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ABSTRACT 

An attempt has been made in this thesis to investigate the self-similar solutions 

for some compressible flow problems behind the strong shock waves propagating 

into a non-ideal gas of Mie-Gruneisen equation of state (EOS). With the aid of 

similarity method, group invariance method, Chester-Chisnell-Whitham (CCW) 

method, finite difference method etc., the approximate analytical and numerical 

solutions for the self-similar flows behind strong shock waves are obtained. The 

effect of non-idealness of the equation of state, magnetic pressure, effect of 

viscosity etc., on the flow variables and the similarity exponent 𝛼 are investigated. 

The thesis consists of eight chapters. The first chapter is devoted to literature 

survey on the subject and a brief account of the problems investigated. Chapter 

two consists of brief account of the literature reviewed, the gap areas, the concept 

of model generation and the solution procedure. 

In the third chapter, similarity solutions to shock waves in non-ideal 

magnetogasdynamics is presented. We consider system of partial differential 

equations describing the one dimensional unsteady cylindrical flow of an inviscid 

non-ideal gas with dust particles and study various aspects of non-linear wave 

propagation. The medium generated due to implosion is assumed to be of Mie-

Gruneisen type with magnetic or non-magnetic in nature. Impulsive motion of 

the piston may produce instantaneous unsteady shock which may grow or decay 

with time, depending on the condition of the undisturbed gas and the behaviour 



of the piston. The forms of these waves are altered by convection which distorts 

the wave form by causing the compression phase to move forward faster than the 

expansion phase. Thus it is assumed that plasma is generated with an infinite 

electrical conductivity and permeated by an axial magnetic field orthogonal to the 

trajectories of gas particles. Similarity solution to this problem is attempted. 

Analytical solution to the assumed model is difficult and numerical solution is 

presented. The numerical solution presented provides a global solution to the 

implosion problem which is valid for a range of physically meaningful parameters 

which represent the EOS of Mie-Gruneisen type. In this work we presented the 

EOS generated by considering the material property. This process defines both 

dusty gas and condensed matter EOS. This concept is different from the existing 

models of the definition of dusty gas and condensed matter and is more realistic 

than mere assumption of perfect gas. It is assumed that the motion of the piston 

obeys exponential law. Numerical computations are performed to obtain the 

similarity exponent for the CCW rule using MATLAB. The computed values of 

the similarity exponent are in good agreement with those obtained using CCW 

method and are presented in tabular form. This approximation provides a quick 

and relatively accurate determination of the similarity exponent and stability of 

shocks in non-ideal gas. Also the numerical description of the flow field behind 

the wave front in a non-ideal magnetogasdynamics regime is presented. An 

attempt is made as to show the magnetic field strength effect on the flow 



parameters in a non-ideal medium. The effects are presented in the form of graphs 

pictorially. 

In chapter four, numerical solution to strong cylindrical shock wave in the 

presence of magnetic field is studied. The medium generated due to implosion is 

assumed to be of Mie-Gruneisen type with or without magnetic material. In the 

implosion process (by impulse method) plasma is assumed to be generated. It is 

assumed that this plasma has an infinite electrical conductivity and permeated by 

an axial magnetic field orthogonal to the trajectories of gas particles. Numerical 

solution presented here provides a global solution to the implosion problem which 

is valid for a range of physically meaningful parameters which represent the EOS 

of Mie-Gruneisen type. Numerical computations are performed to obtain the 

similarity exponent iteratively using MATLAB. This problem was investigated 

with an aim to understand the mechanical properties of shock waves in the 

presence of strong magnetic field; to study the behavior of shock characteristics 

such as shock strength, shock density, shock speed, shock over pressure, and 

impulse.  

In chapter five, a model to determine the similarity solutions to the problem of 

gas dynamic flow under the influence of strong magnetic field is presented. The 

problem treated here involves distinct features: the global behavior of the physical 

parameter has been studied; the initial pressure ratio is confined to a moderate 

value. The path of the piston is imposed as boundary condition. Thus an 



accelerated, a decelerated or a constant velocity piston can be specified. Self-

similarity requires the velocity of shock and the velocity of piston to be 

proportional to some power law 𝑅(𝑡) ∝ (𝑡)𝛼 where 𝑅(𝑡) is the position of the 

shock wave front from the center at time 𝑡 and 𝛼 is the similarity exponent. The 

numerical values of similarity exponents and profiles of flow variables are 

obtained. These are presented through the illustrative graphs and tables. The 

magnetic field effects on the flow variables through a medium and total energy 

under the influence of strong magnetic field are also presented. 

The chapter six describe similarity solution of spherical shock waves and effect 

of viscosity. This problem is investigated to understand complete mechanism of 

shock wave which include, viscous terms and study the dissipation effects on the 

propagation of shock waves including viscosity under the effect of magnetic field. 

Also to study and confirm the effect of (i) the non-idealness parameter and the 

viscosity parameters on the shock strength and the flow variables respectively, 

(ii) effect of discontinuities of the physical parameters due to viscosity and (iii) 

complete flow field depending on the magnitude of the viscosity. To define this 

type of shock process spherically symmetric conservation equations are 

considered. The viscosity term suggested by Von Neumann and Richtmyer is 

included into the hydrodynamic equations for spherically symmetric flow. The 

main advantage of artificial viscosity approach is its simplicity thereby high 



computational efficiency and oscillations in the flow profiles dampen and the 

smoothness in the profiles increases. 

In chapter seven, a model to determine the self-similar solutions for converging 

spherical and cylindrical strong shock waves in stellar atmosphere under the 

action of monochromatic radiation in non-uniform stellar interiors with constant 

intensity on a unit area with the assumption that the medium of propagation to be 

non-ideal gas is studied. Shock is assumed to be strong and obeys a power law. It 

is assumed that the radiation flux moves through the gas with constant intensity 

on a unit area of the shock wave propagation in a direction opposite to the 

radiation flux. The medium of flow is assumed to be obeying the EOS of Mie-

Gruneisen type i.e., Royce EOS. The perfect gas EOS results too are obtained 

from Royce EOS, and were found to match very closely with the literature. 

In chapter eight, self-similar solution of shock wave in condensed matter 

generated by impulsive load with the medium described by the EOS of Mie-

Gruneisen type has been studied. The similarity exponent depends on the EOS 

parameters. In this work we employed the method of Lie group invariance under 

infinitesimal point transformations to study the problem of the self-similar 

solution of converging spherical and cylindrical imploding shock waves near the 

centre of implosion. The flow assumes a self-similar character in a non-ideal gas 

satisfying the EOS of Mie-Gruneisen type. Finite difference method is employed 

for the numerical solution of the governing equations with a check on error 



tolerance of 8 significant digits. The similarity solution remains valid as long as 

the strong shock approximation is applicable across the shock wave. The one-

parameter infinitesimal group of transformations were used with great accuracy 

to predict the physical behavior of the strong converging spherical and cylindrical 

shock wave which is normally generated by the rapid release of energy from a 

centered source and the properties of the ambient gas into which the shock wave 

is expanding. It is assumed that the limiting motion will be self-similar as the 

wave converges to the center. The numerical technique employed to study the 

nature of shock dynamics through a non-ideal medium described by the EOS of 

Mie-Gruneisen type. We obtained a self-similar solution of converging shock 

wave near the centre (axis) of implosion and investigated the behavior of flow 

parameters immediately behind the shock front in condensed matter EOS for a 

physically meaningful range of Gruneisen parameters. 
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Chapter-1 

Introduction 

Fluids are a subcategory of the matter which includes gases and liquids. Gases 

and liquids called fluids because of their ability to flow, ability to deform when a 

force is applied, and high fluidity. At the atomic level, fluids are composed 

of atoms or molecules which flow easily; they are not tightly packed and fluid 

obtains the shape of the container which it occupies. The main difference between 

compressible and incompressible fluid is that a force applied to a compressible 

fluid changes the density of a fluid whereas a force applied to an incompressible 

fluid does not change the density to a considerable degree. Although almost all 

fluids are compressible, liquids are known as incompressible fluids and gases are 

called compressible fluids. 

In general, gases (and plasma = ionized gas) are called compressible fluid. In 

normal temperature and pressure conditions, the volume or the density of a fluid 

does not change. But gases show variation in volume (hence in density) in the 

presence of even small variations in temperature or pressure. To name a particular 

fluid compressible, it should show a considerable change of density when a 

pressure or a force is applied. At the molecular level, when a pressure is applied 

on a gas, the pressure affects the gas in all directions, causing the molecules of 

the gas to result in a high degree of collisions. These collisions give more time 

http://pediaa.com/difference-between-atom-and-molecule/
http://pediaa.com/difference-between-concentration-and-density/


for the gas molecules to interact with each other and more attraction forces 

between molecules may occur. These attraction forces reduce the motion of gas 

molecules. This results in the compression of the gas. 

In a compressible fluid, the imposition of a force at one end of a system does not 

result in an immediate flow throughout the system. Instead, the fluid compresses 

near where the force was applied; that is, its density increases locally in response 

to the force. The compressed fluid expands against neighboring fluid particles 

causing the neighboring fluid itself to compress and setting in motion a wave 

pulse that travels throughout the system. The pulse of higher density fluid takes 

some time to travel from the source of the disturbance down through the pipe to 

the far end of the system. 

In more advanced fluid dynamic terms, the ratio between the velocity of flow and 

the velocity of sound in the fluid is greater than 0.3 for compressible fluids. This 

ratio is also called Mach number. 

Compressibility becomes important for high speed flows where M > 0.3 

M < 0.3 – subsonic & incompressible 

0.3 < 0.8 – subsonic & compressible 

0.8 < 1.2 – transonic flow – shock waves appear mixed subsonic and sonic flow 

regime 

M > 3.0 – hypersonic flow, shock waves and other flow changes are very strong. 



The study of compressible flow is relevant to high-speed vehicles i.e., aircraft, jet 

engines, rocket motors, high-speed entry into a planetary atmosphere, gas 

pipelines, commercial applications such as abrasive blasting, and many other 

fields. The study of gas dynamics is often associated with the flight of modern 

high-speed aircraft and atmospheric reentry of space-exploration vehicles. The 

resistance from the surroundings on its body should be minimum. In order to 

maintain such minimum resistance the concept of aerofoil is useful. An aerofoil 

is the term used to describe the cross-sectional shape of an object that, when 

moved through a fluid such as air, creates an aerodynamic force. Aerofoils are 

employed on aircraft as wings to produce lift or as propeller blades to produce 

thrust. Aerodynamics is the way air moves around things. The rules of 

aerodynamics explain how an airplane is able to fly. Anything that moves through 

air reacts to aerodynamics. Thus the motion of the air around the wings or around 

the body of the vehicle produces shock waves. 

Shock wave (also spelled shockwave), or shock, is a type of propagating 

disturbance. When a wave moves faster than the local speed of sound in a fluid, 

it is a shock wave. Like an ordinary wave, a shock wave carries energy and can 

propagate through a medium; however, it is characterized by an abrupt, nearly 

discontinuous change in pressure, temperature and density of the medium. 

The abruptness of change in the features of the medium, characterize shock waves 

and the study of unsteady flow of compressible fluid behind the strong shock 

https://en.wikipedia.org/wiki/Wave
https://en.wikipedia.org/wiki/Speed_of_sound
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Density


propagation associated with the phenomena like explosion, implosion etc., is of 

importance in many fields of science and engineering such as aerodynamics, 

astrophysics, nuclear science, and plasma physics. These flows are governed by 

nonlinear partial differential equations of hyperbolic type. To study such flows 

one has to solve the nonlinear partial differential equations for which there are no 

analytical solutions. Immense progress in the study of shock waves has been 

made by Taylor [1, 2], Sedov [3] and Stanyukovich [4] by making use of 

similarity method. The similarity method simplifies the problem without losing 

the nonlinear nature of the governing equations. The solution of the self-similar 

problem depends in determining the numerical value of similarity exponent 𝛼 that 

characterizes the space-time path of the infinite strength incoming (converging) 

and finite-strength reflected (diverging) shock waves in the  proximity to the 

location of collapse. The applications of similarity methods are detailed in the 

texts [4-9]. It is because of this reason valuable contributions were made in 

various shock wave problems such as laser induced shock waves [10], 

underground nuclear explosion [11, 12], and double detonation supernovae [13, 

14]. Theoretical investigation of shock wave behaviour near the centre of 

convergence was first studied by Guderley [15]. Guderley’s observation is that 

certain physical assumptions alone lead to a self-similar problem formulation. 

The self-similar problems were investigated independently by Chester [16], 

Chisnell [17] and Whitham [18]. In recent developments of the shock wave theory 

many new mathematical models and approximate analytical methods were found 



to be useful to solve a variety of shock wave problems. Among these some of the 

well known methods are Von Neuman method [19], Quasi-steady method due to 

Oshima [20], Phase plane analysis [5, 7, 8], late stage equivalence principle [21], 

operator splitting methods [22], Multi-scale finite element approximation [23], 

etc. 

In this thesis an attempt has been made to investigate the approximate analytical 

and numerical solutions for some shock wave problems with applications in 

aerodynamics and many engineering and scientific applications. There are eight 

chapters following the present one dealing with different problems. The 

summaries of these chapters are presented briefly. 

The study of similarity solutions to shock waves in non-ideal magnetogas-

dynamics is carried out by many authors [24-28] because of their applications in 

aerodynamics, astrophysics, nuclear science and plasma physics. These authors 

concluded that the similarity solution to their model is valid under constant axial 

current and valid for small times, for some arbitrary constants obeying some 

power law relating the shock radius 𝑅𝑠, time 𝑡 and the similarity exponent 𝛼. In 

general it is written as 𝑅𝑠 ∝ (−𝑡)𝛼. They assumed that the shock is propagating 

into a medium satisfying the EOS of perfect gas. Such a simple equation of state 

may not be true in reality for these type of problems. 

In chapter three, the self-similar solution for imploding cylindrical shock waves 

generated due to impulsive motion of piston in non-ideal medium is presented. 



The flow is assumed to be one dimensional unsteady cylindrical flow of an 

inviscid non-ideal gas with dust particles. The investigation involves study of 

various aspects of nonlinear wave propagation. The medium generated due to 

such implosion is assumed to be of Mie-Gruneisen type with magnetic or non-

magnetic in nature. Impulsive motion of the piston is assumed to produce an 

instantaneous unsteady shock which may grow or decay with time, depending on 

the condition of the undisturbed gas and the behaviour of the piston. The form of 

these waves are altered by convection which distorts the wave form by causing 

the compression phase to move forward faster than the expansion phase. Thus it 

is assumed that plasma is generated and has an infinite electrical conductivity and 

permeated by an axial magnetic field orthogonal to the trajectories of gas 

particles. The equations of motion governing such motion are system of non-

linear partial differential equations. Analytical solution to the assumed model is 

difficult and numerical solution is presented. The numerical solution discussed in 

this chapter gives global solution to the implosion problem. This is valid for a 

range of physically meaningful parameters which represent the EOS of Mie-

Gruneisen type. In this chapter apart from considering the non-ideal models of 

Pai, Anismov and Spinner [29, 30], we considered the EOS which depend on 

material property. By this both dusty gas and condensed matter EOS are defined 

exclusively. This was found to be more realistic than mere assumption of perfect 

gas. We assume that the motion of the piston obeys a power law [31]. 

Computations are performed to obtain the similarity exponent using Runge-Kutta 



4th order (RK) method and CCW method. The computed values of the similarity 

exponent are in good agreement with those obtained using CCW method and are 

presented in tabular form. The assumed approximation provides a quick and 

relatively accurate method of determination of the similarity exponent and 

stability of shocks in non-ideal gas. Also the numerical description of the flow 

field behind the wave front in a non-ideal magnetogasdynamics regime is 

presented. An attempt is made to develop the magnetic field strength effect on 

the flow parameters in a non-ideal medium. All numerical computations are made 

using MATLAB. 

In this chapter, we studied the numerical solution to strong cylindrical shock 

waves in the presence of magnetic field satisfying the EOS of Mie-Gruneisen 

type. Similarity solutions to such problems are carried out by authors Ponchaut et 

al. [32], Genot [33], Bazalitski et al. [34], Viswakarma and Srivastava [35], Pullin 

et al. [36], and Mostert et al. [37]. They assumed the problem to be an implosion 

problem of converging cylindrical shock wave in ideal gas. 

In chapter four, we studied the numerical solution to a strong cylindrical shock 

wave in the presence of magnetic field. The medium generated due to implosion 

is assumed to be of Mie-Gruneisen type with or without magnetic material. In the 

implosion process (by impulse method) plasma is assumed to be generated. It is 

assumed that this plasma has an infinite electrical conductivity and permeated by 

an axial magnetic field orthogonal to the trajectories of gas particles. Numerical 



solution presented is a very general solution to the implosion problem and is valid 

for a very large range of physically meaningful parameters which represent the 

EOS of Mie-Gruneisen type. Numerical computations are performed to obtain the 

similarity exponent iteratively using MATLAB. The aim of the present work is 

to understand the mechanical properties of shock waves in the presence of strong 

magnetic field; to study the behavior of shock characteristics such as shock 

strength, shock density, shock speed, shock over pressure, and impulse. In this 

chapter, we studied effect of magnetic field on flow variables in the presence of 

dusty gas particles. The behavior of approximate reduced density, velocity, 

pressure, and magnetic pressure behind the shock front in Royce EOS, and in 

perfect gas is investigated. The effect of measure of shock strength 𝛽, along with 

the similarity exponent 𝛼 on converging geometry or area of contraction of the 

shock wave is studied.  

In chapter five, a model to determine the similarity solutions to the problem of 

gas dynamic flow under the influence of strong magnetic field is presented. The 

model involves distinct features: the global behavior of the physical parameter 

has been studied; the initial pressure ratio is confined to a moderate value. The 

path of the piston is imposed as boundary condition. Thus an accelerated, a 

decelerated or a constant velocity piston can be specified. Self-similarity requires 

the velocity of shock and the velocity of piston to be proportional to some power 

law 𝑅(𝑡) ∝ (𝑡)𝛼 where 𝑅(𝑡) is the position of the shock wave front from the 



center at time 𝑡 and 𝛼 is the similarity exponent. The numerical values of 

similarity exponents and profiles of flow variables are obtained. These are 

presented through the illustrative graphs and tables. The magnetic field effects on 

the flow variables through a medium and total energy under the influence of 

strong magnetic field are presented. 

With an aim to investigate the effect of viscosity and to confirm the effect of (i) 

the non-idealness parameter and the viscosity parameters on the shock strength 

and the flow variables respectively, (ii) effect of discontinuities of the physical 

parameters due to viscosity and (iii) complete flow field depending on the 

magnitude of the viscosity the problem of similarity solutions of spherical shock 

waves and effect of viscosity is presented in chapter six. The effect of viscosity 

in physics and mathematical investigation shows that the presence of viscosity 

means the existence of a continuous, differentiable solution. The actual 

formulation of artificial viscosity introduced by von Neumann and Richtmyer 

[40] involved adding a viscosity term to the momentum equation, that augments 

the pressure in the instance there is shock compression and is independent of 

shock strength. Thus the system generated by artificial viscosity term will satisfy 

the Rankine-Hugoniot jump conditions [41] in the shock region and has little 

effect outside the shock layer. It is also observed the removal of inhomogeneities 

in velocities, is due to distribution of cohesive forces in the fluids [42]. This 

viscosity effect was found to be one of the most important effects in the equations 



of motion. The shock heating of solar corona discussed by Orta et al. [43] have 

shown that the shock thickness and profile depend on viscosity and resistivity and 

as a consequence heating ultimately occurs. Ballai et al. [44] in the study of 

dispersive shock waves concluded that the effect of dispersion will alter the 

amplitude and propagation speed of a shock wave and also discussed in detail the 

viscosity effect. The supersonic flows exhibit an important property i.e., the 

coexistence of shock waves with viscous effects for many fluid dynamic systems 

[45]. In our study an attempt is made to understand the evolution of disturbances 

in viscous flow and its mechanisms in MHD for the development of efficient 

methods for controlling different types of flows. 

A theoretical model for strong converging cylindrical and spherical shock waves 

in non-ideal gas characterized by the EOS of the Mie-Gruneisen type in stellar 

medium is investigated in chapter seven. Several authors Gail et al. [46], Fleck 

and Schmitz [47], Barnwal and Srivastava [48], Nicastro [49], etc., have 

investigated the shock wave problems in stellar atmosphere of the motion of a 

gas under the action of monochromatic radiation assuming the medium to be an 

ideal gas which may not be true in reality. The governing equations of unsteady 

one dimensional compressible flow including monochromatic radiation in 

Eulerian hydrodynamics are considered. The non-ideal medium of the gas is 

included in the governing equations by the presence of the type of EOS 

considered. Shock is assumed to be strong and propagating into a medium 



according to a power law. In the present work, two different equations of state 

(EOS) of Mie-Gruneisen type have been considered and the cylindrical and 

spherical cases are worked out in detail. The complete set of governing equations 

is formulated as finite difference problem and solved numerically using 

MATLAB. The numerical technique applied in this chapter provides a complete 

solution to the problem for the flow variables, the similarity exponent 𝛼 for 

different Gruneisen parameters. It is observed that increase in measure of shock 

strength 𝛽  has effect on the shock front i.e., the velocity and pressure behind the 

shock front increases quickly in the presence of the monochromatic radiation and 

decreases gradually. A comparison between the results obtained for non-ideal and 

perfect gas in the presence of monochromatic radiation has been illustrated 

graphically. 

In chapter eight, self-similar solution of one-dimensional strong converging 

cylindrical and spherical shock waves in non-ideal gas is investigated. Several 

solution techniques exist for the self-similarity problem. One such method is 

based on group theoretical approach, such approach is Lie group. Advantages of 

Lie group method is that it (i) reduces the order of an ordinary differential 

equation, (ii) leads to the superposition of solutions in terms of transforms for a 

linear partial differential equation and (iii) transforms nonlinear partial 

differential equation to linear partial differential equation, called determining 

equations. In recent times several investigators applied this theory in the field of 



similarity analysis viz., [123-127] etc. In this chapter one-parameter infinitesimal 

group of transformations are used. The strong converging spherical and 

cylindrical shock wave is assumed to be generated by the rapid release of energy 

from a centered source. It is assumed that the limiting motion will be self-similar 

as the wave converges to the center. The numerical technique employed to study 

the nature of shock dynamics through a non-ideal medium described by the EOS 

of Mie-Gruneisen type. The study of the problem is to obtain a self-similar 

solution of converging shock wave near the centre (axis) of implosion and to 

investigate the behavior of flow parameters immediately behind the shock front 

in condensed matter EOS for a physically meaningful range of Gruneisen 

parameters. 

 

 

 

 

 

 

 

 

 



Chapter-2 

Literature Review 

Compressible flow or gas dynamics is the branch of fluid mechanics that deals 

with flows having significant changes in fluid density. Gases mostly display such 

behavior. The study of compressible flow is relevant to high-speed vehicles i.e., 

aircraft, jet engines, rocket motors, high-speed entry into a planetary atmosphere, 

gas pipelines, commercial applications such as abrasive blasting, and many other 

fields. The study of gas dynamics is often associated with the flight of modern 

high-speed aircraft and atmospheric reentry of space-exploration vehicles. At the 

beginning of the 19th century, investigation into the behavior of fired bullets led 

to improvement in the accuracy and capabilities of guns and artillery. As the time 

progressed inventors and researchers sought to understand the physical 

phenomena involved through experimentation. At the beginning of the 20th 

century, the study of gas dynamics research shifted to understanding the process 

involving mathematical and experimental concepts. Korobeinikov [70] and other 

researchers proposed important concepts ranging from the boundary layer to 

supersonic shock waves, supersonic wind tunnels, and supersonic nozzle design. 

Later, Landau and Lifshitz [91] improved the understanding of these flows. 

Several other notable researchers contributed significantly to the principles 

considered fundamental to the study of modern gas dynamics. 

https://en.wikipedia.org/wiki/Boundary_layer
https://en.wikipedia.org/wiki/Shock_wave
https://en.wikipedia.org/wiki/Supersonic_wind_tunnel


A related assumption is the no-slip condition where the flow velocity at a solid 

surface is presumed equal to the velocity of the surface itself, which is a direct 

consequence of assuming continuum flow. The no-slip condition implies that the 

flow is viscous, and as a result a boundary layer forms on bodies traveling 

through the air at high speeds, much as it does in low-speed flow. 

Compressible flow problems require more equations: an EOS for the gas and 

a conservation of energy equation, for solution process. For the majority of gas-

dynamic problems, the simple ideal gas law is the appropriate state equation. 

Fluid dynamics problems have two overall types of references frames, called 

Lagrangian and Eulerian [91]. The Lagrangian approach follows a fluid mass of 

fixed identity as it moves through a flow field. The Eulerian reference frame, in 

contrast, does not move with the fluid. Rather it is a fixed frame or control volume 

that fluid flows through. The Eulerian frame is most useful in a majority of 

compressible flow problems, but requires that the equations of motion be written 

in a compatible format along with EOS. 

Compressible flows are recognized by the property, the Mach number. The Mach 

number (𝑀) is defined as the ratio of the speed of an object (or of a flow) to the 

speed of sound. For instance, in air at room temperature, the speed of sound is 

about 340 m/s (1,100 ft/s). M can range from 0 to ∞, but this broad range falls 

naturally into several flow regimes. These regimes are subsonic, transonic, 

supersonic, hypersonic and hypervelocity flow. The flow regimes are not chosen 

https://en.wikipedia.org/wiki/No-slip_condition
https://en.wikipedia.org/wiki/Boundary_layer
https://en.wikipedia.org/wiki/Conservation_of_energy
https://en.wikipedia.org/wiki/Ideal_gas_law
https://en.wikipedia.org/wiki/Mach_number
https://en.wikipedia.org/wiki/Mach_number
https://en.wikipedia.org/wiki/Hypervelocity


arbitrarily, but rather arise naturally from the strong mathematical background 

that underlies compressible flow [91]. At very slow flow speeds the speed of 

sound is so much faster that it is mathematically ignored, and the Mach number 

is irrelevant. Once the speed of the flow approaches the speed of sound, however, 

the Mach number becomes all-important, and shock waves begin to appear. Thus 

the transonic regime is described by a different (and much more difficult) 

mathematical treatment. In the supersonic regime the flow is dominated by wave 

motion at oblique angles similar to the Mach angle. Above about Mach 5, these 

wave angles grow so small that a different mathematical approach is required, 

defining the hypersonic speed regime. Finally, at speeds comparable to that of 

planetary atmospheric entry from orbit, in the range of several km/s, the speed of 

sound is now comparatively so slow that it is once again mathematically ignored 

in the hypervelocity regime. 

Another very important concept frequently used is self-similarity that results 

when the symmetry of a physical problem leads to a reduction in the number of 

the independent variables. In this way a considerable simplification is achieved, 

that frequently allows the analytical treatment of the problem. Very elegant 

solutions can thus be derived. Usually the self-similar behavior appears in the 

intermediate asymptotics of phenomena, when certain details of the initial or 

boundary conditions are no longer relevant, so that the corresponding parameters 

can be ignored. The peculiarities of the passage to the limit that leads to the 

https://en.wikipedia.org/wiki/Hypersonic_speed
https://en.wikipedia.org/wiki/Hypervelocity


intermediate asymptotics of a given problem allows to classify the similarity 

solutions as self-similarities of the first and second kind. Self-similarity of the 

first kind can be established by dimensional analysis (eventually supplemented 

by other symmetry considerations). The self-similarities of the second kind 

cannot be derived in this way: it is necessary to follow the evolution of the 

solution either experimentally or numerically until it passes into its self-similar 

asymptotics, or they can be obtained by direct construction. In the second case 

this process leads to a nonlinear eigenvalue problem. 

The major objective of the study of compressible fluid flow lies in the study of 

shock waves. Shock waves are a physical phenomenon which occur in a medium 

subjected to high speed movement in the transonic and supersonic range. 

Historically it took some time to get the correct understanding of the mechanical 

and thermodynamic interaction of the related physical quantities which takes 

place when material passes through a shock front. The shock layer is the region 

where the change of state takes place. It is geometrically small with respect to all 

other quantities at a typical technical application. A shock wave is a type of 

propagating disturbance. Like an ordinary wave, it carries energy and can 

propagate through a medium (solid, liquid, gas or plasma) or in some cases in the 

absence of a material medium, through a field such as the electromagnetic field. 

Shock waves are characterized by an abrupt, nearly discontinuous change in the 

characteristics of the medium. Across a shock there is always an extremely rapid 



rise in pressure, temperature and density of the flow. A shock wave travels 

through most media at a higher speed than an ordinary wave. A shock wave will 

collide with “normal” stationary air, and give some of the energy to it. As the 

energy spreads to larger and larger volumes of air, the shock wave decays into a 

"normal" sound wave pulse. But before that, the wall of highly compressed air 

will travel at supersonic speed. The shocks can be categorized as moving shocks, 

bow shocks, attached shocks, recompression shocks etc. The phenomenon of 

shock has been first mathematically described by Hugoniot [91] in the case of the 

one dimensional flow of a perfect gas. The EOS has a decisive effect on the shock 

phenomena that can exist in the material such as weak shock or strong shock. 

There are five laws or theorems and the most important of them is the Rankine-

Hugoniot (R-H) equations. These are derived from the conservation laws of mass, 

momentum, and energy. These equations include terms containing the velocities 

of the material on both sides of the shock wave. If the equations are manipulated 

to eliminate these terms, then a single equation containing only thermodynamic 

variables of state is obtained. This is the Hugoniot equation, and it is the starting 

point for many investigations. The medium into which the shock propagates and 

decays and the behavior of flow variables is the study of many researchers 

because theory of shock waves has several applications in science and 

engineering. The major applications are in the area of astrophysics, nuclear 

science, geophysics, plasma physics etc. This has motivated us to study in an 

investigative way and research the area of shock waves. The research problems 



pertains to some self-similar solutions to shock wave problems in non-ideal 

medium. The introduction chapter of my thesis gives more details. The medium 

considered is of Mie-Gruneisen type considering different EOS. In this work not 

only self-similar solutions but also lie-group approach, classical numerical 

methods, CCW method and finite difference methods are attempted. Some of the 

many research articles referred are as follows.  

A theoretical study of the imploding shock wave near the center of convergence, 

in an ideal gas was first investigated by Guderley [15]. Several authors 

contributed to this investigation and we mention the contributions of Hafner [54], 

Manganaro and Oliveri [26], Sharma and Radha [96], Ali and Hunter [24], 

Sharma and Arora [97], Stanyukovich [6], Chisnell [17, 84], Lazarus and 

Richtmyer [50], Ramu and Ranga Rao [57], Madhumita and Sharma [38], Sen 

[98]. The similarity solutions of converging spherical and cylindrical shock wave 

problems with different equation of states (EOS) were investigated by several 

authors [1, 6, 7, 9, 12, 15, 19, 22, 24]. The existence and effects of the viscous 

forces for the similarity solutions to shock wave problems were studied by several 

researchers [101-104]. Landau and Lifshitz [91] and Zeldovich and Raizer [7] 

have studied the entropy production in a viscous medium and developed an 

analytical model for the shock process based on Hugoniot curves considering the 

effects of viscosity and heat conduction.  



The role of viscosity in physics and mathematical investigation of model 

problems suggest that the presence of viscosity implies the existence of a 

continuous, differentiable solution. This mathematical theory does not guarantee 

this in general. The actual formulation of artificial viscosity introduced by von 

Neumann and Richtmyer [40] involved adding a viscosity term to the momentum 

equation, that augments the pressure in the instance there is shock compression 

and is independent of shock strength. The new system will satisfy the Rankine-

Hugoniot jump conditions [41] in the shock region and has little effect outside 

the shock layer. The resistance to variations in distribution of cohesive forces in 

fluids experienced result in removing the inhomogeneities in velocities. These 

types of resistances result in the phenomenon of viscosity in fluid motions [42]. 

This viscosity effect was found to be one of the most important effects in the 

equations of motion. The shock heating of solar corona discussed by Orta et al. 

[43] have shown that the shock thickness and profile depend on viscosity and 

resistivity and as a consequence heating ultimately occurs. Ballai et al. [44] in the 

study of dispersive shock waves concluded that the effect of dispersion will alter 

the amplitude and propagation speed of a shock wave and also discussed in detail 

the viscosity effect. The supersonic flows exhibit an important property i.e., the 

coexistence of shock waves with viscous effects for many fluid dynamic systems 

[45]. Also the viscous interactions of solar wind stream were studied by Korzhov 

et al. [45]. The study of interplanetary shock waves are produced due to coronal 

mass ejection and solar winds and study of these is very important for space 



weather purposes. The shock waves occur where the solar wind changes from 

being supersonic to being subsonic. In the supersonic regime of compressible gas 

flow the interaction of shock waves with viscosity is a very important problem. 

Mathematically this can be approximated to a hydrodynamic case. 

It is observed from most of the literature reviewed the researchers have developed 

shock wave problems with the assumption that the medium into which the shock 

propagates to be an ideal gas. The gap areas have been identified and the 

following assumptions have been implemented in our work viz.,  

     (i) the assumption of ideal gas medium may not be true in reality hence non- 

          ideal medium is considered,  

     (ii) EOS of the medium is to be of Mie-Gruneisen type,  

     (iii) use of Cowling number,  

     (iv) introducing artificial viscosity, etc.  

The main objective in the study is to implement the above assumptions and 

develop alternative solution methods and obtain high accuracy general solution. 

The error tolerance is taken to be 10−6.  

The methodology involves in the developing a feasible mathematical model along 

with suitable boundary conditions. The mathematical model governing equations 

are highly non-linear partial differential equation of hyperbolic type with moving 

boundary conditions. The closed form analytical solutions to the developed 



models will be difficult as can be seen from reviewed literature. In each of the 

mathematical model developed the solution methodology involves use of group 

theoretical approach, non-dimentionalisation of the governing equations along 

with numerical solution and validation of the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter-3 

Similarity Solutions to Shock Waves in Non-ideal 

Magnetogasdynamics 

3.1 Introduction 

Shock waves are common phenomena and the study of shock waves has several 

applications in the areas of aerodynamics, astrophysics, nuclear science, and 

plasma physics. The strong shock wave problem in converging cylindrically or 

spherically in a gas is well known in hydrodynamics and is considered important 

in converging compressible flow to the laser induced shock waves [10], 

underground nuclear explosion [11, 12] and in astrophysical applications to 

double detonation supernovae [13, 14]. Converging shock waves have been a 

field of interest since second world war from both mathematical and physical 

point of view. Theoretical investigation of shock wave behaviour near the centre 

of convergence was first studied by Guderley [15]. Guderley observed that certain 

physical assumptions alone lead to a self-similar problem formulation. The 

solution of the self-similar problem depended on determining the numerical value 

of similarity exponent 𝛼. Converging and diverging shock wave are investigated 

independently by Chester [16], Chisnell [17] and Whitham [18] with approximate 

methods, specifically to geometrical shock dynamics. In their solutions, the 



similarity exponent in the expression for Mach number as a function of shock 

radius for the spherical case is exactly twice that for the cylindrical case.  

The study of shock waves for peaceful applications is another area of interest for 

assessment and prediction of disasters, underground explorations, etc. Shock 

waves are produced due to the sudden release of an enormous amount of energy 

from sources such as a nuclear explosion, detonation, or rupture of a pressurized 

vessel. Shock waves are common phenomena in the interstellar medium in the 

presence of supersonic motions, supernova explosions, central part of star burst 

galaxies, etc. Imploding shock waves have been a field of continuing research 

interest over the years as possible methods for generating high-pressure, high-

temperature plasmas at the center of convergence, as well as to understand the 

basic fluid dynamics involved in the process. Shock waves are generated by point 

explosions (nuclear explosions and detonation of solid explosives), high pressure 

gas containers (chemical explosions) and laser beam focusing. Shock wave 

phenomena also arises in astrophysics, hypersonic aerodynamics and 

hypervelocity impact, etc. Understanding the properties of the shock waves both 

in the near-field and the far-field is useful with regard to the characteristics such 

as shock strength, shock overpressure, shock speed, and impulse. The motion of 

the converging/diverging shock is assumed to be radially symmetric. Pre-shocked 

gas is assumed to be uniform and at rest. The incoming shock is reflected at the 

center of symmetry, such that the symmetry condition, i.e., zero particle velocity 



at the center, is maintained at all times. The outgoing reflected shock is 

propagated into a non-uniform flow field which has been produced by the 

incoming shock (Figure 3.1). The shock waves propagate into the medium and 

effect on the flow field. Thus, the shock propagation should be determined 

together with the flow field from the governing equations and the shock-jump 

relations. However, even in a uniform medium, the problem of the shock 

propagation in general cannot be solved analytically. We also note the works of 

Lazarus and Richtmyer [50], Lazarus [51, 52], Van Dyke and Guttmann [53], 

Hafner [54], Wu and Roberts [55], Madhumita and Sharma [56], Ramu and 

Rangarao [57], Patel and Rangarao [58] as contributions towards the investigation 

of the implosion problem. These authors calculated the numerical value of the 

similarity exponent (a function of the adiabatic exponent and geometry) with high 

accuracy using various techniques. 
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Figure 3.1. Collapsing cylindrical shock waves in non-ideal medium; (a) an imploding strong 

shock, (b) converges on the center and (c) rebounds, reshocking previously shocked material. 



The ‘classic’ Guderley problem, reviewed by Meyer-ter-Vehn and Schalk [59], 

Zeldovich and Raizer [7] has variations that have been explored in detail. Axford 

and Holm [60] used group theoretic techniques to determine a more general EOS 

(represented through the adiabatic bulk modulus) that admits self-similar 

solutions for a Guderley-type problem. Wu and Roberts [55] investigated the 

special case of a strong shock wave converging into a van der Waals gas. Several 

authors investigated similarity solutions for strong shock waves converging into 

dusty gases [61, 62], variable-density gases [56, 63, 64], radiating gases [49, 65]. 

The self-similar solution of the classical Guderely implosion problem in a dust-

laden gas has been studied by Hirschler and Steiner [66]. This self-similar 

solution covers the collapse as well as the expansion of the reflected shock. 

Ponchaut et al. [32, 67] and Hornung et al. [39] considered the universality of 

imploding shock solutions from examination of approximate solutions for the 

Guderley problem and computed solutions of converging shocked flows. 

The study of shock wave in dusty gas and in condensed matter is of great 

importance due to its application to nozzle flow, fluidized beds, centrifugal 

separation of particular matter from fluids, rocket-fuel combustion products, 

underground or underwater explosions, etc. Sedov [5], Miura and Glass [68, 69], 

and Korobeinikov [70] investigated the generalized the well known solution of a 

strong explosion due to an instantaneous release of energy in a gas, considering 

the case of two phase flow of a mixture of perfect gas and small solid particles. 



The flow resulting from the passage of a shock wave through a dusty-gas layer 

studied theoretically by Miura and Glass [68] have developed a criteria for the 

wave reflection at the contact surface separating the pure gas from the dusty-gas 

layer in terms of the properties. Again, Miura and Glass [69] obtained an 

analytical solution for planar dusty gas flow with constant velocities of the shock 

and the piston moving behind it. Investigations into dusty plasmas include aspects 

of fundamental problems in the physics of plasmas, hydrodynamics, kinetics of 

phase transitions, nonlinear physics, etc. Similarity solutions for strong shock 

waves converging into a dusty gas EOS of Mie-Gruneisen type has attracted the 

interest of many researchers. Narasimhulu Naidu et al. [71] obtained an 

approximate analytical solution for a self-similar flow behind a strong shock 

wave propagating outward in a particle laden gas with variable total energy 

release by employing integral method. Suzuki et al. [72] obtained similarity 

solutions for plane or line source explosions in a dusty gas. Higashino and Suzuki 

[73], extended the analysis by expanding the self-similar flow variables to a series 

of inverse squares of shock Mach numbers to a first order of approximation. 

Employing the method of characteristics, the unsteady propagation of shock 

waves in a dusty gas in order to clarify the effects of the inter particle and particle 

gas interactions during the relaxation process has been studied by Higashino [74]. 

Jena and Sharma [61] used the similar method to study the problem of shock wave 

propagation through a dusty gas mixture obeying the EOS of Mie-Gruneisen type. 

They found that the problem admits a self-similar solution only when the ambient 



medium ahead of the shock is of uniform density. Rai [62] studied the problem 

of converging spherical and cylindrical detonation waves in dusty medium with 

constant density and releasing a constant amount of energy per unit mass to dusty 

gas. He developed an expression for similarity exponent and studied the effects 

of constant density and dust particles on the front velocity and flow parameters 

analytically. Steiner and Hirschler [75] have considered analytic solutions for the 

unsteady one-dimensional self-similar flow field between a strong shock and a 

moving piston behind it in a dusty gas. They have shown that the flow field is 

mainly affected by the dust’s impact on the speed of sound. A similarity solution 

has been obtained by Gretler and Regenfelder [76, 77] for a laser-driven strong 

shock wave propagating into a mixture of gas and small solid particles. Mamun 

and Shukla [78] have been investigated non-planer (viz. cylindrical and spherical) 

electro-acoustic (DIA and DA) shock waves by employing the reductive 

perturbation method. They examined the effects of cylindrical and spherical 

geometries on the time evolution of dust-ion-acoustic and dust-acoustic shock 

structures. 

In this chapter, the self-similar solution for imploding cylindrical shock waves in 

non-ideal medium is presented. We consider system of partial differential 

equations describing the one dimensional unsteady cylindrical flow of an inviscid 

non-ideal gas with dust particles and study various aspects of non-linear wave 

propagation. The medium generated due to implosion is assumed to be of Mie-



Gruneisen type with magnetic or non-magnetic in nature. Impulsive motion of 

the piston may produce instantaneous unsteady shock which may grow or decay 

with time, depending on the condition of the undisturbed gas and the motion of 

the piston. The forms of these waves are altered by convection which distorts the 

wave form by causing the compression phase to move forward faster than the 

expansion phase. Thus it is assumed that plasma is generated with an infinite 

electrical conductivity and permeated by an axial magnetic field orthogonal to the 

trajectories of gas particles. Similarity solution to this problem is attempted. 

Analytical solution to the assumed model is difficult and numerical solution is 

presented. The numerical solution presented provides a global solution to the 

implosion problem and is valid for a range of physically meaningful parameters 

which represent the EOS of Mie-Gruneisen type. In the present work apart from 

considering the non-ideal models described by Pai, Anisimov and Spinner [29, 

30], we presented the EOS generated by including the material property. This 

process defines both dusty gas and condensed matter EOS. This concept is 

different from the existing models of the definition of dusty gas and condensed 

matter and is more realistic than mere assumption of perfect gas. It is assumed 

that the motion of the piston obeys exponential law [31] and computations are 

performed to obtain the similarity exponent using MATLAB and CCW rule. The 

computed values of the similarity exponent are in good agreement with those 

obtained using CCW method and are presented in tabular form. This 

approximation provides a quick and relatively accurate determination of the 



similarity exponent and stability of shocks in non-ideal gas. The numerical 

description of the flow field behind the wave front in a non-ideal 

magnetogasdynamics regime is also presented. An attempt is made as to study 

the magnetic field strength effect on the flow parameters in a non-ideal medium. 

These effects are presented in the form of graphs. 

3.2 Governing Equations 

Neglecting the viscous stress, body forces, thermal radiation and heat-conduction 

of the medium the equations governing the motion of one-dimensional unsteady 

compressible flow of strong converging cylindrical shock waves into a non-ideal 

gas can be expressed into the following form Korobeinikov, Anisimov and 

Kravchenko [70, 79] 

                    𝜌𝑡 + 𝜈𝜌𝑟 + 𝜌𝑣𝑟 + 𝜌𝑣𝑟−1 = 0                                                 (3.1) 

                    𝑣𝑡 + 𝑣𝑣𝑟 + 𝜌−1(𝑝𝑟 + ℎ𝑟) = 0                                                (3.2)  

                    𝑒𝑡 + 𝑣𝑒𝑟 − 𝜌−1𝑝 (
𝜕

𝜕𝑡
+ 𝑣

𝜕

𝜕𝑟
) log (

𝜌

𝜌0
) = 0                             (3.3) 

                    ℎ𝑡 + 𝑣ℎ𝑟 − 𝜌−12ℎ(𝜌𝑡 + 𝑣𝜌𝑟) = 0                                         (3.4) 

where 𝜌 is the density, 𝜌0 is the density of unperturbed medium, 𝑝 is the pressure, 

𝑣 is the velocity of gas particles, 𝑒 is the specific internal energy (SIE), ℎ =
𝜇𝐻2

2
 

is the magnetic pressure, 𝐻 and 𝜇 being the magnetic field strength and the 

magnetic permeability respectively. The subscripts denote partial differentiation. 



The independent variables are the single spatial coordinate 𝑟, and time 𝑡. The 

shock position is given by 𝑅𝑠(𝑡) and its speed is  𝑈𝑠(𝑡) =
𝑑𝑅𝑠

𝑑𝑡
. 

The system of equations (3.1-3.4) is supplemented with an EOS of Mie-

Gruneisen type [57]. 

                          𝑝 = 𝜌𝑒𝛤(𝜌/𝜌0)                                                                 (3.5) 

here 𝛤(𝜌/𝜌0) is the Mie-Gruneisen coefficient. In order to obtain the similarity 

solutions of the problem the density of the undisturbed medium, 𝜌0 is assumed to 

be constant. The shock jump conditions connect the pre-shock and post-shock 

fields. Shock is assumed to be strong and propagating into a medium at rest whose 

EOS is of Mie-Gruneisen type, according to the power law 𝑅𝑠(𝑡) ∝ (1 − 𝑡/𝑡𝑐)
𝛼, 

where 𝑡𝑐 is the collapse time, 𝛼 is similarity exponent. After the collapse at 𝑡 =

𝑡𝑐, the reflected shock wave begins to propagate through the medium away from 

the axis, whilst the medium continues to converge on the axis. Shock trajectory 

(i.e., shock position) 𝑅𝑠(𝑡) does not depend on the initial pressure pulse and 

approaches the similarity exponent 𝛼 of the self-similar problem for time 𝑡 → ∞. 

Anisimov and Kravchenko [79] obtained a similarity solution describing the flow 

generated by an impulsive load, and the dependence of the similarity exponent 

upon EOS parameters which is true for a certain class of the equations of state [7, 

80]. 



The converging shock wave problem is investigated by adopting an 

approximation on the Gruneisen coefficient to reduce the governing system of 

equations to first order ordinary differential equations of Poincare type. At the 

shock front, 𝑟 = 𝑅𝑠(𝑡) the Rankine-Hugoniot jump conditions are 

                               𝑣1 = (1 −
𝜌0

𝜌1
)𝑈𝑠(𝑡)                                                    (3.6) 

                               𝑝1 − 𝑝0 + ℎ1 − ℎ0 = 𝜌0𝑈𝑠(𝑡)𝑣1                                 (3.7) 

                               𝑒1 − 𝑒0 =
𝑣1

2

2
− [

𝑝0

𝜌1
+

ℎ0

𝜌1
(1 −

𝜌1

𝜌0
)] (1 −

𝜌1

𝜌0
)               (3.8) 

                               ℎ1 = ℎ0 (
𝜌1

𝜌0
)
2
                                                              (3.9) 

The strong shock limit (𝑝1 ≥ 𝑝0 and ℎ1 ≥ ℎ0) of the Rankine-Hugoniot jump 

conditions may be used to connect the flow just behind the shock to that just ahead 

of the shock front: 

                 
𝜌1

𝜌0
= 𝛽,          𝑣1 = (1 −

1

𝛽
)𝑈𝑠(𝑡), 

                 
𝑝1

𝜌0
= (1 −

1

𝛽
−

𝐶0𝛽2

2
)𝑈𝑠

2(𝑡),     
ℎ1

𝜌0
=

𝐶0𝛽2

2
𝑈𝑠

2(𝑡)   

where 𝐶0 =
2ℎ0

𝜌0𝑈𝑠
2(𝑡)

 is the Cowling number associated with magnetic property. If 

𝐶0 = 0, the propagation of shock waves is without magnetic field and 𝛽 is the 

measure of the shock strength. The subscripts 1 and 0 refers to the values 

immediately in front of the shock and behind the shock respectively. 

(3.10) 



With the above relations (3.10), the equation (3.5) can be written as 

                             (2 −
𝐶0𝛽3

(𝛽−1)
) = (𝛽 − 1)𝛤(𝛽)                                           (3.11) 

We seek self-similar solutions of governing equations (3.1-3.4) for which all the 

variables can be written in the form of products of a function of time 𝑡 and a 

function of the dimensionless self-similar coordinate. Considering a new 

independent variable, 𝜉 =
𝑟

𝑅𝑠(𝑡)
 the flow pattern can be written in terms of the 

dimensionless functions of  𝜉 as [7] 

 𝜌 = 𝜌0𝐺(𝜉),  𝑣 = 𝑈𝑠(𝑡)𝑉(𝜉),  𝑝 = 𝜌0𝑈𝑠
2(𝑡)𝑍(𝜉),  ℎ = 𝜌0𝑈𝑠

2(𝑡)𝐵(𝜉)  (3.12)  

where new dimensionless variables 𝐺, 𝑉, 𝑍 and 𝐵 as functions of similarity 

variable 𝜉, which are to be determined in such a way that the partial differential 

equations (3.1-3.4), together with conditions (3.10), are invariant with respect to 

the transformations (3.12). The existence of such a group of transformations 

allows the number of independent variables in the problem to be reduced by one, 

and thereby allowing the system (3.1-3.4) to be replaced by a system of ordinary 

differential equations. 

With the help of transformations (3.12) and using the simple mathematics we 

obtain the following form on the governing equations 

                   
𝜕𝜌

𝜕𝑡
=

𝑑𝜌0

𝑑𝑡
𝐺 − 𝜌0

𝑑𝐺

𝑑𝜉

𝑟

𝑅𝑠
2(𝑡)

𝑑𝑅𝑠

𝑑𝑡
= 𝜌̇0𝐺−𝜌0𝜉

𝑑𝐺

𝑑𝜉

𝑈𝑠(𝑡)

𝑅𝑠(𝑡)
                    (3.13) 



                   
𝑑𝜌

𝑑𝑟
=

𝜌0

𝑅𝑠(𝑡)

𝑑𝐺

𝑑𝜉
                                                                            (3.14) 

where dot denotes differentiation with respect to time. 

The governing equations (3.1-3.4) may be transformed to a system of ODEs in 

the dimensionless variables 𝜉, 𝐺(𝜉), 𝑉(𝜉), 𝑍(𝜉), and 𝐵(𝜉).   

                                   (𝜉 − 𝑉)
1

𝐺

𝑑𝐺

𝑑𝜉
−

𝑑𝑉

𝑑𝜉
=

𝑉

𝜉
                                            (3.15) 

                                   (𝜉 − 𝑉)
𝑑𝑉

𝑑𝜉
−

1

𝐺
(
𝑑𝑍

𝑑𝜉
+

𝑑𝐵

𝑑𝜉
) = 𝜆𝑉                             (3.16) 

                                   
1

𝑍

𝑑𝑍

𝑑𝜉
− 𝜙(𝐺)

1

𝐺

𝑑𝐺

𝑑𝜉
=

2𝜆

(𝜉−𝑉)
                                       (3.17) 

                                   
1

𝐵

𝑑𝐵

𝑑𝜉
−

2

𝐺

𝑑𝐺

𝑑𝜉
=

2𝜆

(𝜉−𝑉)
                                                (3.18) 

where 

                                 𝜙(𝐺) = 1 + 𝛤(𝐺) +
𝐺

𝛤(𝐺)

𝑑𝛤(𝐺)

𝑑𝐺
                               (3.19) 

                                  𝜆 = 1 −
1

𝛼
                                                               (3.20) 

The function 𝜙(𝐺) involves EOS with material property, which defines non-ideal 

medium. 

The system of equations (3.15-3.18) can be written into the following matrix 

form, 



         

[
 
 
 
(𝜉 − 𝑉)/𝐺 −1 0

0 (𝜉 − 𝑉) −1/𝐺

−𝛷(𝐺)/𝐺
−2/𝐺

0
0

1/𝑍
0

     

0
−1/𝐺

0
1/𝐵 ]

 
 
 

[
 
 
 
 
 
 
𝑑𝐺

𝑑𝜉

𝑑𝑉

𝑑𝜉

𝑑𝑍

𝑑𝜉

𝑑𝐵

𝑑𝜉]
 
 
 
 
 
 

=

[
 
 
 
 
𝑉/𝜉
𝜆𝑉
2𝜆

(𝜉−𝑉)

2𝜆

(𝜉−𝑉)]
 
 
 
 

                      (3.21) 

Also, the boundary conditions at the strong shock (𝜉 = 1) may be written as 

     𝐺(1) = 𝛽,   𝑉(1) = 1 −
1

𝛽
,   𝑍(1) = 1 −

1

𝛽
−

𝐶0𝛽2

2
,   𝐵(1) =

𝐶𝑜𝛽2

2
         (3.22) 

The system of equations (3.15-3.18) can be solved for the derivatives 
𝑑𝐺

𝑑𝜉
, 

𝑑𝑉

𝑑𝜉
, 

𝑑𝑍

𝑑𝜉
, 

and  
𝑑𝐵

𝑑𝜉
 which are of the following form 

                           
𝑑𝐺

𝑑𝜉
=

∆1

∆
 ,     

𝑑𝑉

𝑑𝜉
=

∆2

∆
 ,     

𝑑𝑍

𝑑𝜉
=

∆3

∆
 ,     

𝑑𝐵

𝑑𝜉
=

∆4

∆
                    (3.23) 

where 

          𝛥 =
1

𝐺2𝑍
[𝐺(𝜉 − 𝑉)2 − 𝜙(𝐺)𝑍 − 2𝐵]                                         (3.24) 

         𝛥1 =
1

𝑍
[𝜆𝑉 +

𝑉(𝜉−𝑉)

𝜉
+

2𝜆𝑍

(𝜉−𝑉)𝐺
+

2𝜆𝐵

(𝜉−𝑉)𝐺
]                                     (3.25) 

         𝛥2 =
1

𝐺
[
𝑉𝜙(𝐺)

𝜉𝐺
+

𝜆𝑉(𝜉−𝑉)

𝑍
+

2𝜆

𝐺
+ (𝜆 +

𝑉

𝜉𝐺
)

2𝐵

𝑍
]                                    (3.26) 

         𝛥3 =
1

𝐺
[𝜆𝑉𝜙(𝐺) + 2𝜆(𝜉 − 𝑉) +

𝑉(𝜉−𝑉)𝜙(𝐺)

𝜉
+ (𝜙(𝐺) − 2)

2𝜆𝐵

𝐺(𝜉−𝑉)
] (3.27) 

        𝛥4 =
𝐵

𝐺
[
2𝑉(𝜉−𝑉)

𝜉𝑍
+

2𝜆𝑉

𝑍
+

4𝜆

𝐺(𝜉−𝑉)
+

2𝜆

(𝜉−𝑉)
(
(𝜉−𝑉)2

𝑍
−

𝜙(𝐺)

𝐺
)]               (3.28) 



Since the system (3.1-3.4) is a set of quasilinear hyperbolic partial differential 

equations, it is difficult to determine a solution without approximations. Here, we 

assume that there exists a solution of (3.1-3.4) subject to (3.10) along a family of 

curves, called similarity curves, for which the set of partial differential equations 

reduce to a set of ordinary differential equations, and also assume that the shock 

trajectory is embedded in the family of similarity curves. This type of solution is 

called a similarity solution. 

3.3 Numerical Solution 

The system of transformed equations are solved using 4th order RK-method and 

CCW methods using MATLAB. 

            a) The numerical solution involves solving system of equations (3.23) 

along with boundary conditions (3.22) using the explicit fourth order Runge-

Kutta method. In order to compute similarity exponent 𝛼, we integrate equations 

(3.23) in the domain of interest 1 ≤ 𝜉 < ∞ such that for a chosen value of 𝛼 all 

the ∆𝑖’s become simultaneously zero at the same value of 𝜉, which is the singular 

point of the system. Finally we determine the values of 𝛼 for different values of 

Mie-Gruneisen coefficient in non-ideal medium. 

            b) Chester-Chisnell-Whitham method: The case of shock propagating into 

a uniform quiescent gas, individually obtained a similar relation, using different 

methods, to relate the shock Mach number and the cross-sectional area of tube. 



The relation derived is commonly referred to as the Chester-Chisnell-Whitham 

(CCW) relation or method. It provides a quasi-one-dimensional analysis. This 

method was proposed by Whitham [81], which is valid along a positive 

characteristic to the flow quantities immediately behind the shock. The CCW rule 

is based on Chester’s result for the motion of a shock wave in a channel with a 

small change in area. The motion of shock waves can be analysed simply by 

applying the CCW approximation without solving the characteristic equations for 

the flow behind the shock wave front. Chester [16] considered the motion of a 

shock wave through a channel consisting of a section of slowly varying area 

separating two uniform ducts. Chisnell [17] integrated Chester’s linearized 

formula with respect to the area difference between the uniform sections. 

Whitham [18, 81] showed that the motion of a shock wave can be analysed 

without solving the whole flow-field behind the shock wave and obtained the 

differential relation that satisfies the flow quantities along a positive characteristic 

line pertinent to the flow quantities behind the shock wave. Final formulation of 

Whitham’s rule was very consistent with the results obtained by Chester and 

Chisnell. This approximate treatment for shock wave motion is generally 

extended to geometrical shock wave dynamics or ray shock wave theory and is 

often applied to analyses of shock focus on reflected shock waves from the 

reflectors. 

The basic equations governing the flow (3.1-3.4) may be combined to get the 

following characteristic equation in terms of shock location 𝑅𝑠(𝑡) as [82] 



          
𝑑𝑝1

𝑑𝑅𝑠(𝑡)
+

𝑑ℎ1

𝑑𝑅𝑠(𝑡)
+ 𝜌1𝑐1

𝑑𝑣1

𝑑𝑅𝑠(𝑡)
+

1

𝑅𝑠(𝑡)
(
𝜌1𝑐1

2𝑣1

𝑣1+𝑐1
−

2ℎ1(𝑣1−𝑐1)

𝑣1+𝑐1
) = 0            (3.29) 

where 𝑐1 is the Alfven speed in non-ideal medium, defined as 

                                              𝑐1 = [(1 + Γ (
𝜌1

𝜌0
))

𝑝1

𝜌1
+

2ℎ1

𝜌1
]

1

2

                         (3.30)   

With the help of strong shock conditions (3.10), equation (3.29) reduces to the 

following form 

                                                         
𝑅𝑠𝑈𝑠̇

𝑈𝑠
2 +

1

𝐷
= 0                                          (3.31)                                  

where 

   𝐷 =
(1−1 𝛽+𝐸⁄ )(1−1 𝛽⁄ )(2+𝛽𝐸)

𝛽(𝐸2(1−1 𝛽⁄ )−𝐶0𝛽(1−1 𝛽⁄ −𝐸))
 ,   𝐸 = [

1

𝛽
(𝜙(𝛽) (1 −

1

𝛽
−

𝐶0𝛽2

2
) + 𝐶0𝛽

2)]
1

2⁄

 

Solving equation (3.31) yields       

                                                      𝛼 =
𝐷

𝐷+1
                                                    (3.32) 

This can be evaluated for different values of Mie-Gruneisen coefficient in non-

ideal medium. 

3.4 Results and Discussion 

Numerical calculations are performed to determine the value of the similarity 

exponent and to study the behavior of the flow variables behind the shock front. 

The similarity exponent is also computed using CCW method for comparison. 



Phenomena of interactions between shock waves and dusty gas, condensed matter 

EOSs are simulated. Dusty plasmas constitute ionized gases containing charged 

particles of condensed matter. Dust not only modifies the wave spectrum in 

comparison with dust-free plasma, but can also lead to the appearance of new 

modes and new mechanisms of damping and instability. Effects of physical 

parameters such as density, velocity, pressure, and magnetic pressure in both 

EOSs on the behavior of shock wave propagation are discussed. Numerical 

results are in good agreement with literature observations. Considering two 

physically meaningful Mie-Gruneisen coefficients and corresponding values of 

similarity exponent, flow profiles in both media are presented. 

   a) An EOS of a medium is obtained by solving the differential equation (3.19), 

which is given as, 

                                                𝛤(𝐺) =
𝑀

(1−𝐺−𝑀)
                                          (3.33) 

where 𝑀 is the material property.  

Using equation (3.33) and equation (3.11), we obtain a polynomial for 𝛽 

𝐶0𝛽
𝑀+3 + 𝑀𝛽𝑀+2 − 2(𝑀 + 1)𝛽𝑀+1 + (𝑀 + 2)𝛽𝑀 − 𝐶0𝛽

3 + 2𝛽 − 2 = 0   (3.34) 

which is solved numerically using MATLAB to obtain all roots of the equation 

and only physically meaningful values of 𝛽 are considered for investigation. 

   b) The Mie-Gruneisen coefficient for condensed matter 𝛤(𝐺) as [80] 



                                       𝛤(𝐺) =
2

3
+ (𝛤0 −

2

3
)

(𝐺𝑚
2+1)𝐺

(𝐺𝑚
2+𝐺2)

                                (3.35) 

where 𝐺𝑚 and 𝛤0 are material properties. 

Substituting equation (3.35) in equation (3.11) we obtain a 5th degree polynomial 

in terms of measure of shock strength as 

               3𝐶0𝛽
5 + 2𝛽4 + 𝐴1𝛽

3 + 𝐴2𝛽
2 − 𝐴3𝛽 + 8𝐺𝑚

2 = 0                      (3.36) 

where    

              𝐴1 = 3𝐶0𝐺𝑚
2 + 3(𝐺𝑚

2 + 1) (𝛤0 −
2

3
) − 10,     

              𝐴2 =2{(4 + 𝐺𝑚
2) − 3(𝐺𝑚

2 + 1) (𝛤0 −
2

3
)}, 

              𝐴3 = 10𝐺𝑚
2 − 3(𝐺𝑚

2 + 1) (𝛤0 −
2

3
) 

The equation (3.36) is solved numerically using MATLAB to get all roots of the 

equation and only physically meaningful roots are taken for computation. 

Table 3.1: The values of similarity exponent for dusty gas flow when  𝐶0 = 0.02, 

𝛼𝑛 - Runge-Kutta method, 𝛼𝑐 - CCW method 

𝑴 𝜷 𝜶𝒏 𝜶𝒄 

0.03 1.0137889 0.677064 0.606602 

0.05 1.0137898 0.676872 0.607107 

0.07 1.0138897 0.676391 0.607961 

0.09 1.0140012 0.675090 0.608097 

1.78 1.0203 0.565763 0.674709 

 



Table 3.2: The values of similarity exponent for condensed matter when 𝐶0 =

0.02, 𝛼𝑛 - Runge-Kutta method, 𝛼𝑐 - CCW method 

𝜞𝟎 𝑮𝒎 𝜷 𝜶𝒏 𝜶𝒄 

0.03 0.65 1.0102987 0.782900 0.534364 

0.05 0.65 1.0102998 0.781498 0.534692 

0.07 0.65 1.0103582 0.778576 0.534891 

0.09 0.65 1.0103976 0.777492 0.535609 

1.78 0.65 1.0104012 0.779200 0.536582 

 

From the Table 3.1, it is observed that the similarity exponents 𝛼𝑛 and 𝛼𝑐 values 

for various 𝑀 for dusty gas produced good approximation and from Table 3.2, 

condensed matter did not show good approximation for both R-K and CCW 

methods which may be due to the contribution of 𝐺𝑚. The behaviour of flow 

profiles is presented in Figures 3.2 and 3.3 are compared with values obtained 

from numerical integration of the similarity variable, which is a function of 

distance and shock position. Figures 3.2 and 3.3 shows that the absolute values 

of velocity, pressure, and magnetic pressure decreases with an increase in 

magnetic field strength in dusty gas and condensed matter. The increase in the 

value of 𝑀 and decrease in similarity exponent has just the reverse effect in a way 

that it effectively changes the compression of gas particles, which can be seen 

from Figures 3.2(c) and 3.3(c). The decay of velocity of gas particles is very fast 

in a dusty gas whereas in condensed matter it is sufficiently slow. It is observed 

that the magnetic pressure profiles have a smooth decreasing profile for different 

𝛼. Again with the increase in the value of 𝛼, the shock propagation is observed 



to reduce as seen from Figures 3.2(d) and 3.3(d). It is interesting to note that the 

transient behaviour of 𝑅𝑠(𝑡) does not depend on the amplitude of the initial 

pressure pulse. 

In this problem, we obtained a numerical solution of the system of non-linear 

ordinary differential equations to determine the similarity exponent. Obtained 

low distribution of parameters such as density, velocity, pressure and magnetic 

pressure for two different physically meaningful non-ideal medium such as dusty 

gas and condensed matter. We employed two numerical techniques Runge-Kutta 

and CCW methods in the evaluation of similarity exponent in both medium. It is 

observed that both RK and CCW methods produced a very good approximation 

for similarity exponents for dusty gas case and were different for condensed 

matter case as expected. We provided a description of flow pattern and numerical 

method employed to ensure the solution when integrating the system of equations 

passing through the singular points in the solution. It is observed that the effect 

of increasing values of magnetic field strength causes to decrease the values of 

velocity, pressure and magnetic pressure in dusty gas and condensed matter. It is 

observed that the density decreases with an increase in magnetic field strength for 

dusty gas flow, whereas in the case of condensed matter density increases with 

the effect of an increasing values of magnetic field strength. Also, we observed 

that the values of similarity exponent decreases with increasing values of 

magnetic field strength. Moreover, we conclude that the law of shock wave 



propagation is rather sensitive to the particular form of the EOS, and the 

measurement of shock velocities can provide useful information about the EOS.  
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Figure 3.2(a). Density profiles for dusty gas 
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Figure 3.2(b). Velocity profiles for dusty gas 
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Figure 3.2(c). Pressure profiles for dusty gas 
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Figure 3.2(d). Magnetic pressure profiles for dusty gas 
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Figure 3.3(a). Density profiles for condensed matter 
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Figure 3.3(b). Velocity profiles for condensed matter 
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Figure 3.3(c). Pressure profiles for condensed matter 
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Figure 3.3(d). Magnetic pressure profiles for condensed matter 



Chapter-4 

Numerical Solution to Strong Cylindrical Shock Wave in 

the Presence of Magnetic Field 

4.1 Introduction 

The study of magneto hydrodynamic waves (MHD) in non-ideal medium is of 

great scientific interest to many areas of astrophysics, geophysics, underground 

explosions, hypersonic aerodynamics, hypervelocity impact, plasma physics, 

oceanography, atmospheric sciences, nuclear sciences, etc. Converging shock 

waves have been a field of growing interest since the early 1940’s from both 

mathematical and physical point of view. The first experimentally produced 

converging shock waves were presented by Perry and Kantrowitz [83]. The study 

of shock waves produced due to the explosion or implosion in the presence of 

magnetic field has received much attention in recent times. Many researchers 

studied the problem of planar, cylindrical, and spherical MHD shock waves, 

mathematical [24] as well as experimental point of view. Analytic description of 

the flow variables at all points behind the converging shocks and approximate 

analytical determination of the similarity exponent 𝛼 is detailed by Genot, 

Chisnell [33, 84]. Analytical solution of spherically imploding shock waves in a 

perfect gas was studied by Fujimoto and Mishkin [85]. The authors [16-18] have 

developed independently approximate methods to solve shock wave problems. 



Such methods are often referred to as the CCW-method and their results agree 

well with similarity solution of Guderley [15]. These methods ignore the 

influence of the flow behind the shock. The solution to the strong spherical and 

cylindrical piston problem using perturbation technique is discussed in [53]. 

Several approaches such as the self-similarity method [5-7, 50], power series 

solution and method of characteristics [32, 54, 86-88] have been used for the 

theoretical investigations of MHD shock waves in homogeneous and non-

homogeneous media. 

In recent times study of shock waves in gaseous non-ideal medium has attracted 

the interest of many researchers due to its extensive applications in the areas of 

supernova explosions, photo ionized gas, stellar winds, monochromatic radiation, 

dynamo effect in stars, gamma-ray bursts, etc. A theoretical study of the 

imploding shock wave in non-ideal medium was investigated by several authors 

[56, 89, 90] to obtain accurate results. 

In this chapter, the self-similar solution of imploding cylindrical shock waves in 

non-ideal medium is presented. The medium generated due to implosion is 

assumed to be of Mie-Gruneisen type with or without magnetic material. In the 

implosion process (by impulse method) plasma is assumed to be generated. It is 

assumed that this plasma has an infinite electrical conductivity and permeated by 

an axial magnetic field orthogonal to the trajectories of gas particles. Numerical 

solution presented here provides a global solution to the implosion problem which 



is valid for a range of physically meaningful parameters which represent the EOS 

of Mie-Gruneisen type. Numerical computations are performed to obtain the 

similarity exponent iteratively using MATLAB. The aim of the present work is 

to understand the mechanical properties of shock waves in the presence of strong 

magnetic field; to study the behaviour of shock characteristics such as shock 

strength, shock density, shock speed, shock over pressure, and impulse.  

4.2 Basic Equations 

The governing equations of compressible one-dimensional Euler equations for 

the motion of a non-ideal gas in the magnetogasdynamics regime with the 

medium containing no heat conduction, or sinks, viscosity and radiation in non-

conservative form can be written as [7, 70, 76, 81, 91, 92]  

           
𝜕𝐹𝑣

𝜕𝑡
+ 𝐴

𝜕𝐹𝑣

𝜕𝑟
+ 𝐷 = 0,   or   𝐹𝑣𝑡 + 𝐴𝐹𝑣𝑟 + 𝐷 = 0                              (4.1) 

where 𝐹𝑣, 𝐷 are column vectors of order 4 × 1 and 𝐴 is the coefficient matrix of 

order 4 × 4 for derivative of state function 𝐹𝑣 given as follows 

      𝐹𝑣 = [

𝜌
𝑣
𝑒
ℎ

],   𝐴 = [

𝑣
0
0
0

     

𝜌
𝑣

𝑝/𝜌
2ℎ

      

0
1/𝜌
𝑣
0

     

0
1/𝜌
0
𝑣

],   and   𝐷 =

[
 
 
 
 
 

(𝜐−1)𝜌𝑣

𝑟

0
(𝜐−1)𝑝𝑣

𝜌𝑟

2(𝜐−1)ℎ𝑣

𝑟 ]
 
 
 
 
 

        (4.2) 

The equations governing the flow are in general form with 𝜐 = 1, 2 and 3 denoting 

planer, cylindrical, spherical geometry respectively. 𝑡 and 𝑟 are independent 

variables representing time and space coordinates, 𝜌 is the density, 𝜌0 is the 



density of unperturbed medium, 𝑝 is the pressure, 𝑣 is the velocity of gas particles, 

e is the specific internal energy, ℎ =
𝜇𝐻2

2
 is the magnetic pressure. 𝐻 and 𝜇 being 

the magnetic field strength and the magnetic permeability, respectively. The 

shock position is given by 𝑅𝑠(𝑡) and its speed is  𝑈𝑠(𝑡) =
𝑑𝑅𝑠

𝑑𝑡
. In this work, the 

magnetic permeability is assumed to be unity and the electrical conductivity to be 

infinite. The EOS under equilibrium condition is of Mie-Gruneisen type [57], 

                           𝑝 = 𝜌𝑒𝛤(𝜌/𝜌0)                                                          (4.3) 

where 𝛤(𝜌/𝜌0) is the Mie-Gruneisen coefficient. Shock is assumed to be strong 

and propagating into a medium according to the power law 𝑅𝑠(𝑡) ∝ (1 − 𝑡/𝑡𝑐)
𝛼, 

where 𝑡𝑐 is the collapse time, 𝛼 is similarity exponent to be determined by the 

condition that the similarity variable 𝜉 =
𝑟

𝑅𝑠(𝑡)
 is 1 at the shock front.  

4.2.1 Boundary conditions 

The strong shock limit of the Rankine-Hugoniot jump conditions may be used to 

connect the flow just behind the shock to that just ahead of the shock front [7, 76] 

                 
𝜌1

𝜌0
= 𝛽,          𝑣1 = (1 −

1

𝛽
)𝑈𝑠(𝑡), 

                 
𝑝1

𝜌0
= (1 −

1

𝛽
−

𝐶0𝛽2

2
)𝑈𝑠

2(𝑡),     
ℎ1

𝜌0
=

𝐶0𝛽2

2
𝑈𝑠

2(𝑡)   

(4.4) 



where 𝐶0 =
2ℎ0

𝜌0𝑈𝑠
2(𝑡)

 is the Cowling number and 𝛽 is the measure of the shock 

strength. The suffices ‘1’ and ‘0’ refer to conditions just behind and ahead of the 

shock respectively. 

With the above relations (4.4), the equation (4.3) can be written as 

                               (2 −
𝐶0𝛽3

(𝛽−1)
) = (𝛽 − 1)𝛤(𝛽)                                        (4.5) 

Equation (4.5) is used to determine the measure of shock strength 𝛽 for various 

models of EOS, which are provided in this chapter. 

Also, the boundary conditions for the strong shock at (𝜉 = 1) can be written as  

    𝐺(1) = 𝛽,   𝑉(1) = 1 −
1

𝛽
 ,   Z(1) = 1 −

1

𝛽
−

𝐶𝑜𝛽2

2
 ,   𝐵(1) =

𝐶𝑜𝛽2

2
      (4.6) 

4.3 Solution Procedure 

The flow field is bounded by the piston and the shock respectively. In the 

framework of self-similarity shock is assumed to be strong and propagating into 

a medium according to the power law 𝑅𝑠(𝑡) ∝ (1 − 𝑡/𝑡𝑐)
𝛼. The counter pressure 

ahead of the shock can be neglected and 𝑡𝑐 is the collapse time. The basic 

equations are non-dimensionalised using the following transformations [7], 

 𝜌 = 𝜌0G(𝜉),  𝑣 = 𝑈𝑠(𝑡)𝑉(𝜉),  𝑝 = 𝜌0𝑈𝑠
2(𝑡)𝑍(𝜉),  ℎ = 𝜌0𝑈𝑠

2(𝑡)𝐵(𝜉)  (4.7) 



where the similarity variable 𝜉 =
𝑟

𝑅𝑠(𝑡)
 , G, V, Z, and B are the functions (known 

as reduced functions) of the non-dimensional variable 𝜉 only. The 

quantities 𝑈𝑠(𝑡),  𝜌0𝑈𝑠
2(𝑡) are the velocity scale and pressure scale respectively. 

Applying transformations (4.7) on the system of equations (4.1) ( 𝜐 = 2 for 

cylindrical geometry) we obtain reduced system of ordinary differential equations 

in the dimensionless variables 𝜉, G (𝜉), V (𝜉), Z (𝜉), and B (𝜉). 

                       
1

𝐺

𝑑𝐺

𝑑𝜉
−

1

(𝜉−𝑉)

𝑑𝑉

𝑑𝜉
=

𝑉

𝜉(𝜉−𝑉)
                                                     (4.8) 

                       
𝑑𝑉

𝑑𝜉
−

1

𝐺(𝜉−𝑉)
(
𝑑𝑍

𝑑𝜉
+

𝑑𝐵

𝑑𝜉
) =

𝜆𝑉

(𝜉−𝑉)
                                           (4.9) 

                       
1

𝑍

𝑑𝑍

𝑑𝜉
− 𝜙(𝐺)

1

𝐺

𝑑𝐺

𝑑𝜉
=

2𝜆

(𝜉−𝑉)
                                                   (4.10) 

                       
1

𝐵

𝑑𝐵

𝑑𝜉
−

2

𝐺

𝑑𝐺

𝑑𝜉
=

2𝜆

(𝜉−𝑉)
                                                            (4.11) 

where 

                        𝜆 = 1 −
1

𝛼
 ,   and   𝛷(𝐺) = 1 + 𝛤(𝐺) +

𝐺

𝛤(𝐺)

𝑑𝛤

𝑑𝐺
            

Finite difference approximations of the derivatives for the above system of 

equations (4.8-4.11) are 

     
𝑑𝐺

𝑑𝜉
=

𝐺𝑖+1−𝐺𝑖

ℎ
 ,   

𝑑𝑉

𝑑𝜉
=

𝑉𝑖+1−𝑉𝑖

ℎ
 ,   

𝑑𝑍

𝑑𝜉
=

𝑍𝑖+1−𝑍𝑖

ℎ
 ,   

𝑑𝐵

𝑑𝜉
=

𝐵𝑖+1−𝐵𝑖

ℎ
               (4.12) 

the subscripts 𝑖 represent the grid points. We substitute these derivatives in 

equations (4.8-4.11) and simplifying result in a system of algebraic equations: 



        (𝜉𝑖 − 𝑉𝑖)𝐺𝑖+1 − 𝐺𝑖𝑉𝑖+1 = (𝜉𝑖 − 𝑉𝑖)𝐺𝑖 − (1 −
ℎ

𝜉𝑖
)𝐺𝑖𝑉𝑖                         (4.13) 

(𝜉𝑖 − 𝑉𝑖)𝑉𝑖+1 − (
1

𝐺𝑖
) 𝑍𝑖+1 − (

1

𝐺𝑖
)𝐵𝑖+1 = (𝜆ℎ + 𝜉𝑖 − 𝑉𝑖)𝑉𝑖 −

1

𝐺𝑖
(𝑍𝑖 + 𝐵𝑖)   (4.14) 

      𝑍𝑖+1 − (
𝑍𝑖𝜙(𝐺𝑖)

𝐺𝑖
)𝐺𝑖+1 = (1 − 𝜙(𝐺𝑖))𝑍𝑖 +

2𝜆ℎ𝑍𝑖

(𝜉𝑖−𝑉𝑖)
                                   (4.15) 

            𝐵𝑖+1 − (
2𝐵𝑖

𝐺𝑖
)𝐺𝑖+1 = (

2𝜆ℎ

(𝜉𝑖−𝑉𝑖)
− 1)𝐵𝑖                                                (4.16) 

These can be written in the matrix form as 

   

(

  
 

(𝜉𝑖 − 𝑉𝑖)

0

−𝑍𝑖𝜙(𝐺𝑖)/𝐺𝑖

−2𝐵𝑖/𝐺𝑖

     

−𝐺𝑖

(𝜉𝑖 − 𝑉𝑖)

0

0

      

0

−1/𝐺1

1

0

     

0

−1/𝐺1

0

1 )

  
 

(

𝐺𝑖+1

𝑉𝑖+1

𝑍𝑖+1

𝐵𝑖+1

) =

(

 
 
 
 

(𝜉𝑖 − 𝑉𝑖)𝐺𝑖 + (
ℎ

𝜉𝑖
− 1)𝐺𝑖𝑉𝑖

(𝜆ℎ + 𝜉𝑖 − 𝑉𝑖)𝑉𝑖 −
1

𝐺𝑖
(𝑍𝑖 + 𝐵𝑖)

(1 − 𝜙(𝐺𝑖))𝑍𝑖 +
2𝜆ℎ𝑍𝑖

(𝜉𝑖−𝑉𝑖)

(
2𝜆ℎ

(𝜉𝑖−𝑉𝑖)
− 1)𝐵𝑖 )

 
 
 
 

        (4.17) 

Using Crout’s reduction method [93] the system of equations (4.17) are solved 

for density (𝐺𝑖+1), velocity (𝑉𝑖+1), pressure (𝑍𝑖+1), and magnetic pressure 

(𝐵𝑖+1) functions respectively, 

where 

      𝐺𝑖+1 = 𝑃𝑖 +
𝐺𝑖

(𝜉𝑖−𝑉𝑖)
𝑄𝑖 +

1

(𝜉𝑖−𝑉𝑖)
2
𝑅𝑖 +

𝐺𝑖

[𝐺𝑖(𝜉𝑖−𝑉𝑖)
2−𝑍𝑖𝜙(𝐺𝑖)]

𝑆𝑖                 (4.18)            

      𝑉𝑖+1 = 𝑄𝑖 +
1

(𝜉𝑖−𝑉𝑖)𝐺𝑖
𝑅𝑖 +

(𝜉𝑖−𝑉𝑖)

[𝐺𝑖(𝜉𝑖−𝑉𝑖)
2−𝑍𝑖𝜙(𝐺𝑖)]

𝑆𝑖                                   (4.19) 

      𝑍𝑖+1 = 𝑅𝑖 +
𝑍𝑖𝜙(𝐺𝑖)

[𝐺𝑖(𝜉𝑖−𝑉𝑖)
2−𝑍𝑖𝜙(𝐺𝑖)]

𝑆𝑖                                                        (4.20)    

                        𝐵𝑖+1 = 𝑆𝑖                                                                           (4.21) 



where 

                   𝑃𝑖 =
[𝐺𝑖(𝜉𝑖−𝑉𝑖)+𝐺𝑖𝑉𝑖(

ℎ

𝜉𝑖
 −1)]

(𝜉𝑖−𝑉𝑖)
, 

                   𝑄𝑖 =
[𝑉𝑖(𝜆ℎ+𝜉𝑖−𝑉𝑖)−

1

𝐺𝑖
(𝑍𝑖+𝐵𝑖)]

(𝜉𝑖−𝑉𝑖)
, 

                  𝑆𝑖 =
[2𝐵𝑖𝐺𝑖(𝜉𝑖−𝑉𝑖)𝑀𝑖+

2𝐵𝑖𝑍𝑖𝜙(𝐺𝑖)

𝜉𝑖
𝑁𝑖+𝐾𝑖]

𝐺𝑖(𝜉𝑖−𝑉𝑖)
2[𝐺𝑖(𝜉𝑖−𝑉𝑖)

2−𝑍𝑖𝜙(𝐺𝑖)−2𝐵𝑖]
 , 

                  𝑅𝑖 =
[{𝑍𝑖𝐺𝑖(𝜉𝑖−𝑉𝑖)(2𝜆ℎ+𝜉𝑖−𝑉𝑖)}+

𝑍𝑖𝜙(𝐺𝑖)

𝜉𝑖
{ℎ𝐺𝑖𝑉𝑖(𝜆ℎ+𝜉𝑖−𝑉𝑖)−(𝑍𝑖+𝐵𝑖)𝜉𝑖}]

{𝐺𝑖(𝜉𝑖−𝑉𝑖)
2−𝑍𝑖𝜙(𝐺𝑖)}

 ,  

                  𝑀𝑖 = {𝐺𝑖𝑉𝑖(𝜆ℎ + 𝜉𝑖 − 𝑉𝑖) − 𝐵𝑖}(𝜉𝑖 − 𝑉𝑖) + 2𝜆ℎ𝑍𝑖 ,  

                  𝑁𝑖 = (𝜉𝑖 − 1)(𝑍𝑖 + 𝐵𝑖) + (ℎ − 𝜉𝑖)(𝜆ℎ + 𝜉𝑖 − 𝑉𝑖),  

     𝐾𝑖 = {(2𝜆ℎ + 𝜉𝑖 − 3𝑉𝑖) +
2ℎ

𝜉𝑖
𝑉𝑖} [𝐵𝑖𝐺𝑖

2(𝜉𝑖 − 𝑉𝑖)
3 − 𝐺𝑖𝑍𝑖𝐵𝑖𝜙(𝐺𝑖)(𝜉𝑖 − 𝑉𝑖)].   

4.3.1 The numerical solution 

The solution to equations (4.18-4.21) involves evaluation of 𝛽 (
𝜌

𝜌0
) and 𝛼 

considering the EOS of Mie-Gruneisen type [94]  

a.         𝛤(𝐺) =
𝑀

(1−𝐺−𝑀)
                               (4.22) 

            where 𝑀 is constant parameter and represents material property of the  

            dusty gas particles. 

b.        Royce EOS [95]  



                 𝛤(𝐺) = 𝛤0 − 𝑎 (1 −
1

𝐺
)                              (4.23) 

       where  𝛤0 represents specific heat of the solid particles and ‘𝑎’ is an 

arbitrary constant.  Along with equation (4.5), equations (4.22) and (4.23) we 

obtain the equation in 𝛽 as 

𝜙(𝛽) = 𝐶0𝛽
𝑀+3 + 𝑀𝛽𝑀+2 − 2(𝑀 + 1)𝛽𝑀+1 + (𝑀 + 2)𝛽𝑀 − 𝐶0𝛽

3 + 2𝛽 − 2 = 0  (4.24)                                                                                                            

𝜓(𝛽) = 𝐶0𝛽
4 + (𝛤0 − 𝑎)𝛽3 + (3𝑎 − 2 − 2𝛤0)𝛽

2 + (2 − 3𝑎 + 𝛤0)𝛽 + 𝑎 = 0  (4.25)                    

The equation (4.25) reduces to perfect gas EOS when 𝛤0 = (𝛾 − 1), 𝑎 = 0 and 

along with equation (4.3) the EOS for perfect gas becomes 

                          𝑝(𝜌, 𝑒) = 𝜌𝑒(𝛾 − 1)                                                         (4.26) 

where 𝑒 is the SIE, 𝛾 =
𝐶𝑝

𝐶𝑣
 denotes the specific heat ratio of perfect gas and 𝜌, 𝑝 

represent density and pressure respectively. Thus along with 𝛤0 = (𝛾 − 1), and 

𝑎 = 0 and equation (4.26) on substituting in equation (4.25) the equation for 

measure of shock strength 𝛽 for perfect gas can be written as  

                  𝜋(𝛽) = 𝐶0𝛽
3 + (𝛾 − 1)𝛽2 − 2𝛾𝛽 + (𝛾 + 1) = 0                  (4.27)    

and the expression for 𝛼 as  

     
[1−(𝛽−1)𝜑(𝛽)]

𝛽2
 +  

1

2
 𝐶0

𝛼0
2

𝛼2
[𝜑(𝛽) − 2 ]𝛽 = 0,   where   0 < 𝛼0 < 1       (4.28) 

     where   𝜑(𝛽) = 1 + 𝑀,   𝜑(𝛽) = 1 + 𝛤(𝛽) −
𝑎

𝛽𝛤(𝛽)
 ,    



for dusty gas and Royce EOS respectively and 𝛽 is the root of equations (4.24, 

4.25 and 4.27). Starting with a guess values of 𝛼, 𝛼 is evaluated from equation 

(4.28) using a bracketing method for various values of 𝐶0, 𝑎, 𝑀, 𝛼0, and 𝛽. The 

equations (4.18-4.21) are solved with boundary conditions (4.6) in the region of 

1 ≤ 𝜉 < ∞ using MATLAB. The numerical evaluation is carried out from the 

shock front (𝜉 = 1) and proceed inwards until it reaches 𝜉 =  ∞, indicating  

𝜉𝑚𝑖𝑛 = 1 and 𝜉𝑚𝑎𝑥 = 5, where 𝜉𝑚𝑎𝑥 corresponds to 𝜉 = ∞, ℎ = 𝛥𝜉  and  𝜉𝑖 =

1 + (𝑖 − 1)ℎ , 𝑖 ≥ 1 is a positive integer, where step size is ℎ = 0.001 and the 

number of grid points were approximately 4000 for the solution procedure. The 

error tolerance is 8 significant digits. 

4.4 Results and Discussion 

In this chapter, the entire computational work has been carried out using 

MATLAB. The computed values of similarity exponent 𝛼 for various values of 

measure of shock strength 𝛽 for the dusty gas, Royce and perfect gas EOS are 

presented in Tables 4.1-4.4. The unsteady nature of flow variables with the effect 

of magnetic field for the EOS under consideration are illustrated through Figures 

4.2-4.7 for cylindrical converging shock waves. Equations (4.24, 4.25 and 4.27) 

are solved numerically for all roots of 𝛽 (Figure 4.1(a)-(d) for graphical solution) 

which depend on the parameters 𝐶0= 0.02, 0.05; 𝑎 = 1.0, 1.2, 1.5 and 𝛤0 =1.78 

(for Royce EOS) with (0 < 𝐶0 ≤ 0.1); and 𝑀 = 1.4, 1.5, 1.6, 1.8 and 2.0 (for 

dusty gas); and 𝛾  = 1.2, 1.4 and 1.6 (for perfect gas) respectively. 



Table 4.1: The values of similarity exponent 𝛼 for dusty gas EOS flow 

 

Table 4.2: The values of similarity exponent 𝛼 for Royce EOS when 𝛤0 = 1.78 

𝒂 

 

𝑪𝟎 = 0.02 𝑪𝟎 = 0.05 

𝜷 𝜶 𝜷 𝜶 

1.0 2.52063 0.30570 2.26132 0.45097 

1.2 2.73109 0.32313 2.39457 0.46735 

1.5 3.29655 0.37204 2.70082 0.50691 

 

Table 4.3: The values of similarity exponent 𝛼 for Royce EOS when 𝛤0 = 2.02 

𝒂 𝑪𝟎 = 0.02 𝑪𝟎 = 0.05 

𝜷 𝜶 𝜷 𝜶 

1.0 2.24026 0.28362 2.05447 0.42712 

1.2 2.35998 0.29285 2.13702 0.43636 

1.5 2.62946 0.31465 2.30779 0.45661 

 

Table 4.4: The values of similarity exponent 𝛼 for perfect gas EOS 

𝜸 𝑪𝟎 = 0.02 𝑪𝟎 = 0.05 

𝜷 𝜶 𝜷 𝜶 

1.2 6.29241 0.64632 4.49743 0.75963 

1.4 4.63191 0.49275 3.67781 0.64173 

1.6 3.70626 0.40856 3.13229 0.56545 

𝑴 𝑪𝟎 = 0.02 𝑪𝟎 = 0.05 

𝜷 𝜶 𝜷 𝜶 

1.4 1.01841 0.71357 1.05085 0.71152 

1.5 1.01887 0.70525 1.05240 0.70247 

1.6 1.01935 0.69694 1.05405 0.69330 

1.8 1.02040 0.67982 1.05776 0.67421 

2.0 1.02157 0.66226 1.06213 0.65409 



From the Table 4.1, we observed that with the change in the values of 𝑀 and 𝐶0, 

measure of shock strength 𝛽 increases, whereas similarity exponent 𝛼 decreases. 

It is observed from Table 4.2 and Table 4.3 that the increase in the similarity 

exponent 𝛼, corresponds to the increase in the values of measure of shock strength 

𝛽 and arbitrary constant 𝑎 for Royce EOS. It is notable from Table 4.4, that the 

specific heats ratio 𝛾 has direct impact on the similarity exponent 𝛼 and the 

measure of shock strength 𝛽 i.e., with increase in the value of 𝛾, the similarity 

exponent 𝛼 and 𝛽 decreases. Also, we may note that the change in similarity 

exponent 𝛼 is more prominent and faster in the perfect gas, as compared to that 

of dusty gas, because of considerable change in the initial strength of shock. The 

variations of non-dimensional shock velocity, pressure, magnetic pressure and 

density with 𝜉 for dusty gas, Royce and perfect gas EOS are shown in Figures 

4.2-4.7. From Figure 4.2(a-d), it is observed that the flow variables: density, 

velocity, pressure and magnetic pressure are high at the shock front (for the dusty 

gas EOS) and increases with the increase in the non-idealness parameter 𝐶0 and 

reduce gradually as 𝜉 increases. In particular, it is observed that the shock wave 

travels very slowly i.e., a low value of similarity exponent 𝛼 in the dusty gas 

medium for various values of 𝐶0 which is due to increase in strength of shock 

density. Figures 4.3-4.6 depicts the density, velocity, pressure, and magnetic 

pressure distributions as functions of dimensionless variable (i.e., reduced 

distance) over a subset of the computational domain for Royce EOS. Again from 



Figures 4.3(a-b), 4.5(a-b), and 4.6(a-b) we note a sharp rise in density, pressure 

and magnetic pressure distributions behind the shock front, located between 𝜉 = 

1 and 𝜉 = 2.0 and then decrease monotonically along the axis. It may be observed 

that variation in these peaks is reducing with an increase in the values of the 

parameter 𝑎, which is higher in the case of Cowling number 𝐶0 = 0.02, whereas 

in the case of Cowling number 𝐶0 = 0.05 not much variation is observed. It can 

be seen from Figure 4.4(a) for the case 𝐶0 = 0.02 almost sharp rise the velocity 

profiles in the region 1 ≤ 𝜉 < 5 and thereby rise monotonically as 𝜉 increases. 

The other case (i.e., 𝐶0 = 0.05) we observe a sharp rise in velocity behind the 

shock front, located between 𝜉 = 1 and 𝜉 = 1.5 and then decrease in velocity 

monotonically towards the axis (see Figure 4.4(b)). In particular, with change in 

the value of 𝑎 it is observed from Figure 4.4(a-b) that velocity slowly decreases 

beyond the region 1 ≤ 𝜉 < 1.5 in both cases. Figure 4.7(a-d) depict the density, 

velocity, pressure, and magnetic pressure as functions of reduced distance over 

the entire computational domain for perfect gas EOS. The nature of these EOS 

are similar to those described for other EOS shown in Figures 4.2, 4.3, 4.5, and 

4.6. The maximum values of reduced density, velocity, pressure, and magnetic 

pressure peaks for various values of 𝐶0 in case of Royce EOS, as well as perfect 

gas for (𝑎 = 0 and 𝛤0 = (𝛾 − 1)) are summarized in the following Table 4.5. 

 



Table 4.5: Maximum values of flow parameters 𝐺, 𝑉, 𝑍, and 𝐵 for different 

values of 𝐶0 

 𝑪𝟎 = 0.02 𝑪𝟎 = 0.05 

𝒂 𝐺𝑚𝑎𝑥 𝑉𝑚𝑎𝑥 𝑍𝑚𝑎𝑥 𝐵𝑚𝑎𝑥 𝐺𝑚𝑎𝑥 𝑉𝑚𝑎𝑥 𝑍𝑚𝑎𝑥 𝐵𝑚𝑎𝑥 

0 104.9987 1.2803 20.2175 13.1118 104.8192 1.4161 18.3795 6.0606 

1.0 1986.3420 6.2157 606.9698 585.0309 208.1239 1.1365 90.9678 93.8749 

1.2 298.2817 5.0537 159.0359 143.4323 203.9085 1.1247 104.5146 105.9147 

 

The problem involving a cylindrical converging strong shock wave has been 

formulated with a gas of varying density obeying a power law and shock 

propagates through a medium characterized by a Mie-Gruneisen EOS. The 

governing equations are non-dimensionalized using suitable similarity 

transformations. A finite difference scheme is employed to solve the system of 

non-linear differential equations. Crout’s reduction technique is used to solve the 

system of algebraic equations. The nature of flow variables with the effect of 

magnetic field in the respective models of EOS is investigated. 

From the present study, we notice that the similarity exponent 𝛼 decreases with 

an increase in the values of 𝑀 and fixed 𝐶0 causes an increase in 𝛽 for dusty gas 

medium. In perfect gas, similarity exponent 𝛼 decreases with decrease in 𝛽 with 

increasing values of 𝛾 and fixed 𝐶0. In case of Royce EOS the similarity exponent 

𝛼 decreases with an increasing values of 𝛤0 and fixed 𝑎 and 𝐶0 due to decrease in 

𝛽. The decay of shock wave is more prominent and slower in the dusty gas EOS. 



The effect of magnetic field on flow variables is less pronounced for dusty gas 

particles, because of lower compression between the gas particles. We conclude 

that the less compressible medium has higher wave propagation speed. As shown 

in Figures 4.3-4.7, the approximate reduced density, velocity, pressure, and 

magnetic pressure shows largest peaks to the right behind the shock front in 

Royce EOS, whereas in perfect gas flow variables have small peaks. This is due 

to fact that the effect of measure of shock strength 𝛽, which causes the change in 

𝛼 and also effect of converging geometry or area of contraction of the shock 

wave. 
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Figure 4.1. Graphical approach of 𝜙, 𝜓, and 𝜋 when 𝐶0 > 0.1; (a) dusty gas for 𝑀 = 1.4, (b) 

dusty gas for 𝑀 = 1.5, (c) Royce EOS for 𝑎 = 1.0, & 𝛤0 = 1.78, and (d) perfect gas for 𝛾 = 1.4 
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Figure 4.2(a). Density profiles for dusty gas when 𝑀 = 1.4 
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Figure 4.2(b). Velocity profiles for dusty gas when 𝑀 = 1.4 
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Figure 4.2(c). Pressure profiles for dusty gas when 𝑀 = 1.4 
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Figure 4.2(d). Magnetic pressure profiles for dusty gas when 𝑀 = 1.4 
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Figure 4.3(a). Density profiles for Royce EOS when 𝛤0 = 1.78, 𝐶0 = 0.02 
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Figure 4.3(b). Density profiles for Royce EOS when 𝛤0 = 1.78, 𝐶0 = 0.05 
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Figure 4.4(a). Velocity profiles for Royce EOS when 𝛤0 = 1.78, 𝐶0 = 0.02 
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Figure 4.4(b). Velocity profiles for Royce EOS when 𝛤0 = 1.78, 𝐶0 = 0.05 
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Figure 4.5(a). Pressure profiles for Royce EOS when 𝛤0 = 1.78, 𝐶0 = 0.02 
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Figure 4.5(b). Pressure profiles for Royce EOS when 𝛤0 = 1.78, 𝐶0 = 0.05 
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Figure 4.6(a). Magnetic pressure profiles for Royce EOS when 𝛤0 = 1.78, 𝐶0 = 0.02 
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Figure 4.6(b). Magnetic pressure profiles for Royce EOS when 𝛤0 = 1.78, 𝐶0 = 0.05 
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Figure 4.7(a). Density profiles for perfect gas when 𝛾 = 1.4 
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Figure 4.7(b). Velocity profiles for perfect gas when 𝛾 = 1.4 
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Figure 4.7(c). Pressure profiles for perfect gas when 𝛾 = 1.4 
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Figure 4.7(d). Magnetic pressure profiles for perfect gas when 𝛾 = 1.4 



Chapter-5 

Magnetogasdynamic Shock Waves a Numerical Study 

  

5.1 Introduction  

Magnetogasdynamics applies to many conductive fluid and plasma flows 

encountered in nature. In several circumstances, the flow is subject to a strong as 

well as a weak magnetic field. Such situation can be thought of occurring in 

earth’s liquid core, and is present in solar physics such as sunspots, solar flares, 

solar corona, solar winds, etc. The strong magnetic fields play significant roles in 

the dynamics of the interstellar medium. Several authors contributed to this 

investigation and we mention the contributions of [6, 24, 26, 50, 54, 56, 57, 84, 

96, 97, 98] for their high accuracy results and alternative approaches for the 

investigation of implosion problem. The propagation of shock waves under the 

influence of strong magnetic field is of great interest to many researchers. The 

areas of interest vary from astrophysics to plasma physics, to Magneto 

hydrodynamic (MHD) shock waves. Propagation of shock waves in magneto 

hydrodynamics (MHD) has been studied by several researchers. Analytical 

solutions were presented by Genot [33] for anisotropic MHD shocks. Hoffmann 

and Teller [99] developed a mathematical treatment for the motion of MHD shock 

waves in the very weak and very strong magnetic fields. Bazer and Ericson [100] 

were first among the many researchers to study the hydromagnetic shocks for 



astrophysical applications. A number of approaches namely, the similarity 

method, power series solution method, CCW method have been used for the 

theoretical investigations of MHD shock waves in homogeneous and 

inhomogeneous media.   

In the recent years much attention has been focused on the self-similar solutions 

because of their wide applications in determining solutions of nonlinear 

differential equations of physical interest. The gas attains very high temperature 

due to the propagation of shock waves and at such a high temperature, the gas 

gets ionized, hence effects of magnetic field becomes significant in the study of 

converging shock waves. The study of MHD shock waves in a non-ideal gas is 

of great scientific interest in many problems because of their applications in the 

areas of astrophysics, oceanography, atmospheric sciences, hypersonic 

aerodynamics and hypervelocity impact. 

In this chapter, a model to determine the similarity solutions to the problem of 

gas dynamic flow under the influence of strong magnetic field is presented. The 

problem treated here involves distinct features: the global behavior of the physical 

parameter has been studied; the initial pressure ratio is confined to a moderate 

value. The path of the piston is imposed as boundary condition. Thus an 

accelerated, a decelerated or a constant velocity piston can be specified. The 

numerical values of similarity exponents and profiles of flow variables are 

obtained. These are presented through the illustrative graphs and tables. The 



magnetic field effects on the flow variables through a medium and total energy 

under the influence of strong magnetic field is also presented. 

5.2 Basic Equations and Boundary Conditions 

The conservation equations governing the non-steady one dimensional flow can 

be written as [7, 70, 76, 81, 91, 98] 

                         
𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑟
+ 𝜌

𝜕𝑢

𝜕𝑟
+

(𝑚−1)𝜌𝑢

𝑟
=  0                                        (5.1) 

                         
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+ 𝜌−1(

𝜕𝑝

𝜕𝑟
+

𝜕ℎ

𝜕𝑟
) = 0                                           (5.2)  

                         
𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑟
− 𝑎2(

𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑟
) = 0                                          (5.3) 

                         
𝜕ℎ

𝜕𝑡
+ 𝑢

𝜕ℎ

𝜕𝑟
+ 2ℎ

𝜕𝑢

𝜕𝑟
+ 2ℎ(𝑚 − 1)𝑢/𝑟 = 0                          (5.4) 

where 𝜌(𝑟, 𝑡), 𝑢(𝑟, 𝑡), and 𝑝(𝑟, 𝑡) denote the density, velocity, and pressure of 

the gas particles behind the shock front, ℎ(𝑟, 𝑡) is the magnetic pressure defined 

by ℎ =
𝜇𝐻2

2
 with 𝜇 as magnetic permeability and 𝐻 is the transverse magnetic 

field, 𝑎2 = 
(𝛤+1) 𝑝 

𝜌
 is the equilibrium speed of sound, 𝛤 is the Gruneisen 

coefficient, 𝑚 = 2(3) denote shock wave in cylindrical (spherical) geometry. 

It is assumed that the plasma has infinite electrical conductivity and permeated 

by an axial magnetic field orthogonal to the trajectories of the gas particles. Shock 

is assumed to be strong and propagating into a medium according to a power law 

𝑅(𝑡) ∝ (𝑡)𝛼, where 𝑅(𝑡) is the position of the shock wave front from the center 



at time 𝑡 and 𝑡 = 0 corresponds to the instant of the convergence when 𝑅 = 0. 

The equation of state under equilibrium condition is of Mie-Gruneisen type [57], 

                                    𝑝 = 𝜌𝑒𝛤 (𝜌/𝜌0)                                                      (5.5) 

where the function 𝛤(𝜌/𝜌0) is the Gruneisen parameter and 𝑒 is the specific 

internal energy.  

5.2.1 Boundary conditions  

The boundary conditions at shock front due to Rankine-Hugoniot, can be written 

as [6, 7, 76] 

           𝜌 =
𝛤+2

 𝛤
𝜌0 {1 +

2

𝛤
(
𝑎0

𝐷
)2}     and     𝑢 =

2

𝛤+2
𝐷(1 −

𝑎0

𝐷
)                    (5.6) 

           𝑝 =
2

𝛤+2
𝜌0𝐷

2 {1 −
𝛤

2
(
𝑎0

𝐷
)2} −

1(

2

𝛤+2)2

𝛤2
𝐶0𝜌0𝐷

2 {1 +
2

𝛤
(
𝑎0

𝐷
)
2

}
2

       (5.7) 

           ℎ =
1

2
(
𝛤+2

𝛤
)
2
𝐶0𝜌0𝐷

2 {1 +
2

𝛤
(
𝑎0

𝐷
)2}

2
                                               (5.8) 

where 𝐶0 =
2ℎ0

𝜌0𝐷2
  is the shock Cowling number and 𝐷 is the speed of the shock 

wave defined as 𝐷 =
𝑑𝑅

𝑑𝑡
 , since the initial energy input 𝐸0 of explosion is very 

large, the shocks speed 𝐷 ≫ 𝑎0  so that 
𝑎0

𝐷
→ 0 in the strong shock limit. 

Therefore, the Rankine-Hugoniot jump conditions (5.6-5.8) in the case of strong 

shock waves can be written as 

                           𝜌 =
𝛤+2

𝛤
𝜌0   and   𝑢 =

2

𝛤+2
𝐷                                          (5.9) 



                           𝑝 =
2

𝛤+2
𝜌0𝐷

2 −
1

2

(𝛤+2)2

𝛤2
𝐶0𝜌0𝐷

2                                   (5.10)                                                                           

                           ℎ =
1

2

(𝛤+2)2

𝛤2
𝐶0𝜌0𝐷

2                                                       (5.11) 

Using equations (5.9), (5.10), and (5.11), the EOS (5.5) can be written as [57] 

                                        (2 −
𝐶0𝛽3

(𝛽−1)
) = (𝛽 − 1)𝛤(𝛽)                             (5.12)                        

where 𝛽(𝜌/𝜌0) is the compression just behind the shock, which is called measure 

of shock strength. When 𝐶0 = 0, the propagation of shock wave into a medium is 

without magnetic field and equation (5.12) reduces to the non-magnetic case in a 

non-ideal medium. The total energy 𝐸 inside a blast wave is equal to the energy 

supplied by the explosive and thus constant. The total energy is given by the 

expression [7] 

                                 𝐸 = 4𝜋 ∫ (
1

2

𝐷

0
𝜌𝑢2 +

𝑝

𝛤
+ ℎ)𝑅(𝑚−1)𝑑𝑅                     (5.13) 

Eliminating 𝜌0 from equations (5.10) and (5.11), 𝑝 and ℎ can be written as [after 

using equation (5.9)]   

                         𝑝 =
𝛤

2
𝜌𝑢2 −

𝐶0(

8

𝛤+2)3

𝛤
𝜌𝑢2   and   ℎ =

1(

8

𝛤+2)3

𝛤
𝐶0𝜌𝑢2           

5.2.2 Conservation equations and boundary conditions 

The basic equations can be made dimensionless by transforming the independent 

variables for space 𝑟 and time 𝑡 into new independent variables as follows [7] 



                  𝑝 =
𝛤

2
𝜌𝑢2 −

𝐶0(

8

𝛤+2)3

𝛤
𝜌𝑢2   and   ℎ =

1(

8

𝛤+2)3

𝛤
𝐶0𝜌𝑢2   (5.14) 

                  𝜌 = 𝜌0𝐺(𝜉)                                                               (5.15)    

                  𝑢 = 𝐷𝑉(𝜉)                                                                             (5.16) 

where similarity variable  𝜉 =
𝑟

𝑅
 

With the help of equations (5.1) and (5.14), the governing equations (5.2-5.4) can 

be rewritten as follows, 

         
𝜕𝑢

𝜕𝑡
+ (1 + 𝛤)𝑢

𝜕𝑢

𝜕𝑟
+

𝑢2

2𝜌
{
(𝛤+2)𝛤̂

𝛤
+ 𝛤}

𝜕𝜌

𝜕𝑟
= 0                                    (5.17) 

         
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+

𝑢𝛤

2
{
𝜕𝑢

𝜕𝑟
+ (𝑚 − 1)

𝑢

𝑟
} +

𝑢

𝜌
(
𝑁2

𝑁1
) {𝛤̇

𝜕𝜌

𝜕𝑡
+ 𝑢𝛤̂

𝜕𝜌

𝜕𝑟
} = 0     (5.18) 

         
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+

𝑢

2
{
𝜕𝑢

𝜕𝑟
+ (𝑚 − 1)

𝑢

𝑟
} +

𝑢

𝜌
(
𝛤−1

𝛤2 ) {𝛤̇
𝜕𝜌

𝜕𝑡
+ 𝑢𝛤̂

𝜕𝜌

𝜕𝑟
} = 0     (5.19) 

where 

          𝑁1 = [
𝛤

1
−

𝐶0

4

(𝛤+2)3

𝛤
],     𝑁2 =

(𝛤+2)

2𝛤
[1 −

𝐶0

2𝛤2
(𝛤 − 1)(𝛤 + 2)2],  

          𝛤̂ =
𝜕𝛤

𝜕𝑟
   and   𝛤̇ =

𝜕𝛤

𝜕𝑡
 

The derivatives in equations (5.17-5.19) change according to relations of the 

following type 

                                 
𝜕

𝜕𝑟
=

1

𝑅

𝜕

𝜕𝜉
 ,     

𝜕

𝜕𝑡
=

𝜕

𝜕𝑡
− 𝜉

𝐷

𝑅

𝜕

𝜕𝜉
 



The transformed system of three ordinary differential equations in non-

dimensional form depend only on the similarity variable  𝜉 and are, 

       {(1 + 𝛤)𝑉 − 𝜉} (
𝑉′

𝑉
) +

𝛤𝑉

2
(
𝐺′

𝐺
) −

(𝛤+2)𝑉

2𝑅
(
𝐺′

𝐺
)
2

= −𝜆                        (5.20) 

      {(1 +
𝛤

2
)𝑉 − 𝜉} (

𝑉′

𝑉
) −

𝛤𝜙(𝛤)

𝑅
(𝑉 + 𝜉2𝐷) (

𝐺′

𝐺
)
2

= −𝜆 −
𝛤𝑉(𝑚−1)

2𝜉
      (5.21) 

      (
3𝑉

2
− 𝜉) (

𝑉′

𝑉
) −

(𝛤−1)

𝛤𝑅
(𝑉 + 𝜉2𝐷) (

𝐺′

𝐺
)
2

= −𝜆 −
(𝑚−1)𝑉

2𝜉
                    (5.22) 

where 𝐷 is 
𝑑𝑅

𝑑𝑡
= 𝑅̇, 𝜆 = 𝐷̇

𝑅

𝐷2
 , 𝐺, 𝑉 are new dimensionless functions of density 

𝜌 and velocity 𝑢. The differentiation of the new dimensionless functions with 

respect to the similarity variable 𝜉 is denoted by a prime. Further using equation 

(5.20), the equations (5.21) and (5.22) can be reduced into a system of two 

ordinary differential equations. 

                         𝐴1 (
𝐺′

𝐺
) + 𝐵1 (

𝑉′

𝑉
) =  𝐶1                (5.23) 

                        𝐴2 (
𝐺′

𝐺
) + 𝐵2 (

𝑉′

𝑉
) =  𝐶2                                            (5.24) 

The above equations can be written in matrix form as 

                         [
𝐴1 𝐵1

𝐴2 𝐵2
] [

𝐺′

𝐺

𝑉′

𝑉

] = [
𝐶1

𝐶2
]                                            (5.25) 

where 𝐴1 =
(𝑉+𝜉2𝐷)𝛤2𝜙(𝛤)

𝛤+2
,     𝐵1 =

2{(1+𝛤)𝑉− 𝜉}

𝛤𝑉
 𝐴1 −

1

2
 {(2 + 𝛤)𝑉 −  2𝜉},   



          𝐴2 =
(𝑉+𝜉2𝐷)(𝛤−1)

𝛤+2
 ,     𝐵2 =

2{(1+𝛤)𝑉− 𝜉}

𝛤𝑉
𝐴2 −

1

2
(3𝑉 −  2𝜉),        

          𝐶1 = (1 − 
2

𝛤𝑉
𝐴1) 𝜆 +

𝛤𝑉(𝑚−1)

2𝜉
 ,     𝐶2 = (1 − 

2

𝛤𝑉
 𝐴2) 𝜆 +

𝑉(𝑚−1)

2𝜉
 , 

           𝜙(𝛤) =  
2(𝛤+2)𝛤2−𝐶0(𝛤−1)(𝛤+2)3

4𝛤4−𝐶0𝛤2(𝛤+2)3
,  

                          𝐺′ = 𝐺
∆1

∆
 ,          𝑉′ = 𝑉

∆2

∆
                          (5.26) 

and 

         𝛥 =
(𝑉−𝛼𝜉2)

𝑓3
[
𝑉

2
𝑓1 + 6𝜉𝑓2]                                                                (5.27) 

𝛥1 =
1

𝛤𝑓3
[(𝑉 − 𝛼𝜉2) {𝜆𝑓4 + (𝑚 − 1) (1 +

𝑉

𝜉
(𝛤 + 1))𝑓5} +

𝑉

2
𝑓6 {𝜆 +

(𝑚 − 1) (1 −
𝑉

𝜉
)}]                                                                             (5.28)                                                          

       𝛥2 =
(𝑉−𝛼𝜉2)

𝑓3
[6𝜆𝑓7 −

(𝑚−1)𝑉

2𝜉
𝑓5]                                                      (5.29) 

where 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, and 𝑓7 are functions of 𝛤 

     𝑓1(𝛤) = 2𝛤2(2𝛤2 − 𝛤 − 10) − 𝐶0𝛤
2(𝛤5 + 4𝛤4 + 𝛤3 − 10𝛤2 − 4𝛤 + 8), 

     𝑓2(𝛤) = 𝛤4(4 − 𝛤),     𝑓3(𝛤) = 4𝛤2(𝛤 + 2) − 𝐶0(𝛤 + 2)4,  

     𝑓4(𝛤) = 2(−5𝛤3 + 4𝛤2 − 𝛤 − 10) −
1

𝛤2
𝑓1,   𝑓5(𝛤) = 4𝛤3(𝛤 − 4) − 𝑓4,   

     𝑓6(𝛤) = 𝛤(𝛤 − 1)(𝛤 + 2)𝑓3,   𝑓7(𝛤) =
1

𝛤2
𝑓2,   and   𝜆 = 1 −

1

𝛼
  



The transformed boundary conditions are  

                    𝐺(1) = 𝛽   and   𝑉(1)  =  1 − 
1

𝛽
                                          (5.30) 

5.3 Solution Procedure 

5.3.1 Evaluation of 𝜷(𝝆/𝝆𝟎) the measure of shock strength 

Considering the EOS of Mie-Gruneisen type [57]: 

a) The McQueen defined by  

                    𝛤(𝐺) =
𝛤0

𝐺
                           (5.31) 

and 

b) The Royce EOS defined by   

                              𝛤(𝐺) = 𝛤0 − 𝑏 (1 −
1

𝐺
)                                    (5.32) 

along with equation (5.12) we obtain bi-quadratic equations in 𝛽 as 

                    𝐶0𝛽
4 + (𝛤0 − 2)𝛽2 + 2(1 − 𝛤0)𝛽 + 𝛤0 = 0                        (5.33) 

and 

  𝐶0𝛽
4 + (𝛤0 − 𝑏)𝛽3 + (3𝑏 − 2 − 2𝛤0)𝛽

2 + (2 − 3𝑏 + 𝛤0)𝛽 + 𝑏 = 0  (5.34) 

respectively. These equations are solved to obtain an unique value of𝛽 

corresponding to the constants 𝐶0, 𝛤0, and 𝑏. According to Descartes’s rule of 

signs these two equations will have at least two real and two complex roots. This 

was found to be true as can be seen from the solution curves and from these 



solutions curves (see Figure 5.1 and Figure 5.2) it is observed that irrespective of 

the constants a real root is always 𝛽 = 1 and this corresponds to the case where 

magnetic effect 𝐶0 = 0. Neglecting the imaginary roots, the other roots are solved 

numerically using MATLAB and are tabulated in Table 5.1 and Table 5.2. 

Table 5.1: Selected values of 𝛽 and 𝛼 for McQueen EOS for different values 𝐶0 

 

 

 

 

 

 

Table 5.2: Selected values of 𝛽 and 𝛼 for Royce EOS for different values of 𝐶0 

and an arbitrary constant 𝑏 

 

 𝑪𝟎 = 0.02 𝑪𝟎 = 0.05 

𝜞𝟎 𝜷 𝜶 𝜷 𝜶 

2.25 3.64832 0.72590123673362 2.70724 0.63062011495102 

2.378 3.38294 0.704399132115852 2.58037 0.612458678406585 

2.655 2.90851 0.656181343712072 2.34205 0.573023633141906 

2.97 2.51656 0.602632164542073 2.12633 0.529706113350233 

  𝒃 = 1 𝒃 = 1.2 𝒃 = 1.5 

𝜞𝟎 𝑪𝟎 𝜷 𝜶 𝜷 𝜶 𝜷 𝜶 

 

2.25 

0 2.16886 0.538928284905434 2.26621 0.558734627417583 2.47481 0.595928576335153 

0.02 2.05713 0.513885850675456 2.13416 0.531431570266522 2.29118 0.563543676184324 

0.05 1.91188 0.476954620582882 1.96778 0.491813109189035 2.07584 0.518267303838446 

 

2.378 

0 2.07536 0.518155886207694 2.15239 0.535400183052328 2.30928 0.566964595025289 

0.02 1.97778 0.494382590581359 2.03990 0.509779891171136 2.16171 0.537403259456634 

0.05 1.84825 0.458947653185446 1.89427 0.472092151594018 1.98075 0.495140729521646 

 

2.655 

0 1.91908 0.478916981053421 1.96875 0.492063492063492 2.06256 0.515165619424405 

0.02 1.84246 0.457247375791062 1.88369 0.469127085666962 1.95978 0.489738644133525 

0.05 1.73720 0.424361040755238 1.76876 0.434632171690902 1.82537 0.452165862263541 

 

2.97 

0 1.79103 0.441662060378665 1.82373 0.451673219171698 1.88226 0.468723768236057 

0.02 1.72918 0.421691206236482 1.75691 0.430818880876084 1.80579 0.446225751610099 

0.05 1.64179 0.390908703305539 1.66354 0.398872284405545 1.70115 0.412162360755959 



5.3.2 Numerical integration solution procedure 

In order to integrate the set of non-linear ordinary differential equations (5.26), 

we use Runge-Kutta fourth order method with a small step size. The integration 

is carried out in the range, 1 ≤  𝜉 < ∞. Starting the integration with a known 

value of 𝛽 and 𝛼 (𝛼 is evaluated corresponding to every 𝛽 iteratively), shown in 

Table 5.1 and Table 5.2. The whole solution procedure is repeated until the shock 

conditions are satisfied within the desired accuracy of error of the order of 10−5.    

5.4 Results and Discussion 

In this chapter, the entire computational work has been carried out using 

MATLAB. Numerical calculations are performed for the values of non-ideal 

parameters 𝐶0 = 0.02, 0.05; 𝑏 = 1.0, 1.2, 1.5; and 𝛤0 = 2.25, 2.378, 2.655, 2.97. 

The values of similarity exponent 𝛼 for different values of 𝐶0 in the case of 

McQueen EOS and Royce EOS are listed in Table 5.1 and Table 5.2 respectively. 

The variations of non-dimensional shock velocity, pressure, magnetic pressure 

and density with 𝜉 for McQueen EOS are shown in Figure 5.3(a-d). It is observed 

that the flow variables velocity, pressure (for both cylindrical and spherical 

geometry) are high at the shock front (for the McQueen EOS) and increases with 

the increase in the non-idealness parameters and reduce gradually as 𝜉 increases. 

Again from Figure 5.3(c) and Figure 5.3(d) at 𝜉 = 1, magnetic pressure and 

energy are very high and reduce drastically with increase in 𝜉 and become 

constant. Also from the Figure 5.3(e-l) for Royce EOS it can be seen that the 



velocity, pressure, magnetic pressure and energy profiles, first increase with the 

increase in 𝜉 and decrease with further increase in 𝜉. It is notable that increase in 

the non-idealness parameters (from Table 5.1 and Table 5.2) have effect on 𝛽. As 

𝛽 value increases, increase in velocity, pressure, magnetic pressure and energy is 

prominent for both the EOS. Thus it is observed from Figure 5.3(e-l) that increase 

in 𝛽 does not automatically decelerate the shock front but the velocity and 

pressure behind the shock front increases quickly in the presence of the magnetic 

field and decrease slowly and become constant. Also in the presence of non-

idealness parameters and in the absence of magnetic field the velocity and 

pressure profiles reduce gradually. It is noted from Figure 5.4(a-d) for the EOS 

of McQueen, density and energy increase drastically for 𝜉 > 2.5 whereas with 

non-idealness parameters the velocity and pressure increase sharply for 𝜉 ≥ 1. 

From the Figure 5.5(a-f) with non-idealness parameters in the absence of 

magnetic field 𝐶0 for the Royce EOS the velocity and pressure profiles gradually 

decrease (see Figure 5.5(a) and Figure 5.5(d)) and become constant, whereas 

pressure and energy profiles (see Figure 5.5(b, c, e, f)) initially increase with the 

increase in 𝜉 and reduce slowly with increasing 𝜉 and become constant. Also from 

the Figure 5.6(a-e) it is observed that shock propagates more rapidly in perfect 

gas in presence of the magnetic field. It is interesting to note that the rate of rise 

in the flow variables increase with the increase in the strength of magnetic field. 

The results of the study can be summarized as follows. 



1. The flow variables velocity, pressure for both cylindrical and spherical 

geometry are high at the shock front for the McQueen EOS increases with 

the increase in the non-idealness parameters and reduce gradually as 𝜉 

increases.   

2. At 𝜉 = 1, magnetic pressure and energy are very high and reduce 

drastically with increase in 𝜉 and become constant. The velocity, pressure, 

magnetic pressure and energy profiles, first increase with 𝜉 and then 

decrease with further increase in 𝜉 for Royce EOS.  

3. It is notable that increase in the non-idealness parameters has effect on 𝛽. 

Increase in 𝛽 does not automatically decelerate the shock front but the 

velocity and pressure behind the shock front increases quickly in the 

presence of the magnetic field and decrease slowly and become constant.   

4. In the presence of non-idealness parameters and in the absence of magnetic 

field the velocity and pressure profiles reduce gradually. In the EOS of 

McQueen, density and energy increase drastically for 𝜉 > 2.5 whereas with 

non-idealness parameters the velocity and pressure increase sharply for 

𝜉 ≥ 1.  

5. With non-idealness parameters in the absence of magnetic field 𝐶0 for the 

Royce EOS the velocity and pressure profiles gradually decrease and 

become constant, whereas pressure and energy profiles initially increase 



with the increase in 𝜉 and reduce slowly with increasing 𝜉 and become 

constant.  

6. In the presence of the magnetic field the shock propagates more rapidly in 

perfect gas. It is interesting to note that the rate of rise in the flow variables 

increase with the increase in the strength of magnetic field. 
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Figure 5.1. Graphical approach to estimate positive roots of equation 𝜙(𝐶0, 𝛤0, 𝛽) = 0 

in the case of McQueen EOS; when (a) 𝐶0 = 0.02 and (b) 𝐶0 = 0.05 
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Figure 5.2. Graphical approach to estimate positive roots of equation 𝜓(𝑏, 𝐶0, 𝛤0, 𝛽) = 0 

in the case of Royce EOS; when (a) 𝐶0 = 0.02 and (b) 𝐶0 = 0.05  
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Figure 5.3(a). Velocity profiles of Mc Queen EOS for 𝛤0 = 2.25 and 

different values of 𝐶0 
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Figure 5.3(b). Pressure profiles of Mc Queen EOS for 𝛤0 = 2.25 and 

different values of 𝐶0 
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Figure 5.3(c). Magnetic pressure profiles of Mc Queen EOS for 

𝛤0 = 2.25 and different values of 𝐶0 
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Figure 5.3(d). Energy profiles of Mc Queen EOS for 𝛤0 = 2.25 and 

different values of 𝐶0 
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Figure 5.3(e). Velocity profiles of Royce EOS for 𝑏 = 1.0, 𝛤0 = 2.25, 

and different values of 𝐶0  
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Figure 5.3(f). Pressure profiles of Royce EOS for 𝑏 = 1.0, 𝛤0 = 2.25, 

and different values of 𝐶0  



 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 


 M

a
g
n
e
ti

c
 p

re
ss

u
re

 

 

m = 2

m = 3

Co = 0.05

Co = 0.02

Figure 5.3(g). Magnetic pressure profiles of Royce EOS for 𝑏 = 1.0, 

𝛤0 = 2.25, and different values of 𝐶0  
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Figure 5.3(h). Energy profiles of Royce EOS for 𝑏 = 1.0, 𝛤0 = 2.25, 

and different values of 𝐶0  
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Figure 5.3(i). Velocity profiles of Royce EOS for 𝑏 = 1.2, 𝛤0 = 2.25, 

and different values of 𝐶0  
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Figure 5.3(j). Pressure profiles of Royce EOS for 𝑏 = 1.2, 𝛤0 = 2.25, 

and different values of 𝐶0  



 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 


 M

a
g

n
e
ti

c
 p

re
ss

u
re

 

 

m = 2

m = 3

Co = 0.05

Co = 0.02

Figure 5.3(k). Magnetic pressure profiles of Royce EOS for 𝑏 = 1.2, 

𝛤0 = 2.25, and different values of 𝐶0  
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Figure 5.3(l). Energy profiles of Royce EOS for 𝑏 = 1.2, 𝛤0 = 2.25, 

and different values of 𝐶0  
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Figure 5.4(a). Velocity profiles of Mc Queen EOS for 𝛤0 = 2.25, 

magnetic effect 𝐶0 = 0, and 𝑚 = 2, 3 
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Figure 5.4(b). Pressure profiles of Mc Queen EOS for 𝛤0 = 2.25, 

magnetic effect 𝐶0 = 0, and 𝑚 = 2, 3 
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Figure 5.4(c). Energy profiles of Mc Queen EOS for 𝛤0 = 2.25, 

magnetic effect 𝐶0 = 0, and 𝑚 = 2, 3 
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Figure 5.5(a). Velocity profiles of Royce EOS for 𝛤0 = 2.25, 

magnetic effect 𝐶0 = 0, 𝑚 = 2, and different values of 𝑏 
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Figure 5.5(b). Velocity profiles of Royce EOS for 𝛤0 = 2.25, 

magnetic effect 𝐶0 = 0, 𝑚 = 3, and different values of 𝑏 
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Figure 5.5(c). Pressure profiles of Royce EOS for 𝛤0 = 2.25, 

magnetic effect 𝐶0 = 0, 𝑚 = 2, and different values of 𝑏 
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Figure 5.5(d). Pressure profiles of Royce EOS for 𝛤0 = 2.25, 

magnetic effect 𝐶0 = 0, 𝑚 = 3, and different values of 𝑏 



 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

 


 E

n
e
rg

y

 

 

b = 1.0

b = 1.2

b = 1.5

Figure 5.5(e). Energy profiles of Royce EOS for 𝛤0 = 2.25, magnetic 

effect 𝐶0 = 0, 𝑚 = 2, and different values of 𝑏 
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Figure 5.5(f). Energy profiles of Royce EOS for 𝛤0 = 2.25, magnetic 

effect 𝐶0 = 0, 𝑚 = 3, and different values of 𝑏 
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Figure 5.6(a). Velocity profiles of perfect gas EOS for 𝛾 = 1.4, 

𝑚 = 2, and different values of 𝐶0 



 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

 


 V

e
lo

c
it

y

 

 

Co = 0

Co = 0.02

Co = 0.05

Figure 5.6(b). Velocity profiles of perfect gas EOS for 𝛾 = 1.4, 

𝑚 = 3, and different values of 𝐶0 
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Figure 5.6(c). Pressure profiles of perfect gas EOS for 𝛾 = 1.4, 

𝑚 = 2, and different values of 𝐶0 
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Figure 5.6(d). Pressure profiles of perfect gas EOS for 𝛾 = 1.4, 

𝑚 = 3, and different values of 𝐶0 
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Figure 5.6(e). Magnetic pressure profiles of perfect gas EOS for 

𝛾 = 1.4, 𝑚 = 2, and different values of 𝐶0 



 

 

 

 

 

 

 

 

 

 

 

  

1 2 3 4 5
0

5

10

15
x 10

15

 


 M

ag
n

et
ic

 p
re

ss
u

re

 

 

Co = 0

Co = 0.02

Co = 0.05

Figure 5.6(f). Magnetic pressure profiles of perfect gas EOS for 

𝛾 = 1.4, 𝑚 = 3, and different values of 𝐶0 
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Figure 5.6(g). Energy profiles of perfect gas EOS for 𝛾 = 1.4, 

𝑚 = 2, and different values of 𝐶0 
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Figure 5.6(h). Energy profiles of perfect gas EOS for 𝛾 = 1.4, 

𝑚 = 3, and different values of 𝐶0 



Chapter-6 

Similarity Solution of Spherical Shock Waves - Effect of 

Viscosity 

6.1 Introduction 

Shock waves are very common phenomenon in the supersonic flow of any fluid. 

Shock process occurs naturally that are related to hydrodynamics, aerodynamics, 

astrophysics, nuclear engineering and space science. Shock waves are 

mathematically treated as discontinuities, further shock wave is not a true 

physical discontinuity, but a very narrow transition zone whose thickness is of 

the order of a few molecular mean-free paths. In a shocked medium, particles 

behind the shock front experience compressive as well as shear forces thus the 

particles move away from their equilibrium position. The similarity solutions of 

converging spherical and cylindrical shock wave problems with different 

equation of states (EOS) were investigated by several authors [1, 24, 33, 50, 54, 

57, 70, 84, 97]. The existence and effects of the viscous forces for the similarity 

solutions to shock wave problems were studied by several researchers [101-104]. 

Zeldovich and Raizer [7] and Landau and Lifshitz [91] have studied the entropy 

production in a viscous medium and developed an analytical model for the shock 

process based on Hugoniot curves considering the effects of viscosity and heat 

conduction.  



The role of viscosity in physics and mathematical investigation of model 

problems suggest that the presence of viscosity implies the existence of a 

continuous, differentiable solution. This mathematical theory does not guarantee 

this in general. The actual formulation of artificial viscosity introduced by Von 

Neumann and Richtmyer [40] involved adding a viscosity term to the momentum 

equation, that augments the pressure in the instance there is shock compression 

and is independent of shock strength. The new system will satisfy the Rankine-

Hugoniot jump conditions [41] in the shock region and has little effect outside 

the shock layer. The resistance to variations in distribution of cohesive forces in 

fluids experienced result in removing the inhomogeneities in velocities. These 

types of resistances result in the phenomenon of viscosity in fluid motions [42]. 

This viscosity effect was found to be one of the most important effects in the 

equations of motion. The shock heating of solar corona discussed by Orta et al. 

[43] have shown that the shock thickness and profile depend on viscosity and 

resistivity and as a consequence heating ultimately occurs. Ballai et al. [44] in the 

study of dispersive shock waves concluded that the effect of dispersion will alter 

the amplitude and propagation speed of a shock wave and also discussed in detail 

the viscosity effect. The supersonic flows exhibit an important property i.e., the 

coexistence of shock waves with viscous effects for many fluid dynamic systems 

[45]. In the supersonic regime of compressible gas flow the interaction of shock 

waves with viscosity is a very important problem. Mathematically this can be 

approximated to a hydrodynamic case. 



Several astrophysical and geophysical phenomena occur due to the 

Magnetohydrodynamic (MHD) shockwaves. Some of the applications by the 

application of external magnetic field are drag reduction in duct flows, design of 

coolant blankets for fusion reactors, control of turbulence of immersed jets during 

continuous casting of steel, advanced flow control schemes for hypersonic 

vehicles and missiles. 

The main purpose of this work in this chapter is to describe complete mechanism 

of shock wave problem, which include viscous terms and study the dissipation 

effects on the propagation of shock waves including viscosity under the effect of 

magnetic field. Also to study and confirm the effect of (i) the non-idealness 

parameter and the viscosity parameters on the shock strength and the flow 

variables respectively, (ii) effect of discontinuities of the physical parameters due 

to viscosity and (iii) complete flow field depending on the magnitude of the 

viscosity. To define this type of shock process spherically symmetric 

conservation equations are considered. The viscosity term (suggested by Von 

Neumann and Richtmyer [40]) is included into the hydrodynamic equations for 

spherically symmetric flow (Figure 6.1). The main advantage of artificial 

viscosity approach is its simplicity thereby high computational efficiency and 

oscillations in the flow profiles dampen and the smoothness in the profiles 

increases. 

 



 

 

 

 

6.2 Formulation of the Problem 

The viscosity term (suggested by Von Neumann and Richtmyer [40]) is included 

into the hydrodynamic equations for spherically symmetric flow in 

magnetogasdynamics regime, can be written in Eulerian form as [7, 40, 76, 81, 

91, 92] 

                         
𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑟
+ 𝜌

𝜕𝑢

𝜕𝑟
+

2𝜌𝑢

𝑟
=  0                                                   (6.1) 

                         
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+

1

𝜌
(
𝜕𝑝

𝜕𝑟
+

𝜕𝑞

𝜕𝑟
+

𝜕ℎ

𝜕𝑟
) = 0                                          (6.2) 

                         
𝜕𝑒

𝜕𝑡
+ 𝑢

𝜕𝑒

𝜕𝑟
−

1

𝜌2
(𝑝 + 𝑞)(

𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑟
) = 0                                  (6.3) 

                         
𝜕ℎ

𝜕𝑡
+ 𝑢

𝜕ℎ

𝜕𝑟
+ 2ℎ

𝜕𝑢

𝜕𝑟
+

4ℎ𝑢

𝑟
= 0                                                  (6.4) 

where 𝑟 and 𝑡 are independent space and time coordinates 𝜌, 𝑢, 𝑝, 𝑞 and 𝑒 are 

density, velocity, pressure, artificial viscosity, and internal energy per unit mass 

respectively and ℎ =  
𝜇𝐻2

2
 is the magnetic pressure, 𝐻 and 𝜇 being magnetic field 

strength and the magnetic permeability respectively. The shock position is given 

Figure 6.1. Schematic diagram of spherical shock wave propagation 



by 𝑅𝑠(𝑡) and its velocity is 𝐷 =
𝑑𝑅𝑠(𝑡)

𝑑𝑡
 . Originally, Von Neumann and Richtmyer 

[40] proposed the following expression for the viscosity term: 

                          𝑞 =  −𝜌𝐾2(∆𝑥)2 (
𝜕𝑢

𝜕𝑥
 )

2
,   if  

𝜕𝑢

𝜕𝑥
< 0 or 

𝜕𝜌

𝜕𝑡
> 0  

                          𝑞 = 0,   otherwise              

Here, 𝑢 is the fluid velocity, 𝜌 is the density, ∆𝑥 is spacial interval and 𝐾 is a 

constant parameter whose value is conveniently adjusted in every numerical 

experiment. This parameter 𝐾 controls the number of zones in which the shock 

waves are spread. The form of 𝑞 adopted for the present problem is consistent 

with Richard Latter [103] requirements and is 

                         𝑞 =
1

2
𝐾2𝜌𝑟2 𝜕𝑢

𝜕𝑟
(|

𝜕𝑢

𝜕𝑟
| −

𝜕𝑢

𝜕𝑟
)                                                 (6.6) 

The expression for 𝑞 denotes a non-linear dissipative mechanism, which is 

effective in the shock layer and negligible elsewhere. 

6.2.1 Boundary conditions 

The boundary conditions at shock front due to the Rankine-Hugoniot jump 

relations, under the strong shock limit can be written into the following form [6, 

7]  

                      𝜌1 = 𝜌0𝛽,          𝑢1 = (1 −
1

𝛽
)𝐷,   

                      𝑝1 = (1 −
1

𝛽
−

𝐶0𝛽2

2
) 𝜌0𝐷

2,   ℎ1 =
𝐶0𝛽2

2
𝜌0𝐷

2         

(6.7) 

 

(6.5) 

 



The equation of state (EOS) is of Mie-Gruneisen type [57] of following form 

                         𝑝 = [𝛤(𝜌/𝜌0) − 1]𝜌𝑒 − 𝛱(𝜌/𝜌0)                                        (6.8) 

where 𝛤 and 𝛱 are functions to be determined according to the EOS under 

consideration and each 𝛤 and 𝛱 gives a different EOS. 

Using the strong shock relations (6.7) in equation (6.8), we get 

                         2 −
𝐶0𝛽3

(𝛽−1)
+

2𝛽

(𝛽−1)
𝛱(𝛽) = (𝛽 − 1)(𝛤(𝛽) − 1)                    (6.9) 

where 𝛽 is the measure of shock strength. 

6.2.2 Transformation of basic equations 

We consider a set of suitable similarity transformations  

                     𝜌 = 𝜌0𝜓(𝜉),   𝑢 = 𝐷𝜙(𝜉),   𝑝 = 𝜌0𝐷
2𝑓(𝜉),   

                     ℎ = 𝜌0𝐷
2𝑙(𝜉),     𝑞 = 𝜌0𝐷

2𝑔(𝜉)   

where 𝜉 =
𝑟

𝑅
 , 𝜉 is the similarity variable and 𝑅 = 𝐴(𝑡)𝛼 (shock propagation 

follows a power law), 𝜓, 𝜙, 𝑓, 𝑙 and 𝑔 are dimensionless density, velocity, 

pressure, magnetic pressure and viscosity term (which are functions of 𝜉) 

respectively. In general these terms are termed as reduced functions. Along with 

the reduced functions we consider a similar set of transformations for 

convenience such as, 

 

(6.10) 

 



                    𝜓(𝜉) = 𝛹(𝜉),   𝜙(𝜉) =
𝜉

𝛼
𝛷(𝜉),   𝑓(𝜉) =

𝜉2

𝛼2
𝐹(𝜉), 

                    𝑙(𝜉) =
𝜉2

𝛼2
𝐿(𝜉),     𝑔(𝜉) =

𝜉2

𝛼2
𝐺(𝜉)                          

where 𝛹, 𝛷, 𝐹, 𝐿 and 𝐺 are new unknown reduced functions for the reduced 

density, velocity, pressure, magnetic pressure and viscosity term functions 

respectively. Using the transformations (6.10) and (6.11), the equations (6.1-6.4, 

6.6) can be written in the following non-dimensional form: 

                          (𝛷 − 𝛼)
𝑑𝑙𝑛𝛹

𝑑𝑙𝑛𝜉
+

𝑑𝛷

𝑑𝑙𝑛𝜉
+ 3𝛷 = 0                                          (6.12) 

1

𝛹

𝑑𝐹

𝑑𝑙𝑛𝜉
+ (𝛷 − 𝛼)

𝑑𝛷

𝑑𝑙𝑛𝜉
+

1

𝛹

𝑑𝐺

𝑑𝑙𝑛𝜉
+

1

𝛹

𝑑𝐿

𝑑𝑙𝑛𝜉
+

2

𝛹
(𝐹 + 𝐺 + 𝐿) + 𝛷(𝛷 − 1) = 0        (6.13) 

                         
𝑑𝐹

𝑑𝑙𝑛𝜉
+ 𝑌(𝛹, 𝐹, 𝐺)

𝑑𝑙𝑛𝛹

𝑑𝑙𝑛𝜉
+ 2𝐹 [1 +

(𝛼−1)

(𝛷−𝛼)
] = 0                    (6.14) 

                         (𝛷 − 𝛼)
𝑑𝐿

𝑑𝑙𝑛𝜉
+ 2𝐿

𝑑𝛷

𝑑𝑙𝑛𝜉
+ 2𝐿[4𝛷 − 1] = 0                        (6.15) 

                          𝐺 =
𝐾2

2
𝛹(𝜉𝛷)′[|(𝜉𝛷)′| − (𝜉𝛷)′]                                      (6.16) 

where prime (′) denotes differentiation with respect to  𝜉 and  

  𝑌(𝛹, 𝐹, 𝐺) =
𝛼2

𝜉2
[𝛱′𝛹 − 𝛱 (

𝛤′𝛹

(𝛤−1)
+ 1)] − 𝐹 (

𝛤′𝛹

(𝛤−1)
+ 𝛤) − (𝛤 − 1)𝐺   (6.17) 

and the transformed boundary conditions are 

 

 

(6.11) 

 



               𝛹(1) =  𝛽,  𝛷(1) = (1 −
1

𝛽
),  𝐹(1) = (1 − 

1

𝛽
− 

𝐶0𝛽2

2
 ),  

               𝐿(1) =  
𝐶0𝛽2

2
 ,          𝐺(1) = 0   

The numerical solution of equations (6.12-6.16) will be obtained by considering 

two cases. Firstly considering the regions where the viscosity is absent and 

secondly when it is present. Thus the flow field defines two regions based on the 

gradient of the term (𝜉Φ). The region (𝜉Φ)′ ≤  0 means that the viscous effect is 

present in the flow field (Figure 6.2) that comprises of transition flow field 

between the undisturbed medium and the shock front.  

 

 

 

 

Thus the equation (6.16) may be rewritten as follows, 

                         
𝑑𝛷

𝑑𝜉
=

−1

𝜉𝐾(𝛹/𝐺)1/2
−

𝛷

𝜉
                                                          (6.19) 

For the region (𝜉Φ)′ > 0, the viscosity term of equation (6.16) is zero (i.e., 𝐺 =

0) and the remaining equations defining the flow can be written in matrix form 

for convenience as 

(6.18) 

 

𝑢1 𝑢2 

Figure 6.2. Flow with shock wave  



(

 
 

𝛷 − 𝛼

0

𝑍

0

     

1

𝛷 − 𝛼

0

2𝐿

      

0
1

𝛹

1

0

     

0
1

𝛹

0

𝛷 − 𝛼)

 
 

(

 
 
 
 

𝑑𝑙𝑛𝛹

𝑑𝑙𝑛𝜉

𝑑𝛷

𝑑𝑙𝑛𝜉

𝑑𝐹

𝑑𝑙𝑛𝜉

𝑑𝐿

𝑑𝑙𝑛𝜉)

 
 
 
 

=

(

  
 

−3𝛷

−
2

𝛹
(𝐹 + 𝐿) − 𝛷(𝛷 − 1)

−2𝐹 [1 +
(𝛼−1)

(𝛷−𝛼)
]

−2𝐿[4𝛷 − 1] )

  
 

      (6.20) 

where 

               𝑍(𝛹, 𝐹) =
𝛼2

𝜉2
[𝛱′𝛹 − 𝛱 (

𝛤′𝛹

(𝛤−1)
+ 1)] − 𝐹 (

𝛤′𝛹

(𝛤−1)
+ 𝛤)              (6.21) 

The numerical solution procedure involves in writing equation (6.20) as follows: 

                    
𝑑𝛹

𝑑𝜉
=

𝛹𝛥1

𝜉𝛥
,   

𝑑𝛷

𝑑𝜉
=

𝛥2

𝜉𝛥
 ,   

𝑑𝐹

𝑑𝜉
=

𝛥3

𝜉𝛥
 ,   

𝑑𝐿

𝑑𝜉
=

𝛥4

𝜉𝛥
                              (6.22)                                             

where 

𝛥 = (𝛷 − 𝛼)2 +
1

𝛹
(𝑍 − 2𝐿)                                                                      (6.23) 

𝛥1 = 𝛷(𝛷 − 1) − 3𝛷(𝛷 − 𝛼) −
2

𝛹
(𝐿 + 𝐹)

(𝛼−1)

(𝛷−𝛼)
                                     (6.24) 

𝛥2 =
2

𝛹
{𝐹(𝛼 − 1) − 𝐿(𝛷 − 𝛼)} − 𝛷(𝛷 − 1)(𝛷 − 𝛼) +

2𝐿

𝛹
{4𝛷 − 1} −

3𝛷𝑍

𝛹
    (6.25) 

𝛥3 = 3𝛷𝑍(𝛷 − 𝛼) − 𝛷(𝛷 − 1) −
2

𝛹
(𝐹 + 𝐿) +

2𝐿𝑍(𝛷−1)

𝛹(𝛷−𝛼)
+ 2𝐹 (1 +

(𝛼−1)

(𝛷−𝛼)
) {

2𝐿

𝛹
− (𝛷 − 𝛼)2}                                                                              (6.26) 

𝛥4 = 2𝐿𝛷(𝛷 − 1) +
4𝐿

𝛹
{𝐿 − 𝐹

(𝛼−1)

(𝛷−𝛼)
} − 2

𝑍𝐿(𝛷−1)

𝛹(𝛷−𝛼)
− 2𝐿(𝛷 − 𝛼){4𝛷 − 1}       (6.27)                                                           

 

 



6.3 Solution Procedure 

The solution procedure involves the following. 

(a) Evaluation of 𝛽 the measure of shock strength for the considered non- 

      idealness parameters. 

(b) Solutions of the transformed system of differential equations with and without  

      viscosity. 

6.3.1 Evaluation of 𝜷 

The two EOS of Mie-Gruneisen type, Royce [57], van der Waals [97] are  

considered: 

a) putting 𝛤(𝛹) = 𝛤0 + 1 − 𝑑 (1 −
1

𝛹
) and 𝛱(𝛹) = 0 in equation (6.8), the 

Royce EOS can be written as, 

                              𝑝 = 𝜌𝑒 [𝛤0 − 𝑑 (1 −
1

𝛹
)]                                                (6.28) 

          where 𝑑 > 0 is an arbitrary constant and 𝛤0 is non-ideal parameter. Again,  

b) putting 𝛤(𝛹) = 1 +
(𝛾−1)

(1−𝑏𝛹)
 and 𝛱 = [1 −

(𝛾−1)

(1−𝑏𝛹)
] 𝑎𝛹2 in equation (6.8), 

the van der Waals EOS can be written as, 

                               𝑝 = (
𝛾−1

1−𝐵𝜌
) (𝜌𝑒 + 𝐴𝜌2) − 𝐴𝜌2                                    (6.29) 



where 𝑎 = 𝐴𝜌0
2, 𝑏 = 𝐵𝜌0, 𝑒 denotes the specific internal energy, 𝛾 is the ratio 

of specific heats (𝛾 > 1), and the quantities 𝐴, 𝐵 are the van der Waals gas 

constants for molecular cohesive forces and finite size of molecules (𝐴 ≥ 0 and 

0 ≤ 𝐵 < 1/𝜌) respectively. Substituting equation (6.28) and (6.29) in equation 

(6.9), we obtain the following two biquadratic equations in terms of 𝛽 

respectively. 

   𝑀(𝛽) ≡ 𝐶0𝛽
4 + (𝛤0 − 𝑑)𝛽3 + (3𝑑 − 2 − 2𝛤0)𝛽

2 + (2 − 3𝑑 + 𝛤0)𝛽 + 𝑑 = 0         

                                                                                                                   (6.30) 

 𝑁(𝛽) ≡ 𝑏(2𝑎 − 𝐶0)𝛽
4 + {𝐶0 − 𝑎(4 − 2𝛾)}𝛽3 + (2𝑏 + 𝛾 − 1)𝛽2 −

2(𝛾 + 𝑏)𝛽 + (𝛾 + 1) = 0                                                            (6.31) 

Using MATLAB these equations are solved for β corresponding to the constants 

(𝑎, 𝑏, 𝐶0, 𝑑, 𝛾 and 𝛤0). Descartes’ rule of signs suggest that the polynomial 𝑀(𝛽) 

has two negative and two positive roots whereas 𝑁(𝛽) has one negative and three 

positive roots. This can also be seen from the solution curves (Figures 6.3 and 

6.4). We observed from these figures that there is always one real root (𝛽 = 1) 

irrespective of the constants considered. This corresponds to case of no magnetic 

effect (𝐶0 = 0). Neglecting the negative roots subsequent computations are 

performed. 

 

 



6.3.2 Solutions of the transformed equations 

The solution of the non-linear system of ordinary differential equations is 

obtained by considering the two cases, (i) without viscosity (𝐾 =  0) and (ii) with 

viscosity (𝐾 ≠ 0). 

6.3.3 Numerical solution without viscosity (𝑲 =  𝟎) 

To obtain the solution without viscosity with the known values of 𝛽, 𝛤0 and 𝛾, the 

system of equations (6.22) are solved numerically where 𝛼 is unknown. 

Substituting the boundary conditions (6.18) into the equations (6.22) and using 

the method of shock fitting we obtain the following simplified equations  

                   𝑃1𝛼
2 + 𝑄1𝛼 + 𝑅1 = 0      (Royce EOS)                             (6.32)     

                   𝑃2𝛼
2 + 𝑄2𝛼 + 𝑅2 = 0      (van der Waals EOS)                      (6.33) 

where 𝛼𝑖
′s are the roots of the equations (6.32, 6.33) and 

𝑃1 = 2[𝑑𝛽3 + (𝛤0 − 𝑑)𝛽4] 

𝑄1 = 4[𝑑𝛽2 + (𝛤0 − 2𝑑)𝛽3 − (𝛤0 − 𝑑)𝛽4] 

𝑅1 = 2𝑑2 + 2𝑑(2𝛤0 − 3𝑑 + 1)𝛽 + 2{(𝛤0 − 3𝑑)(𝛤0 − 𝑑 + 1) + (𝛤0 − 𝑑)}𝛽2

+ {𝐶0𝑑
2 − 2(𝛤0 − 𝑑)(𝛤0 − 𝑑 + 1) + 2(3𝑑 − 2𝛤0)}𝛽

3

+ 2{(𝛤0 − 𝑑)(1 + 𝑑𝐶0) − 𝑑𝐶0}𝛽
4 + 𝐶0(𝛤0 − 𝑑)(𝛤0 − 𝑑 + 1)𝛽5 

𝑃2 = 2𝛽2 + {𝑎(4 − 2𝛾) − 4𝑏}𝛽3 + {𝑎𝑏(2𝛾 − 8) + 2𝑏2}𝛽4 + 4𝑎𝑏2𝛽5 



𝑄2 = 4𝛽 − (8𝑏 + 4)𝛽2 + (4𝑏2 + 8𝑏)𝛽3 − 4𝑏2𝛽4 

𝑅2 = 2(1 + 𝛾) − 2(2 + 𝛾)(1 + 𝑏)𝛽 + 2{1 + (4 + 𝛾)𝑏 + 𝑏2}𝛽2

+ {(𝛾 − 2)𝐶0 − 4𝑏 − 4𝑏2}𝛽3 + {(4 − 𝛾)𝑏𝐶0 + 2𝑏2}𝛽4

− 2𝐶0𝑏
2𝛽5 

The roots of the biquadratic equations (6.30), (6.31) and the quadratic equations 

(6.32), (6.33) for different non-ideal parameters are shown in Tables 6.1 and 6.2. 

6.3.4 Numerical solution with viscosity (𝑲) 

The presence of viscosity is expected to damp the amplitude of oscillations near 

the discontinuities in the physical quantities and thereby the Rankine-Hugoniot 

conditions do not show any special significance in the viscosity formalism. The 

system of equations (6.12-6.15, 6.19) are solved numerically with the known 

values of 𝛽, 𝛤0, 𝛾, 𝛼 (obtained previously) and viscosity 𝐾 (= 0.003439, 0.0349 

and 0.349) [103]. 

To integrate the set of non-linear ordinary differential equations without and with 

viscosity we use Runge-Kutta fourth order method with small step size. The 

integration is carried out in the range, 1 ≤ 𝜉 < ∞. Starting the integration with a 

known value of 𝛽 and 𝛼 (𝛼 is evaluated corresponding to every 𝛽 iteratively), 

shown in Tables 6.1 and 6.2, the whole solution procedure is repeated until the 

shock conditions are satisfied within the desired accuracy. 

 



6.4 Results and Discussion 

In this chapter, the entire computational work has been carried out using 

MATLAB. Numerical calculations are performed for the values of non-ideal 

parameters 𝑑 = 0.1, 0.3, 0.5, 0.7, 1.0; 𝐶0 = 0.02, 0.05; 𝑏 = 0.0004, 0.001, 0.005, 

0.01, 0.03; 𝛤0 = 1.78, 2.12, and  𝛾 = 1.4, 1.6. The values of similarity exponent 

𝛼 for different values of 𝛽 in the case of Royce and van der Waals EOS are listed 

in Tables 6.1 and 6.2 respectively. The variations of non-dimensional density, 

shock velocity, pressure and magnetic pressure with 𝜉 for Royce and van der 

Waals EOS in the absence of viscosity (𝐾 = 0) and with viscosity (𝐾 = 0.00349, 

0.0349, and 0.349) are investigated in detail and are shown in Figures 6.5-6.16. 

The results of the study in both EOSs (Royce and van der Waals) are summarized 

as follows: 

The increase in the non-idealness parameters 𝑑, 𝑎 and 𝑏, has effect on the measure 

of shock strength 𝛽. It is notable that  increase in magnitude of 𝛽 in case of Royce 

EOS and decrease in the van der Waals EOS respectively (Tables 6.1 and 6.2 ).   

In the absence of viscosity (𝐾 = 0), from Figure 6.5(a-d) it is observed that the 

density, velocity, pressure, and magnetic pressure distributions for Royce EOS 

decreases with the increasing values of 𝑑 (non-idealness parameter) and 𝛽 

(measure of shock strength). Whereas in the case of van der Waals EOS, the flow 

variables density, velocity, and pressure increase with an increasing values of 

non-idealness parameter 𝑏, and for decrease in measure of shock strength 𝛽 as 



shown in Figure 6.9(a-d). In both the EOS under consideration the flow variables 

developed sharp edge profiles. This can be attributed to the excitation of 

oscillations in molecules through shock front. The change in magnetic pressure 

is negligible with change of non-idealness parameter 𝑏. This phenomenon is 

observed to be more prominent in case of van der Waals EOS than Royce EOS. 

Similar trend in the velocity and density profiles were reported by Khodadad and 

Khazraiyan [105], Lee and Whalen [106] respectively. 

It is very important to observe that in the presence of viscosity formalism (i.e., 

𝐾 ≠ 0) the profiles of the flow field could lead to continuous shock flow fields in 

which the sharp edged continuous profiles at the shock wave reduce and change 

to smooth curves. Flow variables (physical parameters) changed rapidly, but 

smoothly for both EOS. It is to be noted that the effect on flow variables (physical 

parameters) in the medium of van der Waals EOS is appreciable for small values 

of non-idealness parameter 𝑏, while for large values of non-idealness parameter 

𝑏, it is very small. Similar trend in the pressure profiles were reported by 

Chikitkin et al. [107] and density profiles by Chikitkin et al. [107], Lee and 

Whalen [106]. 

It is observed that in the presence of non-idealness parameters 𝑑 and 𝑏 along with 

the introduction of artificial viscosity (𝐾 = 0.00349) during the numerical 

integration process the nature of the profiles of both the EOS change from being 

sharp edged to smooth curves (Figures 6.6(a-d) and 6.10(a- d)). The smoothness 



in the flow parameters further improved by increasing the value of viscosity i.e., 

𝐾 = 0.0349 to 0.349 in both the EOS (Figures 6.6(a-d), 6.7(a-d), 6.11(a-d) and 

6.12(a-d)). With the non-idealness parameter 𝑑(= 0.1, 0.3, 0.5)  and 𝐾 = 0.0349, 

from Figure 6.7(a-d) for Royce EOS the density, velocity, pressure and magnetic 

profiles gradually increase with increase in 𝜉 and decrease slowly and become 

constant. This behavior continues to remain the same with sharp edges becoming 

smoother with increase in the value of  𝐾 (= 0.349) (see Figure 6.8(a-d)). Thus 

we conclude that along with the non-idealness parameters and with the 

introduction of artificial viscosity (𝐾 = 0.00349, 0.0349, and 0.349) the 

excitation of oscillations in the molecules dampen and the smoothness in the 

profiles increases. With the non-idealness parameter 𝑏(= 0.001, 0.005, 0.01) and 

𝐾 = 0.0349, from Figure 6.11(a-d) for van der Waals EOS the density, velocity, 

pressure and magnetic profiles gradually increase with increase in 𝜉 and slowly 

and become constant. This behavior remains unaltered with the value of 𝐾 > 

0.349 (Figure 6.12(a-d)). 

It is observed that spread of flow variables increases with increase in the range of 

the non-idealness parameter 𝑏 and fixed values of viscosity parameter 𝐾. Thus, 

the thickness of MHD shock front increases with increase in the value of non-

idealness parameter 𝑏. The thickness of MHD shock wave depends only on its 

strength and is constant with increase in reduced distance 𝜉. However, the 

increase in the thickness of shock front with increase in the non-idealness 



parameter 𝑏 is more notable for certain range of values of viscosity parameter 𝐾 

for both EOS of Royce and van der Waals. 

Numerical computations revealed that the change in the flow variables with the 

non-idealness parameters 𝑑, and 𝑏 is constant and independent of large values of 

viscosity parameter 𝐾 for Royce and van der Waals EOS respectively. Thus 

artificial viscosity has no effect along a wave front of constant phase. This is 

because the velocity component tangential to a shock front is continuous in the 

limit of arbitrary grid refinement in this direction. This type of behavior is called 

wave front invariance. 

In particular, we observed that for smaller values of magnitude of viscosity 

parameter 𝐾 the effect on flow variables velocity, pressure are constant initially 

with the increase in 𝜉 and decreases more rapidly with increasing values of non-

idealness parameter 𝑏 and fixed values of non-idealness parameter 𝑎 in the EOS 

of van der Waals. Also it is observed that the thickness of MHD shock front is 

maximum for small values of non-idealness parameter 𝑏, which increases more 

with increasing values of non-idealness 𝑎 and fixed values of non-idealness 

parameter 𝑏 (Figures 6.13-6.16). 

We concluded that artificial viscosity could distinguish between shock-wave and 

adiabatic compression. It vanishes for uniform compression and rigid rotation and 

also vanishes along a surface of constant phase. Along such a surface the velocity 

field has a constant magnitude, and is also continuous, but may vary in direction. 



Moreover, artificial viscosity produce forces that go to zero continuously as 

compression goes to zero for expansion, so that latter is a reversible process.  

The values of similarity exponent 𝛼 for different values of 𝛽 for Royce EOS and 

van der Waals EOS are evaluated. The conclusions of the study are summarized 

as follows: 

1) It is noted that the increase in the non-idealness parameters 𝑑, 𝑎 and 𝑏, 

have effect on the measure of shock strength 𝛽, i.e., increase in magnitude 

of 𝛽 in case of Royce EOS and decrease in the van der Waals EOS 

respectively. 

2) In the presence of non-idealness parameters and in the absence of viscosity 

(𝐾 = 0) the density, velocity, pressure, and magnetic pressure 

distributions for Royce EOS observed to decrease with the increasing 

values of non-idealness parameter 𝑑, and for increasing values of measure 

of shock strength 𝛽. 

3) In the case of van der Waals EOS, the flow variables density, velocity, and 

pressure increase with an increasing values of non-idealness parameter 𝑏, 

and for decrease in measure of shock strength 𝛽.  

4) In both the EOS under consideration it is observed that the flow variables 

have sharp edge profiles. The change in magnetic pressure is negligible in 

case of van der Waals EOS than Royce EOS. 



5) It is notable that in the presence of non-idealness parameters 𝑑 and 𝑏 and 

with the introduction of artificial viscosity (𝐾 = 0.00349, 0.0349, and 

0.349) during the numerical integration process the nature of the profiles 

of both the EOS change from being sharp edged to smooth curves.  

6) It is observed that the large value of artificial viscosity has no effect along 

a wave front of constant phase because the velocity component tangential 

to a shock front is continuous in the limit of arbitrary grid refinement in 

this direction.  

7) With the non-idealness parameter 𝑏(= 0.001, 0.005, 0.01) and 𝐾 = 0.0349, 

for van der Waals EOS the density, velocity, pressure and magnetic 

profiles gradually increases with increase in 𝜉 and slowly and become 

constant. This behaviour remains unaltered with the value of 𝐾 > 0.349. 

8) We conclude that with the non-idealness parameters and with the 

introduction of artificial viscosity (𝐾 = 0.00349, 0.0349, and 0.349) the 

excitation of oscillations in the molecules dampen and the smoothness in 

the profiles increases. 

9) It is observed that spread of flow variables increases with increase in the 

range of the non-idealness parameter 𝑏 and fixed values of viscosity 

parameter 𝐾. 

10) The thickness of MHD shock front increases with increase in the value  

  of non-idealness parameter 𝑏. It is observed that the thickness of MHD 



shock wave depends only on its strength and is constant with increase in 

reduced distance 𝜉. 

11) It is observed that for smaller values of viscosity parameter 𝐾 the effect  

 on flow variables is constant initially with the increase in 𝜉 and decreases   

 more rapidly with increasing values of non-idealness parameter 𝑏 and  

 fixed values of non-idealness parameter 𝑎 in the EOS of van der Waals.  

 Also it is observed that the thickness of MHD shock front is maximum  

 for small values of non-idealness parameter 𝑏, which increases more with  

 an increasing values of non-idealness parameter 𝑎 and fixed values of  

 non-idealness parameter 𝑏. 

12) We conclude that artificial viscosity distinguishes between shock-wave   

  and adiabatic compression. It vanishes for uniform compression and  

  rigid rotation and also vanishes along a surface of constant phase. Along  

  such a surface the velocity field has a constant magnitude, and is also  

  continuous, but may vary in direction. 

 

 

 

 

 



Table 6.1: Similarity exponent 𝛼 for Royce EOS when 𝛤0 = 1.78, 2.12 

  𝜞𝟎 = 1.78  𝜞𝟎 = 2.12 

𝒅 𝑪𝟎 𝜷 𝜶 𝜷 𝜶 

0.1 0.02 2.06157 1.32738 1.89160 1.33130 

0.05 1.93154 1.28273 1.78867 1.28039 

0.3 0.02 2.12842 1.31746 1.93417 1.32320 

0.05 1.98290 1.27537 1.82234 1.27433 

0.5 0.02 2.20935 1.30624 1.98357 1.31420 

0.05 2.04357 1.26708 1.86077 1.26760 

0.7 0.02 2.31003 1.29336 2.04184 1.30411 

0.05 2.11673 1.25770 1.90523 1.26008 

1.0 0.02 2.52063 1.26985 2.15300 1.28631 

0.05 2.26132 1.24099 1.98726 1.24694 

 

Table 6.2: Similarity exponent 𝛼 for van der Waals EOS when 𝛾 = 1.4, 1.6 

  𝒂 = 0.0025  𝒂 = 0.0075 

  𝜸 = 1.4 𝜸 = 1.6 𝜸 = 1.4 𝜸 = 1.6 

𝒃 𝑪𝟎 𝜷 𝜶 𝜷 𝜶 𝜷 𝜶 𝜷 𝜶 

0.0004 0.02 4.76932 1.28941 3.75301 1.30083 5.10068 1.26749 3.85936 1.29204 

0.05 3.74624 1.29955 3.16116 1.29411 3.89914 1.28819 3.22478 1.28893 

0.001 0.02 4.76157 1.28987 3.74788 1.30124 5.08995 1.26821 3.85327 1.29259 

0.05 3.74301 1.29974 3.15846 1.29433 3.89516 1.28848 3.22168 1.28921 

0.005 0.02 4.71012 1.29296 3.71393 1.30403 5.01922 1.27300 3.81306 1.29624 

0.05 3.72142 1.30106 3.14044 1.29578 3.86863 1.29045 3.20107 1.29113 

0.01 0.02 4.64644 1.29693 3.67204 1.30757 4.93287 1.27906 3.76379 1.30083 

0.05 3.69427 1.30279 3.11794 1.29765 3.83541 1.29300 3.17541 1.29356 

0.03 0.02 4.39947 1.31395 3.51064 1.32218 4.60935 1.30386 3.57709 1.31937 

0.05 3.58427 1.31055 3.02839 1.30565 3.70229 1.30415 3.07413 1.30382 
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Figure 6.3. Graphical approach of 𝑀(𝛽) for Royce EOS when 𝛤0 = 1.78 

and various values of 𝑑 

0 1 2 3 4 5 6
-2

-1

0

1

2

3

4

5

     


   

  N

(i) C
0
 = 0.02 and a = 0.0025

 

 

0 1 2 3 4 5 6
-2

0

2

4

6

8

10

12

     


   

  N

(ii) C
0
 = 0.05 and a = 0.0025

 

 

b = 0.0004

b = 0.001

b = 0.005

b = 0.01

b = 0.03

b = 0.0004

b = 0.001

b = 0.005

b = 0.01

b = 0.03

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4

     


   

  N

(iii) C
0
 = 0.02 and a = 0.0075

 

 

0 1 2 3 4 5 6
-2

0

2

4

6

8

10

     


   

  N

(iv) C
0
 = 0.05 and a = 0.0075

 

 

b = 0.0004

b = 0.001

b = 0.005

b = 0.01

b = 0.03

b = 0.0004

b = 0.001

b = 0.005

b = 0.01

b = 0.03

Figure 6.4. Graphical approach of 𝑁(𝛽) for van der Waals EOS when 

𝛾 = 1.4 and various values of 𝑏 



 

 

 

 

Figure 6.5(a). Density profiles for Royce EOS when 𝛤0 = 1.78, 𝐾 = 0 

Figure 6.5(b). Velocity profiles for Royce EOS when 𝛤0 = 1.78, 𝐾 = 0 



 

 

 

 

Figure 6.5(c). Pressure profiles for Royce EOS when 𝛤0 = 1.78, 𝐾 = 0 

Figure 6.5(d). Magnetic pressure profiles for Royce EOS 

when 𝛤0 = 1.78, 𝐾 = 0 



 

 

 

 

Figure 6.6(a). Density profiles for Royce EOS when 𝛤0 = 1.78, 

𝐾 = 0.00349 

Figure 6.6(b). Velocity profiles for Royce EOS when 𝛤0 = 1.78, 

𝐾 = 0.00349 



 

 

 

 

Figure 6.6(c). Pressure profiles for Royce EOS when 𝛤0 = 1.78, 

𝐾 = 0.00349 

Figure 6.6(d). Magnetic pressure profiles for Royce EOS 

when 𝛤0 = 1.78, 𝐾 = 0.00349 



 

 

 

 

Figure 6.7(a). Density profiles for Royce EOS when 𝛤0 = 1.78, 

𝐾 = 0.0349 

Figure 6.7(b). Velocity profiles for Royce EOS when 𝛤0 = 1.78, 

𝐾 = 0.0349 



 

 

 

 

Figure 6.7(c). Pressure profiles for Royce EOS when 𝛤0 = 1.78, 

𝐾 = 0.0349 

Figure 6.7(d). Magnetic pressure profiles for Royce EOS 

when 𝛤0 = 1.78, 𝐾 = 0.0349 



 

 

 

 

Figure 6.8(a). Density profiles for Royce EOS when 𝛤0 = 1.78, 

𝐾 = 0.349 

Figure 6.8(b). Velocity profiles for Royce EOS when 𝛤0 = 1.78, 

𝐾 = 0.349 



 

 

 

 

Figure 6.8(c). Pressure profiles for Royce EOS when 𝛤0 = 1.78, 

𝐾 = 0.349 

Figure 6.8(d). Magnetic pressure profiles for Royce EOS 

when 𝛤0 = 1.78, 𝐾 = 0.349 



 

 

 

 

Figure 6.9(a). Density profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0 and 𝑎 = 0.0025 

Figure 6.9(b). Velocity profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0 and 𝑎 = 0.0025 



 

 

 

 

Figure 6.9(c). Pressure profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0 and 𝑎 = 0.0025 

Figure 6.9(d). Magnetic pressure profiles for van der Waals EOS 

when 𝛾 = 1.4, 𝐾 = 0 and 𝑎 = 0.0025 



 

 

 

 

Figure 6.10(a). Density profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.00349 and 𝑎 = 0.0025 

Figure 6.10(b). Velocity profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.00349 and 𝑎 = 0.0025 



 

 

 

 

Figure 6.10(c). Pressure profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.00349 and 𝑎 = 0.0025 

Figure 6.10(d). Magnetic pressure profiles for van der Waals EOS 

when 𝛾 = 1.4, 𝐾 = 0.00349 and 𝑎 = 0.0025 



 

 

 

 

Figure 6.11(a). Density profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.0349 and 𝑎 = 0.0025 

Figure 6.11(b). Velocity profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.0349 and 𝑎 = 0.0025 



 

 

 

 

Figure 6.11(c). Pressure profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.0349 and 𝑎 = 0.0025 

Figure 6.11(d). Magnetic pressure profiles for van der Waals EOS 

when 𝛾 = 1.4, 𝐾 = 0.0349 and 𝑎 = 0.0025 



 

 

 

 

Figure 6.12(a). Density profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.349 and 𝑎 = 0.0025 

Figure 6.12(b). Velocity profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.349 and 𝑎 = 0.0025 



 

 

 

 

Figure 6.12(c). Pressure profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.349 and 𝑎 = 0.0025 

Figure 6.12(d). Magnetic pressure profiles for van der Waals EOS 

when 𝛾 = 1.4, 𝐾 = 0.349 and 𝑎 = 0.0025 



 

 

 

 

Figure 6.13(a). Density profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0 and 𝑎 = 0.0075 

Figure 6.13(b). Velocity profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0 and 𝑎 = 0.0075 



 

 

 

 

Figure 6.13(c). Pressure profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0 and 𝑎 = 0.0075 

Figure 6.13(d). Magnetic pressure profiles for van der Waals EOS 

when 𝛾 = 1.4, 𝐾 = 0 and 𝑎 = 0.0075 



 

 

 

 

Figure 6.14(a). Density profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.00349 and 𝑎 = 0.0075 

Figure 6.14(b). Velocity profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.00349 and 𝑎 = 0.0075 



 

 

 

 

Figure 6.14(c). Pressure profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.00349 and 𝑎 = 0.0075 

Figure 6.14(d). Magnetic pressure profiles for van der Waals EOS 

when 𝛾 = 1.4, 𝐾 = 0.00349 and 𝑎 = 0.0075 



 

 

 

 

Figure 6.15(a). Density profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.0349 and 𝑎 = 0.0075 

Figure 6.15(b). Velocity profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.0349 and 𝑎 = 0.0075 



 

 

 

 

Figure 6.15(c). Pressure profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.0349 and 𝑎 = 0.0075 

Figure 6.15(d). Magnetic pressure profiles for van der Waals EOS 

when 𝛾 = 1.4, 𝐾 = 0.0349 and 𝑎 = 0.0075 



 

 

 

 

Figure 6.16(a). Density profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.349 and 𝑎 = 0.0075 

Figure 6.16(b). Velocity profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.349 and 𝑎 = 0.0075 



 

 

 

 

Figure 6.16(c). Pressure profiles for van der Waals EOS when 

𝛾 = 1.4, 𝐾 = 0.349 and 𝑎 = 0.0075 

Figure 6.16(d). Magnetic pressure profiles for van der Waals EOS 

when 𝛾 = 1.4, 𝐾 = 0.349 and 𝑎 = 0.0075 



Chapter-7 

Self-Similar Motion of Strong Converging Cylindrical and 

Spherical Shock Waves in Non-ideal Stellar Medium 

 

7.1 Introduction 

Shock processes occurs naturally in various processes which are related to 

hydrodynamics, astrophysical situations such as supernova explosions, photo-

ionized gas, stellar winds, interstellar gas etc. They are considered to be 

discontinuities in mathematical point of view but shock wave is not a true 

physical discontinuity. The study of converging spherical and cylindrical shock 

waves in non-ideal stellar atmosphere under the action of monochromatic 

radiation is of importance because of its applications in the areas of nuclear 

engineering, cavitation, astrophysics, radioactively driven outflows, stellar 

convection, and inertial confinement fusion. The theory of radiation 

hydrodynamics plays an important role in studying phenomena in plasma physics. 

These shock fronts have a more complex structure than ordinary hydrodynamical 

shocks. In recent years, the problems of high-temperature gas dynamics have 

attracted much attention. The high temperatures generated in gases by shock 

waves give rise to physical and chemical phenomena such as molecular 

vibrational excitation, dissociation, ionization, chemical reactions, and inherently 



related radiation. In continuum regime, these processes start from the wave front, 

so that generally the gaseous media behind the shock waves may be in 

thermodynamic and chemical non-equilibrium state. In the flow field of a gas at 

very high temperatures, the gas may be ionized and the radiation transfer is 

important. In classical gas dynamics the transfer of radiation is usually neglected, 

however, when the temperature of the gas is high, radiation can be considered as 

an important mode of energy transport. The gas temperature behind such a shock 

could depart strongly from that predicted by the standard Rankine-Hugoniot law. 

Gail et al. [46] discussed applications to weak and strong shocks in a stellar 

atmosphere due to a shock wave trains. The effect of non-linear interactions of 

one dimensional adiabatic or isothermal hydrodynamic shock waves in the solar 

atmosphere have been studied by Fleck and Schmitz [47]. Barnwal and Srivastava 

[48] have investigated the general Rankine-Hugoniot jump relations for a 3-

dimensional shock in dusty gas in the presence of radiation. Several authors [5, 

49, 108-111] studied the shock wave problem with thermal radiation by similarity 

method in perfect gas. Marshak [112] studied the effect of radiation on the shock 

propagation by introducing the radiation diffusion approximation. Elliott [108] 

discussed the conditions leading to self-similarity with a specified functional 

form of the mean free-path of radiation and obtained a solution for self-similar 

explosion. Hirschler and Gretler [113] studied similarity solutions of converging 

spherical shock wave with radiation effect by assuming medium to be optically 



thick. Khudyakov [114] discussed the self-similar problem of motion of a gas 

under the action of monochromatic radiation. 

In recent times considerable study for the self-similar solutions in the process 

occurring under the action of monochromatic radiation of gaseous substances in 

the stellar regions has gained importance. Several problems relating to shock 

wave propagation in perfect gas and non-ideal gas with radiative and magneto 

hydrodynamic effects have been studied by Zedan [115], Leygnac et al. [116], 

Sampaio [117], Taylor and Ryan [118]. All the work is under the assumption that 

the medium in an astrophysical environment is ideal gas. This may not be true in 

reality and it is necessary to analyze the gas dynamic processes in a non-ideal 

medium with monochromatic radiation. 

In the present problem a model to determine the self-similar solutions for 

converging spherical and cylindrical strong shock waves in stellar atmosphere 

under the action of monochromatic radiation in non-uniform stellar interiors with 

constant intensity on a unit area. It is assumed that the medium into which 

propagation takes place to be a non-ideal gas. Shock is assumed to be strong and 

obeys a power law. It is assumed that the radiation flux moves through the gas 

with constant intensity on a unit area of the shock wave propagation in a direction 

opposite to the radiation flux. The medium of flow is assumed to be obeying the 

EOS of Mie-Gruneisen type i.e., Royce EOS [57]. The perfect gas EOS results 



too are obtained from Royce EOS as a special case, and were found to match very 

closely with the literature. 

7.2 Formulation of the Problem 

The basic equations for one-dimensional unsteady motion of cylindrical and 

spherical strong converging shock waves into the radiation hydrodynamic regime 

with the medium neglecting viscosity, heat conduction, and magnetic field 

characterized by the EOS of Mie-Gruneisen type can be written in Eulerian form 

[94, 111] 

                         
𝐷𝜌

𝐷𝑡
+ 𝜌(𝛻. 𝑢) + (𝛺 − 1)

𝜌𝑢

𝑟
= 0                                         (7.1) 

                         
𝐷𝑢

𝐷𝑡
+

1

𝜌
𝛻𝑝 = 0                                                                    (7.2) 

                         
𝐷𝑒

𝐷𝑡
−

𝑝

𝜌

𝐷

𝐷𝑡
[𝑙𝑛 (

𝜌

𝜌0
)] +

1

𝜌𝑟
𝛻(𝑗𝑟) = 0                                    (7.3) 

                         𝛻𝑗 = 𝐾𝑗                                                                             (7.4) 

where 
𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ (𝑢. 𝛻) is the substantial derivative, which is the sum of local and 

convective derivatives. 𝛺 = 2, 3 denote the cylindrical and spherical cases of the 

shock waves respectively. 𝜌, 𝜌0, 𝑢, 𝑝, 𝑒, 𝑗, 𝐾 denote the density of gas, density 

of unperturbed medium, velocity of gas particles, pressure, SIE per unit mass of 

volume, the flux of monochromatic radiation per unit area at radial distance r 

from the axis at time t and absorption coefficient respectively. 

The EOS under equilibrium condition is of Mie-Gruneisen type [57, 92, 119] 

                         𝑒 =
𝑝

𝜌𝛤(𝜌/𝜌0)
                                                                       (7.5) 



   where  

        𝛤(𝜌/𝜌0) is the Gruneisen coefficient. 

The above governing equations (7.1-7.4) can be written in matrix equation as 

follows 

                         𝐹𝑡 + 𝐴𝐹𝑟 + 𝐵 = 0                                                             (7.6)  

where 𝐹, 𝐴, and 𝐵 are given by 

     𝐹 = [

𝜌
𝑢
𝑒
0

],   𝐴 = [

𝑢
0
0
0

     

𝜌
𝑢

𝑝/𝜌
0

      

0
1/𝜌
𝑢
0

     

0
1/𝜌
1/𝜌
1

] ,   and   𝐵 =

[
 
 
 
 

(𝛺−1)𝜌𝑢

𝑟

0
(𝛺−1)𝑝𝑢

𝜌𝑟
+

𝑗

𝜌𝑟

−𝐾𝑗 ]
 
 
 
 

   

𝐹𝑡 and 𝐹𝑟 are partial derivatives with respect to time t and spacial coordinate r. 

The absorption coefficient K is considered to vary as [114] 

                                  𝐾 = 𝐾0𝜌
𝑛𝑝𝑚𝑗𝑞𝑟𝑠𝑡𝑙                                               (7.7) 

where the numbers 𝑛, 𝑚, 𝑞, s, 𝑙 are rational exponents and  

                                 [𝐾0] = 𝑀−𝑛−𝑚−𝑞𝐿3𝑛+𝑚−𝑠𝑇2𝑚+3𝑞−𝑙                      (7.8) 

for the present problem, the quantities 𝑝0, 𝜌0, 𝑗0, and 𝐾0 are dimensional 

constants, in which 𝑝0, 𝜌0, and 𝑗0 are dependent given by 

                         𝑗0 = [𝑝0]
3/2[𝜌0]

−1/2                                                      (7.9) 

The radiation absorption coefficient 𝐾 depends on dimensions of 𝑗0, 𝜌0, which is 

equivalent 𝑠 + 𝑙 = −1.  

 

 



 

7.2.1 Rankine-Hugoniot relations 

The jump conditions across a shock wave propagating in an electrically 

conducting and radiating gas are given by Ramu et al. [92] and Narsimhulu et al. 

[119] 

                         [(𝑢 − 𝑊)𝜌]1
2 = 0                                                             (7.10) 

                         [𝑝 + 𝜌𝑢2]1
2 = 0                                                                (7.11) 

                         [𝑒 +
𝑝

𝜌
+

1

2
(𝑢 − 𝑊)2]

1

2
= 0                                             (7.12) 

                         [𝑗]1
2 = 0                                                                            (7.13) 

where the symbol [… ]1
2 represents the difference between the values of ahead 

upstream and behind downstream regions across shock wave respectively and 𝑊 

represents the scale of velocity. We assume that shock is propagating into a non-

ideal stellar medium at rest with gas density varying as the power law given by 

Ramu and Rangarao [57], 

                         𝑅𝑠(𝑡) = Å(−𝑡)𝛼                                                              (7.14) 

where the function 𝑅𝑠(𝑡) is the time-dependent radius of the shock wave, Å is 

proportionality constant and 𝛼 is similarity exponent. It is assumed that the 

radiation pressure and radiation energy are very small in comparison to the 

material pressure and energy, hence neglected. For the case of strong shocks, the 

upstream medium can be approximated as a cold fluid (𝑇~0). The upstream 

pressure can therefore be neglected in comparison to other quantities appearing 



in the Rankine-Hugoniot jump conditions (7.10-7.13). Setting 𝑝1 = 0, 𝑢1 = 0 in 

the above equations, Rankine-Hugoniot jump conditions become  

                          
𝜌2

𝜌1
= 𝛽−1                                                                         (7.15) 

                          𝑢2 = (1 − 𝛽)𝑊                                                              (7.16) 

                          𝑝2 = 𝜌1(1 − 𝛽)𝑊2                                                        (7.17) 

                          𝑒2 =
1

2
(1 − 𝛽)2𝑊2                                                        (7.18) 

                          𝑗1 = 𝑗0                                                                            (7.19) 

where 𝛽 is the shock density ratio and its magnitude is dependent on the EOS and 

𝑊 =
𝑑𝑅𝑠

𝑑𝑡
. The effect of ionization, dissociation, and the interaction with radiation 

become important on the Rankine-Hugoniot jump relations when the shock is 

strong. Along with the strong shock relations (7.15-7.19) and the EOS (7.5), we 

get 

                          (𝛽 − 1)𝛤(𝛽) = 2                                                          (7.20) 

7.2.2 One-dimensional self-similar motion 

The basic equations are non-dimensionalized by using dimensionless functions 

of the similarity variable λ [7, 57, 92] are                            

                           𝜌 = 𝜌0𝑔(𝜆)                                                                 (7.21.a) 

                           𝑢 = 𝑣(𝜆)𝑊                                                                 (7.21.b) 

                           𝑝 = 𝜌0𝑊
2𝜋(𝜆)                                                           (7.21.c)  

                           𝑗 = 𝑗0𝜓(𝜆)                                                                  (7.21.d)                             



where 𝑔, 𝑣, 𝜋, and 𝜓  are non-dimensional density, velocity, pressure, and 

radiation flux of similarity variable 𝜆 respectively. For computational 

convenience, we consider another set of transformations along with the above 

transformations as 

                          𝑔(𝜆) = 𝐺(𝜆)                                                                (7.22.a) 

                          𝑣(𝜆) =
𝜆

𝛼
𝑈(𝜆)                                                             (7.22.b) 

                          𝜋(𝜆) =
𝜆2

𝛼2
𝑃(𝜆)                                                            (7.22.c) 

                          𝜓(𝜆) = 𝐽(𝜆)                                                                (7.22.d) 

and 𝑌(𝜆) = 𝑃(𝜆)/𝐺(𝜆), where 𝐺, 𝑈, 𝑃, and 𝐽 are new reduced density, velocity, 

pressure, and radiation flux functions in terms of similarity variable 𝜆 

respectively.                                                                            

Applying the similarity transformations, the equations of motion take the form 

                         
(𝑈−𝛼)

𝐺

𝑑𝐺

𝑑𝜆
+

𝑑𝑈

𝑑𝜆
+

𝛺𝑈

𝜆
= 0                                                    (7.23) 

                         
1

𝐺

𝑑𝐺

𝑑𝜆
+ (𝑈 − 𝛼)

𝑑𝑈

𝑑𝜆
+

𝑑𝑌

𝑑𝜆
+

1

𝜆
[2𝑌 + 𝑈(𝑈 − 1)] = 0         (7.24) 

                         
𝑌𝛷(𝐺)

𝐺

𝑑𝐺

𝑑𝜆
+

𝑑𝑌

𝑑𝜆
+ [

2(𝑈−1)𝑌

𝜆(𝑈−𝛼)
+

𝛼3𝛤(𝐺)(𝑈−1)𝑌𝐽

(𝑈−𝛼)2𝑅3𝜆4𝜌0𝐺(𝐽′+1)
] = 0      (7.25)  

                          
𝑑𝐽

𝑑𝜆
− 𝛼𝜆𝑠𝐺𝑛𝑃𝑚𝐽𝑞+1 = 0                                                 (7.26) 

where 

        𝛷(𝐺) = −𝛤(𝐺) −
𝐺

𝛤(𝐺)

𝑑𝛤(𝐺)

𝑑𝐺
   and   1 − 𝛷(𝐺) = 𝜎                         (7.27) 

 



where 𝜎 is the material property. At the shock front, the boundary conditions 

(7.15-7.19) are transformed into the following form 

                         𝐺(1) =
1

𝛽
                                                                          (7.28) 

                         𝑈(1) = (1 − 𝛽)𝛼                                                            (7.29) 

                         𝑃(1) = 𝛽(1 − 𝛽)𝛼2                                                        (7.30) 

                         𝐽(1) = 1                                                                          (7.31) 

7.3 Numerical Solution  

7.3.1 Finite difference formulation 

An explicit finite difference method is employed in solving system of equations 

(7.23-7.26). The solution domain (Figure 7.1) is discretized by a one-dimensional 

set of discrete grid points, with the grid points equally spaced having uniform 

spacing 𝛥𝜆. 

 

The finite difference approximations of the transformed system of equations 

(7.23-7.26) are given by 

 

Figure 7.1. Solution domain 𝐷(𝜆) and discrete finite difference 

grid 

i+1

1 

1 2 i-2 i-1 i 3 𝜆 

𝐷(𝜆) 



                          
𝑑𝐺

𝑑𝜆
=

𝐺𝑖+1−𝐺𝑖

𝛥𝜆
                                                                     (7.32)        

                          
𝑑𝑈

𝑑𝜆
=

𝑈𝑖+1−𝑈𝑖

𝛥𝜆
                                                                    (7.33)         

                          
𝑑𝑌

𝑑𝜆
=

𝑌𝑖+1−𝑌𝑖

𝛥𝜆
                                                                     (7.34)         

                          
𝑑𝐽

𝑑𝜆
=

𝐽𝑖+1−𝐽𝑖

𝛥𝜆
                                                                      (7.35)  

Substituting equations (7.32-7.35) into equations (7.23-7.26) the resulting system 

of equations can be written in the following matrix form, 

                         [𝐶𝑖 ][𝑋𝑖+1 ] = [𝐷𝑖]                                                            (7.36) 

where [𝐶𝑖], [𝑋𝑖+1 ], and [𝐷𝑖 ] are 4x4, 4x1and 4x1 matrices respectively. 

                    [𝐶𝑖] = [

(𝑈𝑖 − 𝛼)
1

𝑌𝑖𝛷(𝐺𝑖)/𝐺𝑖

0

     

𝐺𝑖

𝐺𝑖(𝑈𝑖 − 𝛼)
0
0

      

0
𝐺𝑖

1
0

     

0
0
0
1

]                       (7.37) 

                    [𝑋𝑖+1 ] = [𝐺𝑖+1 𝑈𝑖+1     𝑌𝑖+1 𝐽𝑖+1]
𝑇                                 (7.38) 

and 

     [𝐷𝑖] =

[
 
 
 
 
 
 (2 −

ℎ𝛺

𝜆𝑖
)𝐺𝑖𝑈𝑖 − 𝛼𝐺𝑖

(1 −
2ℎ

𝜆𝑖
) 𝐺𝑖𝑌𝑖 −

ℎ

𝜆𝑖
𝐺𝑖𝑈𝑖(𝑈𝑖 − 1) + 𝐺𝑖𝑈𝑖(𝑈𝑖 − 𝛼) + 𝐺𝑖

−ℎ

𝜆𝑖
𝑌𝑖 {

2(𝑈𝑖−1)

(𝑈𝑖−𝛼)
+

𝛼3𝐽𝑖(𝑈𝑖−1)𝛤(𝐺𝑖)

(𝑈𝑖−𝛼)3𝑅3𝜆𝑖
3𝜌0𝐺𝑖(𝐽𝑖

′+1)
} + 𝑌𝑖{1 + 𝛷(𝐺𝑖)}

ℎ𝛼𝜆𝑖
𝑠𝐺𝑖

𝑛𝑃𝑖
𝑚𝐽𝑖

𝑞+1 + 𝐽𝑖 ]
 
 
 
 
 
 

    (7.39) 

Crout’s reduction technique [93] is employed to evaluate the flow parameters 

such as density (𝐺𝑖+1), velocity (𝑈𝑖+1), pressure (𝑌𝑖+1), and radiation flux (𝐽𝑖+1). 



where 

                      𝐺𝑖+1 =
(𝑈𝑖−𝛼)(𝐷11)(𝑖)−(𝐷21 )

(𝑖)+𝐺𝑖(𝐷31)(𝑖) 
[(𝑈𝑖−𝛼)2+𝑌𝑖𝛷(𝐺𝑖)−1]

                                  (7.40)   

                      𝑌𝑖+1 =
{(𝐷21)(𝑖)−(𝑈𝑖−𝛼)(𝐷11)(𝑖)}𝑌𝑖𝛷(𝐺𝑖)+𝐺𝑖{(𝑈𝑖−𝛼)2−1} (𝐷31)(𝑖)     

[(𝑈𝑖−𝛼)2+𝑌𝑖𝛷(𝐺𝑖)−1]𝐺𝑖
  (7.41) 

                      𝑈𝑖+1 =
{𝑌𝑖𝛷(𝐺𝑖)−1}(𝐷11)(𝑖)+(𝑈𝑖−𝛼) (𝐷21)(𝑖)−𝐺𝑖(𝑈𝑖−𝛼) (𝐷31)(𝑖)

[(𝑈𝑖−𝛼)2+𝑌𝑖𝛷(𝐺𝑖)−1]𝐺𝑖
       (7.42)    

                       𝐽𝑖+1 = (𝐷41)
(𝑖)                                              (7.43) 

where the superscript 𝑖 refers to the location in the discretizing continuous 

solution domain and it is a positive integer. Numerical solution of system of 

equations (7.40-7.43) along with boundary conditions (7.28-7.31) are obtained 

for a step size of ℎ = 10−4. 

7.3.2 Evaluation of 𝜷(𝝆/𝝆𝟎) the measure of shock strength 

Considering the EOS of Mie-Gruneisen type [57]: 

The Royce EOS defined by   

                         𝛤(𝐺) = 𝛤0 − 𝑏 (1 −
1

𝐺
)                                    (7.44) 

where 𝑏 is constant such that 𝑏 > 0 and 𝛤0 is the non-idealness parameter. 

Using equation (7.44) in equation (7.20), gives a quadratic expression in terms of 

𝛽 and it can be written as 

          𝑍(𝛽) ≡ (𝛤0 − 𝑏)𝛽2 + (2𝑏 − 𝛤0 − 2)𝛽 − 𝑏 = 0                          (7.45)  



The equation (7.44) reduces to perfect gas EOS when 𝛤0 = (𝛾 − 1), 𝑏 = 0 and 

along with equation (7.5) which is  

                         𝑝(𝜌, 𝑒) = 𝜌𝑒(𝛾 − 1)                                                      (7.46)                                                                         

the measure of shock strength 𝛽 defined by the following relation 

                   𝛽 =
𝛾+1

𝛾−1
 , provided 𝛽 ≠ 0                                                    (7.47) 

Positive roots are only considered in the subsequent computation. The solution 

curves of the polynomial 𝑍(𝛽) for two different values of non-idealness 

parameter 𝛤0 are shown in Figure 7.2. The values of measure of the shock strength 

𝛽, similarity exponent 𝛼 along with the known values of non-idealness parameter 

𝛤0, adiabatic index 𝛾, and constant parameter 𝑏 are presented in Tables 7.1 and 

7.2 for Royce and perfect gas EOS respectively. 

Table 7.1: Selected values of similarity exponent 𝛼 for Royce EOS 

 

 

 

 

𝑏 𝛤0 = 1.4 𝛤0 = 2.0 

 𝛽 𝛼 𝛽 𝛼 

0.1 2.49240 0.43013641 2.02598 0.45569195 

0.3 2.64843 0.42271081 2.08465 0.45215384 

0.5 2.86086 0.41332599 2.15470 0.44806368 

0.7 3.17237 0.40085328 2.24035 0.44324870 

1.0 4.10850 0.37023692 2.41421 0.43404715 



Table 7.2: Selected values of similarity exponent 𝛼 for perfect gas 

𝛾 𝛽 𝛼 

1.2 11.0000 0.24828372 

1.4 6.00000 0.32571203 

1.6 4.33333                       0.3779717 

1.8 3.50000 0.41763534 

2.0 3.00000 0.44948974 

 

7.3.3 Numerical solution of flow parameters 

The numerical solution of the problem involves in applying Crout’s reduction 

technique [93] to evaluate the flow parameters such as density (𝐺𝑖+1), velocity 

(𝑈𝑖+1), pressure (𝑌𝑖+1), and radiation flux (𝐽𝑖+1), from equations (7.40-7.43) 

using MATLAB with a step size of ∆ℎ = 10−4 and an error tolerance of 10 

significant digits. The whole solution procedure is repeated until the shock 

conditions are satisfied within the said accuracy. 

7.4 Results and Discussion 

Numerical calculations are performed for the values of non-ideal parameters  

𝜌0 = 1, 𝑅 = 1, 𝑚 = 3/2, 𝑛 = -1/2, 𝑠 = 1, 𝑞 = 0 and 𝜎 = 1.42. The similarity 

exponent 𝛼 for various values of constant parameter 𝑏 and fixed values of non-

idealness parameter 𝛤0 are listed in Tables 7.1 and 7.2. We observe from Table 

7.1, decrease in the values of similarity exponent 𝛼 and increase in the measure 

of shock strength 𝛽 with increasing values of constant parameter 𝑏 and for fixed 

values of non-idealness parameter 𝛤0. Also from Table 7.2, for perfect gas case a 



reverse trend is observed in the values of similarity exponent 𝛼 and measure of 

shock strength 𝛽 for various values of adiabatic exponent 𝛾. The variations of 

non-dimensional flow variables and radiation flux for the considered non-

idealness parameters for both Royce and ideal gas EOSs are shown in Figures 

7.3-7.14. 

It is observed from Figures 7.3 and 7.4 that the flow variable density (for both 

cylindrical and spherical geometry) is high at the shock front (for the Royce EOS) 

reduces with the increase in the non-idealness parameters and reduce gradually 

as 𝜆 increases. It is observed that at the shock front discontinuity appeared in 

density profiles is subject to physical requirement that the radiation flux cannot 

change across it and the mean collision time of particles is proportional to the gas 

density.  

Also from Figures 7.5 and 7.6, it is observed for Royce EOS for the cylindrical 

and spherical geometries for different values of non-ideal parameters a sharp 

increase in velocity profiles for 𝜆 = 1 for a short range of 𝜆 and decrease steadily 

with the  variation in 𝜆. It is notable that increase in the non-idealness parameters 

(from Tables 7.1 and 7.2) have effect on 𝛽. As 𝛽 value increases, increase in 

velocity, pressure is prominent for both the EOS. Thus it is observed from Figure 

7.4, that increase in 𝛽 does not automatically decelerate the shock front but the 

velocity and pressure behind the shock front increases quickly in the presence of 

monochromatic radiation and decrease slowly and become constant. The 



variation in shock velocity causes the shock transition to expand to a scale larger 

than that of the system, so that the shock enters a different regime for real systems 

such as stellar atmosphere (Farnsworth and Clarke [120]). Hence, the shock 

velocity will increase as cryogenic implosion performance improves allowing 

access to the radiative pressure regime. 

The effect of non-idealness parameters 𝑏 on the pressure distribution in the 

presence of fixed non-idealness parameter 𝛤0 is presented in Figures 7.7 and 7.8. 

The pressure distribution 𝑌(𝜆) increases as the constant parameter 𝑏 increases. 

This is in agreement with physical fact that the velocity distribution increases 

with increasing 𝑏 and also it is found that increase in pressure profiles has 

insignificant effect with increasing values of 𝜆 for both cases of geometry 𝛺 = 2, 

3 and also the gas pressure decreases with increase in 𝜆. A similar trend is 

observed in the radiation profiles from Figures 7.9 and 7.10. 

The density, velocity, and pressure profiles for ideal gas equation of state are 

presented in Figures 7.11-7.14 respectively for various values of 𝛾. Figures 

7.11(a) and 7.11(b) depict density profiles of both cylindrical, spherical geometry 

for different values of adiabatic index 𝛾 respectively. We observe from Figure 

7.11 that density distribution increases with the increase of 𝛾 and decreases in a 

short range of 𝜆  and a small increase is seen as a bounce and then reduces along 

the 𝜆. The velocity profiles for different values of adiabatic index 𝛾 presented in 

Figure 7.12. A sharp rise in the velocity profiles is observed initially and decrease 



rapidly along 𝜆-axis for both cases of geometry 𝛺 = 2, 3 respectively. Moreover, 

this behavior is similar to the case of Royce EOS for fixed values of adiabatic 

index 𝛾 and non-idealness parameter 𝑏 but it is just an opposite trend for different 

values of adiabatic index 𝛾. Figures 7.13(a) and 7.13(b) represent pressure 

profiles versus 𝜆, for various values of adiabatic index 𝛾. The radiation flux 

profiles for perfect gas are presented in Figure 7.14. It is observed that initially 

no variation in radiation flux distribution but then it is more with an increasing 

values of 𝜆. It is observed that effect of radiation from the volume of a gas 

becomes important at distances away from the initial point and it modifies the 

shock structure. 
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Figure 7.2. Graphical approach of 𝛧(𝛽) in the case of Royce EOS; 

(a) 𝛤0 = 1.4 and (b) 𝛤0 = 2.0 
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Figure 7.3(a). Density profiles for Royce EOS when 𝛤0 = 1.4, 

𝜎 = 1.42, and 𝛺 = 2   
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Figure 7.3(b). Density profiles for Royce EOS when 𝛤0 = 1.4, 

𝜎 = 1.42, and 𝛺 = 3   
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Figure 7.4(a). Density profiles for Royce EOS when 𝛤0 = 2.0, 

𝜎 = 1.42, and 𝛺 = 2   
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Figure 7.4(b). Density profiles for Royce EOS when 𝛤0 = 2.0, 

𝜎 = 1.42, and 𝛺 = 3   
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Figure 7.5(a). Velocity profiles for Royce EOS when 𝛤0 = 1.4, 

𝜎 = 1.42, and 𝛺 = 2   
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Figure 7.5(b). Velocity profiles for Royce EOS when 𝛤0 = 1.4, 

𝜎 = 1.42, and 𝛺 = 3   
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Figure 7.6(a). Velocity profiles for Royce EOS when 𝛤0 = 2.0, 

𝜎 = 1.42, and 𝛺 = 2   
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Figure 7.6(b). Velocity profiles for Royce EOS when 𝛤0 = 2.0, 

𝜎 = 1.42, and 𝛺 = 3   
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Figure 7.7(a). Pressure profiles for Royce EOS when 𝛤0 = 1.4, 

𝜎 = 1.42, and 𝛺 = 2   



 

 

 

 

 

 

 

 

 

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

     


  

  
 Y

 

 

b = 0.1

b = 0.3

b = 0.5

(b) 

Figure 7.7(b). Pressure profiles for Royce EOS when 𝛤0 = 1.4, 

𝜎 = 1.42, and 𝛺 = 3   
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Figure 7.8(a). Pressure profiles for Royce EOS when 𝛤0 = 2.0, 

𝜎 = 1.42, and 𝛺 = 2   
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Figure 7.8(b). Pressure profiles for Royce EOS when 𝛤0 = 2.0, 

𝜎 = 1.42, and 𝛺 = 3   
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Figure 7.9(a). Radiation profiles for Royce EOS when 𝛤0 = 1.4, 

𝜎 = 1.42, and 𝛺 = 2   



 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5
0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

     


  

  
 J

 

 

b = 0.1

b = 0.3

b = 0.5

(b) 

Figure 7.9(b). Radiation profiles for Royce EOS when 𝛤0 = 1.4, 

𝜎 = 1.42, and 𝛺 = 3   
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Figure 7.10(a). Radiation profiles for Royce EOS when 𝛤0 = 2.0, 

𝜎 = 1.42, and 𝛺 = 2   
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Figure 7.10(b). Radiation profiles for Royce EOS when 𝛤0 = 2.0, 

𝜎 = 1.42, and 𝛺 = 3   
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Figure 7.11(a). Density profiles for perfect gas when 𝜎 = 𝛾, 𝛺 = 2  
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Figure 7.11(b). Density profiles for perfect gas when 𝜎 = 𝛾, 𝛺 = 3  
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Figure 7.12(a). Velocity profiles for perfect gas when 𝜎 = 𝛾, 𝛺 = 2  
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Figure 7.12(b). Velocity profiles for perfect gas when 𝜎 = 𝛾, 𝛺 = 3  
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Figure 7.13(a). Pressure profiles for perfect gas when 𝜎 = 𝛾, 𝛺 = 2  
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Figure 7.13(b). Pressure profiles for perfect gas when 𝜎 = 𝛾, 𝛺 = 3  
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Figure 7.14(a). Radiation profiles for perfect gas when 𝜎 = 𝛾, 𝛺 = 2  
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Figure 7.14(b). Radiation profiles for perfect gas when 𝜎 = 𝛾, 𝛺 = 3  



 

Chapter-8 

Self-Similar Solution of One-dimensional Strong 

Converging Cylindrical and Spherical Shock Waves in 

Non-ideal Gas 

8.1 Introduction 

Shock waves often arise due to balance between wave-breaking nonlinear and 

wave-damping dissipative forces. Shock waves in condensed matter are 

generated due to high speed impact of target and projectile. In the case of shock 

loading of materials in the generation of shock waves, the compression is 

accompanied by a temperature rise. In general, the material response depends on 

the nature of pressure loading. Therefore, numerical simulation of high pressure 

and temperature produced by imploding spherical and cylindrical converging 

shock waves through condensed media is of theoretical and practical importance 

because of several applications in the field of astrophysics, astronomy, nuclear 

engineering, pulsed-power hydrodynamics, cavitation and bubble dynamics, 

sono-luminescence, impulse technologies, earthquake source dynamics, 

synthesis of new materials, block ignition, inertial confinement fusion, etc. 

Imploding shock waves have been a field of research interest over the years as 

possible methods for generating high-pressure, high-temperature plasmas at the 

centre of convergence, as well as to understand the basic fluid dynamics is 



 

involved in this process. A theoretical study of the imploding shock wave near 

the center of convergence in an ideal gas was first studied by Guderely [15]. He 

exhibited the existence of the self-similar solutions for the shock wave 

propagating in the vicinity of the centre of the convergence. Later on, many 

authors [5-7, 32, 38, 50, 53, 54, 85, 96, 97, 121] have presented high-accuracy 

results adopting alternative approaches. 

The problem of contracting spherical or cylindrical shock front propagation into 

a uniform gas at rest was first studied by Stanyukovich [6]. Fujimoto and Mishkin 

[85] while analyzing the converging spherical shocks observed a sudden jump in 

the pressure at the shock front, which continues to increase and reaches a 

maximum behind the shock front. This concept of single maximum pressure 

behind the shock front leads to an analytical determination of the shock decay 

coefficient in closed form. The effects of overtaking disturbances on the motion 

of converging shock waves were studied by Yousaf [121]. Zeldovich and Raizer 

[7] studied the problem of implosion of a spherical shock wave in perfect gas and 

collapse of a spherical bubble in a liquid by using a self-similar solution method 

[5]. Ponchaut et al. [32] obtained universal solutions for initially infinitesimally 

weak imploding cylindrical and spherical shock waves in a perfect gas. A power-

series solution for the converging strong shock waves in a perfect gas was studied 

by Hafner [54]. 



 

A nonlinear system involving discontinuities such as shocks do not have complete 

exact solutions, and for analytical work we have to rely on some approximate 

analytical methods. Hence numerical solutions are used and numerical methods 

provide useful information to understand the complex physical phenomena 

completely. Lie group of point transformations is the most powerful method to 

determine particular solutions to such nonlinear partial differential equations 

based on the study of their invariance. 

In the recent years much attention is focused on the use of group theoretical 

methods because of their wide applications in determining solutions of non-linear 

differential equations of physical interest. Lie group symmetry method, is highly 

algorithmic. 

Representation of a Lie group plays an important role in the study of continuous 

symmetry in mathematics and theoretical physics. Advantages of invariance 

under Lie group transformation are, (i) reduces the order of an ordinary 

differential equation, (ii) leads to the superposition of solutions in terms of 

transforms for a linear partial differential equation and (iii) transforms nonlinear 

partial differential equation to linear partial differential equation, called 

determining equations. Moreover, the theory of groups has been applied quite 

extensively in recent times by several investigators in the field of similarity 

analysis. These methods received much impetus through the work of [96, 124-

127]. Sharma and Radha [96] used the Lie group method described in the works 



 

of [123, 124, 127] to establish the entire class of self-similar solutions for 

converging shocks in a relaxing gas. The method enables to characterize the 

medium for which the problem is invariant and admits self-similar solutions. A 

different approach has been described by Oliveri and Speciale [128] for unsteady 

equations of perfect gases and ideal magnetogasdynamic equations using 

substitution principles. Propagation of weak discontinuities in binary mixtures of 

ideal gas has been discussed by Barbera and Giambo [129]. Jena and Sharma 

[130] studied the problem of shock wave propagation through a dusty gas mixture 

obeying the EOS of Mie-Gruneisen type. 

Sharma and Radha [131], Pandey et al. [132] using Lie group theory studied 

symmetry analysis and obtained exact solutions for Euler equations of 

gasdynamics and magnetogasdynamic equations. Lie group transformations for 

self-similar shocks in a gas with dust particles have been discussed by Jena [133]. 

Raja Sekhar and Sharma [134] discussed the evolution of weak discontinuities in 

classical shallow water equations. Bira and Raja Sekhar [135] have applied to the 

problem of one dimensional unsteady simple flow of an isentropic, inviscid and 

perfectly conducting compressible fluid with the effect of transverse magnetic 

field by employing method of Lie-group analysis. 

Self-similar solution of shock wave in condensed matter generated by impulsive 

load with the medium described by the EOS of Mie-Gruneisen type have been 

studied by Anisimov and Kravchenko [79]. They found that similarity exponent 

depends on the EOS parameters. In this chapter, we employed the method of Lie 



 

group invariance under infinitesimal point transformations [123, 124, 127] to 

study the problem of the self-similar solution of converging spherical and 

cylindrical imploding shock waves near the centre of implosion. The flow 

assumes a self-similar character in a non-ideal gas satisfying the EOS of Mie-

Gruneisen type. Finite difference method is employed for the numerical solution 

of the governing equations. The similarity solution remains valid as long as the 

strong shock approximation is applicable across the shock wave. The one-

parameter infinitesimal group of transformations were used with great accuracy 

to predict the physical behavior of the strong converging spherical and cylindrical 

shock wave which is normally generated by the rapid release of energy from a 

centered source and the properties of the ambient gas into which the shock wave 

is expanding. It is assumed that the limiting motion will be self-similar as the 

wave converges to the center. The numerical technique employed to study the 

nature of shock dynamics through a non-ideal medium described by the EOS of 

Mie-Gruneisen type. In the present study of the problem is to obtain a self-similar 

solution of converging shock wave near the centre (axis) of implosion and to 

investigate the behavior of flow parameters immediately behind the shock front 

in condensed matter EOS for a physically meaningful range of Gruneisen 

parameters. 

 

 



 

8.2 Mathematical Formulation of Problem 

8.2.1 Governing equations 

We consider the problem of one-dimensional spherical and cylindrical 

converging strong shock wave propagating into non-ideal medium in the absence 

of gravity, magnetic field, radiation, and heat transfer. The equations of motion 

in Euler’s form [57, 92, 94]  

                      
𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝜌

𝜕𝑥
+ (𝑚 − 1)

𝜌𝑢

𝑥
= 0                                     (8.1) 

                      
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+

1

𝜌
(
𝜕𝑝

𝜕𝑥
+

𝜕𝑞

𝜕𝑥
) = 0                                                (8.2) 

                      
𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑥
− 𝑎2 (

𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑥
) = 0                                          (8.3) 

where 𝑎2 =
(𝛤+1)(𝑝+𝑞)

𝜌
 is the equilibrium speed of sound in viscous medium, 𝛤 is 

the Gruneisen coefficient, 𝑚 = 2 and 3 denote the cylindrical and spherical 

geometries of the shock wave. The physical quantities 𝜌(𝑥, 𝑡), 𝑢(𝑥, 𝑡), 𝑝(𝑥, 𝑡) 

and 𝑞(𝑥, 𝑡) are the density of the gas, gas velocity in the symmetry direction, 

pressure of the gas, artificial viscosity as functions of radial coordinate 𝑥 and time 

coordinate 𝑡 respectively. These physical quantities are evaluated at a radial 

distance 𝑥 from the center of symmetry for all times, 𝑡 is the time taken by the 

incident shock front to travel from the point of observation to the centre of the 

symmetry where it reaches at 𝑡 = 0. 



 

For the present problem, the form of 𝑞 is taken as [119], 

                              𝑞 =
1

2
𝐾2𝜌𝑥2 𝜕𝑢

𝜕𝑥
(|

𝜕𝑢

𝜕𝑥
| −

𝜕𝑢

𝜕𝑥
)                                            (8.4) 

where 𝐾 is a constant parameter, whose value is conveniently adjusted in every 

numerical evaluation. 

The above expression (8.4) may be rewritten as 

                            𝑞 + 𝐾2𝜌𝑥2 (
𝜕𝑢

𝜕𝑥
)
2

= 0,   if 
𝜕𝑢

𝜕𝑥
< 0                                     

                            𝑞 = 0,   if  
𝜕𝑢

𝜕𝑥
> 0                                                              

where 
𝜕𝑢

𝜕𝑥
< 0 means the viscous effect is present in the flow filed comprises of 

transition flow field between the undisturbed medium and the shock front. The 

viscosity term is absent for the region 
𝜕𝑢

𝜕𝑥
> 0. 

The equations (8.1-8.3, 8.5) represent a set of four non-linear first order partial 

differential equations of hyperbolic type. Assuming strong shock and shock front 

radius from the center (axis) to be  𝑅𝑠(𝑡)  a power law can be defined as: 

                                        𝑅𝑠(𝑡) = 𝐴̃(−𝑡)𝛼                                                 (8.6) 

where 𝐴̃ is a dimensional constant whose dimensions are obtained by the 

unknown dimensionless number 𝛼 called as similarity exponent which 

determines the strength of convergence or equivalently the curvature of the 

(𝑥 − 𝑡) trajectory. Similarity exponent 𝛼 is calculated numerically. 

(8.5) 

 



 

8.2.2 Condensed matter EOS of Mie-Gruneisen model 

Equation of state (EOS) describes fundamental thermodynamic properties of 

matter on its microscopic internal structure. The EOS gives the all the properties 

of materials in terms of pressure, volume, and energy (or temperature). However, 

when the gas flow takes place at a high temperature and density is sufficiently 

low the assumption that the ideal gas is no longer valid. At high temperature, gas 

is likely to be ionized and non-ideal gas assumption is significant for the present 

converging shock waves problem. The volumetric fraction of the condensed 

matter in the mixture at a considered state (𝜌, 𝑇) is given by 

                                        𝑍 = 𝑍0
𝜌

𝜌0
                                                               (8.7) 

where 𝑍0 represents the corresponding value at the reference state and it is 

completely determined by the condensed matter parameters 𝑘𝑐 and 𝛤0 

respectively as follows 

                                        𝛧0 = 1 − 𝑘𝑐                                                          (8.8) 

Assuming, the medium to characterize the equation of state (EOS) of Mie-

Gruneisen type [57] under equilibrium condition as 

                                                     𝑝 = 𝜌𝑒 (
𝛤−1

1−𝑍
)                                          (8.9) 

where 𝑒 is the specific internal energy of the mixture per unit volume of mass and 

𝛤 is the Gruneisen coefficient which is assumed to be dependent on specific 



 

volume only and it is obtained experimentally under normal conditions. Equation 

(8.9) describes the material behavior during the shock compression. Here, the 

Gruneisen coefficient for condensed matter can be defined as: 

                                                 𝛤 =
𝑍0𝛤0

(𝑍0+𝛤0)𝑉𝑍0−𝛤0
                                         (8.10) 

If we take the values of 𝑘𝑐 = 1.298, 𝛤0 = 1.017 and 𝑘𝑐 = 1.42, 𝛤0 = 2.12 (Neal 

[136]) in the equation (8.10) then we obtain two condensed matter EOS. 

The internal energy of the mixture is related to the internal energy of the 

condensed matter and the internal energy of the perfect gas can be written as 

                           𝑒 = 𝑐𝑣𝑚𝑇 = [𝑘𝑐𝑐𝑠𝑐 + (1 − 𝑘𝑐)𝑐𝑣]𝑇                                (8.11) 

where 𝑐𝑠𝑐 is the specific heat of the materials in condensed matter, 𝑐𝑣 is the 

specific heat of the gas at constant volume, 𝑐𝑣𝑚 is the specific heat of the mixture 

at constant volume. For the equilibrium condition, the specific heat of the mixture 

at constant pressure is  

                                      𝑐𝑝𝑚 = [𝑘𝑐𝑐𝑠𝑐 + (1 − 𝑘𝑐)𝑐𝑝]                                (8.12) 

where 𝑘𝑐 is the mass concentration of the condensed material in the mixture taken 

as a constant in the whole flow field, 𝑐𝑝 is the specific heat of the gas at constant 

pressure. 



 

The incompressibility assumption of the condensed matter implies equality of the 

specific heat of the materials in condensed matter and specific heats of the gas at 

constant volume, pressure respectively as follows 

                                    𝑐𝑠𝑐 = 𝑐𝑣 = 𝑐𝑝,    when 𝛧0 = 0                               (8.13) 

The ratio of the specific heat of the mixture is then 

                                              𝛤0 =
𝑐𝑝𝑚

𝑐𝑣𝑚
                                                       (8.14) 

The Gruneisen coefficient for a perfect gas is a constant and is equal to 𝛾 when 

𝑍0 = 0, where 𝛾 = (𝑐𝑝/𝑐𝑣) is the ratio of the specific heats of the perfect gas.  

8.2.3 Boundary conditions 

The boundary conditions due to Rankine-Hugoniot jump conditions connecting 

the states ahead of and behind the shock front for a strong shock wave are  

                                         𝑢1 = (1 −
𝜌

𝜌0
)𝑋1̇                                             (8.15) 

                                         𝑝1 − 𝑝0 = 𝜌0𝑢1𝑋1̇                                           (8.16) 

                                         𝑒1 − 𝑒0 = 𝑢1
2 +

𝑝0

𝜌1
(1 −

𝜌0

𝜌1
)                           (8.17) 

where 𝑋1̇ =
𝑑𝑅𝑠(𝑡)

𝑑𝑡
 denotes the shock velocity and the subscript 1 and 0 refers the 

values of flow parameters immediately behind (shocked region) and ahead 

(unshocked region) of the shock front respectively and dot denotes differentiation 



 

with respect to time. The gas is assumed to be in thermodynamic equilibrium and 

radiation effects to the energy and pressure are negligible.  

The strong shock compression process is characterized by the Rankine-Hugoniot 

jump relations, then the strong shock conditions for the present problem can be 

written as  

                                          𝑢1 = (1 − 𝛽)𝑋1̇                                                (8.18) 

                                          𝑝1 = (1 − 𝛽)𝜌0𝑋1̇
2
                                          (8.19) 

                                          𝑒1 = 𝑝1(1 − 𝛽)/(2𝜌0)                                     (8.20) 

                                          𝜌1 = (𝜌0/𝛽)                                                     (8.21) 

                                          𝑍1 = (𝑍0/𝛽 )                                                    (8.22)  

Equations (8.15-8.17) relate the thermodynamic state variables on each side of 

the propagating discontinuity but they do not describe the way the material 

changes from the initial to final sate. Using the strong Rankine-Hugoniot jump 

shock conditions (8.18-8.22), equation (8.9) can be simplified for the shock 

density ratio across a shock wave as 

                                      (𝛽 − 1)𝛤(𝛽) = 2                                                 (8.23) 

where 𝛽 is the shock density ratio and it is obtained from the solution of the 

equation (8.23). This ratio depends on the characteristics of the implosion such 



 

as the shell adiabatic, in general 𝛽 > 1. However, the shock efficiency increases 

if 𝛽 decreases. 

Rankine-Hugoniot conditions are independent of the amount and form of the 

dissipation, provided that 𝑞 → 0 as 𝑥 → ±∞. Because the R-H equations are 

direct consequence of the conservation laws. The governing equations of the flow 

require that in a shock a certain amount of mechanical energy is converted 

irreversibly into heat. Thus, we have the initial and final values of artificial 

viscosity term given by 

                                 𝑢 → 𝑢0,   𝑝 → 𝑝0,   𝑞 → 0   as 𝑥 → −∞                    (8.24) 

                                 𝑢 → 𝑢1,   𝑝 → 𝑝1,   𝑞 → 0   as 𝑥 → +∞                    (8.25) 

8.3 Similarity Analysis by Invariance Groups 

The objective of Lie group theory of symmetry analysis of differential equations 

relies on the invariance of the latter under a transformation of independent and 

dependent variables. These are called local Lie point symmetries. Since, the 

system of equations (8.1-8.3, 8.5) contain a set of quasilinear hyperbolic partial 

differential equations and it is usually difficult to solve, as the equations are 

highly non-linear, in general, to determine a solution without approximations. 

Here, we assume that there exists a solution of system of equations (8.1-8.3, 8.5) 

subject to boundary conditions (8.15-8.17) along a family of curves, called 

similarity curves, for which system of equations (8.1-8.3, 8.5) of partial 



 

differential equations reduces to a system of ordinary differential equations; this 

type of solution is called a similarity solution. In order to obtain the similarity 

solutions of system (8.1-8.3, 8.5), we derive its symmetry group such that the 

system is invariant under this group of transformations, so that the mathematical 

problem of solving the equations in certain cases allows to find analytic solutions. 

We consider a one-parameter infinitesimal group of transformations with 

independent variables 𝑥, 𝑡 and dependent variables 𝜌, 𝑢, 𝑝, 𝑞 as [96, 97, 131] 

          𝑥∗ = 𝑥 + 𝜀𝜒(𝑥, 𝑡, 𝜌, 𝑢, 𝑝, 𝑞),     𝑡∗ = 𝑡 + 𝜀𝜓(𝑥, 𝑡, 𝜌, 𝑢, 𝑝, 𝑞),  

          𝜌∗ = 𝜌 + 𝜀𝑉(𝑥, 𝑡, 𝜌, 𝑢, 𝑝, 𝑞),     𝑢∗ = 𝑢 + 𝜀𝑈(𝑥, 𝑡, 𝜌, 𝑢, 𝑝, 𝑞),    

          𝑝∗ = 𝑝 + 𝜀𝑃(𝑥, 𝑡, 𝜌, 𝑢, 𝑝, 𝑞),     𝑞∗ = 𝑞 + 𝜀𝐺(𝑥, 𝑡, 𝜌, 𝑢, 𝑝, 𝑞) 

where the generators 𝜒, 𝜓, 𝑉, 𝑈, 𝑃 and 𝐺 are functions of 𝑡, 𝑥, 𝜌, 𝑢, 𝑝 and 𝑞 

which are to be determined in such a way that system of equations (8.1-8.3, 8.5) 

of non-linear partial differential equations together with conditions (8.15-8.17) is 

invariant with respect to transformations (8.26). The group parameter 𝜀 is so small 

such that its square and higher powers may be neglected. The existence of such a 

group allows the number of independent variables in the problem to be reduced 

by one, and thereby allowing the system of equations (8.1-8.3, 8.5) to be replaced 

by a system of ordinary differential equations. 

For convenience, we introduce the notation 𝑥1 = 𝑡, 𝑥2 = 𝑥, 𝑤1 = 𝜌, 𝑤2 = 𝑢, 

𝑤3 = 𝑝, 𝑤4 = 𝑞 and 𝑝𝑙
𝑘 =

𝜕𝑤𝑘

𝜕𝑥𝑙
, where 𝑘 = 1, 2 , 3, 4 and 𝑙 = 1, 2. 

(8.26) 



 

Thus the governing equations (8.1-8.3, 8.5) can be written as 

                             𝐹𝑠(𝑥𝑙 , 𝑤𝑘 , 𝑝𝑙
𝑘) = 0,   𝑠 = 1, 2, 3, 4                                (8.27) 

This is said to be constantly conformally invariant under the infinitesimal group 

(8.26), if there exist constants 𝑑𝑠𝑟 (𝑠, 𝑟 = 1, 2, 3, 4) such that for all smooth 

surfaces 𝑤𝑘 = 𝑤𝑘(𝑥𝑙), we have 

                                                 ℒ𝐹𝑠 = 𝑑𝑠𝑟𝐹𝑟                                              (8.28) 

where ℒ is the Lie derivative in the direction of the extended vector field which 

arise naturally in the context of fluid flow. 

                                     ℒ = 𝜉𝑙 𝜕

𝜕𝑥𝑙
+ 𝜂𝑘 𝜕

𝜕𝑢𝑘
+ 𝜙𝑙

𝑘 𝜕

𝜕𝑝𝑙
𝑘                               (8.29) 

with 

                 𝜉1 = 𝜓,     𝜉2 = 𝜒,     𝜂1 = 𝑉,     𝜂2 = 𝑈,     𝜂3 = 𝑃,     𝜂4 = 𝐺 

and 

                           𝜙𝑙
𝑘 =

𝜕𝜂𝑘

𝜕𝑥𝑙
+

𝜕𝜂𝑘

𝜕𝑤𝑠
𝑝𝑙

𝑠 −
𝜕𝜉𝑗

𝜕𝑥𝑙
𝑝𝑗

𝑘 −
𝜕𝜉𝑗

𝜕𝑥𝑛
𝑝𝑗

𝑘𝑝𝑙
𝑛                      (8.30) 

where 𝑗 = 1, 2, 𝑙 = 1, 2, 𝑘 = 1, 2, 3, 4, 𝑛 = 1, 2, 3, 4 and 𝑠 = 1, 2, 3, 4. Here, 

repeated indices imply summation convention and 𝜙𝑙
𝑘 are the generators of the 

derivative transformations. 

Along with the equations (8.29) and (8.30), equation (8.28) can be rewritten as 

follows 



 

     𝜉𝑙 𝜕𝐹𝑠

𝜕𝑥𝑙
+ 𝜂𝑘 𝜕𝐹𝑠

𝜕𝑢𝑘
+ 𝜙𝑙

𝑘 𝜕𝐹𝑠

𝜕𝑝𝑙
𝑘 = 𝑑𝑠𝑟𝐹𝑟 ,   𝑠 = 1, 2, 3, 4 and 𝑟 = 1, 2, 3, 4    (8.31)                 

Substituting the equation (8.30) into the equation (8.31) yields a polynomial in 

terms of 𝑝𝑙
𝑘. Equating the coefficients of partial derivatives 𝑝𝑙

𝑘 and 𝑝𝑙
𝑘𝑝𝑗

𝑠 to zero 

gives an overdetermined  system of first order, linear partial differential equations 

in the generators 𝜓, 𝑉, 𝑈, 𝑃 and 𝐺 whose integration leads to the infinitesimals 

of the group. This system is called the system of determining equations and is, 

𝑉𝑡 + 𝑢𝑉𝑥 + 𝜌𝑈𝑥 +
(𝑚 − 1)

𝑥
[𝜌𝑈 + 𝑢𝑉 −

𝜌𝑢𝜒

𝑥
] = 𝑑11

(𝑚 − 1)𝜌𝑢

𝑥
+ 𝑑14𝑞 

      𝑉𝜌 − 𝜓𝑡 − 𝑢𝜓𝑥 +
(𝑚−1)𝑢𝜓

𝑥
= 𝑑11 − 𝑎2𝑑13                                                         

      𝑉𝑢 − 𝜌𝜓𝑥 +
(𝑚−1)𝜌𝜓

𝑥
= 𝑑12                                                     

      𝑉𝑝 = 𝑑13                                                                          

      𝑉𝑞 = 0  

      𝑈 − 𝜒𝑡 + 𝑢𝑉𝜌 − 𝑢𝜒𝑥 + 𝜌𝑈𝜌 +
(𝑚−1)𝑢𝜒

𝑥
= 𝑢(𝑑11−𝑎2𝑑13) 

      𝑉 + 𝑢𝑉𝑢 + 𝜌𝑈𝑢 − 𝜌𝜒𝑥 +
(𝑚−1)𝜌𝜒

𝑥
= 𝑑11𝜌 + 𝑑12𝑢 

      𝑢𝑉𝑝 + 𝜌𝑈𝑝 = 𝑑12𝜌
−1 + 𝑑13𝑢 

      𝑢𝑉𝑞 + 𝜌𝑈𝑞 = 𝜌−1𝑑12 

 

(8.32) 



 

          𝑈𝑡 + 𝑢𝑈𝑥 + 𝜌−1(𝑃𝑥 + 𝐺𝑥) = 𝑑21
(𝑚−1)𝜌𝑢

𝑥
 +𝑑24𝑞 

          𝑈𝜌 = 𝑑21 − 𝑎2𝑑23 

          𝑈𝑢 − 𝜓𝑡 − 𝑢𝜓𝑥 = 𝑑22                                                    

          𝑈𝑝 − 𝜌−1𝜓𝑥 = 𝑑23                                                         

          𝑈𝑞 − 𝜌−1𝜓𝑥 = 0  

          𝑢𝑈𝜌 + 𝜌−1(𝑃𝜌 + 𝐺𝜌) = 𝑢(𝑑21−𝑎2𝑑23) 

          𝑈 − 𝜒𝑡 + 𝑢(𝑈𝑢 − 𝜒𝑥) + 𝜌−1(𝑃𝑢 + 𝐺𝑢) = 𝑑21𝜌 + 𝑑22𝑢 

          𝑢𝑈𝑝  − 𝜌−2𝑉 + 𝜌−1(𝑃𝑝 + 𝐺𝑝 − 𝜒𝑥) = 𝑑22𝜌
−1 + 𝑑23𝑢 

          𝑢𝑈𝑞 − 𝜌−2𝑉 + 𝜌−1(𝑃𝑞 + 𝐺𝑞 − 𝜒𝑥) = 𝑑22𝜌
−1  

           

        𝑃𝑡 + 𝑢𝑃𝑥 − 𝑎2(𝑉𝑡 + 𝑢𝑉𝑥) = 𝑑31
(𝑚−1)𝜌𝑢

𝑥
+ 𝑑34𝑞 

𝜓𝛤𝑡 + 𝜒𝛤𝑥 + 𝑉𝛤𝜌 −
𝜌

𝑝 + 𝑞
𝑃𝜌 + (𝛤 + 1) [𝑉𝜌 − 𝜓𝑡 − 𝑢𝜓𝑥 −

𝑉

𝜌
+

𝑃

𝑝 + 𝑞
]

= (𝑎2𝑑33 − 𝑑31)
𝜌

𝑝 + 𝑞
 

        𝑃𝑢 − 𝑎2𝑉𝑢 = 𝑑32                                                             

        𝑃𝑝 − 𝑎2𝑉𝑝 − 𝜓𝑡 − 𝑢𝜓𝑥 = 𝑑33                                              

        𝑃𝑞 − 𝑎2𝑉𝑞 = 0  

(8.33) 

(8.34) 



 

𝜓𝛤𝑡 + 𝜒𝛤𝑥 + 𝑉𝛤𝜌 −
𝜌

𝑝 + 𝑞
𝑃𝜌 + (𝛤 + 1) [𝑢−1𝜒𝑡 − 𝜒𝑥 + 𝑉𝜌 −

𝑉

𝜌
+

𝑈

𝑢
+

𝑃

𝑝 + 𝑞
]

= 𝑢(𝑎2𝑑33 − 𝑑31)
𝜌

𝑝 + 𝑞
 

   𝑢𝑃𝑢 − 𝑎2𝑢𝑉𝑢 = 𝑑31𝜌 + 𝑑32𝑢 

   𝑈 − 𝜒𝑡 − 𝑎2𝑢𝑉𝑝 + 𝑢𝑃𝑝 − 𝑢𝜒𝑥 = 𝑑32𝜌
−1 + 𝑑33𝑢 

   𝑢𝑃𝑞 − 𝑎2𝑢𝑉𝑞 = 𝜌−1𝑑32 

 

                  𝐺 = 𝑑44𝑞 +
(𝑚−1)𝜌𝑢

𝑥
𝑑41  

                  𝑑41 − 𝑎2𝑑43 = 0  

                  𝑑42 = 0  

                  𝑑43 = 0                                                               

                  𝜓 = 0                                                                 

                  𝑢(𝑑41 − 𝑎2𝑑43) = 0  

                 2𝐾2𝜌𝑥2𝑈𝑥 = 𝜌𝑑41 + 𝑢𝑑42  

                 𝜌−1𝑑42 + 𝑢𝑑43 = 0  

                 𝜒 = 𝜌−1𝑑42  

(8.34) 

(8.35) 



 

The solution procedure of the above determining equations (8.32-8.35) is 

obtained by considering the following two cases: 

Case 1: For the region 
𝜕𝑢

𝜕𝑥
< 0, then it means that the viscous effect is present in 

the flow field comprises of transition flow field between the undisturbed medium 

and shock front. Then, the system of determining equations (8.35) is solved to 

obtain the group of transformations as follows: 

                                                           𝐺 = 𝑑44𝑞 

                                                           𝜓 = 0 

                                                           𝜒 = 0  

                                                           𝑈 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

where 𝑑44 is an arbitrary constant. 

Case 2: For the region 
𝜕𝑢

𝜕𝑥
> 0, then it means that the viscosity effect is absent in 

the flow filed. Then the viscosity term of the system (8.35) is zero (i.e., 𝐺 = 0 

when 𝑞 = 0) and the remaining system of determining equations (8.32-8.34) is 

solved to obtaining the group of transformations as follows 

                         𝑉 = (𝑑11 + 𝑏)𝜌 

                         𝑈 = (𝑑22 + 𝑏)𝑢,   if   𝑚 = 2, 3  

                         𝑃 = (2𝑑22 + 𝑑11 + 3𝑏)𝑝                                                                

(8.36) 

(8.37) 



 

                         𝜒 = (𝑑22 + 2𝑏)𝑥,   if   𝑚 = 2, 3 

                         𝜓 = 𝑏𝑡 + 𝑐  

where 𝑑11, 𝑑22, 𝑏 and 𝑐 are arbitrary constants. 

We note that the effect of generators 𝜓 and 𝜒 is negligible in the presence of 

viscosity irrespective of the time, space coordinates. The generator 𝐺 is 

proportional to the viscosity term 𝑞 but it is independent of time and space 

coordinates. Thus, the effect of generators 𝑉, 𝑈 and 𝑃 on viscosity is considerable 

so that density, velocity, and pressure vary appreciably over the mean free path 

in the flow field. Hence, the self-similar solution of present problem in the 

absence of viscosity by employing Lie-group analysis method is presented in the 

following section. 

8.4 Self-Similar Solutions 

The type of motion in which the distribution of flow variables remain similar to 

themselves with time and vary only as a result of changes in scale is called self-

similar. In this type of flow, all the flow variables describing motion i.e., density 

𝜌(𝑟, 𝑡), velocity 𝑢(𝑟, 𝑡), and pressure 𝑝(𝑟, 𝑡) do not depend on the radial 

coordinate 𝑥 and time coordinate 𝑡 independently but are the functions only of 

the combination 
𝑥

𝑡
. The change of variables from (𝑥, 𝑡) to (𝑥∗, 𝑡∗) defined as 𝑥∗ =

𝑥, 𝑡∗ = 𝑡 +
𝑐

𝑏
 does not change the governing equations (8.1-8.3); thus, rewriting 



 

the equations in system (8.37) in terms of the new variables 𝑥∗ and 𝑡∗, and then 

dropping the asterisk sign, we obtain 

                         𝑉 = (𝑑11 + 𝑏)𝜌 

                         𝑈 = (𝑑22 + 𝑏)𝑢,   if   𝑚 = 2, 3  

                         𝑃 = (2𝑑22 + 𝑑11 + 3𝑏)𝑝                                                                    

                         𝜒 = (𝑑22 + 2𝑏)𝑥,   if   𝑚 = 2, 3 

                         𝜓 = 𝑏𝑡 

However, the infinitesimals 𝑉, 𝑈 and 𝑃 in system (8.38) remain unchanged. To 

obtain the self-similar solutions, we use the invariant surface conditions, which 

yield 

            𝜓𝜌𝑡 + 𝜒𝜌𝑥 = 𝑉,     𝜓𝑢𝑡 + 𝜒𝑢𝑥 = 𝑈,     𝜓𝑝𝑡 + 𝜒𝑝𝑥 = 𝑃            (8.39) 

The characteristic equations, involving only independent variables 𝑥, 𝑡 to the 

corresponding set of equations (8.39) are  

                              
𝑑𝑡

𝑑𝜓
=

𝑑𝑥

𝑑𝜒
=

𝑑𝜌

𝑑𝑉
=

𝑑𝑢

𝑑𝑈
=

𝑑𝑝

𝑑𝑃
                                          (8.40) 

We integrate the above system of characteristic equations associated with 

transformations (8.38) to obtain the flow variables 𝜌, 𝑢 and 𝑝 in the following 

form: 

 

(8.38) 



 

                  𝜌 = 𝑡
(1+

𝑑11
𝑏

)
𝑉̂(𝜆)  

                  𝑢 = 𝑡𝛼−1𝑈̂(𝜆),   if   m = 2, 3                                        

                  𝑝 = 𝑡
(2𝛼−1+

𝑑11
𝑏

)
𝑃̂(𝜆)  

where 

     𝛼 =
𝑑22+2𝑏

𝑏
    

the functions 𝑉̂, 𝑈̂ and 𝑃̂ depend only on the dimensionless form of the similarity 

variable 𝜆, where 

                         𝜆 =
𝑥

𝑅𝑠(𝑡)
 ,   if   𝑚 = 2, 3                                           (8.42) 

The path of the piston is imposed as a boundary condition. Thereby, an 

accelerated, a decelerated, or a constant-velocity piston can be specified. The 

fluid velocities and the pressure in the ambient medium are assumed to be varying 

and obeying a power law. The density of the ambient medium is assumed to be 

constant. For shock to be a similarity curve, it may be normalized and 𝜆 = 1. The 

position of shock wave 𝑅𝑠(𝑡) and the shock velocity 𝑋1̇ are given by 

                              𝑅𝑠(𝑡) = 𝐴̃(−𝑡)𝛼 ,   if   𝑚 = 2, 3 

                              𝑋1̇ =
𝛼𝑅𝑠(𝑡)

𝑡
 ,   if   𝑚 = 2, 3 

Here 𝑡 is the time taken negative because the shock converges to the center (axis) 

of symmetry and time 𝑡 = 0 is taken to be at the instant of shock collapse. At 𝑡 = 

(8.43) 

(8.41) 



 

0 the shock front reaches the origin and at the immediate next instance, the 

information about collapse may not reach the far field and hence only the flow at 

𝑟 = 0 is immediately affected. This implies that for the solution at 𝑡 = 0 and for 

the similarity solution for 𝑡 > 0 the exponent 𝛼 in the similarity variable 𝜆 should 

be same as, before collapse. However, self-similarity requires the velocity of the 

shock and the velocity of the piston to be proportional to the power law equation 

(8.6) in time and the strong shock assumption. 

At the shock front 𝜆 = 1, we have the following conditions on the functions 𝑉̂, 𝑈̂ 

and 𝑃̂ 

                              𝜌 = 𝑡
(1+

𝑑11
𝑏

)
𝑉̂(1)  

                              𝑢 = 𝑡𝛼−1𝑈̂(1),   if   𝑚 = 2, 3                                 (8.44) 

                              𝑝 = 𝑡
(2𝛼−1+

𝑑11
𝑏

)
𝑃̂(1)  

If a one parameter group of transformations leaves invariant an equation and it is 

accompanying boundary conditions, then the number of variables can be reduced 

by one. Here, the self-similar motion of flow pattern takes the following form: 

      𝜌 = 𝜌0𝑉̂(𝜆),   𝑢 = 𝑋1̇𝑈̂(𝜆),   𝑝 = 𝜌0𝑋1̇
2
𝑃̂(𝜆),   𝑞 = 𝜌0𝑋1̇

2
𝐺̂(𝜆)  (8.45) 

where the quantities 𝑉̂, 𝑈̂, 𝑃̂ and 𝐺̂ are the unknown dimensionless functions of 

the similarity variable 𝜆 which can be defined as the ratio between radial distance 



 

𝑥 and shock wave position 𝑅𝑠(𝑡) at shock front from the center of axis. 

Mathematically, we write it as 

                                                   𝜆 =
𝑥

𝑅𝑠(𝑡)
                                                    (8.46) 

The dimensionless functions 𝑉̂, 𝑈̂, 𝑃̂ and 𝐺̂ appearing in the equation (8.45) are 

defined on 𝑡 ≤ 0, 0 ≤ 𝑥 ≤ 𝑅𝑠(𝑡) and 1 ≤ 𝜆 < ∞ and also may note that spherical 

or cylindrical converging shock front is positioned at 𝜆 = 1. Further it is for 

computational convenience we introduce another set of transformations along 

with above transformations (8.45) as, 

 𝑉∗(𝜆) = 𝑉̂(𝜆),   𝑈∗(𝜆) = 𝛼
𝑈̂(𝜆)

𝜆
 ,   𝑃∗(𝜆) = 𝛼2 𝑃̂(𝜆)

𝜆2
 ,   𝐺∗(𝜆) = 𝛼2 𝐺̂(𝜆)

𝜆2
  (8.47) 

with 𝑌∗(𝜆) =
𝑃∗(𝜆)

𝑉∗(𝜆)
 , 

where the quantities 𝑉∗, 𝑈∗, 𝑃∗ and 𝐺∗are new dimensionless functions for 

density, velocity, pressure, and viscosity respectively. The equations (8.46) and 

(8.47) are very useful when the shock front moves on a line of a constant 𝜆 under 

certain conditions. In a space-time domain close to the centre and near the instant 

of collapse this problem admits a similarity solution that describes the 

asymptotics of the phenomenon [137], which means that the solution depends 

only on the combination of 𝑥 and 𝑅𝑠(𝑡).  

With the aid of transformations (8.45) and (8.47), the governing Euler equations 

(8.1-8.3, 8.5) are reduced into a system of the four non-linear ordinary differential 



 

equations in 𝑉∗, 𝑈∗, 𝑃∗ and 𝐺∗ (which on dropping the asterisk sign) for the case 

of similarity solution: 

                              (𝑈 − 𝛼)
𝑑 𝑙𝑛 𝑉

𝑑 𝑙𝑛 𝜆
+

𝑑𝑈

𝑑 𝑙𝑛 𝜆
= −𝑚𝑈                                    (8.48) 

𝑌
𝑑 𝑙𝑛 𝑉

𝑑 𝑙𝑛 𝜆
+ (𝑈 − 𝛼)

𝑑𝑈

𝑑 𝑙𝑛 𝜆
+

𝑑𝑌

𝑑 𝑙𝑛 𝜆
+

1

𝑉

𝑑𝐺

𝑑 𝑙𝑛 𝜆
= − [2𝑌 + (𝑈 − 1)𝑈 +

2𝐺

𝑉
]    (8.49) 

                            
𝑑𝑌

𝑑 𝑙𝑛 𝜆
+ 𝛷

𝑑 𝑙𝑛 𝑉

𝑑 𝑙𝑛 𝜆
= −2 [

𝛼−1

𝑈−𝛼
+ 1]𝑌                                (8.50) 

                            
𝑑𝑈

𝑑 𝑙𝑛 𝜆
+ 𝑈 =

(−1)1/2

𝐾(𝑉 𝐺⁄ )
1/2                                                    (8.51) 

where 

             𝛷 = 𝑌 [(1 − 𝛤) −
𝛤/𝑉

(𝛤−1)
] −

(𝛤−1)𝐺

𝑉
                                              (8.52) 

The transformed boundary conditions for the strong shock with 𝜆 = 1 are                                    

    𝑉(1) =
1

𝛽
 ,   𝑈(1) = (1 − 𝛽)𝛼 ,   𝑌(1) = 𝛽(1 − 𝛽)𝛼2,   𝐺(1) = 0  (8.53) 

8.5 Numerical Solution to Converging Shock Wave 

In this section, we present the numerical solution of problem based on finite 

difference approximations. Numerical calculations are performed to obtain the 

profiles of flow parameters behind the shock front and total computational work 

is performed using MATLAB.  

 



 

8.5.1 Replacing derivatives by finite differences 

The derivatives of non-dimensional density, velocity and pressure versus 

similarity coordinate are approximated with a first order forward difference 

approximation. The forward difference approximation of the derivatives for the 

system of equations (8.48-8.51) are defined as 

         
𝑑𝑉

𝑑𝜆
=

𝑉𝑖+1−𝑉𝑖

𝛥𝜆
 ,     

𝑑𝑈

𝑑𝜆
=

𝑈𝑖+1−𝑈𝑖

𝛥𝜆
 ,     

𝑑𝑌

𝑑𝜆
=

𝑌𝑖+1−𝑌𝑖

𝛥𝜆
 ,     

𝑑𝐺

𝑑𝜆
=

𝐺𝑖+1−𝐺𝑖

𝛥𝜆
       (8.54) 

Substituting these derivatives in equations (8.48-8.51) and after simplifying result 

in a system of algebraic equations,  

      (𝑈𝑖 − 𝛼)𝑉𝑖+1 + 𝑉𝑖𝑈𝑖+1 = (2 −
𝑚ℎ

𝜆𝑖
)𝑈𝑖𝑉𝑖 − 𝛼𝑉𝑖                                    (8.55) 

𝑌𝑖𝑉𝑖+1 + (𝑈𝑖 − 𝛼)𝑉𝑖𝑈𝑖+1 + 𝑉𝑖𝑌𝑖+1 + 𝐺𝑖+1 = 2(1 −
ℎ

𝜆𝑖
) 𝑌𝑖𝑉𝑖 +

{(𝑈𝑖 − 𝛼) −
ℎ

𝜆𝑖
(𝑈𝑖 − 1)}𝑈𝑖𝑉𝑖 + (1 −

2ℎ

𝜆𝑖
) 𝐺𝑖         

                                                                                                      (8.56) 

      𝛷𝑖𝑉𝑖+1 + 𝑉𝑖𝑌𝑖+1 = [1 −
2ℎ

𝜆𝑖
(

𝑈𝑖−1

𝑈𝑖−𝛼
)] 𝑉𝑖𝑌𝑖 + 𝛷𝑖𝑉𝑖                                  (8.57) 

      𝑈𝑖+1 = (1 −
ℎ

𝜆𝑖
)𝑈𝑖 +

(−1)1/2ℎ

𝜉𝑖𝐾(
𝑉𝑖
𝐺𝑖

)
1/2                                                            (8.58) 

where 

      𝛷𝑖 = 𝑌𝑖 [(1 − 𝛤𝑖) −
𝛤𝑖

/𝑉𝑖

(𝛤𝑖−1)
] −

(𝛤𝑖−1)𝐺𝑖

𝑉𝑖
                                                  (8.59) 



 

These equations can be written in the matrix form as follows 

                                    [𝐴𝑖 ][𝑋𝑖+1 ] = [𝐵𝑖]                                                      (8.60) 

where [𝐴𝑖 ], [𝑋𝑖+1 ] and [𝐵𝑖] are 4x4, 4x1and 4x1 matrices respectively. 

                    [𝐴𝑖 ] = [

(𝑈𝑖 − 𝛼)
𝑌𝑖

𝛷𝑖

0

     

𝑉𝑖

(𝑈𝑖 − 𝛼)𝑉𝑖

0
1

      

0
𝑉𝑖

𝑉𝑖

0

     

0
1
0
0

]                               (8.61) 

                    [𝑋𝑖+1 ] = [𝑉𝑖+1 𝑈𝑖+1 𝑌𝑖+1     𝐺𝑖+1]
𝑇                                    (8.62)  

  [𝐵𝑖] =

[
 
 
 
 
 
 
 (2 −

𝑚ℎ

𝜆𝑖
)𝑈𝑖𝑉𝑖 − 𝛼𝑉𝑖

2 (1 −
ℎ

𝜆𝑖
) 𝑌𝑖𝑉𝑖 + {(𝑈𝑖 − 𝛼) −

ℎ

𝜆𝑖
(𝑈𝑖 − 1)}𝑈𝑖𝑉𝑖 + (1 −

2ℎ

𝜆𝑖
)𝐺𝑖

{1 − 2
ℎ

𝜆𝑖

(𝑈𝑖−1)

(𝑈𝑖−𝛼)
} 𝑉𝑖𝑌𝑖 + 𝛷𝑖𝑉𝑖

(1 −
ℎ

𝜆𝑖
)𝑈𝑖 +

(−1)1/2ℎ

𝜆𝑖𝐾(
𝑉𝑖

𝐺𝑖
⁄ )

1/2

]
 
 
 
 
 
 
 

  (8.63)      

Employing Crout’s reduction method [93] the system of equations (8.60) are 

solved for flow variables such as density 𝑉𝑖+1, velocity 𝑈𝑖+1, pressure 𝑌𝑖+1, and 

viscosity 𝐺𝑖+1 respectively:                                                         

              𝑉𝑖+1 = 𝑃𝑖 −
𝑉𝑖

(𝑈𝑖−𝛼)
𝑄𝑖 +

𝑉𝑖

[(𝑈𝑖−𝛼)2−𝑌𝑖]
𝑅𝑖 +

1

[(𝑈𝑖−𝛼)2+𝛷𝑖−𝑌𝑖]
𝑆𝑖            (8.64) 

              𝑈𝑖+1 = 𝑄𝑖 −
(𝑈𝑖−𝛼)

[(𝑈𝑖−𝛼)2−𝑌𝑖]
𝑅𝑖 −

(𝑈𝑖−𝛼)

[(𝑈𝑖−𝛼)2+𝛷𝑖−𝑌𝑖]𝑉𝑖
𝑆𝑖                          (8.65)                                                  

              𝑌𝑖+1 = 𝑅𝑖 −
𝛷𝑖

[(𝑈𝑖−𝛼)2+𝛷𝑖−𝑌𝑖]𝑉𝑖
𝑆𝑖                                                      (8.66) 

              𝐺𝑖+1 = 𝑆𝑖                                                                                        (8.67) 



 

     where 

                   𝑃𝑖 =
(𝐵11)(𝑖)

(𝑈𝑖−𝛼)
                                                                                (8.68)                             

                   𝑄𝑖 =
[(𝑈𝑖−𝛼)(𝐵21)(𝑖)−𝑌𝑖(𝐵11)(𝑖)]

[(𝑈𝑖−𝛼)2−𝑌𝑖]𝑉𝑖
                                                     (8.69) 

                   𝑅𝑖 =
[{(𝐵21)(𝑖)−(𝑈𝑖−𝛼)(𝐵11)(𝑖)}𝛷𝑖+{(𝑈𝑖−𝛼)2−𝑌𝑖}(𝐵31)(𝑖)]

[(𝑈𝑖−𝛼)2+𝛷𝑖−𝑌𝑖]𝑉𝑖
                    (8.70) 

   𝑆𝑖 = [
(𝛷𝑖−𝑌𝑖)

(𝑈𝑖−𝛼)
] (𝐵11)

(𝑖) + (𝐵21)
(𝑖) − (𝐵31)

(𝑖) − 𝑉𝑖
[(𝑈𝑖−𝛼)2+𝛷𝑖−𝑌𝑖]

(𝑈𝑖−𝛼)
(𝐵41)

(𝑖)   

              (8.71) 

where the subscript 𝑖 represents reduced density, velocity, and pressure at the 

current reduced distance step, whereas (𝑖 + 1) represents the new (future) 

reduced density, velocity, and pressure and it is a positive integer. Numerical 

solution of system of equations (8.64-8.67) along with boundary conditions (8.53) 

are obtained for a step size of ℎ = 10−4. 

8.6 Analysis for System of Equations (8.48-8.50) without Viscosity 

In this section, we described the evaluation of the similarity exponent 𝛼 appearing 

in the system of equations (8.48-8.50). It is observed that the similarity variable 

𝜆 appears in the equations (8.48-8.50) only through the logarithmic derivatives. 

Similarly, one of the unknown dimensionless function 𝑉 appears only through 

the differential 𝑑 𝑙𝑛 𝑉. This property of system of equations (8.48-8.50) which is 



 

characteristic of all self-similar motions, permits the reduction of the system of 

three differential equations into a single differential equation in 𝑈 and 𝑌.  

The equations (8.48-8.50) are represented in matrix form as: 

                                        𝐶𝑊 = 𝐷                                                            (8.72) 

where 𝑊 = [
𝑑𝑈

𝑑 𝑙𝑛 𝜆
,
𝑑 𝑙𝑛 𝑉

𝑑 𝑙𝑛 𝜆
,

𝑑𝑌

𝑑 𝑙𝑛 𝜆
]
𝑇
and the matrix 𝐶 and the column vector 𝐷 can be 

read by inspection from the system of equations (8.48-8.50). It is noted that the 

unknown parameter i.e., similarity exponent 𝛼 appearing in system of equations 

(8.48-8.50) is obtained only by solving as an Eigen value problem but not from 

dimensional analysis or from energy balance for a system of differential equations 

(8.48-8.50). 

Solving the matrix equation (8.72) for derivatives using phase plane analysis 

method [7, 15, 57] these derivatives in matrix form (8.60) can be written into the 

following form:                                   

                     
𝑑𝑈

𝑑 𝑙𝑛 𝜆
=

𝛥1

𝛥
 ,     

𝑑 𝑙𝑛 𝑉

𝑑 𝑙𝑛 𝜆
=

𝛥2

𝛥
 ,     

𝑑𝑌

𝑑 𝑙𝑛 𝜆
=

𝛥3

𝛥
                               (8.73) 

where 𝛥, defined as the determinant of the non-singular matrix 𝐶 and 𝛥𝑟 (𝑟 = 1, 

2, 3) are the determinants obtained from 𝛥 by replacing the rth column by the 

column vector D which are given by 

  𝛥 = (𝑈 − 𝛼)2 − 𝑌[1 − 𝛷(𝑉)]                                                              (8.74) 

  𝛥1 = 𝑚𝑈𝑌[1 − 𝛷(𝑉)] − 2𝑌(1 − 𝛼) − 𝑈(𝑈 − 1)(𝑈 − 𝛼)                  (8.75) 

  𝛥2 = 𝑈(𝑈 − 1) + 2
(1−𝛼)

(𝑈−𝛼)
𝑌 − 𝑚𝑈(𝑈 − 𝛼)                                          (8.76) 



 

  𝛥3 = 2
𝑌2(𝑈−1)

(𝑈−𝛼)
− {𝑈(𝑈 − 1) + 2𝑌 + 𝑚𝑈(𝑈 − 𝛼)}𝑌𝛷(𝑉) − 2𝑌(𝑈 − 1)(𝑈 − 𝛼)                

                                                                                                                 (8.77) 

The coefficients of the derivatives of the system of equations (8.48-8.50) depend 

on 𝑉, 𝑈 and 𝑌. The determinants 𝛥, 𝛥1, 𝛥2 and 𝛥3 are functions of 𝑉, 𝑈 and 𝑌. 

The right-hand side equations (8.48-8.50) depend only on 𝑈 and 𝑌 and do not 

depend on 𝑉 and 𝜆. By assuming [1 − 𝛷(𝑉)] = 𝑘𝑐 where the constant 𝑘𝑐 [136]. 

The system of equations (8.48-8.50) and the determinants 𝛥, 𝛥1, 𝛥2 and 𝛥3 are 

functions of 𝑈 and 𝑌 only. Now, it is possible to reduce the system (8.73) to the 

autonomous first-order differential equation for 𝑍 with respect to 𝑈. Dividing the 

third equation of system (8.73) by the first, we obtain the following first-order 

ordinary differential equation 

                                             
𝑑𝑌

𝑑𝑈
=

∆3(𝑌,𝑈)

∆1(𝑌,𝑈)
                                               (8.78) 

Evaluation of 𝑌(𝑈) from the equation (8.78) enables to determine 𝑈(𝜆) using the 

first equation in system (8.73). Finally 𝑉(𝜆) is obtained by substituting 𝑈(𝜆) and 

𝑌(𝑈) into the second equation of system (8.73). The plane (𝑌, 𝑈) is called the 

phase plane. A solution of equation (8.74) is represented by an integral curve in 

the phase plane. The solution of a given self-similar problem characterized by the 

boundary conditions is represented in the phase plane by one or more pieces 

(adequately joined) of the appropriate integral curves which satisfy at their ends 

the boundary conditions. Any piece represents the solution in a certain domain of 

the independent variable. In order to determine which integral trajectory 



 

corresponds to a given problem (i.e. to its particular initial and boundary 

conditions) it is necessary to know the behavior of the solutions near the singular 

points of equation (8.78). The system of equations (8.48-8.50) are numerically 

integrated from 𝜆 = 1 (shock surface) to the infinity (𝜆 = ∞) in the converging 

phase, under the desired boundary conditions (8.53). The integration is terminated 

at the singular point such that all the integrated curves for the reduced quantities 

smoothly pass the singular point. Therefore only an appropriate value of 

similarity exponent 𝛼 satisfies this condition as the eigen value. The condition 

under which the integral curve 𝑌(𝑈) smoothly crosses the parabola, ∆ = 0 

determines the similarity exponent 𝛼, and the curve then monotonically 

converges to the origin in the (𝑈, 𝑌) plane 𝑌(∞) = 𝑈(∞) = 0. 

To evaluate the similarity exponent 𝛼 with corresponding known values of, 𝛤0, 

𝑘𝑐, 𝛽 and 𝛾, we choose a probable value of 𝛼 and integrate equations (8.73) from 

𝜆 = 1 to 𝜆 = ∞ at which 𝛥 vanishes and then compute the values of 𝑉, 𝑈, 𝑌 and 

𝛥1. By successive approximations, the value of 𝛼 is corrected in such a way that 

both the determinants 𝛥 and 𝛥1 vanish. The correct value of 𝛼 is determined by 

employing the one-parameter iterative procedure such that all the determinants ∆, 

∆1, ∆2 and ∆3 become zero simultaneously at the same value of 𝜆 (in the domain 

of interest 1 ≤ 𝜆 < ∞), which is the singular point of the system. For this correct 

value of 𝛼, we obtain the final non-singular solutions. This method of solution is 

eigen value problem of the second kind for shock waves. 



 

8.7 Results and Discussion 

The numerical computations of similarity exponent 𝛼 corresponding to the known 

values of parameters 𝛤0, 𝑘𝑐, 𝛽 and 𝛾 behind the shock front with cylindrical and 

spherical geometries for perfect gas, condensed matter EOS are summarized in 

Tables 8.1 and 8.2. The shock front propagates according to the power law 

equation (8.6) with the various values of similarity exponent 𝛼. 

In the numerical method, spatial grid of 4000 points and step size of 𝛥𝜆 = 10−4 

is employed. The behavior of shock velocity and pressure are shown in Figures 

8.1-8.8 for the two different kinds of condensed matter EOS such as aluminum 

(𝛤0 = 2.12, 𝑘𝑐 = 1.42), lithium (𝛤0 = 1.017, 𝑘𝑐 = 1.298). The numerical solution 

gives the rate of approach to the asymptotic solution as well as the dependence of 

the shock motion and flow profiles. 

Table 8.1: Selected results of the similarity exponent 𝛼 for perfect gas and the 

condensed matter EOS in the case of cylindrical geometry 

Perfect gas Condensed matter 

𝜸 𝜶 𝜞𝟎 𝒌𝒄 𝜷 𝜶 

 FDM Phase 

Plane 

Lazarus 

Values 

   FDM Phase Plane 

1.1 0.88499 0.885249 -      

1.4 0.83483 0.835323 0.8353231919 2.12 1.42 0.4571123 0.8677762652 0.681796988 

5/3 0.81555 0.815625 0.8156249014 1.017 1.298 0.2155141 0.9329767828 0.54385697 

3 0.77498 0.775667 0.7756666194      

 

 



 

Table 8.2: Selected results of the similarity exponent 𝛼 for perfect gas and the 

condensed matter EOS in the case of spherical geometry 

Perfect gas Condensed matter 

𝜸 𝜶 𝜞𝟎 𝒌𝒄 𝜷 𝜶 

 FDM Phase 

Plane 

Lazarus 

Values 

   FDM Phase Plane 

1.1 0.78667 0.795969 -      

1.4 0.70908 0.717174 0.717174501 2.12 1.42 0.4571123 0.7664353241 0.70864358 

5/3 0.68795 0.688377 0.6883768229 1.017 1.298 0.2155141 0.8743734604 0.71427626 

3 0.64286 0.636411 0.6364105940      

 

From the above Tables 8.1 and 8.2, it may be observed that for condensed matter 

EOS, the similarity exponent 𝛼 increases with an increase in any of the 

parameters 𝛤0, 𝑘𝑐 and 𝛽 for cylindrical geometry whereas in the case of spherical 

geometry it decreases with an increase in any of the parameters 𝛤0, 𝑘𝑐 and 𝛽. In 

the perfect gas EOS, similarity exponent 𝛼 decreases with an increase in the 

adiabatic exponent 𝛾 for both cylindrical and spherical geometry. This indicates 

that a decrease/increase of the similarity exponent 𝛼 is associated with an 

increase/decrease of measure of the shock strength 𝛽 and 𝛽 varies with change in 

𝛤0 and 𝑘𝑐. The numerical values of similarity exponent 𝛼 is in close agreement 

with Lazarus [51, 52] values for perfect gas EOS. 

In the absence of viscosity (𝐾 = 0), the behavior of particle velocity, pressure 

distributions versus reduced distance 𝜆 in both cylindrical, spherical symmetry 

for lithium, aluminum EOSs are shown in Figures 8.1 and 8.2. The velocity, 

pressure of fluid changes with reduced distance 𝜆 along the shock region in both 



 

the geometries. Lithium gas EOS is presented in Figures 8.1(a) and 8.1(b). It is 

observed from Figure 8.1(a) that the velocity distribution increases rapidly with 

an increase in reduced distance 𝜆 behind the shock front for cylindrical geometry, 

whereas in the case of spherical geometry it has similar behavior but velocity 

distribution has a lower values with an increasing values of reduced distance 𝜆. 

This means that the acceleration of gas particles (i.e., shock speed) is higher for 

cylindrical geometry than in case of spherical geometry. Moreover, shock 

dynamics is non-linear so that the velocity of shock depends on measure of shock 

strength 𝛽. The pressure distribution decreases with an increase in reduced 

distance 𝜆 for both cylindrical, spherical geometries. For the case of cylindrical 

geometry, in particular, we found that reflected shock appears in the pressure 

distribution behind the shock front after shock converges to the center, then it 

increases rapidly and finally decreases slowly as λ increases (Figure 8.1(b)). 

Moreover, in the case of a cylindrically converging shock wave the implosion 

effect can be observed with monotonic decrease in pressure profile at the shock 

front. 

The velocity, pressure distributions versus reduced distance 𝜆 in the case of 

aluminum gas EOS are shown in Figure 8.2. The velocity distribution is similar 

to Figure 8.1(a) (for cylindrical geometry) whereas in the case of spherical 

geometry it is just reverse effect as shown in Figure 8.2(a). From Figure 8.2(b), 

we observe that the pressure distribution decreases with increase in reduced 

distance 𝜆 behind the shock front and then decrease constantly as 𝜆 increases for 



 

both geometries. Also we found that there is no variation in pressure distribution 

behind the shock front. This means that decay of shock pressure is significantly 

lower. Since the mass concentration of the gas particles is finite, the pressure 

behind the shock front falls off rapidly due to rarefaction waves. These pressure 

profiles are similar of literature to those of Mitchell and Nellis [138] and Yadav 

[139]. 

The velocity, pressure distributions versus reduced distance 𝜆 in the presence of 

viscosity formalism (𝐾 ≠ 0) for lithium gas are shown in Figures 8.5 and 8.6. It 

is observed that the velocity, pressure distributions (for both cylindrical and 

spherical geometry) decreases with fixed values of viscosity parameter 𝐾. It is 

observed that flow distributions are high at the shock front, decrease gradually 

with increase in 𝜆 and become constant. It is important to note that the variation 

in flow distributions is more with an increasing values of viscosity parameter 𝐾. 

In particular, it is seen that velocity profiles are continuous and vary in direction 

(see Figures 8.1(a), 8.2(a), 8.5(a-b)). This means that artificial viscosity could 

distinguish between shock wave and adiabatic compression. Moreover, in the 

case of cylindrical geometry it is observed that pressure damping reduces by 

adding the value of artificial viscosity (𝐾 = 0.349) into the flow field during the 

convergence process. In particular, we observe that the EOS of the medium has 

effect on the flow variables. 



 

Figures 8.3 and 8.4 compare the particle velocity, pressure distributions versus 

reduced distance 𝜆 in the absence of viscosity (𝐾 = 0) for two different condensed 

materials such as lithium, aluminum respectively. From Figure 8.3, we observed 

that the velocity of gas particles rapidly increases with increase in 𝜆. Also found 

that the rate of acceleration (i.e., shock speed) is much faster in lithium gas than 

in aluminum gas for cylindrical geometry whereas in the case of spherical 

geometry the velocity distribution first falls at the shock front and then increases. 

This behavior is similar to that as shown in Figure 8.1 for a lithium gas. The 

velocity distribution decreases with an increasing values of  𝜆 in aluminum gas. 

From these figures, it may be noted that the particle acceleration decreases / 

increases with the increase/decrease of material density. Figures 8.4(a) and 8.4(b) 

shown that the pressure distribution decreases as increase in radial distance 𝜆 for 

cylindrical, spherical geometry respectively. However, the rate of decay is much 

faster in aluminum gas than in lithium gas due to the higher acoustic impedance 

of aluminum. The results of this investigation indicate that the crossing of the 

particles through the shock front strongly depends on the charge geometry, the 

charge size and the material density of the particles. The degree of shock-

compressed densities and pressures increases with the geometrical index 𝑚. 

Figures 8.7 and 8.8 depicts the velocity, pressure distributions (both cylindrical 

and spherical geometry) versus reduced distance 𝜆 in the presence of viscosity 

formalism (𝐾 ≠ 0) for aluminum gas. We observe a sharp rise in velocity, 



 

pressure distributions behind the shock front, between 𝜉 = 1 and 𝜉 = 2.0, and 

then decrease, further, become constant along the axis. It may be observed that 

variation in these peaks change with decrease in the values of viscosity parameter 

𝐾. High for the larger values of 𝐾 but for smaller values of 𝐾 not significant 

variation is observed. The variation in flow distributions with increase in 𝜆 is 

more significant for higher values of viscosity parameter 𝐾 for aluminum gas. 

The variation in flow distributions is more appreciable in the case of lithium gas 

than the aluminum gas with introduction of artificial viscosity parameter (𝐾 = 

0.000349, 0.00349, 0.0349 and 0.349). 
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Figure 8.1(a). Velocity profiles for condensed matter 

when 𝛤0 = 1.017, 𝑚 = 2, 3 and 𝐾 = 0  
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Figure 8.1(b). Pressure profiles for condensed matter 

when 𝛤0 = 1.017, 𝑚 = 2, 3 and 𝐾 = 0  
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Figure 8.2(a). Velocity profiles for condensed matter 

when 𝛤0 = 2.12, 𝑚 = 2, 3 and 𝐾 = 0  
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Figure 8.2(b). Pressure profiles for condensed matter 

when 𝛤0 = 2.12, 𝑚 = 2, 3 and 𝐾 = 0  
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Figure 8.3(a). Velocity profiles for different values of 

𝛤0, 𝑚 = 2 and 𝐾 = 0  
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Figure 8.3(b). Velocity profiles for different values of 

𝛤0, 𝑚 = 3 and 𝐾 = 0  
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Figure 8.4(a). Pressure profiles for different values of 

𝛤0, 𝑚 = 2 and 𝐾 = 0  
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Figure 8.4(b). Pressure profiles for different values of 

𝛤0, 𝑚 = 3 and 𝐾 = 0  



 

 

 

 

 

 

 

Figure 8.5(a). Velocity profiles for condensed matter 

when 𝛤0 = 1.017, 𝑚 = 2 and different values of 𝐾  



 

 

 

 

 

 

 

Figure 8.5(b). Velocity profiles for condensed matter 

when 𝛤0 = 1.017, 𝑚 = 3 and different values of 𝐾  



 

 

 

 

 

 

 

Figure 8.6(a). Pressure profiles for condensed matter 

when 𝛤0 = 1.017, 𝑚 = 2 and different values of 𝐾  



 

 

 

 

 

 

 

Figure 8.6(b). Pressure profiles for condensed matter 

when 𝛤0 = 1.017, 𝑚 = 3 and different values of 𝐾  



 

 

 

 

 

 

 

Figure 8.7(a). Velocity profiles for condensed matter 

when 𝛤0 = 2.12, 𝑚 = 2 and different values of 𝐾  



 

 

 

 

 

 

 

Figure 8.7(b). Pressure profiles for condensed matter 

when 𝛤0 = 2.12, 𝑚 = 2 and different values of 𝐾  



 

 

 

 

 

 

 

Figure 8.8(a). Velocity profiles for condensed matter 

when 𝛤0 = 2.12, 𝑚 = 3 and different values of 𝐾  



 

 

 

 

 

 

 

Figure 8.8(b). Pressure profiles for condensed matter 

when 𝛤0 = 2.12, 𝑚 = 3 and different values of 𝐾  



 

CONCLUSIONS 

The thesis entitled, “Self-Similar Solutions to Compressible Flow Problems”, 

comprises of eight chapters. Chapter-1 is introduction and chapter-2 is devoted 

to literature review. The shock is assumed to be strong and propagating into a 

non-ideal gas of Mie-Gruneisen EOS. In this thesis work we adopted the 

following techniques for the solution procedure. The similarity method, group 

invariance method, CCW method, finite difference method etc., the approximate 

analytical and numerical solutions for the self-similar flows behind strong shock 

waves are obtained. All the computational work is carried out using MATLAB. 

The effect of non-idealness of the equation of state, magnetic pressure, effect of 

viscosity etc., on the flow variables and the similarity exponent 𝛼 are discussed 

in detail.  

In chapter-3, similarity solutions to shock waves in non-ideal 

magnetogasdynamics is studied. In this problem, we used a method of self-similar 

solutions of second kind to obtain the numerical solution of the system of non-

linear ordinary differential equations and determine the similarity exponent. We 

employed two numerical techniques such as RK method and CCW method to 

compare the values of similarity exponent in both medium. It is observed that 

both RK and CCW methods produced a very good approximation for similarity 

exponents. We provided a description of flow pattern and numerical method 

employed to ensure the solution when integrating the system of equations passing 



 

through the singular points in the solution. It is observed that the effect of 

increasing values of magnetic field strength causes to decrease the values of 

velocity, pressure and magnetic pressure in dusty gas and condensed matter. It is 

observed that the density decreases with an increase in magnetic field strength for 

dusty gas flow, whereas in the case of condensed matter density increases with 

the effect of an increasing values of magnetic field strength. Also, we observed 

that the values of similarity exponent decreases with increasing values of 

magnetic field strength. This type of problems have applications in nuclear 

engineering, fusion research and other physical systems, involving non-linear 

hyperbolic partial differential equations.  

The chapter-4 is the study of numerical solution to strong cylindrical shock wave 

in the presence of magnetic field. A problem involving a cylindrical converging 

strong shock wave has been formulated with a gas of varying density obeying a 

power law and shock propagates through a medium characterized by a Mie-

Gruneisen EOS. The governing equations are non-dimensionalized using suitable 

similarity transformations. A finite difference scheme is employed to solve the 

system of non-linear differential equations. Crouts reduction technique is used to 

solve the system of algebraic equations. The nature of flow variables with the 

effect of magnetic field in the respective models of EOS is investigated.  

From the present study, we notice that the similarity exponent 𝛼 decreases with 

an increase in the values of 𝑀 and fixed 𝐶0 causes an increase in 𝛽 for dusty gas 



 

medium. In perfect gas similarity exponent 𝛼 decreases with decrease in 𝛽 with 

increasing values of 𝛾 and fixed 𝐶0. In case of Royce EOS the similarity exponent 

𝛼 decreases with an increasing values of 𝛤0 and fixed constant 𝑎 and 𝐶0 due to 

decrease in 𝛽. The decay of shock wave is more prominent and slower in the 

dusty gas EOS. The effect of magnetic field on flow variables is less pronounced 

for dusty gas particles, because of lower compression between the gas particles. 

We conclude that the less compressible medium has higher wave propagation 

speed. As shown in Figures 4.3-4.7, the approximate reduced density, velocity, 

pressure and magnetic pressure shows largest peaks to the right behind the shock 

front in Royce EOS, whereas in perfect gas flow variables have small peaks. This 

is due to fact that the effect of measure of shock strength 𝛽, which causes the 

change in 𝛼 and also effect of converging geometry or area of contraction of the 

shock wave. 

Considering system of partial differential equations describing a problem 

involving a cylindrical converging strong shock wave has been formulated with 

a gas of varying density obeying a power law and shock propagates through a 

medium characterized by a Mie-Gruneisen EOS. The governing equations are 

non-dimensionalized using suitable similarity transformations. A finite difference 

scheme is employed to solve the system of non-linear differential equations. 

Crouts reduction technique is used to solve the system of algebraic equations. The 



 

nature of flow variables with the effect of magnetic field in the respective models 

of EOS is investigated. 

From the present study, we notice that the similarity exponent 𝛼 decreases with 

an increase in the values of 𝑀 and fixed 𝐶0 causes an increase in 𝛽 for dusty gas 

medium. In perfect gas similarity exponent 𝛼 decreases with decrease in 𝛽 with 

increasing values of 𝛾 and fixed 𝐶0. In case of Royce EOS the similarity exponent 

𝛼 decreases with an increasing values of 𝛤0 and fixed 𝑎 and 𝐶0 due to decrease in 

β. The decay of shock wave is more prominent and slower in the dusty gas EOS. 

The effect of magnetic field on flow variables is less pronounced for dusty gas 

particles, because of lower compression between the gas particles. We conclude 

that the less compressible medium has higher wave propagation speed. As shown 

in Figures 3 - 7, the approximate reduced density, velocity, pressure and magnetic 

pressure shows largest peaks to the right behind the shock front in Royce EOS, 

whereas in perfect gas flow variables have small peaks. This is due to fact that 

the effect of measure of shock strength 𝛽, which causes the change in 𝛼 and also 

effect of converging geometry or area of contraction of the shock wave. The one 

dimensional unsteady cylindrical flow of an inviscid non-ideal gas with dust 

particles, we studied various aspects of non-linear wave propagation. The 

medium generated due to implosion is assumed to be of Mie-Gruneisen type with 

magnetic or non-magnetic in nature. Impulsive motion of the piston produces 

instantaneous unsteady shock which may grow or decay with time, depending on 



 

the condition of the undisturbed gas and the behaviour of the piston. The forms 

of these waves are altered by convection which distorts the wave form by causing 

the compression phase to move forward faster than the expansion phase. This 

results in the generation of a plasma with an infinite electrical conductivity and 

permeated by an axial magnetic field orthogonal to the trajectories of gas 

particles. Similarity solution to this problem is obtained numerically. The 

numerical solution presented provides a global solution to the implosion problem 

which is valid for a range of physically meaningful parameters. The computed 

values of the similarity exponent are in good agreement with those obtained using 

CCW method and are presented in tabular form. This approximation provides a 

quick and relatively accurate determination of the similarity exponent and 

stability of shocks in non-ideal gas. Also the numerical description of the flow 

field behind the wave front in a non-ideal magnetogasdynamics regime is 

presented. The effect of magnetic field strength on the flow parameters in a non-

ideal medium is presented. 

Chapter four is numerical solution to strong cylindrical shock wave in the 

presence of magnetic field. The medium generated due to implosion is assumed 

to be of Mie-Gruneisen type with or without magnetic material. In the implosion 

process plasma is assumed to be generated. The similarity exponent is obtained 

numerically by an iterative process. In this problem the mechanical properties of 

shock waves in the presence of strong magnetic field and the behavior of shock 



 

characteristics such as shock strength, shock density, shock speed, shock over 

pressure, and impulse are presented.  

In chapter five a model to determine the similarity solutions to the problem of gas 

dynamic flow under the influence of strong magnetic field is presented. The 

problem treated here involves distinct features: the global behavior of the physical 

parameters is studied; the initial pressure ratio is confined to a moderate value. 

The path of the piston is imposed as boundary condition. Thus an accelerated, a 

decelerated or a constant velocity piston can be specified. The numerical values 

of similarity exponents and profiles of flow variables are obtained. These are 

presented through the illustrative graphs and tables. The magnetic field effects on 

the flow variables through a medium and total energy under the influence of 

strong magnetic field are also presented. 

               In chapter six, spherically symmetric conservation equations are considered and 

similarity solution of spherical shock waves and effect of viscosity is studied. 

This problem is investigated to understand complete mechanism of shock wave 

which include, viscous terms and study the dissipation effects on the propagation 

of shock waves including viscosity under the effect of magnetic field. Also the 

study and confirmed the effect of (i) the non-idealness parameter and the viscosity 

parameters on the shock strength and the flow variables respectively (ii) effect of 

discontinuities of the physical parameters due to viscosity and (iii) complete flow 

field depending on the magnitude of the viscosity. We concluded from the 



 

introduction of artificial viscosity approach, the simplicity, high computational 

efficiency, dampening of oscillations in the flow profiles and the smoothness in 

the profiles. 

Chapter seven a model to study similarity solutions for the governing partial 

differential equations (PDEs) of one-dimensional unsteady motion of strong 

converging spherical and cylindrical shock wave with the effect of radiation. We 

studied the behavior of flow parameters such as density, velocity, pressure, and 

radiation flux for flow-field behind a strong converging cylindrical, spherical 

shock wave propagating through a non-ideal stellar medium in the presence of 

monochromatic radiation. The finite difference approximation method is 

employed in the solution process. The effects of various physical parameters such 

as non-idealness parameter (𝑏), Gruneisen parameter (𝛤0), as well as the specific 

heat ratio (𝛾) and material property (𝜎) on the flow variables are shown 

graphically. It is observed that increase in measure of shock strength 𝛽 (
𝜌

𝜌0
)  has 

effect on the shock front i.e., the velocity and pressure behind the shock front 

increases quickly in the presence of the monochromatic radiation and decreases 

gradually. We conclude from the above investigation (i) at the shock front 

discontinuity appeared in density profiles is subject to physical requirement that 

the radiation flux cannot change across it and the mean collision time of particles 

is proportional to the gas density and (ii) that effect of radiation from the volume 



 

of a gas becomes important at distances away from the initial point and it modifies 

the shock structure. 

In chapter eight, self-similar solution of shock wave in condensed matter 

generated by impulsive load with the medium described by the EOS of Mie-

Gruneisen type has been studied. The similarity exponent depends on the EOS 

parameters. In this work we employed the method of Lie group invariance under 

infinitesimal point transformations to study the problem of the self-similar 

solution of converging spherical and cylindrical imploding shock waves near the 

centre of implosion. The flow assumes a self-similar character in a non-ideal gas 

satisfying the equation of state (EOS) of Mie-Gruneisen type. Finite difference 

method is employed for the numerical solution of the governing equations. The 

similarity solution remains valid as long as the strong shock approximation is 

applicable across the shock wave. The one-parameter infinitesimal group of 

transformations were used with great accuracy to predict the physical behavior of 

the strong converging spherical and cylindrical shock wave which is normally 

generated by the rapid release of energy from a centered source and the properties 

of the ambient gas into which the shock wave is expanding. It is assumed that the 

limiting motion will be self-similar as the wave converges to the center. The 

numerical technique employed to study the nature of shock dynamics through a 

non-ideal medium described by the equation of state (EOS) of Mie-Gruneisen 

type. We obtained a self-similar solution of converging shock wave near the 



 

centre (axis) of implosion and investigated the behavior of flow parameters 

immediately behind the shock front in condensed matter EOS for a physically 

meaningful range of Gruneisen parameters. 

In the present study we have investigated self-similar solutions to the 

compressible flow problems in the non-ideal medium with and without magnetic 

effect.  The Lie group approach, effect of viscosity and the hypersonic flows for 

the non-ideal medium for the similarity solutions of EOS of different medium can 

be explored. The study of relativistic shock waves is another area of interest in 

the future.  

 

 

 

 

 

 

 

 

 

 



 

Future Scope of Work 

 

In the present study we have investigated self-similar solutions to the 

compressible flow problems in the non-ideal medium with and without magnetic 

effect.   

The future scope of work, 

The Lie group approach rather than similarity approach,  

Incorporating the effect of viscosity in the governing equations and investigating 

the flow behavior, 

Supersonic and hypersonic flows for the non-ideal of Mie-Gruneisen type of EOS 

of different medium, 

MHD fluids with plasma, 

Study of relativistic shock waves can be explored.  
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