 

9.4 
0.6 1 2913 3582 645.08 

 
  2 5350 6462 640.02 

 
  3 6373 7644 639.68 

 
  4 25377 27953 639.52 

 
  5 47963 51259 637.93 

 
  6 69921 73563 637.9 
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Appendix: C, Accelerometer Specifications, Model Number 352C68 

Performance ENGLISH SI 

Sensitivity  (±10 %) 100 mV/g 10.2 mV/(m/s²) 

Measurement Range  ±50 g pk ±491 m/s² 

pk Frequency Range  (±5 %) 0.5 to 10000 Hz 0.5 to 

10000 Hz 

Frequency Range  (±10 %) 0.3 to 12000 Hz 0.3 to 12000 Hz 

Frequency Range  (±3 dB) 0.2 to 20000 Hz 0.2 to 

20000 Hz Resonant Frequency   ≥35 kHz  ≥35 
kHz Phase Response  (±5 °) (at 70&#176F  2 to 6000 Hz 2 to 6000 
Hz [21&#176C]) 

Broadband Resolution (1 to 10000 Hz) 0.00016 g rms 0.0015 m/s² rms [1] 

Non-Linearity ≤1 % ≤1 % [3] 

Transverse Sensitivity ≤5 % ≤5 % [4] 

Environmental 

Overload Limit  (Shock) ±5000 g pk ±49050 m/s² pk 

Temperature Range  (Operating) -65 to +200 °F -53 to +93 °C [2] Temperature Response See Graph  See Graph [1] 

Base Strain Sensitivity ≤0.005 g/µε ≤0.05 (m/s²)/µε [1] 

Electrical 

Excitation Voltage 18 to 30 VDC 18 to 30 VDC 

Constant Current Excitation 2 to 20 mA 2 to 20 mA 

Output Impedance ≤300 ohm ≤300 ohm 

Output Bias Voltage 8 to 12 VDC 8 to 12 VDC 

Discharge Time Constant 0.8 to 2.4 sec 0.8 to 2.4 sec 

Settling Time  (within 10% of bias) <10 sec <10 sec 

Spectral Noise  (1 Hz) 60 µg/√Hz 588 (µm/sec
2 

/√Hz [1] 

Spectral Noise  (10 Hz) 16 µg/√Hz 157 (µm/sec
2 

/√Hz [1] 

Spectral Noise  (100 Hz) 5 µg/√Hz 49 (µm/sec
2 

/√Hz [1] 

Spectral Noise  (1 kHz) 1.5 µg/√Hz 14.7 (µm/sec
2 

/√Hz [1] 

Physical 

Sensing Element Ceramic Ceramic 

Sensing Geometry Shear Shear 

Housing Material  Titanium  Titanium 
Sealing Welded Hermetic Welded 
Hermetic 

Size (Hex x Height) 9/32 in x 0.73 in 9/32 in x 18.5 mm 

Weight  0.070 oz  2.0 gm [1] Electrical Connector 10-32 Coaxial Jack 10-32 Coaxial Jack 

Electrical Connection Position  Top 

 Top Mounting Thread 5-40 

Male 5-40 Male 

Mounting Torque 8 to 12 in-lb 90 to 135 N-cm 

 

 

[5]  

All specifications are at room temperature unless otherwise specified. 

In the interest of constant product improvement, we reserve the right to change specifications without notice. 

Optional Versions (Optional versions have identical specifications and accessories as listed 

for standard model except where noted below. More than one option maybe used.) 

A - Adhesive Mount 

Supplied Accessory: Model 080A90 Quick bond Gel (for use with accelerometer adhesive mtg 
bases to fill gaps on rough surfaces) replaces Model 080A15 

HT - High temperature, extends normal operation temperatures 

Frequency Range  (5 %) 5 to 10000 Hz 5 to 10000 Hz 

Frequency Range  (10 %) 3 to 12000 Hz 3 to 12000 Hz 

Frequency Range  (3 dB) 2 to 20000 Hz 2 to 20000 Hz 

Broadband Resolution (1 to 10000 0.0002 g rms 0.002 m/s² rms Hz) 

Temperature Range  (Operating) -65 to +250 °F -54 to +121 °C 

Discharge Time Constant 0.08 to 0.24 sec 0.08 to 0.24 sec 

Spectral Noise  (1 Hz) 75 µg/√Hz 736 (µm/sec
2 

/√Hz 

Spectral Noise  (10 Hz) 25 µg/√Hz 245 (µm/sec
2 

/√Hz 

J - Ground Isolated 

Frequency Range  (5 %) 0.5 to 8000 Hz 0.5 to 8000 Hz 

Frequency Range  (10 %) 0.3 to 10000 Hz 0.3 to 10000 Hz 
Frequency Range  (3 dB) 0.2 to 16000 Hz 0.2 to 16000 Hz 
Resonant Frequency  ≥30 kHz  ≥30 kHz 

Electrical Isolation  (Base) ≥10
8 

ohm ≥10
8 

ohm 

Size (Hex x Height) 3/8 in x 0.75 in 3/8 in x 19.1 mm Weight 

 0.1 oz  2.8 gm 

 

M - Metric Mount 

Mounting Thread M3 x 0.50 Male (M3 x 0.50 Male) Supplied 
Accessory: Model M080A15 Metric adhesive base, 0.31" hex x 0.125" thk, M3 x 0.50 thd, aluminum with 
insulating hardcoat finish replaces Model 080A15 

W - Water Resistant Cable 

Electrical Connector Sealed Integral Sealed Integral Cable

  Cable 

Electrical Connection Position Side Side 

 

Notes 

[1] Typical. 

[2] 200°F to 250°F data valid with HT option only. [3] Zero-based, 

least-squares, straight line method. [4] Transverse sensitivity is 

typically <= 3%. 

[5] See PCB Declaration of Conformance PS023 for details. 

 
Supplied Accessories 

080A109 Petro Wax (1) 

080A15 Adhesive Mounting Base (1) 

ACS-1 NIST traceable frequency response (10 Hz to upper 5% point). () 
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Appendix:C, Impact Hammer Specifications, Model Number 086C03 

Performance  ENGLISH    SI 
Sensitivity   (±15 %)  10 mV/lbf  2.25 mV/N 
Measurement Range ±500 lbf pk ±2224 N pk 
Resonant Frequency  ≥22 kHz   ≥22 kHz 
Non-Linearity     ≤1 %  ≤1 % 

Electrical 
Excitation Voltage 20 to 30 VDC 20 to 30 VDC 
Constant Current Excitation   2 to 20 mA  2 to 20 mA 
Output Impedance   <100 ohm  <100 ohm [1] 
Output Bias Voltage 8 to 14 VDC 8 to 14 VDC 
Discharge Time Constant ≥2000 sec ≥2000 sec [1] 

Physical 
Sensing Element Quartz Quartz 
Sealing  Epoxy  Epoxy 
Hammer Mass 0.34 lb  0.16 kg 
Head Diameter 0.62 in 1.57 cm 
Tip Diameter 0.25 in 0.63 cm 
Hammer Length  8.5 in 21.6 cm 
Electrical Connection Position Bottom of Handle Bottom of Handle 
Extender Mass Weight 2.6 oz 75 gm 
Electrical Connector BNC Jack BNC Jack 

 

 

 [2] 

 

 
All specifications are at room temperature unless otherwise specified. 
In the interest of constant product improvement, we reserve the right to change specifications without 
notice. 
ICP® is a registered trademark of PCB group, Inc. 

Optional Versions (Optional versions have identical specifications and accessories as listed for 
standard model except where noted below. More than one option maybe used.) 

T - TEDS Capable of Digital Memory and Communication Compliant with 
IEEE P1451.4 
TLD - TEDS Capable of Digital Memory and Communication Compliant with 
IEEE 1451.4 

 
Notes 

[1] Typical. 
[2] See PCB Declaration of Conformance PS068 for details. 

 
Supplied Accessories 
081B05 Mounting Stud (10-32 to 10-32) (2) 
084A08 Extender - Steel, 0.6" Diameter (1) 
084B03 Hard Tip- Hard (S.S) (1) 
084B04 Hammer Tip- Medium (White Plastic) (1) 
084C05 Hammer Tip- Soft (Black) (2) 
084C11 Hammer Tip- Supersoft (Red) (2) 
085A10 Vinyl Cover For Medium Tip (Blue) (2) 
HCS-2 Calibration of Series 086 instrumented impact hammers (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 

3425 Walden Avenue 
Depew, NY 14043 
UNITED STATES Phone: 
888-684-0013 
Fax: 716-685-3886 
E-mail: vibration@pcb.com 
Web site: www.pcb.com 
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Appendix:C 

Larson and Davis, ViRT 3000+ ,FFT Analyser Specifications 
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Appendix:C 

The Spider-81 Vibration Controller System Specifications 

 

 Product Specifications: 

 

 Analog Inputs: 8 BNC connectors per Spider-81 vibration test controller. Spider-81 and 

Spider-80X front-ends can be networked to form a 128 channel count system. Charge, 

voltage or IEPE, single-ended or differential, AC or DC coupling, 150 dBFS dynamic 

range, 24-bit A/D converters, range ±20 volts, up to 102.4 kHz fs per channel, 8 BNC 

connectors per Spider-81 front-end. 

 Analog Outputs: 2 BNC connectors per unit, 100 dB dynamic range, 24-bit A/D 

converters. ±10 volts 

 Channel Phase Match: Better than ±1.0 degree up to 20 kHz among all channels 

 Peripherals: 8 isolated DIO; 10 monitoring channels, LCD display with navigation 

buttons, RS-485, ground connection, abort contact switch, start and abort buttons 

 Dimensions: 440 x 66 x 330 mm (WxHxD) 

 Weight: 4.2 kg 

 Power: Up to 18 watts during operation. 

 Computer Connections: 100Base-T, RJ45 female connector supports connection to 

computer or network switch 

 Internal Memory: Flash memory for data storage is 4 GB per unit 

 Operation Modes: Connected to computer or stand alone Black Box mode. 
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Appendix: D 

Damping factors obtained from the half power bandwidth method 

Speci. 

No. 

MRR 
1 (Hz) 

ζ1 

2 (Hz) 

ζ2 

3 (Hz) 

ζ3 
Experi. FEM Experi. FEM Experi. FEM 

4.1(Solid)  663.071 693.62 0.0105 974 1040.5 0.0069 1492.187 1631.5 0.0047 

Rectangular Perforation pattern circular perforations 

8.11/7.11  650 693.38 0.0148 972.656 1038.3 0.0114 1535.156 1623.3 0.0065 

8.12/7.12  637 693.85 0.0106 929.687 1033.6 0.00757 1468.75 1605.9 0.0045 

Rectangular Perforation pattern square perforations 

5.6  537.5 590.37 0.0118 831.25 896.02 0.00756 1306 1413.4 0.006 

Staggered 60
o
 perforation pattern square perforations 

6.14  575 608.64 0.0116 856.25 913.11 0.00766 1368 1429.4 0.0047 

6.15  545 586.87 0.0114 868.75 911.50 0.00816 1268.8 1349.6 0.00656 

Rectangular Perforation pattern circular perforations 

9.1  590.7 546.52 0.0151 954.949 828.88 0.0112 1191.714 1296.3 0.0125 

9.2  616.714 650.33 0.0111 895.285 963.26 0.009 1393.714 1498 0.0052 

9.3  571 612.65 0.0116 827.428 910.77 0.0100 1253.857 1416.5 0.0124 

9.4  586.571 637.9 0.0111 891 976.04 0.00923 1435.143 1549.3 0.0052 

 

 

 

  



173 

 

List of Publications 

1. Publications in International Journals Related to Thesis Work 

[1] Mali K.D., Singru P.M. (2012). An analytical model to determine fundamental 

frequency of free vibration of perforated plate by using unit step functions to 

express non homogeneity. Journal of Vibroengineering 14(3):1292-1298.  

[2] Mali K.D., Singru P.M. (2013). An analytical model to determine fundamental 

frequency of free vibration of perforated plate by using greatest integer functions to 

express non homogeneity. Advanced Materials Research, 622-623:600-604. 

[3] Mali K.D., Singru P.M. (2012). Determination of the fundamental frequency of 

perforated plate with rectangular perforation pattern of circular holes by negative 

mass approach for the perforation. International Journal of Advanced Materials 

Manufacturing and Characterization 1(1):105-109, ISSN-2277-3886. 

[4] Mali K.D., Singru P.M. (2013). An analytical model to determine fundamental 

frequency of rectangular plate having rectangular array of circular perforations”. 

Journal of Vibroengineering 15(2):588-596. 

[5] Mali K. D., & Singru P. M. (2013). Determination of the fundamental Frequency of 

perforated rectangular plates: Concentrated negative mass approach for the 

perforation. Advances in Acoustics and Vibration, vol. 2013 . 

[6] Mali K.D., Singru P.M., Determination of modal constant for fundamental 

frequency of perforated plate by Rayleigh's method using experimental values of 

natural frequency. International Journal of Acoustics and Vibration.(Accepted) 

2. Papers Presented at International Conferences Related to Thesis 

Work 

[1] Mali K.D., Singru P.M.  “Determination of the fundamental frequency of perforated 

plate with rectangular perforation pattern of circular holes by negative mass 

approach for the perforation” Proceedings of the  International conference on 

Materials, Processing and Characterization(ICMPC 2012), GRIET Hyderabad , 

Andra Pradesh, March 8-10, 2012. 

[2] Mali K.D., Joshi P.S., Singru P.M. “Free vibration analysis of simply supported 

rectangular plates with rectangular perforation pattern of square holes”. Proceedings 

of the 57th congress of the Indian Society of Theoretical and Applied Mechanics 

(An international meet), held at Defence Institute of Advance Technology, Pune, on 

Dec. 17-20, 2012. 



174 

 

 Brief Curriculum Vitae 

Mr. Kiran D. Mali is currently a faculty at Dept. of Mechanical Engineering BITS-Pilani, K. 

K. Birla Goa Campus. He has completed his Masters Degree in Design Engineering, 

M.E.(Mech) Design Engg, from Shivaji University, Kolhapur in 2006. He joined BITS-

Pilani, K K Birla Goa Campus in May 2007. His research areas include vibration analysis of 

structural components, experimental and analytical. 

 

Dr. Pravin Singru is Associate Professor, Mechanical Engineering Department. He obtained 

his M. Tech. from IIT, Kharagpur and Ph.D. from Visvesvaraya National Institute of 

Technology, Nagpur. His doctoral thesis was on "Dynamic and Vibration Response of 

Pulleys of a Belt Drive". Dr. Singru has more than 22 years of teaching experience. He 

teaches courses in the area of Mechanics of solids, Kinematics and Dynamics of Machines, 

Vibrations & MEMS. Dr. Singru has been associated with BITS Pilani administration as 

Associate Dean Practice school at BITS Pilani, K K Birla Goa Campus, Member of selection 

committee for non-teaching staff, Faculty In charge (Workshop), Nucleus Member of 

Placement and Practice School Division, Member of Task Force for Mission 2012. He is 

actively involved in the curriculum redesign of Mechanical Engineering Program of BITS 

Pilani University. He has been guided six research scholars for their research leading to Ph.D. 

degree of the Institute. He has published more than 19 research papers in International 

Journals and 36 papers in National & International Conferences. He is reviewer of 5 

International Journals. He has organized Indo-Russian work shop on Topical Problems in 

Solid Mechanics, sponsored by DST and Russian Academy of Sciences, Nov, 2008. He has 

delivered talks on invitation from various Institutions in India. Dr. Singru is Coordinator of 

National center for MEMS design with 30 lakhs grant. Under his leadership, department has 

received Rs. 80 lakhs grant from DST under FIST Scheme. He was organizing secretary of 

International Conference on Emerging Miniaturized Technology Micro to Nano (EMTM2N-

2013), conducted in February 2013. 

 

 

 

 


