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ABSTRACT

In the field of computational materials science, one of the most fundamental
approaches for modeling new materials with desired novel properties is to assemble
atoms and clusters at nanocluster level. Such modeled materials may find applications
in the field of nanoscience and nanotechnology. For such nano order assemblies, the use of
transition metal (TM) doped clusters as building blocks are fruitful due to their suitable
geometries, high stability and easily tunable electronic as well as the magnetic properties.
The prevalence of silicon and germanium in the semiconductor industry has sparked
great interest in the area of nanomaterials that could act as building blocks for new
easy-to-combine and engineered materials. The present thesis systematically assesses
the feasibility of using transition metal (TM) doped silicon and germanium clusters
and to design novel functionalized cluster-assembled materials using density functional
methodology. Initially, a thorough analysis of the nature of chemical bonding within
exohedrally and endohedrally TM doped Gen (TM = Ni, Cr, Mo, Au) clusters, have
been done. The study of their energetic and the chemical bonding between the dopant
and host atoms explain the stability of such clusters. The shell closing number obtained
by Hund’s rule also plays an important role to explain the cause of structure stabilization.
It explains the adaptive capability of the TM-Ge bonding, which is due to the result of a
complex hybridization rather than the originally proposed mere formal charge transfer.
Other reasons to stabilize these clusters are the localization of the electrons, which can
be theoretically measured by the negative value of nuclear independent chemical shift
(NICS). Similar approach are also employed in the case of TM doped Si clusters. The
resulting strong interaction of the TM dopant atom with Si/Ge atoms unfortunately
results in the quenching of the dopant’s spin moment due to sp3 hybridization between
the doped atom and the Ge/Si atoms on the cluster surface. However, we have used
hydrogen termination in the small clusters to exploits the dangling bonds and to get
the idea of infinite TM doped nanotubes made by using similar kind of simi-infinite
tube like cluster assembled structures. Similar effect can be obtained by adding more
cluster units to make an infinite nanotube. These units can be taken as the base units or
possibly modified base clusters depending upon the level of concentration of the doped
atoms or the structural orientation. This will finally makes a functionalized cluster
assembled material. Interestingly, the chemical, electronic and magnetic properties of
these building blocks can be easily tuned by changing the dopant atom or by modifying
the structural orientation. The present thesis is focused on the basic science behind
these clusters, clusters assembled materials and nanotubes; and is presented in several
chapters.
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Chapter 1
Introduction

1.1 Atomic clusters

Clusters are generally aggregates of atoms and molecules intermediate in size range

between the bulk matter and the individual atoms or molecules. Clusters can be

classified as small, medium and large-sized depending upon the number of constituent

atoms or molecules. Small clusters are those whose “properties” vary abruptly as

we change their sizes, shapes and compositions because of their thermodynamic and

chemical instabilities. Hence, their properties are not a smooth variation as a function

of size. However, these “properties” vary comparatively smoothly with the increase

of the number of component atoms, where the significant finite size effects is lesser.

These clusters are called medium-sized or large clusters. It is worth to mention here

that the experimentally verified quantum dots are within the size range of 2 to 10

nanometers having typically 100 to 100,000 atoms. Clusters can be homogeneous (made

of one kind of atom or molecule) or can be heterogeneous (composed of more than

one kind). Clusters are having their unique properties and are different from the bulk

and the constituent individual atoms or molecules1. As compared to bulk materials,

clusters are having a very large surface to volume ratio, which means a large fraction

of the constituent particles lie on the surface. This makes surface chemistry of the

clusters extremely important in determining their properties. In a particular size and

composition there may be more then one isomer and the number of isomers in a particular

size increases exponentially with the increase of the number of constituent atoms or

molecules. Consequently, the number of local minima in the potential energy surface

increases exponentially with the number of atoms in the cluster. So, it is a challenging

1
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job in the computational material science to identify the most stable isomer with global

minima in the potential energy surface. The "most stable isomer" in a particular size

and composition depends upon the geometrical point group symmetry, its physical and

chemical properties. It is also possible to obtained a number of isomers with different

structures and point group symmetries in a particular size in addition to the "most

stable" or "ground state" isomer. Not only the structure, but the most of the properties

like average binding energy, relative stability, HOMO-LUMO gap, magnetic properties

and hybridizations also depend sharply on the number of atoms and the structural

orientation of the cluster.

1.2 Why semiconductor clusters?

In the field of computational materials the cluster science is currently one of the

most active and evolving fields of research with potential applications in science and

engineering. As mentioned earlier, clusters and cluster assembled materials bridges the

domains of atomic and molecular physics with the condensed matter physics. The cluster

properties are dominated by their large surface-to-volume ratio, providing a unique

opportunity to study the relationship between surface and volume effects. Clusters

exhibit discrete spectroscopy because of their finite size. In the following section,

we enumerate some of the specific questions which are under investigation from the

fundamental view point.

• How the shell closing model plays an important role in cluster stabilization?

For TM doped Si/Ge clusters, single TM atom is generally hold its unique

properties and spread it over the surface of the host clusters. Shell model2 initially

applied on metal clusters and now it is also important to explain the stability of

the hybrid semiconductor clusters. Hence, in the thesis we extensively used shell

closing model to explain the TM doped Si/Ge clusters stabilities.

• How the quenching of magnetic moment of the TM atom take place in the

semiconductor cluster?

Usually the stability of the hybrid cluster is in expanse of the magnetic moment

of the doped atom. This is because of strong hybridization between the Ge s and

p orbitals with d-orbitals of the TM atom. However, in some cases the TM can

hold the magnetic moment in addition to the high stability of the system. So,
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it is interesting to study how the magnetic moment of the TM quenches in the

semiconductor cluster due to the hybridization.

• Why cluster assembled materials?

Cluster assembled material is the combination of the stable clusters in a bigger size,

where the basic property of the assembled materials most of the times influenced

by the base unit clusters. Usually, these clusters are relatively small in size and

hence reactive because of its surface to volume ratio. This can be over come by

increasing the volume in the assembled materials. The assembled materials are

also useful for device applications. Since the clusters properties are very sensitive

to its size, shape and composition, it is easy to tune their property as per the

demand of technological applications and therefore this is also possible in cluster

assembled materials.

• How to find out the preferable sites in the cluster to add another unit to prepare

a assembled material?

There are certain ways to explore the possibilities to design new materials. The

most popular way is to use the small clusters as building blocks and assembled

them one-by-one based on the symmetry sites of the clusters. Calculation of

Fukui function of the cluster sites plays an important role to understand/select

the probable cluster sites available for making cluster assembled materials.

1.3 Cluster magnetism

Cluster magnetism is sensitive to many factors, such as, the symmetry of the cluster,

hybridization and different types of magnetic coupling between the atoms that depends

upon their interatomic distances. These characteristics are interrelated. Let us consider

the case of free transition metal atoms. The TM atoms Cr, Mn, Fe are having 6, 7 and 8

valence electrons, respectively and are distributed in the 3d and 4s shells. Hund’s rules3

require the spin to be a maximum and this leads to electronic configurations 3d5↑ 3d0↓

4s1 ↑ for Cr, and 3d5↑ 3d0↓ 4s2 for Mn and 3d5↑ 3d1↓ 4s2 for Fe, where the 3d↑ and 3d↓

subshells are separated by the exchange interaction. Since the spin magnetic moment

of an electron is 1 µB, and the TM atoms mentioned above are having non-zero spins,

the atoms possess substantial magnetic moments. The magnetic moment is given by the

difference in the number of spin ↑ and spin ↓ 3d electrons per atom, which is nd(↑)−nd(↓)
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= 5, 5 and 4 for Cr, Mn and Fe respectively. Since 4s electrons is also contributing in

magnetic moment of Cr, the total redistribution of spin magnetic moments are 6, 5 and

4 for Cr, Mn and Fe respectively. In the atomic cluster, the overlap between the atomic

orbitals of atoms gives rise to energy bands. The levels corresponding to 4s electrons

produce a free electron-like band, while the d electrons stay localized on the atomic sites.

The crystal potential stabilizes the d and s states by different amounts. However, the

behavior of the Cr is different from Mn and Fe: (a) as a free atom and also (b) as a

molecule in a cluster or in bulk. In the molecular orbital of Cr in cluster or in bulk, one

of the 3d electron pushed up to 4s state.

Together with the crystal field potential, spd hybridization leads to charge transfer

from s to d states. Assuming that the 3d orbitals are atomic-like, the Hund’s rules3

require the majority 3d↑ sub-band to be almost fully occupied with four and five electrons

per atom while the minority 3d↓ sub-band has zero, zero and one electrons per atom

in Cr, Mn and Fe, respectively. The difference in the number of spin ↑ and spin ↓ 3d

electrons per atom is nd(↑) - nd(↓) = 5, 5 and 4 for Cr, Mn and Fe respectively; and the

corresponding magnetic moments per atom are 6µB, 5µB and 4µB for Cr, Mn and Fe

respectively. These magnetic moments may be different in cluster and bulk depending

upon the composition and size. Hence, it depends upon the type of hybridization.

1.4 Literature review

1.4.1 Electronic shell structure

In 1984, Knight et al.4 measured the mass abundance spectrum of Nan clusters which

showed a non-monotonic behavior with respect to the size (n) of the clusters. It was

found that there was a sharp drops in the intensity just after n=8, 20, 40, and 58 as

shown in Fig. 1.1. In the mass abundance spectrum of the cluster in gas phase, intensity

peaks indicate the greater stability of these clusters with respect to their neighbors.

Thus, Nan clusters at n=8, 20, 40, 58 are more stable and these numbers are called

magic numbers. These magic clusters are also observed in experiments on various other

simple metal and noble metal clusters2.

Origin of the enhanced stability at certain sizes can be understood in terms of

simple quantum mechanical models. The common assumption of all these models is

that the valence electrons of all the metal atoms move freely within a finite region
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Figure 1.1: Sodium cluster abundance spectrum: (a) experimental (b) dashed line,
using Woods-Saxon potential (after Knight et at.4); solid line, using the ellipsoidal

shell (Clemenger-Nilsson) model2

of space defined by the "volume" of the cluster. Depending on the symmetry of the

confining potential, quantum confinement leads to discrete electronic energy levels

with degeneracies. These simple quantum mechanical shell models provide us with an

elegant electron counting rule through which we can understand the electronic and

chemical stabilities of atomic clusters.

1.4.1.1 Spherical Shell Model

In the spherical shell model2, as the name suggests, the potential confining the valence

electrons is assumed to be spherically symmetric. The radius of the confining sphere R0

is taken as

R0 = xN1/3rs (1.1)

where, rs is the Wigner-Seitz radius in the corresponding bulk and x is the valence of the

metal atom. In the simplest picture of these models, the valence electrons experience a
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potential V(−→r ) which is given by

V (−→r ) = 0; r < R0

=∞; r ≥ R0 (1.2)

Figure 1.2: Energy-level occupations for spherical three-dimensional, harmonic,
intermediate, and square-well potentials2

Since the valence electrons feel an infinite potential at the boundary, this model

can be termed as the "hard sphere" model. By solving the Schrodinger equation, one

can obtain the one-electron energy levels Enl following this model as:

Enl = ~2β2
nl

2mR2
o

(1.3)

where βnl is the nth order zero of the spherical Bessel function jl. Since the potential

has spherical symmetry, energy eigenstates are also angular momentum eigen-states and
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possess 2(2l + 1) fold degeneracies. These energy eigenstates form the electronic shells

(n, l) which are arranged in increasing energy as 1S2, 1P6, 1D10, 2S2, 1F14, 2P6, 1G18....

as shown in Fig. 1.2c. Thus, electronic shells will be completely filled when there are 2,

8, 18, 20, 34, 40, 58... electrons in the cluster. As filled electronic shells lead to greater

stability in atoms, filled shell clusters are also expected to be more stable. Therefore Nan
clusters with n=8, 20, 40, 58... electrons will be more stable. Note that this model also

predicts stable clusters at n=18, 34, and 68 which were not found with high intensity in

the spectrum (Fig. 1.2).

1.4.1.2 Clemenger-Nilsson shell model

Though the shell model discussed in the previous section are quite successful in

explaining the relative stability of magic clusters, but it is not able to explain the

fine structure of the mass abundance spectrum. This is a consequence of the assumed

spherical shape of the clusters. Indeed, shape of an open shell cluster does not need to

be spherical. To explain the fine structure of the mass spectrum, Clemenger proposed a

model based on the ideas of Nilsson model. This model is known as Clemenger-Nilsson

shell model5. The basic idea is to introduce spheroidal deformations in a 3D harmonic

oscillator confining potential. In spheroidal deformations, two semi-axes (Rx) and (Ry)

are taken equal and the third (Rz) could be different, with the constraint that the volume

of the cluster remains unchanged. This constraint is imposed through the condition

RxRyRz = R3 (1.4)

1.4.1.3 Jellium model

Jellium model6 is a more realistic model as compared to the shell model discussed

because the jellium model includes coulomb interaction among the valence electrons.

However, the discrete nature of the ionic cores are neglected and the entire positive

charge is uniformly distributed over the spherical shape of a cluster of radius R0 as a

static background having density n+(−→r ). Positive charge density n+(−→r ) is given by

n+(−→r ) = n+
0 θ(R0 − r) (1.5)
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Figure 1.3: Total electronic energy curves as functions of for the 3D harmonic potential.
Open circles denote the optimal values for the valence electron counts given next to the

circles2

while θ(R0 - r) is the step function, and has value 1 for r ≤ R0 and 0 for r > R0.

The radius of the cluster is given by Eq. 1.4. Uniform positive charge density of the

background yields an attractive potential for valence electrons

V (−→r ) = −
∫

n+(−→ŕ )
|−→r −

−→
ŕ |
d3−→ŕ (1.6)

Chou et al.7 used density functional theory (DFT) within the local density

approximation (LDA) to calculate the ground state of interacting electrons subject to

this potential. They obtained a closed electronic shell for the Na40 cluster with electronic

configuration 1S2, 1P6, 1D10, 2S2, 1F14, 2P6, 1G18 as in the shell model. Similar to shell

model, the jellium model6 is also very successful in explaining the magic numbers of

molecular system. However, it does not explain the fine structure of the mass abundance

spectrum. But one can relax the constraint of spherical shape of the background charge

distribution and allow deformations as done in the Clemenger-Nilsson model5. Hence,

the fine structure in the mass abundance spectrum is captured8,9.
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1.4.2 Semiconductor clusters

The physical properties for the clusters of group 14 elements such as Si, Ge, and Sn have

been the subject of intensive studies for the last decade because of their importance both

in fundamental and applied sciences. In this section, we will discus about the theoretical

and experimental aspect of pure Si and Ge cluster. In Fig. 1.4, the experimental setup

for the photoionization threshold measurement with a vacuum ultraviolet (VUV) laser

light has shown.

Figure 1.4: Experimental setup for ionization threshold measurement in the vacuum
ultraviolet region10.

The result is shown in Fig. 1.5 that the photoionization mass spectra for pure Gen
clusters exhibits most stable cluster at n=10.

Figure 1.5: Typical photoionization mass spectra of germanium clusters, Gen (n=1 –
41)10
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1.4.3 Role of TM doping in semiconductor clusters

In past few decades, extensive studies on transition metal doped semiconductor

nanoclusters11–23 and their realizations in the laboratory24–29 have done. This opened

up a new avenues to develop different silicon and germanium nano-structures. Study

of the effect of different types of doping on the geometric structures of low energy

semiconductor nanoclusters along with a search for their growth pattern have been

reported11–23.

Table 1.1: List of works done in literature on TM doped Si clusters. Abbreviations:
QC= Quantum chemistry methods, DFT=Density Functional Theory, BE=Binding
Energy, EBE=Electron Binding Energy, EE= Embedded Energy, FE=Fragmentation
Energy, EA=Electron Affinity, HL=HOMO-LUMO gap, Freq=Frequencies,
VIP=Vertical Ionization Potential, VDE=Vertical Detachment Energy, ADE=
Adiabatic Detachment Energy, MM=Magnetic Moment, MC=Mullikan Charge,
Exp=Experimental Work, NEC= Natural electronic configuration, NICS=Nucleus

Independent Chemical Shifts, ELF=Electron Localization Function.

Authors Doped Atom Base cluster Methods Properties studied
Wang et al.11 Co Si DFT BE,HL, VIP, MM
Han et al.12 Cr,Mo,W Si DFT MC, IP
Xiao et al. 13 Cu Si DFT BE,EE,FE
Mahtout et al. 14 Fe Si DFT BE,HL,MM
Kumar et al. 15 Ti,Zr,Hf Si DFT BE,IP,EA,HL
Kumar et al. 16 Ti,Zr Si DFT Freq,HL
Koyasu et al. 17 Sc,Y,Lu,Ti,Zr Si Exp.

Hf,V,Nb,Ta
Chuang et al. 18 Ag Si DFT HL,BE,FE
Zhao et al. 19 Eu Si DFT HL,BE,VIP,MC,MM
Liu et al. 20 Gd Si DFT HL,BE,VIP,EA,MM
Zhao et al. 21 Rh Si DFT HL,BE,FE,MM
Abreu et al. 22 Cr Si DFT BE,FE,EE,IP,HL
Abreu et al. 23 W Si DFT FE,IP,ADE,VDE,HL
Li et al. 30 Nb Si DFT,Exp. BE,HL,FrEq.
Li et al. 31 Co Si DFT,Exp. FrEq.
Li et al. 32 Ag,Cu Si DFT,Exp. FrEq.
Chauhan et al. 33 Fe Si DFT BE,FE,EE,IP,DE,HL
Goicoechea et al. 34 Sc-Zn,Y-Cd Si,Ge DFT
Furuse et al. 28 Ti,Zr,Hf Si,Ge,Sn,Pb DFT,Exp. Freq,NICS,EBE
Kumar et al. 35 Cr,Mo,W Si DFT BE,EE,HL
Guo et al. 36 Sc-Zn Si DFT BE,EE,VIP,HL,MM
Kawamura et al. 37 Cr Si DFT BE,EA,IP,Freq
Guo et al. 36 Sc-Zn Si DFT BE,EA,IP,Freq
Khanna et al. 38 Fe Si DFT BE,FE,VIP,HL
Neukermans et al.27 Cr,Mn,Cu,Zn Si,Ge,Sn,Pb Exp.
Koyasu et al.39 Sc,Ti,V Si Exp.
Kong et al. 40 Cr Si DFT,Exp. VDE,ADE,MC
Zheng et al. 41 Cr Si Exp. EBE
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Table 1.2: List of works done in literature on TM doped Ge clusters. Abbreviations:
QC= Quantum chemistry methods, DFT=Density Functional Theory, BE=Binding
Energy, EBE=Electron Binding Energy, EE= Embedded Energy, FE=Fragmentation
Energy, EA=Electron Affinity, HL=HOMO-LUMO gap, Freq=Frequencies,
VIP=Vertical Ionization Potential, VDE=Vertical Detachment Energy, ADE=
Adiabatic Detachment Energy, MM=Magnetic Moment, MC=Mullikan Charge,
Exp=Experimental Work, NEC= Natural electronic configuration, NICS=Nucleus

Independent Chemical Shifts, ELF=Electron Localization Function.

Authors Doped Atom Base cluster Methods Properties studied
Bandyopadhyay 42 Cu Ge DFT BE,FE,EE,IP,EA,MC
Wang et al. 43 Mn Ge DFT BE,HL,VIP,MM
Zhao et al. 44 Fe Ge DFT BE,FE,HL,MM
Deng et al. 45 Ti Ge DFT,Exp. EBE,VDE,ADE
Kapila et al. 46 Mn,Co,Ni Ge DFT BE,HL,MC
Zhao et al. 47 Mn Ge DFT BE,HL,MC,MM
Mahtout et al. 48 Cr Ge DFT BE,VIP,EA,HL
Wang et al. 49 Ni Ge DFT BE,FE
Jin et al. 50 Ru Ge DFT BE,MC,HL
Wang et al. 51 Zn Ge DFT Freq,HL,MC,BE,FE
Trivedi et al.52 Mo Ge DFT BE,FE,EE,NEC,NICS
Hou et al. 53 Cr Ge DFT BE,FE,ELF
Goicoechea et al. 34 Sc-Zn,Y-Cd Si,Ge DFT MM
Deng et al. 24 Co Ge DFT,Exp. EBE,VDE,ADE,MM
Quintero et al. 26 Ru Ge DFT,Exp.
Deng et al. 25 V Ge DFT,Exp. EBE,ADE,VDE,MM
Quintero et al. 26 Rh Ge DFT,Exp. MC
Wang et al. 54 W Ge DFT BE,FE,Freq,HL
Neukermans et al.27 Cr,Mn,Cu,Zn Si,Ge,Sn,Pb Exp.
Furuse et al. 28 Ti,Zr,Hf Si,Ge,Sn,Pb DFT,Exp. Freq,NICS,EBE
Atobe et al. 29 Sc-V,Y-Nb Ge,Sn DFT,Exp. EBE

1.4.3.1 Multiple TM doped Si/Ge clusters

Till today, most of the experimental and theoretical studies are focused on TM doped

silicon clusters. However, less attention have been made on silicon clusters with multiple

TM doping.

Ji and Luo65 investigated the geometries, magnetic properties and stabilities of a

number of TM2Si18 (TM = Ti, V, Cr, Mn, Fe, Co, Ni, Cu or Zn) clusters using DFT

calculations. They found that the magnetic moments of the TM atoms in these clusters

are quenched, most of the cases except Mn2Si18, Fe2Si18 and Cu2Si18 with the moment

of 2µB. A spin moment of 2µB is also found in a hydrogenated Cr2Si18H12 cluster66. Xu

et al.67–69 used photoelectron spectroscopy and DFT to reveal strong V–V interaction

and weak Sc–Sc interaction in the V2Sin and Sc2Sin clusters respectively.
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Table 1.3: List of works done in literature on multiple TM doped Si/Ge
clusters. Abbreviations: DFT=Density Functional Theory, BE=Binding Energy,
EBE=Electron Binding Energy, FE=Fragmentation Energy, EA=Electron Affinity,
HL=HOMO-LUMO gap, Freq=Frequencies, VIP=Vertical Ionization Potential,
VDE=Vertical Detachment Energy, MM=Magnetic Moment, Exp=Experimental

Work, NEC= Natural electronic configuration,Pol=polarizability.

Authors Doped Atom Base cluster Methods Properties studied
Jin et al. 55 Co2 Ge DFT,Exp.
Zhang et al. 56 Rh2 Si DFT BE,HL,Freq,NEC,VIP,VEA
Zhao et al. 57 Pd2 Si DFT BE,FE,HL
Shao et al. 58 Cu2 Si DFT BE,FE,HL,Freq
Zhang et al. 59 Rh2 Si DFT BE,HL,Freq,NEC
Yang et al. 60 Ag2 Si DFT BE,FE,HL,Freq,VIP,
Ji et al. 61 Pd2 Si DFT BE,FE,HL,Pol
Han et al. 62 Mo2 Si DFT BE,FE,HL,NEC
Huang et al. 63 V,V2,V3 Si DFT EBE,MM
Xia et al. 64 Cum Sin(2≤m+n≤7) DFT BE,FE,VIP,EA,HL

1.4.4 Functionalized cluster assembled materials

Assembling the small clusters building blocks into one assembled material structure is the

key problem in chemistry and material science to design new materials. The possibility

of building homo- and heterogeneous aggregations of MSi16 clusters for different metal

dopants TM has been theoretically investigated by Balbas et al.70 and Nakajima et al.71.

Robles and Khanna72 reported that the assemblies of CrSi12 clusters may have a net spin

moment. Willand et al.73 reported that TMSi20 clusters do not form cage-like structures

at all as the Si utilizes its coordination through strong TM-Si interaction. This suggests

that a carefully reduction of hydrogenation (and, therefore, increase of the amount of

unsaturated Si bonds) might be used to control the number of bonding sites offered by

the cluster available for reaction. As long as this does change the structural integrity of

the cage, such a strategy would lead to a toolbox of monomers with differing number

of "docking sites", that may offer the possibility to build network architectures of any

morphology.

Assembling functionalized materials offer the ability to tune component properties,

lattice parameters, and thus coupling of physical properties through the careful selection

and assembly of building blocks1. Hybrid clusters have been found to exhibit physical

properties beyond those available from the standard elements in the periodic table;

classification of the properties of such clusters effectively enables expansion of the

periodic table to a third dimension. Using clusters as superatomic building blocks
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Figure 1.6: Schematic representation to understand the size, nature and application
part of the cluster and cluster-assembled materials1

for hierarchically assembled materials allows these properties to be incorporated into

designer materials with tailored properties.

Since pure and doped Si and Ge clusters have their own properties, but the obvious

question aeries about their ability to design the assemblies using these clusters. As

mentioned earlier, clusters which have symmetries but at the same times having dangling

bonds, are the suitable candidate to make a stable assembled material. There are various

reports available on these kind of cluster assembled materials which are identified and

synthesized74–81.

1.5 Goal of the thesis

The major part of the thesis work has been devoted to study the electronic structure and

properties of the TM doped silicon and germanium clusters. We conducted a systematic

step-by-step investigation of the electronic, magnetic, physical and chemical properties

of transition metal doped semiconductor at synthetically feasible nanometer-scale. The

thesis has been structured into four major parts as follows:

Part I of the thesis is divided into 2 chapters. In Part I, a concise introduction to

different methodologies employed and concepts to explore the configurational space have

been thoroughly described. In Chapter 1, we have reviewed the literature on the pure

and TM doped Si/Ge nanocluster. The concept of shell models related to the clusters

is explained. Also, the cluster assembled material is discussed. Chapter 2 includes the

introduction and explanation of all the methodology employed in the computational
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calculations mentioned in the chapters. Density functional theory has been reviewed. A

small introduction on psudo-potential and basis sets have also been given.

The Part II of thesis work has been divided into three different chapters. All

the results obtained for 3d transition metal especially Ni and Cr doped Gen cage-like

clusters are grouped together and presented in a systematic way to understand the

nature of bonding within the TM doped Germanium clusters. The stability of such

clusters have been explained by the energetics and the chemical bonding between the

dopant and the host atoms. We have seen that the shell closure number also plays an

important role in the structure stabilization. This also explains the adaptive capability

of the TM-Ge bonding, which is more as the result of a complex hybridization than the

originally proposed mere formal charge transfer. In Chapter 3 and Chapter 4, we have

checked the possibility of creating cage structures with minimized TM-Ge interaction to

preserve unique atomic properties of the dopant TM atom. In Chapter 5, all the results

obtained from 5d-Au doped Gen cluster are discussed.

Part III of the thesis (Chapter 6 ) explores the possibility to prepare functionalized

assembled materials. We have used bottom-up approach to determine big sized

structures. Initially, we have discussed the geometric and electronic structure of TMSin

clusters with Cr, Mn and Fe dopant atoms. In the later part, we picked few sizes

and connected them as the building blocks with different structural orientations. We

have examined the stabilities of these building blocks by the addition of small cluster

units and finally prepared finite Si-nanotubes. In such finite nanotubes, it is found that

the atomic character of the dopant atoms is conserved. Inspired by these results, we

have modeled infinite TM doped Si infinite nanotubes and discussed their electronic

and magnetic properties. Interestingly, we found that these engineered functionalized

magnetic nanotube’s band gap properties could be easily tuned by the changing the TM

atoms or their structural orientation.

In Part IV (Chapter 7 ) of the thesis, we focus on ongoing developments in cluster

science. We discuss our future plan which is to go beyond the conventional scope in this

field. We have discussed the possibility to find catalytic properties of late 5d- TM atom

doped Si/Ge cluster. We also have discussed the possibility of multi-doping in Si and

Ge clusters in order to achieve high spin states beyond the single-dopant atom which

has been reported as a potential future plan. We can explore further on conserving

both, the structural integrity of the host cage and the high spin state of the guest dimer

dopant, thereby exceeding the magnetic moment. Moreover, the possibility of increasing
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the cluster spin state further by encapsulating a different number of dopant atoms into

a suitably sized Si/Ge cage could be quite interesting. This multiple doping phenomena

could be also used in functionalized assembled materials. These developments indicate

many potential future applications beyond the specific problem of doped semiconductor

clusters.



Chapter 2
Methodology

2.1 Theoretical Basis of Quantum Chemistry Calculations

Quantum mechanically, to study all the physical properties of any system, basic equation

given by Schrödinger82 can be used. This time dependent Schrödinger equation yields

a wavefunction ψ and moving potential V, given as:

(
− ~2

2m∇
2 + V̂

)
ψ(~r, t) = i~

∂ψ(~r, t)
∂t

(2.1)

where ψ is a wavefunction, ~r - position vector, t - time, ∇2- Laplacian, V̂ - potential

energy operator, and ~ - Planck constant divided by 2π. In the Eq. 2.1, left hand

side term can be written in form of Hamiltonian operator, which a sum of kinetic and

potential energy operators.

Ĥ =
[
− ~2

2m∇
2 + V̂

]
(2.2)

i.e. it is a sum of kinetic and potential energy operators. The stationary Schrödinger

equation is a first-order differential equation:

Ĥtotψtot = Etotψtot (2.3)

where Etot and ψtot are eigenvalue and eigenfunction of the Hamiltonian,

respectively.

16
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We may write the non-relativistic Hamiltonian(Ĥ) for the ith electron with Ath

nucleus in a molecule in atomic units (energy in Hartree and length in Bohr) as:

Ĥ = −1
2

N∑
i=1
∇2
i −

1
2MA

M∑
A=1
∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1
rij

+
M∑
A=1

M∑
B>A

ZAZB
RAB

(2.4)

In the above equation, MA is the ratio of the mass of nucleus A to the mass of an

electron and ZA is the atomic number of nucleus A. The ∇2
i and ∇2

A are the Laplacian

operators. The first two terms in Eq. 2.4 are for the kinetic energy of the electrons and

nuclei, respectively. The third term represents the Coulomb attraction between electrons

and nuclei. The fourth and fifth terms represent the repulsion between electrons and

between nuclei, respectively.

2.1.1 Born-Oppenheimer approximation

The Hamiltonian consists of five terms: kinetic energy of electrons T̂e, kinetic energy of

nuclei T̂n, potential energy of electron-electron interaction V̂ee, potential energy of nuclei

interaction V̂nn, and potential energy of electron-nucleus interaction V̂ne. We may write

the non-relativistic Hamiltonian for a molecule as a sum of these five terms:

Ĥ = T̂e + T̂n + V̂ee + V̂nn + V̂ne (2.5)

The Born-Oppenheimer approximation83 plays a vital role in electronic structure

calculations. The underling rationalization of this approximation is that the mass of

nuclei are much heavier than electrons. Thus in most cases the nuclei move much more

slowly than electrons. Hence, nuclei can be consider as a fixed or not in moving state.

This is the qualitative rationalization to separate the movement of electrons and nuclei.

In the Born-Oppenheimer approximation the second term in Eq. 2.4 is neglected, and

the final term, the repulsion between nuclei, can be treated as a constant for a fixed

configuration of the nuclei. The remaining terms in Eq. 2.4 are called the electronic

Hamiltonian (Ĥele),

Ĥele = −1
2

N∑
i=1
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1
rij

(2.6)

Thus, the total wavefunction can be separated into two parts: an electronic part

ψe and a nuclear part ψn. In this view, electrons move in a potential field created by
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the nuclei, and the Schrödinger equation for the electron wavefunction ψe is written as

follows:

(
Ĥe + V̂nn

)
ψ(~r, ~R) = Ee(~R)ψ(~r, ~R) (2.7)

where ~r is a position vector for electrons, ~R position vector for nuclei. For the

material applications, the electronic wavefunction is sufficient. Thus we have Ĥ = V̂e +

V̂ee+ V̂ne, ψ = ψe, E = Ee, and can re-write the Schrödinger equation in a simpler form:

Ĥψ = Eψ (2.8)

After multiplying by the complex conjugate and integrating over volume

∫
ψ∗Ĥψdυ =

∫
ψ∗Eψdυ, (2.9)

a scalar value of the energy E can be found as:

E =
∫
ψ∗Ĥψdυ∫
ψ∗ψdυ

(2.10)

In most cases, finding the exact form of the wavefunction is unfeasible. Therefore,

additional approximations are introduced to simplify the calculation. Historically the

first and most widely used approximation is the Hartree-Fock (HF) method84.

2.1.2 Hartree-Fock (HF) method

In order to solve the Schrödinger equation for a multi-electron system, the approximation

of non-interacting electrons is introduced. In this case the total wavefunction can be

described as a product of one-electron wavefunctions. The Hamiltonian for every electron

is:

hi = T̂i +
∑
n

V̂ni (2.11)

where T̂i is electron kinetic energy, and V̂ni the potential energy of electron-nucleus

interaction. Thus, the Schrödinger equation can be solved for a single-electron system

hiψi = εiψi, where ψi are single-electron wavefunctions and εi the corresponding energy

values. However, such a single-electron composed wavefunction does not properly

describe the anti-symmetrization requirement for fermionic systems, known as Pauli
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principle85. Slater therefore suggested to use a linear combination of single-electron

spin functions in form of a determinant86, which then describes the many-electron

wavefunction with proper account for the symmetry and the Pauli principle. Such an

N-electron Slater wavefunction is written as:

ψ = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(1) χ2(1) . . . χN (1)

χ1(2) χ2(2) . . . χN (2)
...

... . . . ...

χ1(N) χ2(N) . . . χN (N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.12)

where χ is a spin function, i.e. a single-electron function which accounts for spin.

For the given expression of the determinant, all functions describe occupied orbitals.

Within the restricted Hartree-Fock (RHF) method87,88 all electrons are paired. Then the

set of paired differential equations can be written in form of the Hartree-Fock equations

fiψi = εiψi, where εi are the energy eigenvalues for single-electron functions ψi, and fi
is the Fock operator:

fi = ĥi +
N∑
j=1

(Ji(1)−Ki(1)) (2.13)

In Eq. (2.13) a summation is done over the number of electrons N. “1” means that

the operator includes coordinates of one electron only. J is a Coulomb integral describing

the electrostatic repulsion between electrons, K is the exchange integral.

Within the Hartree-Fock method each electron occupies its own orbital and moves

within the potential field of the other N – 1 electrons. Thus, electrons can be located

closer to each other than they would be, if the energy of each electron was minimized

individually. Therefore, the HF method always overestimates the energy. The difference

between the energy in the Hartree-Fock limit and the exact non-relativistic energy

of a system is designated as correlation energy Ecorr = Eexact – EHF . Thus, the

sum of single-electron energy values does not equal the total energy of the system.

Electron-electron interaction is calculated twice upon summation of single-electron

energies, and should be corrected through division of the full interaction by two. Then

the total energy is:

EHF =
∑

εi −
1
2
∑
i

∑
j

(Jij −Kij) (2.14)
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Solution of the Hartree-Fock equations yields molecular orbitals, which describe the

spatial distribution of the probability of finding an electron. Each orbital corresponds

to a certain energy level. Orbitals are occupied by maximum of two electrons each,

starting from the energetically lowest. Occupation of N orbitals with minimal energy

values then yields a minimal total energy, which corresponds to the ground state of

the system. The remaining high-energy orbitals are called virtual orbitals. Especially

important for chemical applications are the so-called frontier orbitals, i.e. the highest

occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals.

Molecular orbitals (MO) filled with electrons are mathematical functions, which can be

represented as linear combinations of atomic orbitals (LCAO):

ψi =
∑
µ

Cµiφµ (2.15)

where Cµi is a coefficient, φµ is an atomic orbital (AO). Atomic orbitals are the

solutions of the Schrödinger equation for a hydrogen atom, i.e. the orbitals of the

hydrogen atom (1s, 2s, 2p, 3s, 3p,...) The LCAO method allows constructing molecular

orbitals using already known functions with only coefficients unknown. Integration over

the volume gives the Roothaan equation89:

FC = SCε (2.16)

where F is the Fock matrix, S and C are matrices with overlap integrals Sµν and

coefficients Cµν . The matrix elements are

Fµν =
∫
φ∗µfφµdV

Sµν =
∫
φ∗µφµdV


(2.17)

The solution of the equations can be considered as a procedure of energy

minimization, where, according to the variational principle, the best wavefunction

corresponds to the minimal energy. The problem can be solved iteratively, with

the coefficients Cµν found by the energy minimization. Such procedure is known as

self-consistent field (SCF).
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2.2 The Density Functional Theory (DFT)

One of the most common present-day computational chemistry approaches is based

on the density functional theory (DFT). Within this method, the main variable of

quantum mechanics, wavefunction ψ, is substituted by the electron density ρ(r), which

is a function of only three spatial coordinates. The total energy, as well as any other

observable property of a molecular system, can be defined through ρ(r) via so-called

functionals.† According to the Hohenberg-Kohn theorems92, the electron density can

be considered as a variable in many-electron theory. When the ground-state electron

density of a system is known, it is possible to calculate energy of the ground state and

all molecular properties. The second Hohenberg-Kohn theorem states that the energy of

the given configuration obeys the variational principle, and among all possible electron

density distributions the one that yields the minimal energy is the ground-state density.

However, the Hohenberg-Kohn theorems do not give an exact form of the E(ρ) functional

needed to evaluate such a minimization. The Kohn-Sham scheme93 is currently the main

procedure for the explicit calculation of electron density and energy for any atomic

and molecular system, and is the basis of most present-day DFT calculations. The

main goal of the Kohn-Sham method is to calculate a hypothetical system composed

of N electrons, which do not interact with each other, occupy N orbitals ψi, and move

within the potential field νs. For this type of systems, the Slater determinant rigorously

describes the wavefunction in the ground state. Optimal orbitals for the system can be

found by solving single-electron equations:

(
−1

2∇
2 + νs

)
ψi = εiψi (2.18)

Here, the Hamiltonian consists of the kinetic energy operator and a single-particle

effective potential. The total electron density is a sum of orbital densities:

ρs(~r) =
N∑
i=1
|ψi(~r)|2 (2.19)

The connection of the system where there is no electron-electron interaction with

the true system, where electrons do interact, can be assessed via the choice of an effective

potential of one particle in such a way that the electron distribution corresponds to the
†For an extended discussion of Density Functional Theory see ref. 90. For detailed derivations consult

ref.91.
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density distribution of the real system in its ground state. Despite the fact that the

exact expression for the density functional E(ρ) is unknown, its constituent parts can

be expressed as follows:

EDFT (ρ) = TS(ρ) + Ene(ρ) + J(ρ) + EXC(ρ) (2.20)

where ρ is the density of the system of interacting electrons. The form of the first

three terms is known. TS(ρ) is the kinetic energy of the system with non-interacting

electrons, Ene(ρ) is the potential energy of the Coulomb interaction between nuclei and

electrons, and J(ρ) is the energy of inter-nuclei repulsion. All other terms are accounted

for in the fourth term EXC(ρ)), the exchange-correlation functional. EXC(ρ) includes

all non- classical interaction effects, as well as the part of kinetic energy not included

in TS(ρ). The exchange-correlation functional also corrects the J(ρ), which allows for a

non-physical interaction of the electron with itself. Taking into account Eq. (2.19), one

can rewrite the Eq. (2.20) in the following form:

E(ρ) =− 1
2

N∑
i=1

∫
ψ∗i (~r)∇2ψ∗i (~r)d~r −

N∑
i=1

∫ M∑
A=1

ZA
|RA − ~r|

|ψi(~r)| d~r+

N∑
i=1

N∑
j=1

∫ ∫
|ψi(~r)|2

1
|~r − ~r′|

∣∣ψj(~r′)∣∣2 d~rd~r′ + EXC(ρ)
(2.21)

where M and N are the number of nuclei and electrons, respectively. The energy

minimization after normalization of the wavefunction yields a set of single-electron

Kohn-Sham equations:

ĥKSψi = εiψi, (i = 1, 2, ....N.) (2.22)

The single-electron operator ĥKS contains the kinetic energy, nuclei potential, the

classical Coulomb potential and the potential caused by EXC(ρ):

ĥKS = −1
2∇

2 −
∑
A

ZA
|RA − ~r|

+
∫

ρ(~r′)
|~r − ~r′|

d~r′ + νXC(~r) = −1
2∇

2 + νeff (~r) (2.23)

The exchange-correlation potential νXC is defined as the functional derivative of

the exchange-correlation energy with respect to ρ: νXC = ∂EXC [ρ]
∂ρ(~r) . Comparison of
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Eqs. (2.18), (2.22) and (2.23) reveals that if the potential of a single particle s in Eq.

(2.18) is defined as νeff (~r) in Eq. (2.23), then the system with non-interacting electrons

transforms into a system where electrons do interact. Thus, the Kohn-Sham equations

appear after substitution νs = νeff (~r) in Eq. (2.18), and the solution of this equation

yields the Kohn-Sham orbitals. νeff (~r) depends on the electron density, and in order

to find the Kohn-Sham orbitals, Eq. (2.22) needs to be solved iteratively using the SCF

procedure, just like in the HF method. The energy of the system can be obtained by

inserting the electron density found from the Kohn-Sham orbitals (Eq. (2.19)) into the

Eq. (2.20).

2.2.1 Exchange correlation functionals

2.2.1.1 Local density approximation (LDA)

As it has been mentioned before, the exact form of the exchange-correlation functional is

unknown. Therefore, the quality of the solution obtained within the DFT framework is

directly dependent on the chosen functional EXC 94. Exchange-correlation functionals

can be classified according to the way the electron density distribution is described. The

simplest approximation is the local density approximation (LDA), with the idea of a

hypothetical uniform electron gas, where the electrons sit in an infinite region of space,

with a uniform positive external potential, chosen to preserve overall charge neutrality.

Then ELDAXC is:

ELDAXC =
∫
ρ(~r)εXC(ρ(~r))d(~r) (2.24)

where εXC is a functional that depends only on the local density at each point ~r. The

exchange-correlation functional can further be divided into two parts EXC = EX + EC ,

where EX and EC are functionals accounting for exchange and correlation parts of the

energy, respectively. The form of the exchange part EX for the homogeneous electron

gas is known, and was originally derived by Bloch95 and Dirac96. No such explicit

expression is known for the correlation part EC , however. Several authors developed

their representations of EC 97–99. The most recent and accurate one has been suggested

by Perdew and Wang100. These functionals can be successfully used in systems where

the real density resembles the one of the uniform electron gas, e.g. in metals.
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2.2.1.2 Generalized-gradient approximation (GGA)

A step forward in comparison to LDA was done in another (and probably the most

widely used nowadays) method: the generalized gradient approximation (GGA). There,

not only information about the density ρ(~r) at a particular point ~r, but also information

about the gradient of the charge density ∇ρ(~r) is used in the evaluation of EXC , to

account for the non-homogeneity of the true electron density. The general form of the

GGA exchange-correlation functional is:

EGGAXC =
∫
f(ρ,∇ρ)d~r (2.25)

Such functionals are better suited for molecular systems, where the electron density

is clearly not uniform. Several GGA functionals have been suggested101–103, the most

widely used being the PBE functional by Perdew, Burke and Ernzerhof104. As it is also

the case for the LDA, spin-polarized versions of these functionals (for collinear treatment

of spin) have been developed alongside. The DFT-GGA approach has proven to be very

reliable for a wide range of applications and has served as a “workhorse” of quantum

chemistry for the last twenty years.

However, GGAs still have the disadvantage of yielding only approximate exchange

contributions, which result in certain problems expressing the exchange part of the

energy90. A way to overcome these difficulties has been suggested by including

a component of the exact exchange energy calculated from Hartree-Fock theory.

Functionals of this type are known as hybrid functionals105 and have the following

general form:

EhybridXC = cEHFX + (1− c)EDFTX + EDFTC (2.26)

where the coefficient c defines the HF exchange contribution. Especially successful

hybrid functionals include the empirically-parametrized B3LYP106 and parameter-free

PBE0107.

In the present work most calculations have been carried out using the B3LYP and

GGA-PBE functional.

EB3LY P
XC = ELDAx + ao(EHFx − ELDAx ) + ax(EGGAx − ELDAx ) + ELDAc

+ ac(EGGAc − ELDAc )
(2.27)



Chapter 2 Methodology 25

For comparison the target quantities were also systematically recomputed on the

hybrid functional level with the B3LYP and PBE0 functional, without ever obtaining any

qualitative changes that would conflict with the conclusions deduced from the standard

PBE calculations. Considering the frequent observation that hybrid functional DFT

yields results that for 3d transition metal containing systems are at least en par, if

not superior to correlated wavefunction approaches108–112, this supports the reliability

of the reported results. The detailed discussion of the computational setup is given

within the corresponding chapters. Of course, going beyond the accuracy of GGAs

and hybrids is tempting, but more accurate electronic structure theory proves to be

extremely computationally challenging when a large number of evaluations is required

like in the context of global geometry optimization.

2.3 Basis sets

A basis set is a set of unknown functions through which the wavefunction is expanded.

For a single electron, the wavefunction can be written as

ψi(r) =
∑
j

cjφj(r) (2.28)

where φj(r) are a complete set of functions. Any set of functions could be used as basis

functions. In principle, the basis functions should have the same limiting behavior as

the real wavefunction, for isolated atom or molecules they should decay to zero, and

they should be computationally inexpensive.

2.3.1 Localized basis sets

The wavefunction exponentially decays to zero at large distances for isolated atoms and

molecules. This means that the basis functions also should behave in a similar way.

Atomic orbitals are the basis functions possessing this property and have two forms:

Slater type orbitals (STO) and Gaussian type orbitals (GTO). STOs have the following

form in spherical coordinates113.

φnlmζSTO (r, θ, φ) = αYlm(θ, φ)rn−1e−ζr (2.29)
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where α is a normalization constant, Ylm(θ, φ) is the spherical harmonic. l, m, and

n are quantum numbers, and ζ determines the radius of the orbit. The exponential

dependence on distance is the same as for the hydrogen atom.

GTOs in spherical coordinates have a form

φnlmζGTO(r, θ, φ) = αYlm(θ, φ)r2n−2−le−ζr
2 (2.30)

In both cases the angular dependence of the wavefunction is contained in the spherical

harmonics, where the l,m values determine the type of orbital (e.g. l = 0 is a s type

orbital, l = 1 a p orbital, etc). The main difference between STO and GTO is the power

of r in the exponent. GTOs have a zero slope at the nucleus (r = 0) whereas STOs

have a cusp. GTOs also fall off more rapidly with distance than STOs. These factors

suggest that more GTOs are needed to form a suitable basis set than STOs, roughly

three times as many are needed to achieve the same accuracy113. However, GTOs

are computationally more efficient than STOs: the factor r in the exponent requires

taking a square root ( r =
√
x2 + y2 + z2) which is computationally very slow. This

computational efficiency compensates for the additional number of functions needed,

hence GTOs are more commonly used in calculations. The size of the basis set has a

large effect on the accuracy of the calculation. The smallest basis set possible is the

minimum basis set which contains only enough functions to contain all the electrons in

the neutral atoms. Increasing the number of basis functions improves the accuracy of

the calculation.

2.3.2 Plane wave basis sets

The potential for a periodic system can be explained as

V (r + na) = V (r) (2.31)

where a is a lattice vector and n is an integer. From Bloch’s theorem114, the wavefunction

can be written as a product of a periodic and a wave-like part, i.e.,

ψi(r) = eik.rφi(r) (2.32)
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Because of periodicity, f(r) can be expanded as a set of plane waves

φi(r) =
∑
G

ci, Ge
iG.r (2.33)

where G are the reciprocal lattice vectors. Substituting Eq. 2.33 in Eq. 2.32, the wave

function can be written as

ψi(r) =
∑
G

ci, Ge
i(k+G).r (2.34)

The number of wavefunctions used is controlled by the largest wave vector in the

expansion in Eq. 2.33. This is equivalent to a cut-off on the kinetic energy since the

kinetic energy of an electron with wave vector k is given by

Ek = ~2 |k|2

2m (2.35)

Using the plane waves, the Kohn-Sham equations can be written as115

[∑
G′

~2

2m |k +G|2 δGG′ + Ven(G−G′) + Vee(G−G′) + VXC(G−G′)
]
ci,k+G′ = ci,k+G′εi

(2.36)

where Ven(G − G′), Vee(G − G′) and VXC(G − G′) are the Fourier transforms of

electron-nuclei, electron-electron, and exchange-correlation potentials.



Chapter 3
Electronic structure and stabilities of Ni

doped Germanium nanoclusters

3.1 Introduction

In this chapter†, we made an effort to explain the enhanced stability of Ge10Ni cluster

in GenNi (n=1-20) series by studying different physical and chemical properties of the

theoretical ground state clusters in each size using density functional theory. In the

growth pattern Ni-capped Gen and Ni-encapsulated Gen clusters are mostly appear

as theoretical ground state in a particular size. To explain the relative stability of

the ground state clusters, variation of different parameters like, average binding energy

per atom (BE), embedding energy (EE) and fragmentation energy (FE) of the clusters

are studied with the size of he cluster. To explain the chemical stability of the

clusters different parameters like, energy gap between the highest occupied and lowest

unoccupied molecular orbitals (HOMO-LUMO gap), ionization energy (IP), electron

affinity (EA), chemical potential (µ) and chemical hardness (η), polarizability etc. are

calculated and discussed. Natural bond orbital (NBO) analysis is applied to understand

the electron counting rule applied in the most stable Ge10Ni cluster. Finally, the

importance of the calculated results to design Ge-based superatoms is discussed.

†Kapil Dhaka, Ravi Trivedi, Debashis Bandyopadhyay, "Electronic structure and stabilities of
Ni-doped germanium nanoclusters: a density functional modeling study", J Mol Model,(2013),
19,1473-1488.
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3.2 Computational Details

In the present theoretical work, all calculations are performed within the

framework of linear combination of atomic orbitals density functional theory. The

exchange-correlation potential contributions are incorporated into the calculation using

the spin-polarized generalized gradient approximation (GGA) functional proposed by

Lee, Yang and Parr popularly known as B3LYP116. Different basis sets were used

for germanium and nickel with effective core potential using Gaussian’03117 program

package. The standard LanL2DZ-dp and LanL2DZ basis sets were used for germanium

and nickel to express the molecular orbitals (MOs) of all atoms as linear combinations

of atom-centered basis functions. LanL2DZ-dp (taken from EMSL basis set exchange

library) is a double-ζ, 18-Valence electron basis set with a LANL effective core potential

(ECP) and with polarization function118. All geometry optimizations are performed

with no symmetry constraints. During optimization, it is always possible that a cluster

with particular guess geometry can get trapped in a local minimum of the potential

energy surface. To avoid this several initial geometries in a particular size with different

spin states (singlet to quintet) are taken as input in the calculation to search for the

theoretical ground-state (GS) isomer during the optimization. In order to check the

validity of the applied methodology, trial calculations are carried out on Ge–Ge, Ni-Ni

and Ge-Ni dimers. The calculated Ge–Ge bond length in germanium dimer at triplet

spin state (ground state) is 2.44 Å (with a lowest frequency of 250 cm−1). These are

very close to the values obtained by several groups as shown in Table 3.1. The bond

length and the lowest frequency of Ge-Ni dimer in triplet spin state (ground state) are

obtained in the present calculation as 2.32 Å and 236 cm−1 respectively. The values

reported by other groups are 2.25 Å and 239 cm−1 as shown in Table 3.1. The bond

length of the triplet ground state Ni–Ni dimer obtained in the present method is 2.35 Å,

and corresponding frequency is 232 cm−1. These values are close to the values reported

in literature (Table 3.1). Comparing the bond lengths and lowest frequencies of different

dimers, the present method of calculation can be taken as an appropriate one for nickel

doped germanium clusters. The optimized electronic structure is obtained by solving

the Kohn–Sham equations self-consistently93 using the default optimization criteria of

the Gaussian’03 program117. The initial input geometries of the clusters used in the

calculations are constructed on the basis of the reported optimized geometries42,119,120

and also from their modified versions. With the increasing size of the clusters, the
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number of isomer in a particular size increases exponentially. So it is as a challenging

job to search a ground-state cluster in a particular size. Tai and Nguyen121 adopted a

stochastic search method that covers a good number of isomeric structures and increase

the chance of finding the ground state geometry. To check the stabilities of the structures,

a frequency check calculation of the harmonic vibrations of the clusters is also done.

If any imaginary frequency was found in a particular vibrational mode, relaxation

was performed along that mode until the true local minimum is obtained. Geometry

optimizations are carried out to a convergence limit of 10−7 Hatre in the total optimized

energy. The optimized geometries as well as the electronic properties of the clusters in

each size are obtained from the calculated program output.

3.3 Results and discussions

3.3.1 Growth of hybrid NiGen nanoclusters

Theoretically calculated optimized ground state structures of NiGen clusters within the

size range of n = 1-20 are shown in Fig. 3.1. In the present study a number of isomers

are calculated in each size. Only selected isomers with energy close to the supposed

ground state structures are presented in Figs. A.1, A.2, A.3.

It is well known that nickel is ferromagnetic material with [Ar]3d84s2 electronic

configuration. Whereas, germanium has [Ar]3d104s24p2 electronic configuration. With

the doped nickel atom in most of the case germanium cluster makes sp3d2 type of

hybridization. There is a strong mixing affinity between sp- orbitals of germanium with

the transition metal d- orbitals to form sp3d2 hybridization. When germanium atom in

the stable cluster is replaced by transition metal atom or pure germanium cage is doped

by transition metal atom, the doped transition metal atom absorbs the dangling bonds

present on the surface of the pure germanium cages. Various studies42,120,122–125 are

shown that the metal doped cage like isomers are important because of relatively higher

stability compare to the pure semiconductor clusters and also due to wide variation of

electronic properties, which are useful for different applications. A bare nickel atom

has a triplet spin multiplicity. Therefore, in the present calculations all NiGen guess

structures are optimized at different spin states starting from singlet to quintet until

there is a drop in optimized energies to check whether the spin moment of nickel inside

the cage could survive under bonding with germanium or not. It is found that the
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Figure 3.1: Ground state structures of Ni doped Gen clusters

Table 3.1: Bond length and frequency of different dimers

Dimer Bond length (Å) Lowest frequency (cm1)
Ge-Ge 2.36–2.42126–131, 2.46132, 2.57133, 258 [G. Frudakis,

2.44(Present work) personal communication],
250(Present work)

Ge-Ni 2.248134, 2.32(Present work) 239135, 236(Present work)
Ni-Ni 2.06136, 2.155137, 2.13138, 2.20139, 2.36140, 210±25137, 236140,

2.35(Present work) 232(Present work)

theoretical ground state of Ge-Ni dimer with C∞v point group symmetry can hold a

triplet spin state as reported by Wang and Han49 before.

The immediate next higher size also show a triplet ground state. Four different

isomers are optimized at this size with the triangular isomer in C2v point group symmetry

as ground state. The other two structures are linear chain structures in D2h and C2v

point group symmetry as shown in Fig. A.1. Out of the four isomers in Ge3Ni, the

isomer with triplet bend rhombus in 1A1 state with C2v point group symmetry is the

theoretical ground state. Other isomers are two different pyramidal structures with very

closely degenerate states. Seven stable isomers are found in Ge4Ni. Out of these four
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low energy isomers are presented in Fig. A.1. The Ni capped bend rhombus in 1A1

electronic state with C2v point group symmetry is found as the ground state. Other

three structures are plane rhombus with a tail as shown in Fig. A.1. First three low

energy Ge5Ni isomers are shown in Fig. A.1 out of a number of optimized structures

in this size. The optimized ground state structure (5C in Fig. A.1) in CS full point

group symmetry can be obtained by replacing one capped germanium atom by Ni in

Ge6 bi-capped pyramidal isomer. Three low energy optimized isomers in Ge6Ni series are

shown in Fig. A.1. These structures can be obtained by adding a Ni atom to Ge6(A) or

by replacing a Ni atom from Ge6(A) as reported125. By replacing one capped germanium

atom by Ni from bi-capped hexagonal Ge8 cluster gives the boat like optimized ground

state as shown in 7D in Fig. A.1. The first size that can absorb the nickel atom partially is

Ge8Ni as shown in Fig. A.1. The ground state isomer is in 1A1 electronic state, C2v point

group symmetry and in singlet spin state. The first structure that can enclose the nickel

atom endohedrally is Ge9Ni. Starting from n=9, all other isomers with n>9 absorb the

nickel atom endohedrally and these structures are always having lower optimized energies

compare to the same size exohedrally doped structures as calculated. Therefore, in the

present report only endohedral-doped clusters are presented. The isomers marked as 9A,

9C and 9F in Fig. A.1 are very similar with almost same optimized energies. Several

geometries are optimized in n=10 size to cover nearly all-possible endohedral-doped

structures. Out of them the icosahedral structure (10A in Fig. A.1) in Cs point group

symmetry is the supposed ground state. The endohedral Ni atom is almost at the center.

10 valence electrons of Ni are making bonds with all 10 germanium atoms in the cage.

Because of the saturation of the dangling bonds this structure is very stable and will be

discussed in later section. Little modification of the ground state Ge10Ni structure by

adding a germanium atom gives the optimized ground state of Ge11Ni. Calculated three

very common low energy isomers in Ge12Ni are hexagonal pyramid like, fullerene like

and icosahedral like structures as shown in Fig. A.2. Both the ground state structures

we found with the size n=10 and 12 are icosahedral and usually very stable because of

its symmetry, whereas the ground state structure for other values of ‘n’ are relatively less

symmetrical. This could be the reason for the fluctuation of data in several parameters

like charge, chemical potential etc. with the increasing size of the clusters as presented

in the later section. The ground state we found in Ge13Ni is a germanium capped

Ge12Ni hexagonal prism structure. The structure looks like a bowl with a nickel atom

inside. The calculated ground state Ge14Ni has 3-fold symmetry and is a combination of
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pentagons and rhombi. The other three structures are like hexagonal prism structures.

By adding a germanium atom with one of the vertex of the Ge14Ni hexagonal pyramidal

structure, the theoretical ground state of Ge15Ni can be obtained. Other isomers in this

size are little modification over pentagonal Ge10Ni isomer with additional five germanium

atoms at different positions. Nine different optimized isomers are presented in Ge16Ni.

The ground state in this size is a cage structure with C2 symmetry. It is a combination

of two widely separated squares and eight pentagons. Each square is connected to four

pentagons separately. The isomer, 16B in Fig. A.3 can be constructed from a hexagonal

Ge12Ni prism isomer where one side is capped by a Ge3 triangular plane and the other

side by a Ge atom. The total optimized energies of both of these isomers (16A and

16B) very similar. Other isomers are not very symmetrical and their optimized energies

are also much higher than the first three isomers in this series. A number of optimized

isomers are calculated for Ge17Ni. Among these optimized structures, ten isomers are

presented in Fig. A.3. The guess geometry of the ground state isomer in n=17 can be

obtained by adding one germanium atom with the one arm of the square in the ground

state isomer 16C. The next three cage isomers 17B, 17C, and 17D can be obtained by

optimizing the guessed structures obtained by adding three Ge atoms to the ground-state

isomer 14A at three different positions. The other structures in this size are modified

16F or 12Hexa geometries and are shown in Fig. A.3. The optimized isomers in Ge18Ni

can be explained with the help of 17E or 12Hexa isomers. The isomers 18A, 18B,

18C and 18E can be constructed from 17E by adding one Ge atom on the opposite

side of the floating Ge atom and then by connecting it to the other Ge atoms in the

cage. Adding four germanium atoms at the side arms of hexagonal Ge12Ni structure

yields the isomer 18D. Optimization after the addition of three Ge–Ge dimers to three

alternate side planes of the hexagonal Ge12Ni geometry gives isomer 18G. Four different

optimized isomers in Ge19Ni are shown in Fig. A.3. The ground-state isomer 19A is

obtained by adding one Ge atom to the ground-state isomer 18A. The isomers 19B and

19D are tube like structures with hexagonal cross-section and with a Ge capping. The

ground-state isomer 20A of Ge20Ni is a combination of 12 pentagons. Each side of a

pentagon is connected to another pentagons, so that every pentagon is linked to five

other pentagons. The other two structures, 20B and 20C can be obtained by adding two

Ge atoms to the isomer 18E in different ways. 20D can be obtained by adding eight Ge

atoms to the hexagonal Ge12Ni structure, or by capping the closed side of the isomer
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19B with an additional Ge atom. Other structures are very much distorted and their

optimized energies are also much higher than the ground state isomer.
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Figure 3.2: Variation of average binding energy of GenNi clusters in neutral and
different charged states with the cluster size

Upon examining the growth pattern of NiGen clusters, it appears that cluster

growth can be classified into three different categories. The first is Ni-capped structures

where the Ni atom is added to a small sized pure-Ge cluster to form NiGen. In the second

category a Ge atom in Gen cluster is replaced by a Ni to form Gen−1Ni cluster. Both the

categories are observed in the smaller cluster size range, where the cluster starts either

from a Ge–Ge or from Ge–Ni dimer; then a nickel or germanium atom is added directly

to Gen or a Ge added to Gen−1Ni to form a NiGen cluster. In the third category, the Ni

atom is partially encapsulated in NiGen cluster. Complete encapsulation of the Ni atom

by the Ge cluster is found in n=9 and above. After that, it is only possible to add a Ge

atom to a Gen−1Ni cluster to form NiGen. During this growth process, the shape of the

cluster changes from planar to a three-dimensional where the pure germanium cluster

absorbs nickel atom exohedrally or endohedrally. It was found that larger clusters prefer

to retain the Ni atom as the encapsulated atom in NiGen cages.
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3.3.2 Electronic structures and stabilities of NiGen

nanoclusters

The electronic structures and stabilities of GenNi nanoclusters are discussed in this

section on the basis of the variations of calculated physical and chemical parameters

i.e. the binding energy (BE), the HOMO–LUMO gap (or ∆E), the embedding energy

(EE), the stability or the second-order difference in energy, the ionization potential

(IP), the electron affinity (EA), and the chemical potential (µ) with the cluster size.

By monitoring the behavior of these parameters as the cluster size increases, we

investigated whether or not electron counting can explain the relative stabilities of the

clusters. To explore the relative stabilities of GenNi clusters with increasing n, we first

calculated various thermodynamic parameters of the clusters: the binding energy (BE),

the embedding energy (EE), the HOMO–LUMO gap (∆E), and the relative stability or

the second-order energy difference.

The binding energy per atom of Gen or NiGen clusters, following the work42 is

defined as:

BE = − [EGenNi − nEGe − ENi] /(n+ 1) (3.1)

where, BE is the average binding energy per atom of the cluster, and EGe, ENi and

EGenNi are the energies of germanium and nickel and the ground state energy of the

GenNi cluster respectively. For pure germanium clusters in the above equation ENi
is taken as zero and n+1 is replaced by n. The binding energies of charged clusters

are also calculated using the same equation. The binding energies of different neutral

and charged clusters, along with the binding energy of pure Ge clusters, are shown

in Fig. 3.2. Both the graphs show a rapid increase in the average binding energy

per atom of the clusters in the small size range (for n < 7). This is because of the

thermodynamic instability of smaller clusters. For clusters of size n > 5, the binding

energy curve increases at a relatively slow rate with n, and finally saturate for the larger

clusters (n > 10). For neutral clusters, the binding energy per atom in the saturation

region (n=12–20) varies within 0.1 eV, with the maximum binding energy occurring

at n = 10, whereas the maximum binding energy is observed for anionic and cationic

states at n=10 and n=11, respectively. According to the 18- electron counting rule,

the binding energy and other physical parameters (discussed in the next section) should

show a local maxima or minima at n=7, 8 and 9 for anionic, neutral and cationic
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clusters respectively. Whereas, according to the 20-electron counting rule, the binding

energy and other physical parameters (discussed in the next section) should show a

local maxima or minima at n=9, 10 and 11 for anionic, neutral and cationic clusters

respectively. Thus, 20-electron rule is valid for neutral and cationic NiGen clusters, but is

not directly valid for anionic clusters. Therefore, to understand the detailed electronic

charge distributions in the clusters, Mulliken natural bond orbital (NBO) analysis is

performed, which allowed us to see how the valence electrons of Ge and Ni atoms are

shared in bonds. In general, Ge is more electro- negative than Ni; the electro-negativities

of Ni and Ge on the Pauling scale are 1.91 and 2.01 respectively. Mulliken population

analysis also showed that, in this system, charge is always transferred from Ni to Ge,

so Ni acts as an electron donor in GenNi clusters. The detailed NBO analysis of the

ground state icosahedral Ge10Ni structure in neutral, Ge9Ni in anionic and Ge11Ni in

cationic charged states are shown in Table 3.2.

As mentioned before, according to 20- or 18- electron counting rule, different

physical and chemical parameters that can explain the thermodynamic and chemical

stabilities of the clusters should show local or global peaks (maxima) or dips (minima)

at n =10 or 8 for neutral NiGen. However, they do show regular behavior at n = 10

for neutral clusters, n=10 for anionic and n =11 for cationic clusters. According to the

electron-counting rule, neutral Ge10Ni, anionic Ge9Ni and cationic Ge11Ni are supposed

to be a 20-electron cluster. But the present calculated parameters of the clusters in

different charged states show maxima or minima for n=10 (neutral and anionic) and

11(cationic), not for cationic Ge9Ni. However, most of the parameters calculated for

anionic clusters show neither local maxima nor a local minimum. Hence NBO analysis

is done for neutral and anionic Ge10Ni and cationic Ge11Ni and for anionic Ge9Ni

clusters. With reference to the Table 3.2 in the ground state Ge10Ni, Ge10Ni−, Ge11Ni+

and Ge9Ni− (as shown in Fig. A.4) clusters, the valence orbital distributions of Ge

atoms are limited to s, px, py, and pz, whereas those for Ni include s, px, py, pz, dxy,

dxz, dyz, d(x2−y2) and dz2 . The orbital distributions of HOMO, HOMO-1, LUMO and

LUMO+1 of Ge10Ni, Ge11Ni+ and Ge9Ni− are shown in Fig. A.2. From Table 3.2, it is

clear that, among the 10 valence electrons of the Ni atom in all those four clusters, all 10

electrons are used to form different number of co-ordinate bonding with the Ge atoms

in Ge10Ni, Ge11Ni+ and Ge10Ni− cages with total 10 electrons in number. Therefore,

using the free electron theory, we find that approximately 20 electrons are present in

the Ge10Ni, Ge10Ni− and Ge11Ni+ cages. Therefore, Ge10Ni cluster in neutral, Ge10Ni−
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Table 3.2: Results of natural bond orbital (NBO) analysis of different ground state
clusters

Neutral Ge10Ni cluster
Atom Charge (e)a Core 4s 4px 4py 4pz Rydberg total
Ge 0.2595 28.00 1.557 0.906 0.774 0.774 0.016 32.027
Ge 0.2807 28.00 1.667 0.798 0.817 0.649 0.018 31.950
Ge 0.2605 28.00 1.558 0.907 0.772 0.772 0.016 32.026
Ge 0.2826 28.00 1.666 0.797 0.780 0.685 0.019 31.946
Ge 0.2832 28.00 1.665 0.797 0.646 0.820 0.018 31.947
Ge 0.2824 28.00 1.666 0.796 0.684 0.782 0.018 31.947
Ge 0.2793 28.00 1.669 0.797 0.780 0.686 0.019 31.951
Ge 0.2813 28.00 1.669 0.797 0.819 0.647 0.018 31.949
Ge 0.2788 28.00 1.670 0.798 0.650 0.816 0.019 31.953
Ge 0.2796 28.00 1.669 0.798 0.687 0.779 0.018 31.951

Core 4s 3dxy 3dxz 3dyz Rydberg
Ni –2.768 17.99 0.432 1.934 1.934 1.934 0.389 28.351

3dx2−y2 3dz2

1.852 1.896

Cationic Ge11Ni cluster
Atom Charge (e)a Core 4s 4px 4py 4pz Rydberg total
Ge 0.357 28.00 1.708 0.717 0.782 0.567 0.021 31.789
Ge 0.347 28.00 1.666 0.875 0.713 0.567 0.017 31.838
Ge 0.318 28.00 1.610 0.863 0.747 0.727 0.016 31.964
Ge 0.383 28.00 1.703 0.641 0.639 0.794 0.020 31.797
Ge 0.199 28.00 1.581 0.976 0.711 0.805 0.016 32.088
Ge 0.368 28.00 1.633 0.753 0.738 0.686 0.019 31.830
Ge 0.200 28.00 1.581 0.976 0.710 0.805 0.016 32.088
Ge 0.369 28.00 1.634 0.753 0.740 0.685 0.019 31.830
Ge 0.384 28.00 1.703 0.641 0.638 0.795 0.019 31.798
Ge 0.194 28.00 1.507 1.034 0.776 0.775 0.015 32.107
Ge 0.341 28.00 1.804 0.748 0.534 0.426 0.013 31.524

Core 4s 3dxy 3dxz 3dyz Rydberg
Ni –2.460 18.00 0.430 1.854 1.935 1.897 0.398 28.345

3dx2−y2 3dz2

1.929 1.904

Anionic Ge9Ni cluster
Atom Charge (e)a Core 4s 4px 4py 4pz Rydberg total
Ge 0.100 28.00 1.576 0.818 0.860 0.810 0.011 32.189
Ge 0.140 28.00 1.659 0.845 0.795 0.801 0.108 32.110
Ge 0.140 28.00 1.658 0.796 0.795 0.849 0.108 32.110
Ge 0.114 28.00 1.610 0.786 0.909 0.789 0.012 32.107
Ge 0.140 28.00 1.659 0.732 0.840 0.868 0.108 32.110
Ge 0.115 28.00 1.610 0.863 0.765 0.856 0.124 32.107
Ge 0.101 28.00 1.689 0.766 0.953 0.768 0.011 32.188
Ge 0.140 28.00 1.658 0.855 0.840 0.744 0.011 32.109
Ge 0.207 28.00 1.679 0.685 0.921 0.629 0.009 31.925

Core 4s 3dxy 3dxz 3dyz Rydberg
Ni -2.199 17.998 0.438 1.877 1.831 1.875 0.193 28.042

3dx2−y2 3dz2

1.906 1.922
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Anionic Ge10Ni cluster
Atom Charge (e)a Core 4s 4px 4py 4pz Rydberg total
Ge 0.155 28.00 1.576 1.064 0.749 0.075 0.017 31.617
Ge 0.051 28.00 1.648 0.882 0.846 0.654 0.018 32.048
Ge 0.153 28.00 1.577 1.064 0.748 0.748 0.017 32.154
Ge 0.048 28.00 1.647 0.882 0.805 0.697 0.018 32.049
Ge 0.049 28.00 1.646 0.882 0.654 0.849 0.018 32.049
Ge 0.048 28.00 1.647 0.881 0.696 0.805 0.018 32.047
Ge 0.051 28.00 1.650 0.880 0.804 0.698 0.018 32.05
Ge 0.051 28.00 1.648 0.881 0.848 0.655 0.018 32.05
Ge 0.053 28.00 1.650 0.880 0.658 0.846 0.018 32.052
Ge 0.052 28.00 1.649 0.881 0.699 0.803 0.018 32.05

Core 4s 3dxy 3dxz 3dyz Rydberg
Ni 0.288 17.998 0.433 1.920 1.920 1.908 0.318 28.288

3dx2−y2 3dz2

1.889 1.901
aElectronic charge e=-1.6021764610−19 Coulomb

and Ge11Ni+ can be considered as 20-electron clusters and show maximum binding

energy. The same is true for other thermodynamic and chemical parameters of the

system and will be discussed in the later section.
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Figure 3.3: Variation of embedding energy of GenNi clusters in neutral and different
charged states with the cluster size

The embedding energies (EEs) of the clusters are also calculated to explain the
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thermodynamic stabilities. The embedding energy can define in different ways. It can

be positive or negative depending on the definition used. In the present study, the

embedding energy of a cluster applying the WW spin-conservation rule141, is defined as:

EE = E(MGen)− E(0Ni)− E(MGenNi)

or

EE = E(0Gen)− E(MNi)− E(MGenNi)


(3.2)

where, M is the total spin of the cluster or the atom in units of h/2π is always

positive. In this case, we have chosen the higher of the resulting two embedding energies.

In the present calculation, all ground states up to n=3 are triplet and above that all are

singlet.
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Figure 3.4: Variation of fragmentation energy of GenNi clusters in neutral and different
charged states with the cluster size

Therefore, to calculate the embedding energy according to the WW

spin-conversation rule, the pure Ge clusters were taken to be in either the triplet or

the singlet state. For charged (±1) clusters of multiplicity M, the embedding energy of

such a cluster (say cationic) can be written as:
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EEWW = E(2Ge+
n )− E(1Ni)− E(2GenNi

+)

or

EEWW = E(1Gen)− E(2Ni+)− E(2GenNi
+)


(3.3)

Variation of embedding energy with the size of the clusters is shown in Fig. 3.3. Both

neutral and anionic clusters show a maxima at n=10, where as the cationic clusters show

maximum embedding energy at n=11. Therefore, the neutral and cationic clusters follow

20-electron rule directly. The sharp minima at n=12 for neutral and cationic cluster

represent relatively less favorable embedding nature of these clusters. Following the

NBO analysis results presented in Table 3.2, one can get much better idea of embedding

energy variation for neutral and charged clusters.
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Figure 3.5: Variation of stability of GenNi clusters in neutral and different charged
states with the cluster size

The stability parameter or 2nd order energy difference:

∆2(n) = [E(Gen+1Ni)− E(GenNi)]− [E(GenNi)− E(Gen−1Ni)]

= E(Gen+1Ni) + E(Gen−1Ni)− 2E(GenNi)

 (3.4)
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According to this definition, the more stability means more positive the value of

∆2(n), as it corresponds to a gain in energy during the growth process from the size

immediately below, and less of a gain in energy to the next cluster size up. The stabilities

of neutral and charged clusters are shown in Fig. 3.5. The neutral cluster show magic

nature for the series n=8, 10, 12 and 14. The anionic cluster show positive stability at

n =10 and then show a huge drop in stability for n =11 and 12. So it does not follow

any particular series in the stability nature. The cationic cluster at n=11 show local

maxima and this is supported by 20-electron rule. The nature of the stability graph and

the results presented in Table 3.2 support the relatively higher stability in 20-electron

clusters: neutral Ge10Ni, cationic Ge11Ni and anionic Ge10Ni clusters. In general, the

clusters are known as “magic” clusters because of their positive and relatively higher

stabilities.

Again, to investigate the growth behavior of GenNi clusters the fragmentation

energy (FF) or ∆(n,n-1) is calculated starting from the Ge–Ni dimer. The fragmentation

energy is defined as follows:

∆(n, n− 1) = E(Gen−1Ni) + E(Ge)− E(GenNi) (3.5)

It is clear from the Fig. 3.4, that there is a sharp drop in the fragmentation energy

from n = 10 to 11 both in the neutral and anionic state of Ge10Ni cluster, whereas,

the fragmentation energy drops sharply from n = 11 to 12 in cationic Ge11Ni cluster.

The sharp drop in fragmentation energy for both neutral and charged clusters is an

indication of maximum local stability of Ge10Ni cluster. Systematic behaviour of

BE, EE, ∆2(n), and ∆(n,n–1) at n=10 indicate that Ge10Ni has a relatively high

thermodynamic stability. To understand the charge exchange between the cage and

the embedded Ni atom during hybridization with the germanium clusters in neutral

state, the variation of charge on the Ni atom and the average charge per Ge atom in

the ground state NiGen clusters as a function of the size of the cluster is calculated

and presented in Fig. 3.6. Just like the other parameters discussed above, the charge

on the Ni and Ge atoms show a local maximum and minimum respectively at n = 10.

This result provides further support on the highest relative stability of Ge10Ni cluster in

neutral state. It is clear that the charge transferred from the Ni to Ge in the icosahedral

Ge10Ni cage and this enhances the electrostatic interaction between the cage and the Ni

atom, which plays an important role in stabilizing Ge10Ni cage.
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Figure 3.6: Variation of charge on Ni and average charge/Ge atoms in GenNi clusters
with the cluster size. Here positive and negative signs represent the charge donated

and received respectively

To study the kinetic stabilities of the clusters in a particular environment, the

HOMO–LUMO gap (E), ionization potential (IP), electron affinity (EA), chemical

potential (µ), chemical hardness (η), and polarizability (α) of each cluster are calculated.

In general, as the HOMO–LUMO gap (E) increase, the reactivity of the clusters decrease.

The HOMO–LUMO gaps of neutral and charged clusters are plotted in Fig. 3.7. As also

seen for other transition metal doped Si and Ge clusters122,142, a decreasing trend is

observed for the HOMO–LUMO gap with the increasing size o the clusters both in

neutral and charged states, with some local oscillations. In Fig. 3.7, there are clear

local maxima at n = 10, 10, and 11 for neutral, anionic, and cationic GenNi clusters.

This is again indicating that the Ge10Ni cluster is unusually stable as it is found from

NBO analysis in Table 2. The main focus of the present study is to understand the

relative stability of the clusters in terms simple electron counting rule. As reported

in the previous study for the metal clusters that according to the electron shell model

whenever a new shell starts getting occupied for the first time, the ionization potential

(IP) drops sharply120.

In a report, de Heer2 has shown that in Ln series, L20 cluster is a shell field

configuration and there is a sharp drop in ionization potential when the cluster grows
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Figure 3.7: Variation of HOMO-LUMO gap of GenNi clusters in neutral and different
charged states with the cluster size

from L20 to L21. If the enhanced stability in Ge10Ni cluster is due to a shell field

configuration then there should be a sharp drop in ionization potential if one more

germanium atom is added to it. This is clearly seen in Fig. 3.8. There is a local peak

in ionization potential graph at n=10 and then there is a sharp drop in IP from n =

10 to 11. The drop in IP could be the strongest indication of the assumption of nearly

free-electron gas inside the Ge10Ni cage cluster. The IP of a Ge10Ni cluster is in the

same range as that of the transition metal atoms. Hence, it may be possible to form

a number of stable halides using this cluster. Discovery of such stable clusters can be

helpful to identify new semiconductor-TM metal based “superatoms” that can be future

building blocks for cluster-assembled designer materials.

Other parameter that can help to understand the chemical stability of a system is

electron affinity. It can be defined as:

EA(eV ) = E(GenNi)− E(GenNi−) (3.6)

By the present definition electron affinity (EA) it is always positive and clusters

with more electron affinity are more reactive and hence are less stable. Variation of

electron affinity with the cluster size is shown in Fig. 3.8 along with the ionization
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potential of the clusters. In the graph there is a local minima at n=10. There is a hike

in electron affinity from n=10 to 11 and it continues up to n=12. Then again there is

a sharp drop in electron affinity from n = 12 to 13. Relative dip in EA at n=10 is an

indication of enhanced stability of Ge10Ni clusters in neutral state.
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Figure 3.8: Variation of ionization potential and electron affinity of GenNi clusters with
the cluster size

Again, the maximum hardness principle (MHP) also can be used to characterize

the relative stability of a system. To verify the chemical stability of the GenNi clusters,

chemical potential (µ) and chemical hardness (η) of the ground state clusters in each

size are calculated. By description of chemical potential and chemical hardness, both

the parameters can be expressed in terms of electron affinity and ionization potential.

In terms of total energy consideration if E(ne) is the energy of a ‘ne’ electron system,

then energy of the system containing ne+∆ne number of electrons, where ∆ne < < ne
can be expressed as:

E(ne + ∆ne) = E(ne) + dE

dn

∣∣∣∣
n=ng

∆ne + 1
2
d2E

dn2

∣∣∣∣∣
n=ng

(∆ne)2 + ..... (3.7)

Since contribution from the higher order terms is negligible, therefore, µ and η can

be defined as:
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µ = dE

dn

∣∣∣∣
n=ng

(3.8)

and

η = 1
2
d2E

dn2

∣∣∣∣∣
n=ng

= dµ

dn

∣∣∣∣
n=ng

(3.9)

By definition,

IP = E(ne − 1)− E(ne) (3.10)

By setting ∆ne = 1 , µ and η are related to IP and EA via the following relations:

µ = −IP + EA

2 (3.11)

and

η = −IP − EA2 (3.12)

Consider two systems with µi and ηi (i=1,2) interacting each other, where some amount

of electronic charge (∆qe) transfer from one system to other. The quantity ∆qe and

the resultant energy change (∆E) due to the charge transfer can be determined in the

following way:

If E (ne+ ∆qe) is the energy of the system after charge transfer then it can be

expressed for two different systems 1 and 2 in the following way:

E1(ne + ∆qe) = E1(n1e) + µ1(∆qe) + η1(∆qe)2 (3.13)

and

E2(ne + ∆qe) = E2(n2e) + µ2(∆qe) + η2(∆qe)2 (3.14)

Corresponding chemical potentials become,

µ1 = dE1(n+ ∆qe)
dn

∣∣∣∣
n=n1e

= µ1 + 2η1∆qe (3.15)

and

µ2 = dE2(n+ ∆qe)
dn

∣∣∣∣
n=n2e

= µ1 + 2η2∆qe (3.16)
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Figure 3.9: Variation of chemical potential and chemical hardness of GenNi clusters
with the cluster size

When the systems are in chemical equilibrium, i.e., one can get the charge transfer and

energy gain by the following expressions:

∆qe = µ2 − µ1
2(η1 + η2) (3.17)

and

∆E = (µ2 − µ1)2

2(η1 + η2) (3.18)

In the above expressions, ∆E is the gain in energy by the total system (1 and 2) due to

exclusive alignment of chemical potential of the two systems at the same value. So for

easier charge transfer from one system to other it is necessary to have a large difference

in µ together with low η1 and η2. Therefore, ∆qe and ∆E can be taken as the factors

to get the idea about the reaction affinity between two systems. Since they are function

of the chemical potential and chemical hardness of the systems, so it is important to

calculate these parameters to know the chemical stabilities in a particular environment.

Using the above theoretical background, chemical potential (µ) and chemical

hardness (η) of NiGen clusters are calculated and presented in Fig. 3.9. The local
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Figure 3.10: Variation of polarizability and electrostatic dipole moment of GenNi
clusters with the cluster size

minima of chemical potential at n=10 is an indication of higher stability compare to

the surrounding sizes. Variation of chemical hardness, which is a measure of chemical

affinity (considering covalent type of bonding) show local maxima at n=10. This local

maximum is the measure of hardness of electronic clouds surroundings the cluster to

oppose any kind of shearing in chemical bonding with the external agencies. Therefore,

the peak at n=10 is indicating the higher stability. Again to understand the effect

of chemical hardness on the polarizability, polarizability parameter is calculated and

plotted in Fig. 3.10. Following the earlier theoretical works143,144, in covalent type

of bonding more hardness usually indicate lower polarizability. This is clear from the

Fig. 3.9 and Fig. 3.10. To some extent electrostatic dipole moment of the cluster is also

related to the atomic polarizability and the cluster structure. In a symmetrical cage like

structure where Ni atom is at the center of the cage, the electrostatic dipole moment

of the cluster is usually very low, as example, ground state 10A clusters. The dipole

moments in the clusters suddenly increase when a germanium atom is dropped or added

to the clusters. The ground state clusters within the size range between n=9 to 16 are

all cage types with endohedrally doped Ni. The dipole moments of these clusters vary

from 0 to 0.47 Debye. In the whole range of study first dipole moment of the clusters
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decreases to zero or very low value within the range from n=10 to 15 and then again

tend to increase when the distortion in the cage starts.

3.4 Conclusions

The present theoretical study reports the growth behaviour, stability, electronic and

different chemical and physical properties of GenNi clusters within the size range

of n=1 to 20 under spin polarized generalized gradient approximation (GGA) using

B3LYP method. Different physical and chemical properties of the optimized clusters

are discussed. Based on the results, following conclusions have been drawn:

• The growth pattern of GenNi clusters can be grouped mainly into two categories.

In the smaller size range i.e. before encapsulation of Ni atom, Ni or Ge atoms

are directly added with the Gen or Gen−1Ni to form GenNi clusters where binding

energy of the clusters increase in a much faster rate than the bigger sized clusters.

After encapsulation of Ni atom by the Gen cluster for n>7, the size of the GenNi

tend to increase by absorbing Ge atoms one by one on its surface keeping Ni atom

inside the cage.

• It is found that the addition of Ni–atom to Ge clusters is always favorable at

all sizes, as the embedding energy turns out to be positive (following the present

definition) in every case of neutral and charged clusters. All clusters with size n

> 7 absorb Ni endohedrally in the cage of Gen pure cluster.

• From the calculated results of BE, EE, ∆(n,n-1) and ∆2(n) it is found that the

cluster with n=10, 10 and 11 in neutral, anionic and cationic states are most stable.

Detailed NBO analysis as discussed show that the neutral and charged clusters

those are having nearly 20 valence electrons in total show enhanced stability, in

agreement with shell model predictions. It also shows up in the IP values of the

GenNi clusters, as there is a sharp drop in IP from n = 10 to 11. Although the

signature of stability is not so sharp in the HOMO-LUMO gap of the charged

clusters, but there is a local maximum at n = 10 in neutral state. This is an

indication of enhanced stability in the 20-electron cluster. Other parameters

like, EA, chemical potential are related to the chemical stabilities and hardness

along with polarizability and dipole moment of the neutral cluster for n = 10 also

supports the identical stability nature of the clusters.
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• As mentioned before, the drop in adiabatic ionization potential (IP) during

the growth process is one of the strongest evidence of the existence of nearly

free-electron gas inside the Ge10Ni cage cluster in the present calculation. In this

contest it is important to mention that the B3LYP functional is not very much

effective for extended quasi-metallic systems145. But in the present calculation

it is found effective which could be due to the nano-order clusters of the system.

Since the IP of a Ge10Ni cluster is in the same range as that of the transition

metal atoms, therefore, it may be possible to form a number of stable halides

using this cluster and it is possible to invent new semiconductor-TM metal-based

“superatoms” that can be future building blocks for cluster-assembled designer

materials and could open up a new field in electronic industry. The present work

is the preliminary step in this direction.



Chapter 4
Cr doped Germanium nanoclusters

4.1 Introduction

In this chapter†, the electronic structure, stability and magnetic quenching of CrGen
nanoclusters has been carried out using density functional theory (DFT). From the

nature of the variation of the different thermodynamic and chemical parameters, the

CrGe10 and CrGe14 ground state clusters are identified as the most stable species. It is

observed that the enhanced stability of CrGe10 and CrGe14 are due to the closed shell

filled structure of the Cr-atomic orbitals and follow the 18-electron counting rule. It is

found that the strong mixing of the Cr d-orbital with the s- and p-atomic orbitals of

the Ge atoms in the cluster are mainly responsible for the stability and quenching of the

Cr magnetic moment in the clusters. Calculated CP’s also give additional information

about the bonding and its effect on the stability of the clusters. Calculated IR and

Raman spectra also support these results.

4.2 Computational Details

Complete calculations are split into two parts mainly. All geometry optimizations were

performed with no symmetry constraints. During optimization, it is always possible

that a cluster with a particular guess geometry is trapped in a local minimum of the

potential energy surface. To avoid this, we used a global structure predictor method

using USPEX (Universal Structure Predictor: Evolutionary Xtalloraphy)146 and VASP
†Kapil Dhaka, Debashis Bandyopadhyay, "Study of electronic structure, stability and magnetic

quenching of CrGen (n=1-17) clusters: A density functional investigation", RSC Adv., (2015), 5,
83004-83012.

50
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(Vienna AB-initio simulation package)147 to get all the possible optimized geometric

isomers in each size, from n = 8 to 17. VASP code has been used to relax the

structures predicted by USPEX. For this, we have used a combination of the few-set

of pseudo-potentials available in VASP. In the next stage of optimizations and post

optimization calculations, the last few low energy isomers obtained from USPEX and

VASP were reoptimized at different spin states in Gaussian’09148 to obtain different

energy parameters. Here, all calculations were performed within the framework of

a linear combination of the atomic orbital’s density functional theory (DFT). The

generalized gradient approximation (GGA) calculations were carried out under the

exchange-correlation potential as proposed by Perdew, Burke and Ernzerhof, commonly

known as the PBE method104,149 available in Gaussian’09. Different basis sets were used

for germanium and chromium. The full electron 6-311G standard basis set available in

Gaussian’09 for Cr and LanL2DZdp with effective core potential (ECP) obtained from

the EMSL basis set exchange150 for germanium are used to express the molecular-orbitals

of all atoms as linear combinations of atom-centered basis functions. LanL2DZdp is

a double-basis set with a LANL effective core potential (ECP) and with polarization

function.118,151 Unless specified otherwise, the results presented are obtained using the

Gaussian’09 program package. The Demon2k program package152 is used to calculate

the critical points (CPs) inside the ground state clusters.

4.3 Results and discussion

Variations of the different thermodynamic and chemical parameters during the growth

process provide the initial evidence to identify the stable nanoclusters. We have studied

the growth of the doped clusters within the size range n= 1 to 17.

4.3.1 Ground state structures and relative stabilities

The optimized ground state structures and the corresponding spin magnetic moments

along with the calculated bond critical points (BCPs) of CrGen clusters are shown in

Fig. 4.1 (also see Fig. B.1 and B.2 for other low energy isomers). To study the

thermodynamic stability, we have calculated the variation of the average binding energy

(BE), embedding energy (EE), fragmentation energy (∆), stability or the 2nd order

change in energy (∆2) and ionization potential of the clusters, detachment energies etc.

We define the BE, EE, FE, stability, VIP and ADE as follows:
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Figure 4.1: Ground state geometries and (3, -1) BCPs of CrGen (n = 6–17). Red, blue
and green spheres are denoting the Ge and Cr atoms, and the positions of the BCPs

belonging to the Cr atom, respectively.

BE = − [EGenCr − nEGe − ECr] /(n+ 1)

EE = E(Gen)− E(Cr)− E(GenCr)

∆(n, n− 1) = E(Gen−1Cr) + E(Ge)− E(GenCr)

∆2(n) = E(Gen+1Cr) + E(Gen−1Cr)− 2E(GenCr)


(4.1)

where, M is the total spin of the cluster or the atom in units of ~. Since the all

ground state CrGen clusters in the range n = 1–6 and n = 16 are magnetic, in the

present study the binding energy and embedding energy of these clusters are calculated

after imposing the Wigner–Witmer spin-conservation rule141. Imposing this rule the

modified expressions of BE and EE are defined as follows:

BE = −
[
E(MGenCr)− nE(0Ge)− E(MCr)

]
/(n+ 1) (4.2)
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EEWW = E(MGen)− E(0Cr)− E(MGenCr)

or

EEWW = E(0Gen)− E(MCr)− E(2GenCr)


(4.3)

In the above binding energy and embedding energy expressions, we have chosen

the higher of the resulting two BE and EEs. In the region for n < 7, the binding

energy of the neutral and cationic clusters increases rapidly. This is an indication of the

thermodynamic instability of the clusters. For the clusters with size n > 7, the binding

energy increases with a relatively slower rate and then reaches nearly a saturation value

with small variations. Between n = 1 to 6 the ground state clusters are in different

spin magnetic states. The clusters show a magic nature (stable nature) with localized

peaks at n = 10 and 14 (Fig. 4.2). Compared to the binding energy, the magic nature

of the clusters are clearer in EE variation. Above n = 6 size, a number of local maxima

arise at n = 8, 10 and 14, indicating that these clusters are more stable compared to

their nearby clusters (Fig. 4.2). Variation of the fragmentation energy (FE) is another

important evidence to check the stability of the clusters. Following the expression,

FE indicates the gain in energy by a cluster during its growth process by absorbing

germanium atoms one by one, starting from a Ge–Cr dimer.

With reference to the FE variation (Fig. 4.2), at n = 8, 10 and 14 clusters are more

stable compared to their neighboring sizes. The variation of the 2nd order change in

energy or stability (∆2) (Fig. 4.2) shows a magic behavior at n = 10 and 14. On the

basis of the thermodynamic parameters we found that the n = 8, 10 and 14 clusters

are relatively more stable compared to the other sizes. In the present discussion we

are mainly concerned about the endohedrally-doped clusters. Though the ground state

isomer at n = 8 is thermodynamically stable, the Cr atom absorbed into the surface of

the Ge8 cage to form a hybrid CrGe8 cluster. Since the Cr atom is exposed, the chemical

affinity is higher compared to the endohedrally-doped clusters. Therefore, we are not

interested in the thermodynamic stability of this cluster.

In order to understand how the removal or addition of one electron is changing the

chemical stability of the clusters, we have calculated ionization potentials (AIP and

VIP), the HOMO-LUMO gap, and the detachment energies (VDE and ADE) (Fig. 4.2).

Variation of the AIP and VIP nature are similar, with a small difference between these

values in a particular size. There are sharp peaks at n = 10 and 14 in the variation

of the ionization potential with a maximum value at n = 14 indicating that CrGe14
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Figure 4.2: Variation of the average binding energy, embedding energy, fragmentation
energy, stability, VIP, AIP, HL-Gap, VDE and ADE of the clusters during the growth

process.

is the most stable cluster among all. Variation of the HOMO–LUMO gap with the

growth of the cluster is one of the important pieces of evidence to understand the closed

shell nature of the clusters. With reference to Fig. 4.2, both CrGe10 and CrGe14 have

an almost equal HOMO–LUMO gap of close to 1.29 eV. There is a clear dip in the

HOMO–LUMO gap variation at n = 12 and 16 with values of 0.78 eV and 0.57 eV

respectively among the endohedrally doped clusters. The cause of the enhanced stability

of the n = 10 and 14 clusters will be discussed in the next section on the basis of molecular

orbital analysis. We have calculated the vertical detachment energy (VDE) and adiabatic

detachment energy (ADE) following the equations mentioned in the previous section.

Here, VDEs are the energy differences between the anionic and neutral cluster at a

particular size, keeping the geometry of the cluster unchanged. Whereas ADE defines

the energy difference between the anionic ground state and neutral ground state in a

particular size of a cluster. In the later case, the geometry of these two clusters may

be different. The variation of VDE and ADE with the cluster size shown in Fig. 4.2

supports the results obtained from the AIP, VIP and HOMO–LUMO gap variations of

the clusters. The clear local minima at n = 10 and 14 indicate that it is easy to remove
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electrons from the anionic state in these clusters and hence gives an indication of the

enhanced stability of these clusters.

4.3.2 Molecular orbital analysis

With reference to our calculation of thermodynamic and chemical parameters, we found

that CrGe10 and CrGe14 clusters are relatively stable compared to the other clusters in

the series. From our previous discussion, it is clear that the n = 10 and 14 clusters can

be taken as the stable clusters. We need to make it clear why these clusters are stable

but not n = 12. Here we apply molecular and atomic orbital analysis to explain it.

Figure 4.3: Molecular orbitals (MO’s) of CrGe10 (with the Cr contribution).

First we will discuss the cause of the lower stability of the CrGe12 ground state

cluster. The CrGe12 ground state cluster is a well-known hexagonal prism with D6h

symmetry with an endohedrally doped Cr atom between the two hexagonal rings of Ge

atoms with 54 valance electrons (6 from Cr: 3d5 4s1 and 4 from each Ge: 3s2 3p2) in

singlet spin states. With reference to Fig. 4.3, the orbital energy levels are assigned

based on orbital composition. There are in total 27 filled energy levels with paired

electrons, indicating quenching of the Cr spin moment. The electronic distributions can
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be written in the following sequence: 1S2, 1P6, 1D8, 1F8, 2S2, 1D2, 1 G2, 1F4, 1G2,

2P4, 2D8, 2P2, 2D4 (HOMO) and 2D2 (LUMO). Here we assign the orbitals following

a method adopted by Abreu et al.22 and we also found that the jellium model153 is

incompatible to explain the electronic structure of this cluster because of the presence

of the 12 electrons in the 2D orbital. One of the 2D orbitals (2Dz2) appears in the

LUMO. This could be due to the crystal-field like splitting154 in the molecular orbital

in the cluster. To understand whether the 18-electron rule can be applied or not, we

have analyzed one-electron orbitals of Cr in the CrGe12 cluster.

Figure 4.4: Molecular orbitals (MO’s) of CrGe12 (with the Cr contribution).

With reference to the recent report by Goicoechea and McGrady34, since Cr is

in the 6th column in the periodic table, one of its 3d level will be pushed up to the

higher side of the energy level in CrGe12. To find out the contribution from Cr in the

MOs we have used a fragment analysis where clusters are divided into Cr and Ge12

fragments155. Using this analysis we found a reasonable amount of contribution from

the Cr-3dz2 atomic orbital in the LUMO which is being pushed up from the lower level.

This also could be the reason for the good amount of HOMO–LUMO gap of 0.82 eV
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in this cluster. The result of the one-electron orbitals is shown in Fig. 4.3. Since the

LUMO contains the 3dz2 orbital contribution of Cr, which is unfilled, therefore the total

number of electrons that occupied these orbitals is 16 (Fig. 4.3).

Figure 4.5: Molecular orbitals (MO’s) of CrGe14 (with the Cr contribution).

Since one 3d orbital (LUMO: 3dz2) is unfilled, the 18-electron rule cannot be applied

here. This could be the possible reason why CrGe12 does not show a stable nature in

the thermodynamic and other parameter variation (Fig. 4.2). In this context, we can

recall our discussion in an earlier section of this work where we discussed the results of

Hiura et al.156, the WSi12 cluster can be taken also as a 16-electron cluster. Compared

to CrGe12, both CrGe10 and CrGe14 have higher values of BEs, EEs, FEs, ∆2s, IPs

and HOMO–LUMO gaps. Applying the same method to CrGe10 and CrGe14 clusters,

we found that both of them follow the 18- electron rule. In the case of CrGe10, the

assigned molecular orbitals may not follow a particular structure, but a signature of
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contribution from Cr in these orbitals is clearly seen. The signature supports the Cr

contribution results in our calculations. On the basis of that, we have assigned that

the Cr-atomic orbitals are filled with a configuration of 4S2, 4P6 and 3D10 (Fig. 4.4).

Hence all atomic orbitals of Cr are engaged. In this case the Cr metal atom and the cage

shared the electron density in such a way that both of them fulfill 18-electron counting.

The same is true in the electronic structure of CrGe14. In fact, Cr contributions are

clearer in the CrGe14 cluster due to the hybridization between the Cr-d orbital and the

caged Ge-4p orbital, producing two Cr-3dxz, one Cr-3dyz and one Cr-(3dyz+4pz) mixed

orbitals (Fig. 4.5). In CrGe14 the LUMO is assigned as 3dxy. Therefore, CrGe10 and

CrGe14 follow the 18-electron counting rule, but it cannot be applied in CrGe12 as per

our results.

4.3.3 Bond and frequency analysis

To investigate the strength of the Ge–Ge and Ge–Cr interaction with the increasing

size of the clusters, and also to understand the bonding nature, we have calculated the

number of different bonds present in the clusters. We have calculated the bond critical

points (BCPs) and cage critical points (CCPs) (see Fig. B.3 and B.4 for RCPs and

CCPs) and their locations in the cage to interpret the nature of bonding present in the

cage based on the work reported by Bader157.
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The chemical interaction between the fragments of a given set of molecules can be

characterized by the Laplacian of electronic densities. When the density is positive it

describes closed shell bonding, and when it is negative, it is covalent bonding. The

critical point is one where this electron density vanishes in 3-D. Therefore this is a

position on the bond and is reflecting the existence of the presence of a bond. A
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Figure 4.7: Variation of IR and Raman spectrum. The intensity is plotted in an
arbitrary unit.

particular CP is characterized by (R, S) where R is the rank of the Hessian matrix

of the electron density reflecting the number of Eigen values of the matrix and S is the

sign of the sum of the Eigen values (either maxima or minima or saddle) indicating

the topological feature. A bond critical point (BCP) in general represented by the
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(3, -1) CP reflects the saddle point between two molecules or clusters forming bonds

between them. With this background, we have calculated the BCPs and this is shown in

Fig. 4.1. First we have calculated the location of the (3, -1) CPs. It is clearly seen that

in all endohedrally doped clusters, a number of (3, -1) CPs inside the cages are almost

uniformly distributed surrounding the encapsulated Cr atom and the number varies from

cluster to cluster. The 10 (3, -1) CPs are indicating the existence of 10 bonds between

the Cr and germanium atoms in CrGe10. The number of Ge–Ge bonds for the clusters

in the size range n = 6–12 varies between 16–18, and then it starts increasing with a

maximum value of 39 at n = 16. Among several isomers (10) in CrGe16, the ground

state structure is a well known Frank–Kasper polyhedron35, which is stable in general.

For the cluster with n = 6 to 15, Cr is attached with all Ge atoms in the cage and hence

the number of bond critical points (BCPs) is the same as the number of Ge atoms in the

cage. Whereas, due to the larger size of the Ge16 and Ge17 cages, the Cr atom won’t be

able to form bonds with a number of the Ge atoms in the cage and hence the number

of BCPs drops. This could be taken as the structural phase change from the bonding

point of view. Following the variation of the BCPs with the cluster size (Fig. 4.6), it

increases linearly from n = 8 to 14. The maximum value of the BCP (3, -1) at n = 14

is an indication of a strong structural stability with C2V symmetry. Though there is no

local maxima in the BCPs variation at n = 10, there is a clear increasing trend. The

maximum value of the Ge-Ge bond at n = 16 is the indication of the stable nature of the

pure Ge16 cage. There is also a local peak at n = 10 in the number of the Ge–Ge bond

variation. Therefore, variation of the BCPs and also the number of Ge–Ge bonds in

the germanium cages help to understand the stability of the clusters from the structural

point of view33.

With reference to the IR and Raman frequencies (Fig. 4.7) of the clusters from n =

6 to 17, at n = 10, 14 and 16, the number of dominating frequencies is much lower than

that of the other structures. A lower number of modes in IR is basically the indication

of the vibration of the bonds (stretching) present in the structure at an almost constant

frequency or within a very small frequency range. This is because of the strong structural

symmetry for n = 10, 14 and 16. Raman frequency in general indicates the bending

mode in the clusters. The narrow peak at n = 10, 11 and 16 in the Raman spectrum

indicates the lower number of bending modes present in these clusters with a breathing

mode (where all the molecules in the cage vibrate in phase), with a maximum intensity

at 210, 201 and 170 cm−1 respectively.
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4.3.4 Cr atom contribution in DOS

To understand the strength of the Ge and Cr-d orbital contributions in hybridization and

the cause of the magnetic moment quenching of Cr in the clusters, we have studied PDOS

(Fig. 4.8, 4.9, 4.10), and the percentage of the Cr d-alpha and beta orbital contribution

in hybridization, shown in Fig. 4.11.
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Figure 4.8: Variation of DOS and PDOS of different neutral clusters of CrGen (n =
1–5) with shifted energy (E-EF ) and Fermi energy set to ‘0’.

Since n = 1–6 are in quintet or in triplet spin states, their PDOS is asymmetrical

(Fig. 4.8, 4.9, 4.10). For other clusters, in singlet spin states, both the alpha and beta

contributions in PDOS are identical. In all the stable clusters, there is no contribution
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Figure 4.9: Variation of DOS and PDOS of different neutral clusters of CrGen (n =
6–11) with shifted energy (E-EF ) and Fermi energy set to ‘0’.

of DOS on the Fermi level and the HOMO–LUMO orbitals are also clearly separated.

The percentage contribution of the Cr d-orbital in hybridization also supports the DOS

nature.

For n = 6, the percentage contributions in hybridization of the Cr-d alpha and beta

are not the same. Therefore, it is clear that the existence of the magnetic moment is due

to the unequal alpha and beta Cr -d orbital contribution in the hybridization. With the

increase of the size of the clusters from n = 1 by adding Ge atoms one by one, the chances

of hybridization between the Cr and the Ge atoms increases. Due to this hybridization

the Cr d-orbital, which is responsible for the magnetic moment of Cr, decreases and
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Figure 4.10: Variation of DOS and PDOS of different neutral clusters of CrGen (n =
12–17) with shifted energy (E-EF ) and Fermi energy set to ‘0’.

hence the magnetic moment of Cr quenches. So the existence of the magnetic moment

or the quenching of the magnetic moment of CrGen is due to the hybridization between

the Ge p- and Cr d-orbital contribution. In the case of n = 16, the number of Ge–Ge

bonds are at the maximum in the whole series of study (Fig. 4.6). This is the indication

of the stable nature of the Ge16 germanium cage. In the clusters, the magnetic moment

or the quenching of the magnetic moment is due to the hybridization between the Ge

p- and Cr d-orbital contribution. In all the stable clusters, there is no contribution of

DOS on the Fermi level and the HOMO–LUMO orbitals are also clearly separated.
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Figure 4.11: Percentage of alpha and beta Cr d-orbital contributions in hybridization
with the Gen (n = 6–17) cages.

4.4 Conclusions

The variation of the different energy parameters BE, EE, FE, stability, HOMO–LUMO

gap, VIP, AIP, ADE and VDE of the clusters supports the enhanced stability at n =

10 and 14. The above results point to a more unified picture for the stability of CrGen
clusters. We have verified the electron-counting rule on the basis of the Cr atomic filled

shell in molecular orbitals. Analysis of the Cr atomic shell contributions in molecular

orbitals explained the stable nature of the CrGe10 and CrGe14 clusters. However, CrGe12

is less stable due to the 16 electrons in the Cr shell, with an electronic configuration

of 4S2, 4P6, 3d8. In the CrGe12 cluster, due to the crystal field like splitting, Cr- 3dz2

pushed up to the LUMO. However, CrGe10 and CrGe14 both have a Cr atom with the

electronic configuration of 4S2, 4P6, 3D10, which is a close filled configuration and follow
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the 18 electron counting rule. The analysis of the bond critical points indicates that the

more stable species have a higher number of BCPs, which leads to an increase in the

germanium binding energy. The other significant effect, however, is the mixing between

the Cr 3d- and Ge p-states, which was reflected in the PDOS and quenching of the

Cr magnetic moments in the clusters. The bonding nature and the vibrational modes

present in the clusters can be further understood by the study of the IR and Raman

frequencies as discussed. A lower number of modes in the IR and Raman spectra is

basically indicating the higher symmetry in the clusters.



Chapter 5
Au doped Germanium nanoclusters and

building blocks

5.1 Introduction

In this chapter, the electronic structure, stability and shell closing model of Au doped

Ge−n nanoclusters has been carried out using density functional theory (DFT). From the

nature of the variation of the different thermodynamic and chemical parameters, the

AuGe−7 and AuGe−10 ground state clusters are identified as the most stable species. It is

observed that the enhanced stability of AuGe−7 is due to the closed shell filled structure

of the Au-atomic orbitals and follow the magic shell closing number (40). In this chapter,

we have examined the building blocks of small sized clusters and taken Au− as connector

or bridge between two Gen species.

5.2 Computational Details

Complete calculations are splitted into two parts mainly. All geometry optimizations

were performed with no symmetry constraints. We again used a global structure

predictor method using USPEX (Universal Structure Predictor: Evolutionary

Xtalloraphy)146 and VASP (Vienna AB-initio simulation package)147 to get all the

possible optimized geometric isomers in each size, from n = 2 to 20. VASP code has been

used to relax the structures predicted by USPEX. For this, we have used a combination

of the few-set of pseudo-potentials available in VASP. In the next stage of optimizations

and post optimization calculations, the last few low energy isomers obtained from

66
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USPEX and VASP were reoptimized at different spin states in Gaussian’09148 to obtain

different energy parameters. Here, all calculations were performed within the framework

of a linear combination of the atomic orbital’s density functional theory (DFT). The

exchange-correlation potential contributions are incorporated into the calculation using

the spin-polarized generalized gradient approximation (GGA) functional proposed by

Lee, Yang and Parr popularly known as B3LYP116 available in Gaussian’09. Different

basis sets were used for Au and Ge. LanL2DZ with effective core potential (ECP) basis

set is used for Au and LanL2DZdp with effective core potential (ECP) obtained from the

EMSL basis set exchange150 are used for germanium to express the molecular-orbitals

of all atoms as linear combinations of atom-centered basis functions. LanL2DZdp is

a double-basis set with a LANL effective core potential (ECP) and with polarization

function118,151. Unless specified otherwise, the results presented are obtained using the

Gaussian’09 program package.

5.3 Results and discussion

Variations of the different thermodynamic and chemical parameters during the growth

process provide the initial evidence to identify the stable nanoclusters. We have studied

the growth of the Au doped Ge−n clusters within the size range n= 1 to 20.

5.3.1 Structural and growth mechanism of the clusters

A number of isomers have been calculated in each size. The most stable ground state

isomer along with few lowest energy isomers (n=8 to 20) size are shown in Fig. C.1, C.2

and C.3 and the ground state structures are shown in Fig. 5.1. Initially, at small size

(n=1-6), clusters are having some specific point group symmetries. In the present study,

we examined the role of gold atom in Gen clusters. Due to the bigger size of gold atom

compare to other TM atoms studied in the thesis, gold prefers to stay on the surface

of the germanium clusters up to the size n=10. At n=7,8,9 and 10, the structures are

interesting due to the gold positions. In the ground state clusters Au@Ge7 and Au@Ge10

gold has higher ability to make bonds with other foreign cluster or atoms. We exploit

this to use gold as a bridging atom between two germanium clusters. With this aim, we

modeled AuGe−14 and AuGe−20 where gold acted at bridging atom and connected to Ge7

and Ge10 clusters respectively. However, particularly on n=7 and 10, it could be possible

that gold has dangling bonds and still reactive. For that, we prepared few building
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block structures and found some interesting results. Cluster size n=7 gives AuGe−14

(ground state structure) where Au plays a role of connector between two Ge7 clusters

species. Similarly at n=10, Au becomes the connector between two Ge−10 clusters and

make AuGe−20. In the bigger sized ground state clusters (n>10), gold always absorbed

endohedrally and there is no scope of using Au as a bridging atom. However, the ground

state AuGe−14 and AuGe−20 are made of Ge7 and Ge10 clusters as building blocks.

Figure 5.1: Ground state geometries of AuGe−
n (n = 1–20). Red and yellow spheres are

denoting the Ge and Au atoms, respectively.
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5.3.2 Energetics of clusters

It is also important to obtain the relative stability of different clusters in a particular

composition to identify the most stable size in the series so that it can be used as the

building blocks in cluster assembled materials. To explore the relative stability of the

clusters with the increase of the cluster size during the growth process, we have studied

different thermodynamic and chemical parameters, such as, average binding energy per

atom (BE), embedding energy (EE), fragmentation energy and the 2nd order change in

energy, as mentioned in various report42,120,122–125. These parameters are defined as:

BE = −
[
E(GenAu−)− nE(Ge)− E(Au−)

]
/(n+ 1)

EE = E(Gen)− E(Au−)− E(GenAu−)

∆(n, n− 1) = E(Gen−1Au
−) + E(Ge)− E(GenAu−)

∆2(n) = E(Gen+1Au
−) + E(Gen−1Au

−)− 2E(GenAu−)


(5.1)

Where, E(Au−), E(Ge), E(AuGe−n ) represent the total energies of Au−, Ge and

AuGe−n cluster respectively. Again for pure Gen cluster E(Au−) in the above-mentioned

equation is taken, as zero and n+1 will be replaced by n.
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Figure 5.2: Variation of average binding energies and embedding energies with the size
of the clusters AuGe−

n (n = 1–20).

In Fig. 5.2, Variation of average binding energies and embedding energies with the
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size of the clusters AuGe−n (n = 1–20) are shown. Initially, Average binding energies are

showing increasing trend. At n=7, 10, 14, 16, 18 and 20 are the local peaks in BE/atom

variation. Embedding energy are showing the local maxima at n=3, 5, 8, 12, 14 and

18. It is interesting to note that embedding energy does not show any peak at n=7

and 10. This is due to the position of gold atom on the Gen surface. By definition,

embedding energy is the required energy to remove the dopant atom (Au in this case).

Since Au atom is already on the surface of Ge7 and Ge10 clusters. So the variation of

embedded energy graph does not follow the binding energy graph. In other bigger sized

clusters, these two graphs are more or less similar in nature. In Fig. 5.3, The variation of
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Figure 5.3: Variation of fragmentation energy and stability parameters with the size of
the clusters AuGe−

n (n = 1–20).

fragmentation energy and stability parameters with the size of the clusters AuGe−n (n =

1–20) are shown. All the local peaks are identical at n=5, 7, 10, 14, 16, 18 and 20 for both

fragmentation energy and stability. In Fig. 5.3, variation of HOMO-LUMO gap with the

cluster size are shown. Again n=3, 7, 10, 15, 18 and 20 are showing local peaks. In fact

the maximum values are stand at n=7 and n=10 sized clusters which again show that

these clusters are thermodynamic and chemically stable. Gap for n= 14 is giving different

result. This could be due to the unsaturated dangling bonding in germanium cluster.

This is also applicable in AuGe−20 cluster. The variation of detachment energies with the

size of the clusters AuGe−n (n = 1–20) are shown in Fig. 5.5. Lu et al.158 measured the
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detachment energy and electron binding energy of AuGe−n clusters experimentally within

the size range of n=1 to 12. Our calculated detachment energies are in good agreement

with the experimental results reported by Lu et al.158. Theoretical and experimental

values are more or less similar. Local peaks are again at n=5, 7, 10, 14, 18 and 20

which compliment our previous results. By applying shell closing model, we can explain

the enhanced stability of n=7, 14 and 20 sized clusters. Since each Ge and Au atoms

have four and 11 valance electrons respectively, therefore, AuGe−7 , AuGe−14 and AuGe−20

clusters are holding total 40, 68 and 92 number of valance electrons. As per the Hund’s

rule these numbers are the magic numbers and the clusters holding this numbers are

valance electrons are suppose to be the magic clusters.

5.3.3 Stability of AuGe−7 and AuGe−14 clusters

Following our previous discussion, we have selected AuGe−7 and AuGe−14 clusters for

further investigations. We have calculated the density of states, projected density of

states along with IR and Raman spectra of AuGe−7 and AuGe−14 clusters. Calculated

results are shown in Fig. 5.6. Comparing the DOS and PDOS of these two clusters, it

can be seen that the reduced value of band gap is mainly due to the presence of Ge

orbital contribution. This results supports the reduced value of HOMO-LUMO gap in

AuGe−14 cluster. Comparing the modes of IR and Raman spectrum in these two clusters.

It is found that the number of modes are always less in AuGe−14 compare to AuGe−7 .

For AuGe−7 , the dominating modes in IR frequencies are 193.22 cm−1 and 241.43

cm−1. In Raman spectrum, the dominating frequencies are coming at the same values

as IR with 241.43 cm−1 as breathing mode. On the other hand in AuGe−14 cluster, the

dominating IR modes are coming at 149.27 cm−1, 174.70 cm−1 and 232.09 cm−1, whereas

the dominating Raman mode is coming at 237.77 cm−1 (breathing mode). Comparing

the vibrational modes in IR and Raman spectra, it seems that both the visible Raman

frequencies shifted towards the lower value when a single Au− atom joining two Ge7

clusters. Also, the intensity of the dominating mode is much higher than the other

modes present in AuGe−14. As if, the growth of the intensity of the dominating mode in

the bigger cluster is in expenses of the lower modes present in AuGe−7 cluster. This is

the indication of higher stability of AuGe−14 cluster.
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Figure 5.6: Building blocks of AuGe−
7 and AuGe−

14. Density of state, IR and raman is
also showing.

5.3.4 Stability of AuGe−9 cluster and AuGe−18 cluster

assembly

In the whole series, the second cluster assembly is AuGe−18 which have been formed

by adding Ge9 clusters where Au acted as a bridge. Ugrinov et al.159, reported the

orientation and stability of [Ge9=Ge9=Ge9]6− cluster. As per the cluster composition

and symmetry it is basically two Ge4−
9 clusters linked by another Ge4−

9 cluster which

can be explained by Wade-Mingos rule. It is a nido cluster, so formed a capped square

anti-prism. Each Ge vertex of Ge4−
9 has a lone pair, so it might be possible that it can

remove 2 electrons from the cluster for each Ge-Ge bond between Ge9 units which would

give (Ge27)4− [3 x Ge4−
9 = (Ge27)12− - 8 electrons = (Ge27)4−].

According to this argument, it explains the 6- charge is that one combination of

Ge-Ge anti-bonding orbitals is stabilized because the Ge-Ge bonds do not lie along the
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Table 5.1: IR and Raman frequencies of AuGe−
n (n=7, 9, 10, 14, 18 and 20) clusters

and cluster assemblies.

Cluster IR frequencies Raman frequencies
(in cm−1) (in cm−1)

AuGe−7 193.22 193.22
241.43 241.43

AuGe−14 149.27 161.74
174.70 192.77
232.09 222.12

237.99
AuGe−9 176.69 174.11

234.56 203.41
212.30

AuGe−18 108.05 189.40
139.02 204.53
169.55 227.36
227.36 237.33

241.63
247.98

AuGe−10 153.77 72.27
240.15 196.80

240.15
AuGe−20 71.15 24.76

116.89 25.21
140.06 117.61
189.91 169.62
206.73 198.67
217.18 210.43

218.57

Table 5.2: Bond lengths of Au-Ge in AuGe−
n (n=7, 9, 10, 14, 18 and 20) clusters and

cluster assemblies.

AuGe−7 AuGe−9 AuGe−10 AuGe−14 AuGe−18 AuGe−20

2.49 Å 2.55 Å 2.45 Å 2.58 Å 2.50 Å 2.55 Å
2.62 Å 2.57 Å 2.58 Å 2.55 Å

’natural’ direction of the radial lone pairs, so are strained in some sense.

In our case, by adding two Ge9 clusters where Au atom acted as a bridge to form

AuGe−18 cluster assembly which is comparable to the structure reported by Ugrinov et

al.159.
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Figure 5.7: Building blocks of AuGe−
9 and AuGe−

18. Density of state, IR and raman is
also showing.

5.3.5 Stability of AuGe−10 and AuGe−20 clusters

The third stable cluster assembly is AuGe−20 form by two Ge10 clusters and Au atom.

The DOS and PDOS of AuGe−10 and AuGe−20 cluster are shown in Fig. 5.8 along with

IR and Raman spectra. Detailed frequency analysis is given in table. In Fig. 5.8, DOS

and PDOS shows a large band gap for AuGe−10 cluster while comparative smaller gap is

for AuGe−20 clusters assembly.

In IR spectrum, a dominant peak for AuGe−10 cluster at 240.15 cm−1 as shown in

breathing modes but after adding the Ge10 unit, there are multiple peaks are occurring

which is due to the rotation of both the Ge10 units in opposite direction. In the other

hand in raman spectrum shows a peak shift from 196.05 cm−1 to 210.34 cm−1 for

AuGe−10 and AuGe−20 respectively. This is due to the band at Au docking site with both

the additional Ge10 units.
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Figure 5.8: Building blocks of AuGe−
10 and AuGe−

20. Density of state, IR and raman is
also showing.

5.4 Conclusions

In summary we have done theoretically study of the electronic and vibrational properties

of Au doped Gen clusters at different sizes in cationic states. The variation of the

different energy parameters BE, EE, FE, stability, HOMO–LUMO gap and DE of the

clusters supports the enhanced stability at n = 7, 10, 14, 18 and 20. The above results

point to a more unified picture for the stability of AuGe−n clusters. Shell closer magic

numbers also plays an important role. By applying shell closing model, we can explain

the enhanced stability of n=7, 14 and 20 sized clusters. Since each Ge and Au atoms

have four and 11 valance electrons respectively, therefore, AuGe−7 , AuGe−14 and AuGe−20

clusters are holding total 40, 68 and 92 number of valance electrons. As per the Hund’s

rule these numbers are the magic numbers and the clusters holding these numbers of

valance electrons are suppose to be the magic clusters. But it needs more detailed

analysis to explain the orbital sequence following Hund’s rule in these clusters.



Chapter 6
Functionalized Cluster Assembled TM

doped Si Nanotubes

6.1 Introduction

In this chapter, we have discussed the transition metal (TM=Cr, Mn and Fe) doped

silicon nanotubes with tunable band structure and magnetic properties by the careful

selection of cluster assembly as building blocks using first-principle density functional

theory. We found that the transition metal doping or hydrogen termination process can

stabilize the pure silicon nanoclusters or cluster assemblies and it could be extended as

ferro- and antiferro- magnetic nanotubes with finite magnetic moments. Study of the

band structures and density of state (DOS) of different empty and TM doped nanotubes

(Type 1 to Type 4) show that these nanotubes are useful as metal, semiconductor,

semi-metal and half–metals. These designer magnetic materials could be useful in

spintronic sand magnetic devices of nanoscale order.

6.2 Computational Details

Density-functional calculations are performed by using plane-wave pseudo-potential

methods.92,160 The density functional is treated by the generalized gradient

approximation (GGA) with the exchange-correlation potential parameterized by Perdew,

Burke and Ernzerh(PBE)104. All the calculations are performed in VASP (Vienna

Ab Initio Simulation Package) computational code161. Relaxations are carried out

using conjugate-gradient algorithm162. The kinetic-energy cutoff of plane wave is set

77
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at different values depending upon the TM doping in between 320 eV to 360 eV. Lattice

parameters and ionic positions are adjusted until all components of Hellman-Feynman

force on each ion were less than 0.001 eV/Å. We have checked the band structure and

DOS calculation using both hybrid functional Heyd-Scuseria-Ernzerhof (HSE) as well

as Becke 3-parameter, Lee-Yang-Parr (B3LYP) in addition to PBE at the initial stage

of the work. We find negligible difference in band gap by the band structures, and DOS

in calculated using PBE, PBE0, HSE and B3LYP hybrid functional (Fig. D.5). The

main cause of this is involved in the presence of lesser number of electrons in the d-

block of the transition metal elements used in each cell of the nanotubes. To construct

the nanotubes, we use 2 d-block transition metal atoms. The total number of the d-

electrons in these atoms is much lesser than the number of electrons in Si atoms present

in the cell. Hence, the effective correction of the hybrid functional does not show visible

changes in the band structure and DOS behavior. This is very common in a system

where number of d-block elements and d- block electrons are less in unit cell. Two set

of calculations are preformed to achieve the minimization of energy, volume variation

for cell relaxation, and ion relaxation. In case of non-periodic systems, such as the

individual cluster or cluster dimer or higher, we have used a large super cell with a

sufficiently large cell length. During optimization, all internal coordinates of the Si, Cr,

Mn and Fe atoms are allowed to relax with respect to any one atom among them. At

the same time the lattice constants are kept constant. Following this restrictions in

optimization a cluster is separated from nearest cell’s cluster by 12-13 Å to make the

external force on a particular cell zero or negligible. For the infinite nanotube, k-mesh

is taken as 1D system for all the nanotubes. Cell is taken in such a way that tubes can

form in one direction as like 1D system. In each calculation 12 sets of k-points are taken

to define the cell.

6.3 Results and discussions

6.3.1 Empty nanotubes

The main restriction to form empty finite silicon nanotubes or tube like cluster-assembled

materials is the sp3 type of hybridization in Si-Si bonding. It leads to deform the

finite size nanotubes formed by cluster assemblies. To verify the effect of hydrogen

terminations, we have added hydrogen atoms at the two ends of the tubular structures.
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Formation of stable transition metal doped or hydrogenated tubular cluster indicates

the possibility of formation of nanotubes of different types using small clusters as units.

As an initial step of calculations, we first select the stable isomers in the sizes Si12, Si16,

Si20 and Si24empty cages163,164.

Figure 6.1: Structures of hollow finite silicon nanotubes based on the most stable
structures of empty Si12 clusters as well as the effect of hydrogen termination and

different transitional metal atom doping.

Out of many possible orientations to form cluster assembly using these four units as

building blocks separately, we choose few most stable orientations that can form finite

cluster assembly and infinite nanotubes. To investigate the hydrogen termination effect

on the finite nanotube or cluster assembly made of hexagonal prism Si12 structure forms
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Figure 6.2: Variation of average binding energy and corresponding magnetic moment
of different TM doped Type 1 and Type 2 nanotubes.

1-D finite nanotube (Fig. 6.1), we calculate the variation of average binding energy (BE)

and is shown in (Fig. 6.2). We forms two different types of cluster assemblies based on

the density of TM atom doping using Si12 as base unit with chemical compositions

(CrSi12n)n and Cr2n−1Si12n.

The average binding energy of the empty clusters are almost constant (3.8 eV) with

a small variation up to the size with n=36. Then suddenly it drops to 2.6 eV at n=48

size. This indicates the thermodynamical instability of the clusters. However, after

hydrogen termination, the BE increases and then stabilize at n=36 with a value of 3.52

eV. Therefore, hydrogen termination is actually converting the finite sized assembly to

a section of infinite nanotube like structure with thermodynamical stability.

The effect of hydrogen termination is similar in the finite nanotubes or cluster

assemblies made of Si16 as base unit, and also in other bigger sized clusters useful to
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Figure 6.3: Type 1 to Type 4 hollow nanotubes modeled by (a) Si24, (b) Si24, (c)
Si30 and (d) Si36 units respectively as building blocks. The region enclosed by black

rectangular block represents the unit cell to form infinite empty nanotube.

design nanotubes. The lesser possibility of formation of finite nanotubes using the units

Si24 (Type 1), Si24(Type 2), Si30 (Type 3)and Si36(Type 4) as base units is also due

to the atomic influences of a particular cell on the next cell. In the case of clusters

(finite nanotubes) the separation between the base units is selected on the basis of

non-interacting system, as if, they are in gaseous phase, where, the two periodic images

are separated by 12-13 Å whereas, the cells, where the clusters are encapsulated, are

connected. Under this condition, clusters are free from the interaction of the neighboring

clusters or from the interacting force produced by the periodic images. For small sized

clusters, the cell size is taken as 20×20×20 (Å)3. However, it is also a function of

the cluster size. It is worth to mention here that we increase the cell size when the

cluster size is relatively bigger and the criteria of the minimum separations are not

achieved. We generally use cubic cell to explain the clusters. But if the building block

(that may formed by using a number of small clusters to make cluster assemblies) size

is long enough in one direction (in case of nanotubes), then we change the shape of

the cell from cubic to cuboid. Usually, we do not disturb the cell volume and shape,

means; we apply constraints on the cells during a particular type of calculation. The

optimized empty or hollow nanotube structures with chemical compositions:(Si24)n:Type

1; (Si24)n: Type 2; (Si30)n: Type 3 and (Si36)n: Type 4 are shown in Fig. 6.3. As
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Figure 6.4: Band structure and DOS of hollow silicon nanotubes: (a) Type 1, (b) Type
2, (c) Type 3 and (d) Type 4. Dotted line shows the position of Fermi levels.

per the structural symmetry of the finite nanotubes without hydrogen termination are

concerned, Si12 based structure is more symmetrical than nanotube made of Si16 cluster

in pure (or empty) nanotubes(Fig. 6.3). To check the properties of these four types

(Type 1 to Type 4) of hollow nanotubes, we calculate their band structures and density

of states(DOS) and the results are shown in Fig. 6.4. Both in Type 1 and in Type 2

nanotubes, there are clear contributions of bands surrounding the Fermi energy level as

well as on the Fermi level. Therefore,both the nanotubes are characterize as metallic

in nature. Sometimes the bands are very similar to flat bands in bulk materials. The

flatness of the spin-polarized bands in Si16 based hollow nanotube indicates that the

electronic states are heavily localized. In the relatively bigger cross-sectional hollow

nanotubes, (Type 3 and Type 4) the band structures and DOS both are different from

Type 1 and Type 2 nanotubes. In Type 3 and Type 4 nanotubes, the bands touches

the Fermi level, with a clear band gap of 0.38 eV and 0.29 eV respectively. In Type 4

nanotube, there is flat band just below the Fermi level with a dispersive nature of the
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first valance band along Γ-K axis. Hence,the Type 3 and 4 nanotubes could be taken

as semi-metallic in nature. Overall, the increase of the size of the unit cells, the hollow

nanotubes, change from metallic nature to semi-metallic nature in the present study.

It is worth to mention here that in previously reported work hollow Si nanotube with

zig-zag, arm-chair and chiral structures, show semiconductor nature165.

6.3.2 TM doped Type 1 to Type 4 finite nanotube like

cluster assemblies

The structures of the two types of TM doped Type 1 finite nanotubes are based on

the optimized TMSi12hexagonal prism structure with D6h symmetry. Other possible

structures are anti-prism structure, bi-capped pentagonal prism and fullerene structures.

But in the assembled clusters we find TMSi12 prism structure is only useful geometry

to form stable (TMSi12)n and (TM2n−1Si12n) cluster assemblies.

Figure 6.5: Structures of finite silicon nanotubes TM doped Si16 (type 2) clusters and
the building blocks

Hence, it is fit for finite and infinite nanotubes. After confirming the stability of

the above structures we start to stack TMSi12 units along the hexagonal cross-sectional
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Figure 6.6: Variation of average binding energy and corresponding magnetic moment
of different TM doped Type 2 Si nanotubes.

side of the cluster in two different ways (as shown in each of the section in Fig. 6.1)

to form (TMSi12)nand TM2n−1Si12n, where the number density of transition metals are

different. As a result, the average binding energy in the 2nd case leads to an increase and

it helps to improve the geometry from slightly distorted planner cross-section in hollow

cluster assembled system to nearly planner nanotube hexagonal cross-section (Fig. 6.2).

It is clearly seen that the average BE of TM2n−1Si12n is reasonably higher as compare

to the BE of TM2n−1Si12n (where, TM=Cr, Mn, Fe) for all transition metal doping.

Interestingly, the magnetic moment of TM doped assembly show different behavior

in different sizes and types, as well as it depends on the doped atoms. In Cr doped

assemblies, the magnetic moment quench quickly in both in CrnSi12n and Cr2n−1Si12nat

n=1(Fig. 6.2). It increases for higher ‘n’ in CrnSi12n, whereas, in Cr2n−1Si12n, the

magnetic moment quenched again for n=3 and 4. For Fe and Mn doped TM2n−1Si12n

assembly the magnetic moment increases with the size of the clusters. In TM2n−1Si12n,

this variation does not follow any systematic trend (Fig. 6.2). There is quenching of Mn

magnetic moment at n=3 and then again it increases at the higher sizes. In Fe doped

Fe2n−1Si12n finite nanotubes, the magnetic moment variation shows unstable pattern

within the size range of the finite nanotube from n=1 to 4. The variation of magnetic

moments in the TM doped finite nanotube like clusters assemblies could be due to the
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presence of different unsaturated interactions, which varies with the size of the cluster

assembly and also as a function of number of doped transition metal atoms. Details of

the magnetic moments are given in Table 6.1.

Geometry optimization shows a number of different low energy isomers in TMSi16

composition. Among these we find that the fullerene kind of structure, which is

combination of two rhombi and eight pentagonal closed loops Si rings is suitable for

making cluster assembly or finite nanotube. Following the work reported by Palaria et

al.164. We have studied the hollow nanotube of the similar kinds. To form finite Type

2 nanotube structure we added the units of TMSi12(which is the part of TMSi16) with

the optimized TMSi16 (TM=Cr, Mn and Fe) isomer(Fig. 6.5). The magnetic moment

and average binding energy variation is presented in Fig. 6.6.

Average binding energy variations are clearly indicating that addition of each

TMSi12 unit is increasing the stability of the clusters, which is an indication of the

formation of infinite nanotubes. It is worth to mention that when the cluster assembly

contains even number of transitional metal atoms, the magnetic moment of the finite

nanotubes drops compare to the clusters made of odd number of transition metal atoms.

Similar to TM doped Type 1 and Type 2, cluster assembly, we also attempt to form

TM doped Type 3 and Type 4 cluster assemblies. But we did not find any optimized

structure, which could be taken as the initial stage of Type 3 or Type 4 nanotube.

However, after hydrogen termination, the optimized assemblies form Type 3 and Type

4 finite nanotubes(Fig. 6.7). Corresponding variation in binding energies are shown in

the Fig. 6.8. We have applied hydrogen termination to the Type 1 and Type 2 finite

nanotubes also. After optimization we found more symmetric structures compare to

Type 1 to Type 4 finite nanotubes with finite amount of magnetic moments and high

value of binding energies for all TM doping (Fig. 6.7 and Fig. 6.8). This gives an

indication of possible formation of infinite nanotube with finite magnetic moments.

6.3.3 Doped Si-nanotubes: Type-1(TM4Si24)n, Type-2

(TM2Si24)n, Type-3 (TM2Si30)n and Type-4

(TM2Si36)n

Transition metal doped Type 1 nanotubes and corresponding band structures as well as

DOS are shown in Figs. 6.9 and 6.10 respectively. The calculated magnetic moments per
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Figure 6.7: Structures of doped Type 1 to Type 4 finite TMSiNTs with hydrogen
termination

unit cell of Cr, Mn and Fe doped nanotubes are 1.36 µB, 8.0 µB and 8.02 µB respectively.

The density of states in spin-up and spin-down Cr doped nanotube are comparable.

There is a small change in band shift towards the upward direction in spin-down

band structure compare to the spin-up state. Both in spin-up and spin-down band

structures, there is considerable amount of band crossing over the Fermi energy level.

In DOS also clear contribution of states on the Fermi level indicates the metallic nature

of this nanotube. Comparing the band structure of hollow nanotube of similar kinds, it

can be seen that the bands in the doped nanotubes are much more denser and it also
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Figure 6.8: Variation of average binding energy and corresponding magnetic moment
of different TM doped Type 1 to Type 4 nanotubes with hydrogen termination.

Figure 6.9: Transition metal (TM=Cr, Mn, Fe)doped Type 1 silicon nanotubes. Green,
brown, blue and pink spheres are representing Si, Mn, Cr and Fe respectively.The region
enclosed by black rectangular block represents the unit cell to form infinite empty

nanotube.
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Figure 6.10: Band structure and density of state of transition metal (TM=Cr, Mn and
Fe) doped Type 1 silicon nanotubes. Upper one and lower one are denoting spin up

and spin down states, respectively. Dotted line shows the position of Fermi level.

reflects in density of states (DOS) plot. In all TM doped nanotubes of this particular

structure, the projected density of states (PDOS) show that most of the contribution

in DOS below Fermi energy level is due to d- states of the doped transition metal atom

and overall there is contribution from Si p-states, which are relatively small. The band

structure of spin-up and spin-down states in Mn and Fe doped nanotubes are different

in nature.

In both compositions, DOS near Fermi level in spin-down states is relatively higher

than the spin-up state. This shows metallic behavior of the spin down state with a

band crossing at the Fermi level in spin-down components, indicate metallic behavior

of the nanotubes. The band structure of the Mn-doped ferromagnetic nanotube shows

a gap above the Fermi energy in spin-up component. In previous report it was found

that the majority of states for Mn lie well below the Fermi energy and the Si 3p states

contribute mostly to the states near the Fermi level which also could be the cause of

magnetic moment fluctuations (from 1.66 µB to 2 µB)163. In the present Mn doped

Type 1 nanotube, the anti-ferromagnetic configuration is only 0.09 eV lower in energy

than the corresponding ferromagnetic configuration. Therefore, the transformation from

anti-ferromagnetic to ferromagnetic coupling could be achievable by application of a

weak magnetic field. This suggests the possibility of spin-polarized current controlling

via application of small magnetic field.

In Fe-doped nanotube, the interaction between Fe-Fe is ferromagnetic in nature with
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Figure 6.11: Transition metal (TM = Cr, Mn and Fe)doped Type 2 silicon nanotubes.
Green, brown, blue and pink spheres are representing Si, Mn, Cr and Fe respectively.
The region enclosed by black rectangular block represents the unit cell to form infinite

empty nanotube.

Figure 6.12: Transition metal (TM = Cr, Mn and Fe)doped Type 2 silicon nanotubes.
Green, brown, blue and pink spheres are representing Si, Mn, Cr and Fe respectively.
The region enclosed by black rectangular block represents the unit cell to form infinite

empty nanotube.



Chapter 6 Functionalized Cluster Assembled TM doped Si Nanotubes 90

Figure 6.13: Transition metal doped (TM=Cr, Mn and Fe) Type 3 silicon nanotubes.
Green, brown, blue and pink spheres are representing Si, Mn, Cr and Fe respectively.
The region enclosed by black rectangular block represents the unit cell to form infinite

empty nanotube.

Figure 6.14: Band structure and density of state of transition metal (TM = Cr, Mn
and Fe)doped Type 3 silicon nanotubes. Upper one and lower one are denoting spin up

and spin down states, respectively. Dotted line shows the position of Fermi level.
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a high magnetic moment of 2.1 µB per Fe atomic site, which is nearly the same as the Fe

atomic magnetic moment in bulk iron. It is important to mention here that Fe- doped

silicon nanotubes with pentagonal and hexagonal cross-sectional structures exhibits

metallic behavior both in finite and infinite structures166. The visible one-dimensionality

of this nanotube along with its high moment makes it attractive as a nanoscale magnet.

Optimized structure of Type 2 nanotube is shown in Fig. 6.11. This nanotube is based

on the ground state unit of TMSi16 optimized clusters. Corresponding band structure

and DOS is shown in Fig. 6.12. In some of the spin-up or in spin-down state of Type

2 nanotube, the band structure below fermi energy level is almost flat as like in hollow

Type 2 nanotube for different doping. This indicates the presence of localized electronic

state and hence the localized magnetic moment at the substitution site of Si167. In our

study we did not find any band crossing the Fermi level but the gap between occupied

and unoccupied bands are very low ( 0.08 eV to 0.1 eV) with considerable amount of DOS

contributions around Fermi level both in spin-up and down states. The band structure

and DOS imply the nanotube is similar to semi-metallic materials in nature as there is

higher DOS in spin-up state compare to its spin-down state. Hence, due to doping of Cr

and Fe, the Type 2 empty nanotube with metallic character changes to semi-metallic in

nature with redistributions of the bands.

The band structure and DOS of Mn doped Type 2 nanotube are different from the

Cr and Fe doping. Doping of Fe gives more structural symmetry compare to Cr and Mn

because of different electronic configurations and therefore, configuration interactions

between the doped elements and with the nanotube. In both the spin states there is

clear band gap with is different nature in band structure, which assigned this nanotube

as semiconductor in nature. Since the band structures and DOS are different in different

transition metal doping, therefore, the variation in conduction and transport properties

are also expected to be different. Now, moving to the nanotubes made of bigger units

(TM2Si30)n (Type 3) and (TM2Si36)n (Type 4), the band structure and DOS are find

different from Type 1 and Type 2 nanotubes.

The optimized structure and corresponding DOS/band structures of Type 3

nanotube are shown Figs. 6.13 and 6.14. In this nanotubes, spin up and spin down

states are different in all transition metal doping. The nature of band structure and

DOS in Cr and Fe doped nanotubes are quite similar around the Fermi level, whereas,

this is different in Mn doped nanotube with a relatively larger gap in spin down state

and a clear contribution of DOS on Fermi level. For Cr and Fe doping, the spin down



Chapter 6 Functionalized Cluster Assembled TM doped Si Nanotubes 92

Figure 6.15: Transition metal doped (TM = Cr, Mn and Fe) Type 4 silicon nanotubes.
Green, brown, blue and pink spheres are representing Si, Mn, Cr and Fe respectively.
The region enclosed by black rectangular block represents the unit cell to form infinite

empty nanotube.

Figure 6.16: Band structure and density of state for transition metal (TM = Cr, Mn
and Fe)doped Type 4 silicon nanotubes. Upper one and lower one are denoting spin up

and spin down states respectively. Dotted line shows the position of Fermi level.
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Table 6.1: Magnetic moment variation of both (Type 1 and Type 2) the TM doped
SiNT’s with the number of cluster units (n) and mT M is the number of dopant TM

atoms.

Type 1 Magnetic moments (in µB)
for different cluster units (n)

Doping n=1 n=2 n=3 n=4
mTM=1 mTM=3 mTM=5 mTM=7

Cr 0 4 0 0
Mn 1 3 9 13
Fe 0 6 8 12

Type 2 Magnetic moments (in µB)
for different units (n)

Cr 0 0 2 6
Mn 1 0 1 4
Fe 0 2 0 2

and spin up band structures are metallic in nature. The LUMO of the spin up states

are approximately 0.4 eV and 0.5 eV above than the Fermi level for Cr and Fe doping

respectively. Therefore, the Cr and Fe doped Type 3 nanotube can take as half-metallic

in nature. When the Type 3 hollow nanotube doped with Cr and Fe, the bands structure

and DOS changes with a wide gap in the spin-up state as in half-metallic system. Due

to Mn doping, density of states in spin-up state below Fermi energy level drastically

decreases compare to Cr doping with the presence of DOS on Fermi level and with

a wider band gap in spin down state. Effectively the lower DOS in spin down state

can decrease the transport and conduction properties. Complete band structure and

DOS picture of Type 3 nanotube doped with Cr, Mn and Fe assigned their character as

half-metallic in nature. It is to be noted that, in Type 3 nanotube, the doped transition

metal atoms are not in a line inside the nanotube. The distortions are different in

different TM doping. This is the direct evidence of the size effect of the transition

metal atom doping in Type 3 nanotube. The size effect can be seen clearly in Type 4

nanotube where Cr and Mn atoms are in a straight line inside the nanotube, whereas,

Fe is distorted (Fig. 6.15).

To optimize the nanotube doped with Fe atom (relatively smaller size compare to

Cr and Mn), the Fe atoms shift from the axis of the nanotube. With reference to the

band structure and DOS of Cr, Mnand Fe doped Type 4 nanotube; we assign them as

metallic, half-metallic and semi-metallic respectively in character (Fig. 6.16). Therefore,

with the variation of the size of the nanotube and transition metal doping, the conducting

behavior of the nanotube varies from one regime to other as reported by others168,169.
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Table 6.2: Magnetic moments of the cluster assembly and TM doped SiNT’s (TM =
Cr, Mn, Fe).

Cluster Assembly Magnetic moments for Doping (in µB)
Cr Mn Fe

Type 1 (TM3Si24) 4.00 3.00 6.00
Type 2 (TM2Si28H8) 6.00 6.00 2.00
Type 3 (TM2Si35H10) 10.00 10.00 6.00
Type 4 (TM2Si42H12) 10.00 10.00 6.00

Table 6.3: Characteristics and magnetic moment of one unit cell of different types of
nanotubes

Type TM-Doping
Cr Mn Fe

Metallic Metallic Metallic
Type1 (TM4Si24)n (1.36µB) (8µB) (8.02µB)

Semi-metallic Semiconductor Semi-metallic
Type2 (TM2Si24)n (0µB) (6µB) (2µB)

Half-metallic Half-metallic Half-metallic
Type3 (TM2Si30)n (8µB) (8µB) (6µB)

Metallic Half-metallic Semi-metallic
Type4 (TM2Si36)n (10µB) (9.33µB) (4µB)

Hence, same nanotube can be used as metallic, semi-metallic and half-metallic with

different magnetic behavior by proper choice of transition metal doping with a wide

range of applications as conductive wires170,171 energy storage and energy conversion

devices172,173, flat panel displays174 and radiation sources175 as well as probes176 (such

as an STM and AFM tip) and chemical sensors177. This can enhanced its application

part and can be used as a tunable magnetic material in the industries.

6.4 Conclusions

The present study reports the modeling of four different types of empty and transition

metal (TM = Cr, Mn, Fe) doped nanotubes. We examine the stability of these nanotubes

and then the variation of band structures, DOS, magnetic properties with the variation

of TM doping in the empty nanotubes. The overall results can be summarize as follows:

• It is found that the specific size and structure of the nanocluster and cluster

assemblies can be used to generate empty as well as transition metal doped stable

nanotubes. Sometimes these cluster assemblies does not show the stability, but

the proper choice of the assembly can form stable nanotubes.
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• Out of four hollow nanotubes (Type 1 to Type 4), Type 1 and 2 show metallic

characteristics with clear band contributions on the Fermi level. However,

the nanotubes with relatively bigger cross-sectional area (Type 3 and 4) show

semiconductor characteristics with band gap of 0.39 eV and 0.28 eV respectively.

The flat bands in Type 2 nanotube shows its nature similar to that in bulk

materials. The flatness of the spin-polarized bands indicates that in Si16 based

hollow nanotube the electronic states are heavily localized and such metallic

character caused by these bands is highly stable to any perturbation.

• The TM doping does not affect the band structure and DOS in Type 1 nanotube

and hence it is metallic in character for all doping. In addition, the transition metal

(TM=Cr, Fe and Mn) doping added finite magnetic moments of amount 1.35 µB,

8.02 µB and 8.0 µB respectively to the Type 1 nanotube. Whereas, the same

doping reduces the magnetic moments to 0.0 µB, 2.0 µB and 6.0 µB respectively

in Type 2 nanotube. This indicates the strong interaction between the transition

metal atoms with Type 2 nanotube. Hence, the Cr doped Type 2 nanotube is

non-magnetic metallic species in nature. However, the same doping increases the

magnetic moments of the nanotubes in Type 3 and Type 4 as shown in Table 6.2.

• We found that the Mn doped Type 1 nanotube; the anti-ferromagnetic

configuration is only 0.09 eV lower in energy than the corresponding ferromagnetic

configuration. Therefore, the transformation from anti-ferromagnetic to

ferromagnetic coupling may be achieved by application of low magnetic field,

suggesting that spin-polarized current flow could be controlled through application

of a magnetic field.

• The characteristic of different nanotubes after doping by transition metals is given

in Table 6.3. Based on this results, we can conclude that the combination of the

type of nanotube (Type 1 to Type 4) and the proper choice of doping, can vary

the characteristic of the nanotubes to metallic, semi-metallic, half-metallic and

semiconductor in nature with wide range of applications168–177. These tunable

magnetic materials are useful in the industries. Since the transition metal doping

changes the property of the nanotube, therefore the variation in conduction and

transport properties are also expected to be different.



Chapter 7
Conclusions and future scope

7.1 Conclusions

The present thesis systematically assesses the feasibility of using transition

metal (TM) doped silicon and germanium clusters to design novel functionalized

cluster-assembled materials using density functional theory. In Chapter 1, a

concise introduction to the various employed methodologies, concepts to explore

the configurational space and description of the electronic structure and properties

of doped silicon and germanium clusters is discussed. In Chapter 2, we have

discussed the methodology in used in our studies. From Chapter 3 to Chapter

5, a thorough analysis of the nature of chemical bonding within exohedrally and

endohedrally TM doped Gen (TM = Ni, Cr, Mo, Au) clusters, have been done.

The stability of such clusters have been explained from the study of variation of

energetics and the chemical bonding between dopant and host atoms. We have

found that the shell closure number plays an important role in the structural

stabilization. This further explains the adaptive capability of the TM-Ge bonding,

which is more as a result of a complex hybridization than the originally proposed

mere formal charge transfer. Other additional reason for the stabalization of these

clusters is the localization of the electrons which can be theoretically measured

by nuclear independent chemical shift (NICS) values. In Chapter 6, we have

studied the building blocks of small sized TM doped Sin clusters (TM = Cr, Mn,

Fe). It is worst mention here that we found few tunable magnetic species whose
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structural properties can be manipulated by changing the structural orientation

and concentration of the atoms.

7.2 Future Scope

In our studies, we have chosen few cluster systems. There are many other systems

and possibilities that can be investigated and analyzed. Few of them have been

mentioned below.

7.2.1 Catalytic properties of TM doped Si/Ge clusters

Investigation of catalytic properties of TM doped Si/Ge clusters could be

interesting. While catalysis is an active technological application of transition

metal related nanoparticles, there are relatively few theoretical studies attempted

to understand how transition metal atom act as a catalyst in chemical reaction.

Catalytic reactions can be considered by studying the energy-barrier of reaction

paths therefore finding the most favorable reaction path. As in our studies, we

have examined that the dopant atom is not just acting like a dopant atom but

the also controlling all over properties. It seems that the electronic distribution of

dopant TM atom/atoms are spread over the surface of Si/Ge clusters. In Chapter

5, we have studied Au doped doped Gen clusters, where Au is playing a role of

bridging atom in between the 2 separate Gen cluster species. Au is working as

catalyst, so it is interesting to study its modified properties in the germanium

or silicon clusters. Treating this problem may sound easy, but comparing to the

number of configurations of reactants and products is a challenging job.

7.2.2 Legend protected clusters

Small sized cluster’s properties are sensitive with size and compositions. Legend

protection is a process to preserve the clusters properties to use it as an industrial

material. There are various clusters those exhibit unique properties but due

to the less stability of the clusters it is difficult to store these properties.

Organic molecules are known best to add on non-organic cluster’s surface.

Heaven et al.178 investigated the crystal structure of the thiolate protected gold
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nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. Recently, Chauhan et al.179

modeled Ni9Te6(PEt3)8C60 a legend protected cluster. The PEt3 ligands are shown

to create an internal coulomb well that lifts the quantum states of the Ni9Te6

cluster lowering its ionization potential to 3.39 eV thus creating a super-alkali

motif.

7.2.3 Functionalized cluster assembled materials

As we studied in Chapter 5 and Chapter 6, assembling clusters is the best way to

design or model designer new materials. There are other possibilities that can be

explored by forming different cluster assemblies to model 1D, 2D and 3D materials.

There are few theoretical attempts1,70–73 to make such assemblies by the "bottom

up" approach. Recently, Liu et al.180 have reported such functionalized material on

InnAsn system. They have investigated a new family of In12As12 cluster-assembled

materials using a bottom-up approach together with DFT calculation. There are

several possibilities in this direction to create new materials.

7.2.4 Multi TM atoms doped Si/Ge nanoclusters

The possibility of multi-doping in Si and Ge clusters in order to achieve high

spin states beyond the single-dopant atom which has been reported as a potential

future candidate. It also can be explored further on conserving both the structural

integrity of the host cage and the high spin state of the guest dimer dopant

which can thereby increase the magnetic moment. Moreover, the possibility of

increasing the cluster spin state further by encapsulating various number of dopant

atoms into a suitably sized Si/Ge cage could be quite interesting. Such multiple

doping phenomena could also be used in functionalized assembled materials. These

developments indicate many potential future applications beyond the specific

problems of single doped semiconductor clusters.

7.2.5 Other possibilities

Application of shell closer number following the Hund’s rule can be an interesting

parameter to examine in TM doped semiconductor clusters. Sometimes, molecular
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orbital magic numbers may not be able to explain the clusters stabilities. In our

chapter 5, few AuGe−n clusters holds the molecular electrons which is equal to the

magic numbers but the distribution of orbitals are quite different and disagree

with the shell closer phenomena. So it is a challenging problem on Si/Ge based

clusters to co-relate the shell closing model and orbital distributions. In the

present thesis, we need more focus to understand this problem.
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Appendix A
Ni doped Germanium nanoclusters

Figure A.1: Optimized structures of neutral GenNi (n=1–20) clusters.

112



Ni doped Germanium nanoclusters 113

Figure A.2: Optimized structures of neutral GenNi (n=1–20) clusters with spin state
(S singlet, T triplet), point group symmetry and energy with respect to the calculated
ground state in each size. Purple balls Germanium atoms, orange balls nickel atoms..
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Figure A.3: Optimized structures of neutral GenNi (n=1–20) clusters.
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Figure A.4: Different Valence orbitals of 20-electron ground state clusters



Gaussian basis set for Ni and Ge 

Ni     0   
S   3   1.00 
      7.6200000             -0.4082550         
      2.2940000              0.7455308         
      0.8760000              0.5325721         
S   4   1.00 
      7.6200000              0.1872591         
      2.2940000             -0.3966964         
      0.8760000             -0.4954003         
      0.1153000              1.0844343         
S   1   1.00 
      0.0396000              1.0000000         
P   3   1.00 
     23.6600000             -0.0481558         
      2.8930000              0.6258473         
      0.9435000              0.4715158         
P   1   1.00 
      0.0840000              1.0000000         
P   1   1.00 
      0.0240000              1.0000000         
D   4   1.00 
     42.7200000              0.0372699         
     11.7600000              0.1956103         
      3.8170000              0.4561273         
      1.1690000              0.5621587         
D   1   1.00 
      0.2836000              1.0000000         
**** 
 
NI     0 
NI-ECP     2     10 
d potential 
  3 
1    469.9324331            -10.0000000         
2     85.4236411            -69.4084805         
2     21.2674984            -12.0951020         
s-d potential 
  4 
0    162.1686097              3.0000000         
1    176.5333232             22.0253618         
2     68.9562010            443.0181088         
2     13.5792838            145.5696411         
p-d potential 
  4 
0     69.0181506              5.0000000         
1    275.5955596              4.9882824         
2     47.1315453            256.6945853         
2     12.9874075             78.4754450 
 

Ge 0 
S   2   1.00 
      0.8935000             -2.1756591         
      0.4424000              2.4493467         
S   1   1.00 
      0.1162000              1.0000000         
P   2   1.00 
      1.8770000             -0.1006779         
      0.2623000              1.0306256         
P   1   1.00 
      0.0798000              1.0000000         
P   1   1.00 
      0.0209000              1.0000000         
D   1   1.00 
      0.2460000              1.0000000         
**** 
 
GE     0 
GE-ECP     3     28 
f-ul potential 
  5 
1    318.2167583            -28.0000000         
2     61.5370967           -180.9891676         
2     13.2986899            -55.0043909         
2      3.8985215            -19.7906526         
2      1.2137666             -1.8533572         
s-ul potential 
  5 
0    205.1886932              3.0000000         
1     68.9790278             65.2262558         
2     27.9194879            225.2354522         
2      8.5481650             94.0125472         
2      2.3173734             29.9415005         
p-ul potential 
  5 
0     33.2488002              5.0000000         
1     15.7777247             23.4778157         
2     14.9260722             45.0980414         
2      5.8416394             56.3326957         
2      1.8349575             16.6058640         
d-ul potential 
  5 
0     42.0206343              3.0000000         
1     19.2096363             23.7371518         
2      9.4133917             56.4792249         
2      3.3282907             25.8901835         
2      0.8522331              3.0229836 

 



Appendix B
Cr doped Germanium nanoclusters

Figure B.1: Selected optimized low energy isomers (n=1 to 5) the spin magnetic
moments and point group symmetries.
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Figure B.2: Selected optimized low energy isomers (n=6 to 17) the spin magnetic
moments and point group symmetries.
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Figure B.3: Ground state structures with the positions of (3, +3) Cage Critical Points
(CCPs).

Figure B.4: Ground state structures with the positions of (3, +1) Ring Critical Points
(RCPs).



Gaussian basis set for Cr and Ge 

Cr 0 
6-311g 
**** 
 Ge 0 
S   2   1.00 
      0.8935000             -2.1756591         
      0.4424000              2.4493467         
S   1   1.00 
      0.1162000              1.0000000         
P   2   1.00 
      1.8770000             -0.1006779         
      0.2623000              1.0306256         
P   1   1.00 
      0.0798000              1.0000000         
P   1   1.00 
      0.0209000              1.0000000         
D   1   1.00 
      0.2460000              1.0000000         
**** 
 
GE     0 
GE-ECP     3     28 
f-ul potential 
  5 
1    318.2167583            -28.0000000         
2     61.5370967           -180.9891676         
2     13.2986899            -55.0043909         
2      3.8985215            -19.7906526         
2      1.2137666             -1.8533572         
s-ul potential 
  5 
0    205.1886932              3.0000000         
1     68.9790278             65.2262558         
2     27.9194879            225.2354522         
2      8.5481650             94.0125472         
2      2.3173734             29.9415005         
p-ul potential 
  5 
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2     14.9260722             45.0980414         
2      5.8416394             56.3326957         
2      1.8349575             16.6058640         
d-ul potential 
  5 
0     42.0206343              3.0000000         
1     19.2096363             23.7371518         
2      9.4133917             56.4792249         
2      3.3282907             25.8901835         
2      0.8522331              3.0229836     

 



Appendix C
Au doped Ge−n nanoclusters

Figure C.1: Selected optimized low energy isomers AuGe−
n (n=1 to 7) First column has

the ground state structure and next A,B and C are the nearest energy isomers. Red
and yellow balls represent Ge and Au atoms respectively.
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Figure C.2: Selected optimized low energy isomers AuGe−
n (n=8 to 12) First column

has the ground state structure and next A,B and C are the nearest energy isomers. Red
and yellow balls represent Ge and Au atoms respectively.
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Figure C.3: Selected optimized low energy isomers AuGe−
n (n=13 to 17) First column

has the ground state structure and next A,B and C are the nearest energy isomers. Red
and yellow balls represent Ge and Au atoms respectively.
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Figure C.4: Selected optimized low energy isomers AuGe−
n (n=18 to 20) First column

has the ground state structure and next A,B and C are the nearest energy isomers. Red
and yellow balls represent Ge and Au atoms respectively.



Gaussian basis set for Au and Ge 

Au     0  
S   3   1.00 
      2.8090000             -1.2021556         
      1.5950000              1.6741578         
      0.5327000              0.3526593         
S   4   1.00 
      2.8090000              1.1608481         
      1.5950000             -1.8642846         
      0.5327000             -1.0356230         
      0.2826000              1.3064399         
S   1   1.00 
      0.0598000              1.0000000         
P   3   1.00 
      3.6840000             -0.2802681         
      1.6660000              0.7818398         
      0.5989000              0.4804776         
P   2   1.00 
      0.6838000             -0.0952078         
      0.0977000              1.0299147         
P   1   1.00 
      0.0279000              1.0000000         
D   2   1.00 
      1.2870000              0.5844273         
      0.4335000              0.5298161         
D   1   1.00 
      0.1396000              1.0000000         
**** 
 
AU     0 
AU-ECP     4     60 
g-ul potential 
  5 
1    622.6287956            -60.0000000         
2    136.2843607           -555.5292312         
2     33.1549781           -168.0019785         
2      9.9894895            -63.0399875         
2      3.0481312             -4.2516681         
s-ul potential 
  6 
0    194.7374304              3.0000000         
1    351.5327447             38.6020880         
2    122.3270402            864.8370727         
2     32.0914617            374.9935520         
2      5.2451812            289.7910100         
2      4.4916223           -152.4532773         
  

 

p-ul potential 
  4 
0    420.6158801              2.0000000         
1    109.4417815             73.8885625         
2     34.1714280            326.6729872         
2      5.9879750            126.5814591         
d-ul potential 
  5 
0    219.2666158              3.0000000         
1    122.7297786             55.6793149         
2     63.1063369            449.1987335         
2     18.3684520            215.0269091         
2      4.4972844             64.0840995         
f-ul potential 
  5 
0    108.5506037              4.0000000         
1     56.4795527             51.8065335         
2     29.2069159            231.2183113         
2      9.5440543            119.0047386         

    2      2.8965118             15.3424188         

Ge 0 
S   2   1.00 
      0.8935000             -2.1756591         
      0.4424000              2.4493467         
S   1   1.00 
      0.1162000              1.0000000         
P   2   1.00 
      1.8770000             -0.1006779         
      0.2623000              1.0306256         
P   1   1.00 
      0.0798000              1.0000000         
P   1   1.00 
      0.0209000              1.0000000         
D   1   1.00 
      0.2460000              1.0000000         
**** 
 
GE     0 
GE-ECP     3     28 
f-ul potential 
  5 
1    318.2167583            -28.0000000         
2     61.5370967           -180.9891676         
2     13.2986899            -55.0043909         
2      3.8985215            -19.7906526         
2      1.2137666             -1.8533572         
s-ul potential 
  5 
0    205.1886932              3.0000000         
1     68.9790278             65.2262558         
2     27.9194879            225.2354522         
2      8.5481650             94.0125472         
2      2.3173734             29.9415005         
p-ul potential 
  5 
0     33.2488002              5.0000000         
1     15.7777247             23.4778157         
2     14.9260722             45.0980414         
2      5.8416394             56.3326957         
2      1.8349575             16.6058640         
d-ul potential 
  5 
0     42.0206343              3.0000000         
1     19.2096363             23.7371518         
2      9.4133917             56.4792249         
2      3.3282907             25.8901835         
2      0.8522331              3.0229836 

 



Appendix D
Functionalized Cluster Assembled TM

doped Si Nanotubes

D.1 Confirmation of stability: Study of IR spectrum

and Free energy variation of the clusters with

the increase of the cluster size as functionalized

assembled materials as finite nanotubes

In order to provide spectroscopic fingerprints of the finite nanotubes, as an example

we have calculated the IR spectrum of Type 1 nanoclusters (Si12Cr, Si24Cr3,

Si36Cr5 and Si12Fe, Si24Fe3, Si36Fe5) as shown in Fig. D.1 . For the Cr doping,

the spectrum shows three prominent peaks at 248 cm−1, 260 cm−1 and 275 cm−1

for Si12Cr, Si24Cr3, Si36Cr5 unites. Similarly for Fe doping, these pecks are 270

cm−1, 238 cm−1 and 275 cm−1.

Using these vibration frequencies, we have also calculated the free energies

including the vibrational entropies within the quasi-harmonic approximation181:

F (T ) = E0 + 1
2
∑
i

hνi + kBT
∑
i

ln

[
1− e−

hνi
KBT

]
(D.1)

where E0 is the total energy, and i are the vibrational frequencies of the clusters.

In the Fig. D.2, we demonstrate the variation of free energy with temperature from

0 to 1000K. It can be clearly seen in Fig. D.2 that the addition of functionalized
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Figure D.1: IR frequency variation of type 1 functionalized clusters assemblies.

Figure D.2: Variation in free energies including the vibrational entropies within the
quasi-harmonic approximation with temperature.

units at the end of the tubes reduces the energy. This indicates the stability of

the bigger sized units.
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D.2 Density of states

Figure D.3: Variation of DOS and PDOS with energy near Fermi level for type 1
(Cr4Si24)n , (Mn4Si24)n and (Fe4Si24)n, infinite nanotubes, respectively.

Figure D.4: Variation of DOS and PDOS with energy near Fermi level for type 2
(Cr2Si24)n , (Mn2Si24)n and (Fe2Si24)n, infinite nanotubes, respectively.
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Figure D.5: Comparison of the band structure and DOS calculated using different
approach as PBE, hybrid functional HSE and GGA+U in Mn doped Si Type 3 nanotube

It can be clearly seen that band gaps from each level of theory are almost same.
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