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Abstract 

 
The early age of universe was dominated by high energy radiations and subatomic particles. 

Due to very high temperature in the surroundings, interaction between radiation and the 

subatomic particles were instantaneous and led to the formation of atoms, molecules and 

respective ions. This process is commonly known as nucleosynthesis. Due to inelastic 

collisions between the high energy atoms/ions with molecules, the internal energy of the 

system got converted into radiation which is dissipated in the background medium in random 

direction (interstellar cooling). The overall energy of the system is reduced through many 

cycles of excitation de-excitation of the molecular rovibrational levels. In order to understand 

the process of interstellar cooling, one needs the rate coefficients for the collision processes 

between the species of more abundant in the early universe. It has been found that the H2 

molecule and its isotopic variants such as HD, D2 etc were the most abundant in the early 

universe. 

 

Thus, it is important to know the accurate rate coefficients for the reactions involving all 

these species for wide range of temperatures. In this thesis, we have studied the chemical 

reaction dynamics of the D + H2 reaction (and its isotopic substituted reactions) from very 

low to high temperature limit where the atoms and molecules can be treated classically. In the 

ultralow temperatures (~ 10
-6 

K), due to the quantum behavior of atoms and molecules, 

general Arrhenius type temperature dependence of the rate coefficient is not obeyed, instead 

the Wigner’s threshold laws can be applied to various dynamical observables.  

 

In the first chapter, we have discussed in brief introduction about the cold and ultracold atoms 

and molecules. A review on classical theories of the atomic collisions such as transition state 

theory, collision theory, Arrhenius theory for the temperature dependence of the rate 

coefficients etc. have been presented. Classical collision theories consider all atoms and 

molecules as hard spheres to estimate the rate coefficients, but the effect of initial 

rovibrational quantum states on the dynamical outcomes and the effect of short lived 

resonances could not be properly explained. Therefore, the quantum mechanical approach of 

the collision dynamics considering the atoms and molecules as waves is more appropriate. 
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Reactive scattering dynamics of atom-molecule collisions in the ultracold regime has been 

investigated using time-independent quantum close coupling approach. We have started with 

the quantum mechanical description for collisions between two atoms and extended it to the 

atom-diatom collisions using Delves hyperspherical coordinates. The derivation of scattering 

matrix (S-matrix) from which we can calculate the dynamical observables such as reaction 

probability, cross-sections and rate coefficients has been described in detail in the chapter 2. 

 

In order to perform the numerical calculations, we have modified the ABC reactive scattering 

code originally developed by Skouteris et al for atom-diatom collisions at high temperatures. 

To perform scattering calculations in the ultracold temperature limit, three main parameters 

should be optimized for numerical convergence: (i) if the diatomic basis large enough?       

(ii) the numerical integration step () is small enough? and (iii) if the asymptotic behavior 

of the potential is large enough?. In order to this, we have introduced new modules in the 

ABC reactive scattering code.  This numerical convergence issues has been addressed in 

details for the D + H2 reaction with respect to the size of the basis functions, extent of radial 

propagation and integration step etc in chapter 3.  

 

Molecular hydrogen and its isotope HD acted as one of the most important interstellar 

coolants in the primordial gas medium, but the formation & destruction of these molecules 

are not well studied quantum mechanically for a wide range of temperatures. We present 

accurate time-independent quantum mechanical (TIQM) rate coefficients of formation of 

ultracold HD molecules by D + H2 (v, j)  HD (v, j) +H reaction in the ultralow 

temperature regime in chapter 4. Different potential energy surfaces e.g. DMBE, LSTH, 

BKMP, BKMP2, Wu et al and Mielke et al are available in literature for this reaction. But the 

only PESdeveloped by Mielke et al includes the long range van der Waals interactions. Since 

the long range interactions very sensitive to the potential, in the ultracold temperature region, 

the BKMP2 and Mielke et al potential has been used to study this reaction.  

 

The dynamical observables such as the state resolved integral cross sections between 

rotational (j) and vibrational (v) levels and corresponding rate coefficients are first computed 

for temperature T = 10
-8 

K – 10 K. We found that the exponential decrease of the rate 

coefficients with reducing temperature following Arrhenius empirical equation is not obeyed 

at ultracold temperature limit. At lower temperatures, the rate coefficients become 
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independent of temperature (constant) which is the consequence of enhanced quantum 

mechanical tunneling. Finally, we have calculated the rate coefficients of both inelastic and 

reactive processes using the calculated cross sections.  

 

As temperature increases, the contribution from higher partial waves (ℓ > 0) should be 

included. Generally, the p-wave (ℓ = 1) would start contributing from 10
-2 

K and at T~150 K, 

we may need to consider up to ℓ = 35 partial waves. Above T > 170 K, we have compared 

the calculated rate coefficients with available experimental data. We have observed that the 

reaction cross sections and rate coefficients are close to the experimental values and obey 

Arrhenius behavior at higher temperatures. While comparing the results using two different 

potential energy surfaces (BKMP2 and Mielke et al), there are significant difference in the 

ultracold temperature region (because of difference in the long range interactions in the 

potential), but high temperature rate coefficients converge for both the potentials.  

 

Unlike H2, HD molecule has permanent dipole moment and because of closely spaced 

rovibrational levels, HD molecule can act as more effective coolant in the interstellar 

medium. For this reason we have studied the H + HD reaction for all possible collisional 

outcomes: elastic, quenching, H exchange and formation of H2 processes. All these processes 

have been treated separately in the scattering calculations and reported for a wide range of 

temperatures. We have also analyzed the effect of excited rovibrational initial states and 

found that the quenching processes dominate over the H exchange and the formation of H2 

processes.  

 

We have found sharp resonance peaks near ~120K for all the vibrational states (v) for the H + 

HD (v, j) reaction. The energy gap between j = 0 and j = 1 for a particular vibrational state is 

found to be in the same order which might be the origin of these resonances. Previously, 

similar kind of resonances have been found for Cl + H2 reaction by Balakrishnan et al. Since 

it is not due to the presence of any bound state, the signature of this resonance were not 

observed in the final rate coefficients. These findings have been presented in the chapter 5. 
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Chapter 1 

An Introduction to the cold, ultracold atoms and molecules 

 
1.1 Nucleosynthesis: Big Bang theory 

 

The Big Bang theory is a widely accepted cosmological model which offers a comprehensive 

explanation to the evolution process of the early universe [1]. According to Big Bang theory, 

the universe was created with an instantaneous explosion and then started expanding  from 

infinite density of matter at very high temperature [2, 3]. The radiations resulted from the big 

bang contained mainly high energy photons and only infinitesimal amount of matter 

(electron, positron) were present [4, 5]. Those high energy photons were soon converted to 

matter (atoms or ions) through the process commonly known as nucleosynthesis [6].  

 

General theory of relativity by Einstein (𝐸 =  𝛥𝑚𝑐2) is one of the most important scientific 

observations of the last century. It predicts that, under proper conditions energy can be 

converted to matter, or vice versa. This mass-energy conversion was a common phenomenon 

in the universe with its high temperature and density in the early stage. Photons were 

converted to electrons and positrons and subsequently the formation of the protons and 

neutrons took place. The protons and neutrons are made up of subatomic particles of varying 

mass and charge (Hardons, Leptons, meson, quarks etc). For example, a proton has two up 

quarks whose charge is +2/3 and one down quark with its charge of -1/3. A neutron has zero 

charge as it has one up and two down quarks, respectively [7].    

 

Because of the high energy density, initially the number of protons and neutrons were same 

due to high temperatures. But, as the universe expanded with time and the overall 

temperature decreased, the proton forming reactions were favored. According to the 

predictions made by several astrophysical observations, by 13.82 seconds of the Big Bang the 

temperature had dropped to 3109 K [2, 4]. It has been observed that the simple atomic nuclei 

formed within first three minutes and more than thousand have been passed for the formation 

of the first electrically neutral atoms. The major elements/atoms produced from the Big Bang 

were hydrogen, helium and a little amount of lithium. The Giant clouds of these primordial 

gases later merge through gravity in order to form interstellar medium such as Stars and 

Galaxies etc.  
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Figure 1: Schematic representation of the formation of lighter elements such as Deuterium (D), Helium 

(He) through Nucleosynthesis. 

 

 

 
 

      Figure 2: Density of matter with time at different temperatures reproduced from the Refs [8, 9].  
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In the early universe, the ions or atoms thus produced from nucleosynthesis started colliding 

themselves with very high collision energies resulting the formation of new atoms and 

molecules or molecular ions those species. Formation of Deuterium (a heavier isotope of 

hydrogen) through the collision between a proton and a neutron. According to George F. 

Smoot, as shown in Figure 2, depicts how the density of different atoms and their isotopes 

changed as functions of time and temperature [8, 9]. Initially, there were only protons, 

neutrons and as time progressed, hydrogen, deuterium, tritium, helium etc. have been formed. 

For Helium (He) atom, the numbers of protons are equal to number neutrons therefore it is 

more stable compared to the other nuclei. It can be noted from Figure 2 that the neutrons and 

protons were produced at higher temperatures, the synthesis of other atoms like Deuterium 

(D), Helium (He), Beryllium (Be) etc have been started as the temperature slightly reduced.  

 

1.2 Interstellar Cooling  
 
After the formation of lighter elements, small molecules and the molecular ions such as H2, 

H2
+, Li2, Li2

+, CO, OH, H2O etc were started forming from the atomic species [10-13]. When 

fast moving atoms or ions collided with the molecules most of the kinetic energy of the atoms 

was absorbed by the molecules leading to either formation of a new species or excitation of 

the molecules to high energy quantum states. The excited species generally have shorter 

lifetimes. As they spontaneously relax to the ground state, excitation energy is generally 

released in the form of electromagnetic radiation. Most of the energy released from the 

excited molecules are emitted in random directions which gets dissipated in the surroundings. 

This absorption of collision energy and emission in the form of electromagnetic radiation 

happened in a cyclic manner in the early universe and significant amount of energy has been 

converted into background radiation leading to slowing down of the atoms and molecules of 

the system. This resulted in an overall slowing down of the colliding species and temperature 

of the interstellar medium gradually decreased [14, 15]. Atoms have only few quantum states 

where the electrons can be excited/de-excited through absorption/emission of radiation, on 

the other hand, molecules having additional vibrational and rotational degrees of freedom can 

have plenty of ro-vibrational levels where electronic transition can take place. For this reason, 

interstellar cooling process only initiated after the formation of molecules in the interstellar 

medium [16-18].   
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Figure 3: Mechanism of interstellar cooling: Excitation and de-excitation of molecules resulted in 

reducing their overall energy which dissipated in the background of the interstellar medium. 

 

Over many billion years, due to interstellar cooling through inelastic collisions, some parts of 

the interstellar medium became very cold. But, owing to low density of elements, the overall 

interstellar space remained highly inhomogeneous in temperature due to lack of thermal 

equilibrium. In other words, although some part of the universe remained very hot, parts of it 

became very cold. It has been found that the average temperature of the universe is ~3 K [19, 

20]. 

 

Molecular hydrogen (H2) is the most abundant species (~ 75% by mass) in the interstellar 

medium [21]. Thus H2 and its isotopic variant HD have served as the most important coolant 

molecules for the reduction of interstellar temperature.  

 

Few important reactions of astrophysical interest involving atomic hydrogen are:                                                                                                                                                                                                                                                                                                                                                                                     

H + e-  H- + h

e- 

H + H+  H2
+ + h 

H + e-  H- + h

e- 
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H + H+  H2
+ + h 

and few important reactions involving molecular hydrogen and its isotopes which contributed 

to the interstellar cooling are: 

H + H2     H2 + H 

H + H2
+   H2 + H+ 

H + D2   → HD + H 

D + H2      HD + H 

H + HD+   HD + H+ 

D+ + H2    HD + H+ 

H2
+ + D-    H2 + D etc. 

In order to understand the evolution process, we need to study all these reactions (and many 

more) for wide range of temperatures. Thus information of the accurate rate coefficients from 

very low temperature ( K or m K range) to thousands of Kelvin is required for modeling the 

evolution process.  

 

The efficiency of cooling, i.e. how much energy is lost per second at a particular temperature, 

is defined as cooling functions for a particular species [22]. To calculate the cooling 

functions, the knowledge of state-to-state rate coefficients is required from very high to very 

low temperatures for several chemical reactions leading to formation and destruction of that 

species. The radiative cooling functions are later coupled with the fractional abundance of 

that particular species to obtain the overall evolution of the interstellar medium. 

 

1.3 Quantum scattering of ultracold collisions 
 

Classically, light or electromagnetic radiation is believed to be waves and atoms, molecules, 

sub-atomic species are described as particles. But, it was realized in the beginning of the 

twentieth century that both mater and electromagnetic waves can interchange their properties 

and wave-particle duality is expected to be significant for sub-atomic particles. This was first 

demonstrated theoretically by de Broglie and later verified experimentally through electron 

diffraction experiments  [23, 24]. The properties of matter waves can be determined from its 

de Broglie wavelength as λ = h/mv, where m is the mass, v is the velocity of the particle, rand 

h is the Planck’s constant. In extremely low temperature conditions, the average kinetic 

energy of the colliding pairs is very small and the wave behavior of the particles are 

manifested so much that the quantum mechanical wave behavior cannot be neglected [25].  
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For example, the de Broglie wavelength of H2 molecule is 0.7123 Å at room temperature, 

whereas at 25 K, it is 22500 Å, which is much larger than the molecular dimension and thus 

needs to be represented accurately. Since the de Broglie wavelength is much larger, the 

particles can interact from very far internuclear separations [26]. Thereby, to study 

atomic/molecular collisions at ultralow temperatures accurate description of the long range 

interaction potential is very important. Inclusion of the long range interaction potentials 

change the conventional dynamical outcome of the colliding pairs as it is majorly governed 

by quantum mechanical tunneling [27].   

At very low collision energies, the centrifugal potential creates an impenetrable barrier for 

quantum states with orbital angular momentum quantum numbers ℓ > 0. Because of this, in 

the limit of ultracold temperatures, collisions are dominated only by the ground rotational i.e. 

ℓ = 0 (𝑠 − 𝑤𝑎𝑣𝑒) state of the molecule and reactions mostly happen through quantum 

mechanical tunneling. In 1948, Wigner reviewed general theory of quantum collisions and 

derived the expression for the energy dependence of the cross sections for elastic and 

inelastic collisions at the zero collision energy limit [28]. These expressions are referred to as 

Wigner’s threshold laws. These laws apply to collisions starting from a state (n) with a given 

orbital angular momentum ℓ, three processes can be distinguished.  

 Elastic collision 𝑛ℓ → 𝑛ℓ where the angular momentum ℓ and the internal energy has 

been conserved. n denotes the quantum numbers describing the rovibrational energy 

state. 

 Elastic collision 𝑛ℓ → 𝑛ℓ that means the internal energy is converged but not the 

angular momentum. 

 Inelastic collisions or chemical reactions 𝑛ℓ → 𝑛ℓ , in which the internal energy of 

the reacting particles and their angular momentum were changed.  

According to Wigner’s threshold law, the relationship between the collision velocity and the 

cross section for different processes as the following [28, 29], 

𝜎𝑛ℓ→𝑛ℓ ~ 𝜐𝑛
4ℓ 

𝜎𝑛ℓ→𝑛ℓ ~ 𝜐𝑛
2ℓ+2ℓ 

𝜎𝑛ℓ→𝑛ℓ  ~ 𝜐𝑛
2ℓ−1 
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Where, υ is the collision velocity, σ is the cross section, ℓ and ℓ are the respective angular 

momentums. For bimolecular reactions, if we write these equations in terms of the collision 

energy, this relationship would behave as [30]. 

𝜎(𝐸)  (𝐸 − 𝜖)𝑝/2;  𝑝 = 0, 1/2 

Where 𝜎(𝐸) is the collision energy dependent reaction cross section, 𝐸 is the collision 

energy, ϵ is the threshold energy of state n. 𝑝 is a number which is determined according to 

the nature of the reaction: 𝑝 = 1 for endothermic and -1 for exothermic reaction. It is clear 

that the inelastic cross sections are inversely proportional to the collision energy. Similarly in 

the ultralow collision energy limit, elastic cross section will be constant in the ultracold 

regime.  

         Collisions between atoms and molecules are highly dependent on the relative velocity 

of colliding pairs. Especially with low relative velocities, the formation of long-lived 

collision complexes (van der Waal’s complex) is possible. As the collision energy of the 

colliding particles match with that of the van der Waal’s complexes, they form resonances. It 

is evident from previous theoretical and experimental studies that these resonances can 

change the dynamics of chemical reactions drastically at low temperature limit [31-33]. 

Because of the sudden phase change of the corresponding wave function, the collision cross 

sections undergo large changes in its amplitude which leads to huge increase in the rate 

coefficients for certain situations [34-36]. Most of these resonances at ultralow collision 

energies are experimentally realized for ultracold atomic systems (Rb2, RbCs, LiRb etc) 

under the influence of external magnetic and electric fields [37]. However, for atom-molecule 

ultracold collisions, the study of resonances is still challenging because of experimental 

limitations.  

As it has been observed the long-range part of the potential energy surfaces (PESs) plays an 

important role in reaction dynamics at the ultracold temperature limit. Any quasi-bound states 

in the van der Waals region of the potential energy surface may undergo pre-reaction. These 

regions of the PES which are not in the vicinity of the transition state may influence the 

outcome of the overall reaction. There are different kinds of scattering resonances [36] that 

can influence the rate coefficients at ultracold temperature limit (e.g. threshold resonances 

[35, 38], shape resonances[34] and Feshbach resonances [39, 40] etc).  
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1.4 Recent advances of the ultracold atoms, molecules and their applications 

In recent years, the availability of different cooling and trapping techniques for atoms and 

molecules allow the investigation of cold and ultracold collisions of a wide variety of 

systems. Apart from astrophysical interest, ultracold atoms and molecules have general 

importance in various applications like atomic clocks [41], quantum information sciences, 

precision measurement [37-41] and high resolution spectroscopy [42, 43]  etc. The ability to 

cool, trap and manipulate the cold and ultracold atoms and molecules is challenging but has 

lot of promising applications in both fundamental science and technology. 

              The properties of the ultracold bosonic and fermionic species had been predicted in 

the beginning of the ninth century [44] , but it was realized experimentally only recently after 

the development of laser cooling techniques [33]. In Figure 4 we have depicted a general 

scheme of laser cooling technique that can be used to attend very low temperature (T ~ 10-3 

K) using multiple coherent laser beams. An atom initially in its ground state is allowed to 

move against the laser light. The frequency of the laser light is slightly red-detuned (the 

energy of laser beam is lower than the transition energy) so that only when the atoms are 

moving directly opposite towards the laser beam, due to Doppler effect the atom would be 

able to absorb the energy of the laser beam and promoted to the excited state. The excited 

atoms will spontaneously emit the absorbed energy as electromagnetic radiation in order to 

return to their ground state and thereby slow down the atoms before getting ready to start this 

cycle again. Thus, through this cyclic absorption and emission process in random direction, 

the energy of the system is dissipated in the background and eventually the overall system 

cools down [45]. 

When atomic gases are confined at sufficiently high density, the cold atoms tend to establish 

a thermodynamic equilibrium. The energy distributions of these atoms are usually given by 

Boltzmann distribution. The cold atoms thus prepared through laser cooling are confined 

under the influence of optical and magnetic field in magneto-optical traps (MOT) [46-48] . 

When the potential of the MOT is reduced gradually, certain atoms with larger collision 

energies escape from the trap. At this stage a new equilibrium is established and the overall 

temperature of the ensemble is further decreased. This technique is known as evaporate 

cooling [49-51]. Using evaporative cooling the atoms can be cooled down to ultracold       

(10-6 K) temperature limit. 
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Figure 4: An atom absorbing a photon with momentum ћk. The atom is now in the excited state and has 
increased its velocity by ћk/m in the direction of laser beam. The internal atomic energy is released by 

spontaneous emission which leads to the overall reduction in the kinetic energy of the system.  

 

Evaporative cooling technique relies on removing the particles with higher kinetic energies 

and redistributing the residual energy among the remaining particles by elastic collisions so 

that temperature falls. Both elastic and inelastic (reactive) collision rates can be tuned by 

controlling the strength of the applied external fields and the trap depth. In this scenario, the 

ratio (branching ratios) of elastic and inelastic collisions play an important role to attain cold 

atoms/molecules remain inside the trap (MOT). 

After the first realization of ultracold Rb atoms using laser cooling techniques [52-55], many 

other direct cooling techniques such as Stark decelaration [56, 57], Buffergas cooling [58], 

Sympathetic cooling [59] and Photoassociation [60-62], Magnetoassociation [63-65], 

Simulated Raman Adiabatic Passage (STIRAP) [66] have been used to attend very cold to 

ultralow temperature limit for a large number of atomic and molecular species. Main aim of 

cooling and trapping the atoms/molecules to ultracold temperatures was to realize quantum 

degeneracy, a new state of matter known as Bose-Einstein condensation [67].  Apart from 
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studying the exotic form of matter in the Bose-Einstein condensates, there are several other 

research areas that had emerged from the ultracold atoms. For example, high resolution 

spectroscopy under Doppler free conditions, time dependence of fundamental constants (the 

ratio of proton mass to that of the electron in the cosmological models), lifetime 

measurements up to micro-nano second range etc. Apart from these, ultracold 

atoms/molecules are used to build new atomic clocks, a system for quantum information 

processing and storage.  

1.5 Gap in Existing research  

Why are collisions so important in the mK (cold) and K (ultracold) regime? 

While initial studies on cold and ultracold atoms/molecules were focused on the creation of 

dense samples of ultracold matter, recent studies have been mostly on the ultracold collisions, 

controlling and the intermolecular interactions [68]. External control of chemical reactions 

using electric/magnetic fields is an active area of interest. In contrast to scattering at thermal 

energies, ultracold collisions offer unique opportunities in the extreme quantum regime where 

the scattering is mostly dominated by a single partial wave (s-wave only). One of the main 

goals is to create dense samples of ultracold molecules and retain them for sufficiently longer 

time in MOT to study chemical reactions close to absolute zero temperature.  

After the successful realization of ultracold atoms, theoretical studies have been received an 

immense interest. It is also possible to calculate kinetic parameters such as reaction cross-

sections and rate coefficients from the dynamical calculations and these would be immensely 

helpful to select suitable systems for experimental measurement. 

How the energy of the atoms/molecules are lost in a trap is an important question for these 

experiments. In photoassociation technique, molecules were produced in highly excited 

vibrational levels. Whether the molecules decay by vibrational quenching or through a 

chemical reaction is the question. In this scenario, detailed investigation of different 

processes (elastic, inelastic and reactive) at very low temperatures using their dynamics is 

required to understand the stability of molecules. 

Vibrational relaxation rate coefficients are often influenced by the presence of van der Waals 

complexes (bound states) formed during the collision process. The decay of these complexes 

leads to resonances in the energy dependence cross-sections [35]. It has been demonstrated 

that the vibrational pre-dissociation (quenching) lifetimes of resonances that lie close to the 
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threshold energy can be derived accurately from the value of zero temperature quenching rate 

coefficients [69, 70]. Further, this formalism was extended to describe the quenching of 

trapped molecules and proved that rate coefficients controlled by weakly bound states of the 

van der Waal complexes [71]. A larger value of rate coefficients in the zero-temperature limit 

is due to the wave behavior of atom which can tunnel through the narrow energy barrier and 

found to be efficient. The effect of tunneling can be studied for different processes using the 

magnitude of cross-section or the rate coefficient [27, 72]. 

Due to their application in quantum information sciences and precision measurements, 

getting cold molecules into a desired quantum regime is important [57, 73, 74]. But in 

practice, it is difficult because of the internal rovibrational structure of the molecules. 

Furthermore, due to very low collision energy, the collisional process would be suppressed as 

the reaction barrier is effectively raised. Therefore, the theoretical investigation of these 

interactions between atoms and molecules is important. It is worthwhile to mention that the 

exact treatment of collision processes is challenging considering all possible collision 

channels and number of possible outcomes of the collision event. 

For atom-diatom system, there are few open source reactive scattering codes available such 

as, MOLSCAT [75], ABC [76] and a MATLAB based reactive scattering program [77] etc. 

They have been tested for different benchmark reactions such as H + H2, D + H2, H + D2,      

F + H2 in the thermal region. But in the ultracold temperature limit, the kinetic energy of 

reacting partners is very small, thus one has to modify and test these codes to make it suitable 

for all atom-diatom collisions in the ultralow collision energy limit.  It has been found that 

there is no systematic study exist which connects both ultracold and thermal regimes. To 

address this issue we have adopted the ABC [76] reactive scattering code and modified 

suitably to study ultracold collisions of D + H2 reaction and its isotopic substitutions.  

Few major objectives of this thesis are listed as follows: 

 The effect of rovibrational excited states of the target molecule for cold and ultracold                                        

collisions, on the behavior of reaction cross sections and the reaction probabilities. 

 To investigate the origin of different resonances (Threshold, Shape and Feshbach) and 

their effect on the dynamics in the ultracold temperature limit. 

 To calculate the accurate rate coefficients from ultracold (~ 1 K) to thermal             

(~ 300 K) temperature limit. 
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          In Chapter 2, a brief review on classical theories such as transition state theory (TST), 

Arrhenius theory of temperature dependence of the rate coefficients and collision theory have 

been presented. Classical theories consider all the atoms and molecules as billiard balls to 

estimate the rate coefficients at different temperatures.  We have also described the quantum 

mechanical approach to molecular collisions where all the atoms and molecules will be 

treated as quantum waves. After briefly reviewing the atom-atom collisions, we have 

extended discussion on atom-diatom molecular collisions using Delves hyperspherical 

coordinates. The calculation of the Scattering matrix (s-matrix) and all the dynamical 

parameters such as reaction probability, cross-sections and reaction rate coefficients has been 

discussed at length.  

            In chapter 3, we have discussed the convergence scheme for some of the numerical 

parameters required to calculate low energy scattering matrix. Three major parameters that 

have been tested are (i) is the diatomic basis is large enough? (ii) is the integration step () 

is small enough? and (iii) if the asymptotic behavior of the potential is large enough? This 

numerical convergence issue has been addressed in a detailed manner with respect to the size 

of the basis functions, extent of radial propagation and integration step etc. In order to do this, 

new modules in the ABC reactive scattering code have been introduced and the code has been 

extensively modified for calculations reported in this thesis. The long range part of the 

potential energy surface is very sensitive for ultracold collisions. We have made a thorough 

review of the available PES for D + H2 reaction and optimized the parameters for ultracold 

reactive scattering.  

             In the first part of chapter 4, we have presented accurate time-independent quantum 

mechanical (TIQM) rate coefficients for the formation of ultracold HD molecules by D + H2 

(v, j) HD (v, j) +H reaction in the ultralow temperature regime. The dynamical parameters 

such as the state resolved integral cross sections, reaction probabilities and corresponding rate 

coefficients are computed between temperature T = 1μ K – 10 K. We have found that the 

exponential decrease of the rate coefficients with reducing temperature following Arrhenius’ 

empirical equation is not valid at ultracold temperature limit. At lower temperatures, the rate 

coefficients become independent of temperature (constant) which is in accordance of the 

Wigner’s threshold law [78]. We have observed a dynamical resonance near ~10-2 K and tried 

to understand their origin. Finally, we have calculated the rate coefficients of both inelastic 

and reactive processes which are important for the calculation of the cooling functions. 
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In the second and third part of the chapter 4, we have extended our calculations from the 

ultracold to the intermediate and thermal temperature limit.  As the temperature increased, the 

contributions from higher partial waves are included. At T ~150 K, we may have to consider 

upto ℓ = 35 partial waves. We have compared our findings with the available experimental 

values and observed that the reaction cross sections and rate coefficients are comparable in 

the thermal temperature range.  

Quantum reaction dynamics of H + HD (v, j) reaction from ultracold to thermal regime has 

been discussed in chapter 5. Unlike H2, HD molecule has some resultant dipole moment and 

higher reduced mass which makes it better interstellar coolant. For this reaction (H + HD), 

elastic, quenching, exchange and the formation of H2 processes have been treated separately. 

The effect of higher rovibrational initial states on the dynamics is also analyzed. We have 

found that the quenching process is more dominant over H exchange and the formation of H2 

in the ultracold temperature limit.  

We have also studied few organic reactions to understand the mechanism of the phospha 

Brook rearrangement, this work is presented separately as an Appendix. 
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Chapter - 2 

 Theoretical Methodology  

2.1 Introduction 

The classical hard-sphere collision theory to estimate the rates of chemical reactions was used 

extensively, but has been found to be unsatisfactory for many elementary chemical reactions 

[1]. The crossed molecular beam experiments have recently been developed and it is now 

possible to obtain detailed experimental information about reaction mechanisms [2, 3] e.g., 

one can measure the energy and angular distributions of the product molecules. Since the 

philosophy behind the crossed molecular beam experiments is based on quantum mechanics, 

classical reaction rate theories cannot interpret those results. These experiments have led to 

the formulation of alternative theories based on accurate quantum mechanical principles that 

can treat molecular collisions in more realistic manner. 

In 1986, soon after the first successful experiments reported optical cooling and trapping in 

alkali gasses, scientists had started working more rigorously on the possible consequences of 

binary collisions in cold or ultracold gaseous medium [4]. At very low temperatures the wave 

nature of the translational motion become quite large and quantum mechanical treatment is 

essential to represent their collision. The theoretical methods applied for the analysis of 

ultracold scattering experiments is briefly described in this chapter. We restrict our discussion 

on the time-independent non-relativistic quantum treatment for multi-channel scattering 

experiments. In this chapter we intend to bridge the gap between scattering dynamics from 

ultracold to thermal temperature region, therefore we start with brief description of the 

classical theories of collision dynamics.  

2.2 Classical theories of molecular collisions 

 

Classical collision theory was first proposed by  Max Trautz in 1916 and William 

Lewis independently in 1918 [5, 6]. This theory explains how chemical reactions take place 

and why reaction rate coefficients are different for different kind of reactions. According to 

collision theory, when reactant particles collide with each other, only a certain percentage of 

the collisions cause any significant chemical change; these successful collisions are called 

fruitful collisions. These fruitful collisions have enough energy to overcome the activation 

energy, at the time of collision. As a result, new chemical bonds form leading to new species 
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(products). Several factors such as the concentration of the reactants, temperature, pressure 

etc. can influence the collision events and thereby can change the rate of reaction. 

 

 

Figure 1: a) b is the impact parameter. b) Illustrative representation of atom-atom collisions and the 

concept of cross section.  

In Figure 1 collision between two atoms is schematically shown. If the impact parameter 

(overall distance between the colliding pairs) is larger, the atoms miss out each other and 

there would be no collision. The maximum value of impact parameter for a collision to occur 

is the sum of the radii of the two atoms (b = r1 + r2). If atom A lies within the area of the 

circle (Area = πR2), then collision can take place. This effective area which quantifies the 

collisional event when an incident atom strikes a target atom is classically called the collision 
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cross section (σ = π R2, where R = r1 + r2). Another important parameter is the angle of 

scattering (α) after the collision. From the Figure 1, it can be calculated that the impact 

parameter  

𝑏 = 𝑅𝑠𝑖𝑛 

 + 2 =   

Thus, 

𝑏 = 𝑅𝑠𝑖𝑛 ( 
 − 

2
 ) = 𝑅𝑐𝑜𝑠



2
 

Colliding atoms with an impact parameter b to b + db are scattered within scattering angle  

to  + d. Therefore, the scattering cross section in terms of polar angles  +d  is 

2𝑏|𝑑𝑏| = 2𝑅 (𝑐𝑜𝑠


2
 ) |𝑅𝑠𝑖𝑛



2
 
𝑑

2
|  =  

1

2
𝑅2 sin   𝑑 

The differential cross section is defined as the flux of atoms scattered into a solid angle 

(d = sin  𝑑  𝑑𝜙) over the flux of incident atoms. Since the azimuthal angle is not used in 

this case, the solid angle is integrated which becomes 2 sin  𝑑. Thus, In order to calculate 

the differential cross section, one needs to know the scattering angle. 

The differential cross section can be written as [7], 

𝑑𝜎

𝑑
=  

𝑅2

4
 

Upon integration of the differential cross section over all angles, total cross section or integral 

cross section can be calculated as,  

∫ 𝑑 
𝑑𝜎

𝑑
=  ∫ sin  𝑑𝜃 ∫ 𝑑𝜙 

𝑑𝜎

𝑑

2

0



0

 

                                                            

                      =  
𝑅2

4
 ∫ sin 𝜃 𝑑 ∫ 𝑑𝜙

2𝜋

0

𝜋

0

 

                                                               =  𝜋𝑅2  

According to collision theory of gases, the rate constant for bimolecular gas-phase reactions 

is equal to the rate of successful collisions.  
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The rate of fruitful collisions  known as the rate coefficient is proportional to the fraction of 

fruitful collisions multiplied by the overall collision frequency [7]  

𝑘(𝑇) = 𝑍 𝑒𝑥𝑝(
−𝐸𝑎

𝑅𝑇⁄ ) 

Where Z is the collision frequency of the reaction, T is the temperature, Ea is the activation 

energy and R is the gas constant.   

From statistical thermodynamics, collision frequency (𝑍) =  𝑁𝐴𝜎𝐴𝐵√
8𝐾𝐵𝑇

𝜋𝐴𝐵

, where NA is the 

Avogadro number, 𝜎𝐴𝐵 is the reaction cross section 𝑘𝐵is the Boltzmann’s constant and  
𝐴𝐵

 

is the reduced mass of the reactants. The above reaction rate constant resembles the 

Arrhenius equation in which Z becomes the pre-exponential factor. The rate coefficients of 

chemical reactions strongly depend upon the temperature. For many reactions, the 

temperature dependent rate constant is described by following Arrhenius formula [6]: 

𝑑𝑙𝑛𝑘

𝑑𝑇
=  

𝐸𝑎

𝑅𝑇2
 

Where 𝐸𝑎 have units of energy. If 𝐸𝑎 is independent of temperature, the above equation can 

be written as follows, 

𝑙𝑛𝑘 = 𝑙𝑛𝑍 − 
𝐸𝑎

𝑅𝑇
 

This empirical equation was derived from many experimental observations without any 

mechanistic considerations. One or more reactive intermediates are involved in the 

conversion from reactants to the products.  Thus, further development was necessary to 

understand two key parameters present in this law i.e. the pre-exponential factor (Z) and the 

activation energy (Ea). Further, Transition State Theory (TST), which was developed later 

could able to relate the physical significance of these parameters.  

Transition state theory represents how reactions generally take place at the molecular level [5, 

6]. Considering a general reaction,  

A + B  P; rate coefficient = 𝑘 

 The rate law is given by    

𝑑𝑃

𝑑𝑡
= 𝑘 [𝐴][𝐵] 
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According to this theory, the reaction coordinate from reactants to products passes through a 

transition state which has higher energy compared to the reactants and the corresponding 

products. It is represented as the highest point on the energy profile diagram as shown 

schematically in Figure 7.  

 

TST assumes that pre-equilibrium is first established between the reactants and the transition 

state which then leads to the formation of the products. Here K# is the equilibrium constant 

for the pre equilibrium. 

 

Figure 2: The general representation of the potential energy of the reactants, products and the transition 

state. 

AB
  is the activated complex or the transition state. The equilibrium constant defined as  

𝐾𝑐
 =  

[𝐴𝐵]

[𝐴][𝐵]
 . Now the rate coefficient    𝑘 =  

𝐾𝐵𝑇

ℎ𝑐𝑜
 𝐾  and  𝐺 =  −𝑅𝑇 ln 𝐾 , thus the rate 

coefficient is 𝑘 =  
𝐾𝐵𝑇

ℎ
 𝑒

−𝛥𝐺
𝑅𝑇 . But since ΔG = ΔH – TΔS, the expression of the rate 

coefficient can be modified as   

𝑘 =  
𝐾𝐵𝑇

ℎ𝑐𝑜
 𝑒

𝛥𝑆

𝑅  𝑒
−𝛥𝐻

𝑅𝑇  

This equation is very similar to the Arrhenius equation 𝑘 = 𝐴𝑒
−𝐸𝑎

𝑅𝑇⁄ . The factor 
𝐾𝐵𝑇

ℎ𝑐𝑜  𝑒
𝛥𝑆

𝑅   

relates to the pre-exponential factor A where, 𝛥𝑆 is the entropy change for the bimolecular 
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reaction. The activation energy Ea resembles –ΔH# which can be estimated from the reaction 

profile. 

Although, the Arrhenius equation had been used extensively to determine the activation 

energies of chemical reactions, the plot of 𝑙𝑛𝑘 versus 1/𝑇 for some reactions is not linear [8]. 

This nonlinear behavior can be rationalized by considering temperature dependent of the 

frequency factor and accordingly the reaction rate constant would behave like 

𝑘 = 𝑎𝑇𝑚𝑒
−𝐸

𝑅𝑇⁄
 

Where a, 𝐸 and m (= 1, 1/2, -1/2) are temperature independent constants. But still this 

modified Arrhenius equation fails to explain the behavior of the rate coefficients as it 

becomes constant at the ultralow temperature limit.  

Some literature reviews have suggested that the deviations from Arrhenius equation are  due 

to (i) Quantum mechanical effects (ii) Reaction medium (iii) quasi-thermodynamic effects 

etc. [9, 10]. Apart from explosion reactions, reactions involving enzymes also  do not follow 

Arrhenius theory of temperature dependence [6]. But none of these theories take into account 

of the energy distribution among the rovibrational states when two molecules collide with 

each other. At very low temperatures, colliding pairs will not have sufficient energy to cross 

over the barrier to form products but still the reaction can happen through quantum 

mechanical tunneling which does not have any classical analog [11, 12]. The temperature 

dependence of the rate coefficients differs significantly from the Arrhenius behavior at the 

ultracold temperature limit.   

2.3 Atom-atom collisions: The wave picture of the scattering process  

In quantum mechanical treatment, the relative motion of two colliding particles approaching 

each other is represented by a plane waves. Such a plane wave has well-defined linear 

momentum and following the Heisenberg’s uncertainty principle, it is totally delocalized in 

coordinate space. Considering the incident particle as a plane wave approaching from the 

negative Z direction and the scattering center is located at the origin, its wave function can be 

written as [1, 7, 13]:  

                                                   𝜓𝑜(𝑟, 𝐸) =  (
𝑘

2𝜋ℎ2
)

1/2

𝑒𝑖𝑘.𝑟 ,                                                       (2.1) 
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where, subscript o indicates the solution of the problem in absence of any interaction 

potential at collision energy E, k is the wavenumber or momentum  (𝑘 =
√2𝐸

ћ
) and  is the 

reduced mass.  

If the interaction potential is taken to be spherically symmetric, the azimuthal angle 𝜙 plays 

no role in the collision processes. After the collision, the particle is scattered into different 

polar angles with a scattering amplitude of 𝑓(𝜃). At large distances from the scattering center 

the wave function therefore takes the form [7] 

                             Ψ(𝑟, 𝐸) =  (
𝑘

2𝜋ℎ2
)

1/2

{𝑒𝑖𝑘.𝑧 + 𝑓(𝜃)
𝑒𝑖𝑘.𝑟

𝑟
}                                                  (2.2) 

The term 𝑒𝑖𝑘.𝑧 is the incident wave, while 𝑓(𝜃)𝑒𝑖𝑘.𝑧 represents the scattered wave moving 

away from the scattering center. The number of atoms crossing a unit area per unit time 

(incident flux) of atoms corresponding to the plane wave 𝑒𝑖𝑘.𝑧 is  
𝑘ћ


|𝑒𝑖𝑘.𝑧|

2
=  

ћ𝑘


. The solid 

angle 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 subtends an area of 𝑟2𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 on the surface of radius 𝑟 located on the 

scattered center. As we consider the collision to be elastic, the radial momentum remains 

unchanged by the collision and equals to 𝑘ћ. The flux of atoms passing through the small 

area 𝑟2𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 on the surface of the sphere arising from the scattered wave  𝑓(𝜃)𝑒𝑖𝑘.𝑧 is 

therefore  

𝑘ћ


|𝑓(𝜃)

𝑒𝑖𝑘.𝑟

𝑟
|

2

𝑟2𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 =  
ћ𝑘


|𝑓(𝜃)|2𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 

 

Now, the differential cross section is defined as the flux of scattered atoms into a given solid 

angle divided by the incident flux of atoms.  

Therefore, 

                                 𝜎() 𝑑 =  

ћ𝑘


|𝑓(𝜃)|2𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙

ћ𝑘


                                                        (2.3) 

So the differential cross section is given by  

                                                               𝜎() =  |𝑓(𝜃)|2                                                            (2.4) 
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The description for the reaction dynamics and the behavior of atoms/molecules near ultracold 

temperatures can be found in various text books, and discussed later in section 2.8 [1, 7, 11-

14]. 

2.4 Solution of the Time-Independent Schrödinger Equation (TISE) 

At the scattering center, the wave function can be found by solving the time independent 

Schrodinger equations. 

                                             {−
ћ2

2
  2 + 𝑉(𝑟)}  𝜓(𝑟) = 𝐸 𝜓(𝑟)                                               (2.5) 

There are two linearly independent solutions to this equation; we focus in the regular solution 

which tends to be zero near the origin where the interaction potential becomes infinite. 

Introducing the spherical polar coordinates [15, 16] the 𝐸𝑞. 2.5 becomes: 

   −
ћ2

2
{

1

𝑟2
 


 𝑟
𝑟2
𝜓

 𝑟
+  

1

𝑟2
[

1

𝑠𝑖𝑛𝜃



 𝜃
(𝑠𝑖𝑛𝜃

 𝜓

 𝜃
) +

1

𝑠𝑖𝑛2𝜃

  2𝜓

 𝜙2
]} + 𝑉(𝑟)𝜓 = 𝐸 𝜓         (2.6) 

The above equation (E𝑞. 2.6) is separable if we multiply with 𝑟2. The angular wave functions 

are the Eigenfunctions of the orbital angular momentum operator  

      − ћ2 [
1

𝑠𝑖𝑛𝜃



 𝜃
(𝑠𝑖𝑛𝜃

 𝜓

 𝜃
) +

1

𝑠𝑖𝑛2𝜃

 2𝜓

 𝜙
] 𝑌𝑙𝑚(𝜃, 𝜙) = ℓ (ℓ + 1)ћ2𝑌𝑙𝑚(𝜃, 𝜙)             (2.7) 

Where, 𝑌𝑙𝑚(𝜃, 𝜙) are the spherical harmonics [17]. Now the total wave function will be in the 

form of 

                                                           𝜓ℓ,𝑚(𝑟) =  
1

𝑟
 𝜒ℓ(𝑟)𝑌ℓ𝑚(𝜃, 𝜙)                                            (2.8) 

extra factor of  
1

𝑟
  is introduced so as to simplify the ensuing differential equation in the radial 

coordinate 𝑟. Substituting 𝐸𝑞 2.8 into 𝐸𝑞 2.6 we get, 

                                    
ћ2

2
[
 2

 𝑟2
+

ℓ(ℓ + 1)

𝑟2
] 𝜒ℓ(𝑟) + 𝑉(𝑟)𝜒ℓ(𝑟) = 𝐸 𝜒ℓ(𝑟)                           (2.9)  

this can be written as 

                         −
ћ2

2

 2

 𝑟2
𝜒ℓ(𝑟) +  {𝑉(𝑟) +

ћ2

2

ℓ(ℓ + 1)

𝑟2
} 𝜒ℓ(𝑟) = 𝐸 𝜒ℓ(𝑟)                        (2.10) 
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The term in curly brackets in 𝐸𝑞. 2.10 is called the effective potential. At large 𝑟 both 

centrifugal potential (
ћ2

2

ℓ(ℓ+1)

𝑟2 ) and the interaction potential 𝑉(𝑟) tend to zero.  

The general solution to the E𝑞 2.9 can be written in the form of sines and cosines:  

𝜒(𝑟)~𝑟→∞ 𝐴𝑠𝑖𝑛 (𝑘𝑟 −
𝑙𝜋

2
+ 

ℓ
) 

                                                            = 𝐴
1

2𝑖
{𝑒𝑖(𝑘𝑟−

𝑙𝜋

2
+ℓ) −  𝑒−𝑖(𝑘𝑟−

𝑙𝜋

2
+ℓ)} 

                                                            = 𝐴 
𝑖ℓ+1𝑒−𝑖ℓ

2
{𝑒−𝑖𝑘𝑟 +  (−1)−(ℓ+1)𝑒−𝑖(𝑘𝑟+2ℓ)}   (2.11) 

Where, 𝑘 is the wave number and 
ℓ
 is the phase shift which represents the difference in 

phase of the wave function compared to the solution in the absence of potential.   

The radial equation (𝐸𝑞 2.9) for free motion has two linearly independent solutions when 

V(r) = 0. These are called as Riccati-Bessel functions [18] 𝑗ℓ̂(𝑘𝑟) = 𝑘𝑟𝑗ℓ(𝑘𝑟) and 
ℓ̂
(𝑘𝑟) =

𝑘𝑟
ℓ
(𝑘𝑟) where 𝑗ℓ(𝑘𝑟) and 

ℓ
(𝑘𝑟) are the closely related spherical Bessel functions [19]. 

The regular solution 𝑗ℓ̂(𝑘𝑟) goes to zero at the origin where the centrifugal potential 
ћ2

2

ℓ(ℓ+1)

𝑟2  

becomes infinite. The irregular solution 
ℓ̂
(𝑘𝑟) becomes infinite as 𝑟 →  0. At large 𝑟 values 

the solutions behave as below 

𝑗ℓ̂(𝑘𝑟) = 𝑘𝑟𝑗ℓ(𝑘𝑟) ~  𝑟→∞ sin (𝑘𝑟 −  
ℓ𝜋

2
) 

                                        
ℓ̂
(𝑘𝑟) =  𝑘𝑟

ℓ
(𝑘𝑟)~  𝑟→∞ − cos ( 𝑘𝑟 −  

ℓ𝜋

2
)                               (2.12) 

   

2.5 Plane wave expanded in terms of partial waves. 

The plane wave can be expanded in terms of regular Bessel functions which is travelling 

along the positive Z direction 

𝑒𝑖𝑘𝑧 = ∑(2ℓ + 1)𝑖ℓ

∞

ℓ=0

𝑗ℓ(𝑘𝑟)𝑃ℓ(𝑐𝑜𝑠𝜃) 

(2.13) 
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where, 𝑃ℓ(𝑐𝑜𝑠𝜃) are the Legendre polynomials [20, 21], submitting 𝐸𝑞 2.12, 𝐸𝑞 2.13 in 

𝐸𝑞 2.2 , we obtain the following equation. 

𝜓(𝑟, 𝐸) ~𝑟→∞  (
𝑘

2𝜋ℎ2
)

1
2

{∑(2ℓ + 1)𝑖ℓ
1

𝑘𝑟

∞

ℓ=0

 x sin (𝑘𝑟 −
ℓ𝜋

2
 ) 𝑃ℓ(𝑐𝑜𝑠𝜃) + 𝑓(𝜃)

𝑒𝑖𝑘𝑟

𝑟
} 

                   

           =   (
𝑘

2𝜋ℎ2
)

1
2

{∑(2ℓ + 1)𝑖ℓ
1

𝑘𝑟

∞

ℓ=0

 
1

2𝑖
(𝑒𝑖(𝑘𝑟−

ℓ𝜋
2

) −  𝑒−𝑖(𝑘𝑟−
ℓ𝜋
2

)) x 𝑃ℓ(𝑐𝑜𝑠𝜃) +  𝑓(𝜃)
𝑒𝑖𝑘𝑟

𝑟
}  

     =    (
𝑘

2𝜋ℎ2
)

1
2

{∑(2ℓ + 1)𝑖ℓ
1

𝑘𝑟

∞

ℓ=0

 
1

2𝑖
 
(−1)ℓ+1

2𝑖
{𝑒−𝑖𝑘𝑟 + (−1)−(ℓ+1)𝑒𝑖𝑘𝑟} x 𝑃ℓ(𝑐𝑜𝑠𝜃)

+  𝑓(𝜃)
𝑒𝑖𝑘𝑟

𝑟
}                                                                                             (2.14) 

Again, it is required to expand the scattering amplitude 𝑓(𝜃) in terms of the Legendre 

polynomials in order to relate with the phase shift. 

                                             𝑓(𝜃) =  ∑ 𝑓ℓ

∞

ℓ=0

𝑃ℓ(𝑐𝑜𝑠𝜃)                                                              (2.15)      

This summation is known as the partial wave expansion where the number of partial waves 

contributing to the scattering dynamics determined from numerical convergence studies and 

𝑓ℓ constitutes the amplitude of the partial waves. 

𝜓(𝑟, 𝐸) ~𝑟→∞  (
𝑘

2𝜋ℎ2
)

1
2

{∑(2ℓ + 1)𝑖ℓ
1

𝑘𝑟

∞

ℓ=0

 
1

2𝑖
 
(−1)ℓ+1 

2𝑖
 x {𝑒−𝑖𝑘𝑟  

+ (−1)−(ℓ+1)𝑒𝑖𝑘𝑟} x 𝑃ℓ(𝑐𝑜𝑠𝜃) ∑ 𝑓ℓ

∞

ℓ=0

𝑃ℓ(𝑐𝑜𝑠𝜃)
𝑒𝑖𝑘𝑟

𝑟
 } 

                = (
𝑘

2𝜋ℎ2
)

1
2 1

𝑟
 {∑ [(2ℓ + 1)

(−1)ℓ+1

2𝑖𝑘
𝑒−𝑖𝑘𝑟 + ((2ℓ + 1)

1

2𝑖𝑘
+ 𝑓ℓ) 𝑒𝑖𝑘𝑟]

∞

ℓ=0

𝑃ℓ(𝑐𝑜𝑠𝜃)} 
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               =  (
𝑘

2𝜋ℎ2
)

1
2 1

2𝑖𝑘
{∑[(2ℓ + 1)(−1)ℓ+1𝑒−𝑖𝑘𝑟

∞

ℓ=0

+ ((2ℓ + 1) + 2𝑖𝑘𝑓ℓ)𝑒𝑖𝑘𝑟]𝑃ℓ(𝑐𝑜𝑠𝜃)}                                                          (2.16)  

Comparing the relative coefficients of two waves 𝐸𝑞 2.16 and Eq 2.11 

                                  (−1)−(ℓ+1)𝑒𝑖(2ℓ) =  
((2ℓ + 1) + 2𝑖𝑘𝑓ℓ

(2ℓ + 1)(−1)ℓ+1
                                              (2.17) 

And thus, 

                                                                𝑓ℓ =  
(2ℓ + 1)

𝑘
𝑒𝑖ℓ sin

ℓ
                                         (2.18) 

Now, combining Eq. (2.18) with (2.4 ) and (2.15), the elastic cross section is  

                             𝜎() =  |∑
(2ℓ + 1)

𝑘
 𝑒𝑖ℓ sin

ℓ
𝑃ℓ(𝑐𝑜𝑠𝜃)

∞

ℓ=0

|

2

                                      (2.19) 

The condition for normalization of Legendre polynomials considered here is 

                                 ∫ 𝑃ℓ(𝑐𝑜𝑠𝜃)𝑃ℓ(𝑐𝑜𝑠𝜃)
𝜋

0

sin 𝜃 𝑑𝜃 =  
2𝛿ℓℓ

2ℓ + 1
                                        (2.20) 

Therefore, the total integral cross-section is given by 

𝜎 =    ∫ 𝜎()𝑑 

   =       ∫ 𝑑𝜙 ∫ |∑
2ℓ + 1

𝑘
𝑒𝑖ℓ sin

ℓ
𝑃ℓ(cos 𝜃)

∞

ℓ=0

|

2

sin 𝜃 𝑑𝜃
𝜋

0

2𝜋

0

 

   =      2𝜋 ∫ |∑
2ℓ + 1

𝑘
𝑒𝑖ℓ sin

ℓ
𝑃ℓ(cos 𝜃)

∞

ℓ=0

|

2

sin 𝜃 𝑑𝜃
2𝜋

0

 

 =      2𝜋 ∑
(2ℓ + 1)

𝑘

2ℓ + 1

𝑘

∞

ℓ=0,ℓ=0

𝑒𝑖(ℓ−ℓ) sin
ℓ

sin
ℓ

 x  ∫ 𝑃ℓ(𝑐𝑜𝑠𝜃)𝑃ℓ(𝑐𝑜𝑠𝜃) sin 𝜃 𝑑𝜃
𝜋

0
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  =    
4𝜋

𝑘2
∑(2ℓ + 1)𝑠𝑖𝑛2

ℓ

∞

ℓ=0

                                                                                                   (2.21)  

The integral cross section is represented as a sum of partial integral cross sections 

                                                                    𝜎 =  ∑ 𝜎ℓ                                   

∞

ℓ=0

                          (2.22)     

                                                                       =  
4𝜋

𝑘2
(2ℓ + 1)𝑠𝑖𝑛2

ℓ
                                      (2.23)       

Following correlation is observed between the partial wave quantum number ℓ and the 

classical impact parameter b which describes effective interaction between two particles. 

𝑏2~ 
ℓ(ℓ + 1)

𝑘2
 

The collision occurs when 𝑏 less than the distance at which their interaction potential is 

negligible. Due to high angular momentum of interacting particles, we need to consider 

hundreds of partial waves at room temperature or above. But in the cold and ultracold regime, 

dynamics is dominated by single partial wave ℓ = 0 (s-wave). Using electronic orbital 

terminology partial waves are often referred to as s-wave, p-wave and d-wave for ℓ =

0, 1, 2 and so on.  

2.6  Atom-molecule inelastic/reactive scattering dynamics  

In order to understand the theory behind atom-molecule inelastic collision process, we start 

with an atom-diatom system. There are three possible inelastic outcomes/channels which can 

arise when an atom and a diatom collides as schematically shown in Figure 3. When an atom 

(A) approaches a molecule (BC), one of the atoms of the diatomic molecule will be 

exchanged with atom A leading to a scattering process or if there is no exchange then the 

scattering is non-reactive and this process is said to be either elastic or inelastic. There may 

be a chance of three body break up at higher energies. 
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Figure 3: Representation of atom-diatom collision includes elastic, inelastic and reactive processes. 

 

Figure 4:  Schematic representation of atom-diatom collision in Jacobi Coordinates [7]. R is the distance 

from the incident atom (A) to the center of mass of the diatomic molecule (BC). The internuclear distance 

in the diatomic molecule is r and the angle between the two coordinates is .   

Jacobi coordinates is the most commonly used coordinate system for inelastic scattering 

processes (Figure 4). Here r, is the diatomic internuclear distance, R is the distance for the 

isolated atom to the center of mass of the diatomic molecule and the  is the angle between R 

and r. r is the separation coordinate of the two atoms of the diatomic molecule and 

consequently, the energy Eigenfunctions of the isolated diatomic molecule form a natural 

basis set for the expansion of the full wave function.  
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The Schrodinger equation for a system of atom-diatom in the center of mass reference frame 

is 

𝐻̂𝜓(𝑅, 𝑟, 𝐸) = {−
ћ2

2
𝑅

𝑅
  2 −

ћ2

2
𝑟

𝑟
  2 + 𝑉(𝑅, 𝑟 )} 𝜓(𝑅, 𝑟, 𝐸) 

                                             = 𝐸 𝜓(𝑅, 𝑟, 𝐸)                                                                           (2.24) 

The kinetic energy operators in the above Eq can be expanded as, 

         −
ћ2

2
𝑅

𝑅
  2 =   −

ћ2

2
𝑅

{
1

𝑅2
 


 𝑅
𝑅2

 𝜓

 𝑅
+  

1

𝑅2
[

1

sin 𝜃𝑅



 𝜃𝑅
(sin 𝜃𝑅

 𝜓

 𝜃𝑅
) +

1

𝑠𝑖𝑛2  𝜃𝑅

  2𝜓

 𝜙𝑅
]} 

            =  −
ћ2

2
𝑅

{
1

𝑅2
 


 𝑅
(𝑅2



 𝑅
)} +

ℓ̂2

2
𝑅

𝑅2
                                                                       (2.25) 

 

−
ћ2

2
𝑟

𝑟
  2 =  −

ћ2

2
𝑟

{
1

𝑟2
 


 𝑟
𝑟2
𝜓

 𝑟
+  

1

𝑟2
[

1

sin 𝜃𝑟



 𝜃𝑟
(sin 𝜃𝑟

 𝜓

 𝜃𝑟
) +

1

𝑠𝑖𝑛2𝜃𝑟

 2𝜓

 𝜙𝑟
]} 

         

                              = −
ћ2

2
𝑟

{
1

𝑟2
 


 𝑟
(𝑟2



 𝑟
)} +

𝑗̂2

2
𝑟

𝑟2
                                                            (2.26) 

Where ℓ is the angular momentum of atom with respect to the diatomic molecule and j is the 

angular momentum of the diatomic molecule. 
𝑅

,
𝑟
 are the reduced masses of the atom 

relative to the diatom and the reduced mass of the diatomic,  𝜃𝑅 , 𝜙𝑅 are the polar and 

azimuthal angles of the vector 𝑅, respectively, 𝜃𝑟 , 𝜙𝑟 are those for the diatom internuclear 

axis.  

Let us now imagine that if collision partners are far apart each other (i.e. R ∞), the 

interaction potential V (R  ∞, r,) no longer depends on the distance between the diatomic 

molecule and it is governed by only the diatomic potential due the vibrational motion,    

Vdiatom (r). The Schrodinger equation for the system becomes: 
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lim
𝑅→∞

{−
ℏ2

2
𝑅

𝑅
  2 −

ℏ2

2
𝑟

𝑟
  2 + 𝑉(𝑅, 𝑟 )} 𝜓O(𝑅, 𝑟, 𝐸)

=  {−
ℏ2

2
𝑅

𝑅
  2 −

ℏ2

2
𝑟

𝑟
  2 + 𝑉(𝑅, 𝑟 )} 𝜓O(𝑅, 𝑟, 𝐸)   =  𝐸 𝜓(𝑅, 𝑟, 𝐸)    (2.27) 

Where the subscript “𝑜” indicates the solution to the problem considered as there is no 

interaction between atom-diatom i.e. in the absence of interaction potential. In the limit of 

large R, the Hamiltonian and the wavefunction can be written as the product of a wave 

function in two vector coordinates 𝑅 and 𝑟. 
𝑣𝑗

(𝑟)Y𝑗,𝑚𝑗
(𝜃𝑟 , 𝜙𝑟) is the wavefunction for the 

diatomic molecule where Y𝑗,𝑚𝑗
(𝜃𝑟 , 𝜙𝑟) is the spherical harmonics. The Eigenfunction of 

angular momentum operator which obeys the following equation:   

                       𝑗̂2 Y𝑗,𝑚𝑗
(𝜃𝑟  , 𝜙𝑟) = 𝑗(𝑗 + 1)ℏ2 Y𝑗,𝑚𝑗

(𝜃𝑟 , 𝜙𝑟)                                                  (2.28)  

And the vibrational wavefunction 
𝑣𝑗

(𝑟) obeys the following equation 

[−
ℏ2

2
𝑟

{
1

𝑟2
 


 𝑟
(𝑟2



 𝑟
)} +  

𝑗(𝑗 + 1)ℏ2

2
𝑟
𝑟2

+  𝑉𝑑𝑖𝑎𝑡𝑜𝑚(𝑟)] 
𝑣𝑗

(𝑟) =  𝜀𝑣𝑗𝑣𝑗
(𝑟)                (2.29) 

Therefore, the overall wavefunction in the absence of the interaction potential can be written 

as a plane wave corresponding to the motion of atom-diatom collision system multiplied by 

the vibrational-rotational wavefunction. 

                                𝜓𝑜(𝑅, 𝑟, 𝐸) =  (
𝑘𝑣𝑗

2𝜋ℎ2
)

1/2

𝑒𝑖𝑘.𝑅
𝑣𝑗

(𝑟)Y𝑗,𝑚𝑗
(𝜃𝑟 , 𝜙𝑟)                           (2.30)     

Unlike atom-atom collisions, a diatomic molecule has internal wavefunction and also 

possesses angular momentum. So large no of partial wave contributes expansion as we have 

discussed before.  

Now, let us consider the wavefunction at large separations of the scattering partners. Assume 

that the colliding partners approach along space-fixed Z-axis, then the plane wave 𝑒𝑖𝑘.𝑟 

becomes 𝑒𝑖𝑘.𝑧 and in analogy to 𝐸𝑞. 2.2, we can write the asymptotic form of wave function 

at large separation as 
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𝜓(𝑅, 𝑟, 𝐸) 𝑅 ∞̃ (
𝑘𝑣𝑗

2𝜋ℎ2
)

2

[𝑒𝑖𝑘𝑣𝑗𝑍
𝑣𝑗

(𝑟) Y𝑗,𝑚𝑗
(𝜃𝑟  , 𝜙𝑟)

+  ∑ 𝑓𝑣𝑗 𝑚𝑗  𝑣𝑗𝑚

𝑣𝑗𝑚′

(𝜃𝑅 , 𝜙𝑅)
𝑒𝑖𝑘𝑣𝑗 𝑅

𝑅


𝑣𝑗
(𝑟)Y𝑗,𝑚𝑗

(𝜃𝑟 , 𝜙𝑟)]             (2.31) 

where E is the total energy, 𝑘𝑣𝑗 =  √2(𝐸 − 𝜀𝑣𝑗)/ℏ is the wavenumber associated with the 

vibrational-rotational level 𝑣, 𝑗 whose energy 𝜀𝑣𝑗, 𝑓𝑣𝑗 𝑚𝑗  𝑣𝑗𝑚(𝜃𝑅 , 𝜙𝑅) is the scattering 

amplitude.  

In 𝐸𝑞. 2.31, the first term corresponds to an incident plane wave representing the two 

collision partners in their initial rovibrational quantum states moving in the positive Z 

direction. The second term describes about the scattered wave radially outwards with the 

diatom in all the possible final rovibrational quantum states.  

Now, the inelastic differential cross section as the flux of collision partners in states 𝑣𝑗 𝑚𝑗  

can be written according to the E𝑞 2.3 as: 

                    𝜎𝑣𝑗 𝑚𝑗  𝑣𝑗𝑚(𝜃𝑅 , 𝜙𝑅 , 𝐸) =  
𝑘𝑣𝑗

𝑘𝑣𝑗
 |𝑓𝑣𝑗 𝑚𝑗  𝑣𝑗𝑚(𝜃𝑅 , 𝜙𝑅)|

2

                            (2.32) 

In the present context, we need to consider the two different angular momenta, the orbital 

angular momentum ℓ, and rotational angular momentum j, they are not independent to each 

other as they are coupled by the interaction potential. So while breaking up the problem into 

more manageable parts, we must remember that the total angular momentum J is a good 

quantum number and a conserved quantity. Thus, we can break the problem into many small 

problems, one for each value of J.  

In the absence of interaction potential, the first term of the  𝐸𝑞 2.31 would represent the 

solution to the scattering problem. The plane wave corresponds to this term can be expanded 

as below (see 𝐸𝑞 2.13),  

                              𝑒𝑖𝑘𝑍 =  ∑{4𝜋(2ℓ + 1)}
1
2 𝑖ℓ

∞

ℓ=0

𝑗ℓ(𝑘𝑅)𝑌ℓ,0(𝜃𝑅 , 𝜙𝑅)                                   (2.33) 
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Using 𝑌ℓ,0 =  (
2ℓ+1

4𝜋
)

1

2
 𝑃ℓ (cos  ) relation, combing 2.30 and 2.33 E𝑞𝑠, solution of the 

problem in the absence of any potential 

𝜓𝑜(𝑅, 𝑟, 𝐸) = (
𝑘𝑣𝑗

2𝜋ℎ2)
2

∑ {4𝜋(2ℓ + 1)}
1

2 𝑖ℓ∞
ℓ=0 𝑗ℓ(𝑘𝑣𝑗𝑅)

𝑣𝑗
(𝑟)𝑌ℓ,0(𝜃𝑅 , 𝜙𝑅)Y𝑗,𝑚𝑗

(𝜃𝑟 , 𝜙𝑟).  

(2.34) 

Where, the 𝑌ℓ,0(𝜃𝑅 , 𝜙𝑅)Y𝑗,𝑚𝑗
(𝜃𝑟 , 𝜙𝑟) = 𝑌ℓ,0(𝑅̂)Y𝑗,𝑚𝑗

(𝑟̂) form a natural basis set in which to 

expand the scattering problem. In order to utilize the conservation of the total angular 

momentum, we need to take the linear combination of these functions so as to get the value of 

total angular momentum.  

Recalling Eq. 2.30, the above equation can be modified as the follows, 

𝜓𝑜(𝑅, 𝑟, 𝐸) = (
𝑘𝑣𝑗

2𝜋ℎ2
)

2

∑{4𝜋(2ℓ + 1)}
1
2  𝑖ℓ 

𝐽𝑀ℓ

𝑗ℓ(𝑘𝑣𝑗𝑅)
𝑣𝑗

(𝑟)x  𝛶𝑗ℓ
𝐽𝑀(𝑅,̂ 𝑟̂)(𝑗ℓ𝐽𝑀 ∣ 𝑗𝑚𝑗ℓ 0) 

(2.35) 

The last part of this equation will take care of the conservation of total angular momentum 

where, (𝑗ℓ𝐽𝑀 ∣ 𝑗𝑚𝑗ℓ 0) are the Clesbsch - Gordan coefficients [20, 21]. The equations 

corresponds to the above equation are known as the coupled equations.  

We now consider the matrix elements of the Hamiltonian operator of 𝐸𝑞. 2.24 in this basis, 

the matrix elements of the kinetic energy operator −
ℏ2

2𝑅

𝑅
  2 are 

〈
𝑣𝑗

(𝑟) 𝛶𝑗ℓ
𝐽𝑀(𝑅,̂ 𝑟̂) ∣ [−

ℏ2

2
𝑅

𝑅
  2] ∣ 

𝑣𝑗
(𝑟) 𝛶𝑗ℓ

𝐽𝑀(𝑅,̂ 𝑟̂)〉

=  [−
ℏ2

2
𝑅

{
1

𝑅2



 𝑅
(𝑅2



 𝑅
)} +  

ℓ(ℓ + 1)ℏ2

2
𝑅

𝑅2
] 𝑣,𝑣  𝑗,𝑗  ℓ,ℓ               (2.36) 

The matrix elements corresponds to the diatomic molecular Hamiltonian is given by 

〈
𝑣𝑗

(𝑟) 𝛶𝑗ℓ
𝐽𝑀(𝑅,̂ 𝑟̂) ∣ (−

ℏ2

2
𝑟

𝑟
  2 + 𝑉𝑑𝑖𝑎𝑡𝑜𝑚(𝑟) ∣ 

𝑣𝑗
(𝑟) 𝛶𝑗ℓ

𝐽𝑀(𝑅,̂ 𝑟̂)〉  =  𝜀𝑣𝑗  𝑣,𝑣  𝑗,𝑗  ℓ,ℓ  

(2.37) 
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Now, total wavefunction can be expanded in a form similar to the Eq 2.35 but replacing 

𝑗ℓ(𝑘𝑣𝑗𝑅) by  
𝜙𝑣 𝑗 ℓ

𝐽𝑣𝑗ℓ
 (𝑅,𝐸)

𝑘𝑣𝑗𝑅
 , 

𝜓 (𝑅, 𝑟, 𝐸) = (
𝑘𝑣𝑗

2𝜋ℎ2
)

2

∑{4𝜋(2ℓ

𝐽𝑀ℓ

+ 1)}
1
2    𝑖ℓ ( 𝑗ℓ𝐽𝑀 ∣∣ 𝑗𝑚𝑗ℓ 0 ) x ∑

𝜙𝑣 𝑗 ℓ
𝐽𝑣𝑗ℓ

 (𝑅, 𝐸)

𝑘𝑣𝑗𝑅
𝑣 𝑗 ℓ


𝑣𝑗

(𝑟) 𝛶𝑗ℓ
𝐽𝑀(𝑅,̂ 𝑟̂)   

(2.38) 

 𝜙𝑣 𝑗 ℓ
𝐽𝑣𝑗ℓ

 (𝑅, 𝐸) are solutions of the set of coupled second order radial Schrodinger equations. 

The above equation must obey the following boundary conditions: 

         𝜙𝑣 𝑗 ℓ
𝐽𝑣𝑗ℓ

 (R, E) 𝑅0̃    0 

𝜙𝑣 𝑗 ℓ
𝐽𝑣𝑗ℓ

 (𝑅, 𝐸)𝑅∞̃ 𝑗ℓ̂ (𝑘𝑣𝑗 𝑅) 𝑣,   𝑣  𝑗,   𝑗  ℓ,   ℓ   −  𝑇𝑣𝑗 ℓ,𝑣𝑗ℓ
𝐽  

1

2𝑖

𝑘𝑣𝑗

𝑘𝑣𝑗
𝑒𝑖(𝑘𝑣𝑗 −  

ℓ𝜋
2

)  

(2.39) 

The alternative form of Riccati-Bessel functions [18] (see Eq 2.12) can be rewritten for the 

second boundary condition as 

𝜙𝑣 𝑗 ℓ
𝐽𝑣𝑗ℓ

 (𝑅, 𝐸)𝑅∞̃     

−
1

2𝑖
  {𝑒−𝑖(𝑘𝑣𝑗𝑅−

ℓ𝜋
2

)
𝑣,   𝑣  𝑗,   𝑗  ℓ,   ℓ −  𝑆𝑣𝑗 ℓ,𝑣𝑗ℓ

𝐽   (
𝑘𝑣𝑗

𝑘𝑣𝑗
)

1/2

𝑒𝑖(𝑘𝑣𝑗𝑅−
ℓ𝜋
2

)}  

(2.40) 

Therefore the S and T matrices are related as 

                                             𝑆𝑣𝑗 ℓ,𝑣𝑗ℓ
𝐽  =   𝑣,   𝑣  𝑗,   𝑗  ℓ,   ℓ −  𝑇𝑣𝑗 ℓ,𝑣𝑗ℓ

𝐽                                (2.41)  

 

The asymptotic form of full wavefunction can be obtained by substituting 𝐸𝑞 2.39 and 2.40 

in 𝐸𝑞. 2.38,   
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𝜓 (𝑅, 𝑟, 𝐸) = (
𝑘𝑣𝑗

2𝜋ℎ2
)

2

∑{4𝜋(2ℓ + 1)}
1
2    𝑖ℓ

𝐽𝑀ℓ

( 𝑗ℓ𝐽𝑀 ∣∣ 𝑗𝑚𝑗ℓ 0 ) 

x  { ∑
1

𝑘𝑣𝑗𝑅
𝑣 𝑗 ℓ

𝑗ℓ̂ (𝑘𝑣𝑗𝑅) 𝑣,   𝑣  𝑗,   𝑗  ℓ,   ℓ

−  𝑇𝑣𝑗 ℓ,𝑣𝑗ℓ
𝐽  

1

2𝑖
 

1

√𝑘𝑣𝑗𝑘𝑣𝑗

 
1

𝑅
 𝑒𝑖(𝑘𝑣𝑗𝑅−

ℓ𝜋
2

)} 
𝑣𝑗

(𝑟) 𝛶𝑗ℓ
𝐽𝑀(𝑅,̂ 𝑟̂) 

(2.42) 

The integral cross section can be written in terms of T matrix as follows 

𝜎𝑣𝑗𝑣𝑗 (𝐸) =  ∫ 𝜎𝑣𝑗 𝑣𝑗 (𝑅,  𝜙𝑅 , 𝐸) sin 𝑅  𝑑𝑅 𝑑𝜙𝑅 

=  
1

(2𝑗 + 1)

𝜋

𝑘𝑣𝑗
2 ∑ ∑ (2𝐽 + 1) |𝑇𝑣𝑗ℓ,𝑣𝑗ℓ

𝐽 |
2

|𝐽+𝑗|

ℓ=|𝐽−𝑗|

|𝐽+𝑗|

ℓ=|𝐽−𝑗|

  

(2.43) 

2.7 Solution of TISE in terms of hyper spherical coodinates 

In the previous section, we have considered space-fixed coordinate system. According to this 

formalism, we have chosen that the Z axis is the direction of initial relative velocity. This 

resulted that there is no angular momentum component about the Z axis (𝑚ℓ = 0).  In 

contrast, the final relative velocity is in the direction of  𝑅̂ and final Z component of the 

orbital angular momentum ranges over all possible values. Therefore, there must be a marked 

difference in the treatment of initial and final states of collisional system.  

In the Body fixed reference frame, this difference vanishes as the Jacobi coordinate 𝑅̂ is 

aligned along the Z axis.  

In the body fixed formalism, this equation (2.42) is written in simple form in terms of  , is 

the helicity quantum number. 

                                 𝜎𝑣𝑗 𝑣𝑗𝑚𝑗 (𝐸)  =  
𝜋

𝑘𝑣𝑗
2 ∑(2𝐽 + 1) |𝑇𝑣𝑗 ,𝑣𝑗𝑚𝑗

𝐽 |
2

𝐽

                              (2.44) 
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This equation is for the state-to-state integral cross sections and is lot simpler than the space 

fixed case.  

Quantum reactive scattering problems are often solved using hyperspherical coordinates and 

these coordinates are preferred over the Jacobi coordinates as they treat both reactants 

products on equal basis. There are several hyperspherical coordinates in the literature but we 

will use the base definitions on those of Pack and Parker [22].  These coordinates are related 

to each other by following relationships 𝑟̃ =   sin, 𝑅̃ =   cos, where 0   ∞ 

and 0    π/2. The hyperradius  and the angle  are called Delves coordinates [23, 24].  

These can be written as follows 

 =  (𝑅̃
2

+ 𝑟̃
2)

1/2

 

 =  tan−1 (
𝑟̃

𝑅̃

) 

Here we note that, 𝑅̃ and 𝑟̃ represent the mass-scaled Jacobi coordinates [22, 25] written for 

the arrangement channel .   

𝑅̃ =  𝑑𝑅  

𝑑 =  [
𝑚𝐴


(1 −

𝑚𝐴

𝑀
)]

1/2

 

Where, 𝑀 =  𝑚𝐴 +  𝑚𝐵 +  𝑚𝐶 is the total mass of the triatomic system and the three body 

reduced mass,  is  

 =  (
𝑚𝐴𝑚𝐵𝑚𝐶

𝑀
)

1/2

 

The three body reduced is same for all the arrangements. 
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We can now expand the wavefunction in terms of vibrational wavefunctions, 
𝑣𝑗

𝐽 ( ;  ) in 

the angular value . These basis functions depends on the hyperradius .  

𝜓 (𝑅̃, 𝑟̃, 𝐸) = 2 ∑ ∑ ∑ {∑(2ℓ + 1)
1
2 (𝑗ℓ𝐽𝑀

ℓ𝑣𝑗𝐽𝑀

∣  𝑗𝑚𝑗ℓ0) 𝐵ℓ,} x  
𝑣𝑗

𝐽𝑣𝑗
(, 𝐸)

5/2
 

𝑣𝑗

𝐽  (;  )

sin 2
 𝑗

𝐽𝑀 (𝑅,̂̃  𝑟 ̂̃) 

 

The vibrational functions 
𝑣𝑗

𝐽 ( ;  ) are solutions of the equation 

{
ℏ2

2
𝑠
2

[−


2


+  

𝑗(𝑗 + 1)

𝑠𝑖𝑛2 
+

𝐽(𝐽 + 1) + 𝑗(𝑗 + 1) − 22

𝑐𝑜𝑠 2 
] 𝑉

𝑑𝑖𝑎𝑡𝑜𝑚 (
𝑠

sin)

− 𝜀𝑣𝑗(
𝑠
)} 

𝑣𝑗

𝐽 ( ;  ) = 0                                                            (2.45)  

The numerical approach to solve the above problem is to divide   into different segments 

and use one of the standard methods to solve these coupled differential equations. 
𝑠
  

represents the particular value of   in the center of segment s. We have used the log-

derivative method by Manopolous in the study [26]. The potential 𝑉
𝑑𝑖𝑎𝑡𝑜𝑚 (

𝑠
sin) =

 𝑉
𝑑𝑖𝑎𝑡𝑜𝑚  (𝑟) is the asymptotic diatomic potential at a large 𝑅. Vibrational (v), rotational (j) 

and angular quantum number () are always associated with arrangement channel subscript 

 but omitted for brevity. 

Delves hyperspherical coordinates depends on a particular arrangement that has been chosen. 

They don’t treat all the channels in an equal manner. If one would like to use these 

coordinates, complicated arrangements have to be made to transform the wavefunction from 

one arrangement channel to another to account for a chemical reaction and to maintain the 

continuity of the wave function and its first derivative. For this reason, we need a universal 

coordinate system which is independent of arrangement channel.  

In the arrangement channels, the Euler angles were chosen to bring body-fixed Z axis into 

coincidence with the Jacobi coordinates. This requirement can be satisfied using principal 

axes of inertia of the system to determine the orientation of the body fixed axes. Due to this 

adjustment, for small values of hyperradius, orientation of body-fixed coordinate does not 
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coincide with the Jacobi coordinates of any channels. However, at large value of the 

hyperradius, one of the coordinates will point along the Jacobi R vector, depending on the 

hyperangle. To do this exercise, we use adiabatically adjusting, principal axes hyperspherical 

(APH) coordinates [22]. Now, the body-fixed Z axis points along the Jacobi R vector of one 

of the arrangement channels.  

We obtain the final expansion of the wave function in the body-fixed reference frame as 

𝐽𝑀𝑛  =  4 ∑
𝜓 

𝑛

𝐽 𝑛

5/2

𝑛

 𝜙𝜙𝑛
𝐽 (,;  )𝐷𝑀,

𝐽∗

 (𝑄 , 
𝑄

, 
𝑄

) 

The hyperradius  is divided into segments. At the center of each such segment we solve for 

the two dimensional hyperspherical surface functions  𝜙𝜙𝑛
𝐽 (, ;  ) which are dependent on 

 and satisfy the following differential equations 

{−
ℏ2

2
𝑠
2

[
4

sin 2
 



sin 2 




+

1

𝑠𝑖𝑛 2
 


2

2
] + 

𝐴 + 𝐵

2
ℏ2𝐽(𝐽 + 1) +

15ℏ2

8
𝑠
2

+ [𝐶 −  
(𝐴 + 𝐵)

2
] ℏ22 + 𝑉(

𝑠
, , ) −  𝜀𝑛

𝐽 (
𝑠
)} 𝜙𝜙𝑛

𝐽 (,;  ) = 0 

These differential equations in terms of hyperradius  was solved using Log-derivative 

propagation method and transformed into scattering matrix using space fixed coordinates. 

The total reaction probability can be obtained from the scattering matrix as 

𝑃𝑣𝑗𝑣𝑗  (𝐸) =  ∑ |𝑆𝑣𝑗𝑣𝑗
𝐽 (𝐸)|

2

𝑣𝑗𝑣𝑗

 

(2.46) 

Similarly rate coefficients for the reactive, inelastic and elastic processes can be obtained 

from the scattering cross sections by averaging over the relative velocity of the colliding pairs 

[7].   

                                 𝑅(𝑇) =  
√8𝑘𝐵𝑇/𝜋

(𝑘𝐵𝑇)2
 ∫ 𝐸𝑣𝑗𝑒

−
𝐸𝑣𝑗

𝑘𝐵𝑇
∞

0

 𝜎𝑣𝑗 𝑣𝑗 (𝐸)𝑑𝐸𝑣𝑗                       (2.47) 

The exponential factor here represents the relative velocities which are calculated from the 

Maxwell-Boltzmann distribution [27].  
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2.8 Quantum behavior as collision energy approaches to zero  

Collision among the atoms and molecules in the ultracold regime are quite different from the 

collisions at room temperatures. The description to the cross sections due to the larger de 

Broglie wavelength given by Bethe [28] in 1935 for the scattering of cold neutrons. Such 

quantum effects are manifested in collisions of neutral particles at very low temperature, 

typically, T << 1K. The outcome of the elastic & inelastic collision play important role in the 

experimental realization of laser cooling and evaporative cooling techniques [29, 30].   

 

Figure 5: The short range wavefunction for three different potentials with three different scattering 

lengths (a0)reproduced from the Ref. [14] 

In the ultracold temperature limit the de Broglie wave length is much larger than the typical 

lengths associated with chemical bonds. The delocalization of collision wavefunction leads to 

have a behavior as 𝑘 =  √2𝐸 =   2𝜋⁄   as 𝑘  0, depending on the long range potential 

which varies as 𝑅−𝑛. 
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According to Mott and Massey [31], Eq 2.23 the phase shift 
ℓ
 has the following property as 

𝑘  0: if 2ℓ < 𝑛 − 3,  

lim
𝑘0

𝑘2ℓ+1 cot
ℓ

=  
−1

𝑎ℓ
, 

(2.47) 

Where, 𝑎ℓ is a constant and if 2ℓ > 𝑛 − 3,  this Eq would be 

                                                          lim
𝑘0

𝑘𝑛−2 cot
ℓ

=  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                            (2.48) 

 

Figure 6: Asymptotic behavior of longrange part of the potential in the ultracold regime reproduced from 
the Ref the ref [14] . 

This ensures that the phase shift vanishes as fast as 𝑘3 for all ℓ  1 in case of neutral ground 

state atoms. Therefore, all the contributions to the cross section vanish when 𝑘 becomes 

sufficiently small except the contribution from the s-wave i.e. ℓ = 0. In this case the phase 

shift varies as  −𝑘𝑎0 as 𝑘 0. From the Eq 2.23, elastic cross section for identical particles 

as following [14], 

                                                                   (𝐸) = 8𝜋 𝑎0
2                                                               (2.49)   
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Thus, the cross section for the elastic cross section is a constant quantity in the ulracold 

temperature limit. The quantity 𝑎0 is the scattering length for the s-wave which is an 

important factor in the context of ultracold collisions. The rate coefficient for elastic process 

vanishes as 𝑇1/2 in the limit of ultralow temperature (𝐾 =  〈. 𝑣〉). 

Unlike elastic processes, inelastic process has different threshold properties. For exothermic 

reactions, i.e. the internal energy of separated atoms/molecules in the outgoing channel is 

lower than the entrance channel; the energy is released in the collision. The transformation 

matrix changes as [28, 32], 𝑇(𝐸)  𝑘ℓ+
1

2, where ℓ is the individual partial wave index of the 

entrance channel.  From the Eq 2.23, cross section vanishes as fast as 𝑘 for all ℓ > 0, but it 

varies as 1 𝑘⁄  for the s-wave. This law sometimes called as inverse law of velocity [28, 32] . 

However, the cross section for inelastic process would become arbitrarily large as 𝑘 0.The 

rate coefficient K remains finite and approaches a non-vanishing constant.  

2.9 Conclusions 

A brief review of classical and quantum theories of atom-molecule collision theory have been 

presented. Classical theories consider all the atoms and molecules as billiard balls to estimate 

the rate coefficients at different temperatures. In quantum mechanical approach, all the atoms 

and molecules are treated as quantum mechanical waves. After briefly reviewing the atom-

atom collisions we have extended discussion on atom-diatom molecular collisions using 

Delves hyperspherical coordinates. The calculation of the Scattering matrix (s - matrix) and 

all the dynamical parameters such as reaction probability, cross-sections and reaction rate 

coefficients has been discussed for ultra-low energy collisions. 
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Chapter 3 

Convergence studies of numerical parameters on D + H2 (v, j) reaction in 

the ultracold temperature limit 

 
3.1 Introduction 

 

In the ultracold temperature limit, the translational kinetic energy between the colliding 

species becomes vanishingly small and the corresponding de Broglie wave length becomes 

extremely large. Thus, due to predominating quantum mechanical wave behavior, the 

colliding species can interact from very large internuclear distance. This leads to the crucial 

dependence of the reaction kinematics on the long range part of the interaction potential 

which can be manipulated using external electric, magnetic and optical fields. Though many 

dynamical observables can be estimated from the long range van der Waals coefficients of 

the interaction potentials, (e. g. using quantum defect theory [1, 2], accurate quantum 

mechanical treatment is required, particularly, at short internuclear distances where chemistry 

predominates in these extreme conditions.  

The choice of time-independent quantum mechanical treatment is best suited to study 

ultracold collisions. Time-dependent wave packet methods become inefficient at ultra-low 

collision energies since it lacks required momentum to propagate the wave packet over the 

large special grid required to represent such systems. Several research groups have developed 

methods to solve multi-channel time-independent Schrödinger equation to carry out exact 

quantum mechanical calculations [3-6]. But, for most of them, obtaining numerical 

convergence still remains as the major issue for ultracold collisions. First, the nearly 

vanishing kinetic energy requires the solutions of the coupled equations to be propagated to 

very large asymptotic distances. Second, and more importantly, despite the fact that inelastic 

cross sections increase at low energy according to Wigner’s threshold law [7], the scattering 

amplitudes themselves tend to vanish in the ultracold limit.  

In order to obtain reliable results for these very small quantities, one needs a high level of 

numerical precision, which can be achieved mostly by drastically increasing the length of the 

radial propagation. Fulfillment of these two requirements will require an extremely large 

number of propagation steps. Moreover, in presence of any dynamical resonances, the 

scattering amplitudes abruptly changes to large values leading to divergence in numerical 

solutions. Though numerical convergence is routinely checked for reliable theoretical 

predictions, in this chapter, we will explicitly discuss some of the major numerical challenges 
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to study ultracold chemical reactions using quantum close coupling (CC) approach so that 

computational time can be minimized and optimum convergence is obtained.  

 

In order to understand the various issues regarding convergence of the results obtained, we 

have performed numerous tests on several ultracold collisions, which were rather expensive, 

despite the current advances in computational power. We discuss our findings on the 

benchmark D + H2 (v, j)  HD (v=0, j=0) + H ultracold collisions and its isotopic variations. 

Among these reactions of astrophysical interest, D + H2 is particularly important, because it  

leads to the formation of most abundant interstellar coolant HD molecules [8, 9]. Thus, to 

model the interstellar cooling process, it is necessary to consider accurate temperature 

dependence of the rate coefficients for a wide range temperature. All possible initial 

rovibrational states of the reactant molecules are considered for this current study.  

 

The convergence criteria strongly depend on the accuracy and long range part of the PES. 

Since H3 system has been a subject of both experimental, theoretical research, studies on this 

reaction have led to significant advances in our understanding of gas-phase reaction 

dynamics. In the following, we have briefly reviewed the development of the potential energy 

of the H + H2 (and its isotopic substitutions) over several decades. In 1973, Liu et al [10] 

have constructed the first ab initio studies of collinear H + H2 potential energy surface (PES). 

Since then another four global analytic PESs of this system (namely the LSTH [10-13], 

DMBE [14], BKMP [15] and BKMP2 [16]) have been reported and used extensively in the 

field of chemical reaction dynamics. Each of these potential energy surfaces are partly build 

upon Liu’s initial calculations.  One of the disagreements with BKMP [15] and BKMP2 [16] 

PESs concerns the thermal rate coefficients for D + H2 reaction at 200K. It has been found 

that at this low temperature, theoretical rate coefficients are higher than the experimental 

values by a factor of 2 [17-20]. After BKMP2 [16], Wu et al [21] constructed a new PES 

consisting of spline fitting of Extensive Quantum Monte Carlo Simulations (EQMS) of H3 but 

is not as accurate as was originally believed. 

In order to improve the longrange part of the potential, Mielke et al [22] in 2002 had reported 

a new PES which is believed to be more accurate for low energy collisions. This PES is based 

on multi-reference configuration interaction (MRCI) calculations using aug-cc-pVDZ, aug-

cc-pVTZ and aug-cc-pVQZ basis sets for a set of 4067 H3 configurations and convenient to 

use at any temperature.  
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3.2 Numerical calculations using modified reactive scattering program ABC: 

 

The ABC reactive scattering code developed by Skouteris et. al. [3] has been used for a 

number of benchmark systems to study collisions at higher temperatures [23-28] and in the 

low temperature limit [29-34]. In order to use this program for ultra-low collision energies 

more efficiently, we have made substantial modifications in its structure, by including a new 

module which allows us to follow the convergence of the 𝑆 − 𝑚𝑎𝑡𝑟𝑖𝑥 elements with respect 

to 
𝑚𝑎𝑥

. Given the fact that the ultracold calculations are quite time consuming, automated 

monitoring of the 
𝑚𝑎𝑥

 convergence is extremely convenient, as we can study a series of 

collision energies and for a number of initial states H2 (v, j) in a single run. Such a run, 

however, can take more than a week of CPU time repeated for different values of the other 

convergence parameters. We have also included a new module to stop and re-start the ABC 

program during propagation. This gives us the opportunity to stop the program at certain  if 

convergence is achieved or to propagate further if required for better convergence.  

 

3.3 Convergence tests 

 

We have used both BKMP2 [16] and the Mielke et al [22] PES for the various convergence 

tests, but extensive discussion obtained from the BKMP2 potential has been presented in this 

chapter. Comparison between the two PESs has been highlighted wherever the difference is 

significant.  

Generally speaking, the main questions regarding convergence are: (i) if the target basis is 

large enough (ii) the integration step  is small enough and (iii) if max large enough? The 

last question stems from simple considerations of energy scales; namely, we need to 

satisfy |𝑉𝑛𝑛()| ≪  𝐸𝑘𝑖𝑛 in the asymptotic region (  ∞). For scattering at high energy, 

these asymptotic conditions are easily fulfilled when 
𝑚𝑎𝑥

 corresponds to separations of 

roughly 15–20 Bohr radii. However, in ultracold collisions, the initial kinetic energy in the 

entrance channel can be of the order of 1mK (10-7 eV) or even much smaller, and it required 

to propagate the numerical solutions far into the asymptotic region. For D + H2 reaction, the 

convergence is obtained at 
𝑚𝑎𝑥

 =  50 𝑎. 𝑢. (atomic units, 𝑎0), since the reduced mass of this 

system is small and the long range van der Waals forces are fairly weak for this reaction. 

Note that for other systems, e.g., atom–atom scattering with heavy alkali species, the long 
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range interactions are much stronger and radial propagation needs to be calculated for 

distance of a few hundred Bohr radii. Also, the reduced mass of the binary collision has a 

compounding effect; indeed, when Ekin 0, the local momentum in the entrance channel is 

approximately given by 𝑘𝑙𝑜𝑐() √2 𝑉(), and the enhancement coming from a large 

reduced mass needs to be compensated by the decrease of the diagonal potential V() at 

larger distances. 

 

 
Figure 1: Convergence of  with respect to max for different values of.  

 

 

We also need to pay special attention to the size of the integration step . Indeed, in the 

ultracold regime, the amplitudes of the inelastic components of the scattering solution follow 

a simple scaling law, 
𝑛

~ 𝑘, assuming the normalization is such that the entrance (elastic) 

channel component oscillates with unit amplitude at   ∞. 

Thus, relative to the asymptotic amplitude of the entrance channel component, all other 

components become vanishingly small when k  0. To ensure that we obtain reliable results, 

we have several test calculations which shows gradual improvement when the step size  is 

reduced (see Figure 1). 
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Note that the propagation step has to be quite small (~ 0.002 a.u.) to reach full convergence. 

The results obtained with a slightly larger step size seem to oscillate around the converged 

values; however, care is needed, as the oscillations can have large amplitudes. Variable step 

size for the short and long-range of the potential could lead to better computational efficiency 

but we did not peruse this issue in the present study. We now consider the difficult question 

regarding the size of the target basis. Note that, in general, apart from the degrees of freedom 

of the target itself (i.e., rovibrational motion of H2 and DH), the so called target basis also 

includes one degree of freedom for the rotational part of the relative motion. As we 

mentioned, the approach employed in ABC uses Delves hyperspherical coordinates, in which 

different arrangements are treated separately with regards to the internal motion coordinates. 

For each arrangement, a basis is constructed depending mainly on two truncation parameters: 

Emax, and jmax. For a given initial dimer state [35] with channel energy εvj, the total collision 

energy is E = εvj + Ekin. In the ultracold regime Ekin is vanishingly small and all channels 

above the initial one are closed; indeed, there is no sufficient energy for their excitation, and 

the collision is completely exoergic. However, many of the closed channels play an important 

role, and we need to find out how many of them to include; hence, we repeat the computation 

for increased values of Emax, in order to obtain converged results. The truncation of channels 

is straightforward; namely, all channels with dimer eigenenergies bellow Emax are included, 

and all channels above Emax are ignored. In a similar fashion, the cutoff parameter jmax can be 

used to control the truncation of the number of rotational eigenstates of both dimers; 

however, in order to ensure that our computation is very nearly exact, we have eliminated the 

need for jmax by always including all j states that are energetically relevant (i.e., all open and 

closed channels bellow Emax are included, no matter how large their quantum number j is).  
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Figure 2: Convergence of S -matrix (squared) with respect to max for different values of Emax. we show 

results for a particular final state, namely DH (v’ = 0, j = 0) at a fixed collision energy Ecoll = 1 K; the state-
to-state results for all other final states are similar. The different curves are for different initial states H2 

(v; j = 0) and each value of v is shown next to the corresponding curve. 
 

Note that the dimer energy eigenbases are constructed from primitive particle-in-a-box bases, 

which depend on the size of the box in the radial-like coordinate for each dimer; also, there 

are additional parameters controlling the quadratures used in computing matrix elements, and 

we performed separate tests in which we varied these parameters. As expected, care is needed 

to ensure convergence with respect to the number of closed channels. This is especially 
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difficult for high vibrational states; not only does the size of the problem increase as we 

approach the threshold from v = 0, but we eventually need to include the dimer continuum (in 

a discretized fashion). We did attempt such a computation, but we obtained incorrect results; 

we speculate that this failure stems from an over completeness issue; in other words, there is 

too much linear dependence in the combined dimer bases of the separate arrangements. This 

obstacle could be circumvented, at least in principle, but we have not pursued this issue. The 

problem simply becomes prohibitively expensive when a significant part of the continuum 

needs to be included, and we decided to stop just shy of the threshold. With this elaborate 

caveat, we are now ready to present the concrete technical details of our results for Emax 

convergence. 

 

In Figure 2, we show results from our convergence study for high vibrational initial states of 

H2. It is readily apparent that the gradual improvement is rather slow when Emax is increased; 

e.g., if we follow v = 7 in Figure 1, from the bottom panel to the top one, we see that its max 

behavior only shows stabilization for the highest cutoff energy used (Emax = 4.75 eV, which 

was roughly at the dissociation threshold of the dimer). Note that we only obtained converged 

results for initial vibrational states v 8. Regarding the difficulty of obtaining converged 

results for high v, we emphasize the strong connection between the Emax convergence and the 

max convergence, which is apparent in Figure 1. Strictly speaking, the stabilization of the 

results at large max does not guarantee convergence, but when the results remain unchanged 

for increased values of Emax, we consider that we achieved convergence. As we see in Figure 

1, the radial integration only needs to be propagated out to modest values of max, because the 

results stabilize rather quickly if Emax is sufficiently high. Conversely, if the results are not 

converged at these moderate distances, they cannot be improved by extending the 

propagation to larger distances, and it is very likely that Emax is simply too low. There is one 

exception to this empirical rule: if there is a resonance near the threshold, then it will amplify 

the long range sensitivity, and max will need to be much larger. Also, special attention needs 

to be paid to the diagonal matrix element for the entrance channel, as its complex phase 𝜑 =

arg (𝑆𝑒𝑒) is very sensitive to max even in the absence of dynamical resonances; this is well 

known from the simpler case of purely elastic (single channel) scattering.  

In the pursuit of understanding the various aspects of convergence, we have amassed a 

substantial amount of numerical results, which we summarize in Figure 3. This graph 

contains another unpleasant surprise, this time regarding initial states with low v. In the 
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bottom right corner, we see that the results for v = 0 and v = 1 show a wild variation for large 

values of the truncation energy Emax. 

 
Figure 3: Variation of reaction cross sections of D + H2 (v, j) reaction at fixed collision energy Ekin = 1 K 
when increasing Emax up to 4.75 eV (near the continuum threshold of H2). The vibrational number of the 
initial dimer state is specified next to each curve. Note that the vertical axis is broken twice (below and 

above v = 1). Based on the convergence results shown in this graph, we determined which value of Emax is 
optimal for different initial v. Thus, we extracted our final results (shown in the Figures and table of Sec. 

4) according to the following choices: Emax = 3:5 eV for v  2, Emax = 4.25 eV for 3  v  6, and Emax = 4.75 eV 
for v 7. 

 

This instability stems from the fact that the cross sections for the lowest vibrational states 

have extremely small values, and are thus very sensitive with respect to changing certain 

parameters of the numerical problem; specifically, those 𝑆 − 𝑚𝑎𝑡𝑟𝑖𝑥 elements are very small 

become corrupted when the number  of channels is increased above a certain value. With the 

benefit of hindsight, we can say that this anomaly should have been expected, especially for  

v = 0, however, despite this instability, there is still a plateau of converged results for            

Emax between 2.5 eV and 3.5 eV. Next, for intermediate values of the initial vibrational 

number (v = 2, 3, ….,7), we obtain converged results when the number of channels included 
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is sufficiently large, i.e., the results become stable when Emax is increased; as seen in Figure 3, 

they are much more robust than v = 0 and v = 1. For v = 8, the results barely begin to 

converge at Emax = 4.75 eV, judging by the max behavior in the top panel of Figure 2. We 

also obtained results for v = 9 (shown in Figures. 2 and 3) and v = 10, 11 (not shown), but 

they are not fully converged.  

 

 

3.3 Conclusions 

 

In this chapter, we have performed accurate close coupling calculations for numerical 

convergence of key parameters, e.g. extent of propagation along hyperradius, integration 

steps during propagation and size of the target basis functions etc. We have found to achieve 

convergence; large number of close collision channel needs to be included along with all 

open collision channels. This criterion sets an upper limit for the initial rovibrational levels of 

the colliding molecule that can be studied using this method. We have also developed a new 

module which allows us to monitor the convergence of the 𝑆 − 𝑚𝑎𝑡𝑟𝑖𝑥 elements along 

hyperradius during propagation of the coupled-channel solutions. Using this new module, we 

can stop the program at certain value of hyper radius and restart to propagate further if 

required for better convergence. Given the fact, quantum close coupling calculations at ultra-

low collision energies are very expensive due to very small integration steps required to 

achieve convergence, reduction in the extent of propagation alone can save significant 

amount of computational time.  
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Chapter 4 

Dynamics of D + H2 (v = 0, j = 0)  H + HD (v = v, j = j) reaction from 

ultracold to thermal temperature limit 

4.1 Introduction 

The reaction of Deuterium (D) with H2 is one of the most important processes of the early 

universe [1-4]. Therefore, the knowledge of accurate rate coefficients for a wide range of 

temperature is of interest for modeling many astrophysical processes, such as, interstellar 

cooling and star formation. This reaction is exothermic (by ~ 0.035 eV) with a potential 

barrier of 9.6 kcal/mol (0.4 eV) [5]. Because of this high energy barrier, at low temperature 

(T  1K) the reaction mainly goes through quantum mechanical tunneling. While 

experimental studies on thermal rate coefficients of this reaction have been reported at higher 

temperatures [6-8], no measurements have been carried out below T ~ 170 K. Accurate 

quantum mechanical studies have been performed for extremely low temperatures               

(at ~ l K) [9-11] and also, at higher temperatures [9, 12, 13], but no reports have been found 

to estimate accurate rate coefficients in the intermediate temperature range where deviation 

from usual Arrhenius behavior is observed and quantum mechanical tunneling effect starts to 

dominate. 

In the view of interstellar processes in the early universe, reactions involving the formation of 

H2 and destruction of H2 molecule have lot of importance due to its simple electronic 

structure and abundance. Reactions involving molecular H2 and its isotopic variants have 

contributed the most to interstellar cooling. The cooling efficiency, i.e. how much energy is 

lost per second at a particular temperature, is defined as cooling functions for a particular 

species [14]. To calculate the cooling functions, the knowledge of state-to-state rate 

coefficients is needed from for a wide range of temperatures i.e. very high to low temperature 

range for several chemical reactions leading to formation and destruction of those species. 

The radiative cooling functions are later coupled with the fractional abundance of that 

particular species in order to obtain the overall evolution of the interstellar medium. In this 

chapter, the results are presented in three parts; the first part describes our new finding in the 

ultracold regime (1𝜇𝐾 − 1𝐾) followed by the intermediate low temperature region (1 −

20𝐾) and later the dynamics of D + H2 in thermal temperature regime (20-500K). The 

reaction probability, cross sections and accurate rate coefficients of the D + H2 reaction 

connecting all three temperature range have been presented in the following.  
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4.2 The reactive scattering dynamics of D+H2 reaction in the ultracold temperature 

limit (<  𝒎𝑲) 

Owing to its simplicity, D + H2 (v = 0, j = 0)  HD (v = v, j = j) reaction has become the 

bechmark system to study the dynamics at higher energy regime. But in the subkelvin     

(~10-6K) region, it is extremely sensitive to the interaction potential energy surface of this 

reaction. In the view of electronic structure calculations, this system is smaller which made 

the computations feasible for an accurate potential energy surfaces [5, 15]. The results 

presented here are using the theoretical formalism developed in chapter-2. 

The role of initial rovibrational states of reactant molecule (H2) in the ultralow energies is 

significant and important to understand. As discussed in the previous chapter, we have 

optimized all the numerical parameters and it has been found that the results are not 

converged for higher vibrational levels (8  v  14). Since the problem becomes 

computationally too expensive  beyond v  7, we  restrict our calculations to v = 0-7,  j = 0  

initial states of H2. Only single partial wave (ℓ = 0, s-wave) is dominant in the subkelvin 

temperature regime, thus, the contribuion form the total angular momentum J = j = 0 only 

needed to be included.  

 

Figure 1 : Reaction probability is plotted against collision energy (Kelvin) of initial vibrational states       

(v = 0 to v = 4) of H2 molecule. (Solidline is for Mielke et al [15] and dotted lines for BKMP2 [16]) 
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Figure 2: Reaction cross section is plotted as a function of collision energy (Kelvin) for different 

vibrational states (v = 0 to v = 4) of H2 molecule calculated using Eq 2.2.43. 

In Figure 1, the probabilities for the reactive process i.e. the formation of HD molecule as a 

function of collision energy of the respective initial states has been presented. The 

corresponding initial rovibrational levels of H2 molecule have been shown in the legend. We 

have used both BKMP2 [16] and potential reported by  Mielke et al [15]  for our calculations 

and show as dashed and solid lines, respectively. The reaction probabilities are calculated 

from the respective S-matrix elements as  

 

𝑃 =  ∑ (
2ℓ + 1

2𝐽 + 1
)

1
2

∑ |𝑆
𝑣𝑗𝑣𝑗
𝐽

𝐸(𝑣𝑗)|
2

𝐽,𝑣𝑗

min(𝐽,𝑗)

𝑘=− min(𝐽.𝑗)

  

 

where, the sum is extended over all the inelastic and reactive channels for the final states of 

H2 (j, v < v) and HD (v, j) of a particular arrangement ( v j). We have chosen the initial 

rotational state of H2 to be j = 0 only, while v represents its initial vibrational state.  

For low values of v, we distinguish two very different regimes in Figure 1; at very low 

collision energy (𝐸𝑐𝑜𝑙𝑙 < 100 𝑚𝐾 ), where Wigner’s threshold laws are applicable followed 
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by a transition into the barrier dominated regime (𝐸𝑐𝑜𝑙𝑙   0.1 − 100𝐾).  The thermal 

temperature regime can be considered above 100𝐾. The reaction probabilities behave as 𝐸𝑘𝑖𝑛
1/2

 

in the log-log plot at very low energies; this power law behavior is the manifestation of the 

Wigner threshold laws which produced straight lines in the log-log plot with a slope of  ½ in 

Figure 1. This consequence stems from the simple energy scaling of a wave function  at 

vanishing collision energy.  

It is evident that, even with vanishingly small collision energies, the reaction can proceed 

through quantum mechanical tunneling. But due to the large energy barrier of reaction, the 

reaction probabilities are greatly reduced for the rovibrationally ground state of H2 molecule. 

For collisions with D + H2 (v = 0, j = 0), only three channels in the product arrangement HD 

(v = 0, j = 0, 1, 2) are open, thus the curve corresponding to v = 0, j = 0 represent the total 

inelastic probabilities. Reaction starting from all other initial states of H2, quenching to states 

of D + H2 (v  v, j) should be included to estimate the total inelastic probabilities, but we 

focus here mainly on reaction probabilities as quenching probabilities are extremely low at 

ultra-low collision energies and thus, not shown here.  

In Figure 2, we have shown the collision energy dependence reaction cross sections for the 

initial vibrational states of H2 molecule. According to Wigner’s threshold law, cross section 

depends on the kinetic energy as 𝑖𝑛𝑒𝑙  1
√𝐸𝑐𝑜𝑙𝑙

⁄   for the inelastic and reactive collisions. 

As shown in the reaction probabilities, the reaction cross sections also have two different 

regimes: (i) Wigner’s regime (ii) Barrier dominated regime and they are distinguished 

clearly. In the Wigner’s regime at very low collision energies, reaction happens through 

quantum mechanical tunneling. Unlike the reaction probabilities, the reaction cross section 

behave 𝐸𝐶𝑜𝑙𝑙
−1/2

 according to Wigner’s threshold laws and thus produce a straight line with 

slope of -1/2 in the log-log plot as shown in Figure 2. As the internal collision energy of 

interacting particles increase the reaction proceeds through crossing over the potential barrier.  

Using the inelastic cross sections in the ultracold regime, we have calculated the rate 

coefficients of this reaction in the ultracold temperature limit. As the rate coefficient is 

expressed as the average of the corresponding cross section multiplied by the relative velocity 

of the collision fragments: 𝐾 =  〈𝑣𝑟𝑒𝑙.〉. If the temperature is low enough (T  0.1K), the 

velocity distribution of the colliding particles will be confined to a narrow collision energy 

range and in the Wigner’s regime the product of 𝑣𝑟𝑒𝑙  would become independent of the 
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relative velocity. Thus, in the Wigner regime, the rate coefficients would become 

independent of temperature and attains a constant value.  

 

Figure 3: Rate coefficients for D + H2 reactionobtained by multiplying the cross section with the average 

velocity obtained from the Boltzmann distribution function. (Solidline is for Mielke et al [15] and dotted 

lines for BKMP2 [16]  potentials) 

In Figure 3, we have plotted rate coefficients against temperature for different initial 

vibrational channels of H2 molecule in the Wigner’s regime. They have been calculated using 

following formula.  

𝑅(𝑇) =  
√8𝑘𝐵𝑇/𝜋

(𝑘𝐵𝑇)2
∫ 𝐸𝑣𝑗𝑒

−𝐸𝑣𝑗

𝑘𝐵𝑇
∞

0

𝑣𝑗𝑣𝑗(𝐸𝑣𝑗)𝑑𝐸𝑣𝑗  

It can be seen that the rate coefficients become temperature independent in the Wigner’s 

regime. For v = 0, the rate coefficient is extremely small because of the presence of reaction 

barrier as discussed in case of Figure 2. For v  5, barrier height diminishes gradually and it 

would behave as barrier less reaction from v = 6 and above. We note that the increase in 

ultracold rate coefficients due to vibrational excitation is more than ten orders of magnitude 
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which may significantly influence the modeling outcome of the interstellar cooling process if 

included. 

4.3 Dynamics of D + H2 (ν, j = 0) → HD (ν', ϳ') + H reaction in the intermediate low 

temperature ( ~1K- 10K) region 

To study the state-to-state reactive scattering dynamics at higher temperatures, we have 

followed the time-independent quantum mechanical close coupling (CC) approach as 

described in Chapter 2. At higher temperatures, (T   ≥ 100 mK), available kinetic energy can 

overcome the centrifugal barriers, thus contributions from higher partial waves needs to be 

considered. In ABC reactive scattering code, the angular momentum basis functions are used 

in terms of helicity quantum numbers (k) rather than the orbital angular momentum quantum 

number (ℓ). Thus, for ℓ > 0 calculations, angular momentum basis functions are regenerated 

from helicity basis through othrogonal transformation [25] 

 𝑗ℓ
𝐽𝑀 =  ∑ (

2ℓ + 1

2𝐽 + 1
)

1
2

min(𝐽,𝑗)

𝑘= − min(𝐽,𝑗)

 𝐶(𝑗ℓ𝐽; 𝑘0𝑘) 𝑗𝑘
𝐽𝑀

 

Where the notations carry the usual meaning. Note that, for large values of J, to keep the total 

number of collision channels within computational limit, 𝑘 is truncated such that 

𝑘  min (𝐽, 𝑗, 𝑘𝑚𝑎𝑥) , where, 𝑘𝑚𝑎𝑥 is another parameter (usually within 4–6) as numerically 

tested for convergence in Chapter 3. 

To ensure convergence the cut-off energy (𝐸𝑚𝑎𝑥) for the rovibrational basis sets is chosen to 

be 3.0 eV and all rovibrational channels below 𝐸𝑚𝑎𝑥 in the reactant and product arrangement 

are included in the dynamical calculations. Contributions from higher partial waves are 

extended to total angular momentum Jmax ≥ 35 with helicity truncation at 𝑘𝑚𝑎𝑥 ≥ 6. This 

leads to inclusion of maximum 1039 channels for each full dimensional CC calculations.  

The coupled equations are propagated up to maximum hyperradius (
𝑚𝑎𝑥

) ~ 50 𝑎0 using 

small integration steps 𝑑 =  0.02 𝑎0 for collision energy 𝐸𝑐𝑜𝑙𝑙 ≥ 20 K and 𝑑 =  0.002 𝑎0 

for 𝐸𝑐𝑜𝑙𝑙
𝑣𝑗

  20 𝐾. For Mielke et al PES [15], the solution needs to be propagated until 


𝑚𝑎𝑥

 ~100 𝑎0 with 𝑑 = 0.002 𝑎0 
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 According to our numerous test calculations, these parameters are sufficient to achieve 

numerical convergence for studying reactive collisions for D + H2 (v = 0 – 1,  j) up to 

collision energy 𝐸𝑐𝑜𝑙𝑙 
𝑣𝑗

~ 11000 K (~1 eV). 

We have also calculated the reaction cross sections for rotationally excited stat j = 1. 

Rotational excitation requires additional partial waves (ℓ = 1) and thus computationally more 

expensive. There are no significant changes in the overall behavior of the reaction cross 

sections with rotationally excited states (see Figure 4). Contribution from higher rotational 

states are discussed in detail in the next section. 

The reaction probabilities and cross sections for vibrationally excited states are shown in     

Figure 5 and 6 respectively. Inclusion of higher partial waves leads to increased reaction 

cross section ( and reaction probabilities) near collision energies 𝐸𝑐𝑜𝑙𝑙 ~ 10−3 −  10−1 𝐾.  

This is due to possible 𝑝 − 𝑤𝑎𝑣𝑒 resonances which is more prominent for reaction initatiated 

from D + H2 (v = 1, j = 0). 

 

Figure 4: Collision energy dependence of reaction cross sections of D + H2 (v, j) collisions. Initial 

rovibrational states are indicated in the legend. Note that for v =0 , j = 0, all open  channels leads to the 

formation of product HD (v’, j’) + H, whereas, for v = 0, j = 1, quenching cross sections to D+H2 (v =0, j = 0) 

state is also included. 
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Figure 5: Reaction probability is plotted against collision energy (Kelvin) for the different initial 

rovibrational (v, j = 1) quantum states of HD molecule.  

 

Figure 6: Reaction cross section is shown as the function of Collision energy(Kelvin) for the different 

initial rovibrational (v, j =  1) quantum states of HD molecule. (Solidline is for Mielke et al [15] and dotted 

lines for BKMP2 [16]) 
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To understand the origin of the observed resonance, we analyze the individual from the s, p 

and d waves to the inelastic cross sections of D + H2 (v = 1, j = 0) collisions in Figure 7. The 

contribution to the resonance is primarily from the p-wave (ℓ = 1) collisions. Close to the 

reactant asymptotic, there is no open channel in the product arrangement in the collision 

energy range we have considered, thus possibility of observing a Feshbach resonance is ruled 

out. We understand that the resonance is observed primarily due to the presence of a quasi-

bound level below the p-wave (ℓ = 1) centrifugal barrier in the D + H2 (v = 1, j = 0) 

arrangement. The energy of the quasi-bound level is much closer to the initial reactant 

asymptote (~ 1mK) thus a pronounced enhancement in the p–wave reaction probability (cross 

section and rate coefficients also) is observed. The quasi-bound state within centrifugal 

barrier of the D + H2 (v = 0, j = 0) asymptote is relatively far from the threshold (~ 0.001 K), 

which leads to reduced effect due to the p - wave collisions [17].  

 

Figure 7: 𝑠, 𝑝 and 𝑑 wave contribution to the total reaction cross section of D + H2 (v = 1,  j = 0) collisions. Low 

collision energy behavior for individual partial waves follows Wigner’s threshold laws [18] are verified. 
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Figure 8: Same as Figure 1, collision energy dependence of elastic cross sections. Initial ro-vibrational 

levels of H2 are indicated in the legend. Note that, at low collision energy, the elastic cross sections 

behaves as: 𝜎𝑒𝑙 𝐸𝑐𝑜𝑙𝑙
2ℓ  , thus becomes constant for s-wave collisions. 

For the initial state with rotational excitation (e.g. j = 1), the reaction cross section increases 

with the collision energy which means that first excited rotational states were populated 

enough and can easily penetrate through the barrier. Since ℓ = 1 is for p-wave and ℓ = 2 is for 

d-wave, cross sections were directly proportional to 𝐸𝑐𝑜𝑙𝑙
ℓ−1/2

 and it is 𝐸𝑐𝑜𝑙𝑙
1/2

 for p wave and 𝐸𝑐𝑜𝑙𝑙
3/2

 

for d wave.  

To further confirm the origin of the shape resonances, we have calculated the elastic cross 

sections as shown in Figure 8. Similar enhancement in the elastic cross sections observed for 

v = 0, j = 0 and v = 1, j = 0 initial states of H2. According to Wigner’s threshold laws [18], 

elastic cross section becomes constant at ultra-low collision energies and is generally 

insensitive to vibrational and rotational excitations of the target molecule. Thus the sharp 

increase in the elastic cross section clearly indicates the contribution from the p-wave to the 

shape resonance (as shown in the inset of Figure 8).  

Finally, we present the state-selected rate coefficients in Figure 9 (a-b) for the reactive and 

elastic processes. Rate Coefficients were obtained by averaging the corresponding cross 
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sections over Boltzmann velocity distribution of the colliding species at a particular 

temperature T (see Eq.2.2.45).  

 

 

 

Figure 9: Temperature dependence of the rate coefficients (a) reactive and (b) elastic processes of D + H2 

(v, j)   HD + H reaction. Initial ro-vibrational states of H2 in panel (a) and (b) are shown in the legend. 
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On averaging the reaction cross section over the narrow velocity distribution at ultracold 

temperature limit, the rate coefficients attain a constant value according to Wigner’s 

threshold laws [18]. Thus, the temperature dependence of the rate coefficients at ultracold 

temperature limit behaves in complete disagreement with the familiar Arrhenius law [19]. On 

the other hand, at ultracold temperature limit, according to Wigner’s threshold laws, the 

elastic rate coefficients is directly proportional to the temperature as shown in  Figure 9 (b). 

The elastic rate coefficients don’t change much with vibrational excitation as the tunneling 

probability of the elastic process is hardly affected by diminishing barrier suppression.  

The sharp increase in the cross section for v = 0, 1 and j = 0 initial state leads to an increase 

in the reactive and elastic rate coefficients by two orders of magnitude around T = 0.001- 

0.1K. This can be used to design new experiments on ultracold D + H2 (0, 1) collisions. In 

this regard, we note that, these resonances are very difficult to identify experimentally, 

though similar short lived resonances are recently observed for Cl + HD collisions [20]. 

4.4 Temperature dependence of the rate coefficients in the ultracold and low 

temperature regime 

 

Figure 10: Temperature dependence of the rate coefficients of D + H2 (v = 0, j = 0)  HD + H reaction. 

Experimental measurements and theoretical calculations and Arrhenius extrapolation at high 

temperature from Ref. [6] has been shown for comparison. 
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In general, temperature dependence rate coefficients of elementary reactions are explained by 

the Arrhenius theory of activated complex, 𝐾𝐴𝑟𝑟(𝑇) = 𝐴𝑒−𝐵/𝑇 where, A is the frequency 

factor and B represents the activation energy of the reaction [21]. At room temperature or 

higher, considering both A and B to be temperature independent, the linear extrapolation of 

experimental 𝑙𝑛𝐾(𝑇) 𝑉𝑠 1/𝑇 (Arrhenius plot) is often used to estimate rate coefficients at 

other temperatures. However, it is experimentally observed that for a wide range of 

temperature Arrhenius plot for many reactions are not straight line (curved) [22-24]. The 

curvature is generally accommodated in a modified form of Arrhenius equation, by 

introducing additional temperature dependence in the frequency factor A. But even the 

modified Arrhenius equation fails to explain the rate coefficients towards extremely low 

temperature and exact quantum mechanical treatment becomes necessary to understand the 

chemical reaction dynamics [25]. 

 

The temperature dependence of the rate coefficients at ultralow temperature limit completely 

disagreement with the famous Arrhenius law as shown in Figure 10. Arrhenius extrapolation 

of the available high temperature rate coefficients from Ref. [6] leads to vanishingly small 

values of the rate coefficient at ultracold temperature limit. To our understanding, Inclusion 

of these accurate rate coefficients for temperatures  10 K will lead to significant change in 

the low temperature cooling function of HD molecule which can be used for better modeling 

of the astrophysical processes of the early universe.  

 

4.5 Dynamics of D + H2 (v, j = 0)  HD (v, j ) + H reaction in the thermal region (20-

500 K) 

 

At extremely low temperatures, H2 molecule in ground state (v = 0; j = 0) predominantly 

contributes to the overall D + H2(v, j) reaction. But, as the temperature is increased, 

contributions from higher rovibrational levels of H2 (v = 0,1,. . . , j = 1,2,3, . . .) become 

significant. Thus, obtaining state-to-state thermal rate coefficients are very expensive 

computationally and quickly becomes prohibitive for higher temperatures. The thermal 

reaction rate coefficients can be more efficiently calculated from the cumulative reaction 

probabilities, using the flux-flux correlation function method of Miller and coworkers 

[23,24], but contributions from individual initial levels are lost in that process. Since many 

initial rovibrational levels can contribute even at low temperatures, information on state-
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specific reaction cross sections are important, particularly, for the intermediate temperature 

range to understand the non-Arrhenius behavior of the reaction rate coefficients. In this part, 

we have tried to bridge the gap between the extremely low to moderately low temperature 

range (1K–500 K) through full dimensional accurate state-to-state quantum mechanical 

calculations. 

The state selected total reaction cross sections are shown in Figure 11 as function of collision 

energies of the individual rovibrational states of H2 as indicated in the legends. The cross 

sections in Figure 11 have been summed over all the final states in the product arrangement 

(H + HD (v, j) whose energies are lower than the total energy. Contributions from all the 

higher partial waves (up to J ~ 35) are added cumulatively to estimate the individual state-

selected reaction cross sections. The variation of 𝜎𝑣𝑗(𝛦𝑣𝑗
𝑐 ) with (𝛦𝑣𝑗

𝑐 ) for different initial 

states have similar profiles; they exponentially increase with increasing kinetic energy, 

reaching ~1𝑎0
2 at high collision energies. It is expected, as the kinetic energy overcomes the 

potential barrier of the respective initial state, the reaction becomes classically allowed and 

the cross sections increase exponentially.  

 

 
Figure 11: Collision energy dependence of reaction cross sections of D + H2 (v; j) reaction. Initial 

rovibrational states are indicated in the legend. D + H2 (v = 0, j = 0) reaction cross sections at ultralow 
collision energies calculated using BKMP2 [5] and Mielke et al. [15] PES are shown in the inset. 
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Due to the large energy barrier of reaction, the reaction cross sections are greatly reduced for 

the lower rovibrational states of H2 molecule. For reactions starting from excited 

rovibrational states of H2, quenching to lower states of D + H2 (v   v, ϳ ≠ ϳ) can be possible, 

but it is not considered for the present study. 

The cross sections of D + H2 (v = 0, j = 0) reaction for ultralow collision energies are shown 

in the inset of Figure 11. The reaction cross sections behave as (𝛦𝑐𝑜𝑙𝑙
𝑣𝑗

)1/2 at ultralow collision 

energies and produce a straight line in the log-log plot. This simple power law behavior is in 

accordance with Wigner’s threshold laws [18] and matches well with previous s-wave only 

calculations [9]. Reaction thresholds from the p and d waves (ℓ = 1 and 2) appeared as small 

humps in the cross sections at 𝐸𝑐𝑜𝑙𝑙~ 10-3 K and ~1 K. Here we note the difference between 

BKMP2 [5] and the Mielke et al. [15] PES in the ultralow collision energy range which 

gradually diminishes at higher collision energies. 

 

We have chosen the initial collision energies carefully such that contributions from very low 

collision energies are included for the D + H2 (ν = 0, j = 0–5) initial states. Contributions 

from ν = 1, j = 0, 1, 2 are also calculated in similar way to include in the overall reaction 

cross sections. Reaction cross sections and rate coefficients below 1 K for D + H2 (ν, j) 

reactions have been discussed in Section 4.2 [9, 19]. It is evident that, even with vanishingly 

small collision energies, the reaction can proceed through quantum mechanical tunneling. 

This is because the atoms and molecules have diffuse boundary (due to large de Broglie wave 

length) at low collision energies and the effective range of interaction increases with 

decreasing average velocity of the colliding species. For barrier dominated reactions, 

quantum mechanical tunneling is always theoretically present, but for D + H2 reaction 

tunneling effect is more dominant because of the low reduced mass and high potential barrier 

of the system. At ultracold temperature limit, the scattering dynamics is purely governed by 

Wigner’s threshold laws that produce power law relationships at ultralow collision energies 

[18]. 
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Figure 12: Same as Figure 11, total energy dependence of reaction cross sections of D + H2 (v = 0, j) 

reaction (in linear scale). The thermalization integrand, which is the energy distribution function times 

the energy-dependent cross section corresponding to T = 100 K, 300 K and 400 K are shown as dashed 

lines. 

 

To have an overview of the individual rovibrational contributions to the overall reaction cross 

sections, we have analyzed the initial reaction cross sections as a function of the total energy 

of the reaction in Figure 12. The total energy is measured from the potential minimum of the 

D + H2 (ν = 0, j = 0) level and represented as 𝛦 = ɛ00 + 𝛦00. Reactions of D with higher 

rovibrational levels of H2 starts to contribute as the total collision energy surpasses the 

corresponding channel threshold energies. At low temperatures, only slow or low kinetic 

energy collisions are dominant, but as the temperature is increased, high energy collisions 

start to contribute significantly. Thus, it is instructive to analyze the product of the reactive 

cross sections and Boltzmann distribution function, 𝛦𝑐𝑜𝑙𝑙
𝑣𝑗

exp (
−𝛦𝑐𝑜𝑙𝑙

𝑣𝑗

𝑘𝐵𝑇
⁄ ) to estimate the 

range of collision energies needed to calculate the rate coefficients for the temperature range 

of our interest. As shown in Figure 12, to obtain rate at T = 100 K we need to include cross 

sections starting from 𝐸𝑐𝑜𝑙𝑙 ~ 1 K to 2000 K (magnified 103 times in Figure 12) whereas to 

calculate rate at T = 400 K, we needed to calculate cross sections for 𝐸𝑐𝑜𝑙𝑙 ~ 104 K. Thus, 

calculation of cross sections for high collision energies requires inclusion of many partial 
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waves which makes this method computationally very expensive to estimate rate coefficients 

at higher temperatures. 

 

 

Figure 13: Arrhenius plot: the temperature dependence of the state-specific quantum mechanical rate 

coefficients for D + H2 (v = 0, j = 0–8) reaction. 

 

 

The rate coefficients calculated for different initial rovibrational levels have been shown in 

Figure 13 as usual Arrhenius representation. As we consider bulk phase experiment under 

equilibrium conditions, state selected rate coefficients are weighted by their relative 

populations. Relative populations are estimated from the Boltzmann factors 𝑔(𝑣, 𝑗) =

(
−ɛ𝑣𝑗

𝑘𝐵𝑇⁄ )

𝑄𝑣𝑗
, where 𝑄𝑣𝑗 = ∑ exp (

−ɛ𝑣𝑗

𝑘𝐵𝑇⁄∞
𝑣,𝑗=𝑒𝑣𝑒𝑛 ) + ∑ exp (𝑣,𝑗=𝑜𝑑𝑑

−ɛ𝑣𝑗

𝑘𝐵𝑇⁄ )[28]. 

Additional degeneracy factor of 3 is included for odd rotational levels of H2. Contribution 

from individual rovibrational levels are added to obtain the overall temperature dependent 

rate coefficients for the D + H2 (ν, j) reaction. 
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Here we note that, this work assumes full ortho–para interconversion at all temperatures; i.e., 

we assume even and odd rotational states are freely interconvertible, but cooling within the 

ortho and para manifolds separately will be a better model for some physical processes [1, 

29].  

 
Figure 14: Same as Figure 13, overall thermal reaction rate coefficients along with available experimental 

results. 
 

 
Figure 15: Overall temperature dependence of the thermal rate coefficients from ultracold to room 

temperature range using BKMP2 [5] and Mielke et al. [15] PES. Arrhenius fit to the experimental data 

from Ref. [6] and s-wave only rate coefficients from Ref. [9] are also shown for comparison. 

 



Chapter-4    Dynamics of D + H2 reaction 

76 
 

 
 

Figure 16: Fractional contribution of the individual rotational levels to the total reaction rate coefficients. 
 

From Figure 13 it is evident that major contributions below T = 20 K are obtained from the v 

= 0, j = 0 and v = 0, j = 1 initial arrangements. Significant contribution from higher rotational 

levels are obtained above T = 50 K. Reaction starting from v = 1 (not shown in the figure) 

becomes significant only above T ~120 K. In Figures 14 and 15, we have compared the 

calculated rate coefficients with available experimental and theoretical results [6, 8, 13, 30]. 

Calculated rate coefficients agree well with the experimental results of Mitchell and Roy [8], 

Mielke et al. [6] and time-dependent wave packet calculations of Ghosal et al.[13] for 

temperature above ~170 K. This reaction had been also studied theoretically at temperatures 

much lower than 1 K and our calculations match well with previous reports [9, 10]. In the 

intermediate range, as the temperature is reduced, the rate coefficients obtained from exact 

QM calculations start to deviate from the extrapolated experimental data [6] and attend a near 

constant value at T ~ 10 K (as shown in Fig. 15). This deviation from the regular Arrhenius 

behavior is attributed to the increased quantum mechanical tunneling. As the temperature is 

reduced, due to large de Broglie wave length effective range of interaction between the 

colliding particles increases, which lead to increase in reaction cross sections. The cross 

section (σ) increases as 1
𝑣⁄  , thus, with decreasing temperature, the rate coefficients, 
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expressed as the  average cross sections multiplied by the relative velocity of the colliding 

species, (𝑘 = ⟨𝜎. 𝑣⟩) becomes constant, as predicted by Wigner’s threshold laws [18]. 

 

In order to analyze this major deviation from the Arrhenius behavior at lower temperature we 

have shown (in Figure 16) the fractional contributions of the individual rovibrational states to 

the overall rate coefficients. Up to T = 500 K collisions of D with H2 in v = 0 and j = 0, 1, 2, 3 

contribute significantly. The low temperature reaction (T < 20 K) is purely governed by 

collisions with D with H2 in the rovibrational ground state, j = 2 and higher rotational levels 

start to contribute only above T > 50 K. Major contributions from odd rotational levels (j) are 

observed because of their rotational degeneracy factor of (2j + 1). Particularly, D + H2 (ν = 0, 

j = 1) dominates over all other rovibrational states and contributes ~50% to the overall 

reaction for the temperature range considered in the present study. 

 

4.6 Conclusions 

We have presented accurate time-independent quantum mechanical (TIQM) rate coefficients 

for the formation of ultracold HD molecules through D + H2 (v, j) HD (v, j) +H reaction 

in the ultralow temperature regime. The dynamical parameters such as the state resolved 

integral cross sections between rotational (j) and vibrational (v) levels and corresponding rate 

coefficients are computed between temperature T = 10-8K - 500K. It has been found that the 

exponential decrease of the rate coefficients with reducing temperature following Arrhenius’ 

empirical equation is not valid at ultracold temperature limit. At lower temperatures, the rate 

coefficients become independent of temperature (constant) which is the consequence of 

Wigner’s threshold law. Since the interaction of the atoms and molecules is very much 

sensitive to the potentials, occurrence of reactive resonances is very common. We have 

observed a resonance near ~10-2K and discussed its origin. Finally, we have calculated the 

rate coefficients of both inelastic and reactive processes which are important for the 

calculation of the cooling functions and in understanding the evolution process. 
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Chapter 5 

Dynamics of H + HD (v = 1, j = 0)   H2 (v = v, j = j ) + D reaction in the 

ultracold to thermal temperature limit 

5.1 Introduction 

Two small molecules, H2 and HD, in their neutral and ionic forms have been found to be the 

most important interstellar coolants which helped to reduce the overall temperature of the 

early universe. To understand the evolution process, different research groups have studied 

the effectiveness of the cooling processes by considering hundreds of reactions  between 16 

species of neutral and ionic forms of H2 and HD [1, 2]. Particularly, Glover et. al. have  

modelled the role of H2 and HD molecules in the interstellar cooling by incorporating the rate 

coefficients of the collision process involving these molecules for a wide range of 

temperatures [3]. It has been found that the molecular HD is more effective coolant because 

of its intrinsic dipole moment and high reduced mass [4]. This is one of the reasons we have 

studied in detail the destruction of HD molecules through the reverse pathway of the D + H2 

reaction in the previous chapter.  

Over the years, H + HD reaction has become a benchmark system as it is a simple system 

electronically and a benchmark prototype for a several theoretical studies. Early studies on H 

+ HD reaction had been reported by Takayangi et. al. [5-7]. They have performed detailed 

investigation of D + H2 and H + HD reactions to verify the Wigner’s threshold law at low 

temperature and tested different potential energy surfaces for dynamical calculations 

available at that time. Quasiclassical trajectory calculations were performed by Hochman and 

Sato [8] using LSTH [9-11], DMBE [12],  potentials and the dynamical outcomes were 

analyzed for H + HD, D + H2 and H + D2 reactions. Time dependent wave packet approach 

have been also employed to understand the transition state resonances considering 

dimensionality effects on H + HD, D + HD collisions [13].  Recently, the H exchange process 

in H + HD collisions has been studied by Balakrishnan et. al. considering geometric phase 

effects in the ultracold temperature regime [14, 15]. This reaction is also studied in thermal 

temperature regime [16, 17]. Scattering calculations were performed both theoretically and 

experimentally to understand the collisional events from moderate to thermal regime [18-23]. 

But, according to best of our knowledge, none of the previous studies have reported accurate 

rate coefficients for such a wide temperature range. 



Chapter-5  Dynamics of H +HD reaction 

81 
 

Based on our extensive literature search, it has been understood that the followings aspects of 

the H + HD (v = 1, j = 0)   H2 (v = v, j = j) + D reaction need more detailed investigation.  

i) Effect of vibrational excitation of the reactant molecule on the overall reaction 

cross-sections and rate in the cold and ultracold regime. 

ii) Comparative study of hydrogen exchange process with other possible reaction 

channels, such as quenching and the formation of H2 molecule. 

iii) Existence of virtual and/or bound states near the reaction threshold which 

generally leads to enhancement of the reaction cross sections.  

iv) The effect of higher partial waves for higher temperatures/collision energies.  

 In this chapter, we have presented the dynamics of this reaction at the cold and ultra-cold 

temperature limit. We have also focused on the microscopic details to understand the effect 

of resonances due to various bound or quasi-bound states present in the potential energy 

surface.  

5.2 Reactive scattering dynamics of H + HD reaction in the ultracold temperature limit.  

For illustrative purpose, we have shown all the elastic and inelastic collision processes of the 

H + HD reaction in Figure 1. The inelastic processes can be of reactive or non-reactive type 

(quenching). In reactive collision, two types of reactive processes can occur, (a) formation of 

molecular hydrogen (H2) and (b) hydrogen exchange reaction, where the hydrogen atom of 

the HD molecule is replaced by another hydrogen atom. Having more number of outgoing 

channels due to different arrangements, study of this reaction is more complex and 

challenging computationally compared to D + H2 reaction.  

We have also analyzed the threshold of the different vibrational and rotational levels and 

figured out that reaction between H + HD (v = 0, j = 0) is endo thermic in nature for ultralow 

energy collisions, so we have restricted our discussion on reactive scattering dynamics of                       

H + HD (v ≥ 1, j = 0) collisions.  
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Figure 1(a): Elastic, quenching and reactive scattering events due to the collision of H and HD. 

 

Figure 1(b): Comparison of the vibrational energy levels (threshold energies) of HD and H2 molecule. 

We have presented the cross sections for the reactive, quenching and exchange process of          

H + HD (v, j) → H2 + D reaction in Figure 2. Using the formalism described in chapter 2 for 

initial vibrational levels of HD molecule to v = 1, 2, 3, 4, 5, 6 and j = 0. Rotational quantum 

level was considered to be the minimum (j = 0) to avoid additional centrifugal potential 

barrier due to rotation of the higher rotational levels. To ensure convergence the cut-off 

energy (𝐸𝑚𝑎𝑥) for the rovibrational basis sets is chosen to be 4.25 eV and all rovibrational 
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channels below 𝐸𝑚𝑎𝑥 in the reactant and product arrangement are included in the dynamical 

calculations. The coupled equations are propagated up to 
𝑚𝑎𝑥

= ~120 𝑎. 𝑢 using small 

integration steps 𝑑 = 0.002 a.u.  We have used the most recent Mielke et. al. PES for the 

present calculation [24]. According to our test calculations, these parameters are sufficient to 

achieve numerical convergence for studying reactive collisions for this reaction for H + HD 

(v =1- 6, j=0) reaction. 

 

The reaction cross sections shown in Figure 2 are presented as a function of collision energy 

of the H + HD (v, j) initial states. The collision energies are scaled from the threshold 

energies of the respective initial channel. The total reaction cross sections are calculated from 

the ultra-low collision energy (~ 1 K) regime to 4000K. A fine energy grid of 500 points is 

used to gather scattering information in the ultracold, intermediate and thermal energy range. 

For the cold (1K < T < 1mK) and ultra cold (< 1mK) collision energy regime, only s-wave 

scattering with total angular momentum J = 0 is required to estimate the cross sections.  

In order to understand the behavior of all the inelastic processes (reactive, H exchange and 

quenching from top to bottom), cross sections are presented in three panels as functions of 

collision energy of the initial colliding partners. It is evident from Figure 2 that low and 

ultralow energy collision cross sections are directly proportional to the energy of the initial 

vibrational quantum level. The cross sections can be distinguished for both the ultracold and 

thermal regimes. In the ultra low collision energy range, the cross sections behave according 

to the Wigner’s threshold law i.e. reaction happens through quantum mechanical tunneling. 

 

In Figure 2 we have shown the cross sections at collision energy of 1K for H + HD (v, 0) 

reaction. Collisions initiated from all these reactant states do not have sufficient energy to 

overcome the potential energy barrier and the product formation mostly occurs through 

quantum mechanical tunneling.  Due to extremely low kinetic energy of collisional partners, 

transition from one state to other is difficult, but they can exchange their internal energy. 

Thus, the cross-sections for the lower vibrational states (v = 1 to v = 4) are dominated by the 

elastic collisions.  As we go from lower vibrational states to the higher vibrational states of 

HD molecule, the elastic cross sections are diminished considerably and became lower than 

the inelastic process at v  6.  
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Figure 2: Computed cross-sections as a function of collision energy of the initial state of the interacting 

particles for the reactive, H exchange and quenching processes respectively (from top to bottom) as 

described in the Figure 1. 
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Elastic scattering cross sections manifest from the conservation of angular momentum of 

reacting species i.e. the rovibrational state of HD before and after the collision remains the 

same. Laser cooling technique is used to get the molecules at cold and ultracold temperatures. 

Thus, the elastic cross sections play the most crucial role in stabilizing the molecules with a 

desired quantum state at ultracold temperatures. In fact, the ratio between the elastic and 

inelastic cross sections becomes the most important. Inelastic cross sections have inverse 

relationship with the collision energies at ultracold temperature limit, on the other hand, 

according to Wigner’s threshold law; elastic cross sections become constant at ultra-low 

collision energies. 

 

Figure 3: For different initial rovibrational channels of HD molecules, Elastic cross section is plotted as a 

function of Collision energy (Kelvin). Variation in the position of threshold resonance for different 

vibrational states have been shown in the inset. 

The elastic cross sections from different initial rovibrational states have been shown in Figure 

3. Elastic cross sections are calculated from the scattering length (𝑎) which is real when only 

elastic scattering collisions may occur and complex in case of multichannel scattering.  
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𝜎𝑒𝑙 = 4𝜋|𝑎|2 = 4 𝜋 ( 𝛼2 + 𝛽2) 

Where 𝑎 = 𝛼 − 𝑖𝛽 is the s-wave scattering length. 

For a given initial channel (ν, ϳ) in the entrance arrangement, the scattering length is extracted 

from the low k-expansion of the diagonal element of the s-matrix. 𝑠𝑎𝑣𝑗,𝑎𝑣𝑗 = 1 − 2𝑖𝑎𝑎𝑣𝑗𝑘 =

1 − 2𝛽𝑎𝑣𝑗𝑘 − 2𝑖𝛼𝑎𝑣𝑗𝑘 , 𝑎 is the entrance channel arrangement, v is the vibrational quantum 

state, j is the rotational quantum state and 𝑘 is the momentum. 

Collision energy dependent elastic cross-sections for the H + HD collisions of all initial states 

of HD (  6) give results that are nearly identical at energies above 1K which is unlikely in 

case of inelastic cross-sections. However, it is clear that in the subkelvin regime they differ 

significantly as shown in Figure 4. All these cross-sections were plotted by considering the 

contributions from s-wave but these oscillations generally lose its significance as higher 

partial waves start contributing.  

 

Figure 4: Effect of vibrational quantum number on the Cross-Sections from all the processes including 

elastic event. 
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All the inelastic processes, the H exchange, H2 formation and the quenching are heavily 

suppressed for the lower vibrational states due to the potential energy barrier. Because of the 

long range interactions at this ultralow collision energy (10-6K) of the colliding pairs, H 

exchange is favorable at v = 1. The potential barrier height is significantly lowered from the 

lower vibrational states to the higher vibrational states, thereby, significantly increasing the 

inelastic cross section as the reactant molecules can easily cross over the reaction barrier. 

This effect of barrier suppression on different inelastic processes are seen from v = 1 to v = 6. 

At v  2, H2 formation process is dominated over all other inelastic processes.  It can be 

observed that for higher vibrational states (v ≥ 8) the effect due to this repulsive barrier has 

been disappeared due to the higher initial threshold energies.   

5.3 Rate coefficients in the ultracold temperature regime: 

The temperature dependent rate coefficients for the reactive, quenching and hydrogen 

exchange processes are shown in Figure 4(a-c). Rate coefficients are calculated as the 

average product of the relative velocity of the colliding species and the corresponding cross 

sections (𝐾 = < 𝑣𝑟𝑒𝑙. 𝜎 >).  

The relative velocities are estimated from the Boltzmann distribution of the collision energies 

corresponding to the temperature T. At ultra-low temperatures (T ≤ 1mK), the relative 

velocity distribution is very narrow and the rate coefficients behaves according to the 

Wigner’s threshold law. The rate coefficients corresponding to all the inelastic process attain 

constant value in the limit of zero temperature which is the consequence of inverse velocity 

(1/𝑘) dependence of the corresponding cross-sections. The rate coefficient for the hydrogen 

exchange process is dominated at v = 1 over other inelastic processes (quenching and the 

formation of H2 processes, according to Figure 4). 

As the initial vibrational quantum level increases, barrier height of the reaction potential 

diminishes and the corresponding reaction rate would be faster. It can be seen from Figure 

4(a-c) that the magnitude of rate coefficients is constant in the low temperature region which 

is in contrast to the usual Arrhenius behavior of the temperature dependence of the rate 

coefficients.  At higher temperatures (T > 150K), the rate coefficients exponentially increase 

with temperature gradually behaving according to usual Arrhenius behavior.  
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Figure 5: Temperature dependent rate coefficients of the reactive and non-reactive scattering of H+HD 

(v, j) reactions. Rate coefficients for all the process have been plotted as a function of temperature 

(similar to Figure 2). 
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5.4 Threshold resonances: 

As it can be seen from Figure 6, Sharp resonance structures were observed in the elastic and 

all inelastic scattering cross sections of H + HD (v, j) reaction in the collision energy range of 

120K-140K. These resonances appear due to the matching of the collision energy of the 

initial state with threshold of the next higher rotational levels of HD (v, j = 1, 2,….).  From 

Figure 6, it is evident that the resonance peak shifts by ~5K towards lower collision energies 

with the increase in each initial vibrational quantum level. This manifests the anharmonic 

nature of the potential and the reduced gap between the rotational levels at higher vibrational 

levels.  

 

Figure 6:  a) Represents the position of threshold resonance corresponds to each vibrational quantum 

number. b) Shows the conformation of threshold resonance with the change of mass of Hydrogen. 

The origin of these resonances due to the presence of a quasi-bound state in the van der 

Waals well in the reactant arrangement. To verify this, we have performed a thought 

experiment by gradually modifying the energy of the quasi-bound state (if any) by changing 

the reduced mass of the colliding pairs [25]. We have varied the mass of hydrogens from mH 

= 1.06 to mH = 1.10 a.u) for this purpose. As the reduced mass of the system is increased, the 

energy difference between the rovibrational energy levels will be reduced which leads to the 
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shifts in the threshold energy. As observed in Figure 6(b), with increase in the mass of the 

hydrogen, the position of the peak towards lower kinetic energy, but there is no change in the 

intensity of the oscillation. This experiment clearly ruled out the possibility of any quasi-

bound or virtual state very close to the reaction threshold and confirms the origin of these 

resonances purely from the crossover of the collision energy with the threshold of the higher 

rotational levels.  

5.5 Connecting ultracold to thermal regime: Contribution of higher partial waves 

 

 

Figure7: Contribution from the individual partial waves (s, p, d waves) in the cold and ultra-cold regime. 

 

In the cold and ultracold energies, we distinguish two different regimes of collision energy 

dependent reaction cross-sections.  At Ecoll ≤ 1mK, Wigner’s threshold law obeyed followed 

by a gradual transition into the barrier dominated regime at higher collision energies. It can 

be clearly understood from Figure 7, that below ~1μK (10-9 eV), the reaction cross sections 

governed by purely s-wave (ℓ = 0) collisions but from 1 K onwards, higher partial waves 

started contributing.  
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Figure 8: The initial state selected cross-sections: contribution of higher partial waves. Cross-sections as 

function of collision energy plotted for H + HD → H2 + D (formation of H2 ) reaction.  

 

For calculating the cross-sections for the contribution of higher partial waves, we have taken 

the initial state selected channels of reacting molecules (HD) and all the product channels 

were summed up. Contribution of all the higher partial waves (upto J ~ 45) taken into 

account to estimate the individual reaction cross sections. Starting from v = 1,  j = 0  to v = 1, 

j = 8, the variation of cross-section with the collision energies increases exponentially and 

reaches unity at high collision energies. There are two sharp peaks have been observed for v 

= 1, j = 0 and v = 1, j = 1. They are the signatures of threshold resonances as described in 

Figure 5. Since we have taken up to J ~ 45, the position of the peak is shifted by ~5K and for 

j = 1, it appeared at 256 K. These resonances are due the matching of collision energy with 

the threshold energy of v = 1, j = 1 and v = 1, j = 2.  
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Figure 9: Rate coefficients (cm3 s-1) are calculated as a function of temperature (0K) for different 

rotational states. 

The rate coefficients were calculated (Figure 8) for the reactive process (H2 formation) 

considering different rotational levels of HD in a normal way as described in the ultra cold 

part of this chapter. From the Figure 7, it is clear that the p-wave starts contributing from 

1mK and d-wave started contributing from 1K. So if we go beyond 1K, it is required to 

consider all the possible higher partial waves. Close observation at different collision 

energies tells that up to 500K, it is needed to consider 10-15 partial waves. For these 

calculations, the numerical parameters are the hyperradius 
𝑚𝑎𝑥

= 50 𝑎. 𝑢,  =

 0.01 𝑎. 𝑢, 𝐸𝑚𝑎𝑥 = 3.00𝑒𝑉 𝑎𝑛𝑑  𝑗𝑚𝑎𝑥 = 15 .  

To calculate the rate coefficients particularly at 500K, we need to have the cross sections 

ranging from 1K to 104 K which has been conformed from the Boltzmann distribution 

(relative velocity distribution) of the reacting species. And also we did not average the 

contribution of all individual rotational levels as there are no experimental results available 

for overall rate coefficients of this reaction in the ultracold temperature limit.   
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In the high temperature regime (~ 500K), the converged results were obtained for J = 35 and 

since average value of 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 . 𝑣𝑟𝑒𝑙   have been taken into account, all the sharp peaks were 

disappeared.  

5.6 Conclusions 

We have presented the dynamics of H + HD (v, j) reaction from the ultracold to the thermal 

temperature limit.  Unlike H2, HD molecule has some permanent dipole moment and because 

of its higher reduced mass, the ro-vibrational levels are closely spaced which makes it a better 

interstellar coolant. For the H + HD reaction, elastic, quenching, exchange and the formation 

of H2 processes have been treated separately. The effect of higher rovibrational initial states 

on the dynamics is also analyzed and it has been found that the quenching process is more 

dominant over H exchange and the formation of H2 in the ultracold regime. 
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Appendix 

 Computational Investigation on the Mechanism of n-BuLi Triggered 

phospha-Brook Rearrangement 

(Mecahnistic  Study) 

A.1 Abstract 

The mechanism of n-BuLi triggered phospha-Brook rearrangement has been explored using 

density functional theory (DFT) calculations. The results indicate facile formation of Li-atom 

stabilized five-member cyclic transition state, leading to excellent catalytic effect of n-BuLi 

in trace amount, even for less reactive carbonyl compounds. The rate coefficients calculated 

using transition state theory matched well with the experimentally observed time taken for 

completion of the reactions. 

A.2 Introduction 

The Phospha-Brook rearrangement, an intramolecular transfer of a phosphoryl group from 

carbon to oxygen atom, exhibits versatile applications in the C-C bond forming reactions [1-

7].  This rearrangement is commonly used to synthesize highly functionalized phenanthrene 

derivatives [8], β-amino acid derivatives [9] and enantioselective [10] phosphates 

compounds. Base catalyzed reaction of diethyl phosphite with carbonyl compounds through 

phospha-Brook rearrangement is a popular way towards synthesis of organophosphate 

compounds (eq. 1). 

 

 

 

Different bases such as NEt3, NaH, K2CO3 KOtBu, and DBU were individually examined in 

literature [7-11]. Our communication [12] on n-BuLi triggered phospha-Brook rearrangement 

to prepare organophosphate compounds (Scheme 1) is promising because of its wide range of 

application (including both activated and inactivated allylic/naphthylic carbonyl compounds), 

mild conditions (room temperature), requirement of catalytic amount of base (~0.1 equiv) and 

R1 R2

O HP(O)(OR)2

R1 R2

O
P(O)(OR)2

base

(eq 1)
(R= alkyl, aryl)
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excellent yield of the product. Higher reactivity of the electron-deficient carbonyl compounds 

suggests a possible formation of a carbanion like intermediate for this reaction. 

 

 

 

 

 

 

 

Scheme 1: Proposed mechanism of n-BuLi triggered phospha-Brook rearrangement as in Ref.[12]. 

Based on earlier literature reports, it was proposed that this reaction is triggered by n-BuLi to 

form an activated Li-diethyl phosphite, which consequently reacts with a carbonyl compound 

to form the active intermediate II (Scheme 1). The reactive species II (Scheme 1) 

spontaneously undergoes phospha-Brook rearrangement through the formation of a three-

member cyclic transition state III (Scheme 1), resulting in formation of carbanion 

intermediate carbanion A.  This step was considered to be the rate determining step for the 

whole process [12]. However, in contrast to the other literature reports, favourable reaction of 

less reactive acetophenone in presence of trace amount of n-BuLi appeared quite surprising to 

our understanding. This exceptionally good catalytic efficiency of n-BuLi motivated us to 

investigate the role of Li+ in phospha-Brook rearrangement. 

The transition states having fleeting existence (zero life time) are often difficult to identify 

experimentally. However, they can be characterized theoretically by analysing the saddle 

points on multidimensional potential energy surface of the reaction. Although, there are a few 

theoretical investigations [13, 14] on Brook rearrangement, such studies on phospha-Brook 

rearrangement are mostly inadequate. Herein, we present a comprehensive investigation on 

the mechanistic pathway of n-BuLi-triggered phosphate formation from diethyl phosphite and 

carbonyl compounds using density functional theory (DFT).  
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A.3 Computational Details 

All calculations have been performed using Gaussian 09 software suite of programs [15]. In 

order to have a good starting point, we have optimized the structures of all the reactants, 

products, intermediates and the transtion states using B3LYP/6-31G (d, p) level of theory 

without any symmetry constrains. We have reconfirmed the structures using other density 

functionals and higher basis sets with diffuse functions e.g. 6-31+G (d, p).A comprehensive 

table of the calculated activation energies and other thermodynamic parameters using M06/6-

31+G (d, p) and B3LYP/6-31+G (d, p) level of theory has been included in the following 

table.  

System Activation 

Energy(Ea) 

(Kcal/mol) 

Free Energy 

change(ΔG#) 

(Kcal/mol) 

Rate Coefficients(s-1) Reaction 

Time 

B3LYP M06 B3LYP M06 B3LYP M06 

4-Methyl 

benzaldehyde 

33.93 30.65 47.30 45.24 1.34 ×10-22 4.24 ×10-21 
~ 4 h 

Benzaldehyde 32.76 29.02 46.04 42.28 1.10 ×10-21 6.33×10-19 ~ 4 h 

4-Chloro 

benzaldehyde 

24.90 15.86 18.46 30.34 1.80 ×10-1 3.53 ×10-10 ~ 15-

20min 

4-Methyl 

acetophenone 

23.79 18.41 37.28 32.39 2.90 ×10-15 7.00 ×10-11 
~ 4 h 

Acetophenone 22.43 16.9 35.39 30.75 6.98 ×10-14 1.78 × 10-10 ~ 4 h 

4-Chloro 

acetophenone 

14.97 2.79 29.60 18.00 1.23 ×10-9 3.96 ×10-1 ~ 15-

20min 

Table 1: Comparison of thermal rate coefficients using B3LYP and M06 different functionals. 

The optimized structures are confirmed as minimum energy conformations from the real 

(positive) frequencies and the transition states are identified with a single imaginary 

frequency vibrational mode along the reaction coordinate. Mathematically, for a transition 

state, the second derivate of the potential energy should be positive for all nuclear coordinates 

except the reaction coordinate which represents a maximum along that particular direction. 

This fact is manifested as an imaginary (negative) frequency along the reaction coordinate.  

n-BuLi is generally unstable and explosive in nature in its pure form. Hence, a trace amount 

(~1%) of n-Hexane has been used to dissolve the n-BuLi during the experiment. For this 

reason, we have considered n-Hexane as a primary solvent (dielectric constant, ɛ=1.8819) in 

our theoretical calculations. We have used the integral equation formalism of the polarizable 

continuum model (IEF-PCM) [16] which is the default Self Consistent Reaction Field 

(SCRF) method in G09 software.  
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A.4 Results and discussion 

Based on current DFT calculations, we have proposed that the n-BuLi catalyzed reaction of 

diethyl phosphite with carbonyl compounds proceeds through a two-step process (Scheme 2). 

The first step, a reaction between the activated Li-diethyl phosphite with carbonyl compound, 

takes place via two possible transition states (TS1a or TS1b) resulting the intermediate 

carbanion A (see Scheme 2). Although Li+ ions tend to form complexes with higher 

coordination numbers, all our theoretical attempts to optimize a possible transition state with 

higher coordination number of Li were unsuccessful. We have tried with multiple ketones as 

ligating centre but failed to optimize those large structures. Most likely, such complex 

formation is completely redundant in the presence of trace amount of non-polar solvent (e.g. 

n-hexane in the present study, with no coordinating atom), thus, we have restricted our 

discussion considering Li having maximum coordination number of two (II) in this report. 

 

 

 

 

 

 

 

 

 

Scheme 2. The plausible mechanistic pathway of the n-BuLi catalyzed reaction of Acetophenone (R=-CH3) 

and diethyl phosphite. 

The geometry optimized structures of TS1a and TS1b for the reaction of acetophenone and 

diethylphosphite are shown in Figure 1a and Figure 1b, respectively. In the second step, the 

carbanion A undergoes proton exchange with another diethyl phosphite molecule to form 

organo-phosphate B (see Scheme 2), leading to regeneration of Li-diethyl phosphite, which 

again participates in the reaction cycle. A four-membered cyclic transition state (TS2) with 

C-Li-P-H linkage has been identified for this proton transfer step. Geometrically optimized 

structure of TS2 for the reaction of acetophenone and diethylphosphite is shown in Figure 1c.  
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Figure 1: Geometry optimized structures of the transition states (a) TS1a, (b) TS1b and (c) TS2 for the 

reaction of acetophenone and diethyl phosphite in the presence of n-BuLi as mentioned in Scheme 2.   

(Color: C-grey, O-red, P-orange, Li-pink and H-white) 

In search for an appropriate justification for the formation of transition states TS1a and 

TS1b, a detailed scrutiny of the geometrically optimized structure has been carried out.  

 

 
 

Figure 2: Electrostatic potential charges & surface (ESP charges). (Calculated using the method 

implemented in Gaussian 091 using   6-31G (d, p) basis set. For the illustration purpose, the charges on 

Hydrogen and the carbon have been omitted. The Mullikan charge on P indicates the nucleophilic nature 

of P center (-0.1).) 
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The complete ionization of Li atom from Li-diethyl phosphite should lead to the formation of 

TS1a with a puckered five-member ring structure having P—O—C—Li—O linkage, where 

no direct interaction between carbonyl C and P is observed. The imaginary frequency of 

vibration for TS1a indicates the formation of the P—O—C linkage. Consequently, the 

strained structure of TS1a spontaneously rearranges to form a firm P—O—C bond with the 

Li+ ion stabilizing the negative charge on the carbon atom.  

On analysing the electrostatic potential (ESP) of Li-diethyl phosphite, it was evident that the 

electron density on the phosphorus is delocalized on the surrounding oxygen atoms (Figure 2) 

referring the PLi bond might have some partial covalent character. Thus, the addition of an 

aldehyde or ketone to the Li-diethyl phosphite moiety can favour the formation of two new 

bonds between PO and LiC leading to the four-membered transition state (TS1b). In the 

optimized structure of TS1b, the Li atom acts as a bridge between the C and P atom. 

Therefore, the carbonyl C atom is unable to approach much closer to the P atom, resulting in 

a very week nonbonding interaction between the carbonyl C and P atoms. The imaginary 

frequency vibrational mode in TS1b depicts the transfer of Li atom from P towards C, as P 

and C moves away from each other. The existence of such transition state structures TS1a 

and TS1b are confirmed for both electron–deficient and electron-rich aldehydes and ketones.  

It is noteworthy that, considering the polarity of simple carbonyl compounds used in this 

reaction, the first step of the phospha-Brook rearrangement seems the addition of the anion of 

phosphite to the carbonyl carbon, which was proposed earlier [12].  
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Figure 3: Intrinsic reaction coordinate (IRC) for the reaction of Li-diethyl phosphate with Acetophenone. 

But further calculations on intrinsic reaction coordinate (IRC) scan to identify the minimum 

energy pathway connected to the transition states,  we found only TS1a leads to the 

formation of carbanion intermediate A. The rearrangement of both transition state III 

(Scheme 1) and TS1b (Scheme 2) do not lead to the formation of carbanion intermediate A, 

which could be experimentally isolated for the reaction of carbonyl compounds containing 

electron withdrawing substituents such as, fluoroarene or trifluroarene, which provides 

significant stability to the intermediate A (Figure 3). Therefore, we have considered the 

formation of TS1a as the rate determining step for this reaction. 

The energy profile for the complete reaction was derived from the thermodynamic parameters 

obtained from the DFT calcaulations. The relative changes in the free energies between the 

reactants, transition states, intermediates, and products formed during the course of the 

reaction have been determined and presented in the energy profile diagram in Figure 5. 

Considering the formation of TS1a as the rate determining step, we have calculated the rate 
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coefficient, which is expected to correlate with the overall kinetics of the reaction.  From 

transition state theory,[17] the rate coefficients (k) can be calculated as,  

𝒌 =  
𝑲𝑩 𝑻

𝒉𝒄𝒐
𝒆

−𝜟𝑮#

𝑹𝑻       (Eq. 2) 

Where, ∆𝑮# is the change in the free energy from reactants to the rate determining transition 

state 𝒄𝟎 is initial concentration, and T is temperature considering 𝒄𝟎 = 𝟏 and T=298.15 K, 

rate coefficients are calculated for substituted aldehydes and ketones and listed in Table 2..

 

Figure 1: The energy profile diagram for the reaction of acetophenone and diethyl phosphite in the 

presence of n-BuLi using B3LYP/6-31G(d,p) level of method. 

 

Usually, the presence of electron withdrawing or releasing substituents adjacent to the 

carbonyl group has crucial control on the electrophilicity and polarizability of the carbonyl 

group resulting in faster/slower rate of the reaction, which is exponentially related to the ∆𝑮# 

of these reactions. For phospha-Brook rearrangement, the carbonyl compounds containing 

electron withdrawing (p-chloro) group reasulted in faster kinetics compared to those having 

electron releasing (p-methyl) substituents. A good corelation was observed between the 

calculated rate coefficients and the actual time taken for the completion of the reaction for 

both the aldehyde and ketone reactants (see Table 2) 
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Entry Substrate Activation 

Energy (Ea) 

 

Free 

Energy 

(ΔG#) 

Rate 

coefficients 

(s-1) 

Reaction 

Time (from 

Ref. 16) 

1 4-Methyl 

Benzaldehyde 

27.91 40.51 1.24×10-19 ~ 4h 

2 Benzaldehyde 27.1 39.65 5.33×10-19 ~ 4 h 

3 4-Chloro 

Benzaldehyde 

14.15 27.17 7.45×10-8 ~ 15-20min 

4 4-Methyl 

Acetophenone 

16.9 30.52 2.62×10-12 ~ 4 h 

5 Acetophenone 15.84 29.24 2.27×10-11 ~ 4 h 

6 4-Chloro 

Acetophenone 

11.08 25.14 2.31×10-8 ~ 15-20min 

Table 2: Calculated Activation energies, Free energies and the rate coefficients of reaction between Li-

diethyl phosthate and substituted aldehydes and ketones with the same level of method.  Activation 

energy and Free energies were given in Kcal/mol. 

A.5 Conclusions 

We have  analyzed the catalytic efficiency of n-BuLi in the formation of organophosphates 

using diethylphosphite and carbonyl compounds applying DFT calculations. The 

computational results suggested two possible transition states, out of which, Li+ ion stabilized 

five-member cyclic transition state (TS1a) is found to be the rate determining step.The 

reaction rate coeffiecients has been calculated for the reaction involving diversely substituted 

(electron withdrawing and electron releasing) carbonyl compounds. A good corelation has 

been observed between the theoretical rate coefficients and the actual time taken for 

completion of the reactions. We hope that the insight gained in this study will be helpful for 

further experimental studies in this area. 
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Future Perspective 

In the view of astrophysical conditions of the early universe, the initial phase of the universe 

dominated by more number of ions compared to the neutral molecules. In comparison to the 

neutral systems, ions can interact from longer distance due to the difference in the long-range 

polarization forces. Since we have mainly focused on the atom-diatom neutral reactions in 

this thesis, the following ion-molecule reactions can be studied in future.  

H+ + H2  H2
+ + H 

D + H2
+  HD + H+ 

H+ + HD  H2
+ + D 

H + HD+  H2
+ + D 

      H+ + D2  HD + H+ etc.  

Hydrogen is most abundant species in the universe. Thus, reactions involving its ions have lot 

of astrophysical importance. We also need to consider the reaction between the 

corresponding negative ions. Because of the strong attractive forces between reacting species, 

optimization of the numerical parameters (as discussed in chapter 3) would be more critical.  

One has to calculate reaction probabilities, cross sections, and rate coefficients etc., using 

accurate quantum mechanical treatment. For all these reactions, the main objectives would be 

to study the effect of rovibrational excitation of target diatomic molecular ions, existence of 

short-lived resonances and most importantly, estimation of accurate rate coefficients ranging 

from ultracold to thermal temperature regime.  

Reactions involving the ions may not have reaction barrier. For this reason, the reactive 

scattering code ABC has to be tested and substantial changes might be required to treat 

barrierless reactions. Further, obtained results have to be compared with the available 

experimental data. Once the dynamical observables are calculated, one can combine them 

with their abundance to calculate the cooling functions as a further step to model the 

evolution process.  
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