LIST OF TABLES

Гable No.	Caption	Page No.
1.1	Catalytic activity of zeolite encapsulated metal-pthalocyanine and porphyrins complexes	10
1.2	Catalytic activity of zeolite encapsulated metal-bipyridyl and amino acids complexes	12
1.3	Catalytic activity of zeolite encapsulated metal-salen complexes	12
2.1	List of the chemicals used in this study along with the name of their suppliers	29
2.2	Analytical data of the synthesized ligands	31
3A.1	FTIR spectral data (in cm-1) for the "neat" and encapsulated NiL3 complex	51
3A.2	Important geometrical parameters and molecular orbital's for NiL3 in free and encapsulated case	53
3A.3	UV-Vis experimental and TD-DFT simulated spectral data of the neat and encapsulated NiL3 in solid state with corresponding assignments	58
3A.4	UV-Vis data of the "neat" and encapsulated NiL3 in zeolite Y in solid state	61
3B.1	Binding energy of the neat and encapsulated complex	75
3B.2	FTIR spectral data (in cm-1) for the ligands and both state complexes	76
3B.3	Solid state UV-Visible data of complexes in free and encapsulated state	79
3B.4	Several important bond-distances, bond angles are reported for NiL1, NiL4 and NiL6 in the free and encapsulated cases. the end-to-end distances, HOMO and LUMO energies are also given	83
3B.5	Important d-d transitions, the energies, extinction coefficients and band assignments for NiL1, NiL4 and NiL6 in free, singlet case. The most important transition is given in bold and HOMO is abbreviated as H and LUMO is abbreviated as L	86
3B.6	Conversion of styrene after 8 hours reaction time with H2O2 as oxidant	88

LIST OF TABLES

3C.1	Binding energy of the neat and encapsulated complex	97
3C.2	IR spectral data (cm-1) of neat and encapsulated complexes	99
3C.3	Solid state UV-Vis spectral data of "neat" and encapsulated complexes	101
3C.4	Important geometrical parameters and molecular orbital's for NiL1 and NiL2 in free and encapsulated case (B3LYP/6-31++ G^{**})	103
3C.5	Important selected electronic transition of NiL1 and NiL2 in free and encapsulated case	106
3C.6	Conversion of styrene after 8 hours reaction time with H2O2 as oxidant	108
4.1	Concentration of palladium (wt %) content in the different samples	113
4.2	The binding energy data of the free state or encapsulated complexes	118
4.3	FTIR spectral data (in cm-1) for neat and encapsulated state complexes	120
4.4	Solid state UV-Visible data (in nm) of palladium Schiff-base complexes in both states	123
4.5	Oxidation of methyl phenyl sulfide after 4 hours reaction time with H_2O_2 as oxidant	125
5.1	AAS data of encapsulated complexes	132
5.2	FTIR spectral data (in cm-1) for neat and encapsulated state complexes	135
5.3	Binding energy (in eV) of the free and encapsulated complexes	138
5.4	Solid state UV-Visible data (in nm) of copper Schiff-base complexes in free and encapsulated state	140
5.5	Conversion of styrene using different amount of catalyst	143
5.6	Conversion of styrene using different temperature for the reaction	143
5.7	Conversion of styrene in different time durations	143
5.8	Conversion of styrene after 8 hours reaction time with H ₂ O ₂ as oxidant	144

LIST OF TABLES

6.1	Concentration of cobalt (wt %) content in the different samples	153
6.2	FTIR spectral data (in cm-1) for neat and encapsulated cobalt Schiffbase complexes	156
6.3	Solid state UV-Visible data (in nm) of cobalt Schiff-base complexes in free and encapsulated state	160
6.4	The percentage degradation of Rhodamine B in the presence or absence of H ₂ O ₂ under UV light by using cobalt salen complexes as catalysts	163

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/