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Abstract

In recent years, globally wind power development has been strongly supported by ad-

vent of newer computer based techniques for prediction, assessment, optimization and

forecasting. Although in recent years, accelerated wind power development has been

witnessed, much larger on-shore as well as off-shore wind power potential still remains

to be utilized. Wind power developers often rely on computer based models for speedy

generation of accurate and reliable estimates of wind resource and wind power genera-

tion at a wind farm site. Researchers have reported several efforts to develop applica-

tions of modern artificial intelligence based algorithms and software tools for simula-

tion of wind farms. In the present work, the focus is on applying artificial intelligence

techniques to predicting rate of growth of wind power generation capacity, estimating

characteristics of wind resource at a wind farm site, optimizing of position of wind tur-

bine in a wind farm and fore-casting wind power generated over short duration ranging

from few hours to few days. The developed techniques and results obtained provide

useful insight to wind power developers for re-assessment of wind resource at a site and

for re-powering of existing wind farms.

The thesis is presented in eight chapters. The introduction, survey of recent relevant

literature on wind resource assessment and wind farm layout, is followed by investiga-

tion of application of genetic algorithm in predicting increase in cumulative installed

wind power generation capacity on annual basis. The accuracy of the technique is es-

tablished with respect to actually recorded growth in installed capacity, in terms of root

mean square error (RMSE) of prediction. It is confirmed that accuracy of prediction

depends on volume of recorded data input. Next, use of genetic algorithm in obtaining

optimum values of shape (k) and scale parameters (c), required for defining character-

istic Weibull probabilistic distribution function at an existing wind farm site in Tamil

Nadu, a southern state of India, is demonstrated. Using the Weibull Distribution func-

tion for the site, the options for re-powering of the wind farm are explored by obtaining

estimates of variation of wind power potential with height above ground level and by

identifying new positions of wind turbine corresponding to maximum power genera-

tion. It is shown that use of genetic algorithm for obtaining refined values of the shape

parameter and scale parameter, improves accuracy of estimates of wind resource po-

tential and capacity factor significantly. The accuracy of results is measured in terms

of RMSE, computed with respect to actually recorded data. It is shown that genetic

algorithm based approach leads to estimation of wind resource with reduction in error



by about 12.24 %. Also, the estimated annual capacity factor for the wind farm is very

close to actually recorded capacity factor of 38.3 %. On the hand, it is shown that use

of WindSim, Metodyn and WindFarmer, the industry-scale software tools for determin-

ing capacity factors of the existing wind farm, tend to over-estimate the capacity factor.

Next, genetic algorithm based approach to determining optimum position of wind tur-

bine in a wind farm is developed. The approach allows designer to search optimum

positions of wind turbine corresponding to maximum power potential and minimum

wake effect. Also, using the WindFarmer software tool, new positions in the existing

wind farm for placing wind turbines in future are identified. An application of genetic

algorithm in conjunction with feed forward neural network is developed for predict-

ing power generation over short duration, ranging from few hours to few days. It is

confirmed that accuracy of prediction depends on both volume of past recorded data

as input and time scale for prediction. The thesis concludes with summary of results

obtained and future scope of work.

Keywords:
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Algorithm, Windographer, WindSim, Meteodyn, WindFarmer.
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Chapter 1

Introduction

Wind energy is the one of the most commercialized renewable energy sources. How-

ever, the increasing of renewable energy source, in particular, wind energy conversion

systems (WECS) in the conventional power system has posed tremendous challenges to

the power system operators and planners, responsible for reliable and secured operation

of the power grid. As power generation using WECS continues to increase manifolds

in future, several researchers have investigated effects of grid-integrated wind power

generating systems on overall stability of the power system.

It is noted in the literature [1] that wind speed, wind direction and wind wake have sig-

nificant effect on energy production in an operational wind farm at a given location. The

effect of terrain at the site and the wind farm layout are required to be known at the de-

sign stage. These requirements necessitate use of computer models for predicting or

forecasting the performance of wind farms. It is important to know the effect of these

factors on overall performance of wind farms in terms of power production for appro-

priate operation of grid-connected wind farms. The effect of these factors on available

wind resource in a given time interval can be investigated through statistical analy-

sis. The results of such analysis can often be useful in forecasting overall performance

of wind farm.

1
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Thus, there is emerging need to develop heuristic techniques using statistical approaches

for investigating the effects of these parameters on the available wind resource in a re-

gion of interest. Several researches have used heuristic techniques for developing sci-

ence and engineering applications including wind energy development. The present-

work focuses on using artificial intelligence techniques for improving accuracy and ef-

ficiency of conventional methods.

1.1 Application of Heuristic Techniques in Wind Power

Development

The conventional energy sources, including coal, fossil fuels and nuclear fuels, pro-

duce deleterious emissions and byproducts, which are unfriendly to the environment. It

is well known that use of these fuels for energy produces emissions such as airborne

particulate, carbon monoxide, hydrocarbons, hydrochloric acid, solid ash and waste,

ionizing radiation and trace elements that affect environment.

Renewable energy sources are known to provide solution to the aforementioned prob-

lems. Among the renewable energy sources, wind energy source has rapidly matured

as source for power generation. Wind energy has emerged as clean, affordable, inex-

haustible and environment friendly source of energy.

Wind power is harnessed by converting the kinetic energy in the wind to mechanical

energy and then to electrical energy. The blade of wind machines derives its rotational

energy from the kinetic energy of the wind and moves a prime mover involving gear

system thus converting the wind energy to mechanical energy. The shaft torque drives

a generator to produce electric power. It has been claimed that efficiency of conversion

of kinetic energy of wind to mechanical energy is reported as 59.3 % [2, 3].

As the wind power is proportional to the cube of wind speed, a detailed knowledge of the

site-specific wind characteristics becomes critically important. The actual power pro-

duction by grid-connected wind farm depends on wind speed and production hours. In
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a grid-connected wind farms, the power produced as well as quality of power must

comply with series of International Electro-technical Commission (IEC) standards [4].

As the penetration level of wind power in power systems increases, it becomes impor-

tant to predict the behavior of wind farms [5, 6]. The overall performance of the grid-

connected wind farm is required to be predicted in view of wide variation of different

factors such as wind speed, wind direction, wind wake etc. For this purpose heuristic

techniques such as artificial neural networks, genetic algorithm, particle swarm opti-

mization, are proposed to be used.

1.2 Challenges in Wind Power Generation

Globally installed capacity of wind power generation (WPG) has crossed 369553 MW [7].

In India, total installed capacity of 254 GW of electricity generation is recorded as

on 31 December 2014, consisted of about 31791 MW [8] from all renewable energy

sources and about 22465 MW from wind energy [9]. India ranks fifth in wind power

installed capacity, with China leading with installed wind power generation capacity of

114763 MW. Table 1.1 shows installed wind power generation capacity in five lead-

ing countries [7]. The wind-power programme in India was started at the end of the

Table 1.1. Installed capacity of wind power generation in leading countries as on
December 2014 [7]

S.No. Country Installed generation capacity (MW)
1 China 114763
2 USA 65879
3 Germany 39165
4 Spain 22987
5 India 22465

sixth five year plan, in 1983-84 by the Government of India. A market-oriented strategy

was adopted from inception, which has led to the successful commercial development

of the wind-power programme in India [10]. The programme includes wind resource

assessment, implementation of demonstration projects to create awareness, opening up
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of new sites, involvement of utilities and industry, development of infrastructure ca-

pability, installation, operation and maintenance of wind turbine generators and pol-

icy support. In early years, the wind resource assessment campaign was implemented

through the state nodal agencies by the field research unit of Indian Institute of Tropical

Meteorology (IITM-FRU), Bengaluru, India. Since 1998, Centre of Wind Energy Tech-

nology, CWET, Chennai, India has been conducting assessment of wind resources at

50 m height above ground level (AGL). CWET has also been conducting campaign for

WRA at 80 m height (AGL). Recently, CWET has been renamed as National Institute

of Wind Energy (NIWE).

In India, the installed capacity of wind power generation has reached 22465 MW at

the end of the year 2014, against the estimated wind power potential of 49130 MW at

50 m (AGL) [11]. The corresponding re-assessed wind power potential at 80 m (AGL)

is 102788 MW [11]. It is important to continue to re-assess available wind resource

at wind farms for various reasons including concurrent advancement in wind power

generation technology.

Several researchers have investigated a wide ranging concerns related to grid-integrated

WECS [12–15]. It is noted in literature that the knowledge of variation in dynamic

characteristics of wind resource at the site will be essential pre-requisite for developing

strategies to overcome and/ or prevent grid-failures. The grid-connected wind farm is

required to be monitored for its possible dependence on variable wind resource with

respect to variations in wind farm output, variations in real and reactive power flow

from / to grid, variations in output frequency and voltage.

Several researchers have attempted investigating effect of variation of wind speed at

a location. The effect of wind speed on active and reactive power in a grid-connected

WECS is investigated by Panda et al. [13]. Three different types such as constant, linear

and random changes of wind speeds are considered for this study. It is concluded that

active power generated by the wind turbine induction generators (WTIGs) depends on

wind speed and the reactive power consumption varies with the variation in active power

generation. Linh et al. and Melico et al. [14, 15] have investigated effect of variation

of wind speed on quality of wind power generated in terms of harmonics, flicker and
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voltage variations. Their results show that sudden variation in speed leads to increase

in the flicker emission and power variation, which in turn lead to grid instability.

Since wind power production is dependent on the wind speed, the output of a turbine and

wind farm varies over time under the influence of meteorological fluctuations. These

variations occur on all time scales: by seconds, minutes, hours, days, months, seasons

and years. Understanding and predicting these variations at a site is critically important

for successful integration of wind power into the power system. Thus researchers should

make efforts to develop improvised heuristic approaches using computer simulation

models to predict, forecast and validate effect of variability of wind resource at a site

on short-term as well as long-term performance of grid-integrated wind farms. The

techniques developed will be useful for simulation as well as evaluation of prospective

sites for installing future wind farms.

1.3 Scope and Objectives of Research Work

In view of above, the objectives of the present work are as follows:

1. To develop improvised heuristic technique for forecasting installed wind power

generation capacity in a region.

2. To develop improvised heuristic technique for estimation of wind resource poten-

tial in a region for wind power development.

3. To investigate effect of terrain on performance of existing wind farm using indus-

try scale computer simulation tools.

4. To develop improvised heuristic technique for optimizing the position of wind

turbine in the wind farm.

5. To develop improvised heuristic approach for prediction of power generated in a

wind farm over short term as well as long term.
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1.4 Organization of Thesis

The thesis is organized as follows:

Chapter 2: In this chapter, a detailed literature survey is presented on prediction of

growth in wind power generation capacity, wind resource assessment, application of

heuristic techniques for wind power development and conclusions are presented.

Chapter 3: In this chapter, improvised heuristic approach using genetic algorithm and

logistic function is developed for forecasting the increase in installed wind power gener-

ation capacity in the context of two leading nations in wind power development, namely,

China and India. The results obtained using the new method are compared with those

obtained using conventional logistic function method to demonstrate superiority of the

new method over conventional method.

Chapter 4: In this chapter, most widely used statistical methods namely, Weibull prob-

ability distribution function and Rayleigh probability distribution function for deter-

mining of wind power distribution at a given site are described. These methods are

functions of two parameters, namely, shape parameter and scale parameter. These pa-

rameters are determined by using four different statistical methods, namely, graphical

method, standard deviation method, energy pattern factor method and maximum like-

lihood method. The methods are used for determining the parameters for the two sites,

namely, Goa campus (site-I) and model grid integrated wind farm, Periyapatti, Tamil-

nadu (site-II), where data is measured at two or more different heights. The accuracy

of wind speed distribution determined by Weibull distribution function and Rayleigh

distribution function, is measured in-terms of root mean square error with respect to

observed wind speed distribution. Further, in an effort to improve the accuracy of de-

termining distribution of wind speed using these methods, an improvised method for

determining optimum values of shape parameter and scale parameter, using genetic al-

gorithm is developed. The effect of air density on wind power density of the site is also

investigated.

Chapter 5: In this chapter, accuracy of estimating annual energy production and capac-

ity factor is compared for three different software tools, namely, WindSim, Meteodyn
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and WindFarmer. The effect of terrain is also taken into account for estimation of annual

energy production and capacity factor at a site representing complex terrain.

Chapter 6: In this chapter, a improvised technique is developed for recommending

optimum location of wind turbine in a wind farm corresponding to maximum power

output and minimum wake effect. The technique allows designer to search optimum

location of wind turbine corresponding to maximum power generation and minimum

wake effect. The results obtained using improvised technique are compared with the

results reported by researchers. Further, in this chapter, “WindFarmer” software is used

for searching optimum positions of wind turbine in a existing grid-connected wind

farm. The results show that the optimum positions determined by “WindFarmer” soft-

ware are different than the actual positions of the wind turbines in the existing wind

farm.

Chapter 7: In this chapter, an improvised technique for predicting wind power produc-

tion in a wind farm is presented. The researchers in the past have used feed forward

artificial neural network to predict wind power generation and used back propagation

algorithm as learning algorithm in ANN by prefixing parameters of algorithms. Ge-

netic algorithm is proposed in conjunction with artificial neural network for prediction

of wind power generation. The parameters prefixed for back propagation algorithm are

learning rate and momentum coefficient. The parameters affect the performance in ge-

netic algorithm are elite count, crossover fraction and number of generations. In the

present work, results are obtained by varying values of these parameters for both the

algorithms. The effect of variation of values of these parameters in practical ranges on

prediction of wind power generation is investigated. The effect of number of neurons

in the hidden layer on predicted power generation is also investigated. The chapter con-

cludes with results of investigation of prediction of wind power generation.

Chapter 8: The chapter presents conclusions of the research work in the thesis and

scope for future work.



Chapter 2

Literature Survey

In this chapter, an account of survey of relevant literature reported by the researchers

in recent years, is presented. The insights gained through literature survey, have been

used to identify scope for improvising methods of statistical analysis and modeling for

forecasting, estimation and prediction of wind resource potential and power generated

at a given site.

2.1 Forecasting Growth in Installed Wind Power Gen-

eration Capacity

Carolin et al. [16] developed a method to forecast growth of installed capacity of wind

power generation. They have used logistic function-based method to forecast cumula-

tive installed wind power generation (WPG) capacity in a year. They have used data

available on installed WPG over past 15 years (i.e.,1991 to 2006) for five different

states in India and India as a whole. They have forecasted that the WPG capacity would

reach 34,524 MW, 46520 MW and 50353 MW by the end of year 2015, 2020 and

2025, respectively. Further, it is forecasted by authors that about 99 % of available wind

potential in India will be exploited by the year 2030 when the WPG capacity would

reach 51249 MW. It is noted that whereas authors had forecasted that WPG capacity

8
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in India would reach 30875 MW by 2014, actually installed WPG capacity in India is

22465 MW. This indicates that, the method over estimates the installed WPG capacity.

Ishan et al. [17] also used logistic function based method to project WPG capacity

for six states in India and for India as a whole. They have used data on wind power

generation installed capacity over 18 years (i.e., 1991 to 2009). They have forecaseted

that the WPG capacity would reach approximately 11531 MW by the end of the year

2020, whereas the installed WPG capacity is already 22465 MW in the year 2014. This

indicates that, the method under estimates the installed WPG capacity.

However, the actual installed capacity in India as on Dec 2014 is about 22465 MW, indi-

cating that there is scope for improvising conventional logistic function-based methods,

used in [16] and [17] for improving accuracy of forecasting installed WPG capacity.

2.2 Methods of Wind Resource Assessment

Wind resource assessment (WRA) at a prospective wind farm site is the first step in

developing a wind farm project at a site of potential for power generation. The eco-

nomic viability of wind farm project is largely determined by accurate estimates by

potential for wind power generation. The economic viability of wind power project de-

termines bankability of the project. In recent times researchers have reported the need

to improvise the methods for improved accuracy in estimation. Panda et al. [13] have

investigated the effect of wind speed on active and reactive power penetration to the

distribution network. It is shown that active power generated by the wind turbine gen-

erators depends upon wind speed and the reactive power consumption varies with the

variation in active power generation. Nguyen et al. [14] have shown that the power qual-

ity problems are due to the variations in wind speed. The increase in turbulence leads

to increase in the flicker emission and power variability, which in turn lead to severe

impact on wind turbines and grid integration. Vanitha et al. [18] investigated the effect

of wind speed on power quality issues. They have reported that, the real power and

reactive power generated fed and into grid and power factor, which largely determine
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quality of the power and stability of power system are all functions of wind speed at the

site.

In this section, results of survey of work reported by researchers on different statistical

methods for determining distribution of wind speed probability over wind speed namely,

Weibull probability density distribution [19–34, 34–46], Rayleigh probability density

distribution [47–50] and log normal distribution [51] are presented.

2.2.1 Weibull Probability Density Distribution Method for Deter-

mining Distribution of Wind Speed

Weibull probability density distribution method is the widely used method by researchers

for determining wind potential at a site. In this method, the analytical expression re-

quires user to define two empirical parameters, namely, shape parameter (‘k’) and scale

parameter (‘c’). The accuracy of estimation is largely determined by accuracy of deter-

mining ‘k’ and ‘c’. It has been shown that normally empirical values of ‘k’ ranges from

1.5 to 3.5 and empirical values of ‘c’ is about 1.2 times the annual average wind speed

at the site. Thus depending on the values of ‘k’ and ‘c’, chosen in a case, the wind speed

probability distribution characteristics for the site is determined. When the values of ‘k’

the shape parameter is chosen to be equal to 2 the original Weibull distribution function

is called as Rayleigh wind speed probability distribution function. Thus, the Rayleigh

wind speed probability distribution function is considered as a special case of Weibull

wind speed probability distribution function. In order to determine the parameters of

Weibull probability density distribution function, different methods namely, graphical

method [19–27], standard deviation method [28–39], energy pattern factor method [40–

42], maximum likelihood method [43–46] and modified maximum likelihood method

[52–58] have been used by researchers.
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2.2.1.1 Graphical Method for Determining Parameters of Weibull Probability

Density Distribution Function

Researchers [19–27] have used graphical method (GP) to determine Weibull parame-

ters. Ulgen et al. [19] used wind speed data obtained at height of 15 m AGL over a

period of five-years (i.e.,1995 to 1999) to determine Weibull parameters for Izmir, a

region in Turkey. They reported that Weibull distribution function is found to give accu-

rate better fittment with the actual data than the Rayleigh distribution function. Results

obtained by authors [20–22] also concludes the same observations. Youm et al. [20] an-

alyzed two year wind data (1998 to 1999) at five different locations for the region of the

northern coast of Senegal along the Atlantic Ocean. Akpinar et al. [21] have used hourly

data recorded at a height of 10 m (AGL) over a period of 6 years in four different regions

in Turkey for estimation of Weibull parameters using graphical method. They reported

that method is found to be more accurate method in distribution of wind speed. Odo et

al. [22] analyzed the wind data collected at 10 m AGL to estimate energy potential at

Enugu, Nigeria employing 13 years (1995 to 2007). They reported that the graphical

method is accurate in estimation of wind speed distribution.

Ganeshan et al. [23] have used the hourly data obtained at two different heights of 50 m

and 70 m measured over a period of one year from 2004 to 2005 to estimate Weibull

parameters for a region in Bhopal, India. Issac et al. [24] used hourly wind speed data

consisting of thirty years from 1968 to 1997 to determine Weibull parameters for three

different locations, namely, a city area, an extremely exposed area and an open sea area,

in Hong Kong. Jing et al. [25] also used a long-term data measured over 15 years data

from 1986-2000 to determine Weibull parameters for two different regions in Fujian

province, China. They reported that WDD function using GP method fitted the mea-

sured data more accurately. Similar observations are reported in [26, 27]. Fadare [26]

used ten years data from 1995-2004 to estimate Weibull parameters for analyzing wind

energy potential of a region in Nigeria. Jamdade et al. [27] have used five years data

i.e.,2007 to 2011, measured at a height of 50 m AGL to analyze the wind potential in

four different regions in Ireland, namely, Malin head, Dublin airport, Belmullet and
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Mullingar. They reported that the method employing graphical method estimates the

wind speed distribution function accurately.

2.2.1.2 Standard Deviation Method for Determining Parameters of Weibull Prob-

ability Density Distribution Function

In order to determine the Weibull parameters, standard deviation (SD) method has been

used in [28–39]. Celik used one year data measured at a height of 5 m AGL during

1996 to determine Weibull parameters for the region Cardiff, UK [28]. Similarly, one

year data-based analysis is reported in [29–33]. Their work concluded that SD-based

WDD function leads to accurate fitment of the measured data. Researchers have carried

out WRA in Grenda (West Indies), four different locations in Indonesia and Algeria,

respectively [29–31]. Kumaraswamy et al. have used Standard deviation method to es-

timate Weibull parameters for Chitradurga, Karnataka, employing the wind speed data

obtained at a height of 50 m AGL and 40 m AGL, respectively [32] and [33]. Ce-

lik has used one year data for finding Weibull parameters to estimate the wind energy

potential in the region of Iskenderun, Turkey. The results obtained using standard de-

viation method are compared with those obtained using Rayleigh distribution. They

reported that Weibull distribution is accurate method compared to Rayleigh distribution

method [34]. The same analysis is carried out by researchers in [35–39] and reported

that Weibull distribution is accurate method compared to Rayleigh distribution method.

2.2.1.3 Energy Pattern Factor Method for for Determining Parameters of Weibull

Probability Density Distribution Function

Energy pattern factor (EPF) method, to determine the Weibull parameters is reported by

researchers in [40–42]. Seyit et al. [40] introduced EPF method also known as power

density method to determine Weibull parameters for four different regions, namely,

Maden, Gokceada, Canakkale and Bozcaada in Turkey [40]. Ugur et al. [41]and Yuyu et

al. [42] also used the same method and they have reported that method is found to be

accurate in estimating the wind power density (WPD).
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2.2.1.4 Maximum Likelihood Method for Determining Parameters of Weibull

Probability Density Distribution Function

Maximum likelihood (MLE) method [43–46] uses an iterative procedure to determine

Weibull parameters unlike aforementioned three methods. Kaoga et al. [43] have used

MLE method on a six year data measured over 2007 to 2012 of north region of Cameroon

to determine Weibull parameters. The MLE method is reported to provide accurate re-

sults as reported in [44, 45]. A comparative study for determining Weibull parameters

is carried out and they have reported that the results obtained using the MLE method

are in good agreement with the measured data when compared to Rayleigh distribution

method [46].

Comparison of Methods for Determining Parameters of Weibull Distribution:

Seguro et al. have used three methods for Weibull parameters, namely, graphical, max-

imum likelihood and modified maximum likelihood methods are used to study WRA

and the results are compared [52]. They have reported that the MLE method is accu-

rate method when the wind speed data is available in time-series format. On the other

hand, when the data is available in the frequency distribution format, the modified MLE

method is recommended.

Genec et al. and Bagiorgas et al. compared the three different methods, namely, graph-

ical, standard deviation and maximum likelihood method. They have reported that all

the methods yields results in close agreement with the measured data [59, 60]. Mukut et

al. [61] have used Weibull methods namely, graphical, standard deviation and energy

pattern factor are compared with Rayleigh distribution methods. They reported that all

the Weibull methods are in close agreement with the measured data than the Rayleigh

distribution method.

Odo et al. [62] used graphical, standard deviation and energy pattern factor methods to

determine Weibull parameters and it is reported that the standard deviation method is

more accurate method. Similar observations are reported in [53, 63]. Seyit et al. [40]

analyzed wind power potential in a region of Turkey. They reported that energy pattern
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factor method is more efficient when compared to graphical, standard deviation and

maximum likelihood method. Similar observations are reported in [54–56].

Tian et al. [57] have used different methods such as moment, empirical, graphical,

maximum likelihood, modified maximum likelihood and energy pattern factor to es-

timate Weibull parameters. They reported that maximum likelihood method provides

more accurate estimation of Weibull parameters. Paulo et al. [58] have used numerical

methods, namely, graphical, empirical, moment, energy pattern factor, maximum like-

lihood, modified maximum likelihood and equivalent energy method for determining

Weibull parameters. They have reported that the maximum likelihood method is an ac-

curate method for determining Weibull distribution. From the above, it is observed that

there are different methods for determining Weibull parameters, however these methods

varies from data and site.

Rayleigh distribution function method:

The another widely used distribution function which is extensively used in modeling of

the site wind speed is the Rayleigh distribution function. Rayleigh distribution function

is a special case of Weibull distribution where the scale parameter, k, has a fixed value

of k = 2. This function is found to typically model the wind speed at some sites where

the Weibull function could not accurately model. This method also used to find wind

speed distribution to fit the measured data accurately for some of the sites as reported

in [47–49, 64, 65].

2.2.2 Method for Estimation of Capacity Factor of Wind Farm

Wind energy conversion system can operate at maximum efficiency depends on wind

characteristics at the site such as the rated power, cut-in and cut-out wind speeds [66]. The

capacity factor is defined as the ratio of the mean power output to the rated electrical

power of the wind turbine [66, 67]. The performance of a wind turbine installed in a

given site can be examined by the amount of mean power output over a period of time

and the conversion efficiency or capacity factor of the turbine.
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Dursun et al. [68] used hourly data recorded for a period of two years, 2006 to 2008

to determine the wind energy characteristics of four different regions, namely, Gonen,

Bandirma, Dursunbey and Ayvalik in Turkey. The highest capacity factor is obtained as

42 % for Bandirma region with Vestas V90-1.8 MW wind turbine. The lowest capacity

factor is obtained as 14 % for the Dursunbey region. Similar study has been carried

out by Akpinar [69] for the four regions namely, Elazig, Maden, Agin and Keban in

Turkey. Maden is found to be best site for the wind generation as the capacity factor is

maximum for this site [69].

Muyiwa et al. [70] examined the wind energy potential and the economic viability of

using wind turbine for electricity generation in six selected sites along the coastal region

of Ghana. Four different turbines are considered in this study. The capacity factors are

calculated and it is shown that the coastal region is suitable only for small scale appli-

cation. A similar study has been carried out by Oyedepo et al. [71] for three selected

locations (Enugu, Owerri and Onitshain) of Nigeria and they reported that the highest

capacity factor is found to be Enugu site.

Ohunakin et al. [72] carried out wind turbine performance assessment and economic

analysis of selected commercial WECS are examined across all geopolitical zones in

Nigeria. It is found that the capacity factor has the least value in Uyo, 0.22 %, with

GEV-HP turbine at 70 m hub height and the highest value in Kano, 89.8 %, with G3120

model at 42.7 m hub height. Himri et al. [73] analyzed the wind power potential for three

locations Adrar, Timimoun and Tindouf in Algeria and reported that capacity factors are

found to be 38 %, 30 % and 21 %, respectively.

2.2.3 Methods for Estimation of Wind Power Density at Different

Heights Above Ground

The wind speed is usually measured at meteorological heights typically 10 m or even

less. But the wind turbines are installed at greater heights, typically at or above 50 m. It

is of the interest to know the wind speed and wind power density at different heights as

technology for installing wind turbine heights above 50 m has become available. Two
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analytical methods namely, log law and power law are used to estimate wind speeds

at higher heights [74–77]. Power law method is preferred as it is proved to be more

accurate than log law [47, 50, 69, 78].

Various software, namely WindSim, Meteodyn and WindFarmer have become avail-

able for wind resource assessment. Leroy [79] tested the WindSim program with the

experimental data of Askervein Hill in 1999 and pointed out that results would change

significantly with the grid spacing and grid refinement. Wallbank [80] investigated the

difference between linear modeling and non-linear modeling using WindSim program

in 2007. In order to validate results, the measurements collected from erected masts in

complex terrain are utilized. Gravdahl et al. [81] presented the validation study of Bol-

und experiment with WindSim program in 2011. Terrain and roughness data are taken

into account in the analysis. Gravdahl studied the parameter sensitivity on numerical

field modeling and the AEP in 2007 [82]. To avoid this conflict, CFD gets accurate re-

sults. Smooth and complex terrains are selected in that study. Besides, Gravdahl [83]

carried out the test validations for optimized micro siting. Several wind farm sites in Eu-

rope are investigated according to different grid resolutions. Gravdahl et al. [84] consid-

ered wake modeling to determine the wind turbines to be erected properly. Improvement

in AEP was observed remarkably. Simisiroglou and Fallo used WindSim program to de-

termine AEP estimation and wake effects, in a wind farm installed in complex terrain

in Greece and Central Italy, respectively [85, 86].

From the above survey of literature, it is observed that the most widely used methods

for charactering the site are Weibull and Rayleigh distribution method.

2.3 Methods for Optimizing Wind Farm Layout

The design of wind farm layout is of critical importance for ensuring the profitability

of a wind farm project in long term. A poorly layout of wind farm would lead to lower

wind power capture and increased maintenance cost. The design of wind farm depends

on several factors such as maximum desired installed capacity of the wind farm, site

constraints, noise assessment, visual impact and the total cost. The objectives of a wind
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farm design are to maximize the power production and reduce the total cost associated

with the wind farm.

The technique used for designing of the layout of a wind farm often called as “micro-

siting”. When a wind turbine extracts power from the wind, it generates a “wake” of

turbulence that propagates downwind, so that the wind speed and the power extracted

by the turbines are reduced. In large wind farms, wake effects lead to considerable

power loss and thus it is desirable to minimize them in order to maximize the expected

power output.

The primary concern is to develop an efficient algorithm which can generate the optimal

layout of the turbines in the wind farm that corresponds to maximum power output at

least cost. Wind turbine wakes have been studied for many years and various models

have been developed by researchers. These models can be divided into two main cate-

gories, namely, analytical wake models and computational wake models. An analytical

wake model characterizes the wind velocity in wake, by a set of analytical expressions,

whereas, in computational wake models, fluid flow equations, are solved to obtain the

wake velocity field.

Jensen presented model, based on global momentum conservation in the wake down-

stream of the wind turbine. The author has explained basic principle regarding wake

effect, mathematical equations describing the effect in a wind farms and between tur-

bines [87].

Mosetti et al. [88] and Grady et al. [89] have used GA approach obtaining optimum

positions of wind turbines in a wind farm. Jensen wake model has been used for the

analysis.

Emami et al. [90] also used GA approach for optimal positions of wind turbines in wind

farm. Marmidis et al. [91] proposed Monte Carlo simulation method for the optimal

placement of wind turbines. Evolutive algorithm has been used in [92] to optimize the

wind farm layout. Carlos et al. [93] proposed a new viral based optimization algorithm

for optimizing the placement of wind turbines in wind farms.
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Peng-Yeng et al. proposed a Greedy randomised adaptive search procedure-variable

neighborhood search algorithm for the optimal placement of wind turbines [94]. A bi-

nary particle swarm optimization with time-varying acceleration coefficients has been

used in for optimal placement of wind turbines within a wind farm [95].

2.4 Methods for Prediction of Wind Power Generation

The unpredictability of wind and the possible sudden loss of wind generation is a se-

rious concern among grid integrated wind farm operation as this increases the cost of

integrating wind energy into the existing power system. The wind power predictions

help the power system operators to schedule the spinning reserve capacity and to man-

age the grid operations. In addition, wind power prediction plays an important role in

the allocation of balancing power. Besides, wind power prediction is used for the day-

ahead scheduling of conventional power plants and trading of electricity on the spot

market. Various method such as physical, statistical, artificial intelligence (AI) and hy-

brid methods [96–99] are used for wind power prediction.

2.4.1 Method for Prediction using Physical Approach

The physical method aims at estimating the wind data by numerical weather prediction

(NWP) methods, therefore the input variables will be the physical or meteorology infor-

mation. The physical method needs a detailed physical consideration of terrain to give

a good prediction precision. It is usually used for long term prediction.

Several physical models have been developed for wind speed forecasting and wind

power predictions. In addition to the weather data, these models take into account ef-

fect of several factors such as obstacles, local surface roughness, effects of orography,

speed up or down, scaling of the local wind speed within wind farms, wind farm layouts

etc. On wind speed, collecting the information such as terrain conditions is one of the

major difficulties in the implementation of physical models [100]. Since NWP models
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are complex mathematical models, they are usually run on super computers, which lim-

its the usefulness of NWP methods for on-line or very-short-term operation of power

system. In other words, meteorological models with high resolution are often more ac-

curate but require high computation time. An unstable atmospheric situation can lead to

very poor numerical weather predictions and thus leads to inaccurate predictions [101].

2.4.2 Statistical Approach for Prediction of Wind Power Genera-

tion

The statistical methods include the Auto Regressive (AR), Auto Regressive Moving Av-

erage (ARMA), Auto Regressive Integrated Moving Average (ARIMA) and Bayesian

approach [98]. Statistical methods can be used to solve the problems in engineering,

economics and natural sciences, when large volume of data on interdependent variables

is available.

The ARIMA model comprises three components, i.e., autoregressive, integrated and

moving average. ARIMA model is data independent. Milligian et al. have been em-

ployed several statistical ARMA models to predict both wind speed and wind power

output in hour-ahead markets [102]. The authors in [103] predicted the hourly aver-

age wind speed up to 1-10 hours in advance by using ARMA models. Wang et al.

employed ARMA for short term wind speed forecast based on historical wind speed

data [104]. Miranda et al. developed a statistical method that use Bayesian framework

to model the wind speed time series as an AR process, where the Markov Chain Monte

Carlo simulation is used to estimate the model parameters [105]. Erdem et al. have used

four different versions of ARMA method for forecasting wind speed and direction. The

authors concluded that the component model is better for predicting the wind direction

than the traditional-linked ARMA model, whereas for the prediction of wind speed the

ARMA model is accurate than the component model [106].

Kavasseri et al. [107] used fractional-ARIMA models to forecast wind speeds on the

day-ahead (24 hours) and two-day-ahead (48 hours) horizons. The models are ap-

plied to wind speed records obtained from four potential wind generation sites in North
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Dakota. The forecasted wind speeds are used in conjunction with the power curve of

an operational turbine to obtain corresponding forecasts of wind power production.

The forecast errors in wind speed/power are analyzed and compared with the persis-

tence model. Results indicate that significant improvements in forecasting accuracy

are obtained with the proposed models compared to the persistence method. Ramirez-

Rosado et al. used fractional-ARIMA models to model and forecast hourly average

wind speeds [108]. The forecasted meteorological variable values obtained from a nu-

merical weather prediction model and electric power-generation registers from the SCADA

system of the wind farm are used for the analysis.

2.4.3 Artificial Intelligence-based Approach for Prediction

Recently, with the development of artificial intelligence (AI), various new AI methods

for wind speed and power prediction have been developed. The new developed methods

include artificial neural network (ANN), adaptive neuro-fuzzy inference system, fuzzy

logic, support vector machine, neuro-fuzzy network and evolutionary optimization al-

gorithms [99].

Artificial neural network basically involves learning the relationship between inputs and

outputs by a non-statistical approach. It does not require any predefined mathematical

models. The different ANN models are multilayer feed forward neural network (FFNN)

and recurrent neural network (RNN) [97, 98]. ANN based methods also include back

propagation neural networks, recurrent neural networks, radial basis function (RBF)

neural networks, ridgelet neural network and adaptive linear element neural network.

Anurag et al. [109] two wind forecasting methodologies namely, FFNN (employing

back propagation algorithm) and RNN are employed to forecast daily and monthly wind

speed time series in India. It is shown that both FFNN and RNN perform better than the

traditional statistical (ARIMA) model [109]. Rohrig et al. [110] have used ANN to

predict day-ahead wind power in Germany. For training, measured wind power data is

used to learn physical coherence of wind speed and wind power output. The advantage

of ANN application is that it can easily use additional meteorological data, such as air
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pressure or temperature, and power curves of individual plants to improve the accuracy

of the forecasts [110].

The authors [111, 112] have used a method based on FFNN to predict the average

hourly wind speed and wind power respectively. Fernandez et al. [113] also predicted

wind power in some regions of TamilNadu using ANN Techniques. The model accuracy

is evaluated by comparing the simulated results with the measured values at the wind

farms and is found to be in good agreement.

Wang et al. [114] used ANN-based predictor to predict wind speed, which can be math-

ematically modeled as a highly nonlinear random process [114]. The whole process of

analysis is divided into two parts ANN for predicting short-term value and the results

are obtained according to the long term pattern. The authors compared the results with

those obtained from linear regression approaches. From the experimental results, the

authors concluded that the prediction-modification process improves short-term as well

as long-term predictions.

Carolin et al. [115] have reported results of FFNN model based on back propagation

algorithm to predict the wind energy at a site in Tamil Nadu for a period from April

2002 to March 2005. The input variables for the developed ANN have been selected

as monthly average wind speed, monthly average relative humidity and monthly gen-

eration hours. The output variable is the wind energy output of wind farms. They have

implemented FFNN with back propagation algorithm using MATLAB toolbox to de-

velop the energy yield prediction model. The architecture with one hidden layer with

four neurons is used in the analysis. The logarithmic sigmoid function is used in the hid-

den layer and linear activation function is used at the output layer. 3–4–1 architecture, 3

neurons in input layer, 4 neurons in hidden layer and 1 neuron in output layer was cho-

sen. From the results, the authors concluded that the predicted wind energy output using

ANN model shows a good agreement with the actual values. Damousis et al. [116] have

presented a fuzzy expert system that forecasts the wind speed and generated electrical

power.



Chapter 2. Literature Survey 22

2.4.4 Hybrid Approach for Prediction

Lei et al. [96] reviewed various models for wind speed and wind power prediction. The

authors concluded that the new methods using artificial intelligence and mathematical

technique when combined give more actuate results than the conventional methods.

Kani et al. [117] carried out short term wind speed forecasting employing ANN in

conjunction with Markov Chain approach. In [118], the application of hybrid intelligent

systems for short term wind power forecasting has been discussed. A hybrid model

based on the combination of Wavelet transform and ANN is used in [119, 120]. Potter et

al. [121] used an adaptive neuro-fuzzy inference system for very short-term wind power

prediction.

Sideratos et al. [122] studied a combination of neural networks and fuzzy logic tech-

niques for accurate estimation of wind farm output. Jursa et al. [123] used two op-

timization algorithms, namely particle swarm optimization and genetic algorithm for

short-term prediction of wind power.

Shi et al. [124] proposed two hybrid models, such as, ARIMA-ANN and ARIMA-

SVM, for wind speed and power forecasting. These hybrid approaches are shown to be

viable options for forecasting both wind speed and wind power generation time series,

but they do not always produce superior forecasting performance for all the forecasting

time horizons investigated.

Shiet al. [125] also used a hybrid forecasting model which is a combination of least

squares support vector machine and Radial basis function neural networks (RBFNN) is

used to predict wind speed and wind power. From the above, it is observed that most

efficient and accurate technique used for prediction of wind power is the artificial neural

network. However, the accuracy can be improved by variation of parameters of learning

algorithms.
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2.5 Conclusion

The survey of literature as presented in above sections clearly shows that

1. There is scope for improving accuracy of conventional logistic function method

when used for predicting growth in installed wind power generation capacity.

2. The Weibull and Rayleigh distribution functions are widely used for characteriz-

ing the wind power potential at a prospective site. The accuracy of characterizing

a site can be further enhanced by variations of relative humidity at a site.

3. Genetic algorithm is widely used technique to determine optimum layout of a

wind farm. Researchers in the past have tried optimization of layout of wind farm

by considering the land for wind farm to be consisting of square cells. Further in

their work, they have assumed that the turbines are always placed at the center

of the square cell. However, under actual site conditions it may not be possible

to place the turbines at the center of the square cell. In such cases, it becomes

necessary to find out the effect of placing wind turbines at any other point in the

square cell of the land. For this purpose, appropriate heuristic technique should

be developed.

4. Researchers have used artificial intelligence techniques employing different learn-

ing algorithms for prediction of wind power in a grid-connected WECS. The use

of hybrid approaches are also proposed for this purpose. However, it is noted

that the parameters in the learning algorithms are taken as default values or fixed

values on a trial and error basis. Thus, there is scope for developing method of

choosing optimized values of these parameters of learning algorithms for predic-

tion of wind power thereby improving accuracy of prediction.

In the following chapters, heuristic methods are proposed for addressing above require-

ment.



Chapter 3

Forecasting Wind Power Generation

Capacity

3.1 Introduction

In the previous chapter, literature survey is presented to identify techniques for fore-

casting the growth in installed wind power generation capacity in a region. There it

is noted that results forecasted by earlier researchers are not in agreement with actual

recorded increase in the cumulative installed wind power generation capacity. Thus,

there is scope for improving methods for forecasting cumulative wind power generation

capacity on an annual basis in future. In this chapter, it is demonstrated that application

of genetic algorithm in currently used logistic function method leads to improvement in

accuracy of forecasting.

It is of interest to wind farm developers and promoters to know in advance that the wind

power generation capacity likely to be installed in future in the region of interest. The

logistic function method can be used to forecast future scenario for various purposes

such as to forecast population growth, bacteria growth in food and wind power gen-

eration capacity in a region [126]. The logistic function method uses two regression

coefficients, which are calculated based on the input data supplied. The accuracy of

prediction largely depends on the values of regression coefficients which is determined

24
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by using curve fitting technique (Verhulst model) [126]. Using conventional logistic

function method, Carolin et al. [16] forecasted that the wind power generation capacity

in India by the year 2020 as 46570 MW. Similarly, Ishan et al. [17] also used conven-

tional logistic function method to forecast the WPG capacity in India by the year 2020

as 11,531 MW. However, the actual installed capacity in India was 22,465 MW by the

year 2014, which clearly shows that the conventional logistic function-based method

used need to be updated for improving the accuracy of forecasting.

In the present work, a method has been proposed in which genetic algorithm is used

in conjunction with the logistic function method to revise the regression coefficients of

conventional logistic function method. Using the proposed method, growth of installed

wind power generation capacity is forecasted for two leading countries in wind power

development namely, China and India.

3.2 Growth in Wind Power Generation Capacity

Over past decades, continuous growth of wind power generation capacity has been re-

ported. The recorded rate of growth in wind power generation capacity is shown in

Fig. 3.1. There is rapid increase in installed generation capacity since the year 2000. From

the figure, it is noted that the cumulative installed wind power generation capacity

reached 17,400 MW at the end of 2000, which grew to 1,94,152 MW by the end of

2010. Next, the cumulative installed wind power generation capacity has increased to

3,69,553 MW by 2014. This indicates that in the last four years, the world wide installed

wind power generation capacity has increased by 47.46 % [7]. The major contributors

to wind power generation in the world, as on 31 December 2014 are China, USA, Ger-

many, Spain and India [7]. The installed generation capacity of the top five producers

are listed in Table 1.1.
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Fig. 3.1. Historic development of installed wind power generation capacity in World
(2000-2014).

3.2.1 Growth of Wind Power Generation in India

In this section, the growth of installed wind power generation in India is discussed. By

the end of 2014, the installed wind power generation capacity has reached 22,465 MW [7].

As per NIWE assessment the wind power potential at 50 m height is reported to be

49,130 MW [11]. Thus, India has installed only 45.72 % of the total estimated wind

power potential so far. By the end of 2010, the cumulative installed capacity of India

was 13065 MW (see Fig. 3.2). The growth in the installed capacity is 41.84 % in the

last four years.

3.2.2 Growth of Wind Power Generation in China

In this section, the growth of wind power generation in China is discussed. At the

end of 2014, the cumulative installed capacity has reached 1,14,763 MW [127]. The

installed WPG capacity was 41,800 MW at the end of the year 2010, recorded growth of

63.57 % in the last four years. According to China academy of meteorological sciences,

the country possesses a total of 235000 MW wind power potential [7]. Thus, currently

only 48.83 % of wind power potential is utilized and about 51.16 % of estimated wind
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Fig. 3.2. Growth of installed cumulative wind power generation capacity in India.

power potential remained to be tapped. The growth of wind power generation installed

capacity of China from the year 2000 to 2014 is shown in Fig. 3.3. Thus, it is clear that

Year
1998 2000 2002 2004 2006 2008 2010 2012 2014

In
st

al
le

d 
C

ap
ac

ity
 (

M
W

)

×104

0

2

4

6

8

10

12

Fig. 3.3. Growth of installed cumulative wind power generation capacity in China.

wind power generation capacity is set to increase globally as well as in leading countries

such as, China and India. Therefore, it is in the interest of wind farm developers to know

in advance the wind power generation capacity, likely to be installed in future. Thus,

there is a need to develop accurate technique for forecasting wind power generation

capacity likely to be installed in future.
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3.3 Logistic Function Method for Forecasting Installed

Wind Power Generation Capacity

In this section, the conventional logistic function method, used for forecasting growth

in wind power generation capacity, to be installed in future, is described. The logistic

function, described as Verhulst model or logistic growth curve is a S-shaped sigmoid

curve, that is used to forecast population growth [128]. It is also used in various fields

such as demographics, biology, economics, engineering, etc [126].

Logistic curve is classified as symmetric (or simple) and non symmetric (complex)

type curves, which are consequently classified as simple logistic functions or complex

ones. Non-symmetric logistic curves have limited application due to their complexity

and low efficiency for technology forecasts [129].

P

Q

S

R

t

Y

Fig. 3.4. Logistic growth curve.

The S-shape characteristic of the symmetric logistic curve is shown in Fig. 3.4. During

first phase, from region P to Q, the growth is very slow. Beyond point Q, the growth

increases exponentially from Q to R and then again the growth slows down while ap-

proaching the maximum upper limit S. The logistic function is represented by the fol-

lowing equation as follows:

Y =
L

(1 + ae−bt)
(3.1)
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where L is the upper limit to the maximum value of Y , while a and b are the regression

coefficients. In the present work, Y represents cumulative wind power generation ca-

pacity to be installed until end of year in future and L represents maximum cumulative

wind power generation capacity that can be expected to be installed in a region. Thus

maximum value of L is taken to be equal to maximum estimated wind power potential

in a region. For example, L is taken to be equal to 49,130 MW at 50 m height above

ground in the case of India and 2,35,000 MW in the case of China [7]. The regression

coefficients must be positive, so that the logistic function value must be positive. The

function Y (t) represents the projected cumulative wind capacity at time (t), denoting

end of particular year. The accuracy of forecast depends on the value of a and b. The

regression coefficients are determined as follows:

a =
L(Y (t1)− 1)

e−bt1
, (3.2)

b =
1

t2 − t1

( ln( L
Y (t1)−1)

ln( L
Y (t2)−1)

)
. (3.3)

In conventional logistic function method, a and b are calculated using (3.2) and (3.3).

These a and b can be further refined by using genetic algorithm to get more accurate

forecasting results.

3.3.1 Genetic Algorithm

Authors have reported that the most popular evolutionary algorithms (EA) are genetic

algorithm (GA), evolutionary programming, differential evolution, evolution strategies,

genetic programming, population-based incremental learning, particle swarm optimiza-

tion and ant colony optimization [130–134]. The basic concept of all the above listed

evolutionary algorithms is to simulate the evolution of individual structures via, pro-

cesses of selection, reproduction and mutation.

Genetic algorithm is the most popular type of evolutionary algorithms [135]. This type

of evolutionary algorithm is often used in optimization problems since genetic algorithm
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can find a good near-optimal feasible solutions in a reduced computational time [135].

More detailed information on Genetic Algorithm is provided in Appendix A.

3.4 Application of GA for Forecasting Growth in In-

stalled Wind Power Generation Capacity

A conventional method as described above, has been modified for improving the accu-

racy of prediction of growth in installed wind power generation capacity. In the pro-

posed method, genetic algorithm has been used to evolve or update the regression coef-

ficients of conventional logistic function through genetic operations of the evolutionary

algorithms.

In conventional logistic function method, a and b are calculated using (3.2) and (3.3),

and are directly used for forecasting future growth in installed wind power generation

capacity. In the present work, GA is used to refine the regression coefficients (a and b)

to obtain better accuracy in forecasting the growth in installed wind power generation

capacity.

The RMSE represents the error in forecasting the output of logistic function and the ac-

tual installed wind power generation capacity. The RMSE is frequently used to measure

difference between values predicted by a model and the values actually observed from

the environment that is being modeled. The RMSE is given by

RMSE =

√∑n
t=1(x1t − x2t)2

n
(3.4)

where x1t is the actual cumulative installed capacity data, x2t is forecasted using logistic

function and by using new approach, n is the total number of data sets (years). The root

mean square error (RMSE) is chosen as the objective function for GA [136].

Objective function = Minimize RMSE

Subjected to

0<a<1500 ;

0<b<1;
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Fig. 3.5, explains the steps involved in the proposed method as flowchart. In the follow-

Start

Enter the available installed capacity 
data, tolerance (tol)

Evaluate (a and b) regression 
coefficients

Calculate Y(t) using (3.1)

Calculate RMSE using (3.4)

Initialize "a" and "b" as chromosomes

Evaluate fitness functions

Use genetic operators to update 
regression coefficients

Calculate RMSE

Forecast installed capacity for different 
years using (3.1)

Is
 RMSE £ tol

?

Stop

Is
 RMSE 

£ tol

?
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maximum 
generation 
achieved?

Yes

No

Yes

No
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Fig. 3.5. Flowchart for the proposed method to forecast installed WPG capacity

ing section, results obtained using conventional logistic function method (i.e., without
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application of GA) and results obtained using proposed method (logistic function with

application of GA), in two cases, India and China are presented. In each case, the results

obtained by the two methods are compared with actual recorded cumulative installed

wind power capacity by the end of year in the recent past. The accuracy of forecast is

measured in terms of RMSE.

3.5 Simulation Results

In this section, the growth of installed wind generation capacity is forecasted using

logistic function method and proposed method are described.

3.5.1 Comparison of Proposed Method with Reported Results us-

ing Logistic Function Method

The purpose of this section is to examine the effectiveness of the proposed method. For

this purpose, the cumulative installed generation capacity of the data of India from

1991-2006 is considered as in Carolin et al. [16]. The cumulative installed capacities of

India during the period of 1991-2014 are listed in Table 3.1 [127].

Table 3.1. Cumulative installed generation capacity in India (1991-2014) [127].

S.no Year
Cumulative installed

capacity (MW) S.no Year
Cumulative installed

capacity (MW)
1 1991 39 13 2003 2125
2 1992 39 14 2004 3000
3 1993 79 15 2005 4430
4 1994 185 16 2006 6270
5 1995 576 17 2007 7845
6 1996 820 18 2008 9655
7 1997 940 19 2009 10926
8 1998 1015 20 2010 13065
9 1999 1077 21 2011 9655
10 2000 1220 22 2012 10926
11 2001 1456 23 2013 13065
12 2002 1702 24 2014 22465
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The GA parameters assumed to be used for the simulation are listed in Table 3.2. Here,

the results of Carolin et al. [16] reproduced (-see Table 3.3). It is to be noted that the

values of L, a and b chosen as 51500, 782.2 and 0.3072, respectively. The same L

is chosen for the analysis by both the methods for the purpose of comparison. The

regression coefficients are further revised using the proposed method and are listed in

Table 3.4.

Table 3.2. Assumed parameters of GA used in simulation of proposed method

S.No Parameters Typical value

1 Number of chromosomes 30

2 Number of generations 500

3 Cross over probability 0.8

4 Elitism probability 0.1

Table 3.3. Results obtained using reported values using logistic method.

Regression Maximum of RMSE
coefficients absolute error
a b 1991-2006 1991-2014 1991-2006 1991-2014

782.2 0.3072 527 8410 304.546 2591.114

Table 3.4. Results obtained using proposed method for forecasting growth in installed
WPG capacity.

Regression Maximum of RMSE
coefficients absolute error
a b 1991-2006 1991-2014 1991-2006 1991-2014

407.85 0.252 490 1879 267.489 831.584

From Table 3.3, it is observed that work reported by Carolin et al. [16], RMSE deter-

mined for the data set for the year 1991 to 2006. The maximum of absolute error is

found to be 527 and the corresponding RMSE is found to be 304.546. Using the pro-

posed method, RMSE is found to be 267.489 and the maximum of absolute error is

found to be 490. Similarly, RMSE is also determined for the data set from the year 1991

to 2014. The maximum of absolute error and RMSE are found to be 8410, 2591.113, re-

spectively. From the proposed method, these corresponding values are found to be 1879

and 831.5, respectively. The comparison of logistic function method with the proposed

method is shown in Fig. 3.6.
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Fig. 3.6. Comparison of installed wind power generation capacity of reported results
with the results from proposed method (1991-2014).

From Fig. 3.6, it is observed that the logistic function over estimates the installed wind

power generation capacity for the year 2014. However, the proposed method provides

the estimates which are close to the actual values. This comparative study provide the

justification for the use of proposed method for forecasting installed wind power gener-

ation capacity in future.

3.5.2 Forecasting of Growth in Wind Power Generation Installed

Capacity in India

In this section, results are presented for both conventional and modified logistic function

method (proposed method), taking into account a complete data set (i.e., period of 1991-

2014). The upper limit (L) value is taken as 49130 MW [11]. The cumulative installed

capacities of India during the period of 1991-2014 are given in Table 3.1 [127].

From the complete data set available, using the conventional logistic function method,

different combination are tried to arrive at best values of a and b. These results are

listed in Table 3.5. From the table, it is observed that the RMSE is minimum for the

combination of years 2000 and 2006. The corresponding regression coefficients a and
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b are 742.698 and 0.2914, respectively. These coefficients are further refined by using

GA and are listed in Table 3.6.

Table 3.5. Comparison of forecasted data with proposed method with actual data
(1991-2014).

S.No. Year Year a b maximum of RMSE
absolute error

1 1992 1999 3357.20 0.4771 24808 12329.654
2 1991 1996 2385.10 0.6124 36363 22048.515
3 1994 2010 835.44 0.2852 3248 1552.123
4 2010 2013 290.37 0.2173 6224 2890.187
5 2004 2008 1690.00 0.3312 4367 1560.221
6 1996 2004 164.27 0.1679 11437 4741.184
7 2004 2012 799.76 0.2777 3887 1987.102
8 2001 2006 1059.80 0.3133 5035 1474.100
9 2000 2006 742.69 0.2914 3228 1047.144

10 2002 2008 1341.70 0.3199 4012 1416.297
11 2002 2005 1680.10 0.3386 6489 1913.152

Table 3.6. Comparison of logistic method with proposed method (1991-2014).

Logistic method Proposed method (LF +GA)
a b maximum of RMSE a b maximum of RMSE

absolute error absolute error
742.698 0.2914 3228 1047.145 440.338 0.2621 1618 727.538

From the table it is observed that RMSE is further reduced when proposed method is

used. The forecasted values of wind power generation capacities obtained using both

the methods are shown in Fig. 3.7. The cumulative installed capacities forecasted up to

year 2050 using the proposed method are shown in Fig. 3.8. It is observed that India will

reach 99 % of its wind potential installed capacity by the year 2032. From the figure,

the forecasted wind power generation capacity to be added during a future year can be

obtained and is shown in Fig. 3.9. It is observed from the figure, the inflection point is

the year 2017.
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Fig. 3.7. Comparison of installed WPG capacity predicted by using conventional
method and proposed method with actual data in India.

Year
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

Pr
oj

ec
te

d 
in

st
al

le
d 

ca
pa

ci
ty

 (
M

W
)

×104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 3.8. Variation of cumulative WPG capacity upto 2050 in India.
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Fig. 3.9. Variation of annual rate of increase of WPG capacity upto 2050 in India.
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3.5.3 Forecasting of Growth in Installed Wind Power Generation

Capacity in China

The case studies carried out in the previous section which corresponds to forecasting of

growth in installed wind power generation capacity in India are extended to China. Ta-

ble 3.7 lists the cumulative installed capacity of China for the year 1995-2014 [127].

Table 3.7. Cumulative installed wind power generation capacity in China [127].

S.no Year
Cumulative installed

capacity (MW) S.no Year
Cumulative installed

capacity (MW)
1 1995 38 11 2005 1260
2 1996 79 12 2006 2599
3 1997 170 13 2007 5910
4 1998 224 14 2008 12020
5 1999 268 15 2009 25805
6 2000 346 16 2010 41800
7 2001 402 17 2011 62364
8 2002 469 18 2012 75564
9 2003 567 19 2013 91412
10 2004 764 20 2014 114763

The upper limit (L) value for China is taken as 235 GW[127]. The final results are given

in Table 3.8 and is shown in Fig. 3.10.

Table 3.8. Comparison of proposed method with conventional logistic method for
forecasting growth in WPG in China.

Logistic method Proposed method
Regression coefficients

RMSE
Regression coefficients

RMSE
a b a b

10894.86 0.429 13469.31 10587.686 0.475 5471.31
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Fig. 3.10. Comparison of installed WPG capacity predicted by using logistic method
and proposed method with actual data in China.

The cumulative installed capacities are forecasted up to year 2050 using the proposed

method are shown in Fig. 3.11. It is observed from the figure that China will reach 99 %

of its onshore wind potential installed capacity by the year 2024.
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Fig. 3.11. Variation of cumulative WPG capacity upto 2050 in China.

Fig. 3.12 shows capacity additions per year forecasted in China. It is seen, the rate of

increase in cumulative wind power generation capacity is rapid during short span of

2010 to 2020. Beyond 2020, the rate of increase is steady until 2050. It shows that the

inflection point, the point after which the yearly capacity addition starts to decrease, is

the year 2016.
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Fig. 3.12. Variation of annual rate of increase of WPG capacity upto 2050 in China.

3.6 Conclusion

In this chapter, a method is proposed to refine the values of regression coefficients using

genetic algorithm is described. The proposed method has been employed for forecasting

growth of wind power generation capacity in the leading countries, China and India. The

simulation results obtained are compared with the actual cumulative installed generation

capacity by the end of the year 2014. The following conclusions are drawn from the

study:

1. The results are obtained on the basis of assumptions that exploitable wind power

generation capacity in India is 49,130 MW and for China as 2,35,000 MW. The

forecasted year in which the exploitable wind power generation capacity to reach

99 % is determined. The results obtained using the proposed method shows that

the installed wind power generation capacity will become 49,688.7 MW by year

2032 in India and 2,32,650 MW in China by the year 2024.

In both the cases, the forecasted year depends on the estimated wind power po-

tential, rate of growth of wind power generation in the past and the regression

coefficients, which in turn depends on the data set available.
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2. In the case of India, by the end of year 2014, the modified GA based logistic

function method (proposed method) forecast cumulative wind power generation

capacity to reach 23,838 MW compared to the cumulative wind power generation

capacity of 27500 MW by using conventional logistic function method. However,

by the end of year 2014, installed wind power generation capacity is recorded as

22,465 MW. Similarly, in the case of China, by the end of year 2014, the modified

GA based logistic function method forecast cumulative wind power generation

capacity to reach 1,22,027.78 MW. By using conventional logistic method it is

found to be 88,057.77 MW. However, by the end of year 2014, it is recorded as

1,14,763 MW. Thus it is observed that, the forecast based on modified logistic

function method is much closer to actually recorded value. Thus it is observed

that, the forecast based on modified logistic function method is much closer to

actually recorded value.

3. Alternatively, in the case of India, the RMSE in forecast obtained by using mod-

ified logistic function method is found to be 727.538, whereas the RMSE in

forecast obtained by using conventional logistic function method is found to be

1047.145. Likewise, in the case of China, the RMSE in forecast obtained by using

modified logistic function method is found to be 5471.31. Whereas, the RMSE in

forecast obtained by using conventional logistic function method is found to be

13469.31. Thus it is seen that RMSE is very much reduced in the case of modified

logistic function method.

4. Above results show that the proposed logistic function method improves accuracy

of forecasting wind power generation capacity significantly.
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Assessment of Wind Power Potential

4.1 Introduction

In the previous chapter, the improvised method for forecasting of cumulative wind

power generation capacity installed for any year in future is described. There it was

noted that in India the estimated wind power potential is 49,130 MW at 50 m height. By

the end of the year 2014, the recorded wind power installed generation capacity was

22,465 MW. Thus the installed generation capacity accounts for about 45.72 % of es-

timated wind power potential, and 54.27 % of estimated wind power potential still re-

mains to be utilized [11]. Also, in India the estimated wind power potential at 80 m

height is 1,02,000 MW which suggests that there is large scope for adding wind power

generation capacity in foreseeable future. It should be noted that in actual utilization of

wind power potential, due to site constraints it may not be possible to install all wind

turbines at uniform hub height either 50 m or 80 m. This fact underlines importance of

accurate assessment of wind power potential at different given hub heights at a given

prospective wind farm sites. Also there is need to continue reassessing wind power po-

tential at certain wind farm sites [2, 64].

Wind resource assessment (WRA) helps wind farm developers to determine the techni-

cal and economic feasibility of wind farm deployment at pre-investment stage. WRA in-

volves measuring and analyzing the wind speed and other meteorological data, namely,

41
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temperature, pressure and relative humidity at a site. Other characteristics of the site can

also be determined are distribution of wind speed, wind direction, wind power density,

wind shear and turbulence intensity. The annual energy production and capacity factor,

the two important descriptors of economic viability of the wind farm project can also

be estimated [137, 138].

In this chapter, most widely used Weibull probability distribution method and Rayleigh

distribution function method for determination of wind speed probability density func-

tion at prospective sites, are described. Weibull probability density distribution function

consists of two parameters, namely, shape parameter (k) and scale parameter (c). The

shape parameter and scale parameter are determined by using each of four different

statistical methods, namely, graphical method, standard deviation method, energy pat-

tern factor method and maximum likelihood method. Rayleigh distribution function is

special case of Weibull distribution function that corresponds to value of shape param-

eter, (k= 2) and the value of scale parameter, (c) equals to 1.2 times of annual average

wind speed at the site. In practice, both Weibull and Rayleigh methods are used for

characterizing available wind resource at a given site, so that complete understanding

characteristic of available wind resource is developed. Once the characteristics are de-

termined, the site can be evaluated for its suitability for wind power generation.

In the present work, two sites namely, BITS Pilani K. K. Goa campus, Goa (Lat.15◦23′N ,

Long. 73◦49′E), (referred to as site-I) and Periyapatti, TamilNadu (Lat.10◦45′18.5′′N ,

Long. 77◦15′11.0′′E), (referred to as site-II) are considered for assessment of avail-

able wind resource at these sites. The site-I typifies wind climate data measurement site

and site-II typifies model grid connected wind power plant, state of Tamilnadu, India.

For these two sites, detailed time series wind climate data is recorded for a period of

minimum one year. The data been analyzed by using standard methods for determining

characteristics of wind resource available at these sites. The results presented here serve

the purpose of reassessment of wind power potential at these sites. Wind resource po-

tential at a site is characterized in terms of average speed, wind speed distribution, wind

power density, air density, energy pattern factor and turbulence intensity. Out of these

characteristics, wind speed distribution can be determined by either Weibull distribu-

tion function or Rayleigh distribution function. The other characteristics are determined
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once speed distribution of the site is determined. Thus, accuracy of determination of

wind speed distribution becomes critically important. The accuracy of determining dis-

tribution of wind speed either by Weibull or Rayleigh, can be further improved if opti-

mization algorithm such as genetic algorithm can be used for determining refined values

of k and c. In this chapter, application of genetic algorithm is developed so as to obtain

refined values of the parameters k and c. The effectiveness of refined values of k and c

in obtaining accurate Weibull distribution function for the site is measured with respect

to Weibull distribution defined by conventional statistically determined k and c. Using

improved Weibull function other site characteristics such as wind power density and

capacity factor are obtained. The wind speed distributions and wind power density are

recalculated by using refined values of k and c in Weibull distribution at the site. The

accuracy in estimation of wind speed distribution is quantified in terms of root mean

square error. The RMSE obtained for wind speed distribution and wind power density

are compared with the corresponding values of measured data. It is concluded that use

of genetic algorithm to obtain refined values of k and c improves estimates significantly.

4.2 Standard Procedure for Determining Characteris-

tics of Wind Resource

The characteristics of wind resource can be determined on the basis of detailed wind

climate data at the site. The detailed time series wind climate data can be measured at

the site for a minimum period of one year as per the standard procedure [139, 140]. Al-

ternatively, such data can also be obtained from NIWE Chennai for certain sites. Under

National wind resource assessment programme, Ministry through National Institute of

Wind Energy, Chennai and state nodal agencies had installed and monitored 794 ded-

icated wind monitoring stations of height ranging from 20 m to 120 m throughout the

country. Fig. 4.1 shows the wind energy density map of India. It is observed that high

wind concentration is mainly in the states of Tamilnadu, Maharastra, Karnataka, Gujarat

and Andhra Pradesh.
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Fig. 4.1. Wind power density map at 50 m height (India) [11].

Wind climate data includes time series data on wind speed, direction, temperature,

pressure and relative humidity measured at a standard height. When the detailed cli-

mate data is available, the characteristic of the site such as average wind speed, wind

power density, standard deviation, air density, turbulence intensity, energy pattern fac-

tor, probability density function (PDF) and cumulative distribution function (CDF). The

characteristics at a given site are determined as described below:
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4.2.1 Average Wind Speed

The average value of wind speed is calculated using instantaneous values recorded as

time series data over a measurement interval of five minutes or ten minutes. The average

value of wind speed is taken to be representing value of instantaneous wind speed at the

end of the corresponding measurement interval. The average value is calculated using

equation below: [34]:

Vm =
1

N

N∑
i=1

Vi (4.1)

where, Vi, is instantaneous value of wind speed, Vm is the average value of wind speed

and N is the total number of observations during ten minutes interval. The above equa-

tion can also be used to calculate hourly/ monthly/ annual average wind speed etc.

4.2.2 Standard Deviation of Wind Speed

The standard deviation of wind speed distribution, σ, is determined over measurement

interval by using following equation [34]:

σ =

√√√√ 1

N − 1

N∑
i=1

(Vi − Vm)2 (4.2)

The value of standard deviation is required for estimation of turbulence intensity at the

site. The standard deviation is a measure of closeness of the set of data to the actual

average value.

4.2.3 Air Density

The instantaneous value of air density is required for determining wind power density.

The average value of air density is determined using instantaneous values recorded as

time series data over a measurement interval of five minutes or ten minutes. This average

value of air density is taken as representative value of instantaneous air density at the

end of the corresponding measurement interval. The air density is usually assumed to
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be constant (1.225 kg/m3). Alternatively, using the recorded hourly average values of

air temperature (t in ◦C ), and atmospheric pressure (p, in Pa), the air density (in kg/m3)

is calculated using the following equation [44, 141]:

ρ =
p

RT
(4.3)

where (T= t+273.3, in K), R is the universal gas constant (287 J/kg K). In the present

work, instead of assuming air density as constant, it is calculated using the expression

(4.4) [142, 143], which takes into account the relative humidity (in addition to temper-

ature and pressure) on the air density.

ρH =
pdMd + pvMv

RT
(4.4)

where,

pv = φ.psat (4.5)

psat = 6.1078 ∗ 10

(
7.5t

t+273.3

)
(4.6)

pd = p− pv (4.7)

where t is the temperature in ◦C, Md is the molar mass of dry air = 0.028964 kg/mol,

Mv is the molar mass of water vapour=0.018016 kg/mol, p is the pressure in Pa, φ is the

relative humidity, pv is the vapour pressure in Pa and pd is the dry pressure in Pa, ρH is

the air density with relative humidity into account.

4.2.4 Wind Power Density

The measured wind speed data has been used to estimate power in the wind (in watts),

as follows [34]:

PW =
1

2
ρiAVi

3 (4.8)

The measured values of wind speed and air density are averaged over measurement

interval of 5 minutes or 10 minutes. The average values of wind speed and air density

are taken to be representative values of corresponding variable at the end of respective
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measurement intervals. The instantaneous values of wind speed (Vi) and air density (ρi)

are used to determine wind power density using following equation [34].

WPDM =
1

2
ρiVi

3 (4.9)

where WPDM is the measured wind power density in W/m2, A is the swept area and

ρi is the instantaneous air density.

4.2.5 Turbulence Intensity

Wind turbulence is the rapid disturbance or irregularity in the wind speed. The turbu-

lence intensity (TI) is defined as the ratio of standard deviation of wind speed to the

average wind speed over a time interval of measurement, as follows [144]:

TI =

(
σ

Vm

)
(4.10)

Wind turbulence is an important site characteristic, because high turbulence levels may

decrease power output and cause extreme loading on wind turbine components, par-

ticularly in the complex terrain. The most common indicator of turbulence for siting

purposes is the standard deviation of wind speed. The turbulence intensity (TI) less than

or equal to 0.10 indicates low level of turbulence. The turbulence intensity value of 0.25

indicates moderate turbulence. Turbulence intensity greater than 0.25, indicates high

level of turbulence at the site.

4.2.6 Energy Pattern Factor

Energy pattern factor (EPF) is a useful parameter that indicates fluctuation of energy

available in the wind with respect to average value of energy available in wind. At a

given site, EPF is determined on monthly as well as annual basis. The EPF is a ratio of

the sum of the cube of the instantaneous wind speed during the period of observation to
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the cube of the mean wind speed during the period of observation and is given by [40]:

EPF =

(∑N
i=1 V

3
i

N(Vm)3

)
(4.11)

4.3 Weibull Probability Distribution Function

The Weibull probability distribution function for a site gives probability of finding wind

speed at a site. In Weibull distribution, the variations in wind speed are characterized

by the two functions namely, PDF and CDF [145].

Weibull distribution function is the widely used distribution function because of its flex-

ibility and simplicity of estimation of its two parameters (k and c) which can be deter-

mined by various methods as discussed in the following sections. The various methods

used in this chapter for determining the Weibull parameters are graphical method (least

square method), standard deviation method (empirical method), energy pattern factor

method (power density method) and maximum likelihood method (MLE).

The Weibull PDF, f(V ), and CDF, F (V ), are determined at the site [2, 3, 64, 146]. The

PDF indicates the fraction of time for which the wind speed probably prevails at the

location of measurement.

f(V ) =

(
k

c

)(
V

c

)k−1
exp

(
− V

c

)k
(4.12)

The CDF indicates the fraction of time that the wind speed is below a particular speed.

F (V ) = 1− exp

(
− V

c

)k
(4.13)

The scale parameter c (in m/s) indicates how ‘windy’ a wind location under considera-

tion is, whereas, the shape parameter, k (a dimensionless quantity), defines the shape of

the curve. The typical values of k range from 1.5 to 4.0 for most wind conditions and

the typical value of c is 1.2 times the average wind speed [147].
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4.3.1 Graphical Method for Determination of Shape and Scale Pa-

rameters

The application of the graphical method (GP) requires the wind speed data in cumula-

tive frequency distribution format. Time-series data must therefore be sorted into bins

(wind speed data is segregated into wind speed intervals [52]. Alternatively, the Weibull

cumulative distribution function is transformed into a linear equation by taking double

natural logarithm on both sides. The best fit line is found from the given data, as fol-

lows [27]:

ln[ln(1/[1− F (V )])] = k ln(Vi)− k ln c (4.14)

Let, Xi =ln Vi and Yi=ln[ln(1/[1-F (V )])] The linear approximation of this data is ob-

tained using the method, in the form of straight line equation Y1=a1X + b1, where k

gives the slope of this line (a1) and (−k ln c) represents the intercept (b1). Thus Weibull

parameters are obtained as follows [27]:

k = a1 (4.15)

c = e

(
−b1
a1

)
(4.16)

The parameters k and c are used to construct Weibull distribution function using 4.12.

4.3.2 Standard Deviation Method for Determination of Shape and

Scale parameters

The standard deviation (SD) method is also one of the methods for determining shape

and scale parameters. The parameters k and c are determined using the average value of

wind speed Vm and standard deviation of wind speed σ, as follows [70]:

k =

(
σ

Vm

)−1.086
(4.17)

c =
Vm

Γ(1 + 1/k)
(4.18)
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where Γ(y) is the gamma function given by

Γ(y) =

∫ ∞
0

xy−1e−xdx

The value of gamma function is obtained from using standard Tables. The values of k

and c when substituted in 4.12 gives Weibull probability distribution function.

4.3.3 Energy Pattern Factor Method for Determination of Shape

and Scale Parameters

This is a new method proposed by Akdag and Ali in 2009 for estimation of shape and

scale parameters. Energy pattern factor (EPF) is the ratio of the total power available

in the wind to the power corresponding to the cube of the mean wind speed. The ad-

vantages of this method is that: (i) it has a simple formulation, (ii) it does not require

binning and solving linear least square problem or iterative procedure, (iii) also it is

more suitable to estimate power density for wind energy applications. The main advan-

tage of this method is that, if the wind power density and mean wind speed at a site are

known, then Weibull parameters can be estimated by using (4.23) and(4.24) [40].

The average wind speed can be calculated as follows

Vm = cΓ(1 + 1/k) (4.19)

The mean cubic wind speed (using the population moment equation) is,

(V 3)m = c3Γ(1 + 3/k) (4.20)

Epf =
Ptotal
P(Vm)3

=
(V 3)m
(Vm)3

(4.21)

Equation (4.21) can be rewritten as follows [40],

Epf =
Γ(1 + 3/k)

Γ3(1 + 1/k)
(4.22)
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Once the energy pattern factor, Epf is calculated by using the above equation, the shape

factor and scale factor can be estimated from the following equations:

k = 1 +
3.69

(Epf )2
(4.23)

c =
Vm

Γ(1 + 1/k)
(4.24)

4.3.4 Maximum Likelihood Estimation Method for Determination

of Shape and Scale Parameters

Maximum likelihood estimation (MLE) develops a likelihood function based on the

available data and finds the values of the parameter that maximize the likelihood func-

tion. The MLE method has many large sample properties that makes it attractive for

use. Let V1, V2, V3,.... be a random sample size N drawn from a PDF f(V, θ) where θ

is an unknown parameter.

The MLE method entails of finding the values of the parameters which maximize the

likelihood function. This method provides estimators which are asymptotically cen-

tered, have normal asymptotic distribution, and are efficient [148].

L =
N∏
i=1

fVi(Vi, θ) (4.25)

Now, the maximum likelihood method to estimate the Weibull parameters k and c [59,

63] is as follows:

L(V1, V2, .....VN , k, c) =
N∏
i=1

(k/c)(Vi/c)
k−1e−(Vi/c)

k

(4.26)

on taking logarithms of this equation and partially differentiating with respect to k and

c to maximize the likelihood estimators,

∂ lnL

∂k
=
N

k
+

N∑
i=1

lnVi −
1

c

N∑
i=1

V k
i lnVi = 0 (4.27)
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∂ lnL

∂c
=
−N
k

+
1

c2

N∑
i=1

V k
i = 0 (4.28)

on simplifying (4.27) and (4.28),

∑N
i=1 V

k
i lnVi∑N

i=1 V
k
i

=
1

k
− 1

N

N∑
i=1

lnVi (4.29)

on simplifying (4.29), the value of k can be obtained and expressed as follows:

k =

[∑N
i=1 V

k
i lnVi∑N

i=1 V
k
i

− 1

N

N∑
i=1

lnVi

]−1
(4.30)

Now, after obtaining k, substituting this value in the (4.27),

c =

[
1

N

N∑
i=1

V k
i

]1/k
(4.31)

The values of k and c when substituted in 4.12 gives Weibull distribution function.

Thus, parameters, shape, k and scale, c can be determined by any of the four methods

for a given site. However, for finding out most accurate method the RMSE between

analytical Weibull probability distribution and actual distribution is required to be de-

termined.

The method corresponding to minimum RMSE should be chosen for determining (k

and c) for a site. The values of k and c so determined can be further used to determine

probabilistic characteristic such as average wind speed, most probable wind speed, wind

speed carrying maximum energy and wind power density.

4.3.5 Determination of Probabilistic Characteristics using Shape

and Scale of Weibull Distribution

Using parameters k and c, the probabilistic characteristics such as average wind speed,

most probable wind speed, wind speed carrying maximum energy and wind power den-

sity are determined as follows:

Average wind speed (VmW ): The average wind speed can be computed using Weibull
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parameters as follows [149]:

VmW = cΓ

(
1 +

1

k

)
(4.32)

Most probable wind speed (Vmp): The most probable wind speed denotes the most

frequent wind speed for a given wind probability distribution and is determined as fol-

lows [149]:

Vmp = c

(
1− 1

k

)1/k

(4.33)

Wind speed carrying maximum energy (Vmax,E): The wind speed corresponding to

maximum energy at the site, is determined as follows [149]:

Vmax,E = c

(
1 +

2

k

)1/k

(4.34)

Wind power density (WPDW ): The wind power density at a given site is determined

as follows [149]:

WPDW =
1

2
ρc3Γ

(
1 +

3

k

)
(4.35)

Estimation of error in wind power density: The estimated wind power density using

(4.35), at a given site differs from the wind power density obtained by (4.9). The error

in estimation, is calculated as follows [34]:

Error (%) =
WPDW −WPDM

WPDM

.100 (4.36)

4.3.6 Estimation of Wind Speed Distribution

The accuracy of wind speed distribution obtained is determined in terms of RMSE and

correlation coefficient (R2), The expression for RMSE is given by (3.4) and R2 is de-

termined as follows [21]:

R2 =

N∑
i=1

(yi − zi)2 −
N∑
i=1

(xi − yi)2

N∑
i=1

(yi − zi)2
(4.37)
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where yi is the measured data, xi is the estimated data and zi is the mean value. The unity

value of R2 indicates complete agreement between measured data and the estimated

data.

4.4 Rayleigh Probability Distribution Function

The most commonly used wind speed distribution functions for fitting a measured wind

speed probability distribution in a given location over a certain period of time are the

Weibull and Rayleigh distributions. In the previous section, Weibull distribution is de-

scribed. The Rayleigh distribution function is derived from Weibull distribution function

which is a special case of the Pierson Class III distribution, where the value of k is 2. The

Rayleigh probability density distribution function, fR(V ), is expressed as follows [64]:

fR(V ) =

(
2V

c2R

)
e
−
(

V
cR

)2
(4.38)

where, cR is Rayleigh scale parameter, which is determined as follows [48, 150]

cR = 2
Vm√
π

(4.39)

The Rayleigh cumulative density function, FR(V ), is determined as

FR(V ) = 1− e−
(

V
cR

)2
(4.40)

4.4.1 Determination of Probabilistic Characteristics of Rayleigh Dis-

tribution

In this section, by using Rayleigh parameters, the average wind speed, most probable

wind speed, wind speed corresponding to maximum energy and wind power density are

determined.
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Average wind speed (VmR): The average wind speed can be computed using (4.41)

VmR = cR

√
π

4
(4.41)

Most probable wind speed (VmpR): The most probable wind speed denotes the most

frequent wind speed for a given wind probability distribution and is determined for the

site, as follows [151]:

VmpR =
cR√

2
(4.42)

Wind speed carrying maximum energy (Vmax,ER): The wind speed corresponding to

maximum energy at the site, is determined as follows [151]:

Vmax,ER = cR
√

2 (4.43)

Wind power density (WPDR): The wind power density is determined using Rayleigh

parameters as follows [151]:

WPDR =
3

π
ρV 3

mR (4.44)

where, VmR is calculated from (4.41)

Estimation of error in wind power density: The error in wind power density is deter-

mined as follows [34]

Error (%) =
WPDR −WPDM

WPDM

.100 (4.45)

4.5 Proposed Approach to Improve the Accuracy in Es-

timation of Distribution of Wind Speed

After finding the wind speed probability density distribution function at a site using

the aforementioned five methods. Out of the five methods, the method corresponding

to minimum RMSE (close to zero) and maximum R2 (close to one) is chosen as the

best method. In order to further improve the accuracy of the selected best method, in
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this work, use of genetic algorithm is proposed to refine the values of ‘k’ and ‘c’. The

RMSE is chosen as objective function for genetic algorithm. The steps involved in the

proposed approach are shown in Fig. 4.2. The assumed values of parameters of genetic

algorithm are listed in Table 4.1.

Enter the time series wind speed data

Use GP method 
to find k and c 
using (4.15) 
and (4.16)

Use SD method 
to find k and c 
using (4.17)
 and (4.18)

Use EPF method 
to find k and c 
using (4.23) 
and (4.24)

Use MLE method 
to find k and c 
using (4.30)
 and (4.31)

Use Rayleigh 
method to find c 

using (4.39) 
where k=2

Obtain  PDF using (4.12) 
 and CDF  using (4.13)

Obtain PDF using (4.39) 
and CDF using (4.40)

Calculate RMSE and R 2 using (3.4) and (4.37)
 for each of the five methods

Select best method on the basis of 
least RMSE  and R 2 error

Plot  PDF and CDF  for 
the best method

 Use GA to revise `k' and `c' of the selected
 best method:

(i) Assign  RMSE as fitness function
(ii) The chromosomes are `k' and `c'.
(iii) Minimize the fittness function

Calculate RMSE  and R 2 error

Plot  PDF  and CDF  for the
 proposed approach

 (ie., the best method combined with GA)

Fig. 4.2. Flowchart of proposed method for determining wind speed distribution
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Table 4.1. The parameters and their assumed value for finding optimum values of k
and c

S.No Parameters Typical value

1 Number of chromosomes 20

2 Number of generations 1500

3 Cross over probability 0.8

4 Elitism probability 0.1

4.6 Variation of Wind Power Density with Height

Using the measured wind data, wind speed and wind power density at different height

can be estimated by using power law method [77, 152]. The wind speed Vx at desired

heights (hx) above ground is estimated using following equation [153] :

Vx = Vr

[
hx
hr

]α
(4.46)

where Vr is the measured wind speed at a known height (hr) and α is the power law

index (exponent). The value of α is chosen as 0.14 [75].

If wind speeds (Vr1 and Vr2) measured at two different heights (hr1 and hr2) are known

then, α can be determined as

α =

[
ln(Vr2)− ln(Vr1)

ln(hr2)− ln(hr1)

]
(4.47)

Then the wind speed (Vx) at desired height (hx) is calculated using (4.46). Finally, the

wind power density Px is calculated as follows [154]:

Px = Pr

[
hx
hr

]3α
(4.48)

where Pr is the wind power density at measured height hr. The detailed steps involved

in the estimation of wind power density are shown in Fig. 4.3.
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Compute WPD using (4.9) for known height

Compute Vm , Vd, TI, EPF   
using  (4.1),(4.2),(4.10),(4.11), respectively

Enter  time series wind data recorded at 
met-mast height(s)

Is
 air 

density 
constant

 (1.225 kg/m3 ) ?
Compute air density using (4.4)

Yes

No

Is power
 law index (a) = 

const (0.14) 
?

Yes

Compute a
  using (4.47) 

Compute extrapolated  WPD using (4.48)

No

Interested 
in knowing

WPD at 
other 

height(s)?

Is
 wind speed

 data available 
only for one 

met-mast 
height ?

Compute 
 `a' using (4.53)

No

Yes

No

Yes

Fig. 4.3. Flowchart for extrapolation of wind power density

4.7 Estimation of Capacity Factor

With the knowledge of available wind resource at a site, the next step is to estimate

probable capacity factor of the wind power project which will ultimately determine

economic viability of the project. For wind farms, the range of values of capacity factor

is generally from 20 % to 40 %. A low capacity factor may indicate that the wind

resource is not adequate, or that the turbine is over-sized [155].

The performance of a wind machine installed at a given site can be evaluated on the
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basis of the average output power over a given period of time and also its capacity

factor [71]. At a site, the wind turbine characteristics such as rated power, cut in speed,

rated speed and cut out speed parameters should be properly selected in order to get

maximum capacity factor [66].

The mean output (Pout) can be calculated using the following expression based on dis-

tribution function [39, 72].

Pout = PeR

[
e−(

vc
c
)k − e−( vrc )k

(vr
c

)k − (vc
c

)k
− e−(

vf
c
)k
]

(4.49)

The capacity factor (Cf ) is defined as the ratio of the mean output power to the rated

electrical power (PeR) of the wind turbine [70].

Cf =
Pout
PeR

(4.50)

where vc, vr and vf are the cut in speed, the rated speed and the cut out wind speed

of the wind turbine, respectively. The wind speed at which the wind turbine first starts

to rotate and generate power is called cut-in speed. The wind speed at which the wind

turbine reaches its rated power output is called rated speed. The wind speed at which

the turbine is shut down and no power is generated above this speed is called cut-out

speed. The hub height is the distance from the ground level to the rotor of an installed

wind turbine.

It is commonly observed that in a wind farm, the hub height and meteorological mast

height is different. It is necessary to estimate wind speeds at hub height. The probability

density function can be used to obtain wind speeds at different heights (say the hub

height) as follows [39, 70, 71]. The boundary layer development and the effect of the

ground are non linear with respect to the wind speed, shape factor k and the scale factor

c, of the distribution will change as a function of height by the following equations [71].

c (h) = c0

(
h

h0

)α
(4.51)

k(h) = k0

[
1− 0.088 ln (h0

10
)

1− 0.088 ln ( h
10

)

]
(4.52)
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where c0 and k0 are the scale factor and shape parameter obtained using the proposed

approach, respectively at the measured height h0, and h is the hub height. The exponent

(α) is defined as [71]:

α =

[
0.37− 0.088 ln c0
1− 0.088 ln ( h

10
)

]
(4.53)

The above steps are shown in Fig. 4.4 in the form of flowchart.

Compute Pout using ( 4.49) for different 
turbine models

Compute capacity factor using (4.50) for 
different  turbine models

Use the revised values  `k' and `c'  obtained from the 
proposed method

Select the wind turbine model
(rated capacity, hub height, cut- in speed, rated speed, cut-out speed)

Is hub
 height =
met mast 
height ?

Compute exponent (a) using 

( 4.53) 

Compute new values of `k' and
 `c' for the hub height using 

(4.51) and (4.52), respectively
Yes

No

Fig. 4.4. Flowchart for estimation of capacity factor

4.8 Campaign for WRA-Measurement of Wind Clima-

tological Data

Wind Resource assessment is time-wise extensive and expensive process. The cam-

paign is, therefore, is supported by Government in several countries. The availability
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of detailed data at several sites has generated confidence among wind power devel-

opment. The basic steps in WRA at a site involve setting up meteorological mast for

anemometer, wind vane and measuring instruments for measuring ambient tempera-

ture, pressure and humidity, with programmable data logger facility. Usually, detailed

time-series data on wind speed, direction at 20 m, 50 m or 80 m height above ground

and data on ambient air temperature, pressure and humidity at about 3 m above ground

at a prospective wind farm site. The data recorded over a period of minimum one year

is considered for characterizing the wind resource at the site.

In this section, first standard procedure for determining characteristic of wind resource

using measured wind climatological data at experimental site at BITS Pilani K.K. Birla

Goa campus is demonstrated. Next, following the standard procedure, the characteris-

tics are determined using actual recorded data in a wind farm in Tamilnadu,a southern

state in India.

The experimental WRA site at BITS Pilani K.K. Birla Goa campus, Goa is referred as

site-I and existing commercial grid-connected wind farm is referred to as site-II in the

following.

4.8.1 Description of Site-I: Wind Climatological Data Recording

Station

The wind climatological data recording station at BITS-Pilani, K.K. Birla Goa campus,

Goa, India was commissioned on 1 May 2014. Thus, data measured for one year full

year upto 30 April 2015, is used for wind resource assessment at the site. The geograph-

ical location of the site is (Lat.15◦23′N , Long. 73◦49′E), altitude 75 m mean sea level

(MSL). The met mast installed at a height of 20 m AGL is shown in Fig. 4.5. The annual

meteorological data recorded at five minutes interval includes, wind speed, wind direc-

tion, measured at a height of 10 m and 20 m AGL. In addition to the wind speed and

direction data, air temperature, atmospheric pressure and relative humidity recorded at

3 m AGL, are listed in Table 4.2.
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Table 4.2. Technical specifications of sensors used at site-I

S.No. Parameter Sensor Measuring height Range

1 Wind speed 3 cup anemometer 10 m and 20 m 0-65 m/s

2 Wind direction Wind vane 10 m and 20 m 0-357 ◦

3 Air temperature Platinum resistance 3 m -40 ◦C to +60 ◦C

4 Relative humidity Solid state capacitive type 3 m 0 to 99 %

5 Atmospheric pressure Bellows connected to strain gauge 3 m 600 to 1100 hPa

Fig. 4.5. Wind climate data measurement at 20 m (AGL) at site-I

The recorded data is processed by using Windographer software [156]. The wind data

is represented as graphical time–series data and wind direction data is represented as

wind-rose diagram for the site. The five minutes data is used to obtain hourly average

data for the analysis. Here, only the wind data measured at 20 m height is used for the

analysis.
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Fig. 4.6 shows month wise daily variation of average wind speed measured at 20 m

(AGL). It is observed that the daily average wind speed varies between minimum of

1.38 m/s and maximum of 6.8 m/s occurring on 1 November and 22 July, respectively

in 2014.

Fig. 4.6. Month wise variation of daily average wind speed at site-I (20 m)

Fig. 4.7 shows month wise daily variation of average temperature at the site. It is ob-

served that the daily average temperature varies between minimum of 23.8 ◦C (11 July

2014) and maximum of 33.7 ◦C (6 June 2014).

Fig. 4.7. Month wise variation of daily average temperature at site-I
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Fig. 4.8 shows month wise daily variation of average relative humidity at the site. It is

observed that the daily average relative humidity varies between minimum of 43.2 % in

13 January 2015 and maximum of 97.2 % in 28 August 2014.

Fig. 4.8. Month wise variation of daily average relative humidity at site-I

Fig. 4.9 shows the wind rose diagram for the site. It is observed that prevalent direction

of wind during the year is from west to east for most part of the year. It is observed

that the predominant wind direction varies from month to month and the site mostly

experiences wind from West (49.24 %) and North-West (33.4 %) directions.

Fig. 4.9. Wind rose diagram at site-I (20 m)
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Using the hourly wind data, the statistical parameters are obtained using MATLAB, for

each month and year of measurement. These are monthly average wind speed (Vm),

standard deviation (σ), air density (ρ), wind power density (WPD), turbulence intensity

(TI) and energy pattern factor (EPF) are determined using (4.1), (4.2), (4.3), (4.4), (4.9),

(4.10) and (4.11), respectively, and are listed in Table 4.3.

Table 4.3. Month-wise variation of statistical characteristics at site-I

Month Year Vm Vd TI EPF ρC ρH WPDC WPDH

(m/s) (m/s) (kg/m3) (kg/m3) (W/m2) (W/m2)

May 2014 2.923 1.542 0.528 1.921 1.225 1.113 29.375 26.698

Jun 2014 3.740 1.639 0.438 1.584 1.225 1.114 50.767 46.176

Jul 2014 4.119 1.981 0.481 1.684 1.225 1.116 72.088 65.694

Aug 2014 3.595 1.618 0.450 1.612 1.225 1.102 45.870 41.271

Sep 2014 3.051 1.426 0.467 1.710 1.225 1.103 29.755 26.789

Oct 2014 2.248 0.959 0.426 1.630 1.225 0.952 11.349 8.824

Nov 2014 2.231 1.103 0.494 1.862 1.225 0.894 12.660 9.244

Dec 2014 2.400 1.206 0.502 1.881 1.225 0.892 15.922 11.597

Jan 2015 2.267 1.132 0.499 1.861 1.225 0.897 13.284 9.723

Feb 2015 2.545 1.496 0.588 2.195 1.225 0.893 22.169 16.161

Mar 2015 2.734 1.565 0.572 2.129 1.225 0.886 26.663 19.281

Apr 2015 3.296 1.809 0.549 2.001 1.225 0.885 43.890 31.714

Whole data 2.931 1.607 0.548 2.023 1.225 0.988 31.188 25.152

It is seen from the table that the monthly average wind speed, Vm varies between min-

imum of 2.231 m/s occurring in month of November 2014 to maximum of 4.119 m/s

occurring in July 2014, in the year. The annual average wind speed is 2.93 m/s.

From Table 4.3, it is also noted that the minimum value of σ is 0.959 m/s which occurs

in October and the maximum value of 1.981 m/s in July. The TI varies from minimum

of 0.426 in October to maximum of 0.588 in February 2015. The EPF varies from

minimum of 1.584 to a maximum of 2.195.

The air density (ρH), which takes into account of relative humidity in the calculation,

varies from minimum of 0.886 kg/m3 in March 2015 to maximum of 1.116 kg/m3 in July
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2014. The wind power density calculated using constant air density (ρC =1.225 kg/m3),

WPDC , varies from a minimum of 11.349 W/m2 to a maximum of 72.088 W/m2. Also

the wind power density, WPDH , corresponding to ρH varies from a minimum of 8.824 W/m2

to a maximum of 65.694 W/m2. Table 4.4 lists the wind power classification on the ba-

Table 4.4. Wind power classification on the basis of wind speed and wind power
density at 50 m AGL [139]

Wind power class
wind speed wind power density

(m/s) (W/m2)
1 Poor 0-5.6 0-200
2 Marginal 5.6-6.4 200-300
3 Fair 6.4-7 300-400
4 Good 7.0-7.5 400-500
5 Excellent 7.5-8 500-600
6 Outstanding 8.0-8.8 600-800
7 Superb > 8.8 >800

sis of wind speed and wind power density measured at 50 m AGL [139]. In the case

of site-I, the wind power density at 20 m, 50 m, 100 m is found to be 25.15 W/m2,

84.38 W/m2 and 210.82 W/m2, respectively. On the basis of wind power density, the

measurement site falls under class 1 category and thus the site-I is considered to be

small wind regime with low wind power density.

4.8.2 Description of Site-II: Model Wind Farm

The site-II represents grid integrated wind farm in India situated at Periyapatti, Tamil-

Nadu (hereafter named as “site-II”) (Lat.10◦45′18.5′′N , Long. 77◦15′11.0′′E), altitude

327 m mean sea level. The site is located approximately 22 km from Udumalpet, Coim-

batore, TamilNadu. The main source of wind is expected through Palghat pass. The site

provided detailed wind climatological data measured for a period of two years from 1

October 2010 to 30 September 2012 at four different heights, viz., 35 m, 50 m, 70 m and

85 m at an interval of 10 minutes, wind direction measured at two different heights at

63 m and 83 m AGL. In addition, the data includes air temperature measured at 6 m AGL

are used for the analysis. Fig. 4.10 shows the met mast installed at the site. The data

recorded includes, time series data on wind speed measured Here, only the time-series
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Fig. 4.10. Met mast installed at a height of 85 m AGL at site-II

wind data of 10 minutes interval recorded at 85 m height is used for the analysis. The

raw time series measured data is processed using Windographer, Ver 3.3, the compu-

tational software obtained from WindoGrapher, Canada‘[156]. The measured data is

represented as graphical time–series data and measured wind direction data is repre-

sented as wind-rose diagram for the site.
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Fig. 4.11 shows month wise daily variation of mean wind speed measured at 85 m

(AGL). It is observed that, the daily mean wind speed varies between minimum of

1.38 m/s occurring on 3 December 2011 and maximum of 12.8 m/s occurring on 24

May 2012.

Fig. 4.11. Month wise variation of daily average wind speed at site-II (85 m)

Fig. 4.12 shows the wind rose diagram for the site which is measured at 83 m height. It

is seen that predominant direction of the site mostly receives about 62 % from westerly

winds for most part of the year. Fig. 4.13 shows the predominant direction with the wind

speed distribution. It is observed that 35 % of the time the wind speed lies in the range

of 8 m/s to 12 m/s in the western part of the site.

Fig. 4.14 shows month wise daily variation of mean temperature at the site. It is ob-

served that, the daily mean temperature varies between minimum of 20.5 ◦C occur in

the month of 27 December 2011 and maximum of 30.7 ◦C occur in 19 April 2012.

Using the hourly wind data, the statistical parameters are obtained using MATLAB,

for the year of measurement. The average wind speed (Vm), standard deviation (σ), air

density (ρ), wind power density (WPD), turbulence intensity (TI) and energy pattern

factor (EPF) are determined using (4.1), (4.2), (4.3), (4.4), (4.9), (4.10) and (4.11),

respectively, are listed in Table 4.5.
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Fig. 4.12. Wind rose diagram at site-II (83 m)

Fig. 4.13. Wind rose diagram showing distribution of wind speed in the prevalent
direction at site-II

It is seen from the table that the monthly Vm varies between minimum of 3.344 m/s

occurring on November 2010 to maximum of 10.904 m/s occurring on July 2011.

From Table 4.5, it is also noted that the minimum value of standard deviation (σ) is

1.251 m/s which occurs in January 2012 and maximum value of 3.307 m/s in October

2010. The TI varies from minimum of 0.171 in July 2011 to maximum of 0.607 in

November 2010. The EPF varies from minimum of 1.088 in July 2011 to maximum of

2.212 in November 2010.
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Fig. 4.14. Month wise variation of daily average temperature at site-II

The air density (ρH), which takes into account relative humidity in the calculation,

varies from minimum of 1.167 kg/m3 in April 2012 to maximum of 1.189 kg/m3 in

December 2010. The wind power density calculated by using for constant air density

(ρC =1.225 kg/m3), WPDC , varies from a minimum of 50.681 W/m2 to a maximum of

863.808 W/m2. Also the wind power density, WPDH , corresponding to ρH varies from

a minimum of 49.000 W/m2 to a maximum of 832.306 W/m2.

4.8.2.1 Weibull Probability Distribution Analysis using Graphical Method

In this section, the shape and scale parameters determined by graphical method is dis-

cussed in this Section 4.3.1.

It is observed from Table 4.6 that VmW varies from minimum of 3.424 m/s in November

2010 to maximum of 10.904 m/s in July 2011. Similarly, k varies from minimum of

1.394 occurring on November 2010 to maximum of 7.133 occurring on July 2011. Also,

c varies from minimum of 3.754 m/s occurring on November 2010 to maximum of

11.666 m/s occurring on July 2011. The values of k and c over a period of two years

are estimated as 1.749 and 7.578 m/s, respectively, as listed in Table 4.6.
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Table 4.5. Month-wise variation of statistical parameters at Site-II

Data Vm Vd TI EPF ρC ρH WPDC WPDH

(m/s) (m/s) (kg/m3) (kg/m3) (W/m2) (W/m2)
Oct 2010 7.543 3.307 0.438 1.527 1.225 1.180 401.369 386.493
Nov 2010 3.344 2.031 0.607 2.212 1.225 1.184 50.681 49.000
Dec 2010 4.240 2.108 0.497 1.827 1.225 1.189 85.307 82.820
Jan 2011 4.290 1.784 0.416 1.504 1.225 1.187 72.772 70.520
Feb 2011 4.300 1.841 0.428 1.558 1.225 1.182 75.870 73.209
Mar 2011 4.709 2.269 0.482 1.731 1.225 1.173 110.718 105.978
Apr 2011 5.000 2.921 0.584 2.107 1.225 1.171 161.322 154.208
May 2011 8.947 2.427 0.271 1.205 1.225 1.169 528.568 504.524
Jun 2011 10.315 2.160 0.209 1.132 1.225 1.179 761.185 732.594
Jul 2011 10.904 1.866 0.171 1.088 1.225 1.180 863.808 832.306

Aug 2011 10.209 2.134 0.209 1.128 1.225 1.180 734.918 707.908
Sep 2011 9.919 1.969 0.199 1.118 1.225 1.178 667.939 642.467
Oct 2011 4.683 2.540 0.542 1.958 1.225 1.178 123.219 118.541
Nov 2011 3.459 1.948 0.563 2.143 1.225 1.186 54.333 52.593
Dec 2011 3.722 1.651 0.444 1.615 1.225 1.188 51.007 49.460
Jan 2012 4.052 1.251 0.309 1.290 1.225 1.189 52.542 51.019
Feb 2012 4.567 1.754 0.384 1.446 1.225 1.181 84.364 81.316
Mar 2012 4.871 2.615 0.537 1.943 1.225 1.170 137.492 131.328
Apr 2012 5.284 2.747 0.520 1.849 1.225 1.167 167.021 159.117
May 2012 9.931 2.587 0.260 1.194 1.225 1.170 716.034 683.849
Jun 2012 10.831 1.923 0.178 1.095 1.225 1.177 852.127 818.667
Jul 2012 10.673 2.053 0.192 1.110 1.225 1.178 826.850 795.359

Aug 2012 10.166 2.135 0.210 1.131 1.225 1.180 727.674 700.717
Sep 2012 9.632 2.098 0.218 1.138 1.225 1.177 623.038 598.596

Whole data 6.913 3.630 0.525 1.846 1.225 1.179 373.599 359.544

It is observed from the table, that the Vmp varies from minimum of 1.516 m/s to maxi-

mum of 11.421 m/s and VmaxE varies from 5.242 m/s in January 2012 to 15.252 m/s in

October 2010. The annual values of VmW , Vmp and VmaxE are estimated as 6.749 m/s,

4.66 m/s and 11.719 m/s, respectively.

From the table, it is observed that WPDWC corresponding to ρC varies from a minimum

of 64.623 W/m2 in the month of November 2011 to a maximum of 861.906 W/m2 in

the month of July 2011 and WPDWH corresponding to ρH varies from 59.651 W/m2 to

a maximum of 830.473 W/m2.

The percentage change in WPDWC (416.811 W/m2) to WPDWH (401.130 W/m2) is

−3.59%. Also the percentage change in the annual variation of wind power density

calculated using the actual value (359.544 W/m2) to that of the wind power density

estimated using Weibull parameters (401.130 W/m2) is found to be 11.566 %. Also,
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Table 4.6. Month-wise variation of Weibull parameters and their associated statistical
parameters using graphical method at site-II

Month VmW k c Vmp VmaxE WPDC WPDV WPDE RMSE R2

(m/s) (m/s) (kg/m3) (kg/m3) (W/m2) (W/m2)
Oct-10 8.075 1.559 8.984 4.654 15.252 829.001 798.275 106.543 0.023 0.131
Nov-10 3.424 1.394 3.754 1.516 7.108 74.908 72.423 47.803 0.018 0.737
Dec-10 4.297 1.995 4.848 3.420 6.867 93.047 90.335 9.074 0.018 0.778
Jan-11 4.391 1.992 4.954 3.491 7.023 99.414 96.337 36.610 0.017 0.800
Feb-11 4.354 2.114 4.916 3.630 6.736 91.540 88.329 20.654 0.011 0.920
Mar-11 4.753 1.943 5.360 3.694 7.716 129.392 123.852 16.866 0.007 0.943
Apr-11 5.054 1.584 5.632 2.999 9.431 198.891 190.119 23.288 0.007 0.888
May-11 9.036 3.329 10.069 9.045 11.598 601.683 574.313 13.833 0.016 0.754
Jun-11 10.331 5.808 11.156 10.799 11.739 754.238 725.908 -0.913 0.008 0.931
Jul-11 10.923 7.133 11.666 11.421 12.077 861.906 830.473 -0.220 0.009 0.942

Aug-11 10.225 5.213 11.109 10.664 11.823 748.222 720.723 1.810 0.006 0.967
Sep-11 9.928 6.005 10.701 10.382 11.226 665.181 639.815 -0.413 0.006 0.972
Oct-11 4.727 1.756 5.309 3.285 8.185 142.502 137.093 15.650 0.007 0.940
Nov-11 3.521 1.692 3.945 2.326 6.255 61.623 59.651 13.418 0.020 0.791
Dec-11 3.805 1.931 4.290 2.941 6.199 66.789 64.764 30.942 0.022 0.770
Jan-12 4.080 3.317 4.547 4.081 5.242 55.478 53.870 5.588 0.013 0.949
Feb-12 4.637 2.374 5.232 4.155 6.768 100.172 96.554 18.738 0.012 0.911
Mar-12 4.907 1.799 5.518 3.515 8.359 154.905 147.960 12.665 0.005 0.960
Apr-12 5.302 1.878 5.973 3.985 8.786 186.166 177.356 11.463 0.007 0.914
May-12 9.984 3.738 11.057 10.173 12.400 771.621 736.937 7.763 0.008 0.909
Jun-12 10.850 6.977 11.601 11.347 12.028 847.348 814.076 -0.561 0.010 0.915
Jul-12 10.682 6.241 11.489 11.172 12.013 822.849 791.510 -0.484 0.006 0.971

Aug-12 10.172 5.584 11.009 10.627 11.629 725.663 698.781 -0.276 0.007 0.952
Sep-12 9.649 4.914 10.520 10.044 11.276 637.961 612.934 2.395 0.008 0.951

Whole data 6.749 1.749 7.578 4.666 11.719 416.811 401.130 11.566 0.010 0.703

from the table, the RMSE and R2 for the whole data is found to be 0.0098 and 0.703,

respectively.

Similar results obtained for monthly variation of parameters by using other methods

such as standard deviation, energy pattern factor method, maximum likelihood method

and Rayleigh distribution method are presented in Appendix B.

4.8.2.2 Comparison of Weibull and Rayleigh Distribution Methods

In this section, the results of the comparative study of Weibull distribution methods and

Rayleigh distribution method are presented. From Table 4.7, it is observed that for the

complete data the graphical method is the best method for site-II in terms of accuracy

in fitting the PDF as indicated by RMSE and R2 values. From Table 4.7, it is observed

that the best values of k and c are 1.749 and 7.578 m/s. These values are revised using

genetic algorithm method to improve the accuracy of estimation in terms of R2 error in

PDF.
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Table 4.7. Comparison of Weibull distribution methods to Rayleigh distribution
method at site-II

Method(s) VmW k c Vmp VmaxE WPDC WPDV WPDE RMSE R2

(m/s) (m/s) (m/s) (m/s) (W/m2) (W/m2) (%)
Graphical 6.749 1.749 7.578 4.666 11.719 416.811 401.130 11.566 0.0098 0.703
Standard deviation 6.913 2.013 7.802 5.546 10.991 384.041 369.593 2.795 0.0107 0.650
Energy pattern factor 6.913 2.083 7.805 5.701 10.783 371.572 357.593 -0.543 0.0112 0.615
Maximum likelihood 6.888 1.948 7.768 5.366 11.165 392.767 377.991 5.131 0.0103 0.674
Rayleigh distribution 6.913 2.000 7.801 5.516 11.032 386.682 372.135 3.502 0.0105 0.656

4.8.2.3 Use of Proposed Approach to Improve the Accuracy in Estimation of PDF

The proposed approach has been discussed in section 4.5. Using proposed approach,

the annual values of k and c of the best method, i.e., GP method in this case are revised

and corresponding RMSE is listed in Table 4.8. It is observed from the table, that the

annual value of RMSE is improved by 12.24 % while using the proposed approach. This

is evident in Fig. 4.15, where it is seen that the proposed approach (i.e., GP + GA) fits

the whole data accurately. The actual wind power density is found to be 359.544 W/m2,

whereas the WPD calculated using the best method (i.e., graphical method) is found to

be 401.137 W/m2. Using the proposed method, the WPD obtains as 360.82 W/m2. From

this it is clear that the proposed method estimates the WPD very close to the actual

calculated WPD than the best method (graphical method).

Table 4.8. Improvement in RMSE using proposed approach for site-II.

Parameters Graphical method Proposed approach (GP + GA)
k 1.749 2.082

c (m/s) 7.578 7.827
RMSE 0.0098 0.0086
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Fig. 4.15. Comparison of proposed approach with other methods in estimation of pdf
(site-II)

4.8.2.4 Variation of Wind Power Density with Heights

The value of wind power density obtained at 85 m height AGL is estimated as 359.544 W/m2.

Further the wind power density at different heights, viz., 100 m, 120 m and 150 m AGL,

are estimated using the power law equation (4.46) and (4.48), respectively. The proce-

dure is detailed in the form of flowchart shown in Fig. 4.3. As the wind speed data

recorded at two different heights (70 m and 85 m) are 6.695 m/s and 6.913 m/s, respec-

tively. The power law index, α is calculated using (4.47). The wind power density at

different heights are listed in Table 4.9.

Table 4.9. Variation of wind power density with height (AGL) at site-II

Data WPDm70 WPDm85 α WPD100 WPD120 WPD150

(W/m2) (W/m2) (W/m2) (W/m2) (W/m2)
whole data 332.249 359.544 0.165 389.643 426.419 476.185

The wind power density is estimated at higher heights, 100 m and 150 m AGL are found

to be 389.64 W/m2 and 476.18 W/m2, respectively.



Chapter 4. Assessment of Wind Power Potential 75

4.8.2.5 Wind Turbine Characteristics and Capacity Factor

In this section, parameters (k and c) obtained from the proposed approach is used to

find the capacity factor of the site for the selected wind turbine models. The procedure

is detailed in the form of flowchart as shown in Fig. 4.4. The various wind turbine

models with their specifications are shown in Table 4.10.

Table 4.10. The wind turbine characteristics for wind turbine models for site-II [157,
158]

S.No. Manufactures Cut-in speed Rated speed Cut-out speed Hub height Rated power
(m/s) (m/s) (m/s) (m) PeR(kW)

1 Vensys 77 3 13 22 85 1500
2 Vensys 82 3 12.5 22 85 1500
3 Vensys 87 3 12 22 85 1500
4 Suzlon S 95 3.5 11 25 95 2100
5 Suzlon S 97 3.5 11 20 97 2100

The capacity factors for site-II for different turbine models are listed in Table 4.11. From

the table, it is observed that the capacity factor estimated for the actual wind turbine

installed at the site (Vensys 82) is 38.3 %. Further the highest capacity factor of 44.6 %

is estimated when wind turbine, Suzlon S 95 is installed.

Table 4.11. Estimation of capacity factor for wind turbine models at site-II

S.No. Turbine α k c Pout Cf
(m/s) (kW) (%)

1 Vensys 77 0.183 1.749 8.405 546.903 36.5
2 Vensys 82 0.183 1.749 8.405 575.144 38.3
3 Vensys 87 0.183 1.749 8.405 604.766 40.3
4 Suzlon S 95 0.184 1.770 8.579 937.098 44.6
5 Suzlon S 97 0.185 1.774 8.613 920.123 43.8

4.9 Conclusion

In this chapter, genetic algorithm is used for obtaining refined values of parameters k

and c is developed. The values of these parameters are critically important in determin-

ing Weibull and Rayleigh distribution at the site. Using the standard procedure Weibull
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distribution and Rayleigh distribution are obtained for two different sites. Site-I typ-

ifies wind climate measurement sites and site-II typifies existing grid connected wind

farm. Next, genetic algorithm is used to obtain refined values of k and c for each of these

sites. The two distributions, namely, Weibull distribution and Rayleigh distribution are

obtained using refined values of k and c. The effectiveness of refined values of k and c in

obtaining Weibull and Rayleigh distribution is determined in terms of root mean square

error. Results show that analytically obtained distributions are closely agree with actual

distributions obtained by using standard procedures. The distribution determined by re-

fined values of k and c have been further used to determine wind power density with

height above the ground. The values of probabilistic characteristic is in close agreement

in terms of RMSE with the empirically obtained values. The following conclusions are

drawn from the study:

1. In the case of site-I, the annual average wind speed measured at 20 m height is

found to be 2.931 m/s.

2. The wind power density is estimated at 20 m, 50 m, 100 m height above ground

is found to be 25.15 W/m2, 84.38 W/m2 and 210.82 W/m2, respectively.

3. On the basis of wind power density, the site-I is classified as class-1 wind power

classification and thus the site is considered to be small wind regime with low

wind power density.

4. In the case of site-II, the average wind speed measured at met mast height of 85 m

is found to be 6.931 m/s.

5. The wind power density is estimated at met mast height of 85 m is found to be

359.544 W/m2 and it is further estimated at higher heights, 100 m and 150 m

AGL are found to be 389.64 W/m2 and 476.18 W/m2, respectively.

6. On the basis of wind power density, the site-II falls under a class-3 wind power

classification.

7. Graphical method is found to be best method in determining shape and scale

parameters of wind speed probability density distribution.
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8. The root mean square value in determining of shape and scale parameters of wind

speed probability density distribution is found to be 0.0098, which is further im-

proved to 0.0086 by using genetic algorithm. Thus the percentage change in error

obtained is 12.24 %, leading to improvement in accuracy.

9. Further, capacity factor is determined for existing wind turbine installed at site-II

is found to be 38.3 %.

10. Site-II is found to be suitable for commercial wind power generation.

However, the methods of assessment used in the chapter do not take into account on

types of terrain (complex terrain or flat terrain). Also, the methods used in this chapter

are valid for determining wind resource at the site of measurement. These methods

cannot be used to estimate wind resource potential at any other location in the vicinity

of met mast. In real wind farm, it is often the case that wind climate data is measured

at one place and it is required to estimate wind resource potential at any other point in

the vicinity. In such cases, the methods presented in this chapter cannot be used and

use of powerful computer simulation tools becomes necessary. Using these tools, the

complete performance of actual wind farm can be simulated, to be able to estimate

annual energy production and capacity factor at the wind farm and effect of terrain can

also be investigated. This is covered in the next chapter.



Chapter 5

Effect of Terrain on Wind Resource

Assessment

In the previous chapter, procedure for wind resource assessment is demonstrated for

estimates of wind power density at the point of measurement. However, the effect of

terrain at the site is not taken into account. Also, the methods used are valid for deter-

mining wind resource at the point of measurement (met mast). These methods cannot

be used to estimate wind resource potential at any other location in the vicinity of met

mast. In this chapter, industry scale commercial softwares are used for estimating wind

resource potential on area of land for wind farm when data measured at one point is

available. The software tools used take into account on details of terrain such as orog-

raphy (height variation of terrain) and roughness (obstacles due to tall buildings, veg-

etation) at the site. In the present chapter, use of software simulation tools taking into

account the effect of terrain in wind resource assessment is presented. The software

tools used are WindSim, Meteodyn and WindFarmer. The results are obtained for wind

farm in the state of Tamilnadu (site-II).

78



Chapter 5. Effect of Terrain on Wind Resource Assessment 79

5.1 Introduction

Wind resource assessment is the first step in development of wind-farm for electric

power generation. Wind farm modeling software can be used to identify optimum lo-

cations of a given region. Further, the software tools facilitate improvements in cost

efficiency and annual energy production (AEP). The software tools for complex terrain

use Computational Fluid Dynamics (CFD) based mathematical models, whereas those

for flat terrain use linear tools [159].

5.2 WindSim Simulation Software Tool

WindSim [160] is a industry scale commercial software developed by WindSim AS

Tonsberg, Norway. WindSim simulation software is suitable for wind resource as-

sessment in complex terrain. This software uses CFD based mathematical model using

Reynolds Averaged Navier Stokes (RANS) equations using the finite volume method. This

software can be used in wind power industry for estimation of annual energy production

and capacity factor in complex terrain for evaluation of site in pre-investment stage.

5.2.1 Steps in Simulation using WindSim Software

WindSim Version.7, consists of six modules named as terrain, wind fields, objects, re-

sults, wind resources and energy [161]. The flowchart describing the different processes

involved in WindSim simulation is shown in Fig. 5.1. The steps are described are as fol-

lows:

1. Using WindSim Express, the terrain data for a site from the Shuttle Radar To-

pography Mission (SRTM) data source. This includes, orography file, roughness

and elevation of the site. The online map for the site is downloaded from Google

earth using Global mapper. The Global mapper is a geographic information sys-

tem (GIS) software package, which uses both vector, elevation data and provides

viewing, conversion, and other general GIS features.
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Fig. 5.1. Overview of WindSim software simulation tool.
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2. The position of wind turbines in-terms of geographical coordinates, i.e., latitude

and longitude of the site along with meteorological mast location in terms of

latitude and longitude has to be imported to the software. Also the wind turbine

specifications are to be supplied, viz., manufacturer name, turbine height and

rotor diameter are required to supplied.

3. The climatological data for the site namely, wind speed and direction is required

as input to the software. The file generated by Windographer software as (.tws

or .wws format) is required to be input to estimate the wind flow pattern of the

site. Thus, estimation for 12 different direction sectors of 30 degree each are

estimated for the site.

4. The power curve and thrust coefficient values of wind turbines are also required

to be input to the software for the wind flow simulation.

5. For estimation of wake effect, Jensen wake model is used by the WindSim soft-

ware.

6. The software is capable of generating contour map of site, which gives informa-

tion on wind speed and wind direction.

7. The capacity factor and annual energy production of the individual turbine as well

as the that aggregated for entire site under consideration can be obtained.

The flowchart describing the steps in simulation to be followed are shown in Fig. 5.2.

5.2.2 Simulation of Site-II: Model Wind Farm using WindSim

The geographical coordinates of model wind farm is (Lat.10◦45′18.5′′N , Long. 77◦15′11.0′′E),

altitude 327 m MSL. The detailed description of model wind farm is given in sec-

tion B.1.

The wind farm consists of 33 wind turbines that are located at widely separated loca-

tions on the site. Table 5.1 provides information of the turbine locations (turbine ID),
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start

Using WindSim express, download terrain data from online data sources ( SRTM, Google earth)

Download terrain data ( Orography and Roughness) map by providing latitude and longitude of the site

Select turbine positions by providing latitude and longitude of the  location

Enter the specifications of turbine  (rated power, cut in, rated, cut out speed, hub height, rotor
 diameter, power curve and thrust coefficient curve or values).

Enter the climatological data from met mast  (wind speed and wind direction) 

The climatological data can be exported from Windographer software (.tws format)

Select Jensen wake model for wake effect calculation

The wind resource map for the entire windfarm is estimated

The AEP with and without wake, wake losses, capacity factor with and without wake for individual 
wind turbine and  entire farm are estimated

stop

Fig. 5.2. Flowchart for simulating wind farm using WindSim simulation software tool

height of the hub above mean sea level, nearest turbine and the distance from the nearest

turbine. These wind turbines and met mast are installed at a height of 85 m AGL.

The coordinate system used is Universal Transverse Mercator (UTM) coordinate sys-

tem. The terms Eastings and Northings are geographic Cartesian coordinates for a point.

Easting refers to the eastward-measured distance (or the x-coordinate), while northing

refers to the northward-measured distance (or the y-coordinate) UTM-zones. The ac-

tual positions (vertical view and horizontal view) of the wind turbines in the wind-farm
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Table 5.1. Location of wind turbine positions specified in terms of UTM coordinates
at site-II

Turbine Eastings Northings Height Nearest turbine Distance to
ID (m) (m) (m) ID nearest turbine (m)
1 744820 1184171 333 15 499.2
2 741636 1183743 361 3 2145.7
3 743752 1184099 345 15 899.5
4 736383 1186434 356 6 948.9
5 737708 1184902 358 7 590.9
6 736932 1185660 353 7 720.8
7 737632 1185488 353 5 590.9
8 747458 1179314 340 12 1397.5
9 734493 1185390 364 10 580.7

10 735059 1185520 360 9 580.7
11 739179 1184331 360 5 1577.9
12 747541 1180709 335 13 1251.2
13 746338 1180365 339 12 1251.2
14 744693 1179009 350 13 2131.8
15 744575 1183736 334 1 499.2
16 743936 1182983 338 15 987.6
17 744176 1175324 357 27 1082.9
18 746895 1195407 331 24 577.0
19 746290 1195750 331 18 695.5
20 745026 1195822 335 23 645.3
21 743944 1195863 342 30 605.9
22 747898 1196242 334 28 905.8
23 745613 1195554 333 20 645.3
24 746861 1194831 329 31 518.4
25 745392 1197556 345 29 623.0
26 743285 1176472 363 27 936.3
27 744219 1176406 358 26 936.3
28 747026 1195997 338 18 604.4
29 745914 1197896 347 25 623.0
30 743798 1195275 345 21 605.9
31 747015 1194336 327 24 518.4
32 745103 1198371 354 25 864.7
33 744680 1190579 336 31 4423.5

obtained from Google earth are shown in Fig. 5.3 and Fig. 5.4, respectively. The terrain

map and actual layout of wind turbines in the wind farm obtained by using WindSim

are shown in Fig. 5.5.

The wind turbines used in the wind farm are of manufactured by ReGenTech, Ven-

sys82 [157]. The wind turbine properties are listed in Table 5.2. Also the power curve

and thrust coefficient curve of the wind turbine used are shown in Fig. 5.6.



Chapter 5. Effect of Terrain on Wind Resource Assessment 84

Fig. 5.3. Google map of site-II (vertical view).

Table 5.2. Specifications of wind turbine used at site-II

Name Vensys82
Manufacturer ReGen Tech
Rotor diameter 82 m
Hub height 85 m
Rated power 1500 kW
Air density 1.225 kg/m3

Cut-in wind speed 3 m/s
Rated wind speed 12.5 m/s
Cut-out wind speed 22 m/s
Frequency 50 Hz

5.2.2.1 Wind Climate Condition at Site-II

The average wind condition at the site is used in the calibration of the wind resources

and in the annual energy production estimation. A wind climatology is presented as a
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Fig. 5.4. Google map of site-II (horizontal view).

(a) Terrain of the site (b) Windfarm layout

Fig. 5.5. View of terrain and wind farm layout using WindSim simulation.

wind rose, giving the average wind speed distribution divided in velocity intervals (bins)

and wind directions (sectors). The wind directions are divided in 12 sectors of 30 degree

each, where the first sector is centered around north.
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(a) Power curve (b) Thrust Curve

Fig. 5.6. Power curve and thrust coefficient curve of wind turbine used for simulation.

The average wind speed, frequency of distributions, Weibull parameters (i.e., shape, k,

and scale, c) on 12 sectors are listed in Table 5.3. From the table, it is observed that the

average wind speed is maximum (9.3 m/s) at the 9th sector and minimum (2.20 m/s)

at the 7th sector. The wind rose diagram and Weibull distribution diagram are shown

in Fig. 5.7. From the figures, it is observed that the site is having maximum % of fre-

quency wind speed distribution (i.e.,44.21 %) obtained at 10th sector. The maximum

value of Weibull shape (k) parameter recorded is 5.26 at 9th sector and minimum value

recorded is 1.18 at 1 st sector. Further, the maximum value of Weibull scale (c) param-

eter recorded is 10.66 m/s at 9th sector and minimum of 2.46 m/s is recorded at 7 th

sector.

Table 5.3. Average wind speed, frequency of distribution and Weibull parameters
(shape,k and scale c) versus sectors

Sectors 1 2 3 4 5 6 7 8 9 10 11 12
Average wind speed (m/s) 2.35 2.93 3.81 4.28 3.66 2.62 2.20 2.26 9.31 8.83 2.77 2.27
Frequency (%) 1.09 2.41 10.00 16.57 4.56 1.22 0.56 0.62 16.56 44.21 1.46 0.74
Weibull shape, k 1.18 2.25 2.41 2.95 2.65 2.27 1.23 1.44 5.26 4.09 1.56 1.35
Weibull scale, c 2.58 3.44 4.30 4.82 4.24 3.15 2.46 2.58 10.66 9.95 3.11 2.50

Simulation and 3D Model Setup at Site-II:

A numerical wind database is established by CFD simulations and is used to transfer the

wind conditions from the measurement point to the wind turbine hub positions. A digital

terrain model (DTM) containing elevation and roughness data for the site are listed in
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(a) Wind rose diagram (b) Weibull distribution

Fig. 5.7. Wind rose and frequency distribution with Weibull fitting for all sectors

Table 5.4 and corresponding maps are shown in Fig. 5.8. The complexity of the site

Table 5.4. Coordinates, extensions and resolution of the DTM (site-II)

Min Max Extension Resolution
Terrain Data

Easting (m) 729452.6 752938.3 23485.7 38.0
Northing (m) 1170330.2 1203370.5 33040.2 38.0

determined by the variation in elevation and roughness. The elevation and roughness

data are divided in cells with a variable, horizontal and vertical resolution. The grid is

generated and optimized from the digital terrain model, are shown in Fig. 5.9. The grid

spacing and number of cells used for the simulation are listed in Table 5.5.

Table 5.5. Grid spacing and number of cells used for simulation using WindSim (site-
II)

Easting Northing z Total
Grid spacing (m) 63.2-551.0 63.3-545.9 Variable -
Number of cells 248 400 18 1785600

5.2.2.2 Simulation using WindSim at Site-II

The digital model represents the computational domain where the Reynolds averaged

Navier–Stokes equations have been numerically solved. Total 12 simulations have been

performed in order to have a 3D wind field for every 30 degree sector. The solver setting
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(a) Terrain elevation map (b) Roghness map

Fig. 5.8. Terrain elevation and roughness at site-II

used by WindSim is presented in Table 5.6. From the table it is observed that the max-

imum iterations assumed to be used for the simulation is 500. The simulation time and

the number of iteration to reach a converged solution for each sector are presented listed

in Table 5.7. The column “Status” should display as “C” indicating that the numerical

procedure has converged, which means that the found solution actually is a solution of

our specified problem.

Table 5.6. Setting used for simulation using WindSim (site-II)

Height of boundary layer (m) 500.0
Speed above boundary layer (m/s) 10.0
Boundary condition at the top fix pres.
Potential temperature No
Turbulence model Standard
Solver GCV
Maximum iterations 500
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(a) Horizontal grid resolution map (b) Vertical grid resolution map

Fig. 5.9. schematic view of horizontal grid resolution and vertical grid resolution of
site-II

Table 5.7. Simulation time, number of iterations and convergence status using Wind-
Sim (site-II)

Sectors Simulation Iterations Status Sectors Simulation Iterations Status
time time

000 00:53:23 206 C 180 00:45:48 178 C
030 00:55:26 224 C 210 00:47:51 189 C
060 00:47:44 191 C 240 00:44:17 174 C
090 00:44:58 177 C 270 00:44:20 173 C
120 00:55:22 221 C 300 00:56:52 227 C
150 01:05:22 265 C 330 01:08:47 278 C

Wind Resource Map at Site-II using WindSim:

The wind resource map is used to identify the high wind speed area based on the average

wind speed. The wind resource map is established by weighting the CFD results against

the expected average conditions given as input. The corresponding wind resource map

for the site-II after simulations is shown in Fig. 5.10.

Estimation of Energy Production and Capacity Factor:
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Fig. 5.10. Wind resource map with average wind speed at 85 m, site-II

The gross energy production is the energy production of the wind farm calculated by

predicted free stream wind speed distribution at the hub height of each turbine loca-

tion and the turbine’s power curve provided by manufacturers. The wake effects is

considered in the analysis is calculated by the WindSim wake model (Jensen wake

model). Then the annual energy production is obtained by taking into account the wake

losses. The average wind speed, AEP without wake effect, capacity factor with out con-

sidering the wake effects, wake losses, AEP with wake losses and capacity factor with

wake effect for 33 wind turbines are presented in Table 5.8. From the table, it is noted

that average wind speed (maximum of 7.27 m/s occurs at turbine ID-9 and minimum of

6.57 m/s occurs at turbine ID-31), AEP without wake (max: 6023 MWh/y (Mega Watt

hours per year) for turbine ID-9 and min: 5186 MWh/y for turbine ID-19), capacity

factor (max: 45.84 % for turbine ID-9 and min: 39.47 % for turbine ID-31). The max-

imum wake losses is 4.337 % obtained for turbine ID-19. The AEP with wake (max:
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5982 MWh/y for turbine ID-9 and min: 5150 MWh/y for turbine ID-19), capacity factor

(max: 45.53 % for turbine ID-9 and min: 39.19 % for turbine ID-19).

Table 5.8. Comparison of AEP and capacity factor with and without wake effect at
site-II generated by WindSim simulation tool.

Turbine Average wind
Without wake

Wake Losses
With wake losses

ID speed (m/s) (%)
AEP capacity AEP capacity

(MWh/year) factor (%) (MWh/year) factor (%)
1 6.73 5403 41.12 2.56 5265 40.07
2 6.75 5455 41.51 0.44 5431 41.33
3 6.85 5556 42.28 1.20 5489 41.77
4 7.08 5860 44.60 0.38 5837 44.42
5 7.10 5883 44.77 0.37 5860 44.60
6 7.04 5825 44.33 1.32 5748 43.74
7 6.99 5761 43.84 2.42 5622 42.79
8 6.61 5248 39.94 0.54 5219 39.72
9 7.27 6023 45.84 0.67 5982 45.53

10 7.09 5877 44.73 4.16 5633 42.87
11 7.01 5776 43.96 0.06 5773 43.93
12 6.64 5288 40.24 1.30 5219 39.72
13 6.71 5366 40.84 0.45 5341 40.65
14 6.83 5535 42.12 0.11 5528 42.07
15 6.71 5391 41.03 0.62 5357 40.77
16 6.67 5337 40.62 0.20 5325 40.53
17 6.80 5483 41.73 0.01 5483 41.73
18 6.78 5447 41.45 2.11 5332 40.58
19 6.71 5383 40.97 4.33 5150 39.19
20 6.81 5501 41.86 3.25 5322 40.50
21 6.66 5321 40.49 0.44 5297 40.31
22 6.69 5328 40.55 2.47 5197 39.55
23 6.82 5512 41.95 1.98 5403 41.12
24 6.69 5339 40.63 0.39 5317 40.46
25 6.80 5486 41.75 0.43 5462 41.57
26 6.92 5645 42.96 0.44 5620 42.77
27 6.79 5480 41.70 2.58 5339 40.63
28 6.80 5480 41.70 2.63 5336 40.61
29 6.69 5353 40.74 2.07 5242 39.89
30 6.85 5555 42.28 0.35 5535 42.12
31 6.57 5186 39.47 0.15 5178 39.41
32 6.85 5537 42.14 0.10 5531 42.09
33 6.77 5463 41.58 0 5463 41.58

The wind farm production characteristics using WindSim software for the entire site-

II are listed in Table 5.9. For the site, the installed capacity is 49.5 MW (33 turbines with

1500 kW each). The gross AEP (without wake) is estimated as 182.082 GWh/year. There-

fore, the capacity factor estimated without considering the wake effect is estimated as
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41.99 %. The total wake losses are estimated as 2.246 GWh/year. Thus, the net AEP

estimated for the site after wake losses, is found to be 179.837 GWh/year (i.e., 1.23 %

losses). Finally, the capacity factor of the site-II is 41.47 %.

Table 5.9. The wind farm production characteristics using WindSim at site-II.

No. of Capacity Gross AEP Capacity Wake losses AEP with wake Capacity
turbines (MW) (GWh/year) factor (%) (GWh/year) losses (GWh/year) factor (%)

33 49.5 182.083 41.99 2.246 179.837 41.47

5.3 Meteodyn Simulation Software Tool

In this section, WRA is carried out using Meteodyn WT software. This software also

uses CFD computations in complex terrains as WindSim software. Meteodyn WT

[162] was developed in 2003 by Didier Delaunay. Meteodyn WT is also a CFD soft-

ware including a Navier stokes equation solver as well as automatically boundary fitted

mesher. Meteodyn WT has calculation ability over very large domains and unequaled

speed of calculation because of the MIGAL solver.

The CFD code in Meteodyn WT is fully developed by Meteodyn, which removes all the

limitations of Phoenics, used by WindSim, especially regarding the mesh. Mesh auto-

matically aligned with the flow, it avoids numerical dispersion (better convergence with

Meteodyn). Meteodyn WT generates a different mesh for each sector independently:

Iteration number to reach convergence is lower than 25. WindSim generates an unique

mesh that will run in all sectors, although sectors can be run independently, this system

requires higher number of iterations to reach convergence.

5.3.1 Steps in Simulation using Meteodyn Software Tool

The steps involved in wind resource assessment using Meteodyn software are as fol-

lows:

1. The center point of the site in terms of UTM coordinates and the radius of the site

in terms of meters are required to be supplied.
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2. The South West and North East points in terms of UTM coordinates are required

to be input as the boundary of the site.

3. Select the met mast point in UTM coordinates.

4. For the site considered, download orography and roughness data (terrain speci-

fications) using SRTM corrected by Meteodyn, by selecting UTM coordinates,

Northern hemisphere and selecting datum WGS84. The online map for the site is

generated from Google earth using Global Mapper.

5. Using data management options, the mapping of the site for different heights can

be obtained.

6. The wind turbine positions at the site (by specifying UTM coordinates and height

of turbine) are required to be given as input to the software in .xyh format.

7. The wind turbine power curve (values) and thrust coefficient curve (values) ob-

tained from the wind turbine manufacturer have to be imported to the software.

8. The climatological data for the site namely, wind speed and direction is required

as input to the software. The file generated by Windographer software as (.tim

format or .tab format) is required to be input to the software.

9. The simulation is carried out by selecting synthesis options, where the wind farm

details namely turbine height, diameter of rotor, power curve values, thrust coef-

ficient curve values are required to be input to the software.

10. The capacity factor and annual energy production of the individual turbine as well

as the that aggregated for entire site under consideration can be obtained.

The flowchart describing the steps in simulation to be followed are shown in Fig. 5.11.

5.3.2 Simulation of Site-II: Model Wind Farm using Meteodyn

The description of the site is already presented in section 5.2.2. Table 5.10 gives detailed

information of the site in-terms of site centre, radius, mapping, orography, roughness

and met mast details.
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start

Select the wind farm, center point of wind farm interms of UTM coordinates

Select South-west and North-east points in UTM coordinates as the boundary of the site

Using data managemnet options, download terrain data ( Orography and Roughness) of the site

 

Using option, SRTM corrected by Meteodyn, Northern hemisphere, Darum- WGS84, the terrain 
data is downloaded using online data sources

Enter the met mast points in UTM Coordinates  (wind speed and wind direction) 
The climatological data can be exported from Windographer software (.tim format)

using data management options, mapping of the site for different heights are estimated 

Enter the specifications of turbine  (rated power, cut in, rated, cut out speed, hub height, 
rotor diameter, power curve and thrust coefficient curve or values).

Using CFD directional computation options the wind resource map for different sectors are estimated

Using synthesis options, windfarm details, turbine specifications, wake model are imported 

stop

The AEP with and without wake, wake losses, capacity factor with and without wake for individual
 wind turbine and  entire farm are estimated

Fig. 5.11. Flowchart for simulating wind farm using Meteodyn simulation software
tool.

Also, the terrain data (in-terms of orography and roughness) of the site is shown in

Fig. 5.12.
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Table 5.10. Description of wind farm (site-II) for simulation using Meteodyn.

Projection : UTM - 72◦E - 78◦E - Northern Hemisphere - WGS84

Site centre:

X Coordinates (m): 741541
Y Coordinates (m): 1187738
Latitude (decimal ◦): 10.736736
Longitude (decimal ◦): 77.208577

Radius of results display (m): 21065
Orography SRTM3correctedByMeteodyn 3arcsec N20 E70.tif
Roughness 1 ESA 10arcsec India.tif
Mapping South-West point (m; m): (731866; 1174638)

North-East point (m; m): (751216; 1200838)
Mast UTM- (746393, 1189810, 410) 85 m

(a) Orography of the site (b) Roughness of the site

Fig. 5.12. Terrain data in-terms of orography and roughness at site-II

5.3.2.1 Description of Wind Farm Layout at Site- II

The wind farm consists of 33 wind turbines that are located at different areas of the

site are listed in Table 6.5. This table provides information of wind turbine positions

in-terms of its UTM coordinates (Easting and Northing) and height above mean seal

level. Similarly, the information of wind turbines used and their properties are listed in

Table 5.2. The power curve and thrust curve for the wind turbines used for the study

are shown in Fig. 5.6. The wind-rose diagram and histogram showing the distribution

of wind speed are shown in Fig. 5.13. Table 5.11 provides information on wind speed

distribution for 12 directional sectors. It is observed from the table that about 44.1 % of
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the wind is flowing from 270 sector (West direction).

(a) Wind rose diagram (b) wind speed distribution

Fig. 5.13. Wind rose and histogram of wind speed distribution at site-II.

Table 5.11. Wind speed distribution for 12 directional sectors at site-II

Directional sectors (deg) 0 30 60 90 120 150 180 210 240 270 300 330
Mean wind speed (m/s) 2.4 3 3.8 4.3 3.7 2.6 2.2 2.3 9.3 8.8 2.8 2.3
% of distribution 1.1 2.4 10 16.6 4.5 1.2 0.6 0.6 16.6 44.1 1.5 0.7

5.3.2.2 Simulation of Model Wind Farm using Meteodyn (Site-II)

The digital model represents the computational domain where the RANS equations have

been numerically solved. In total, 12 simulations have been performed in order to have

a 3D wind field for every 30 degree sector. The horizontal and vertical resolution set-

ting used by Meteodyn are 50 m and 4 m. With these settings, the number of cells,

convergence rate and simulation time at the end of the simulation are presented in Ta-

ble 5.12. From the table, it is observed that the maximum number of cells used for

simulation are 18.93 million cells, but the average number of cells used for simulation

are 15.63 million cells.
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Table 5.12. CFD directional calculations properties (site-II).

Sectors Number of cells Convergence rate Simulation
(in millions) (%) time

30 17.47 99.7 02:13:00
60 18.93 100 01:49:48
90 10.5 100 00:43:48

120 17.47 100 01:11:48
150 18.93 99.9 02:13:48
180 10.5 100 00:52:48
210 17.47 100 01:21:48
240 18.93 100 01:15:48
270 10.5 100 00:36:48
300 17.47 100 01:54:48
330 18.93 100 01:59:48
360 10.5 100 01:14:48

5.3.2.3 Simulation Results Obtained using Meteodyn Software (Site-II)

This section describes the results obtained after integration of the real climatology of

the site. Table 5.13 gives detailed characteristics of the site including mean wind speed,

Weibull parameters (scale, c and shape, k) and wind power density for the site. It is

observed from the table that the minimum mean wind speed of 6.71 m/s occurs at

turbine ID-21 and maximum mean wind speed of 6.97 m/s at turbine ID-14. Further,

the wind power density is recorded to be minimum for turbine ID-21 with 351 W/m2

and maximum of 397.4 W/m2 recorded for wind turbine ID-14. The wind speed and

wind power density map for the site-II are shown in Figs. 5.14 and 5.15, respectively.

The annual energy production (AEP) with and without wake, wake losses and capac-

ity factor are presented in Table 5.14. From the table, it is observed that the minimum

AEP without wake is estimated as 5296 MWh/year for turbine ID-21 and maximum of

5627 MWh/year is estimated for turbine ID-14. The maximum wake loss is estimated

to be 5.8 % for turbine ID-19. Similarly, the minimum and maximum AEP with wake is

estimated as 5031 MWh/year for turbine ID-19 and 5619 MWh/year for turbine ID-14,

respectively. The minimum and maximum capacity factor is estimated as 38.29 % and

42.76 % for turbine ID-19 and turbine ID-14, respectively.

The wind-farm production characteristics using Meteodyn software for the entire Model

wind farm are listed in Table 5.15. The gross AEP (without wake) is estimated as
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Table 5.13. Variation of average wind speed, Weibull parameters and wind power
density at site-II using Meteodyn

Turbine Average speed
Weibull

WPD
ID (m/s)

parameters
(W/m2)

c (m/s) k
1 6.83 7.69 1.98 369.3
2 6.85 7.72 1.97 375.3
3 6.87 7.74 1.97 376.9
4 6.71 7.55 1.96 358.8
5 6.86 7.72 1.95 382.1
6 6.72 7.57 1.95 361.3
7 6.80 7.65 1.96 371.0
8 6.84 7.70 1.95 374.3
9 6.75 7.60 1.95 369.3
10 6.73 7.58 1.95 365.4
11 6.88 7.75 1.95 385.8
12 6.84 7.70 1.95 375.4
13 6.93 7.79 1.94 389.1
14 6.97 7.84 1.93 397.4
15 6.74 7.59 1.98 355.4
16 6.76 7.61 1.97 359.9
17 6.83 7.69 1.96 373.1
18 6.79 7.64 1.99 361.7
19 6.74 7.60 2.00 355.3
20 6.71 7.56 2.00 351.3
21 6.71 7.55 1.99 351 .0
22 6.81 7.67 2.00 364.3
23 6.75 7.60 1.99 356.6
24 6.75 7.61 2.00 357.0
25 6.86 7.72 1.97 377.3
26 6.93 7.80 1.93 391.3
27 6.89 7.75 1.94 384.1
28 6.83 7.69 2.00 367.5
29 6.88 7.75 1.97 380.8
30 6.76 7.62 1.99 360.5
31 6.78 7.63 1.99 362.4
32 6.92 7.79 1.96 389.1
33 6.96 7.83 1.95 393.6

179.281 GWh/year. Therefore, the capacity factor estimated without considering the

wake effect is estimated as 41.34 %. The total wake losses are estimated as 2.547 GWh/year.

Thus, the net AEP estimated for the site after wake losses, is found to be 176.734 GWh/year

(i.e., 1.42 % losses). Finally, the capacity factor of site-II with wake effect is estimated

as 40.75 %.
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Fig. 5.14. Simulated average wind speed at hub height at site-II as obtained by using
Meteodyn.

Fig. 5.15. Simulated wind power density at hub height at site-II as obtained by using
Meteodyn.
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Table 5.14. Comparison of AEP and capacity factor with and without wake effect at
site-II generated by Meteodyn

Turbine
Without wake

Wake losses
With wake

ID
losses

%
losses

AEP Capacity AEP Capacity
(MWh/year) factor (%) (MWh/year) factor (%)

1 5443 41.42 2.7 5295 40.30
2 5461 41.56 0.6 5431 41.33
3 5488 41.77 1.4 5410 41.17
4 5296 40.30 0.4 5275 40.14
5 5482 41.72 0.5 5454 41.51
6 5315 40.45 1.5 5237 39.86
7 5408 41.16 2.7 5260 40.03
8 5479 41.70 0.6 5448 41.46
9 5347 40.69 0.8 5304 40.37
10 5324 40.52 4.7 5076 38.63
11 5498 41.84 0.3 5484 41.74
12 5472 41.64 1.2 5404 41.13
13 5575 42.43 0.3 5556 42.28
14 5627 42.82 0.1 5619 42.76
15 5327 40.54 0.7 5287 40.24
16 5354 40.75 0.2 5342 40.65
17 5453 41.50 0 5452 41.49
18 5394 41.05 2.4 5265 40.07
19 5342 40.65 5.8 5031 38.29
20 5301 40.34 4.3 5074 38.61
21 5296 40.30 0.6 5264 40.06
22 5419 41.24 2.7 5272 40.12
23 5347 40.69 2.5 5212 39.67
24 5346 40.68 0.4 5324 40.52
25 5493 41.80 0.4 5473 41.65
26 5580 42.47 0.4 5555 42.28
27 5533 42.11 3.3 5353 40.74
28 5445 41.44 3.4 5257 40.01
29 5517 41.99 1.5 5435 41.36
30 5365 40.83 0.4 5342 40.65
31 5382 40.96 0.1 5377 40.92
32 5563 42.34 0.1 5558 42.30
33 5612 42.71 0 5610 42.69

Table 5.15. The wind-farm production characteristics using Meteodyn for site-II

No. of Capacity Gross AEP Capacity Wake losses AEP with wake Capacity
turbines (MW) (GWh/y) factor (%) (GWh/y) losses (GWh/y) factor (%)

33 49.5 179.281 41.34 1.42 176.734 40.75
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5.4 WindFarmer Simulation Software Tool

In the previous sections, the WindSim and Meteodyn softwares which are used for com-

plex terrain for WRA are described. In this section, the Windfarmer software uses flat

terrain for WRA is discussed. WindFarmer (Version 5.3.38) has been developed by GL

Garrad Hassan to facilitate the design of wind farms, maximizing the power produced

by the wind farm whilst minimizing environmental impact [163]. WindFarmer is a wind

farm design software which allows to perform wind energy calculations by considering

wind climatological and orographic conditions of a site. This software is developed to

carry out wind energy simulations in order to investigate the interactions of wind tur-

bines with the purpose of reaching the most optimum wind farm layout [164]. Thus, it

is aimed to achieve maximum energy production by taking into the design constraints

such as maximum ground slope, maximum allowable turbulence intensity, minimum

turbine spacing etc. One of the important concern while optimizing wind farm layout is

the relative position of wind turbines because incident wind speeds get affected by the

presence of other turbines if they are too close to each other, i.e., wake effect.

5.4.1 Steps Involved in Simulation using WindFarmer

Following are the steps involved in simulation process using WindFarmer software.

1. Initially, enter the actual wind turbine positions in the wind-farm in terms of UTM

coordinates from the Google earth.

2. Enter the climatology data, which includes wind speed and direction, also the

position of met mast location in the wind farm from Google earth.

3. Enter the power curve and thrust coefficient curve details of the wind turbines

used.

4. Download the site map on-line using Google earth, world imagery and SRTM

data source, which contains the geographical information describing roughness,

terrain and dimensions of the site location.
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5. Create boundary of the site. Then using turbine importer, wind turbines are placed

inside the boundary along with met mast.

6. Use “association method” for extrapolation at hub height, if met mast height and

hub height are different.

7. Before optimization of wind turbines in the wind-farm, Park model is used for

wind wake effect calculation.

8. For energy calculation and estimation of capacity factor, WindFarmer software

uses “simple flow model” for calculation, which enables to calculate the actual

energy yield and capacity factor of individual turbine.

9. The wind energy map and wind speed map for the entire boundary are obtained.

10. For optimization of wind farm layout, the modified Park wake model along with

distance between two turbines, minimum slope of the turbine, along with number

of iterations along with has to be specified.

11. Finally, the optimized wind farm layout with new wind turbine locations (UTM),

along with optimized energy yield and capacity factor of the site are obtained.

Alternatively, the flowchart describing the steps to be followed is also shown in Fig. 5.16.

5.4.2 Simulation of Site II: Model Wind Farm using WindFarmer

The description of the site is already provided in Section 5.2.2. The terrain map and

actual layout of wind turbines in the wind farm are shown in Fig. 5.17.

The wind resource for the entire wind farm is simulated using the time series wind data

which is measured at a height of 85 m for two years (1 October 2010 to 30 September

2012). The wind speed map and wind power density map of the site are shown in

Fig. 5.18.
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Start

Download terrain data ( Orography and Roughness) of the site from Online data sources

Enter the positions of wind turbines in the windfarm interms of UTM coordinates from Google earth

Create the boundary of the site, using ``Turbine studio" options enter the details of wind turbine 
specifications, power curve and thrust coefficient values 

Enter the met mast points in UTM Coordinates  (wind speed and wind direction) 
The climatological data can be exported from Windographer software (.tab format)

Use ``Windstudio" option and selecting anemometry mast properties, climatological data are imported

Use ``simple flow model" and ``association method" for calculation of wind flow modelling

Use Modified park model for calculation of wake effect, distance between the turbine as 5D

Wind resource map ( wind speed and wind energy map) are generated

Stop

The AEP with and without wake, wake losses, capacity factor with and without wake for individual
 wind turbine and  entire farm are estimated

Fig. 5.16. Flowchart for simulating wind farm using WindFarmer software.

The mean wind speed, net energy yield (AEP) and capacity factor of the site before

optimization are presented in Table 5.16. From the table, it is observed that maximum

wind speed is estimated as 7.14 m/s for turbines (11 and 26) and minimum wind speed

is estimated as 6.76 m/s for turbine ID-19. The maximum and minimum AEP without

wake losses are 5812 MWh/year (turbine ID-9) and 5529 MWh/year (turbine ID-31),

respectively and the corresponding capacity factors are 44.23 % and 42.08 %. Similarly,
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(a) Terrain details of wind turbines (b) Layout of the wind farm

Fig. 5.17. Terrain and wind farm layout of site-II.

(a) Wind speed map (b) Energy map

Fig. 5.18. Wind speed and wind power density map at site II.

the maximum and minimum AEP with wake losses are 5774 MWh/year (turbine ID-

26) and 5262 MWh/year (turbine ID-19), respectively and the corresponding capacity
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factors are 43.94 % and 40.05 %. The maximum wake losses is estimated as 5.36 % for

turbine ID-19.

Table 5.16. Comparison of AEP and capacity factor with and without wake effect at
site-II generated by WindFarmer simulation tool.

Turbine Average wind
Without wake

Wake Losses
With wake losses

ID speed (m/s) (%)
AEP capacity AEP capacity

(MWh/year) factor (%) (MWh/year) factor (%)
1 6.88 5577 42.44 2.65 5429 41.32
2 7.13 5792 44.08 0.66 5754 43.79
3 6.99 5670 43.15 1.46 5587 42.52
4 7.10 5750 43.76 0.50 5721 43.54
5 7.11 5767 43.89 0.68 5728 43.59
6 7.03 5727 43.58 1.66 5632 42.86
7 6.99 5733 43.63 3.17 5551 42.25
8 6.99 5627 42.82 0.59 5594 42.57
9 7.12 5812 44.23 0.98 5755 43.80

10 6.97 5780 43.99 4.67 5510 41.93
11 7.14 5782 44.00 0.31 5764 43.87
12 6.94 5596 42.59 1.22 5528 42.07
13 6.98 5623 42.79 0.46 5597 42.60
14 7.08 5710 43.46 0.18 5700 43.38
15 6.94 5584 42.50 0.66 5547 42.21
16 6.99 5617 42.75 0.23 5604 42.65
17 7.13 5756 43.81 0.02 5755 43.80
18 6.86 5561 42.32 2.57 5418 41.23
19 6.76 5560 42.31 5.36 5262 40.05
20 6.84 5592 42.56 3.49 5397 41.07
21 7.00 5647 42.98 0.55 5616 42.74
22 6.87 5587 42.52 2.92 5424 41.28
23 6.85 5577 42.44 2.78 5422 41.26
24 6.91 5542 42.18 0.56 5511 41.94
25 7.02 5670 43.15 0.49 5642 42.94
26 7.14 5805 44.18 0.53 5774 43.94
27 7.04 5767 43.89 2.79 5606 42.66
28 6.87 5612 42.71 3.30 5427 41.30
29 7.00 5687 43.28 1.81 5584 42.50
30 7.02 5667 43.13 0.51 5638 42.91
31 6.92 5529 42.08 0.16 5520 42.01
32 7.10 5734 43.64 0.12 5727 43.58
33 6.98 5599 42.61 0.05 5596 42.59

The wind-farm production characteristics using WindFarmer software for the entire site-

II are listed in Table 5.17. The AEP (without wake) is estimated as 184.320 GWh/year. There-

fore, the capacity factor estimated without considering the wake effect is estimated as

42.50 %. The total wake losses are estimated as 2.12 GWh/year. Thus, the net AEP

estimated for the site after wake losses, is found to be 182.2 GWh/year (i.e., 1.15 %

losses). The capacity factor of site-II with wake effect is estimated as 42.01 %.
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Table 5.17. The wind-farm production characteristics using WindFarmer at site-II.

No. of Capacity Gross AEP Capacity Wake losses AEP with wake Capacity
turbines (MW) (GWh/y) factor (%) (GWh/y) losses (GWh/y) factor (%)

33 49.5 187.039 43.13 2.72 184.320 42.50

5.5 Comparison of Softwares for Simulation of Wind

Farm

The results of simulation of model wind farm using three softwares are compared. Ta-

ble 5.18 gives detailed information regarding the softwares. The data requirement of the

software is the same, which includes time series measured climate data, turbine power

and thrust coefficient curve, locations of wind turbines and met mast location of the

site. From the table, it is observed that WindSim and Meteodyn are used for complex

terrain and these gives the same information for a site. The solver used by WindSim is

GCV solver and Meteodyn is MIGAL solver. The convergence rate is faster in Meteo-

dyn compared to WindSim, the Meteodyn is efficient. Meteodyn software give charac-

teristics of the site, namely the wind power density and wind resource maps in-terms

of wind power density. Also, it is observed that Meteodyn does not have optimization

module for maximizing energy capture. WindSim software doesn’t generate wind power

density maps. The wake model used by Windsim and Meteodyn are same. Thus, the

calculation process of AEP and capacity factor are the same.
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Table 5.18. Comparison of simulation softwares used for WRA

S.No Characteristics /
Sotware(s)

Features
Windsim Meteodyn WindFarmer

1 Modeling

Complex Terrain Complex Terrain Simple Terrain

Non-linear flow model Non-linear flow model linear

CFD ,RANS CFD, RANS simple flow model

2 Solver for CFD GCV solver MIGAL solver -

3 Wake Model Jensen (Park) model Park model

Modified Park model

and

Eddy viscosity

4 Convergence rate More iterations (500) less iterations (25) -

5 Response Medium fast fast fast

6 Simulation time More More less

7 Memory space large memory medium less

8 WPD Maps No Yes Yes

9 AEP Yes Yes Yes

10 Wake losses Yes Yes Yes

11 Capacity factor Yes Yes Yes

12
Optimization of

wind farm
Yes No Yes

5.6 Conclusion

In this chapter, industry standard software simulation tools are used to identify scope for

re-powering existing wind farms by generating estimates of additional power generation

capacity that can be installed in the existing wind farm by installing higher capacity tur-

bines at higher heights and also by optional positioning of new turbines. Three softwares

namely, WindSim, Meteodyn and Windfarmer are used to estimate the wind resource

potential for the existing wind farm. In this chapter, the effect on terrain of site is con-

sidered on wind resource assessment study. The wind resource characteristics of the site

are predicted at different locations of the site, where turbines can be installed. Further,

the wind resource maps for the site are developed which provide insight to the devel-

opers to install turbines at the potential positions in wind farm to capture maximum



Chapter 5. Effect of Terrain on Wind Resource Assessment 108

energy production. The characteristics of wind resource determined from the met mast

location can be used to predict to other locations at the site where measurements are not

available. This lead to improved accuracy of estimation of wind power potential at the

site. The following conclusions are drawn:

WindSim software:

1. The annual energy production of the site-II without and with wake effect are

estimated as 182.083 GWh/y and 179.8 GWh/y, respectively.

2. The capacity factor of the site-II without and with wake effect are estimated as

41.99 % and 41.47 %, respectively.

Meteodyn software:

1. The annual energy production without wake at the site-II is estimated as 179.281 GWh/y

and with wake effect is 176.734 GWh/y.

2. The capacity factor of site-II, without and with wake are estimated as 41.34 %

and 40.75 %, respectively.

Windfarmer software:

1. The annual energy production without wake at site-II is estimated as 187.039 GWh/y

and with wake effect is 184.320 GWh/y.

2. The capacity factor of the site-II, without and with wake are estimated as 43.13 %

and 42.50 %, respectively.



Chapter 6

Effectiveness of Positioning of Wind

Turbine in a Wind Farm

6.1 Introduction

In the previous chapter, use of industry scale software simulation tools for obtaining

aggregated wind power generation potential at a wind farm, was demonstrated. At de-

sign stage, the estimates help choosing a proper site for wind farm development. Next,

it is important to identify positions of turbines on the wind farm site, such that the wind

energy losses due to wake effects caused by other wind turbine in the vicinity are min-

imized. These are important factors in design of wind farm layout. An inadequately

designed wind farm layout would lead to lower wind power capture as well as increased

maintenance cost in a wind farm. The objectives of a wind farm design are to maxi-

mize the power production and to reduce the total cost associated with the wind farm

operation and maintenance.

When a wind turbine extracts power from the wind, it generates a “wake” or turbulence

that affect the wind speed and thus, reduces the power extracted by the turbine. Wind

wake (also known as wind shade or mutual shelter effect) is a long trail of turbulent

wake exiting the turbine with low wind speed. In large wind farms, wake effects lead to

considerable power loss and thus must be minimized in order to maximize the output

109
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power. In order to reduce the wake effects, the turbines have to be positioned appropri-

ately. Thus, wind farm layout design is critically important in wind farm development.

Authors [88–91] have proposed a method to estimate power generation by individual

turbine in a wind farm and also aggregated power generation at wind farm level. The

authors have assumed the wind farm land to be divided in to 100 regular square shaped

cells (each cell of 200 m x 200 m) land area. Further, they have assumed that wind

turbine is located at the centre of square cell, so that the effective distance between

the two adjacent turbine is greater than 5 times the diameter of the turbine. In their

work, the diameter of the turbine is thus assumed to be 40 m. In this chapter, work

reported by Mosettti et al. [88], Grady et al. [89], Marimidis et al. [91] and Emmami et

al. [90], has been extended to determine position of turbines on estimated aggregated

wind power generation at a wind farm level. In addition to the above investigations,

the use of WindFarmer software simulation tool in developing optimum layout of wind

farm is demonstrated. Using WindFarmer software simulation tool, optimum wind farm

design layout is obtained for existing model wind farm and the simulation results are

compared with actual position of wind turbines at the model wind farm.

6.2 Wind Wake Models

The average output power per turbine decreases due to wake effect caused by turbines in

the wind farm. In addition, when the turbine extracts power from the wind, a wake oc-

curs in downstream of the turbine. If another nearby turbine operates within this wake,

the power output for this downstream turbine is reduced compared to the turbine oper-

ating in the free wind. Therefore, modeling of wake effects plays an important role.

Wind turbine wakes models can be divided into two main categories, namely, analytical

wake models and computational wake models. An analytical wake model characterizes

the velocity in a wake by a set of analytical expressions whereas in computational wake

models, fluid flow equations, whether simplified or not, must be solved to obtain the

wake velocity field.
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Analytical Wake Models:

Analytical wake models are the simplest models, introduced by Lanchester [165]. These

models are based on a control volume approach. Frandsen et al. [166] developed a gen-

eralization of the Lanchester [165] approximations and captured a family of previously

developed wake models as well as advancing them to account for multiple interacting

wakes. The model developed by Frandsen [166] is limited in that, it handles only regu-

lar array geometries, i.e., the wind turbines should be in straight rows with equidistant

spacing between turbines in each row and equidistant spacing between rows.

One of the most widely used wake model was developed by Jensen [87, 167]. The

author treated the wake behind the wind turbine as a turbulent wake which ignores

the contribution of vortex shedding that is significant only in the near wake region. The

wake model is, thus, derived by conserving momentum downstream of the wind turbine.

The velocity in the wake is given as a function of downstream distance from the turbine

hub and it is assumed that the wake expands linearly downstream.

Computational Wake Models:

Crespo et al. [168] carried out an extensive survey of different methods for modeling

wind turbine wakes and reported that the computational wake model to be the best

model. Crasto et al. [169] used CFD technique to model a single wake of a wind turbine

using RANS equation.

Use of computational wake models has been rare due to high computation time and

costs involved in obtaining results. In this chapter, Jensen model which is an analytical

wake model adopted for modeling wind turbine wakes in the wind farm is used. Jensen

wake model [87] is based on global momentum conservation in the wake downstream

of the wind turbine. In this model, the wind farm is assumed to be a flat region and all

wind turbines of same capacity are considered.

The schematic of wake model used in this study is shown in Fig. 6.1. Assuming that

the turbine the wake has a radius ro. As the wave propagates as shown in figure, the

radius of the wake increases proportionally to the downstream distance, x. With the

help of Betz theory and applying the continuity equation, the following expressions can
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Fig. 6.1. Schematic of Jensen wake model [87]

be obtained [87]

πr2ovo + π(r2 − r20)u = πr2v (6.1)

Assuming vo = 1
3
u and r = βx + ro, then, the velocity of wake, v, at a distance, ‘x’

simplifies to [87]

v = u

[
1− 2e1

(
ro

ro + βx

)2]
(6.2)

taking the axial induction factor, e1 = 1
3
, where u is the mean wind speed, β is the

entrainment constant and r is the downstream rotor radius. Also the power produced is

given by the relation,

P =
1

2
ηρAu3 (6.3)

Assuming η = 40 %, ρ = 1.225 kg/m3 and A = π x 202 sq.m, the power (kW) is calcu-

lated as

P = 0.3u3 (6.4)
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where, η is the rotor efficiency, ρ is the air density and A is the rotor area. The down-

stream rotor radius r and the turbine coefficient CT are evaluated as follows:

r = ro

√
1− e1
1− 2e1

(6.5)

CT = 4e1(1− e1) (6.6)

The entrainment constant (β) is given empirically as follows:

β =
0.5

ln(hb
zo

)
(6.7)

where hb is the hub height of the wind turbine and zo is the surface roughness of the

site.

Now, the aggregated wake loss at wind farm level is estimated as sum of wake losses

due to individual turbines in the wind farm. The effect of wake loss is seen as resulting

in reduction in wind speed. Down stream reduction in efficiency at wind farm level and

increase in annual operational and maintenance cost of wind farm [87]:

1−
(
v

u

)2

=
N∑
i=1

(
1− ui

u

)2

(6.8)

Mosetti et al. [88] had an assumption for the total cost of the wind turbines which

indicates that the non-dimensionalized cost per year of a single turbine is one with

a maximum reduction in cost of 1/3 for each additional wind turbine, when a large

number of turbines are installed. The total cost/year of a wind farm is formulated as

follows [88]:

Cost = N

(
2

3
+

1

3
e(−0.000174N

2)

)
(6.9)

Where the cost is the total costs of wind turbines and the N is number of wind turbines

have been installed in a wind park. The total efficiency (ηT ) of the wind farm can be

calculated as follows;

ηT =
PT

0.3Nv3
(6.10)
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The power curve presented in Mosetti et al. [88] study for the turbine under considera-

tion yields the following expression for power:

PT =
N∑
i=1

0.3u3i (6.11)

The objective function to find the optimal result in-terms of minimum cost per unit of

energy produced, is as follows

Objective function =
Cost
PT

(6.12)

6.3 Application of Genetic Algorithm to Optimize Posi-

tioning of Wind Turbines

In this chapter, genetic algorithm is proposed for positioning of wind turbines in a wind

farm. The genetic algorithm is described in Sub-section A.1.

The parameters considered for simulation are:

1. Number of variables is taken as twice the number of turbines.

2. Population size used is the total number of solutions in a set.

3. Constraints considered is the size of the wind farm.

4. Optimization criteria considered is the maximum number of generations and tol-

erance.

The wind turbine data assumed for optimization of wind turbines in the wind farm is

listed in Table 6.1.
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Table 6.1. Wind turbine data assumed for simulation for position of turbines

S.No. Parameters Symbols Values

1 Hub height hb 60 m

2 Rotor radius r0 20 m

3 Thrust coefficient CT 0.88

4 Ground roughness zo 0.3 m

5 Wind velocity u0 12 m/s

6
Axial

induction factor
e1 0.33

7
Entrainment

constant
β 0.094

The flow chart describing the genetic algorithm used for this study is shown in Fig. 6.2:

6.3.1 Survey of Reported Results for Optimal Positioning of Wind

Turbines

Various approach used for placement of wind turbines in a wind farm are discussed in

Sub-section 2.3 of Chapter 2. The approach are briefly described in this section with

their results for comparison.

Mosetti et al. [88] attempted to optimize the positioning of wind turbines in a wind

farm by employing genetic algorithm. They used Jensen’s analytical wake model for

modeling the wakes of the wind turbines. To implement the calculation, they used a

grid and set the distance between two adjacent nodes to be five times the wind turbine

rotor diameters.

Grady et al. [89] attempted the same problem as Mosetti et al. [88]. Authors have used

Jensen’s analytical wake model and a genetic algorithm for optimization. Grady et al.

showed that Mosetti et al. results are not optimum wind farm layout. They suggested
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Fig. 6.2. Flow chart describing genetic algorithm for placement of wind turbines

that the probable cause is that the solution was not allowed to evolve for sufficient

generations (i.e., it was not converged to the optimum point).

Marmidis et al. [91] also developed the same problem as Mosetti et al. [88] and Grady et

al. [89]. The difference being that Marmidis et al. have analyzed only the simplest case

in which wind comes from a fixed direction at a constant speed. Marmidis et al. used a

Monte Carlo method for optimizing wind farm layout instead of a genetic algorithm.

Emami et al. [90] used objective function using genetic algorithm approach for the

positioning of wind turbines in wind farm. The presented objective function, with its

adjustable coefficients, provides more control on the cost, power and efficiency of wind

farm in comparison with earlier objective functions. However, from the studies reported,

the efficiency of the wind farm is less.
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Table 6.2. Comparison of results obtained by researchers using GA and fixed position
of wind turbines at centre of cell

Mosetti et al. [88] Grady et al. [89] Marmidis et al. [91] Emami et al. [90]

No. of turbines 26 30 32 10 20 30

Total Power (kW/year) 12352 14310 16395 5184 10164 14310

Fitness value 0.00162 0.001544 0.001411 0.1633 0.1514 0.12217

Efficiency 91.645 92.015 Not reported 100 98 92

From Table 6.2, it is observed that, the efficiency obtained by all the approaches is

low. For comparison, Grady et al. and Emami et al. approaches used same number

of turbines as 30. Where Grady’s approach shows higher efficiency of 92.015 % when

compared to Emami approach (92 %). The best optimal layout obtained by different

approaches are shown in Figs. 6.3 and 6.4.

(a) Mosetti et al. [88] for 26 turbines (b) Grady et al. [89] for 30 turbines

Fig. 6.3. Reported wind farm layout of 26 & 30 turbines

(a) Marmidis et al. [91] for 32 turbines (b) Emami et al. [90] for 30 turbines

Fig. 6.4. Reported wind farm layout of 32 & 30turbines



Chapter 6. Effectiveness of Positioning of Wind Turbine in a Wind Farm 118

6.4 Genetic Algorithm Based Proposed Approach of Po-

sitioning of Wind Turbines

In this section, genetic algorithm is used to find the optimal positioning of wind tur-

bines in a wind farm. For the analysis the constant wind speed of 12 m/s in a uniform

direction is considered as reported by other researchers [88–91]. so that the wake cre-

ated depends only on the downstream distance. In this work, the new approach has been

proposed which does not restrict the positioning of the turbines in centre of cell but

it can be placed anywhere within the cell provided they are minimum five times the

rotor diameter, distance apart and deliver better output. The case study considers 600

individuals to evolve over 3000 generations.

of position of

Table 6.3. Comparison of results obtained by the proposed approach using GA with
variation of wind turbines.

No. of turbines 10 20 26 30 32

Total power (kW/year) 5184 10365 13476 15537 16571

Fitness value 0.00182 0.00160 0.00148 0.00142 0.00139

Efficiency (%) 100 99.99 99.98 99.90 99.89

It is observed from Table 6.3 that, the results in terms of power and efficiency are bet-

ter than that of the earlier approaches reported in Table 6.2. Results are computed for

different number of turbines such as, 10, 20, 26, 30 and 32. It is observed that, their

corresponding power in-terms of kW/year are 5184, 10365, 13476, 15537 and 16571,

respectively. The corresponding efficiencies are 100 %, 99.99 %, 99.98 %, 99.90 % and

99.89 %, respectively.

It is noted that, for the placement of 20 turbines, the power and efficiency are increased

by 1.97 % and 2.03 %, respectively. Similarly for 26 and 30 turbines, power and effi-

ciency is increased by 9.09 % and 8.57 %, respectively.
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Table 6.3 also indicates that in each of the cases, the turbine configuration produces

larger power output giving better efficiency. The fitness values obtained are also lesser

than the values reported earlier. Thus, it can be concluded that with the new approach

using genetic algorithm for placing the wind turbines in a wind farm can be used for

placing wind turbines in a wind farm more optimally.

The new optimal layout of different wind turbines such as, 10, 20, 26, 30 and 32 are

shown in Figs. 6.5, 6.6, 6.7, 6.8 and 6.9, respectively.

Table 6.4 shows the improvement in efficiency compared to the existing method (refer

Table 6.2).

Table 6.4. Comparison of increase in efficiency with reported results.

No. of turbines 20 26 30

Increase in efficiency (%) 2.03 9.09 8.57

Fig. 6.5. Proposed wind farm layout of wind turbines consisting of 10 turbines.

Fig. 6.6. Proposed wind farm layout of wind turbines consisting of 20 turbines.
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Fig. 6.7. Proposed wind farm layout of wind turbines consisting of 26 turbines.

Fig. 6.8. Proposed wind farm layout of wind turbines consisting of 30 turbines.

Fig. 6.9. Proposed wind farm layout of wind turbines consisting of 32 turbines.

The particle swarm optimization (PSO) can also be used to determine optimum position

of turbine in wind farm. The results obtained using PSO show that the power generation

efficiency of individual turbine corresponding to optimum postion is lesser than than

obatined by GA. These results are provided in Appendix C.
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6.5 Optimization of Positioning of Wind Turbines using

WindFarmer Software Simulation Tool

The WindFarmer software can be used for optimizing layout of wind farm correspond-

ing to annual energy production and capacity factor of the site The process of wind

farm designing is an iterative process where-in the position of turbines are changed iter-

atively, after calculating the annual energy production and capacity factor [164]. Wind-

Farmer uses a “simple flow model” that combines customizable vertical shear models

and a simple horizontal model that is based on the terrain height. The “simple flow

model” is used to compute the change in wind speed between the height above ground

level at which the wind speed is measured at the hub height. This can be performed by

two wind shear models, namely, log law and power law. WindFarmer also uses “as-

sociation method” to improve the accuracy of estimation of frequency distribution of

wind speed at hub heights. First energy calculations are done by simulation of the wind

farm using the software; this takes into account wake effect caused by turbines. Then

optimum position of wind turbines in a wind farm corresponding to maximize the net

energy yield and capacity factor at a site is determined. The flowchart describing the

steps in simulation are shown in Fig. 6.10.

6.5.1 Optimizing Layout of Model Wind Farm

The description of the model wind farm site is as presented in Sub-section 5.2.2. The ter-

rain map and actual layout of wind turbines in the wind-farm are shown in Fig. 5.17. The

wind turbine positions in-terms of UTM Coordinates, nearest turbine before optimiza-

tion is reproduced as shown in Table 6.5. The simulation is carried out in model wind

farm and new positions of wind turbines in the wind farm are listed in Table 6.6. It is

observed from the table that, there is significant change in the position of turbine from

the original locations (refer Table 6.5).
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Start

Complete all the steps for WRA for the site before optimization as shown in Fig. 5.16

Use ``Windstudio" option and selecting anemometry mast properties, unload hub height 
wind resource at turbine

Define wind resource template and estimate the wind resource for the entire grid (windfarm)

New wind resource map ( wind speed and wind energy map) are generated

Stop

New optimized location (in terms of UTM coordinates)  of wind turbines in the wind farms
 are proposed

Is
 wind farms is 

optimized

The AEP with and without wake, wake losses, capacity factor with and without wake for 
individual  wind turbine and  wind farm are estimated after optimization

Optimization process is started by selecting maximum iterations and distance between
 two turbines  as 5D

No

Yes

Fig. 6.10. Flowchart for optimization of locations of wind turbine using WindFarmer
software.

The effect of optimum layout of wind farm can be seen from Table 6.7, in which average

wind speed, net energy yields and capacity factor of the turbine are shown correspond-

ing to each position. From the table, it is observed that the maximum wind speed esti-

mated corresponding to optimization is 7.51 m/s for turbine ID-6 and minimum wind

speed is estimated as 7.26 m/s for turbine ID-22. Similarly, the maximum energy yield
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Table 6.5. Location of wind turbine positions specified in terms of UTM coordinates
at site-II, before optimization.

Turbine Eastings Northings Height Nearest turbine Distance to
ID (m) (m) (m) ID nearest turbine (m)
1 744820 1184171 333 15 499.2
2 741636 1183743 361 3 2145.7
3 743752 1184099 345 15 899.5
4 736383 1186434 356 6 948.9
5 737708 1184902 358 7 590.9
6 736932 1185660 353 7 720.8
7 737632 1185488 353 5 590.9
8 747458 1179314 340 12 1397.5
9 734493 1185390 364 10 580.7

10 735059 1185520 360 9 580.7
11 739179 1184331 360 5 1577.9
12 747541 1180709 335 13 1251.2
13 746338 1180365 339 12 1251.2
14 744693 1179009 350 13 2131.8
15 744575 1183736 334 1 499.2
16 743936 1182983 338 15 987.6
17 744176 1175324 357 27 1082.9
18 746895 1195407 331 24 577.0
19 746290 1195750 331 18 695.5
20 745026 1195822 335 23 645.3
21 743944 1195863 342 30 605.9
22 747898 1196242 334 28 905.8
23 745613 1195554 333 20 645.3
24 746861 1194831 329 31 518.4
25 745392 1197556 345 29 623.0
26 743285 1176472 363 27 936.3
27 744219 1176406 358 26 936.3
28 747026 1195997 338 18 604.4
29 745914 1197896 347 25 623.0
30 743798 1195275 345 21 605.9
31 747015 1194336 327 24 518.4
32 745103 1198371 354 25 864.7
33 744680 1190579 336 31 4423.5

and capacity factor are estimated as 6148 MWh/year and 46.75 % for the same tur-

bine, i.e., turbine ID-6. The minimum energy yield and capacity factor are estimated

as 5797 MWh/year and 44.09 % for the turbine ID-31. The optimization power curve

for different iterations is shown in Fig. 6.11. It is observed from the figure that, the net

yield (MWh/year) remains constant after 70 iterations indicating that the wind turbines

positions are optimized. The optimum layout is shown in Fig. 6.12.

From Table 6.8, it is observed that, there is an increase of net energy yield (AEP) with

wake losses from 184.32 GWh/year to 198.15 GWh/year, (i.e., about 7.50 % increase
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Table 6.6. Position of wind turbine in-terms of UTM coordinates after optimization.

Turbine Eastings Northings Height Nearest turbine Distance to
ID (m) (m) (m) ID nearest turbine (m)
1 735398 1178897 398 12 607.5
2 734355 1195367 406 4 488.7
3 733648 1174653 396 11 766.5
4 734630 1194963 403 2 488.7
5 733984 1177306 397 31 502.9
6 733862 1198821 418 30 719.3
7 734882 1198768 411 30 594.3
8 734082 1180132 395 27 1163.6
9 737279 1196585 403 13 441.0

10 735463 1180189 394 14 440.4
11 733731 1175415 394 17 439.5
12 734849 1178637 400 27 579.3
13 737649 1196345 402 9 441.0
14 735290 1180594 398 10 440.4
15 734118 1177842 396 5 552.5
16 735339 1196588 406 25 652.2
17 733710 1175854 391 11 439.5
18 736372 1197029 407 32 508.8
19 736652 1196239 401 9 716.1
20 735193 1197758 404 33 432.7
21 734736 1198095 408 30 418.1
22 736040 1193918 394 29 718.5
23 735246 1195776 404 16 817.3
24 734950 1194570 409 4 506.8
25 735059 1197177 409 20 596.3
26 735153 1193797 394 24 799.2
27 734797 1179214 400 12 579.3
28 734142 1194314 398 4 812.0
29 735833 1193230 392 22 718.5
30 734431 1198381 412 21 418.1
31 734067 1176810 394 5 502.9
32 736289 1197531 406 18 508.8
33 735597 1197603 407 20 432.7

in AEP) and also the capacity factor of the site increases from 42.5 % to 45.70 %, (i.e.,

about 7.52 % increase in capacity factor) after optimization.
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Fig. 6.11. The optimization curve for wind turbine positioning at model wind farm

(a) Optimized wind energy map (b) Optimized Layout

Fig. 6.12. Wind speed and wind energy map at site-II
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Table 6.7. Average wind speed, AEP without and with wake, wake losses, capacity
factor after optimization using WindFarmer

Turbine Average wind
Without wake

Wake Losses
With wake losses

ID speed (m/s) (%)
AEP capacity AEP capacity

(MWh/year) factor (%) (MWh/year) factor (%)
1 7.34 6052 46.06 1.70 5949 45.27
2 7.44 6106 46.47 0.39 6082 46.29
3 7.4 6039 45.96 0.02 6038 45.95
4 7.43 6089 46.34 0.31 6070 46.19
5 7.4 6047 46.02 0.10 6041 45.97
6 7.51 6187 47.09 0.63 6148 46.79
7 7.37 6143 46.75 3.11 5952 45.30
8 7.37 6036 45.94 0.46 6008 45.72
9 7.34 6089 46.34 2.45 5940 45.21

10 7.33 6023 45.84 1.28 5946 45.25
11 7.39 6028 45.88 0.05 6025 45.85
12 7.38 6065 46.16 0.66 6025 45.85
13 7.31 6078 46.26 3.26 5880 44.75
14 7.39 6053 46.07 0.56 6019 45.81
15 7.39 6040 45.97 0.17 6030 45.89
16 7.43 6110 46.50 0.69 6068 46.18
17 7.36 6007 45.72 0.05 6004 45.69
18 7.38 6115 46.54 2.22 5979 45.50
19 7.32 6076 46.24 2.37 5932 45.14
20 7.41 6097 46.40 0.74 6052 46.06
21 7.46 6123 46.60 0.39 6099 46.42
22 7.26 6028 45.88 3.20 5835 44.41
23 7.41 6096 46.39 0.97 6037 45.94
24 7.42 6132 46.67 1.66 6030 45.89
25 7.43 6131 46.66 1.06 6066 46.16
26 7.35 6030 45.89 0.70 5988 45.57
27 7.41 6069 46.19 0.23 6055 46.08
28 7.37 6055 46.08 0.73 6011 45.75
29 7.37 6012 45.75 0.07 6008 45.72
30 7.46 6147 46.78 0.65 6107 46.48
31 7.38 6028 45.88 0.07 6024 45.84
32 7.27 6112 46.51 5.15 5797 44.12
33 7.32 6117 46.55 3.48 5904 44.93

Table 6.8. Comparison of AEP and capacity factor (before and after) optimization at
site-II using WindFarmer

Before optimization After optimization % Improvement in
AEP Capacity AEP Capacity AEP Capacity

(GWh/y) factor (%) (GWh/y) factor (%) factor
184.32 42.5 198.15 45.70 7.50 7.52
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6.6 Conclusion

In this chapter, genetic algorithm is used for obtaining optimum position of wind tur-

bine in a wind farm. Unlike in the conventional approach wherein the wind turbines

are placed at center of the cell, in this work, the approach of placing the turbines any-

where in the grid at a minimum distance of 5D from each other, is demonstrated. Such

an approach not only reduces the overall wake effect in the farm and increased power

generation. From the results obtained, it can be concluded that, the proposed approach

improves speed and accuracy of optimization compared to conventional approach. It is

concluded that optimum layout of model wind farm, obtained using WindFarmer, cor-

responds to increase in annual energy production and overall capacity factor by 7.50 %

and 7.52 %, respectively. thus there is scope for re-powering wind farm. The following

results are obtained using WindFarmer at model wind farm

1. The AEP and capacity factor of the site-II before optimization with wake losses

are estimated as 184.32 GWh/year and 42.50 %, respectively.

2. The AEP and capacity factor of the site-II after optimization with wake losses are

estimated as 198.15 GWh/year and 45.70 %, respectively.

3. The AEP is increased by by 13.83 GWh/year.



Chapter 7

Prediction of Power Generation in

Wind farm

7.1 Introduction

With increasing penetration of wind power generation into power grid, the reliability of

wind power generation and commitment ahead of schedule has become important de-

velopmental issues in wind power generation. There are sophisticated simulation tools

which can be used to predict wind power generation, on the basis of wind climatological

data at the wind farm site.

In this Chapter, a new approach (Feed forward neural network combined with GA) for

prediction of wind power generation, when historical time series data on wind speed

at the site is available. The approach uses genetic algorithm for optimizing the feed

forward neural network, which is then used for predicting power generated in short

term, ahead of schedule by few hours. The approach is thus useful for “now casting”

of wind power generation. The results obtained using newly developed approach are

compared with those obtained using back propagation algorithm. It is shown that the

new developed approach leads to improved accuracy.

128
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7.2 Prediction of Wind Power Generation

In this section, different approaches used by researchers for prediction of wind power

generation using artificial neural network and genetic algorithm are described. Wind

power generation is intermittent. When wind energy conversion systems have been con-

nected to electric grid, the generated power must be utilized. Hence, prediction of wind

power generation plays vital role. In the past decades, wide variety of algorithms have

been applied. The accuracy further may be improved by applying hybrid algorithms.

7.2.1 Artificial Neural Networks

Artificial neural networks (ANN) or simply neural networks refer to a group of algo-

rithms that typically operate on a large number of simple interconnected components or

neurons [170]. ANN has been applied to various problems in different scientific disci-

plines, including applied mathematics, chemistry, physics, engineering, economics and

finance. ANN has been widely used in solving problems related to prediction, classifica-

tion, control and identification [131, 171]. The detailed information on ANN is provided

in Appendix D.

7.2.1.1 Feed Forward Neural Network

The most simple type of artificial neural network is Feed Forward Neural Network

(FFNN). In this network, information moves in only one direction, the forward di-

rection. From the input nodes data flows through the hidden nodes and to the output

nodes. There are two types of neural network: they are (i) single layer and (ii) multi-

layer feed forward network.

(i). Single Layer Feed Forward Neural Network:

In this type of network, there are two layers, namely the input and the output layer. The

input layer neurons receive the input signals and the output layer neurons generates the

output signals. The synaptic links carrying the weights connect every input neuron to

the output neuron. Such a network is said to be feed forward network. Despite the two
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layers, the network is termed as single layer since it is the output layer, alone which

performs computation. The input layer merely transmits the signals to the output layer.

Hence, the name single layer feed forward network.

(ii). Multilayer Feed Forward Neural Network:

This network consists of multiple layers such as, input layer, hidden layer and output

layer. Besides an input and an output layer, the network also consists of one or more

intermediary layers called hidden layers. The computational units of the hidden layer

are known as hidden neurons. The hidden layer helps in performing intermediary com-

putations before directing the input to the output layer.

The input layer neurons are linked to the hidden layer neurons and the weights on these

links are referred to as input-hidden layer weights. Again, the hidden layer neurons

are linked to the output layer neurons and the corresponding weights are referred to as

hidden-output layer weights. A multilayer feed forward network with l input neurons,

m1 neurons in the first hidden layer,m2 neurons in the second hidden layer and n output

neurons in the output layer is written as l-m1-m2-n. Fig. 7.1 illustrates a multilayer feed

forward network with a configuration l-m-n.

Input Layer Hidden Layer Output Layer

W11

V21

V22

V2m

V11

V12

Vlm

V12

V1m

V11

W12

W1n

W21

W22

W2n

Wm1 Wm2

Wmn

xi : Input neurons
yj: Hidden neurons
zk : Output neurons
Vij :Input hidden 
      layer weights
wjk: Output hidden
       layer Weights

Fig. 7.1. General schematic architecture of multi layer feed forward neural network
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7.2.2 Learning Algorithms in Artificial Neural Network

ANN resembles the human brain in learning through training and data storage. Based on

learning strategy, three main categories of ANN are supervised learning, unsupervised

learning and reinforced learning. The supervised type of learning since it is frequently

used in the majority of ANN applications. The different types of learning algorithms

are shown in Fig. 7.2.

Neural Network

Learning algorithms

Supervisied

 Learning

Reinforced

Learning

Unsupervised 

Learning

Stochastic Error correction

Gradient descent

Least Mean

square
Back 

propagation

Hebbian Competitive

Fig. 7.2. Different learning algorithms of ANN

1. Supervised Learning:

In this type of learning, every input pattern that is used to train the network is

associated with an output pattern, which is the target or the desired pattern. The

comparison is made between the network’s computed output and the correct ex-

pected output, to determine the error. The error can then be used to change net-

work parameters, which result in an improvement in performance.

2. Unsupervised Learning:

In this learning method, the target output is not presented to the network. The

network learns of its own by discovering and adapting to structural features in the

input patterns.

3. Reinforced Learning:

In this method, the network does not present the expected answer but only indi-

cates if the computed output is correct or in correct. The information provided
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helps the network in its learning process. A reward is given for a correct answer

computed and a penalty for a wrong answer. Reinforced learning is not popular

form of learning.

Supervised and unsupervised learning methods are most popular learning algorithms. In

this chapter, supervised learning, with back propagation technique is used in the neural

network for generating predicted value of wind power generated at an instant in near

future.

7.2.2.1 Back Propagation Algorithm

Back propagation algorithm is a learning algorithm, which learns the weights of the

FFNN. The goal, as in any algorithm is to minimize the error. Given a training set com-

prising a set of input vectors Xn, where n = 1, . . . , N , together with a corresponding

set of target vectors tn, the error is given by (7.1):

E(w) =
1

2

N∑
n=1

y(Xn, w)− tn2. (7.1)

This error is a function of the network weights w. The objective is to find the weights

of the network when the error is minimum. The minimum of a error function occurs

when the gradient of that function is zero. At each step the weight vector is moved in

the direction of the greatest rate of decrease of the error function. So this approach is

known as gradient descent or steepest descent. The flow diagram of back propagation

is shown in Fig. 7.3.

Fig. 7.3. Flow diagram of Back propagation of error [172]
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The error at the output neuron is given by

δk = yk − tk (7.2)

Error at the hidden layer with the activation σh is given by

δj = σh′(aj)
∑
k

wkjδj (7.3)

wji(τ + 1) = wji(τ)− ηL∇En(wji(τ)) (7.4)

∂En
∂wji

= δjzi (7.5)

where ηL in (7.4) is known as the learning rate. Equation (7.4) gives the weights of the

(τ + 1)th epoch in relation with the τ thepoch, wji represents the weights between ith

and jth layer, wkj is the weights between the layer j and the output layer k. zi in (7.5)

is the output at the ith layer after applying the activation function (σh), δk is the error at

the output layer, δj is the error at the hidden layer, ∇ is the gradient, yk is the predicted

output and tk is the target output.

Performance Index - Mean Squared Error:

The network should be able to generalize and once trained it must be validated by test-

ing its performance. The mean square error (MSE) has been used as the performance

function.

The MSE is calculated by using (7.6). MSE is used as it gives a quadratic function in

error. BPA, which uses steepest descent method converges for quadratic functions. Also

derivative calculations are easy for the case of MSE, rather than RMSE [173]. MSE

is scale-dependent and is widely used performance index in application of prediction

problem.

MSE =
1

n

n∑
i=1

(fi − yi)2 (7.6)

where fi is the prediction value and yi is the actual data value, n is the total number of

data sets. The predictions are more accurate when MSE is close to zero.
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7.3 Data from Model Wind Farm for Prediction of Wind

Power Generation

The wind speed and wind power generation data are obtained from a Model wind farm,

Periyapatti, TamilNadu, India. The data is measured for wind turbine having the rated

capacity of 1500 kW, installed at a height of 85 m AGL, recorded at 10 minutes in-

terval. The data measured over 11 months from 1 April 2014 to 28 February 2015 is

used for training, validation and testing. Thus, the total data points are 48096. The

monthly variation of wind speed data at the site for a period of 11 months is shown in

Fig. 7.4. The data are normalized to a range between 0 and 1 using (7.7).

Fig. 7.4. Monthly variation of average wind speed at site-II

xnorm =
(x− xmin)

(xmax − xmin)
(7.7)

where xnorm is the normalized data and xmin, xmax are minimum and maximum values

in the data to be normalized. Normalization is used so as to standardized range of input

data. A standard range makes the training speedy and more accurate [174]. For simula-

tion, the data are divided into three sets: training set, validation set and testing set. The
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predictions with reasonable accuracy can be obtained if minimum 70 % of input data is

used for training, 15 % for validation and remaining 15 % for testing [175].

Architecture of Feed Forward Neural Network:

In multilayer feed forward neural network, there are three layers, namely, input layer,

hidden layer and output layer. In this study, wind speed data is considered as input

neuron in the input layer. The number of neurons in the hidden layer has significant

influence in ANN architecture. Though these layer do not directly interact with the

external environment, they have a tremendous influence on the final output. Using less

number of neurons in the hidden layers will result in under fitting. Also using more

number of neurons in the hidden layers may result in over fitting. Therefore choice of

number of neurons in the hidden layer is of critical importance. As such there is no

theoretical limit on the number of hidden layers but typically they are just one or two.

In the present work, a single hidden layer has been chosen. Further, the number of

neurons in the hidden layer is varied from 4 to 10 to get optimal solution. The wind

power generated is taken as output neuron in the output layer. A bias variable, value

of which is 1, is added to the input and hidden layer. This is done to cover all linear

functions possible and not just the ones passing through the origin. Suppose there are n

inputs and m neurons in the hidden layer. The inputs for each of the m neurons will be

sum of the product of weights and the inputs including the bias variable. The weights

will be different for each neuron. They are chosen randomly and then updated by the

learning algorithm. These weights act as an input for the activation function at each

neuron. Activation function accounts for the non-linearity of the neural networks. The

activation function used in this study is sigmoid function (7.8) at the hidden layer and

hyperbolic tangent sigmoid function (7.9) at the output layer.

σh(a) =
1

1 + exp(−a)
(7.8)

σh(a) =
2

1 + exp(−2a)
− 1 (7.9)

The ANN network architecture with feed forward neural network is shown in Fig. 7.5.
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Hidden Layer

Input Layer Output Layer

Fig. 7.5. Proposed neural network architecture for prediction of wind power generation

Training Set:

It is the data set, which is used to train the neural network and fix the weights. The

larger the training set the more comprehensive learning will occur. In this study, two

training data sets are used. One with 80 % of the total data set over 11 months as the

training data, i.e. 38477 data points. The other has 90 % of the data points, i.e., 43286

data points. The error calculated during training is called training error.

Validation Set:

This set defines the performance of a network. The lower the validation error, the better

the model is. For the 80 % training data set, 10 % of the data is used as the validation

set, i.e., 4809 data points. For the 90 % of the data set, 5 % of data is used as validation

set, i.e., 2405 data points.

Testing Set:

This data set is used to test the performance of the model. For the 80 % training data

set, 10 % of the data is used for the testing set, i.e., 4810 data points. For the 90 % of

the data set, 5 % is used for testing, i.e., 2405 data points. The error computed on the

testing set is called testing error. Fig. 7.6 describes the methodology adopted for BPA

and Fig. 7.7 describes the methodology adopted for FFNN-GA used for the study.
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Input the data

Normalize the data

Divide data in three sets

(Training, Validation, Testing)

Train with BPA on training set

Choose the model with least 

validation error

Obtain testing errors and compare  

Obtain best model for BPA using validation set

Vary parameters such as learning

 rate, momentum coefficient, epochs

 and neurons in hidden layer

stop

start

Fig. 7.6. Flowchart describing BPA algorithm used for predictions of wind power
generation
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Fig. 7.7. Flowchart describing FFNN-GA algorithm used for predictions of wind
power generation
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The training algorithm is implemented through the following steps:

After normalizing the data, BPA and GA are used to train the data sets

1. The input wind speed and output wind energy data are normalized.

2. Parameters are varied in BPA are number of hidden neurons (4 to 10), learning

rate (0.1, 0.5 & 0.9) and momentum coefficient (0.1, 0.5 & 0.9)

3. Parameters varied in GA are number of hidden neurons (4 to 10), elite count (0.10,

0.15 & 0.20), cross over fraction (0.7, 0.8 & 0.9)

4. The two algorithms namely, BPA and GA are used to train the network indepen-

dently with their parameters

5. The training error and the validation error are computed for two algorithms

6. The model with the least validation error is selected, and its parameters are fixed.

7. The testing errors in terms of mean square error for the best models of BPA and

GA are computed and compared

8. Best model for the prediction of wind power is selected on the basis of least error.

7.3.1 Results and Discussion of Prediction of Wind Power Genera-

tion

The two different algorithms of ANN, namely BPA and FFNN-GA are used for pre-

diction of wind power generation. In BPA, the learning rate, momentum coefficient,

number of neurons in the hidden layer and epochs are varied. For the 80 % training

data, the best result among the 315 different combinations (shown in Appendix D) was

found to be 5 neurons with 1500 epochs, learning rate as 0.5 and momentum coeffi-

cient as 0.1. This was chosen on the basis of least validation error of 0.00188 as shown

in Table 7.1 and the corresponding testing error is 0.00223. For the 90 % training

data, the best value of validation error is 0.00242 and the corresponding testing error

is 0.00175. The testing error has decreased, by 15 %, whereas the validation error has
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increased by 25 %, for an increase in the training data set. The minimum value of vali-

dation error for both the training data set is obtained with 5 neurons. The best learning

rate is obtained as 0.9 and the momentum coefficient is changed as 0.5, as shown in

Table 7.1.

Table 7.1. Best results for BPA with variation of training data sets

Training

Data
Neurons Epochs

Learning

Rate

Momentum

Coefficient

Training

Error

Validation

Error

Testing

Error

80% 5 1500 0.5 0.1 0.01298 0.00188 0.00223

90% 5 500 0.9 0.5 0.01220 0.00242 0.00175

In GA, the parameters such as elite count and crossover fraction, along with the number

of generations and the number of neurons in the hidden layer are varied. For the 80 % of

training set, the minimum validation error is obtained as 0.00127, and the corresponding

testing error is 0.00166 as listed in Table 7.2. The best architecture obtained while using

GA is 4 neurons in the hidden layer, 300 generations, the crossover fraction is 0.9 and

elite count of 20 %. For the 90 % set, the minimum validation error is 0.00185 and

corresponding testing error is 0.00132. The number of neurons in the hidden layer is 4

and generation is 400. The crossover fraction is same as for the 80 %, but the elite count

has decreased to 15 %. There is an increase of 38 % in validation error, and a decrease

in testing error by 23.5 %, as the training data is increased from 80 % to 90 % is shown

in Table 7.2 . It can be inferred from the discussions that the genetic algorithm has

Table 7.2. Best results for GA with variation of training data sets

Training
Data Neurons Generations

Elite
Count

Crossover
Fraction

Training
Error

Validation
Error

Testing
Error

80 % 4 300 0.20 0.9 0.01336 0.00127 0.00166
90 % 4 400 0.15 0.9 0.01203 0.00185 0.00132

outperformed BPA in both the training data sets. Also a notable observation is that the

validation error has increased when increasing the training data for both the algorithm

but the testing error has decreased.

The best prediction result obtained using GA for 10 % and 5 % of testing data are shown

in Figs. 7.8 and 7.9, respectively.
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Fig. 7.8. Comparison of actual and predicted data using GA for 10 % testing data
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Fig. 7.9. Comparison of actual data and predicted data using GA for 5 % testing data

7.4 Conclusion

In this chapter, application of artificial neural network for predicting wind power gen-

eration over short intervals of few hours to few days is demonstrated by using two

algorithms, namely, BPA and FFNN-GA. It is found that the predictions over this time

scales can be generated with reasonable accuracy if minimum 70 % of input data is

used for training, 15% for validation and remaining 15 % for testing. The results clearly
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shows that the predicted wind power generation is in close agreement with actual wind

power generation when time scale for prediction is minimum. The results are obtained

for two time scales, 5 % of input data set and 10 % of input data set. The error of pre-

diction depends on time scale of prediction. From the results, it is concluded that the

error of prediction is minimum when genetic algorithm is employed in FFNN than that

of back propagation algorithm as learning algorithm in artificial neural network. Thus,

genetic algorithm is recommended over back propagation algorithm for application of

prediction of wind power generation.



Chapter 8

Summary and Future Scope of Work

In this chapter, the major conclusions from the chapters are presented. Future scope for

research is also presented.

8.1 Summary

The thesis relates on investigating modern heuristic techniques for wind resource assess-

ment and computer simulation models for wind farms. The work carried out involves

use of heuristic techniques for predicting cumulative installed wind power generation

capacity in future, for assessment of available wind resource at a given site, for estima-

tion of performance of existing wind farms, for optimizing position of wind turbine and

predicting wind power generation in a wind farm are presented.

In the work, an improvised method for prediction of wind power generation capacity in

future is developed. Accordingly, various options for realizing projected growth in wind

power capacity are considered. Specifically, first the rate of growth of wind power gen-

eration capacity in future is predicted in the context of India and China, the two leading

nations as far as wind power generation capacity addition is concerned. On the basis of

growth in wind power generation capacity over the past years, the growth in future over

longer term till 2050 is predicted. It is predicted that addition of wind power generation

capacity in India will continue to increase. As the availability of wind resource is highly

143
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site specific and the wind farms have been setup in almost all prospective sites, the op-

tion of increasing wind power generation capacity at the existing wind farm through

re-powering is investigated. The industry scale commercial softwares are used for de-

termining wind resource at any other point or on the site of the wind farm when data

measured at one point is available. The software tools used also take into account details

of terrain in terms of orography and roughness at the site. The options considered are:

(i) installing wind turbine generators of higher capacity by way of new installations at

greater hub heights in the existing wind farms, (ii) optimizing layout of wind farm in

view of likely new capacity addition at the site of existing wind farms. Using Wind-

Farmer software, optimal positioning of wind turbines in wind farm are carried out in

the case of existing wind farm in India. The highlights of the thesis are as follows:

1. The logistic function method is used for predicting cumulative installed wind

power generation capacity upto any year in future is demonstrated in the context

of India and China. Next, genetic algorithm has been used to obtain refined val-

ues of regression coefficients required in logistic function method. It is shown

that error in prediction is reduced by 67.9 % in the case of India and 59.38 %

in the case of China. The results are obtained on the basis of assumptions that

exploitable wind power generation capacity in India is 49130 MW and for China

is 235000 MW. The results obtained using the proposed method shows that the

installed wind power generation capacity will reach 99 % of 49130 MW by year

2032 in India and 232650 MW in China by the year 2024. Recent estimates of

re-assessed potential of wind power generation may be used to obtain updated

predictions.

2. Use of measured wind climate data for determining wind speed distribution char-

acteristics at a site is demonstrated. The analytical expressions for conventional

methods, Weibull distribution and Rayleigh distribution function for characteriz-

ing wind resource at two sites is obtained on the basis of actual measured wind cli-

mate data at two different sites. The site-I typifies experimental wind climate data

measurement site and site-II typifies modern grid connected wind power plant in

India. The specifications of Weibull probability density function at a site requires
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values of shape parameter (k) and scale parameter (c). The error of estimation

by using analytic expression is determined with respect to actual empirically ob-

served wind speed distribution at the corresponding site. Further, five statistical

methods are used to determine the values of k and c. All the methods have been

used to obtain the values of k and c for the two sites. In each case, wind power

potential corresponding to pairs of values of k and c is determined for the site and

is compared with empirically observed wind power potential at the site. Thus the

error of estimation is determined. A new method for obtaining refined values of k

and c using genetic algorithm is developed. With use of refined values of k and c,

the error in estimation is reduced by 12.24 %.

3. Next, use of industry scale commercial software namely WindSim, Meteodyn

and WindFarmer are used to simulate the effect of terrain,on power generated

wind farm is demonstrated. The results are obtained for existing wind farm in

the state of Tamilnadu. The annual energy production and capacity factor by us-

ing these softwares for the site are determined. The capacity factor for the ac-

tual site is estimated as 38.3 %. From the results obtained it is found that ca-

pacity factor estimated by WindSim, Meteodyn and WindFarmer are 41.47 %,

40.75 % and 42.50 %, respectively. The results obtained it is found that WindSim

and Metodyn are in close agreement with the estimated data as these are sim-

ulation tools for complex terrain. The value of wind power density determined

at the site is 371.572 W/m2 is in close agreement using Metodyn software as

367.5 W/m2. Among the software tools used it is found that the Meteodyn soft-

ware predicts with highest accuracy followed by WindSim and WindFarmer.

4. A genetic algorithm-based technique is developed for searching optimum posi-

tions of wind turbines. Use of WindFarmer software for determining locations of

wind turbines in a wind farm is demonstrated. It is found that the location of ex-

isting wind turbines in the existing wind farm are significantly differ from those

recommended by WindFarmer, and therefore do not correspond to maximum pos-

sible power generation, thus there is scope for relocation of turbines in the existing

wind farm in future. The wind farm simulation tool internally searches locations

of wind turbines for maximum possible power generation. The actual capacity
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factor determined by using the WindFarmer software for the existing wind farm is

42.5 %. The results of wind farm simulation model suggest that there is scope for

relocating existing wind turbines to a new positions corresponding to maximum

power production. Thus wind farm capacity factor can be increased to 45.70 %,

leads to increase of annual energy production of 13.83 GWh/y and 7.52 % in-

crease in capacity factor at the site.

5. Application of artificial neural network for predicting wind power generation over

short intervals of few hours to few days is demonstrated by using two algorithms,

namely, BPA and FFNN-GA. The results clearly shows that the predicted wind

power generation is in close agreement with actual wind power generation when

time scale for prediction is minimum. The results are obtained for two time scales,

one equivalent to 10 % of total input data and second, equivalent to 5 % of to-

tal input data. The error of prediction depends on time scale of prediction. The

accuracy of prediction depends on volume of data input as well as time scale of

prediction. The results are obtained by varying the time scales of prediction when

input data is available. It is found that predicted wind power generation closely

matches with actual wind power generation when time scale of prediction is as

short as possible. The results of analysis suggest that the FFNN-GA should be

preferred for updating weights in ANN over BPA for application of prediction of

wind power generation.

8.2 Future Scope of Work

The work presented in the thesis, may be extended as follow:

1. The genetic algorithm based logistic function method, as described in chapter-3,

is tested in the cases of India and China, with reasonable accuracy. The method

uses discrete data on recorded cumulative wind power generation capacity dur-

ing the past years, for generating analytical representation of continuous curve.

Although results obtained are reasonably accurate, further work for improving

accuracy may be recommended.



Chapter 8. Summary and Future Scope of Work 147

2. There is scope for using newer artificial intelligence techniques for obtaining re-

fined values of shape parameter, k, and scale parameter, c, required for determin-

ing Weibull probability distribution function for a given site. The results presented

in the thesis can be compared with new results thus obtained.

3. In the present work, computer simulation tools, namely, WindSim, Meteodyn and

WindFarmer have been used to estimate annual energy production and capacity

of one of the existing wind farms. The work can be extended to other existing

wind farm sites, to established usefulness of these software tools.

4. It is demonstrated that WindFarmer software can be used for to obtain additional

optimum positions of wind turbines in existing wind farm. The difference in

actual positions of existing wind turbines and recommended optimum positions

of wind turbines, clearly suggest possible options of re-powering existing wind

farm. This may be of interest to wind power developer. Similar results can be

obtained for additional wind farm sites.

5. The techniques developed for assessment wind power potential can be applied

to new prospective wind farm sites, including off-shore sites, using detailed time

series data on wind speed, direction, air, temperature, humidity and air pressure

at other wind farm sites.



Appendix A

Introduction to Genetic Algorithm

A.1 Evolutionary Algorithms - Genetic Algorithm

A variety of evolutionary algorithms (EA) have been developed. Authors have reported

that the most popular of them are genetic algorithm (GA), evolutionary programming,

differential evolution, evolution strategies, genetic programming, population-based in-

cremental learning, particle swarm optimization and ant colony optimization [130–

134]. The basic concept of all the above listed evolutionary algorithms is to simulate

the evolution of individual structures via, processes of selection, reproduction and mu-

tation.

Genetic algorithm is the most popular type of evolutionary algorithms [135]. This type

of evolutionary algorithm is often used in optimization problems since genetic algorithm

can find a good near-optimal feasible solutions in a reduced computational time [135].

Genetic algorithm is a kind of direct random search algorithm modeled after mechanics

of biological evolution. The first step in GA is the random selection of initial search

points from the total search space. Each and every point in the search space corresponds

to one set of values for the parameters of the problem. Each parameter is coded with a

string of bits. The individual bit is called “gene”. The total string of such genes of all pa-

rameters written in a sequence is called a “chromosome”. So there exists a chromosome

for each point in the search space.

148
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The set of search points selected and used for processing is called a “population”, i.e.,

population is a set of chromosomes. The number of chromosomes in a population is

called “population size” and the total number of genes in a string is called “string

length”. The population is processed and evaluated through various operators of GA

to generate a new population and this process is carried out till global optimum point is

reached.

A.1.1 Phases of GA

Genetic algorithm consists of a string representation of points in the search space, a set

of genetic operators for generating new search points, a fitness function to evaluate the

search points and a stochastic assignment to control the genetic operations. The basic

genetic algorithm cycle is shown in Fig. A.1. It typically consists of three phases.

Parents

Decoded 
Strings

ReproductionMale

Manipulation

Offsprings

New 
Generation

Fig. A.1. Basic schematic of genetic algorithm cycle

1. Initialization :

Initialization is the generation of initial population of chromosomes, i.e., initial

search points. The population size and string length need to be judiciously se-

lected before this job is performed. The size of the population, i.e., number of

chromosomes in a population, is a direct indication of effective representation of

whole search space in one population.

The population size affects both the ultimate performance and efficiency of GA. If

it is too small, the chance that the members of a population cover the entire search



AppendixA. Introduction to Genetic Algorithm 150

space is low. This results in difficulty in obtaining the global optimum solution

and leads to a local optimum solution.

Large population size is preferable to avoid this premature convergence and to

reach a global optimum point. But a too large population size decreases the rate

of convergence and in the worst case may lead to divergence. So based on the size

of search space the population size needs to be selected by trial and error.

After the selection of string length and population size, the initial population is

generated as a set of strings of bits either 0 or 1. Random number generation tech-

niques are used to accomplish this task. These strings of bits contain the informa-

tion related to the parameters of the optimization problem in encoded format. Any

of the encoding techniques can be used but binary encoding is convenient and

mostly used.

2. Evaluation:

In the evaluation phase, suitability of each of the solutions from the initial set as

the solution of the optimization problem is determined. For this function called

“fitness function” is defined. This is used as a deterministic tool to evaluate the

fitness of each chromosome. The optimization problem may be seeking minimum

or maximum value of objective function.

In the case of maximization type of objective function, the fitness function can

be a function of variables that bear direct proportionality relationship with the

objective function. For minimization type of objective function problems, fitness

function can be function of variables that bear inverse proportionality relationship

with the objective function or can be reciprocal of a function of variables with di-

rect proportionality relation ship with the objective function. In either case, fitness

function is so selected that the most fit solution is the nearest to the global opti-

mum point.

3. Genetic Operation:

In this phase, the objective is the generation of new population from the existing
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population with the examination of fitness values of chromosomes and applica-

tion of genetic operators. These genetic operators are reproduction, crossover and

mutation.

This phase is carried out repetitively or iteratively until optimum solution is ob-

tained. The GA utilizes the notion of survival of the fittest by transferring the

highly fit chromosomes to the next generation of strings and combining different

strings to explore new search points.



Appendix B

Wind Resource Assessment at Model

Wind Farm

B.1 Site-II: Model Wind Farm

The Model wind farm represents grid integrated wind farm in India situated at Periyap-

atti, TamilNadu (hereafter named as “Site-II”) (Lat.10◦45′18.5′′N , Long. 77◦15′11.0′′E),

altitude 327 m mean sea level. The site is located approximately 22 km from Udu-

malpet, Coimbatore, TamilNadu. The main source of wind is expected through Palghat

pass.

This section provides the detailed analysis of different distribution methods for Wind

Resource assessment.

B.1.1 Standard Deviation Method-based Analysis

In this section, the Weibull parameters are determined by using standard deviation

method as explained in section 4.3.2, and various parameters thus calculated are listed

in Table B.1.
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Table B.1. Month-wise variation of Weibull parameters and their associated statistical
parameters using SD method at site-II

Month VmW k c Vmp VmaxE WPDC WPDV WPDE RMSE R2

(m/s) (m/s) (m/s) (m/s) (W/m2) (W/m2) (%)
Oct-10 7.543 2.449 8.506 6.865 10.855 421.128 405.519 4.923 0.020 0.369
Nov-10 3.344 1.718 3.751 2.258 5.878 51.808 50.090 2.224 0.019 0.722
Dec-10 4.240 2.136 4.788 3.563 6.523 83.738 81.297 -1.839 0.017 0.803
Jan-11 4.290 2.594 4.831 4.004 6.022 74.339 72.039 2.153 0.010 0.937
Feb-11 4.300 2.512 4.846 3.959 6.118 76.545 73.860 0.890 0.006 0.972
Mar-11 4.709 2.210 5.317 4.048 7.118 111.292 106.527 0.518 0.005 0.967
Apr-11 5.000 1.793 5.621 3.565 8.539 164.597 157.338 2.030 0.009 0.832
May-11 8.947 4.123 9.853 9.211 10.845 535.642 511.276 1.338 0.011 0.890
Jun-11 10.315 5.462 11.178 10.771 11.835 760.249 731.692 -0.123 0.008 0.945
Jul-11 10.904 6.802 11.675 11.405 12.126 863.305 831.822 -0.058 0.008 0.953

Aug-11 10.209 5.472 11.062 10.661 11.710 736.765 709.686 0.251 0.005 0.979
Sep-11 9.919 5.788 10.713 10.367 11.276 667.910 642.440 -0.004 0.006 0.975
Oct-11 4.683 1.944 5.281 3.642 7.601 123.731 119.034 0.415 0.007 0.929
Nov-11 3.459 1.866 3.896 2.581 5.757 52.091 50.424 -4.125 0.017 0.837
Dec-11 3.722 2.418 4.198 3.366 5.387 51.072 49.523 0.127 0.015 0.893
Jan-12 4.052 3.583 4.497 4.105 5.090 52.477 50.955 -0.124 0.011 0.963
Feb-12 4.567 2.827 5.127 4.393 6.195 84.802 81.739 0.519 0.006 0.976
Mar-12 4.871 1.965 5.494 3.825 7.854 137.618 131.448 0.091 0.006 0.953
Apr-12 5.284 2.035 5.964 4.278 8.349 169.630 161.602 1.562 0.009 0.881
May-12 9.931 4.310 10.909 10.261 11.918 721.994 689.541 0.832 0.006 0.955
Jun-12 10.831 6.534 11.621 11.329 12.106 851.236 817.811 -0.105 0.009 0.938
Jul-12 10.673 5.991 11.506 11.160 12.073 826.820 795.330 -0.004 0.006 0.973

Aug-12 10.166 5.445 11.018 10.615 11.669 728.179 701.203 0.069 0.007 0.954
Sep-12 9.632 5.234 10.463 10.048 11.131 624.990 600.471 0.313 0.006 0.968

Whole data 6.913 2.013 7.802 5.546 10.991 384.041 369.593 2.795 0.011 0.650

It is observed from Table B.1 that, VmW varies from minimum of 3.344 m/s in November

2010 to maximum of 10.904 m/s in July 2011. Similarly, k varies from minimum of

1.718 occurring on November 2010 to maximum of 6.802 occurring on July 2011. Also,

c varies from minimum of 3.751 m/s occurring on November 2010 to maximum of

11.675 m/s occurring on July 2011. The values of k and c over a period of two years

are estimated as 2.013 and 7.802 m/s, respectively, as listed in Table B.1.

It is observed from the table, that the Vmp varies from minimum of 2.258 m/s to maxi-

mum of 11.405 m/s and VmaxE varies from 5.090 m/s in January 2012 to maximum of

12.126 m/s in July 2011. The values of VmW , Vmp and VmaxE for the complete data are

6.913 m/s, 5.546 m/s and 10.991 m/s, respectively.

From the table, it is observed that WPDWC corresponding to ρC varies from a minimum

of 51.072 W/m2 in the month of December 2011 to a maximum of 863.305 W/m2 in

the month of July 2011 and WPDWH corresponding to ρH varies from 49.523 W/m2 to

a maximum of 831.822 W/m2.
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The percentage change in the variation of wind power density for the complete data

is calculated using the actual value (359.544 W/m2) to that of the wind power density

estimated using Weibull parameters (369.593 W/m2) is found to be 2.795 %. Also,

from the table, the RMSE and R2 for the whole data is found to be 0.0107 and 0.650,

respectively.

B.1.2 Energy Pattern Factor Method-based Analysis

In this section, the Weibull parameters are determined by using standard deviation

method as explained in section 4.3.3, and various parameters thus calculated are listed

in Table B.2.

Table B.2. Month-wise variation of Weibull parameters and their associated statistical
parameters using EPF method at site-II

Month VmW k c Vmp VmaxE WPDC WPDV WPDE RMSE R2

(m/s) (m/s) (m/s) (m/s) (W/m2) (W/m2) (%)
Oct-10 7.543 2.583 8.494 7.028 10.605 405.187 390.169 0.951 0.019 0.388
Nov-10 3.344 1.754 3.756 2.321 5.795 50.531 48.854 -0.296 0.019 0.717
Dec-10 4.240 2.106 4.787 3.526 6.574 84.862 82.388 -0.521 0.017 0.800
Jan-11 4.290 2.631 4.829 4.026 5.987 73.635 71.356 1.185 0.010 0.939
Feb-11 4.300 2.520 4.845 3.965 6.109 76.371 73.692 0.660 0.006 0.972
Mar-11 4.709 2.231 5.317 4.073 7.083 110.369 105.643 -0.316 0.005 0.966
Apr-11 5.000 1.831 5.627 3.656 8.421 160.614 153.531 -0.439 0.010 0.814
May-11 8.947 3.541 9.937 9.048 11.277 567.862 542.030 7.434 0.015 0.801
Jun-11 10.315 3.878 11.400 10.556 12.691 839.096 807.578 10.235 0.012 0.852
Jul-11 10.904 4.119 12.010 11.226 13.222 970.211 934.829 12.318 0.017 0.769

Aug-11 10.209 3.902 11.279 10.455 12.541 811.643 781.813 10.440 0.014 0.824
Sep-11 9.919 3.954 10.950 10.172 12.144 740.678 712.432 10.890 0.014 0.838
Oct-11 4.683 1.962 5.283 3.674 7.558 122.517 117.866 -0.570 0.007 0.926
Nov-11 3.459 1.803 3.890 2.485 5.884 54.120 52.387 -0.392 0.018 0.823
Dec-11 3.722 2.415 4.198 3.364 5.390 51.124 49.574 0.231 0.015 0.892
Jan-12 4.052 3.218 4.522 4.029 5.255 55.134 53.535 4.932 0.013 0.949
Feb-12 4.567 2.765 5.131 4.362 6.248 85.978 82.872 1.913 0.007 0.972
Mar-12 4.871 1.978 5.495 3.848 7.824 136.703 130.574 -0.574 0.006 0.951
Apr-12 5.284 2.080 5.965 4.352 8.248 166.111 158.250 -0.545 0.009 0.868
May-12 9.931 3.590 11.022 10.064 12.470 772.100 737.395 7.830 0.009 0.889
Jun-12 10.831 4.078 11.936 11.141 13.164 954.018 916.557 11.957 0.016 0.800
Jul-12 10.673 3.993 11.776 10.956 13.037 919.671 884.645 11.226 0.015 0.815

Aug-12 10.166 3.885 11.234 10.406 12.501 802.606 772.874 10.298 0.013 0.837
Sep-12 9.632 3.849 10.650 9.849 11.874 685.252 658.369 9.986 0.014 0.829

Whole data 6.913 2.083 7.805 5.701 10.783 371.572 357.593 -0.543 0.011 0.615

It is observed from Table B.2 that, VmW varies from minimum of 3.344 m/s in November

2010 to maximum of 10.904 m/s in July 2011. Similarly, k varies from minimum

of 1.754 occurring on November 2010 to maximum of 4.119 occurring on July 2011.

Also, c varies from minimum of 3.756 m/s occurring in November 2010 to maximum
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of 12.010 m/s occurring in July 2011. The values of k and c over a period of two years

are estimated as 2.083 and 7.805 m/s, respectively, as listed in Table B.2.

It is observed from the table, that the Vmp varies from minimum of 2.321 m/s to maxi-

mum of 11.226 m/s and VmaxE varies from 5.255 m/s in January 2012 to maximum of

13.222 m/s in July 2011. The values of VmW , Vmp and VmaxE for the complete data are

6.913 m/s, 5.701 m/s and 10.783 m/s, respectively.

From the table, it is observed that WPDWC corresponding to ρC varies from a minimum

of 50.531 W/m2 in the month of November 2010 to a maximum of 970.211 W/m2 in

the month of July 2011 and WPDWH corresponding to ρH varies from 48.854 W/m2 to

a maximum of 934.829 W/m2.

The percentage change in the variation of wind power density for the complete data

is calculated using the actual value (359.544 W/m2) to that of the wind power density

estimated using Weibull parameters (357.593 W/m2) is found to be -0.543 %. Also,

from the table, the RMSE and R2 for the whole data is found to be 0.0112 and 0.615,

respectively.

B.1.3 Maximum Likelihood Method-based Analysis

In this section, the Weibull parameters are determined by using maximum likelihood

method as explained in section 4.3.4. The Weibull parameters and its associated pa-

rameters determined using MLE method are listed in Table B.3. It is observed from

Table B.3 that, VmW varies from minimum of 3.326 m/s in November 2010 to maxi-

mum of 10.880 m/s in July 2011. Similarly, k varies from minimum of 1.614 occurring

on November 2010 to maximum of 6.402 occurring on July 2011. Also, c varies from

minimum of 3.713 m/s occurring on November 2010 to maximum of 11.686 m/s occur-

ring on July 2011. The values of k and c over a period of two years are estimated as

1.948 and 7.768 m/s, respectively, as listed in Table B.3.

It is observed from the table, that the Vmp varies from minimum of 2.040 m/s to maxi-

mum of 11.380 m/s and VmaxE varies from 5.110 m/s in January 2012 to maximum of



AppendixB. Wind Resource Assessment at Model Wind Farm 156

Table B.3. Month-wise variation of Weibull parameters and their associated statistical
parameters using MLE method at site-II

Month VmW k c Vmp VmaxE WPDC WPDV WPDE RMSE R2

(m/s) (m/s) (m/s) (m/s) (W/m2) (W/m2) (%)
Oct-10 7.440 2.320 8.398 6.585 10.980 421.546 405.921 5.027 0.020 0.324
Nov-10 3.326 1.614 3.713 2.040 6.118 55.257 53.424 9.030 0.019 0.730
Dec-10 4.233 2.093 4.779 3.504 6.583 84.869 82.395 -0.513 0.017 0.800
Jan-11 4.261 2.543 4.800 3.944 6.031 73.833 71.548 1.457 0.010 0.929
Feb-11 4.282 2.468 4.827 3.911 6.140 76.577 73.891 0.932 0.007 0.969
Mar-11 4.694 2.161 5.301 3.977 7.177 112.443 107.628 1.557 0.005 0.966
Apr-11 4.988 1.729 5.596 3.396 8.729 170.577 163.054 5.737 0.008 0.856
May-11 8.937 4.407 9.805 9.249 10.674 522.581 498.809 -1.133 0.009 0.918
Jun-11 10.299 5.227 11.188 10.743 11.904 764.214 735.509 0.398 0.007 0.949
Jul-11 10.880 6.402 11.686 11.380 12.193 865.708 834.137 0.220 0.007 0.958

Aug-11 10.199 5.492 11.049 10.652 11.691 734.089 707.109 -0.113 0.005 0.980
Sep-11 9.902 5.585 10.717 10.345 11.320 669.420 643.892 0.222 0.005 0.977
Oct-11 4.674 1.896 5.267 3.546 7.701 126.259 121.466 2.467 0.007 0.937
Nov-11 3.446 1.809 3.876 2.484 5.850 53.318 51.612 -1.867 0.018 0.824
Dec-11 3.695 2.322 4.170 3.272 5.449 51.570 50.007 1.105 0.016 0.876
Jan-12 4.041 3.500 4.491 4.079 5.110 52.580 51.055 0.072 0.011 0.965
Feb-12 4.546 2.777 5.107 4.348 6.208 84.559 81.504 0.231 0.007 0.974
Mar-12 4.863 1.923 5.482 3.742 7.943 140.060 133.781 1.868 0.005 0.958
Apr-12 5.278 2.002 5.956 4.215 8.419 171.872 163.738 2.904 0.008 0.890
May-12 9.931 4.531 10.879 10.296 11.793 711.261 679.291 -0.667 0.006 0.956
Jun-12 10.813 6.171 11.637 11.309 12.179 855.153 821.574 0.355 0.008 0.949
Jul-12 10.657 5.779 11.511 11.139 12.118 828.624 797.065 0.215 0.006 0.973

Aug-12 10.156 5.355 11.018 10.601 11.691 728.868 701.867 0.164 0.007 0.955
Sep-12 9.623 5.281 10.448 10.041 11.103 621.962 597.562 -0.173 0.006 0.970

whole data 6.888 1.948 7.768 5.366 11.165 392.767 377.991 5.131 0.010 0.674

11.686 m/s in July 2011. The values of VmW , Vmp and VmaxE for the complete data are

6.888 m/s, 5.366 m/s and 11.165 m/s, respectively.

From the table, it is observed that WPDWC corresponding to ρC varies from a minimum

of 51.570 W/m2 in the month of December 2011 to a maximum of 865.708 W/m2 in

the month of July 2011 and WPDWH corresponding to ρH varies from 50.007 W/m2 to

a maximum of 834.137 W/m2.

The percentage change in the variation of wind power density for the complete data

is calculated using the actual value (359.544 W/m2) to that of the wind power density

estimated using Weibull parameters (377.991 W/m2) is found to be 5.131 %. Also,

from the table, the RMSE and R2 for the whole data is found to be 0.0103 and 0.674,

respectively.
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B.1.4 Rayleigh Distribution Method-based Analysis

In this section, Rayleigh distribution method as explained in section 4.4 is used for

the analysis. Similar to that of Weibull distribution methods, various parameters are

determined using Rayleigh distribution method are listed in Table B.4.

Table B.4. Month-wise variation scale parameter and its associated statistical parame-
ters using Rayleigh distribution method at site-II

Month VmR cR VmpR VmaxR WPDR WPDV R WPDE RMSE R2

(m/s) (m/s) (m/s) (m/s) (W/m2) (W/m2) (%)
Oct-10 7.543 8.512 6.019 12.038 502.378 483.758 25.166 0.021 0.264
Nov-10 3.344 3.774 2.668 5.337 43.776 42.324 -13.624 0.021 0.661
Dec-10 4.240 4.785 3.383 6.766 89.223 86.622 4.591 0.018 0.787
Jan-11 4.290 4.841 3.423 6.847 92.436 89.575 27.020 0.017 0.799
Feb-11 4.300 4.852 3.431 6.862 93.051 89.787 22.645 0.013 0.890
Mar-11 4.709 5.313 3.757 7.514 122.196 116.964 10.367 0.006 0.953
Apr-11 5.000 5.642 3.989 7.979 146.304 139.852 -9.309 0.012 0.708
May-11 8.947 10.095 7.138 14.277 838.110 799.985 58.562 0.027 0.333
Jun-11 10.315 11.639 8.230 16.460 1284.509 1236.261 68.751 0.026 0.335
Jul-11 10.904 12.304 8.701 17.401 1517.548 1462.205 75.681 0.032 0.245

Aug-11 10.209 11.520 8.146 16.291 1245.335 1199.566 69.452 0.029 0.291
Sep-11 9.919 11.192 7.914 15.828 1142.034 1098.483 70.979 0.029 0.305
Oct-11 4.683 5.285 3.737 7.474 120.235 115.671 -2.422 0.008 0.917
Nov-11 3.459 3.903 2.760 5.520 48.445 46.894 -10.836 0.016 0.862
Dec-11 3.722 4.200 2.970 5.939 60.345 58.515 18.308 0.021 0.793
Jan-12 4.052 4.572 3.233 6.465 77.842 75.585 48.151 0.033 0.657
Feb-12 4.567 5.153 3.644 7.288 111.476 107.449 32.137 0.018 0.797
Mar-12 4.871 5.496 3.886 7.772 135.223 129.161 -1.651 0.006 0.948
Apr-12 5.284 5.962 4.216 8.431 172.635 164.465 3.361 0.008 0.891
May-12 9.931 11.206 7.924 15.847 1146.225 1094.703 60.080 0.022 0.378
Jun-12 10.831 12.221 8.642 17.284 1487.065 1428.673 74.512 0.030 0.251
Jul-12 10.673 12.043 8.516 17.032 1423.034 1368.837 72.103 0.029 0.284

Aug-12 10.166 11.471 8.111 16.222 1229.511 1183.964 68.965 0.028 0.308
Sep-12 9.632 10.869 7.686 15.371 1046.004 1004.969 67.888 0.029 0.300

Whole data 6.913 7.801 5.516 11.032 386.682 372.135 3.502 0.011 0.656

It is observed from the table, cR varies from minimum of 3.774 m/s occurring in Novem-

ber 2010 to maximum of 12.304 m/s occurring in July 2011. The value of cR for the

complete data is estimated as 7.801 m/s as listed in Table B.4.

It is observed that the VmR varies from minimum of 3.344 m/s in November 2010 to

maximum of 10.904 m/s in July 2011. The VmpR varies from minimum of 2.668 m/s

in November 2010 to maximum of 8.704 m/s in July 2011 and VmaxER varies from

5.337 m/s in November 2010 to 17.401 m/s in July 2011. The values of VmR, VmpR and

VmaxER, for the complete data are 6.913 m/s, 5.516 m/s and 11.032 m/s, respectively.



AppendixB. Wind Resource Assessment at Model Wind Farm 158

From the table, it is observed that the values of wind power density (WPDRC) corre-

sponding to ρC varies from a minimum of 43.776 W/m2 in the month of November 2010

to a maximum of 1517.548 W/m2 in the month of July 2011 and WPDRH corresponding

to ρH varies from 42.324 W/m2 to a maximum of 1462.205 W/m2.

The percentage change in WPDRC (386.682 W/m2) to WPDRH (372.135 W/m2) is -

3.76 %, for the whole data. Also the percentage change variation of wind power density

calculated using the actual value (359.544 W/m2) to that of the wind power density

estimated using Rayleigh parameters (372.135 W/m2) is found to be 3.502 %, for the

complete data. Also, from the table the RMSE and R2 for the complete data is found to

be 0.0106 and 0.656, respectively.

B.1.5 Comparison of Weibull Distribution Method to Rayleigh Dis-

tribution Method

In this section, the results of the comparative study of Weibull distribution methods and

Rayleigh distribution method are presented. From Table B.5, it is observed that for the

complete data the graphical method found to be the best method for site-II in terms of

accuracy in fitting the PDF as indicated by RMSE and R2 values.

B.1.6 Variation of Wind Power Density with Height

Using the value of WPD at 85 m height AGL, the WPD at different heights, viz., 100 m,

120 m and 150 m AGL, are estimated using the power law equation (4.46) and (4.48),

respectively. The procedure is detailed in the form of flowchart shown in Fig. 4.3.

The wind data recorded at two different heights (70 m and 85 m) are available, α is

calculated using 4.47. The extrapolated values of WPD at different heights are listed in

Table B.6.

The WPDs estimated for heights 100 m and 150 m AGL are found to be 389.64 W/m2

and 476.18 W/m2, respectively.
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Table B.5. Best values of RMSE and R2 from different distribution methods for site-II

Month Year RMSE R2 Method
Oct-10 0.0194 0.388 EPF
Nov-10 0.0183 0.737 GP
Dec-10 0.0170 0.803 SD
Jan-11 0.0095 0.939 EPF
Feb-11 0.0064 0.972 EPF
Mar-11 0.0055 0.967 SD
Apr-11 0.0074 0.888 GP
May-11 0.0095 0.918 MLE
Jun-11 0.0073 0.949 MLE
Jul-11 0.0075 0.958 MLE
Aug-11 0.0048 0.980 MLE
Sep-11 0.0054 0.977 MLE
Oct-11 0.0065 0.940 GP
Nov-11 0.0173 0.837 SD
Dec-11 0.0152 0.893 SD
Jan-12 0.0107 0.965 MLE
Feb-12 0.0063 0.976 SD
Mar-12 0.0053 0.960 GP
Apr-12 0.0074 0.914 GP
May-12 0.0059 0.956 MLE
Jun-12 0.0079 0.949 MLE
Jul-12 0.0056 0.973 SD
Aug-12 0.0071 0.955 MLE
Sep-12 0.0061 0.970 MLE
Whole data 0.0098 0.703 GP
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Table B.6. Variation of wind power density with height (AGL) at site-II

Month Year WPDm70 WPDm85 α WPD100 WPD120 WPD150

(W/m2) (W/m2) (W/m2) (W/m2) (W/m2)
Oct-10 355.959 386.493 0.155 416.908 453.886 503.637
Nov-10 43.154 49.000 0.199 53.984 60.182 68.744
Dec-10 71.355 82.820 0.287 95.273 111.486 135.129
Jan-11 58.624 70.520 0.336 83.066 99.815 124.977
Feb-11 62.430 73.209 0.296 84.568 99.422 121.198
Mar-11 93.042 105.978 0.256 120.043 138.055 163.819
Apr-11 139.902 154.208 0.192 169.302 188.000 213.719
May-11 466.032 504.524 0.137 539.256 581.075 636.695
Jun-11 677.117 732.594 0.154 789.599 858.847 951.918
Jul-11 775.798 832.306 0.132 887.432 953.633 1041.413
Aug-11 661.447 707.908 0.126 752.683 806.294 877.131
Sep-11 599.270 642.467 0.126 683.276 732.149 796.749
Oct-11 111.664 118.541 0.113 125.271 133.277 143.776
Nov-11 46.453 52.593 0.191 57.725 64.080 72.818
Dec-11 42.822 49.460 0.233 55.419 62.961 73.604
Jan-12 44.520 51.019 0.214 56.621 63.641 73.429
Feb-12 70.512 81.316 0.243 91.536 104.537 122.989
Mar-12 119.153 131.328 0.203 144.982 161.995 185.559
Apr-12 145.869 159.117 0.172 173.074 190.193 213.466
May-12 633.815 683.849 0.134 729.980 785.445 859.097
Jun-12 759.196 818.667 0.139 876.251 945.686 1038.200
Jul-12 739.658 795.359 0.131 847.679 910.480 993.710
Aug-12 653.862 700.717 0.128 745.979 800.245 872.062
Sep-12 558.652 598.596 0.127 636.865 682.716 743.350
whole data 332.249 359.544 0.165 389.643 426.419 476.185
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Optimizing Position of Wind Turbine

using PSO

C.1 Simulation of Wind Farm using Particle Swarm Op-

timization

Particle swarm optimization technique can be used to find the optimal position of wind

turbines in a wind farm for increased power generation efficiency. The simulation is

carried out using MATLAB.

The data used for simulation is as given in Table 6.1. The results are computed for

different number of turbines and are shown in Table C.1. The tabulated data indicates

optimum position of turbine corresponds to larger power output than recorded at the

wind farm. Table C.2 shows the improvement in efficiency compared to the existing

Table C.1. Comparison of results obtained by the proposed approach using PSO with
variation of wind turbines.

Results using PSO
No. of turbines 10 20 26 30 32
Total Power (kW/year) 5184 10365 13471 15019 16552
Fitness value 0.00182 0.00160 0.00148 0.00142 0.00139
Efficiency % 100 99.94 99.71 99.67 99.72
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method shown in Table 6.2 to that of using the present approach of placements of wind

turbines using PSO.

Table C.2. Increase in efficiency using PSO

No. of turbines 20 26 30
Increase in efficiency (in %) 1.94 8.089 7.68

The optimal layout using PSO for different wind turbines are shown in Figs. C.1, C.2,

C.3.

(a) layout of 10 turbines (b) layout of 20 turbines

Fig. C.1. Proposed wind farm layout of wind turbines consisting of 10 & 20 turbines
using PSO

(a) layout of 26 turbines (b) layout of 30 turbines

Fig. C.2. Proposed wind farm layout of wind turbines consisting of 26 & 30 turbines
using PSO



Appendix C. Optimizing Position of Wind Turbine using PSO 163

Fig. C.3. Proposed wind farm layout of wind turbines consisting of 32 turbines using
PSO



Appendix D

Architecture of Artificial Neural

Network using BPA and GA

D.1 Artificial Neural Network

Artificial neural networks (ANN) or simply neural networks refer to a group of al-

gorithms that typically operate on a large number of simple interconnected compo-

nents or neurons [170]. ANN is an information-processing paradigm that is inspired

by the biological nervous systems, such as the brain and nervous system for process-

ing information. It is composed of a large number of highly interconnected processing

elements (neurons) working in unison to solve specific problems. ANN has been ap-

plied to various problems in different scientific disciplines, including applied mathe-

matics, chemistry, physics, engineering, economics and finance. ANN has been widely

used in solving problems related to prediction, classification, control and identifica-

tion [131, 171]. The detailed information on ANN is provided in AppendixD.

An ANN consists of a set of highly interconnected processing units, called nodes or

units. Each unit is designed to mimic its biological counterpart, the neuron. Each node

accepts a weighted set of inputs and responds with an output. ANN resembles the bi-

ological neuron in acquiring knowledge by learning from examples and storing this

information in inter-neuron connection strengths called “weights”.

164
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Structure of Artificial Neural Network:

The ANN consists of unit or neuron which in-turn consists of summer and activation

function, to mimic its biological counter part-the neuron. As shown in Fig. D.1, the

net

x1

x2

x3

xn

w2

w1

w3

wn

1

b

Activation 

function

Fig. D.1. Basic structure of a artificial neuron

basic structure of a artificial neuron consists of inputs, x1, x2 ,. . . , xn to the neuron with

corresponding weights w1, w2 ,. . . , wn which model the synaptic neural connections

in biological nets and act in such a way as to increase or decrease the input signals

to the neuron. A threshold term ‘b’ is added to the inputs. Generally, inputs, weights,

thresholds and neuron output could be either real value or binary or bipolar value. All

inputs are multiplied by their corresponding weights and added together to form the net

input to the neuron called net. The mathematical expression for net can be written as:

net =
N∑
i=1

wixi + b = w1x1 + w2x2 + ......wnxn + b (D.1)

The neuron behaves as an activation or mapping function f (net) to produce an output y

which can be expressed as:

y = f(net) = f

( N∑
i=1

wixi + b

)
(D.2)

where f is called the neuron activation function or the neuron transfer function. Some

examples of the neuron activation functions are shown in Table D.1.
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Table D.1. Types of activation function in ANN

S.No. Activation Function Mathematical expressions Function

1 Linear y = f(net) = f

( N∑
i=1

wixi + b

)
net

y

2 Sigmoid y =
1

1 + exp(−net
T

)

net

y

+1

3 Tansigmoid y = tanh(net) =
1− exp(−net)
1 + exp(−net)

net

y

+1

-1

D.2 Details of Parametric Variation of Back Propaga-

tion Algorithm in Deciding the ANN Architecture

The important parameters that affect the performance of BPA in the artificial neural

network are, number of neurons in the hidden layer, learning rate and momentum coef-

ficient. These parameters are varied with variation of epochs. The parameters varied in

the architecture are number of neurons in hidden layer from 4 to 10, learning rate (0.1,

0.5 & 0.9) and momentum coefficient (0.1, 0.5 & 0.9). Total there are 315 combina-

tions. Out of these combinations, one combination will be selected as the parameters

in the artificial neural network. This is selected on the basis of least validation error.

The training error is denoted as TrainE , Validation error is denoted as ValE and Testing

error is denoted as TestE .

In this study, two training data sets are used. One with 80 % of the total data set over

11 months as the training data, i.e. 38477 data points. The other has 90 % of the data

points, i.e., 43286 data points. The different combinations of 80 % of the total data set
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are listed in Tables D.2 and D.3. Similarly, for 90 % of input data as training data, the

best combination is listed in Tables D.4 and D.5.

D.3 Details of Parametric Variation of Genetic Algorithm

in Deciding the ANN Architecture

The important parameters that affect the performance of genetic algorithm as learning

algorithm in the artificial neural network are, number of neurons in the hidden layer,

elite count and cross over fraction. These parameters are varied with variation of gener-

ations. The parameters varied in the architecture are number of neurons in hidden layer

from 4 to 10, elite count (0.10, 0.15 & 0.20), cross over fraction (0.7, 0.8 & 0.9 . The

results obtained for different combinations consisting of 80 % of the total data are listed

in Tables D.6 and D.7 and 90 % of the total data are listed in Tables D.8 and D.9.
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Table D.2. Variation of parameters of BPA for 80 % of input data for Training

learning rate =0.1 and momentum coefficient=0.1
Neurons 4 5 6 7 8 9 10

TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE
500 0.0130 0.0026 0.0031 0.0130 0.0026 0.0032 0.0127 0.0021 0.0025 0.0128 0.0024 0.0028 0.0126 0.0021 0.0024 0.0125 0.0023 0.0027 0.0126 0.0024 0.0028
1000 0.0126 0.0024 0.0027 0.0130 0.0026 0.0031 0.0126 0.0023 0.0026 0.0126 0.0023 0.0028 0.0126 0.0021 0.0024 0.0130 0.0026 0.0031 0.0127 0.0024 0.0028
1500 0.0126 0.0023 0.0027 0.0128 0.0027 0.0032 0.0126 0.0023 0.0026 0.0127 0.0022 0.0025 0.0126 0.0024 0.0028 0.0126 0.0022 0.0027 0.0126 0.0024 0.0028
2000 0.0132 0.0026 0.0030 0.0129 0.0023 0.0027 0.0126 0.0021 0.0024 0.0126 0.0025 0.0029 0.0126 0.0023 0.0027 0.0126 0.0023 0.0026 0.0125 0.0023 0.0026
2500 0.0127 0.0026 0.0031 0.0127 0.0023 0.0027 0.0127 0.0023 0.0027 0.0126 0.0023 0.0028 0.0126 0.0023 0.0026 0.0125 0.0023 0.0027 0.0126 0.0023 0.0027

learning rate=0.5 and momentum coefficient=0.1
500 0.0129 0.0024 0.0027 0.0129 0.0023 0.0028 0.0128 0.0024 0.0028 0.0130 0.0019 0.0022 0.0126 0.0024 0.0028 0.0132 0.0027 0.0031 0.0126 0.0023 0.0027
1000 0.0127 0.0024 0.0028 0.0131 0.0020 0.0023 0.0126 0.0023 0.0028 0.0128 0.0023 0.0027 0.0126 0.0023 0.0027 0.0126 0.0023 0.0028 0.0126 0.0020 0.0023
1500 0.0127 0.0026 0.0030 0.01298 0.00188 0.00223 0.0127 0.0022 0.0025 0.0127 0.0026 0.0030 0.0126 0.0023 0.0027 0.0127 0.0023 0.0027 0.0126 0.0023 0.0027
2000 0.0127 0.0024 0.0028 0.0127 0.0023 0.0027 0.0126 0.0025 0.0029 0.0127 0.0026 0.0031 0.0126 0.0024 0.0028 0.0126 0.0022 0.0026 0.0126 0.0024 0.0027
2500 0.0127 0.0023 0.0026 0.0127 0.0023 0.0028 0.0126 0.0023 0.0028 0.0126 0.0022 0.0026 0.0126 0.0021 0.0024 0.0126 0.0021 0.0025 0.0127 0.0026 0.0030

learning rate=0.9 and momentum coefficient=0.1
500 0.0128 0.0027 0.0032 0.0131 0.0027 0.0032 0.0127 0.0023 0.0025 0.0128 0.0024 0.0029 0.0127 0.0023 0.0027 0.0126 0.0024 0.0028 0.0127 0.0022 0.0026
1000 0.0127 0.0024 0.0028 0.0131 0.0023 0.0028 0.0128 0.0023 0.0026 0.0127 0.0025 0.0030 0.0126 0.0021 0.0024 0.0126 0.0022 0.0026 0.0126 0.0023 0.0026
1500 0.0126 0.0024 0.0028 0.0129 0.0027 0.0032 0.0126 0.0021 0.0024 0.0126 0.0022 0.0026 0.0127 0.0025 0.0029 0.0127 0.0020 0.0024 0.0127 0.0024 0.0027
2000 0.0128 0.0025 0.0029 0.0128 0.0027 0.0032 0.0126 0.0021 0.0024 0.0126 0.0023 0.0028 0.0126 0.0023 0.0027 0.0125 0.0022 0.0027 0.0126 0.0021 0.0024
2500 0.0126 0.0025 0.0030 0.0128 0.0028 0.0033 0.0126 0.0022 0.0026 0.0126 0.0025 0.0029 0.0126 0.0021 0.0025 0.0125 0.0022 0.0027 0.0126 0.0023 0.0026

learning rate=0.1 and momentum coefficient=0.5
500 0.0127 0.0026 0.0030 0.0130 0.0025 0.0031 0.0127 0.0023 0.0027 0.0129 0.0025 0.0029 0.0127 0.0026 0.0030 0.0126 0.0023 0.0027 0.0127 0.0023 0.0027
1000 0.0126 0.0025 0.0029 0.0128 0.0027 0.0032 0.0127 0.0024 0.0028 0.0126 0.0023 0.0027 0.0126 0.0024 0.0027 0.0126 0.0025 0.0029 0.0126 0.0023 0.0026
1500 0.0127 0.0026 0.0031 0.0128 0.0028 0.0034 0.0126 0.0022 0.0026 0.0126 0.0023 0.0028 0.0125 0.0023 0.0027 0.0125 0.0022 0.0026 0.0125 0.0023 0.0026
2000 0.0126 0.0026 0.0030 0.0127 0.0027 0.0032 0.0126 0.0024 0.0027 0.0126 0.0024 0.0028 0.0126 0.0023 0.0027 0.0125 0.0023 0.0027 0.0125 0.0023 0.0027
2500 0.0126 0.0025 0.0029 0.0127 0.0026 0.0031 0.0126 0.0023 0.0026 0.0125 0.0023 0.0027 0.0125 0.0023 0.0027 0.0125 0.0022 0.0026 0.0125 0.0023 0.0027

learning rate=0.5 and momentum coefficient=0.5
500 0.0128 0.0026 0.0030 0.0131 0.0022 0.0027 0.0127 0.0024 0.0027 0.0126 0.0024 0.0028 0.0126 0.0023 0.0027 0.0125 0.0022 0.0026 0.0127 0.0026 0.0029
1000 0.0127 0.0026 0.0030 0.0127 0.0026 0.0031 0.0127 0.0023 0.0026 0.0126 0.0024 0.0028 0.0126 0.0024 0.0028 0.0125 0.0022 0.0026 0.0125 0.0023 0.0027
1500 0.0126 0.0025 0.0029 0.0127 0.0026 0.0031 0.0126 0.0022 0.0026 0.0125 0.0024 0.0028 0.0125 0.0023 0.0027 0.0125 0.0023 0.0027 0.0125 0.0023 0.0026
2000 0.0126 0.0025 0.0029 0.0126 0.0024 0.0028 0.0125 0.0022 0.0025 0.0125 0.0023 0.0027 0.0125 0.0023 0.0027 0.0125 0.0022 0.0026 0.0125 0.0023 0.0026
2500 0.0126 0.0026 0.0031 0.0126 0.0025 0.0030 0.0125 0.0022 0.0026 0.0125 0.0023 0.0028 0.0125 0.0023 0.0027 0.0127 0.0023 0.0027 0.0125 0.0023 0.0027

learning rate=0.9 and momentum coefficient=0.5
500 0.0129 0.0026 0.0029 0.0130 0.0021 0.0025 0.0127 0.0024 0.0027 0.0129 0.0024 0.0027 0.0126 0.0024 0.0027 0.0126 0.0023 0.0027 0.0129 0.0025 0.0028
1000 0.0127 0.0026 0.0030 0.0128 0.0029 0.0035 0.0126 0.0022 0.0026 0.0126 0.0025 0.0029 0.0126 0.0023 0.0027 0.0126 0.0023 0.0027 0.0127 0.0023 0.0027
1500 0.0126 0.0025 0.0029 0.0127 0.0027 0.0032 0.0126 0.0022 0.0026 0.0125 0.0024 0.0028 0.0126 0.0023 0.0027 0.0125 0.0023 0.0027 0.0125 0.0023 0.0026
2000 0.0126 0.0025 0.0029 0.0127 0.0026 0.0031 0.0126 0.0022 0.0026 0.0125 0.0024 0.0028 0.0126 0.0023 0.0027 0.0125 0.0022 0.0027 0.0125 0.0023 0.0026
2500 0.0126 0.0025 0.0030 0.0127 0.0025 0.0030 0.0126 0.0022 0.0026 0.0125 0.0024 0.0028 0.0125 0.0023 0.0027 0.0125 0.0023 0.0027 0.0125 0.0023 0.0027



A
ppendix

D
.A

rchitecture
ofA

rtificialN
euralN

etw
ork

using
B

PA
and

G
A

169

Table D.3. Variation of parameters of BPA for 80 % of input data for Training (contd.)

learning rate=0.1 and momentum coefficient=0.9
Neurons 4 5 6 7 8 9 10

TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE
500 0.0128 0.0026 0.0030 0.0131 0.0021 0.0025 0.0127 0.0025 0.0029 0.0126 0.0024 0.0029 0.0126 0.0023 0.0027 0.0125 0.0022 0.0026 0.0126 0.0023 0.0027

1000 0.0127 0.0025 0.0029 0.0127 0.0026 0.0031 0.0126 0.0022 0.0026 0.0126 0.0024 0.0029 0.0126 0.0023 0.0027 0.0125 0.0022 0.0026 0.0125 0.0023 0.0027
1500 0.0126 0.0025 0.0030 0.0127 0.0026 0.0031 0.0126 0.0023 0.0026 0.0125 0.0023 0.0027 0.0125 0.0023 0.0027 0.0125 0.0022 0.0026 0.0125 0.0023 0.0026
2000 0.0126 0.0026 0.0030 0.0127 0.0026 0.0030 0.0125 0.0022 0.0025 0.0125 0.0024 0.0028 0.0125 0.0023 0.0027 0.0125 0.0022 0.0027 0.0125 0.0023 0.0027
2500 0.0126 0.0025 0.0030 0.0126 0.0025 0.0030 0.0126 0.0022 0.0026 0.0126 0.0024 0.0029 0.0125 0.0023 0.0027 0.0125 0.0022 0.0026 0.0125 0.0023 0.0027

learning rate=0.5 and momentum coefficient=0.9
500 0.0127 0.0025 0.0029 0.0129 0.0028 0.0034 0.0126 0.0023 0.0026 0.0126 0.0024 0.0028 0.0128 0.0023 0.0027 0.0126 0.0023 0.0027 0.0125 0.0023 0.0027

1000 0.0126 0.0026 0.0031 0.0129 0.0028 0.0034 0.2036 0.0050 0.0091 0.0126 0.0024 0.0028 0.0126 0.0024 0.0028 0.0126 0.0023 0.0027 0.0125 0.0023 0.0027
1500 0.0127 0.0026 0.0031 0.0127 0.0027 0.0031 0.0126 0.0022 0.0026 0.0125 0.0024 0.0028 0.0126 0.0023 0.0027 0.0125 0.0022 0.0026 0.0125 0.0023 0.0026
2000 0.0126 0.0025 0.0029 0.0126 0.0024 0.0029 0.0125 0.0022 0.0026 0.0125 0.0023 0.0027 0.0125 0.0023 0.0027 0.0125 0.0022 0.0026 0.0125 0.0023 0.0027
2500 0.0126 0.0025 0.0029 0.0125 0.0023 0.0027 0.0126 0.0022 0.0026 0.0125 0.0023 0.0028 0.0126 0.0023 0.0027 0.0125 0.0022 0.0026 0.0125 0.0023 0.0026

learning rate=0.9 and momentum coefficient=0.9
500 0.0127 0.0025 0.0029 0.0131 0.0020 0.0023 0.0126 0.0023 0.0026 0.0130 0.0023 0.0028 0.0127 0.0023 0.0026 0.0126 0.0023 0.0027 0.0127 0.0024 0.0028

1000 0.0126 0.0026 0.0031 0.0128 0.0027 0.0032 0.0126 0.0022 0.0026 0.0126 0.0024 0.0028 0.0128 0.0024 0.0027 0.0125 0.0022 0.0026 0.0125 0.0023 0.0027
1500 0.0126 0.0025 0.0030 0.0127 0.0027 0.0032 0.0125 0.0022 0.0026 0.0126 0.0025 0.0029 0.0126 0.0023 0.0027 0.0125 0.0022 0.0026 0.0125 0.0023 0.0027
2000 0.0125 0.0024 0.0028 0.0126 0.0024 0.0029 0.0126 0.0022 0.0026 0.0125 0.0023 0.0026 0.0126 0.0023 0.0027 0.0125 0.0022 0.0026 0.0125 0.0023 0.0026
2500 0.0126 0.0025 0.0029 0.0127 0.0027 0.0031 0.0125 0.0022 0.0025 0.0125 0.0022 0.0026 0.0125 0.0023 0.0027 0.0125 0.0022 0.0026 0.0126 0.0023 0.0027
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Table D.4. Variation of parameters of BPA for 90 % of input data for Training

learning rate=0.1 and momentum coefficient=0.1
Neurons 4 5 6 7 8 9 10

TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE
500 0.0116 0.0032 0.0022 0.0118 0.0028 0.0015 0.0115 0.0029 0.0020 0.0121 0.0032 0.0017 0.0115 0.0027 0.0017 0.0119 0.0026 0.0018 0.0119 0.0035 0.0023

1000 0.0116 0.0033 0.0023 0.0117 0.0035 0.0017 0.0116 0.0029 0.0021 0.0115 0.0033 0.0017 0.0115 0.0031 0.0019 0.0117 0.0031 0.0022 0.0114 0.0026 0.0016
1500 0.0115 0.0034 0.0021 0.0118 0.0037 0.0017 0.0115 0.0030 0.0020 0.0117 0.0033 0.0016 0.0116 0.0030 0.0018 0.0115 0.0029 0.0017 0.0114 0.0030 0.0017
2000 0.0116 0.0032 0.0022 0.0117 0.0036 0.0017 0.0115 0.0029 0.0020 0.0114 0.0030 0.0016 0.0115 0.0030 0.0019 0.0114 0.0030 0.0017 0.0116 0.0029 0.0018
2500 0.0115 0.0032 0.0020 0.0116 0.0035 0.0017 0.0115 0.0030 0.0019 0.0114 0.0032 0.0016 0.0114 0.0030 0.0018 0.0114 0.0030 0.0017 0.0114 0.0030 0.0017

learning rate=0.5 and momentum coefficient=0.1
500 0.0117 0.0028 0.0021 0.0119 0.0033 0.0016 0.0115 0.0028 0.0019 0.0118 0.0030 0.0019 0.0114 0.0028 0.0017 0.0114 0.0028 0.0016 0.0115 0.0027 0.0017

1000 0.0116 0.0031 0.0022 0.0119 0.0031 0.0016 0.0115 0.0029 0.0019 0.0115 0.0030 0.0016 0.0115 0.0031 0.0018 0.0115 0.0032 0.0018 0.0116 0.0029 0.0018
1500 0.0116 0.0032 0.0021 0.0118 0.0037 0.0019 0.0114 0.0028 0.0018 0.0117 0.0031 0.0017 0.0114 0.0030 0.0018 0.0114 0.0031 0.0018 0.0115 0.0027 0.0016
2000 0.0115 0.0034 0.0021 0.0118 0.0041 0.0019 0.0114 0.0028 0.0018 0.0114 0.0030 0.0016 0.0114 0.0030 0.0018 0.0114 0.0029 0.0016 0.0114 0.0029 0.0017
2500 0.0115 0.0033 0.0021 0.0116 0.0032 0.0016 0.0114 0.0028 0.0018 0.0115 0.0033 0.0017 0.0114 0.0030 0.0018 0.0114 0.0028 0.0017 0.0116 0.0030 0.0017

learning rate=0.9 and momentum coefficient=0.1
500 0.0119 0.0033 0.0025 0.0121 0.0028 0.0016 0.0114 0.0029 0.0018 0.0117 0.0031 0.0018 0.0116 0.0032 0.0021 0.0122 0.0035 0.0026 0.0116 0.0029 0.0018

1000 0.0117 0.0031 0.0022 0.0118 0.0035 0.0017 0.0114 0.0027 0.0017 0.0114 0.0030 0.0016 0.0115 0.0028 0.0017 0.0115 0.0030 0.0018 0.0116 0.0031 0.0018
1500 0.0115 0.0029 0.0019 0.0117 0.0037 0.0018 0.0114 0.0027 0.0017 0.0115 0.0034 0.0018 0.0114 0.0030 0.0018 0.0114 0.0030 0.0017 0.0114 0.0030 0.0017
2000 0.0115 0.0033 0.0021 0.0118 0.0033 0.0017 0.0114 0.0028 0.0018 0.0114 0.0032 0.0016 0.0114 0.0030 0.0018 0.0114 0.0030 0.0017 0.0114 0.0030 0.0017
2500 0.0115 0.0031 0.0020 0.0116 0.0034 0.0017 0.0114 0.0029 0.0018 0.0114 0.0032 0.0016 0.0114 0.0030 0.0018 0.0114 0.0031 0.0017 0.0114 0.0030 0.0017

learning rate=0.1 and momentum coefficient=0.5
500 0.0116 0.0036 0.0020 0.0118 0.0033 0.0016 0.0116 0.0030 0.0021 0.0117 0.0029 0.0017 0.0115 0.0030 0.0019 0.0114 0.0031 0.0017 0.0114 0.0030 0.0017

1000 0.0115 0.0033 0.0020 0.0117 0.0039 0.0019 0.0116 0.0030 0.0020 0.0114 0.0033 0.0016 0.0116 0.0030 0.0018 0.0114 0.0031 0.0018 0.0114 0.0030 0.0017
1500 0.0115 0.0033 0.0020 0.0115 0.0034 0.0017 0.0114 0.0028 0.0018 0.0114 0.0033 0.0016 0.0114 0.0030 0.0018 0.0114 0.0031 0.0017 0.0114 0.0030 0.0017
2000 0.0114 0.0032 0.0018 0.0115 0.0035 0.0017 0.0114 0.0028 0.0018 0.0114 0.0031 0.0016 0.0114 0.0029 0.0018 0.0115 0.0030 0.0017 0.0114 0.0030 0.0018
2500 0.0115 0.0034 0.0020 0.0116 0.0036 0.0018 0.0114 0.0029 0.0018 0.0114 0.0031 0.0016 0.0114 0.0030 0.0018 0.0114 0.0030 0.0017 0.0114 0.0030 0.0017

learning rate=0.5 and momentum coefficient=0.5
500 0.0116 0.0033 0.0022 0.0119 0.0029 0.0016 0.0115 0.0030 0.0020 0.0116 0.0033 0.0017 0.0115 0.0033 0.0019 0.0116 0.0031 0.0018 0.0115 0.0030 0.0017

1000 0.0115 0.0031 0.0020 0.0118 0.0036 0.0017 0.0114 0.0029 0.0018 0.0114 0.0031 0.0016 0.0115 0.0030 0.0019 0.0114 0.0030 0.0017 0.0114 0.0030 0.0017
1500 0.0115 0.0032 0.0021 0.0116 0.0036 0.0018 0.0114 0.0029 0.0018 0.0114 0.0033 0.0017 0.0114 0.0030 0.0018 0.0114 0.0030 0.0017 0.0114 0.0030 0.0017
2000 0.0115 0.0032 0.0019 0.0116 0.0035 0.0017 0.0114 0.0028 0.0018 0.0114 0.0032 0.0016 0.0115 0.0030 0.0018 0.0114 0.0030 0.0017 0.0114 0.0030 0.0017
2500 0.0115 0.0032 0.0020 0.0115 0.0033 0.0017 0.0114 0.0028 0.0018 0.0114 0.0031 0.0016 0.0114 0.0030 0.0018 0.0114 0.0031 0.0017 0.0114 0.0030 0.0017

learning rate=0.9 and momentum coefficient=0.5
500 0.0115 0.0033 0.0021 0.0122 0.0024 0.0017 0.0115 0.0031 0.0021 0.0115 0.0033 0.0016 0.0115 0.0032 0.0020 0.0122 0.0035 0.0026 0.0118 0.0036 0.0023

1000 0.0116 0.0034 0.0021 0.0117 0.0037 0.0017 0.0114 0.0029 0.0018 0.0115 0.0033 0.0017 0.0114 0.0030 0.0018 0.0115 0.0030 0.0018 0.0114 0.0030 0.0017
1500 0.0115 0.0032 0.0020 0.0117 0.0037 0.0017 0.0114 0.0029 0.0018 0.0114 0.0031 0.0016 0.0115 0.0030 0.0020 0.0114 0.0030 0.0017 0.0114 0.0030 0.0017
2000 0.0115 0.0032 0.0020 0.0116 0.0037 0.0018 0.0114 0.0029 0.0018 0.0114 0.0031 0.0016 0.0114 0.0030 0.0018 0.0114 0.0030 0.0017 0.0114 0.0030 0.0017
2500 0.0115 0.0034 0.0020 0.0115 0.0034 0.0017 0.0114 0.0029 0.0018 0.0114 0.0032 0.0017 0.0114 0.0030 0.0018 0.0114 0.0031 0.0017 0.0114 0.0030 0.0017
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Table D.5. Variation of parameters of BPA for 90 % of input data for Training (contd.)

learning rate=0.1 and momentum coefficient=0.9
Neurons 4 5 6 7 8 9 10

TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE
500 0.0115 0.0034 0.0020 0.0117 0.0035 0.0017 0.0115 0.0030 0.0019 0.0115 0.0033 0.0017 0.0115 0.0030 0.0018 0.0114 0.0030 0.0016 0.0115 0.0031 0.0018

1000 0.0116 0.0034 0.0021 0.0116 0.0036 0.0017 0.0115 0.0030 0.0019 0.0114 0.0033 0.0017 0.0114 0.0030 0.0018 0.0114 0.0030 0.0017 0.0115 0.0030 0.0017
1500 0.0115 0.0034 0.0020 0.0116 0.0036 0.0018 0.0114 0.0028 0.0018 0.0114 0.0033 0.0017 0.0114 0.0030 0.0018 0.0114 0.0030 0.0017 0.0114 0.0030 0.0017
2000 0.0115 0.0033 0.0020 0.0114 0.0030 0.0017 0.0114 0.0028 0.0018 0.0114 0.0033 0.0017 0.0114 0.0030 0.0018 0.0113 0.0029 0.0016 0.0114 0.0030 0.0017
2500 0.0115 0.0033 0.0019 0.0115 0.0034 0.0017 0.0114 0.0029 0.0018 0.0113 0.0030 0.0016 0.0114 0.0030 0.0018 0.0113 0.0030 0.0017 0.0114 0.0030 0.0017

learning rate=0.5 and momentum coefficient=0.9
500 0.0115 0.0032 0.0020 0.0118 0.0039 0.0018 0.0119 0.0042 0.0025 0.0116 0.0034 0.0017 0.0115 0.0030 0.0017 0.0116 0.0031 0.0018 0.0115 0.0033 0.0019

1000 0.0115 0.0031 0.0021 0.0115 0.0034 0.0017 0.0115 0.0030 0.0019 0.0114 0.0033 0.0017 0.0114 0.0030 0.0018 0.0114 0.0030 0.0017 0.0114 0.0030 0.0017
1500 0.0115 0.0034 0.0020 0.0115 0.0034 0.0017 0.0114 0.0028 0.0018 0.0114 0.0031 0.0016 0.0114 0.0030 0.0018 0.0114 0.0030 0.0017 0.0114 0.0030 0.0017
2000 0.0115 0.0033 0.0020 0.0114 0.0032 0.0017 0.0114 0.0028 0.0018 0.0114 0.0033 0.0017 0.0114 0.0030 0.0018 0.0114 0.0030 0.0017 0.0115 0.0032 0.0019
2500 0.0115 0.0033 0.0019 0.0115 0.0035 0.0018 0.0114 0.0028 0.0018 0.0114 0.0031 0.0016 0.0115 0.0030 0.0019 0.0114 0.0031 0.0017 0.0114 0.0030 0.0017

learning rate=0.9 and momentum coefficient=0.9
500 0.0115 0.0030 0.0020 0.0117 0.0032 0.0016 0.0115 0.0030 0.0020 0.0115 0.0032 0.0017 0.0115 0.0030 0.0019 0.0115 0.0034 0.0018 0.0114 0.0030 0.0017

1000 0.0115 0.0034 0.0020 0.0116 0.0031 0.0016 0.0115 0.0029 0.0019 0.0114 0.0032 0.0017 0.0114 0.0030 0.0018 0.0114 0.0029 0.0017 0.0114 0.0030 0.0017
1500 0.0116 0.0034 0.0021 0.0116 0.0035 0.0018 0.0114 0.0028 0.0018 0.0114 0.0033 0.0017 0.0114 0.0030 0.0018 0.0114 0.0030 0.0016 0.0114 0.0030 0.0017
2000 0.0114 0.0033 0.0019 0.0115 0.0033 0.0017 0.0114 0.0028 0.0018 0.0113 0.0030 0.0016 0.0114 0.0030 0.0018 0.0114 0.0030 0.0017 0.0114 0.0030 0.0017
2500 0.0114 0.0032 0.0018 0.0115 0.0032 0.0017 0.0114 0.0028 0.0018 0.0113 0.0030 0.0016 0.0114 0.0030 0.0018 0.0113 0.0029 0.0017 0.0114 0.0030 0.0017
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Table D.6. Variation of parameters of GA for 80 % of input data for Training

Elite count=0.1, cross over fraction=0.7
Neurons 4 5 6 7 8 9 10

TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE
100 0.0125 0.0024 0.0029 0.0129 0.0034 0.0041 0.0131 0.0027 0.0033 0.0126 0.0023 0.0027 0.0137 0.0028 0.0033 0.0174 0.0053 0.0071 0.0144 0.0036 0.0044
200 0.0127 0.0023 0.0028 0.0125 0.0020 0.0023 0.0127 0.0021 0.0024 0.0134 0.0028 0.0033 0.0126 0.0019 0.0022 0.0128 0.0025 0.0029 0.0132 0.0024 0.0028
300 0.0125 0.0021 0.0024 0.0127 0.0022 0.0025 0.0126 0.0024 0.0028 0.0125 0.0026 0.0031 0.0126 0.0022 0.0025 0.0127 0.0021 0.0024 0.0126 0.0024 0.0028
400 0.0125 0.0021 0.0024 0.0126 0.0026 0.0030 0.0127 0.0021 0.0024 0.0126 0.0022 0.0025 0.0127 0.0022 0.0026 0.0125 0.0022 0.0026 0.0125 0.0023 0.0027
500 0.0127 0.0027 0.0033 0.0126 0.0020 0.0023 0.0132 0.0034 0.0039 0.0129 0.0028 0.0032 0.0125 0.0024 0.0028 0.0128 0.0024 0.0028 0.0125 0.0021 0.0025

Elite count=0.15, cross over fraction=0.7
100 0.0126 0.0020 0.0023 0.0135 0.0047 0.0058 0.0126 0.0021 0.0024 0.0129 0.0029 0.0036 0.0132 0.0021 0.0025 0.0126 0.0019 0.0022 0.0127 0.0020 0.0023
200 0.0126 0.0022 0.0026 0.0127 0.0025 0.0029 0.0126 0.0020 0.0023 0.0127 0.0023 0.0028 0.0127 0.0018 0.0021 0.0127 0.0026 0.0032 0.0126 0.0023 0.0026
300 0.0126 0.0022 0.0026 0.0126 0.0021 0.0025 0.0125 0.0026 0.0031 0.0136 0.0034 0.0039 0.0128 0.0021 0.0025 0.0125 0.0023 0.0027 0.0126 0.0021 0.0024
400 0.0135 0.0018 0.0023 0.0125 0.0022 0.0026 0.0127 0.0022 0.0026 0.0130 0.0016 0.0020 0.0125 0.0023 0.0027 0.0125 0.0027 0.0032 0.0133 0.0022 0.0027
500 0.0126 0.0022 0.0025 0.0126 0.0023 0.0027 0.0135 0.0036 0.0045 0.0125 0.0022 0.0025 0.0127 0.0023 0.0027 0.0127 0.0025 0.0030 0.0139 0.0040 0.0048

Elite count=0.20, cross over fraction=0.7
500 0.0127 0.0021 0.0025 0.0126 0.0022 0.0026 0.0126 0.0025 0.0030 0.0140 0.0018 0.0021 0.0137 0.0032 0.0039 0.0132 0.0030 0.0035 0.0126 0.0019 0.0021

1000 0.0126 0.0020 0.0023 0.0127 0.0023 0.0027 0.0127 0.0024 0.0029 0.0131 0.0024 0.0028 0.0127 0.0025 0.0029 0.0128 0.0031 0.0037 0.0127 0.0021 0.0025
1500 0.0141 0.0033 0.0039 0.0126 0.0022 0.0026 0.0127 0.0028 0.0034 0.0125 0.0021 0.0024 0.0127 0.0022 0.0025 0.0126 0.0023 0.0027 0.0126 0.0019 0.0023
2000 0.0127 0.0022 0.0026 0.0129 0.0023 0.0027 0.0127 0.0022 0.0026 0.0127 0.0020 0.0023 0.0142 0.0027 0.0032 0.0134 0.0037 0.0044 0.0126 0.0022 0.0025
2500 0.0126 0.0028 0.0033 0.0128 0.0030 0.0035 0.0126 0.0022 0.0026 0.0131 0.0024 0.0028 0.0127 0.0021 0.0024 0.0126 0.0021 0.0024 0.0126 0.0024 0.0028

Elite count=0.10, cross over fraction=0.8
500 0.0128 0.0023 0.0027 0.0126 0.0027 0.0032 0.0131 0.0027 0.0032 0.0125 0.0022 0.0026 0.0135 0.0044 0.0054 0.0131 0.0029 0.0035 0.0127 0.0020 0.0023

1000 0.0125 0.0021 0.0024 0.0129 0.0019 0.0022 0.0128 0.0026 0.0030 0.0125 0.0022 0.0026 0.0126 0.0021 0.0024 0.0132 0.0022 0.0026 0.0126 0.0023 0.0026
1500 0.0126 0.0022 0.0025 0.0132 0.0025 0.0029 0.0130 0.0023 0.0028 0.0132 0.0024 0.0029 0.0127 0.0029 0.0034 0.0125 0.0021 0.0025 0.0126 0.0021 0.0024
2000 0.0134 0.0022 0.0023 0.0132 0.0023 0.0028 0.0127 0.0022 0.0025 0.0125 0.0024 0.0028 0.0127 0.0024 0.0028 0.0127 0.0019 0.0021 0.0133 0.0022 0.0027
2500 0.0127 0.0020 0.0023 0.0128 0.0021 0.0025 0.0126 0.0021 0.0025 0.0140 0.0026 0.0035 0.0127 0.0024 0.0028 0.0134 0.0029 0.0035 0.0139 0.0040 0.0048

Elite count=0.15, cross over fraction=0.8
500 0.0127 0.0024 0.0028 0.0127 0.0022 0.0025 0.0125 0.0023 0.0026 0.0126 0.0026 0.0030 0.0126 0.0021 0.0024 0.0133 0.0024 0.0029 0.0131 0.0036 0.0045

1000 0.0128 0.0023 0.0027 0.0127 0.0018 0.0020 0.0126 0.0021 0.0025 0.0126 0.0020 0.0024 0.0130 0.0028 0.0033 0.0126 0.0022 0.0026 0.0136 0.0018 0.0021
1500 0.0127 0.0021 0.0025 0.0127 0.0025 0.0029 0.0128 0.0026 0.0031 0.0131 0.0030 0.0036 0.0129 0.0025 0.0029 0.0125 0.0027 0.0033 0.0144 0.0041 0.0052
2000 0.0127 0.0031 0.0038 0.0128 0.0022 0.0026 0.0128 0.0026 0.0031 0.0129 0.0029 0.0033 0.0129 0.0028 0.0034 0.0125 0.0021 0.0025 0.0127 0.0022 0.0025
2500 0.0129 0.0025 0.0030 0.0128 0.0026 0.0031 0.0133 0.0040 0.0047 0.0142 0.0024 0.0028 0.0127 0.0023 0.0027 0.0126 0.0023 0.0027 0.0126 0.0022 0.0026

Elite count=0.20, cross over fraction=0.8
500 0.0137 0.0025 0.0029 0.0126 0.0017 0.0020 0.0136 0.0033 0.0040 0.0126 0.0026 0.0031 0.0128 0.0020 0.0023 0.0126 0.0023 0.0027 0.0130 0.0029 0.0035

1000 0.0126 0.0025 0.0029 0.0131 0.0036 0.0043 0.0126 0.0027 0.0032 0.0125 0.0023 0.0028 0.0126 0.0020 0.0023 0.0133 0.0022 0.0027 0.0133 0.0030 0.0035
1500 0.0129 0.0018 0.0021 0.0127 0.0021 0.0025 0.0125 0.0023 0.0027 0.0131 0.0021 0.0025 0.0126 0.0024 0.0028 0.0153 0.0031 0.0041 0.0138 0.0025 0.0031
2000 0.0125 0.0022 0.0026 0.0142 0.0040 0.0046 0.0126 0.0027 0.0032 0.0128 0.0027 0.0032 0.0125 0.0022 0.0026 0.0125 0.0023 0.0027 0.0142 0.0035 0.0040
2500 0.0129 0.0019 0.0022 0.0126 0.0027 0.0031 0.0130 0.0025 0.0029 0.0127 0.0021 0.0024 0.0129 0.0022 0.0026 0.0127 0.0022 0.0025 0.0133 0.0030 0.0035
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Table D.7. Variation of parameters of GA for 80 % of input data for Training (contd..)

Elite count=0.10, cross over fraction=0.9
Neurons 4 5 6 7 8 9 10

TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE
500 0.0131 0.0024 0.0028 0.0128 0.0018 0.0021 0.0131 0.0023 0.0026 0.0127 0.0021 0.0025 0.0131 0.0019 0.0023 0.0125 0.0021 0.0025 0.0134 0.0029 0.0035

1000 0.0130 0.0025 0.0029 0.0127 0.0023 0.0028 0.0129 0.0020 0.0024 0.0126 0.0022 0.0026 0.0126 0.0023 0.0027 0.0133 0.0028 0.0034 0.0126 0.0020 0.0024
1500 0.0127 0.0021 0.0025 0.0128 0.0020 0.0023 0.0125 0.0025 0.0029 0.0125 0.0021 0.0024 0.0125 0.0022 0.0025 0.0126 0.0021 0.0025 0.0126 0.0023 0.0027
2000 0.0130 0.0024 0.0029 0.0128 0.0022 0.0025 0.0126 0.0022 0.0026 0.0130 0.0026 0.0031 0.0131 0.0027 0.0033 0.0129 0.0018 0.0021 0.0126 0.0026 0.0031
2500 0.0131 0.0026 0.0031 0.0126 0.0021 0.0025 0.0127 0.0021 0.0025 0.0125 0.0023 0.0027 0.0132 0.0022 0.0025 0.0127 0.0021 0.0024 0.0130 0.0025 0.0029

Elite count=0.15, cross over fraction=0.9
500 0.0133 0.0020 0.0024 0.0125 0.0020 0.0023 0.0128 0.0020 0.0023 0.0138 0.0041 0.0049 0.0131 0.0031 0.0038 0.0128 0.0020 0.0024 0.0134 0.0026 0.0031

1000 0.0128 0.0021 0.0025 0.0127 0.0021 0.0025 0.0127 0.0023 0.0027 0.0126 0.0024 0.0028 0.0130 0.0019 0.0022 0.0127 0.0022 0.0025 0.0127 0.0021 0.0025
1500 0.0130 0.0023 0.0027 0.0125 0.0020 0.0024 0.0125 0.0021 0.0024 0.0127 0.0024 0.0028 0.0127 0.0022 0.0026 0.0128 0.0023 0.0027 0.0127 0.0022 0.0025
2000 0.0128 0.0032 0.0038 0.0128 0.0026 0.0031 0.0130 0.0022 0.0026 0.0126 0.0025 0.0029 0.0145 0.0028 0.0034 0.0128 0.0021 0.0025 0.0133 0.0019 0.0022
2500 0.0134 0.0022 0.0026 0.0126 0.0024 0.0028 0.0127 0.0021 0.0025 0.0125 0.0021 0.0024 0.0132 0.0025 0.0030 0.0127 0.0023 0.0027 0.0131 0.0019 0.0022

Elite count=0.20, cross over fraction=0.9
500 0.0126 0.0022 0.0025 0.0126 0.0021 0.0024 0.0128 0.0026 0.0030 0.0131 0.0019 0.0022 0.0134 0.0026 0.0030 0.0130 0.0022 0.0026 0.0128 0.0022 0.0024

1000 0.0131 0.0023 0.0027 0.0131 0.0029 0.0034 0.0126 0.0021 0.0024 0.0126 0.0019 0.0021 0.0130 0.0027 0.0033 0.0127 0.0025 0.0030 0.0125 0.0022 0.0026
1500 0.01336 0.00127 0.00166 0.0131 0.0032 0.0039 0.0128 0.0029 0.0035 0.0125 0.0022 0.0026 0.0127 0.0024 0.0028 0.0129 0.0019 0.0022 0.0127 0.0021 0.0024
2000 0.0129 0.0020 0.0023 0.0125 0.0022 0.0025 0.0129 0.0030 0.0036 0.0129 0.0025 0.0029 0.0129 0.0016 0.0019 0.0127 0.0024 0.0028 0.0126 0.0020 0.0023
2500 0.0128 0.0025 0.0029 0.0126 0.0024 0.0028 0.0129 0.0026 0.0031 0.0127 0.0020 0.0024 0.0132 0.0017 0.0020 0.0125 0.0022 0.0025 0.0125 0.0022 0.0026
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Table D.8. Variation of parameters of GA for 90 % of input data for Training

Elite count=0.10, cross over fraction=0.7
Neurons 4 5 6 7 8 9 10

TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE
100 0.0114 0.0032 0.0017 0.0116 0.0021 0.0015 0.0114 0.0029 0.0016 0.0120 0.0033 0.0022 0.0118 0.0023 0.0018 0.0123 0.0031 0.0017 0.0117 0.0039 0.0019
200 0.0116 0.0027 0.0018 0.0123 0.0038 0.0024 0.0114 0.0032 0.0017 0.0114 0.0027 0.0017 0.0115 0.0026 0.0017 0.0119 0.0038 0.0023 0.0128 0.0041 0.0019
300 0.0116 0.0030 0.0016 0.0115 0.0029 0.0015 0.0114 0.0024 0.0014 0.0117 0.0032 0.0021 0.0115 0.0028 0.0017 0.0117 0.0034 0.0023 0.0117 0.0037 0.0022
400 0.0115 0.0036 0.0018 0.0113 0.0027 0.0016 0.0115 0.0026 0.0015 0.0114 0.0029 0.0017 0.0114 0.0028 0.0016 0.0118 0.0030 0.0021 0.0116 0.0038 0.0019
500 0.0114 0.0034 0.0017 0.0117 0.0031 0.0019 0.0114 0.0024 0.0015 0.0131 0.0049 0.0027 0.0115 0.0028 0.0017 0.0117 0.0032 0.0020 0.0123 0.0026 0.0021

Elite count=0.15, cross over fraction=0.7
100 0.0116 0.0031 0.0020 0.0116 0.0025 0.0016 0.0122 0.0054 0.0027 0.0122 0.0030 0.0023 0.0118 0.0028 0.0018 0.0121 0.0047 0.0023 0.0116 0.0040 0.0022
200 0.0117 0.0030 0.0019 0.0117 0.0033 0.0019 0.0117 0.0039 0.0022 0.0123 0.0059 0.0029 0.0115 0.0034 0.0017 0.0119 0.0040 0.0024 0.0114 0.0034 0.0017
300 0.0116 0.0025 0.0018 0.0123 0.0042 0.0021 0.0115 0.0029 0.0018 0.0114 0.0033 0.0018 0.0115 0.0027 0.0016 0.0114 0.0032 0.0017 0.0117 0.0040 0.0021
400 0.0114 0.0025 0.0015 0.0115 0.0028 0.0016 0.0116 0.0030 0.0020 0.0124 0.0040 0.0024 0.0121 0.0037 0.0018 0.0114 0.0031 0.0017 0.0131 0.0042 0.0026
500 0.0117 0.0020 0.0015 0.0121 0.0034 0.0019 0.0114 0.0026 0.0015 0.0125 0.0037 0.0025 0.0131 0.0053 0.0030 0.0117 0.0036 0.0021 0.0119 0.0039 0.0025

Elite count=0.20, cross over fraction=0.7
100 0.0124 0.0055 0.0032 0.0119 0.0036 0.0023 0.0119 0.0050 0.0023 0.0117 0.0025 0.0017 0.0117 0.0028 0.0019 0.0114 0.0031 0.0018 0.0122 0.0027 0.0022
200 0.0117 0.0029 0.0021 0.0125 0.0036 0.0026 0.0120 0.0038 0.0020 0.0115 0.0030 0.0016 0.0115 0.0029 0.0018 0.0114 0.0026 0.0017 0.0114 0.0028 0.0015
300 0.0114 0.0029 0.0016 0.0114 0.0032 0.0017 0.0114 0.0034 0.0018 0.0142 0.0034 0.0029 0.0115 0.0035 0.0018 0.0114 0.0025 0.0016 0.0115 0.0026 0.0016
400 0.0117 0.0030 0.0020 0.0114 0.0028 0.0017 0.0114 0.0032 0.0017 0.0155 0.0041 0.0031 0.0118 0.0031 0.0015 0.0114 0.0024 0.0016 0.0115 0.0030 0.0017
500 0.0116 0.0026 0.0015 0.0121 0.0037 0.0017 0.0117 0.0030 0.0021 0.0115 0.0035 0.0018 0.0118 0.0031 0.0015 0.0127 0.0044 0.0029 0.0114 0.0030 0.0016

Elite count=0.10, cross over fraction=0.8
100 0.0126 0.0032 0.0020 0.0115 0.0029 0.0017 0.0114 0.0028 0.0016 0.0114 0.0028 0.0016 0.0124 0.0035 0.0027 0.0117 0.0035 0.0024 0.0114 0.0028 0.0016
200 0.0114 0.0032 0.0016 0.0113 0.0031 0.0016 0.0114 0.0029 0.0018 0.0117 0.0029 0.0020 0.0115 0.0028 0.0017 0.0114 0.0032 0.0018 0.0113 0.0029 0.0017
300 0.0113 0.0028 0.0016 0.0114 0.0032 0.0018 0.0126 0.0040 0.0025 0.0115 0.0031 0.0018 0.0115 0.0030 0.0016 0.0117 0.0028 0.0018 0.0118 0.0029 0.0018
400 0.0114 0.0027 0.0016 0.0119 0.0038 0.0021 0.0116 0.0043 0.0022 0.0114 0.0029 0.0019 0.0117 0.0041 0.0023 0.0125 0.0050 0.0033 0.0114 0.0030 0.0017
500 0.0113 0.0029 0.0016 0.0114 0.0027 0.0016 0.0116 0.0022 0.0014 0.0115 0.0030 0.0016 0.0114 0.0031 0.0017 0.0114 0.0026 0.0014 0.0114 0.0036 0.0017

Elite count=0.15, cross over fraction=0.8
100 0.0116 0.0027 0.0018 0.0114 0.0031 0.0018 0.0115 0.0036 0.0020 0.0119 0.0048 0.0025 0.0117 0.0025 0.0017 0.0114 0.0026 0.0015 0.0124 0.0036 0.0023
200 0.0114 0.0027 0.0016 0.0119 0.0036 0.0022 0.0113 0.0028 0.0016 0.0115 0.0030 0.0017 0.0115 0.0030 0.0019 0.0115 0.0036 0.0017 0.0115 0.0025 0.0016
300 0.0116 0.0035 0.0020 0.0114 0.0028 0.0018 0.0140 0.0046 0.0024 0.0119 0.0027 0.0024 0.0117 0.0025 0.0017 0.0113 0.0028 0.0016 0.0113 0.0027 0.0015
400 0.0114 0.0033 0.0016 0.0121 0.0035 0.0026 0.0114 0.0032 0.0017 0.0116 0.0030 0.0017 0.0115 0.0027 0.0015 0.0114 0.0031 0.0017 0.0119 0.0040 0.0018
500 0.0115 0.0023 0.0017 0.0114 0.0030 0.0017 0.0115 0.0024 0.0015 0.0121 0.0045 0.0026 0.0119 0.0027 0.0018 0.0114 0.0036 0.0019 0.0113 0.0029 0.0016

Elite count=0.20, cross over fraction=0.8
100 0.0122 0.0032 0.0017 0.0115 0.0027 0.0016 0.0116 0.0025 0.0017 0.0114 0.0027 0.0017 0.0120 0.0048 0.0026 0.0116 0.0028 0.0016 0.0117 0.0036 0.0024
200 0.0118 0.0036 0.0020 0.0123 0.0040 0.0022 0.0113 0.0027 0.0016 0.0114 0.0027 0.0017 0.0114 0.0033 0.0018 0.0114 0.0031 0.0017 0.0118 0.0036 0.0018
300 0.0120 0.0040 0.0026 0.0114 0.0029 0.0015 0.0121 0.0035 0.0018 0.0117 0.0027 0.0018 0.0116 0.0035 0.0022 0.0114 0.0028 0.0017 0.0115 0.0027 0.0017
400 0.0114 0.0031 0.0017 0.0115 0.0039 0.0018 0.0114 0.0025 0.0015 0.0119 0.0042 0.0023 0.0116 0.0031 0.0019 0.0116 0.0028 0.0015 0.0114 0.0029 0.0016
500 0.0114 0.0029 0.0017 0.0120 0.0036 0.0022 0.0118 0.0036 0.0018 0.0121 0.0032 0.0025 0.0118 0.0029 0.0020 0.0114 0.0035 0.0019 0.0121 0.0028 0.0023
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Table D.9. Variation of parameters of GA for 90 % of input data for Training (contd..)

Elite count=0.10, cross over fraction=0.9
Neurons 4 5 6 7 8 9 10

TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE TrainE ValE TestE
100 0.0118 0.0033 0.0022 0.0113 0.0028 0.0016 0.0115 0.0035 0.0019 0.0120 0.0033 0.0023 0.0115 0.0034 0.0019 0.0117 0.0034 0.0021 0.0115 0.0027 0.0015
200 0.0114 0.0031 0.0016 0.0117 0.0030 0.0019 0.0115 0.0026 0.0016 0.0116 0.0033 0.0021 0.0119 0.0026 0.0018 0.0118 0.0036 0.0022 0.0118 0.0029 0.0018
300 0.0127 0.0037 0.0030 0.0114 0.0032 0.0018 0.0115 0.0029 0.0016 0.0113 0.0029 0.0016 0.0118 0.0035 0.0018 0.0114 0.0028 0.0016 0.0123 0.0057 0.0028
400 0.0114 0.0043 0.0021 0.0118 0.0031 0.0020 0.0115 0.0030 0.0019 0.0115 0.0032 0.0018 0.0114 0.0035 0.0018 0.0119 0.0026 0.0015 0.0116 0.0039 0.0023
500 0.0114 0.0025 0.0015 0.0115 0.0035 0.0021 0.0115 0.0035 0.0019 0.0117 0.0031 0.0016 0.0115 0.0025 0.0017 0.0120 0.0023 0.0017 0.0115 0.0029 0.0017

Elite count=0.15, cross over fraction=0.9
100 0.0114 0.0029 0.0017 0.0119 0.0036 0.0023 0.0116 0.0039 0.0021 0.0117 0.0030 0.0019 0.0113 0.0029 0.0016 0.0119 0.0037 0.0020 0.0119 0.0031 0.0020
200 0.0113 0.0030 0.0016 0.0125 0.0036 0.0026 0.0115 0.0033 0.0018 0.0114 0.0030 0.0017 0.0116 0.0027 0.0017 0.0115 0.0031 0.0017 0.0119 0.0033 0.0019
300 0.0119 0.0025 0.0022 0.0114 0.0032 0.0017 0.0114 0.0032 0.0017 0.0114 0.0032 0.0017 0.0115 0.0032 0.0018 0.0114 0.0027 0.0016 0.0114 0.0027 0.0015
400 0.01203 0.00185 0.00132 0.0114 0.0028 0.0017 0.0114 0.0026 0.0015 0.0114 0.0029 0.0016 0.0115 0.0033 0.0020 0.0114 0.0029 0.0017 0.0121 0.0025 0.0018
500 0.0114 0.0027 0.0017 0.0121 0.0037 0.0017 0.0121 0.0027 0.0019 0.0115 0.0033 0.0019 0.0114 0.0027 0.0016 0.0117 0.0030 0.0021 0.0114 0.0032 0.0018

Elite count=0.20, cross over fraction=0.9
100 0.0122 0.0042 0.0028 0.0115 0.0025 0.0017 0.0134 0.0053 0.0023 0.0114 0.0023 0.0015 0.0117 0.0023 0.0020 0.0125 0.0047 0.0027 0.0114 0.0025 0.0015
200 0.0118 0.0023 0.0017 0.0118 0.0040 0.0021 0.0119 0.0033 0.0017 0.0118 0.0047 0.0027 0.0114 0.0029 0.0016 0.0115 0.0024 0.0016 0.0115 0.0032 0.0017
300 0.0120 0.0028 0.0023 0.0118 0.0033 0.0020 0.0115 0.0029 0.0018 0.0117 0.0031 0.0017 0.0120 0.0030 0.0020 0.0117 0.0026 0.0018 0.0117 0.0025 0.0015
400 0.0117 0.0031 0.0016 0.0116 0.0031 0.0017 0.0114 0.0031 0.0018 0.0136 0.0039 0.0030 0.0122 0.0026 0.0018 0.0116 0.0028 0.0017 0.0114 0.0024 0.0015
500 0.0117 0.0033 0.0020 0.0132 0.0037 0.0032 0.0114 0.0028 0.0016 0.0120 0.0047 0.0024 0.0132 0.0031 0.0017 0.0114 0.0030 0.0016 0.0126 0.0037 0.0018
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