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ABSTRACT

Driven by rapid technological advances and ever-increasing demand for new applications,
system complexities have grown at almost an exponential rate. In this scenario, the traditional
system design methods have rapidly become incapable of providing solutions that meet
system requirements as, neither purely software-based nor purely hardware-based systems are
able to meet the various expectations from the system solution. Modern-day complex systems
inevitably necessitate inclusion of heterogeneous software and hardware components in the
system. In particular, the rapid growth of image and video processing applications has created
increasing demands for high-performance configurable hardware architectures and algorithms
for building requisite electronic systems. To achieve high performance goals and fulfill the
conflicting design needs of low power and easy system upgradeability, integrated

hardware/software system are required.

Modern field-programmable gate arrays (FPGAs) have evolved to offers an embedded
processor and many hard intellectual property (IP) components, required to create integrated
hardware/software systems. The presence of logic blocks in FPGAs provides hardware
configurability, whereas the embedded processor supports the programmability and the
necessary control. With the advent of platform-based design methodology and associated
integrated design tools, it is possible to utilize a variety of soft/hard IPs along with various
off-the-shelf components available on the platform to build system solutions that meet

required expectations.

In this work, architectures and algorithms have been proposed and developed for frequently
used image and video processing applications. These architectures have been realized in the
Xilinx Virtex-5 FX FPGA device available on the ML-507 platform. Apart from having

sufficient logic blocks on which hardware is implemented this FPGA device also has an
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embedded PowerPC 440 processor with requisite system software, to implement the
application software around it. To start with, we have used the platform for developing an
embedded architecture for real-time video capture, acquisition and its display for the standard
640x480 VGA resolution video through the FPGA fabric and for its frame-by-frame
buffering in the external double-data rate synchronous dynamic random-access memory

(DDR2 SDRAM).

We have then attempted to realize various complex arithmetic functions that are frequently
required in image and video processing applications such as division, square root, inverse
square root etc., through the use of logarithmic number system. For this purpose, a simple
integer datapath has been created for processing 32-bit unsigned fixed-point numbers.
Architectures for the binary logarithm and antilogarithm units are proposed that compute
their approximate values within the specified range. These units have been utilized to realize
the hardware architectures for various image processing functions that have been proposed in

the thesis.

A novel hardware architecture for global image thresholding operation has been proposed
that results in a resource-efficient FPGA implementation of the computation of between class
variance (BCV) computation for realizing the Otsu’s image thresholding algorithm. The
compute-intensive BCV requires the computation of normalized cumulative histogram and
normalized cumulative intensity area. The proposed architecture is logic resource efficient
and has the ability to process large datasets by performing time-critical functions using

available BRAMs and DSP slices.

We have next proposed an improved label-equivalence based connected component
labeling algorithm that works on the binary images obtained from the image thresholding unit

and identifies an object on a video frame. The proposed algorithm improves upon the
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Stefano-Bulgarelli (SB) algorithm by modifying its equivalence handling procedure, and
removes the partial merging problem associated with the SB algorithm. The improved
algorithm is implemented on the embedded PowerPC processor of ML-507 platform. Results
demonstrate that the improved algorithm handles equivalences efficiently and gives an

accurate count of connected components.

Finally, all the hardware building blocks and algorithms described so far are utilized for an
embedded implementation of a representative video processing application, e.g., object
tracking based on kernel-based mean shift (KBMS) algorithm. The required application-
specific architectural building blocks have been proposed for its embedded realization on
Xilinx ML-507 platform. To understand issues related to the embedded realization of the
KBMS algorithm, a MATLAB/C implementation is created. Subsequently, hardware
architectures have been proposed for the time-critical parts, namely, the computations of
weighted local histogram, kernel-smoothed local histogram (KSLH), Bhattacharyya

coefficient based local similarity measure, center of gravity and the new mean shift location.

The embedded design also utilizes the soft IPs, which include, joint test action group
(JTAG) controller, Block RAM (BRAM) controller, multi-port memory controller (MPMC),
processor local bus (PLB), inter-integrated circuit (I2C) controller and the UART controller.
The hard IPs utilized include the PowerPC 440 processor, BRAMs, digital clock manager
(DCM) and DSP48E slices. The frame buffer part of the design is created in the available off-

chip DDR2 SDRAM memory, which is controlled through the MPMC.

Embedded PowerPC processor has been used to configure and control various off-the-shelf
system peripherals available on the platform along with the running of the application
program. The application software, written in C language, runs on top of a standalone

software platform and uses the application programmer interface (API) provided by the
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software platform. In order to develop the required hardware and software in an integrated
manner, the Xilinx embedded development kit (EDK) design tool has been used. To analyze
the design in real-time, Xilinx ChipScope Pro integrated logic analyzer has been utilized.
Xilinx XPower Analyzer tool has been used, for computing power consumption associated

with different architectural modules.

In summary, the thesis explores and presents some of the concepts of emerging embedded
system design techniques. It does so by way of identifying, building and integrating all the
necessary hardware and software components for a real-time video processing application,
namely object tracking (utilizing the kernel-based mean shift algorithm). The thesis also
illustrates the use of platform-based design to achieve an efficiently configured hardware-
software system solution that can meet the conflicting demands of high performance, low

power and quick turnaround times for system development.
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CHAPTER 1

INTRODUCTION

1.1 Background and Context

Image and video processing is used in a wide variety of applications such as video
conferencing, video broadcasting and motion estimation [1], military aerial and satellite
surveillance [2,3], biometric recognition [4], object tracking [5] and medical imaging
applications [6,7]. The goal of real-time image and video processing system is to process the
captured video, extract specific information and take appropriate action as needed [8]. The
general structure of any image and video processing system consists of data acquisition,
computation, communication, storage and display elements [9]. The data acquisition part
performs the image data capture process. The captured data needs intermediate storage
elements for its later processing as per the requirements. The computation unit does the
required processing and communicates with all the other units via dedicated communication

channels.

With the increasing popularity of multimedia, image processing and other vision-based
applications, there is always a demand for high-resolution data processing elements. High-
resolution standard image and video have large data, which needs processing within
stipulated frame of time. With the increasing processing requirements of large data, the
system complexity has also increased. Even though the recent computers are getting faster
and faster, invariably, there is an emerging demand for even faster data processing
mechanism. Modern image and video processing applications demand more specialized

processing than is normally available in computers.



With high computational complexity of the modern algorithms, current software-based
image and video processing systems are unable to meet the performance requirement in real-
time. They do not achieve the required high performance that is required while working with
available video frame rates. The effectiveness of real-time processing is primarily based on
the idea of completing the required tasks in the time available between successive input
frames of the incoming video, also known as sampling rate of frames or frame rate. Further,
the image and video processing systems have ever-increasing demand for higher
performance, lower power requirement and flexibility. These systems also need to process
and manage a large amount of data within the constraint of real-time performance [2].
Therefore, quite often, dedicated embedded systems along with their architectures are
required to be designed. Architectures for these image and video processing algorithms need
to manage a large amount of data within real-time constraints; and parallelism is a
fundamental requirement for most of these systems. Thus, their design as embedded system

continues to be a challenging problem.

The dominant approaches that are used to implement complex image and video processing
algorithms are using digital signal processors (DSP), application specific integrated circuits
(ASICs), application-specific instruction-set processors (ASIPs), and field programmable
gate arrays (FPGAs) [10,11,12]. The DSPs are high-performance programmable processors
specifically designed for signal processing applications. They are extremely flexible, low
power, and cost efficient, but lack hardware acceleration capabilities for leading image and
video processing algorithms. ASICs provide very high performance, small silicon area and
low power consumption but do not have the flexibility to adapt to new algorithms. ASIP is a
promising design approach that offers an intermediary solution between ASIC and
programmable processors. However, for ASIPs, commercially established system-level

design tools are still under development. Compared to ASICs, FPGAs provide both



reasonably good performance and adaptability to many different algorithms for applications.
In addition, in the case of FPGAs, the non-recurring engineering (NRE) cost and the design
time are not as high as for ASICs [13,14]. The amount of resources in present-day FPGAs is
quite high and can practically handle many processing operations without any difficulty.
FPGAs have shorter development time, lot more computation power, reasonably good
hardware fabric that adds to parallel processing capabilities which are very suitable for
implementing various image and video processing algorithms as against the fixed architecture

devices such as DSPs, ASIPs and ASICs [15,16,17].

Modern FPGAs embed many predefined and pre-fabricated IP components, such as digital
signal processing (DSP) elements, embedded memories along with plenty of logic resources
in a single chip. FPGAs are computationally even more powerful with the presence of
embedded processors. In addition, the required system buses are embedded in the FPGA
fabric so that entire systems-on-chip (SoC) can be implemented on these platforms [18]. In
fact, the use of these embedded processors could easily represent the best solution when
devising the optimal design for an embedded system as they involve consideration of
constraints of performance, NRE cost, area, power consumption etc. from a dual hardware

and software perspective.

A typical image and video processing application can be considered as an embedded
system, which consists of multiple heterogeneous resources such as, processor, peripherals,
dedicated logic blocks, memories, and software [11]. A general classification of different
hardware and software components and the various resources are shown in Fig. 1.1. As
apparent from the figure, the available hardware resources can broadly be classified as
memory resources, functional resources and interface resources. The functional resources are

used to process vast amount of data. They implement arithmetic or logic functions and can be



grouped into three main subclasses: primitive resources, intellectual properties (IPs) and

application specific resources.

The primitive resources are general-purpose sub-circuits that are designed once and often
used. The IPs could be functional IPs with domain-specific features or it could be a
controller’s IP. Fully characterized IPs in terms of area and performance can be stored in the

design library from where we can reuse them as per the need.

The application-specific resources are the subsystems designed for the application-specific
needs. The interface resources support data transfer and include different types of busses,
whereas, the different types of memory resources are used to store data. The software
resources include device drivers, real-time operating system (RTOS), application-program

interface (API) and network communications, which are managed by the processor [8].

FPGA provides an excellent platform for implementing an embedded system with the
required resources as above. The application-specific hardware architecture of the system in
an FPGA can be a design choice to the user and has proved to be very effective. In the image
and video processing applications, FPGA platform based design methodology can be
effectively employed for rapidly achieving the goal from conception to a successful system
model [19]. The wide range of requisite peripherals and the high performance FPGA device
available on the platform provide adequate support to build new architectures and realize a
complete system over the platform. In addition, the embedded processor present in the FPGA
device makes it more versatile. The FPGA-based platform has an important bearing on the
architectural choices and algorithm development for the implementation and verification of

emerging heterogeneous real-time image and video processing systems.
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With the advent of modern FPGA-based platform and its heterogeneous resource offerings,
the platform based design of image and video processing systems are getting more popular
[20,21]. Apart from the other architectural developmental benefits, one of the main
advantages of using the platform-based design and its associated integrated design
environment is its wide range offerings of generic IP elements. These generic IP elements
include processor IP core, interface/bus/bridge IP core, peripheral IP core, communication IP
core, infrastructure IP core, memory controller IP core and debug IP core [20,22]. The
notable FPGA platforms that support the IP core based embedded platform-centric design

approach are offered by Xilinx [23], Altera [24] and Celoxica [25].

In this thesis, the IP based design approach is followed and various hardware architectural
blocks have been designed that are required for image and video processing applications. The
thesis deals with some of the important aspects of hardware-software partitioning and
development of relevant architectures and algorithms. The work in the thesis uses Xilinx
ML-507 FPGA platform that contains a Virtex-5 FXT FPGA device. The details of the

Xilinx ML-platform and Virtex-5 device are illustrated in Appendix-A.

1.2 Motivation for the Work

Image and video processing systems and their associated algorithms can be implemented in
software, hardware or in combination of both. The software implementation takes less
development time but offers flexibility for any future change in the functionality of the tasks.
However, the processing time of the software implementation is rather high. On the contrary,
the hardware implementations can exploit the inherent parallelism of the tasks, and usually
result in faster processing. Nonetheless, the hardware implementations are fixed and do not
provide the necessary flexibility for prompt changes in the behavior of the systems. In

addition, the development time for the hardware implementation is high as compared to



software implementation. Thus, the traditional design methodologies of providing complete
hardware or software solutions are fast becoming infeasible. It is apparent that a mixed
hardware-software realization would provide a better solution, which judiciously leverages

the flexibility offered by the software and performance gain offered by the hardware.

In a hardware/software based design approach the optimal design choice can be obtained
for handling conflicting design requirements, such as flexibility, power, resources, design
time and cost [10]. Depending upon the specifications of data processing algorithm, the
computational task can be sequential, concurrent or mixed. A processor available with the
processing unit can easily manage the sequential part of the algorithm. However, for the
computation of complex and other concurrent operations there are essential requirements of
designing custom computing engines. These computing engines are made synchronous with
the processor and used for complex image data processing. Thus, the best design choice leads

to hardware/software mixed implementation.

To meet performance goals of various image and video processing systems, including the
real-time constraints, a systemic arrangement of general purpose and some application-
tailored hardware and software components is required. Both the development of hardware
blocks with new features and the reuse of existing [P components are essential. Furthermore,
design complexities are progressively rising with an increasing number of hardware and
software components that have to work together in unison. The fast evolving specification of
image and video processing system needs a configurable and flexible system architecture and

associated components, so that, the system can also support new features.

In order to develop the required hardware and software components in an integrated
fashion, the platform-based design approach offers the best possible features of both

hardware and software [19,26]. Using the platform-based design approach, flexible system



architectures and their derivatives for any reasonably complex image and video processing
algorithm can be rapidly developed [20]. The platform-based design approach has been
hugely popular on field-programmable gate array (FPGA) devices. Some of the popular
FPGA-based platforms are listed in Table 1.1 and elaborated in Section 1.3.1. The presence
of processor and configurable blocks in the FPGA makes both the hardware and software
components programmable. The configurability of hardware and software components makes
the platform-based design a superior implementation choice for the image and video

processing system.

As discussed in the Background and Context section, for embedded realization of image
and video processing systems, apart from the standard heterogeneous components, we also
need many hardware and software modules for the chosen application. Even though the
general-purpose components are available in the form of standard image and video
processing IP suite, the need for development of application-specific blocks based on
hardware software partitioning cannot be undermined. This is in view of achieving the
performance goal for a particular application. We have also utilized FPGA based platform for
proposing new architectures and algorithms for frequently used components required for

image and video processing applications.

In the proposed work, we have developed area-efficient new architectures and algorithms
for some of the frequently used architectural and generic components in the image and video
processing area. The image and video processing systems use numerous components, which
are widely used across many applications. Some of the most commonly used modules include
image/video read, image/video acquisition, video display, image conversion, histogram
computation, similarity measure computation, global image thresholding, connected
component analysis, smoothing function computation, center of gravity (COG) computation

and some specialized arithmetic building blocks. These vital architectural building blocks are
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designed to provide the foundation for building image and video processing systems, in IP
based design environment. In addition, the proposed modules are also used to realize a
standard object tracking algorithm [27]. The following section describes the platform-based
design approach and the associated design tools, along with some of the popular image and

video processing FPGA platforms.

1.3 Platform-Based Design Approach

Modern-day complex systems consist of heterogeneous hardware and software components.
The hardware and software components provide the complete system’s functionality. The
absolute requirement of the system design aims to provide system functionality with adequate

performance level while reducing its design time.

With the advent of new FPGA devices, it is possible to have a software programmable
processor and the hardware accelerating engines in the same FPGA device. The logic blocks
within the FPGA can be interconnected through the programming of interconnects to design
desired hardware with embedded processor for general-purpose applications. The innovative
development of FPGAs whose configuration could be reprogrammed unlimited number of

times, thus providing the designer the option of developing reconfigurable architectures.

In application-driven architectural design context, the term platform is defined as a
collection of subsystems and required interfaces that form a common arrangement of
functional units from which a system and its derivatives can be efficiently developed and
shaped [28,29,30]. Platform is an abstraction of a group of varied micro-architectures, which
are programmable, and occasionally, run-time configurable in nature. It offers a universal
architectural component that can support a variety of applications as well as the future
derivatives of a given application space. Apart from having vital architectural building

blocks, it also provides for the trade-offs among a set of essential architectural constraints,



such as, power, performance, area, design time, and cost [28,29,30]. In Fig. 1.2, such a
platform-based design approach is depicted schematically. Here, the platform can be used by
utilizing the available integrated design environment (IDE), which manages various IPs and
their integration along with the configuration of available peripherals as per the specific

application needs.

Application Space
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Fig. 1.2: A general-purpose FPGA-based platform.

10



The platform-based design approach is an amalgamation of several design approaches,
which emphasizes systematic reuse for developing multipart products based upon the
platform-compatible hardware and software. Every element of the platform can be selected
and used through the customization of an appropriate set of design parameters through
standard bus and application programmer interface (API) offered by the platform. There are
various integrated design environments available, which offer complete support for the
development of platform architecture and associated application software [26,31]. Thus, the
platform-based design leverages the performance of most efficient derivative of an
architecture and the flexibility offered by the programmability of the processor. The support
of custom design hardware and reuse of IPs and other functional components makes the
platform-based design approach more favorable for architecture exploration of complex

digital system [28,29,30].

In an embedded FPGA-based platform, the software programmability comes from the
availability of processor and hardware programmability comes from the presence of
reconfigurable blocks of FPGA [28]. One such recent FPGA device is the Xilinx Virtex-5 FX
family, which offers PowerPC 440 hard processor embedded in the FPGA fabric [32]. The
combination of processor and run-time reconfigurable logic makes the FPGA-based platform
very suitable for providing sufficient balance between the demands of application space and
the architectural space. With embedded processor inside the FPGA, we can make trade-offs
between hardware and software to maximize the performance. To use Xilinx FPGA-based

platform, extensive peripherals and soft IP libraries are available [33].

The Xilinx ML-507 platform is shown in Fig. 1.3 that contains the PowerPC 440 processor
in the Virtex-5 FPGA device and the other required platform peripherals. In the Xilinx design
environment, the processor IP core can be a soft IP core like MicroBlaze processor or it can

be a hard IP core such as PowerPC processor [34]. The interface IP core supports the

11



processor local bus (PLB), fast simplex link bus and the PowerPC device control register bus.
In the peripheral IP core category, there are many general peripheral cores available including
inter-integrated circuit (I2C) controller, TFT controller, watchdog timer, and interrupt
controller. The communication IP provides universal asynchronous receiver transmitter
(UART) controller and the Ethernet controller through which the platform can communicate

with the host system or communicate in a network-based environment.

The external memory controller communicates through the memory control interface
(MCI) bus that connects the external memory, such as the DDR2 memory with the PowerPC
processor. The other important controllers are the joint test action group (JTAG) controller
for PowerPC processor, processor reset controller, bus splitter and clock generator. Similarly,
the memory controller IP supports multi-port memory controller (MPMC), Block RAM
(BRAM) interface controller, and direct memory access (DMA) controller. Finally, the debug
IP provides ChipScope Pro integrated logic analyzer (ILA), ChipScope Pro bus analyzer and

ChipScope Pro virtual 1/0 [35].

Apart from the wide range of standard IP support, the application specific custom IPs
developed by individual users can also be ported in the IP library using the ML-507 platform.
The standard IPs are configurable and parameterizable in nature [36]. Depending upon the
application needs these standard IPs can be configured and integrated with the custom IP. A
high abstraction electronic design automation (EDA) tool manages the amalgamation of
different varieties of IP [37]. The requirement of IP suite is highly dependent upon the

selected application domain.

12
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1.3.1 FPGA-Based Embedded Vision Platforms

There are many popular embedded vision platforms on FPGAs. The Xilinx Celoxica RC1000
XCV2000E FPGA-based platform is used to perform image pre-processing functions for
embedded vision applications [16]. A general-purpose, multitasking, and reconfigurable
platform is presented in [21]. Based on the Xilinx Virtex-II FPGA, a system level architecture
is proposed and developed, which integrates embedded processor, memory control and
interface technologies.

The system includes different functional modules, such as edge detection, zoom-in and
zoom-out functions, which provide the flexibility of using the system as a general video
processing platform according to different application requirements. Table 1.1 shows some of
the related embedded platforms for image and video processing applications.

An FPGA-based embedded platform for real-time image acquisition and processing is
presented in [38]. It contains a Texas Instrument’s TMS320C6416T digital signal processor
and Altera’s FPGA EP3C25F324. The digital image data is first transferred into FPGA
fabrics. After pre-processing, the data is transferred into DSP6416 by the interface of first in,
first out (FIFO) in the FPGA and DSP6416 external memory interface (EMIF). Further, the
image data is processed in DSP by real-time algorithms. Bravo et al. [20] have used Xilinx
Virtex-4 xc4vfx12 FPGA-based platform, which contains an embedded PowerPC405
microprocessor. In this work, architecture for image acquisition and processing using a
complementary metal oxide semiconductor (CMOS) sensor is presented. The sensor is
interfaced with the FPGA platform for the smart camera application.

A reconfigurable open architecture computing hardware (ROACH) is a standalone FPGA
processing board [39]. The main part of ROACH is a Xilinx Virtex-5 FPGA (either Ix110t for
logic-intensive applications, or sx95t for DSP-slice-intensive applications) device. A separate

PowerPC runs Linux and it is used to control the platform [39]. Similarly, ROACH?2 is a
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Virtex-6 sx475t FPGA- based (xc6vsx475t device) platform. Here, an embedded PowerPC

440EPx stand-alone processor controls the required functions [40].

Table 1.1: FPGA-based platforms

S. No. Work Y ear Platform

The platform of image acquisition and
1 processing system based on DSP and FPGA | 2008
Y. Lei, Z. Gang et al [38].

Altera FPGA EP3C25F324 + TI
TMS320C6416T DSP

A general-purpose FPGA-based
2 reconfigurable platform for video and image | 2009 | Xilinx Virtex-1I FPGA
processing J. Li, H. He et al. [21]

Efficient smart CMOS camera based on
3 FPGAs oriented to embedded image 2011
processing 1. Bravo, J. Balinas et al. [20]

Xilinx Virtex-4 FX FPGA
(XC4VFX12)

A high-performance FPGA platform for Kermode Xilinx Virtex-6 SX475

4 adaptive optics real-time control Heng 2012 FPGAS

Zhang , Zoran Ljusic, et al. [41]

Berkeley’s CASPER- ROACH

An FPGA-based platform for accelerated (Xilinx Virtex-5

5 offline spike sorting Sarah Gibson, Jack W. 2013

. . XCS5VLX110T/XC5VSX95T
Judy and Dejan Markovic [42] FPGA )
Berkeley’s CASPER- ROACH
(Reconfigurable Open Architecture

6 Computing Hardware) a standalone FPGA 2013 Xilinx Virtex-5 XC5VLX110T or

processing board Virtex-5 XC5VSX95T FPGA
https://casper.berkeley.edu/wiki/ROACH
[39]

Berkeley’s CASPER-ROACH-2
7 https://casper.berkeley.edu/wiki/ROACH2 2013
[40]

Xilinx Virtex-6 SX475T FPGA
(XC6VSX475T-1FFG1759C)

For the basic image and video processing, video starter kits can also be used. There are a
numbers of video starter kits available [43,44,45]. However, these kits are expensive and do
not contain top-of-the-line FPGA devices. The mounted FPGA on these platforms has limited
resources, which imposes constraints for implementing any reasonably complex video

processing algorithms on these kits.
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Apart from the above issues, the mounted camera on the above mentioned kits is fixed and
has very low resolution. For many real-time applications like video surveillance, tracking etc.
there is a need for interfacing a higher resolution camera or a pan-tilt-zoom (PTZ) camera
and other custom interfacing peripherals with a high performance processor. Thus, to
implement a complex image and video processing algorithm there is requirement of a high-
end device based FPGA platform, which can perform such applications competitively. The

uses of the various tools for working with platform-based design are explained below.

1.3.2 Platform Design Tools

An embedded system is an amalgamation of hardware and software entities, which are
managed by the hardware, software and the configuration tools. The platform peripherals are
configured by using their high-level functions provided by the platform, which are available
in the form of APIs. Similarly, the custom APIs can be developed for the application-specific

user IPs.

Xilinx provides embedded development kit (EDK), design tool to manage the hardware
and software components of the system [37]. It is an integrated design and development
environment for designing embedded processing systems. This pre-configured kit includes
Xilinx platform studio (XPS) and the software development kit (SDK), as well as all the
documentation and IPs that are required for designing Xilinx platform FPGAs, such as
Virtex-5 FXT FPGA with embedded PowerPC 440 hard processor cores and/or MicroBlaze
soft processor cores [46]. Some of the platform design tools and their uses are explained

below,

e XPS tool suite including graphical integrated design environment (IDE) and
command-line support for developing hardware platforms for embedded

applications.

16



e The Base System Builder (BSB) wizard enables creation of a working embedded
system with the desired FPGA platform such as Xilinx ML-507 [33].

e SDK is the software-centric design environment based on the Eclipse IDE. It
includes the GNU C/C++ compiler and debugger, Xilinx Microprocessor Debug
(XMD) target server, Data2MEM (D2M) utility for bit stream loading and
updating [46].

e Real-time operating system (RTOS) and embedded OS (EOS) provide design
support and board support package (BSP) generation for numerous third party
suppliers in the Xilinx environment [46].

e [P catalog that includes a wide variety of processing and peripheral cores such as
processing IP (PIP) and flexible MicroBlaze soft processor (MSP) core for

customizing the embedded system [46].

1.4 Scopeand Objectives

In this thesis, we have proposed various hardware architectural modules along with their
requisite software integration for embedded realization of a video processing application. The
hardware/software implementation choices and development of hardware architectures
needed are the main motivations of this thesis. The Xilinx ML-507 FPGA-based platform,
tools and its associated design tools and methodologies support the required path to meet the
various goals of the thesis. The embedded PowerPC processor, available on the Virtex-5 FXT
FPGA device on the selected platform, fulfills the specific needs of hardware/software

implementation. The main objectives of this thesis are as given below.

The first objective of the thesis is the development of the required configuration of Xilinx
ML-507 platform on which the integrated hardware-software solutions are proposed for

various embedded image and video processing applications. This requires the configuration
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of the FPGA-platform peripherals using APIs and other required hardware building blocks.
This configuration is necessary for accessing of the image pixels by the FPGA and for testing
various architectural blocks designed subsequently. The required video acquisition unit is
developed on the configured platform that uses some of the standard IP components and
peripherals available on the platform. The real-time video acquisition module buffers

640x480 VGA resolution video frame available at 60 frames per second.

The second objective of the thesis is to propose and develop various architectural building
blocks, that are mostly generic in nature and which can widely be used in many practical
image and video processing systems. The developed intellectual property (IP) cores of the
architectures can be used in any IP-based design environment and can be utilized to design a

practical image and video processing system.

In the proposed architectures, most of the operations are performed using the 32-bit fixed-
point format. The complex arithmetic operations are realized through a fixed-point binary
logarithmic and antilogarithmic unit. Architectures based on the logarithmic number system
(LNS) have the advantages of minimizing logic resources and the processing of large
datasets, by realizing time-critical processes in the available BRAM and DSP slices available
on the FPGA device and show effective use of resources for the required throughput and
speed goal. The logarithm and antilogarithm units are utilized for various requisite complex
operations such as square root, powering, inverse square root and division operations and

provide the backbone of the many architectural blocks developed in the thesis.

For developing resource-efficient and high performance architectural building blocks for
the compute-intensive modules, the fixed-point number system has been used in contrast to
the floating-point number system [47,48]. The primary reason for this is that the fixed-point

arithmetic uses simple integer datapath and can be easily realized in the small FPGA fabric,
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thus, consuming fewer resources. The optimized FPGA macro elements available in the
FPGA device can be customized and used as per the specific needs. Apart from this, the
fixed-point arithmetic also offers higher clock rates, which are required to implement real-

time image and video processing system.

The third objective of the thesis is to design a hardware architecture for the global image
thresholding unit that works on the gray scale pixels and provides the corresponding binary
image. The gray pixels are obtained from the RGB color pixels and the required hardware
architecture for RGB to gray conversion is designed. The direct implementation of the chosen
thresholding algorithm, i.e., the Otsu’s algorithm [49] requires numerous computation
intensive resources such as iterative squaring, complex multipliers, and dividers with
fractional value accuracy [50,51]. Thus, we present a resource-efficient architecture for the
design of Otsu’s image thresholding algorithm for implementing in the Virtex-5 device
available in ML-507 board. The between-class variance computation in Otsu’s algorithm
requires the hardware blocks for computing normalized cumulative histogram, mean and
cumulative moments in single-cycle read-modify-write operations, that are implemented in
the thesis. To simplify the thresholding operation, hardware architectures for the computation
of normalized cumulative histogram (NCH), normalized cumulative intensity area (NCIA)
and logarithm units are proposed that find usages in many image and video processing

applications.

The fourth objective is the study and improvement of connected component analysis
(CCA) algorithm. The CCA algorithm works on the binary image obtained from the image
thresholding unit and segments out the object by region labeling. The popular raster-scan
based CCA labeling algorithm proposed by Stefano and Bulgarelli (SB) is taken up for our

study. An improved version of the algorithm is proposed that improves the equivalence
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handling of the SB algorithm. As the proposed algorithm is rich in control and decision loops,

it is implemented in the embedded PowerPC processor.

The fifth and final objective is to demonstrate a video processing application that utilizes
the various blocks proposed and designed as above. Object tracking is selected as this
application; the block diagram of the flow of processing is given in Fig. 1.5. After video
acquisition, the processing is done in two stages, namely target object identification and
object tracking. The identification of an object in a particular frame is done by first
converting the color pixels to grayscale, and applying an image thresholding algorithm to
segment out the foreground pixels from its background. The binary image obtained from
output of the image thresholding unit is used by the connected component labeling algorithm
to identify and segment the object from the background for the tracking application.
Subsequently, the coordinates of the target, thus obtained from the object identification block,
are input to the video tracking algorithm. The chosen video tracking algorithm is based on

kernel-based mean shift approach (KBMS).

The KBMS algorithm is based on the concept of the mean shift clustering [5]. After, color
space quantization, the histogram works on the local image statistics for target modeling and
target candidate modeling. For smoothing of the probability density functions (pdf)
histogram, a kernel weight computation is needed. The proposed architectures constitute the
kernel smoothed local histogram block (KSLH) for modeling the target object. Further, a
hardware architecture for similarity measure computation has been proposed, which computes
similarities between two discrete histogram pdf-s. In the KBMS algorithm, this module plays
the role for finding the distance between object’s next position, with respect to its previous

position [27].
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The new location of the object is obtained by computing the center of gravity (COG) in this
mean shift based tracking [27]. To realize the KBMS algorithm, the various building blocks
as discussed above are shown in the Fig. 1.6. In the IP centric system environment, all the
developed hardware and software blocks are used as per the specific bus interface. The
specific integration of various modules for realization of the kernel-based object tracking
algorithm is carried out. The Xilinx embedded development kit (EDK) design tool integrates
the communication of the required IPs with the embedded PowerPC processor, which runs
the application program and the configuration software. Xilinx XPower Analyzer tool has

been used to compute power consumption associated with various architectural modules [52].

1.5 Proposed Hardware/Software Modules for an Embedded Video
Processing Application

In this section, we describe the hardware architectural blocks and the algorithms that have
been proposed in the thesis for implementation on Xilinx FPGA platform. The proposed
blocks are needed for many image and video processing applications. Using the embedded
approach and utilizing the hardware and software blocks, we have also implemented a
reference video processing application, namely, object tracking based on the platform-based
design methodology on the FPGA. A generic video processing system is shown in Fig. 1.4.
Here, the video camera captures the real-time video within its region-of-interest (ROI). The
video acquisition unit acquires the frame of images from the camera. The data processing unit
does the computation necessary to realize the specific application algorithm. This unit and a
display unit along with the requisite communication interface control, communicate and
display the processed results. The feedback from the data processing unit to video camera is
used for controlling the camera movement based on the processing and application
requirement. The following subsections describe the proposed hardware blocks and software

components along with the configurations necessary to implement the targeted application.
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Fig. 1.5: A generic image and video processing system.

151 Platform Configuration

The configuration of the ML-507 FPGA-based platform is of foremost importance for
realizing any real-time video processing application using platform based design. Subsequent
to the appropriate configuration, the platform becomes ready for embedded video processing
realization. This is achieved by using various off-the-shelf peripherals available on the
platform and generic IPs available in its associated integrated design tools. The configuration
is validated by capturing the real-time video and passing it out to the displaying unit for
preliminary testing of the implementation framework. The configuration requires 12C and
VGA bus protocols, which are controlled and managed by the embedded processor. The
connectivity of the VGA video source is supported by the video input video codec (VDEC)
chip that is available on the platform. The VDEC is configured by programming the various
control registers in it through the PowerPC processor. Similarly, the display portion of the
system uses display controller chip, which provides the facility to connect a video graphics

array (VGA) or digital visiual interface (DVI) monitor through it.

The control registers of the display controller peripheral are also programmed through 12C

bus protocol by sending data from the PowerPC embedded processor. Some simple hardware
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modules are realized in the FPGA fabric to facilitate the streaming of real-time video for
standard 640x480 VGA input and its subsequent display for validating the configuration.
The design and configuration of the platform is of generic nature and is extensible which can
be managed as per the application needs. The developed video/image read and display unit
facilitates the development of a wide range of image and video streaming applications. Some
of the video streaming application are, video streaming system [53], video streaming over
wireless network [54], traffic management [55] and wireless network quality management

system [56].

1.5.2 Video Acquisition

After configuring the platform, the VGA input video coder-decoder (codec) provides the
image frame to the FPGA fabrics. To perform the requisite image processing operations on
the image pixels, the image or frame(s) of video is/are required to reside in a memory. An
image or video acquisition unit fulfills the need of buffering the large set of image pixels in
the memory. The Xilinx ML-507 platform offers a 256 MB DDR2 SDRAM memory, in
which a large number of frames can be stored. In the proposed unit of image and video
acquisition, the DDR2 SDRAM memory is used to store a real-time video captured by the
camera. In the embedded architecture, as proposed, the ML-507 platform is utilized to realize
an image and video acquisition unit for buffering a standard 640x480 pixel frame at 60
frames per second. A video-to-frame converter hardware module is realized in the FPGA
fabric that converts the video into frames and sends them to the memory. Similarly, frame to
video conversion is realized using a frame to video conversion hardware module in the
FPGA. To control and access the DDR2 SDRAM memory, a multi-port memory controller
(MPMC) is utilized. The MPMC offers a video frame buffer controller (VFBC) protocol
which supports the frame buffering operation. The architecture uses one port of the MPMC,

which is dedicated for buffering the image frame and another port is utilized to retrieve back
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the frame from the memory. Here, both the ports work as per the VFBC protocol. To control
and manage the data buffering operation, the embedded PowerPC processor communicates
with the memory controller interface (MCI) bus. This communication is supported by the
third port of the MPMC, which independently works as per the MCI bus protocol. The
architectural arrangement uses a few generic IP elements that are offered by the integrated

design tool.

1.5.3 Arithmetic Datapath

The video processing blocks need high-performance arithmetic datapath with reasonably
good arithmetic precision. Integer arithmetic based computational operations provide
resource-efficient, high performance datapath, but they lack the arithmetic precision needed.
To achieve the required precision floating-point number system could be a good choice but
its realization is resource-intensive that slows down the datapath as compared to the integer-
based datapath. A fixed-point number system offers the area and speed advantage of integer
datapath with reasonably good precision. The fixed-point number system based datapath can
work at higher clock frequencies and provides the ease of implementation of an integer-based
datapath. In addition to this, most of the integer arithmetic based off-the-shelf hard IP
components offered by the FPGA device can also be efficiently utilized by the fixed-point
arithmetic based datapath. Thus, to fulfill the high-performance computational needs of
image processing, most of the compute-intensive operations are realized by utilizing the
fixed-point arithmetic number system. The hardware architectures are thus proposed with

fixed-point arithmetic.

154 Logarithm and Antilogarithm Units

It is well known that complex computations, such as the computation of square root and
division, can be achieved by using the logarithmic number system (LNS). The LNS

architectures require simple arithmetic operations, such as only addition/subtraction and
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shifting. The proposed hardware architectures of logarithm and antilogarithm units use the
fixed-point arithmetic. These units have been utilized for the computation of between-class-
variance needed for the global thresholding operation and for designing the hardware

architecture for other application-specific blocks.

155 Hardware Architecture of Global Thresholding

The thresholding unit works on the gray image data and computes the optimum threshold
value for the required binary conversion of gray level image. The image thresholding unit
finds a wide range of applications. Some of the popular applications are noise reduction for
human action recognition [57], automated visual inspection of defects [58], change detection
[59], real-time segmentation of images with complex backgrounds [60], text detection in
natural images [61], optical character recognition and image extraction [62,63], adaptive
progressive thresholding [6], and personal verification [4]. To achieve the real-time
computational efficiency of the global image thresholding process, the hardware
implementation of the thresholding algorithm is necessary [50,51,64]. The direct hardware
implementation of the global image thresholding algorithm as proposed by Otsu [49] boils
down to the computation of between-class variance (BCV). The BCV architecture is broken
down in hardware blocks for the computation of normalized cumulative histogram, mean and
cumulative moments, using single-cycle read-modify-write operations. The hardware unit also
requires many computation intensive resources such as iterative squaring, complex multipliers,
and dividers with fractional value accuracy [50,51]. In our work, a resource-efficient
architecture for the design of Otsu’s image thresholding algorithm and its implementation in

the Virtex-5 device available in ML-507 platform is presented.

1.5.6 PowerPC Realization of Connected Component Analysis

The connected component analysis (CCA) algorithm is taken up next for its implementation

and utilization in the embedded design framework. The CCA algorithm, segments out objects
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of interest from the background pixels by means of connected component or region labeling
[8,9]. The connected component analysis is used in a variety of applications, which includes,
finding individual letters in complex color images [65], automatic feature extraction from
scanned topographic maps [66], reading text in scene images [67], face recognition [68],
fingerprint identification [69], automated inspection [70], automatic writer identification
[71,72], computer-aided diagnosis [73], video and signal based surveillance, barcode
recognition [74], medical image analysis [7] and object recognition and tracking [75]. One of
the most widely used CCA algorithms is proposed by Stefano and Bulgarelli (SB) [76]. In our
proposed work, the equivalence handling of SB algorithm is improved upon so that number
of conflicts is less and precise results are obtained. The improved algorithm is abundant in
control and simple decision loops. Thus, the CCA algorithm has been given a software

implementation and runs on the embedded PowerPC processor [34].

1.5.7 Embedded Realization of Kernel-based Mean Shift Algorithm

In our work, we have chosen the application of real-time object tracking that utilizes the
proposed architectures and algorithms, and gives an embedded realization of it using platform-
based design methodology. Object tracking is defined as the problem of estimating the
trajectory of an object in the image plane as it moves around a scene. The object tracking
algorithm finds a wide use in the image and video processing applications including those for
augmented reality [77], automated vehicle tracking [78], target localization in unmanned air
vehicles [79], face tracking [80], identity verification [81] and many more [5,8,82]. The
object tracking algorithm that we have selected for embedded implementation is the KBMS
algorithm [27]. Researchers have reported that a hardware or hardware/software
implementation is necessary for the KBMS algorithm to achieve effective real-time

computational efficiency [83,84].
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The KBMS algorithm utilizes most of the proposed hardware architectural block along with
the CCA algorithm. The block diagram of the flow of processing is given in Fig. 1.5. After
video acquisition, the processing is done in two stages, namely target object identification
and object tracking. The identification of an object in a particular frame is done by first
converting the color pixels to grayscale, and applying an image thresholding algorithm to
segment out the foreground pixels from their background. The binary image obtained from
the output of the image thresholding unit is used by connected component labeling algorithm
to identify and segment the object from the background for the tracking application.
Subsequently, the coordinates of the target, thus obtained from object identification block, are

input to the video tracking algorithm that is based on kernel-based mean shift approach.

The datapath uses the fixed-point arithmetic, which offers reasonably good performance
with reduced hardware consumption. Apart from utilizing the hardware architectural blocks
as designed, the software tasks such as simpler data movement and control operations
required in the KBMS algorithm are handled by the embedded processor available in Xilinx
ML-507. The PowerPC processor manages the control steps of the KBMS algorithm along

with running the CCA algorithm.

1.6 Major Contributionsand Organization of the Thesis

In this thesis, we have proposed various hardware architectural modules along with their
requisite software integration for embedded realization of video processing application. The
approach followed in our work is based on the platform-based design methodology on Xilinx
ML-507 FPGA platform. The reference application chosen for utilizing various hardware
architectural blocks is KBMS object tracking algorithm.The work carried out in the thesis

makes some important contributions. The specific contributions of the thesis are listed below:
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An embedded architecture has been proposed for capturing 640x480 resolution real-
time video and buffering it in the DDR2 SDRAM and implemented in Virtex-5 FX
FPGA of ML-507 platform. This work has been accomplished after the required
configuration of the Xilinx ML-507 FPGA-based platform. This approach can further
be utilized for several video streaming applications and for applications requiring
DDR2 SDRAM frame buffering.

Resource-efficient hardware architectures for logarithm and antilogarithm computing
units have been proposed. The proposed architectures are implemented in the Virtex-5
FPGA. Using logarithmic number system (LNS), these architectures are utilized for
realizing complex arithmetic functions, as required.

The global image thresholding architecture proposed by Otsu [49] has been
implemented using the proposed architectural blocks namely, NCH, NCIA and
between-class variance (BCV).

An efficient and improved two-scan equivalence-based connected component labeling
algorithm has been proposed drawing on the work of on Stefano and Bulgarelli [76]
and implemented in the PowerPC embedded processor of Xilinx ML-507.
Hardware/software partitioning and an embedded implementation of the KBMS
object tracking algorithm has been implemented on using the ML-507 platform.
Hardware architecture for various modules have been proposed, which are shown Fig.
1.6. The proposed architectures include computation of KSLH, kernel weight
computation, weighted local histogram (WLH) computation, the similarity measure
computation, center of gravity computation (COG) and some application-specific
hardware modules. These architectural blocks are implemented in the Virtex-5 FXT

device.
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The different units of the architectures and algorithms for image and video processing
application are organized in individual chapters. The related literature review has been
covered in the respective chapters. Each chapter is dedicated to addressing the of specific
image/video processing need. The second chapter illustrates the hardware/software approach
for supporting the platform for various image and video processing applications. The various
computational building blocks used in the thesis are based on the logarithm and antilogarithm
components, which are covered in chapter three. Chapter four illustrates the thresholding unit
need for the connected component labeling algorithm that is discussed in chapter five.
Chapter six of the thesis covers the implementation approach for the kernel-based mean shift

object tracking algorithm. The detailed organization of each chapter is follows:

Chapter 2 covers the details of the hardware/software based extensible embedded
architecture for the real-time video capture/ acquisition, streaming, and its display. The
architecture is based on the shared bus topology, which is controlled by the embedded
PowerPC processor. The real-time VGA resolution for this work is 640x480and the video
frame rate is 60 fps. The hardware architectures for the video capture, video display and some
standard IP components are synthesized in the available Xilinx Virtex-5 xc5vfx70t FPGA
device. The execution of software is monitored and controlled on the hyper-terminal
managed by the UART interface provided on the platform. The video camera and the display
monitor are interfaced through the configuration of video input video codec and display
controller peripherals available on the platform. The work described in this chapter provides
the foundation for building the required architectural blocks that are needed for realizing

image and video processing applications.

Chapter 3 illustrates FPGA-based architectures for computing different complex arithmetic
functions such as division, square root and powering. To simplify the computational overhead

a very simple datapath is created. The concept of the fixed-point arithmetic is utilized to
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propose architectures for the binary logarithmic and antilogarithmic units using logarithmic
number system (LNS). This chapter also describes the details of each architectural building
block and their FPGA realization in the Virtex-5 FXT device. The fixed-point elements used

in the architectural units use the FPGA native hard IP components.

Chapter 4 proposes an area-efficient architecture for realizing an automatic image
thresholding algorithm. The selected algorithm is the Otsu’s global automatic image
thresholding algorithm. As shown in Fig. 1.6, the proposed architecture uses various building
blocks such as normalized cumulative histogram, normalized cumulative intensity area for
computing the between-class variance. The proposed architecture also utilizes the logarithmic
computational unit developed in Chapter 3. Chapter 4 also discusses the system-level
arrangement of the image thresholding computational block as soft IP along with its

communications with other IPs and different kinds of buses.

Chapter 5 proposes an improved version of one of the widely used Stefano-Bulgarelli (SB)
algorithm on connected component analysis. In our work, the equivalence handling
mechanism of the SB algorithm is improved to achieve complete merger for all the possible
cases. The improved algorithm is tested using a variety of test patterns and standard images
and compared with the SB algorithm. The results demonstrate that the improved algorithm is
simple, manages equivalences efficiently, and gives accurate count of connected components.
The algorithm runs on the embedded PowerPC 440 processor available in the Xilinx Virtex-

5 xc5vix70t device.

Chapter 6 proposes hardware software embedded implementation of KBMS tracking
algorithm. To analyze the various implementation needs, the KBMS object tracking
algorithm is realized in MATLAB and C. After analyzing the software implementation the

hardware/software implementation is proposed. The image acquisition block described in the
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Chapter 2 works as a frame buffer for the object tracking. The work of Chapter 3 is utilized to
propose and implement various architectural modules needed by the object tracking
algorithm. The work of Chapter 4 together with that of Chapter 5 provides the segmented
object for its subsequent tracking. This chapter proposes architectures for KSLH
computation, kernel weighted histogram (KWH) computation, similarity measurement, center
of gravity (COG), cumulative histogram computation, and some application specific blocks

required in the kernel-based mean shift object tracking algorithm

Chapter 7 summarizes the thesis and provides its conclusion. The chapter also discusses the

future scope of work pertaining to the thesis and each of its chapters.
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CHAPTER 2
REAL-TIME VIDEO STREAMING, ACQUISITION AND DISPLAY USING

FPGA-BASED PLATFORM

2.1 Introduction

A typical image or video processing system invariably consists of an acquisition block and an
application-specific data processing unit. The block diagram of a generic video processing
system is shown in Fig. 1.1. It consists of a video camera that captures the real-time video
within its region-of-interest (ROI), a data processing unit and a display unit along with the
requisite communication interfaces to control, communicate and display the processed
results. Quite often, prior to data processing unit, a video acquisition module for frame
buffering application is required. Some applications which do not need image memory
storage and for which video streaming is good enough include, video streaming over wireless
network [54], traffic management [55], wireless network quality management in different
network conditions [56]. In [85] an FPGA-based license plate recognition system has been
designed, which processes streaming video data. Nevertheless, a majority of image and video

processing systems require an intermediate image buffer [8,9,86].

For the rudimentary image acquisition and processing, video starter kits can also be used.
There are a numbers of video starter kits are available [43,44,45] and are elaborated in
Section 1.3 of Chapter 1. The acquisition of image and video and their processing using these
starter kits is straightforward. However, these kits are costlier and do not contain top-of-the-
line FPGA devices. The mounted FPGAs on these platforms have limited resources, which

impose constraints on implementing any reasonably complex video processing algorithms on
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these kits. Apart from the above issues, the mounted camera on the above-mentioned Kkits is

fixed and has very low resolution.

For many real-time applications like video surveillance, tracking etc. there is a need for
interfacing a higher resolution camera or a pan-tilt-zoom (PTZ) camera and other custom
peripherals with a high performance processor. Thus, to implement a complex image and
video processing algorithm there is requirement of a high-end device based FPGA platform,
which can perform such applications competitively. Therefore, for video acquisition and
display, we have selected Xilinx ML-507 platform [33], which has Virtex-5 FX FPGA device
[87] and the necessary peripherals needed for image and video processing applications. The
Virtex-5 FX series FPGAs are optimized for embedded processing and memory-intensive
applications with high-speed serial connectivity. Hey have a high-performance embedded
PowerPC 440 processor [34] which can be used to implement area-efficient embedded
systems. To handle high-resolution video, the platform requires a high-end camera, to be
interfaced with the platform. For this interfacing, the platform requires some specific

configurations.

As discussed above, in the image and video processing system the image acquisition block
plays a vital role of capturing the incoming video [2,88,89] and thus, determines the overall
performance of the system [20,90,91,92,93]. In [17] a frame grabber has been used to capture
and exchange video data with the hardware co-processor. In this approach, a LabVIEW-based
graphical development environment is used to control the frame grabber. In another approach
to capture still frames from an analog video camera, an FPGA platform based image
acquisition module is used [94]. In this method, a frame grabber card, which is a daughter
card to the FPGA board, is interfaced through an I/O port of the FPGA platform. An

embedded platform for image acquisition and processing has been developed by [91] which
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uses a combination of DSP and FPGA devices. In their prototype, a Texas Instrument’s
digital signal processor (TMS320C6416T) and an Altera FPGA (EP3C25F324) are used. In
[92] a real-time image acquisition and VGA display system has been realized on DE2
development board. This work is based on Cyclone II series FPGA (EP2C35F672C6)
available on Altera DE2 development and education board as the core control device. Along
with the platform resources, a Terasic CMOS image sensor (TRDB-D5M) has been used for
the hardware configuration. Some of the real-time implementation issues in embedded image
processing using FPGA-based architectures are presented in [93]. In this work, an Altera
Stratix FPGA (EPISF1020C7) device has been used to implement a smart camera platform.
In [20] an architecture is presented for image acquisition and processing using a CMOS
sensor for the smart camera system. In their design a Xilinx Virtex-4 FX (XC4VFX12)

FPGA based platform has been used along with embedded PowerPC 405 microprocessor.

In this chapter, we present our work on the module for video streaming, acquisition and
display on a VGA monitor using Xilinx ML-507 FPGA-based platform. The module provides
an essential common architectural block for realizing most of the practical image and video
processing applications. The ML-507 platform provides a video input video codec peripheral,
which supports the capturing of a real-time video. Similarly, to display-out the results, there
is a display controller chip available on the platform. The details of video codec and display
controller peripheral chips are covered in Appendix-B. To achieve the goals of acquiring and
then displaying out the video, the platform requires appropriate configurations of these
peripheral chips. The VGA input video codec peripheral is programmed through inter-
integrated circuit (I2C) bus protocol so that the input video can be accessed by the hardware
blocks realized in the FPGA fabrics. To interface a VGA/DVI display monitor, the control

registers of the display controller peripheral are programmed through I2C bus. The
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interfacing of a camera and a display unit to the platform set it up completely for the video

streaming applications.

This chapter additionally focuses on the architectural arrangement for real-time image
acquisition and its display. Here, real-time video in RGB analog format is captured from an
analog PTZ camera. The captured video is converted into frames and buffered in the DDR2
SDARM memory. This requires a multi-port-memory controller (MPMC). The stored frames
can be retrieved and converted back into the standard VGA resolution of 640x480 and
displayed on the VGA monitor. This module is an essential predecessor to any image and
video processing application. In the design, we stream the video frames on an individual
basis, buffer the frames in the external DDR2 SDRAM memory and display the buffered
frames through the hardware cores in FPGA fabric on VGA monitor in real-time. The
embedded PowerPC 440 processor, available on the Xilinx Virtex-5 FX FPGA device is used

to configure the platform peripherals.

This module is essential for developing any complete real-time video processing system,
which grabs image or video, processes it and shows the result on display. The module can be
utilized in a wide range of applications such as, image barcode recognition [74], change
detection [95], edge detection [96], face recognition [97] and object tracking [5,82]
application described in Chapter 6. The architectural arrangement for image acquisition and
display module presented in this chapter is also utilized for wvalidating various
hardware/software embedded video processing architectural units researched in this thesis
such as units for image thresholding described in Chapter 4 and the unit for connected

component analysis described in Chapter 5.

The organization of rest of the chapter is as follows: in Section 2.2, we describe the Xilinx

ML-507 FPGA platform set up and its required configuration for making the platform
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suitable for image and video processing applications. In Section 2.3, we describe a real-time
embedded video streaming module and its hardware/software components. Section 2.4 covers
an FPGA-based embedded architecture for acquisition of real-time video and its
implementation in the Xilinx Virtex-5 FPGA device. Section 2.5 presents the results and

Section 2.6 concludes the chapter.

2.2 Xilinx ML-507 Platform Configuration

The Xilinx ML-507 platform [33] has a Virtex-5 FX FPGA device [87] and the necessary
peripherals needed for an image and video processing system. The Virtex-5 FX series FPGAs
are optimized for embedded processing and memory-intensive applications with high-speed
serial connectivity. They have a high-performance embedded PowerPC 440 processor [34]
which can be used to implement area-efficient embedded systems. The dedicated memory
interface port of the processor enables it to simultaneously access both the memory bus and
Processor Local Bus (PLB) to maximize the throughput [98]. The Virtex-5 xc5vfx70t FPGA
device has one PowerPC440 (PPC440) processor surrounded by the FPGA fabric [33], the
details of which are given in Appendix-A. Appendix-A also illustrates about the embedded
PPC440 processor. To use the ML-507 platform for the embedded image and video
processing applications, the platform requires interfacing of an analog camera, a PAL to

VGA converter, and a VGA monitor.

We have done the required platform configuration for the Xilinx ML-507 using embedded
PowerPC processor. The PowerPC processor uses preconfigured 12C bus controller and the
processor local bus (PLB) bus controller. The processor configures the control registers of the
video input video codec. For accessing the Virtex-5 FXT FPGA embedded PowerPC

processor a design has been created in Xilinx embedded development kit (EDK) using joint
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test action group (JTAG), I12C, PLB and UART controller soft IPs. Similarly, the processor

programs the control registers of the display controller chip.

Table 2.1: VGA Timings for Resolution Video

No. of pixels | Active | Front Porch (FP) | Sync | Back Porch (BP) | Total

Horizontal 640 20 96 44 800
Vertical 480 13 2 30 525

The details of the necessary components for performing the configuration are given in
Appendix-B. Appendix-B also covers the VGA and the 12C bus protocols, which are used
for the configuration of the VGA input video codec and the display controller peripheral
available on the FPGA platform. In addition, Appendix-B also focuses on the programming
of IDT clock generator, which is used for the generation of custom clock frequency [99]. In
Table 2.1, the timing details of the VGA protocol for 640x480 video resolution at 60 frames
per second are shown. The configuration process for the interfacing of VGA input video
codec and the display controller peripheral chips on the Xilinx ML-507 FPGA platform is

given below.

2.2.1 Configuration of VGA Input Video Codec

The ML-507 platform contains a VGA input video codec connector that supports
connectivity to an external VGA source. The circuit-level arrangement of interfacing the
VGA input video codec with the FPGA pin is shown in Fig. 2.1. Table 2.2 shows the 1/O
connections for the VGA input video codec. The addresses of AD9980 control registers and
the configuration values are given in Table 2.3. The control registers of AD9980 is
configured by sending data as a master on the I12C bus by writing application software in the
‘C’ programming language. This application software runs on top of a standalone software

platform and uses the API provided by standalone software platform.
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AD9980

VGA Connector (I2C address=0X4C)
B[7:0]
Vsync (14) > (71) vsyncO B G[7:0] g
[42:49] :
Video . Hsync (13) » (70) hsync0 [28:35] R[7:0]
Camera B (3) > (2) Banno 9y | VSOUT
FPGA
G(2) *(6) Ganto 23 |HSOUT |
R (1) » (14) Ranio 25 [DATACK
66 67
SCtL SIiA
Fig. 2.1: AD9980 with an FPGA
Table 2.2: I/O Connection of VGA Input Video Codec with FPGA
Pin Type Pin Function Pin No.
Ramo Channel 0 Analog Input for converter R 14
Gamo Channel 0 Analog Input for converter G 6
Inputs Bamo Channel 0 Analog Input for converter B
HSYNCO Horizontal Sync input for channel 0 70
VSYNCO Vertical Sync input for channel 0 71
RED[7:0] | Outputs of converter R, bit-7 is the MSB | 28-35
GREEN]7:0] | Outputs of converter G, bit-7 is the MSB | 42-49
BLUEJ[7:0] | Outputs of converter B, bit-7 is the MSB | 55-61
Outputs | DATACK Data output clock 25
HSOUT (Phase}-I;l}i]gEe%ug)il‘i %(XDI"IEACK) 23
VSOUT Vsync output clock 22
Control SDA Serial port data I/0 66
SCL Serial Port Data Clock 67

AD9980 is configured for 640x480 at 60 frames per second (fps) video resolution through

programming of its internal registers. The details of each register are given in [100]. An 12C

controller is used to write and read the control registers of the AD9980.
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Table 2.3: Control Registers of AD9980

Address | Value | Address | Value | Address | Value
(Hex) | (Hex) | (Hex) | (Hex) | (Hex) | (Hex)
01 32 0A 00 14 18
02 00 0B 02 15 0A
03 48 0C 00 18 00
04 80 0D 02 19 04
05 40 0E 00 1A 1A
06 00 OF 02 1B 3B
07 40 10 00 1C FF
08 00 12 18 2D E8
09 40 13 60 2E EO

An example of the configuration of control registers using Xlic DynSend function is

shown in Fig. 2.2.

send count=XIic DynSend (BaseAddress,Address, *BufferPtr, 2, Option);
if (send count != 2 )

{
xil printf ("Error writing to address %02x\r\n", Address);

break;

}

Fig. 2.2: Configuration of control registers of the video input video codec using 12C API
(XIic_DynSend).

where,

BaseAddress : Base address of the I2C Device

Address : 7 bit 12C address of the device to send the specified data
BufferPtr : Points to the data to be sent
ByteCount : Number of bytes to be sent
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Table 2.4: FPGA Interface Pins of AD9980

Net FPGA Net FPGA Net FPGA Net FPGA
Name Pin Name Pin Name Pin Name Pin
R[0] AG5 G[0] Y38 B[0] AC4 CLAMP AH7
R[1] AF5 G[1] Y9 B[1] AC5 COAST AG7
R[2] W7 G[2] AD4 B[2] AB6 | EVEN B W6
R[3] \%i G[3] AD5 B[3] AB7 VSOUT Y6
R[4] AH5 G[4] AA6 B[4] AAS5 HSOUT AE7
R[5] AG6 G[5] Y7 B[5] ABS5 SOGOUT AF6
R[6] Y11 G[6] AD6 B[6] AC7 | DATACK | AHIS
R[7] Wil G[7] AE6 B[7] AD7 - -

The configuration of the control registers of AD9980 is accomplished by using the
Xlic_DynSend function of 12C. The macro function, Xlic DynSend, sends the 7-bit address
during both read and write operations. It sends data using polled I/O and blocks until the data
has been sent. It takes care of the details to format the address correctly. This macro is
designed to be called internally to the drivers for dynamic controller functionality. The FPGA
pins for interfacing the Analog Devices AD9980 video decoder (VDEC) device [100] is

shown in Table 2.4.

2.2.2 Display Controller Configuration

A DVI/VGA monitor can be interfaced with the Xilinx ML-507 platform by using a DVI
connector present on the ML-507 platform [101]. The DVI connector uses Chrontel
CH7301C DVI transmitter/display controller device [101]. To facilitate the display controller
for accessing the FPGA pins, the circuit level arrangement is shown in Fig. 2.3. The FPGA
device provides the digital graphics input signals to the CH7301C display controller device,
which are subsequently encoded and transmitted to the DVI/VGA monitor. The CH7301C
device accepts data over one 12-bit wide variable voltage data port, which supports different

data formats including RGB and YCrCb. The CH7301C device is controlled through 12C bus.
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The control registers of the device, which are programmed through the 12C bus, are shown in

Table 2.5.

CH7301C
(I2C Address =0X76)

v

DE |
(4) Hsync

v

(5) Vsync VGA
FPGA >
(56:50) D[6:11]

Monitor

v

y

(63:58) D[0:5]

(13) Reset

A4

S/ 56 15 14

L]

CLK_ P CLK N SCL SDA

Fig. 2.3: CH7301C interface with the FPGA device.

Table 2.5: Control Registers Value of Chrontel CH7301C Device

AddressHex) | 21 | 2D | 2E | 33 | 34 | 36 | 49
Value(Hex) | 09 | E§ | EO | 08 | 16 | 60 | CO

The signals, which are used with the FPGA device, are explained in the Table 2.6. Similar
to the VDEC register configurations, the control registers of CH7301C are configured
through IIC Xlic DynSend function. After configuring the IDT clock generator (as detailed
in Appendix-B), the VGA input video codec and the display controller devices, the Xilinx
ML-507 FPGA platform is all set for the image and video processing applications. To
interface the display controller chip with the FPGA the pin configurations are shown in Table

2.7.
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Table 2.6: CH7301C Chrontel Device Signals

Signal

Description

Data Enable (DE)

This pin accepts data enable signal, which is high when active
video data is input to the device, and low all other times.

Horizontal Sync(H)

This I/O pin receives/sends out horizontal sync input from/output to the
graphics controller.

Vertical Sync (V)

This I/O pin receives/sends out vertical sync input from/output to the
graphics controller.

When this pin is low, the device is held in the power-on reset condition,

RESET otherwise reset is controlled through the serial port register.

SPD This pin functions as the serial data pin of the serial port interface.
SPC This pin functions as the clock pin of the serial port interface.
D[11:0] These pins accept the twelve data inputs from a digital video port of a

graphics controller.

Next section illustrates an extensible hardware-software video streaming module. This
serves as a module in the general framework for all vision-based applications leveraging the
features of reconfigurable platforms, which are necessary for vision systems like camera

sensors and standard display ports. After configuring the platform peripherals, the platform is

ready to capture the real-time video.

Table 2.7: CH7301C Interface with the FPGA

Net FPGA Pin Net FPGA Pin
D[0] ABS D[9] AB10
D[1] ACS8 D[10] AP14
D[2] AN12 D[11] AN14
D[3] AP12 CLK P ALI1
D[4] AA9 CLK N AL10
D[5] AAS HSYNC AMI2
D[6] AM13 VSYNC AMI1
D[7] AN13 DE AES
D[8] AA10 RESET B AK6
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2.3 Embedded Video Streaming Module

Embedded system architecture for video streaming application is developed around the
Xilinx ML-507 FPGA platform. This optimal system integration makes use of the embedded
PowerPC440 processor, integration of intellectual property (IPs) blocks along with the design
of custom hardware realized in the FPGA fabric. The design in the FPGA is capable of
internal image and video acquisition without the aid of an external frame grabber or any
software running on an external computer. The design can work on a stream of image data
coming into the FPGA from an external camera sensor. The incoming image data is
organized into frames by the design internally and sent for the required processing and then
on to the display unit. The system offers the requisite flexibility to design and implement
embedded image and video processing applications. Here, the PTZ camera acts as a pure
input sensor for the vision based application. The design decouples the processing from the
image sensor to the FPGA and in that sense extends the functionality of the camera. The aim
is to develop the core components of this design that are implemented in the FPGA and are
part of the general underlying infrastructure of all vision-based systems and letting the

applications build themselves naturally over these components.

The existence of an embedded processor in the FPGA provides the system with the
flexibility to choose which parts of an image processing algorithm are to be implemented on
the software (PowerPC 440) and rest in the hardware as custom design logic blocks in the
FPGA fabrics. This flexible hardware/software system facilitates the development of a
vision-based system. The FPGA has sufficient computational power and proves to be a
suitable platform for developing complex applications over the lightweight acquisition,
storage and display components built inside it. In this design PowerPC 440, embedded
processor is used for the interfacing of FPGA-based custom modules and IPs along with the
configuration of platform peripherals. Fig. 2.4 shows the block diagram of the design.
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Clock
Generator GPIO
PTZ Video Display
CAMERA Decoder > 02 Controller
VGA IN Virtex-5 FPGA VGA OUT
LCD Xilinx ML-507 FPGA PLATFORM RS-232

Fig. 2.4: The Xilinx ML-507 FPGA platform as an embedded vision platform.
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hsync
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[11:0]

VGA Video OUT
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Y

Video_IN_CLK
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Resg
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Fig. 2.5: Hardware blocks for the real-time video streaming.
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The software environment of the system consists of application software and device
drivers. The hardware part of the system includes the configurable logic blocks in the FPGA
fabric. This integration of software and hardware provides the complete system functionality.
The system requires interfacing of PTZ analog camera with the FPGA platform. For this
interfacing VGA IN port is used. The video decoder chip registers are configured using the
12C bus according to the resolution and frame rate of the incoming video. This is achieved by

using the 12C bus controller’s low-level device driver functions.

Fig. 2.6: Block-diagram of the embedded video streaming module in Xilinx EDK.



To interface a VGA monitor, DVI OUT port is used after configuring video display
controller chip registers through the 12C bus. The required FPGA platform configurations for
the above and other vision-based applications are explained in Appendix-B. In next section

the details of the hardware components of the video streaming module are explained.

2.3.1 Hardware Components of the Video Streaming Module

A design is implemented in the FPGA logic which facilitates the streaming of video from
camera to the monitor through the FPGA logic in real-time. For implementation of the
design, Xilinx provided IPs, namely, digital clock manager (DCM), PLB, XPS I2C interface
together with some of the IPs from Xilinx Spartan-3A DSP video starter kit [45] IPs are
utilized along with the PowerPC 440 embedded processor. Hardware blocks used in the
implemented system are shown in Fig. 2.5. Block diagram view of the design in the Xilinx
EDK tool is shown in Fig. 2.6. A snapshot of the streaming video is shown in Fig. 2.7.

Details of each module are described in the following subsections.

Captured Frame

Fig. 2.7: A frame of size captured video from the video camera.
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Table 2.8: VGA_IN I/O Signals

Signal Name | Direction Interface Description
vsync I To the FPGA pin Vertical Sync input
hsync I To the FPGA pin Horizontal Sync Input
red(7:0) I To the FPGA pin Red input
green(7:0) I To the FPGA pin Green input
blue(7:0) I To the FPGA pin Blue input
clk I To the FPGA pin Clock input(pixel rate)
ce I To the FPGA pin Clock enable(Active High)
de o O VGA VIDEO OUT | Data Enable output(Active video)
hsync o O VGA VIDEO OUT Vertical Sync output
vsync_o o VGA _VIDEO OUT Horizontal Sync output
red o (7:0) O VGA_VIDEO OUT Red output
green_o (7:0) O VGA VIDEO OUT Green output
blue o (7:0) O VGA VIDEO OUT Blue output

2.3.1.1 VGA_IN

VGA_IN peripheral core provides a connection to the AD9980 video decoder chip. This
peripheral core brings in the input signals from the video input video codec chip, registers the
signals, and groups the video signals into a unified bus that interconnects to other IPs for
processing. Along similar lines, a bus interface called VGA VIDEO_ OUT is defined for the

VGA_IN peripheral core outputs. The details of VGA IN I/O signals are given in Table 2.8.

2.3.1.2 DE_GEN

DE_GEN peripheral core provides the ability to generate a data enable (de) signal for analog
video streams. The data enable signal marks the beginning of the active video that needs to be
written to the external memory. The DE _GEN core achieves this by analyzing the input
hsync and vsync signals combined with the front porch and back porch clock cycles based on
the VGA protocol. The PowerPC processor communicates the porch values to DE_ GEN core

over the PLB interface based on the video resolution. The vertical back porch value contains
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the number of clock cycles that lie between the active edge of hsync and the first active video
pixel. Thus, it includes the vertical back porch, the hsync pulse width, and the border
preceding the first active video pixel.

The vertical front porch value contains the number of clock cycles that lie between the last
active video pixel and the active edge of hsync. This includes the vertical front porch and the
border following the last active video pixel. The horizontal back porch value contains the
number of the lines of data that lie between the active edge of vsync and the first line of
active video. This includes the horizontal back porch, the vsync pulse width, and the border
preceding the first line of active video. The horizontal front porch value includes the number
of lines of data that lie between the last line of active video and the active edge of vsync,
which indicates start of a new frame. This includes the horizontal front porch as well as the
border following the last line of active video. Bus interfaces called VGA VIDEO IN and
VGA_VIDEO OUT are defined for the de gen peripheral core. The details of the DE_ GEN

I/O signals are given in Table 2.9.

Table 2.9: DE_ GEN I/O Signals

Signal Name Bus | Direction Interface Description
Vsync I - Vertical Sync input
Hsync I - Horizontal Sync Input
red(7:0) I - Red input
green(7:0) I - Green input
blue(7:0) I - Blue input
clk I - Clock input(pixel rate)
ce I - Clock enable(Active High)
de o O VGA_ VIDEO OUT | Data Enable output(Active video)
hsync o 0 VGA VIDEO OUT Vertical Sync output
vsync o O VGA VIDEO OUT Horizontal Sync output
red o (7:0) o VGA_VIDEO OUT Red output
green_o (7:0) (0] VGA _VIDEO OUT Green output
blue o (7:0) O VGA VIDEO OUT Blue output
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2313 VGA_OUT

VGA_OUT peripheral core provides a connection to the CH7301C DVI transmitter device.
This peripheral core takes in the VGA VIDEO IN bus (that is driven by the
VGA_VIDEO OUT port of the DE_ GEN core) and formats the video data to the format
required by the display controller device. Details of the VGA_OUT I/O signals are given in
Table 2.10.

The CH7301 is capable of driving either the DVI displays or the analog VGA displays. For
analog displays, the de signal is required. The ML-507 platform has a DVI port as the output
port, so the digital video interface signals are generated by the dvi_out core. A DVI-to-VGA
converter is used externally in case of analog displays. In the next section, we describe the

embedded video acquisition and display module.

Table 2.10: VGA_OUT I/O Signals

Signal Name | Direction Interface Description
de i I - data enable input
vsync i I - Vertical Sync input
hsync i I - Horizontal Sync Input
red_i(7:0) I - Red input
green_i(7:0) I - Green input
blue i(7:0) I - Blue input
clk I - Clock input(pixel rate)
ce I - Clock Enable(Active High)
reset I - Reset(Active High)
de O To the FPGA pin Data Enable output
hsync O To the FPGA pin Vertical Sync output
vsync O To the FPGA pin Horizontal Sync output
VGA_ data(11:0) O To the FPGA pin Data Output
VGA clk p O To the FPGA pin | VGA Clock(Positive Phase)
VGA clk n O To the FPGA pin | VGA Clock(Negative Phase)
reset n 0] To the FPGA pin |  VGA Reset(Active Low)
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2.4 Embedded Video Acquisition and Real-Time Display

As discussed in the Section 2.1, for extracting the meaning from streaming video, a selective
image and video acquisition module is necessary. The video frame that needs to be processed
requires a frame buffer memory. The frame buffer is a memory that is used to hold video
frames, which require further processing. The acquisition module stores the required frames
in the frame buffer as per the needs of the particular application. The image and video
acquisition module provides data from the extracted video frames to the application-specific
data processing unit, which, in turn, processes the data as per the required application
algorithm and provides necessary control signals to the camera to capture the subsequent

frames of interest.

The amount of memory needed to retain the frames depends primarily on the video
resolution and per pixel color depth. Following formula provides the amount of video

memory needed for particular video resolution with known per pixel color depth.

Video memory=X-resolution X Y-resolution X Number of bits per pixel (2.1)

In standard VGA video resolution of 640x480 pixels, each pixel is represented by 32-
bits. Thus, one video frame requires around 2 MB of memory. Therefore, to make a frame
buffer there is a requirement of large memory space. The available Block RAMs, which can
store up to 36 K bits of data in the Xilinx Virtex-5 FPGA, do not suffice for this purpose.
Apart from the memory size limitation, these memory elements are utilized for other fast
logic realizations in the design. Therefore, in our design a 256 MB DDR2 SDRAM memory
available on the Xilinx ML-507 platform is used for the frame buffer application. Our design
routes the frame of video from camera to the monitor through the DDR2 SDRAM memory

and the FPGA logic in real-time.
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The top-level system architecture is shown in Fig. 2.8. It consists of a Xilinx ML-507
FPGA platform, a Sony PTZ camera [102], a PAL to VGA converter [103], and a VGA
monitor for displaying the output video. It uses the video input video codec (VDEC), and the

display controller (DC) peripherals of the Xilinx ML-507 platform.

DDR2 SDRAM

PAL D| | VGA
TO T C MONITOR
VGA  PPC440
Virtex-5
ANALOG VIDEO
CAMERA

ML-507 FPGA PLATFORM

Fig. 2.8: Development platform set-up for embedded video acquisition.

24.1 The System Architecture

The system architecture of video acquisition, storage and display system is shown in Fig. 2.9.
The software environment of the system consists of application software and device drivers.
The hardware part of the system includes the configurable logic blocks in FPGA. This

integration of software and hardware provides the complete system functionality.

In this design PowerPC 440 embedded processor is used for the interfacing of FPGA-based
custom modules and IPs along with the configuration of platform peripherals. The video
input video codec chip registers and the video DVI transmitter chip registers are configured

by using the 12C bus controller’s low-level device driver functions for the resolution of
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640x480 @60 frames/sec. Programmable clock generator is used to provide the custom
clock for the VGA display. Subsequently, the design is implemented in the FPGA logic
which facilitates the streaming of video from camera to the monitor through the FPGA logic

in real-time. Details of the hardware building blocks and the IPs used are discussed below.

DDR2 SDRAM MEMORY

T

v

MULTI PORT MEMORY CONTROLLER

[ var ] [ vescT | VEBC-2
y { y

VIDEO TO FRAME TO
FRAME CORE VIDEO CORE

Sl .
P Pl

PPC440

DATA DISPLAY
COTzI("llflgOHLCLER VIDlé(())II{NEPUT OTHER CONTROLLERS ENABLE CONTROLLER
CORE CORE

FPGA

Fig. 2.9: System architecture for video acquisition.

To interface a DVI monitor, DVI OUT port of the ML-507 platform has been used after
configuring the on-board video display controller chip registers [101] through the 12C bus.
The application software is written in C language and it runs on the Xilinx-provided
standalone software platform [104]. Further, it uses the developed APIs as needed and also
utilize the required ones from among those provided by the software platform. In this
embedded architecture, peripherals like video input video codec (VDEC), display controller

(DC), and some of the Xilinx provided IPs, such as, multi-port-memory controller (MPMC)
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[105], digital clock manager (DCM) [106], Xilinx Platform Studio (XPS) I2C controller,

along with some of the Xilinx Spartan-3A DSP video starter kit [45] IPs are used. For

bussing this variety of IPs, the architecture uses two bus protocols. The 128-bit processor

local bus (PLB) protocol [98] provides the infrastructure for connecting an optional number

of PLB masters and slaves into an overall PLB system. The second bus is the memory

controller interface (MCI) which provides an interface between PowerPC 440 microprocessor

and a soft memory controller implemented in the FPGA logic [34].

The arrangement of a video frame in the DDR2 memory is shown in Fig. 2.10. Here, each

color R, G and B requires 8-bit memory storage. The last byte remains zero. One pixel

representation, this requires 32-bit storage. The row and column is defined as,

(r,c) =(Row No.xNo. of Column+Col. No.)x4

where, r=Row number of pixel in the memory

= Column number of the pixel in the memory

Address

0x00000000
0x00000004
0x00000008
0x000000016

l-Frame —— m

0x0004B000

Data
-— 32-Bit —»
B|G|R]O
B|G|R]0
B|G|R]O
B|G|R]0

e

B

G

R

(r,&) =(Row Moo Moof Colunn +Col Mo =4

Fig. 2.10: A video frame in the DDR2 SDRAM.
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Fig. 2.11: System assembly view of the video acquisition design in Xilinx EDK.

All the required interconnections among the architectural blocks are made in the Xilinx
embedded development kit (EDK) design environment. A snapshot of the EDK system
assembly view of the design is shown in Fig. 2.11. Here, the PowerPC embedded processor is
selected to control the peripherals and IPs. The design uses PLB, BRAM, UART, 12C and
DCM controllers. Custom design IPs include VGA IN and VGA OUT. To control the
DDR2 SDRAM memory, the design uses MPMC controller with its three active ports namely
MCI, VFBC-1 and VFBC-2. By using all the above IPs and the PLB bus, the system block
diagram using the EDK design tool is shown in Fig. 2.12. This figure shows the integration of
various modules for achieving the real-time frame acquisition in DDR2 SDRAM memory,
which is interfaced through the MPMC controller. The design uses two instances of the 12C
controller, which controls the video read and video display processes. The UART controller

displays the PowerPC execution sequences in a hyper terminal on the host PC.
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MPMC Module Interface
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Fig. 2.12: EDK block diagram view of the video acquisition design.
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The graphical view of the design is shown in Fig. 2.13. As apparent, apart VGA-IN,
DE GEN and VGA_ OUT hardware cores, the architecture utilizes a few more hardware
cores like MPMC, video to frame, frame to video core and display controller cores. Further,

details of each core are provided in the following  sub-sections.
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Fig. 2.13: EDK graphical view of the video acquisition design.

2.4.1.1 Multi-port Memory Controller (MPMC)

The MPMC is a parameterizable memory controller that supports DDR2 SDRAM [105].
MPMC provides access to memory for one to eight ports. It has been used for interfacing to

DDR2 SDRAM. Video frame buffer controller (VFBC) is a special interface for video frame
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data and is an essential part of the multi-port memory controller. It is used in video
applications where hardware control of two-dimensional (2D) data is needed to achieve real-
time operation. The VFBC allows a user-defined Intellectual Property (IP) to read and write
data in 2D sets regardless of the size or the organization of external memory transactions. It
has separate asynchronous first-in first-out (FIFO) interfaces for write data input, command

input and read data output.

2.4.1.2 Videoto FrameCore

The video to frame peripheral core controls the storing of video frames into frame buffers. It
writes video data to the VFBC interface on the MPMC memory controller. The video to
frame core is connected with DDR2 SDRAM via the multi-port memory controller and it

works in synchrony with the VGA IN and DE_GEN cores.

2.4.1.3 FrametoVideo Core

The frame to video peripheral core reads video frames out of memory. It provides pixel clock
of 25.175 MHZ to the display controller peripheral core to display digital video resolution of
640x480 video on the DVI/VGA monitor. The frame to video core retrieves the active
video data from the DDR2 SDRAM memory via VFBC interface of the MPMC controller.

The fetched data is used by the display controller unit.

2.4.1.4 Display Controller Core

The display controller peripheral core provides a connection to the CH7301C DVI transmitter
device. This peripheral core accepts the external clock signal generated by the IDT clock
generator along with the output data of frame to video peripheral core and formats the active
video data to the format required by the DVI transmitter device. The ML-507 platform has a
DVI port as the output port. A DVI-to-VGA converter is used for the display on a VGA

monitor.
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24.2 System Validation

The system arrangement to validate the real-time video acquisition, storage and display
system is shown in Fig. 2.14. In this arrangement, the ML-507 platform is connected with
host computer running EDK, via a platform cable USB II and a RS-232 serial cable. The
RS-232 connection is made to observe execution of the C program running on PPC440
processor on the hyper-terminal. A VGA monitor is connected to the platform through the

DVI OUT port by using DVI to VGA converter.

PTZ Camera

VGA
Cable

H

Platform Cable
USB II RS-232 VGA Display

Monitor

Host \
Computer

Fig. 2.14: System arrangement to validate the real-time video acquisition.

2.5 Results

The real-time video is captured from the PTZ camera, which is interfaced via a PAL to VGA
converter with the Xilinx ML-507 platform. The VGA timing details of the design as
obtained from Xilinx ChipScope Pro analyzer for 640x480 @60 fps video resolution is

shown in Fig. 2.15.

60



. L 51 ER a0 540 5 L] (L 1209 e %00 e
Buﬁw WIIIIEIIIIIIIIIIII h

TR N ]

wsne

- B

=G

e R

Fig. 2.15: Timing details of the video acquisition design obtained from Xilinx ChipScope Pro
analyzer.

The Fig. 2.15 shows the timing details of vsync, hsyne, R, G and B signals. The captured
video is converted into a set of frames by using customized logic in FPGA fabric. The stored
frames are converted back into VGA format by using customized FPGA logic, which are
displayed on a VGA monitor using Xilinx ML-507 platform. In the timing diagram, the vsync
signal shows the control of the VGA monitor to start displaying a new image or a new frame
of a video. The hsync signal controls the monitor to refresh another row of 640 pixels. The

video signal redraws the entire screen 60 times per second.

Host Computer
Running EDK

PTZ
Camera

PAL-to-VGA A Frame of Xilinx ML-507
Converter Captured Video FPGA Platform

Fig. 2.16: Complete system set-up for embedded video acquisition.
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Real-time video in RGB analog format is captured from the PTZ camera. The captured
video is converted into the frames and buffered into DDR2 SDARM memory using MPMC.
The stored frames are converted into VGA resolution of 640x480 and displayed on the
VGA monitor. The architecture uses Xilinx ML-507 FPGA platform. A captured video frame

with the complete set-up of the design is shown in Fig. 2.16.

The total device utilization summary of the design is shown in Fig. 2.17. As apparent, the
design uses mainly, the available PowerPC processor, 20 % of the slice registers, 17 % of the

slice LUTs and 19 % BRAMs.
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Fig. 2.17: Total device utilized in the video acquisition design.

Fig. 2.18 shows the slice utilization of each module in the FPGA fabric. From the total
device utilization summaryi, it is evident that, apart from the PowerPC 440 processor, the total
FPGA resources utilized are only to extent of eighteen percent (18%). The unutilized FPGA
resources are sufficient for implementing many practical real-time video processing

applications.
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Fig. 2.18: FPGA slice utilization of each module for the embedded realization of video
acquisition.

2.6 Conclusion
We have demonstrated a platform-based design approach for an image/video streaming
application. In the developed extensible hardware-software video streaming module, we
stream the frames on an individual basis through the FPGA fabric using custom designed
hardware IPs in real-time. It enables the camera to be used in a variety of real-time
applications.

We have also demonstrated an embedded design for video acquisition and display, which is
a predecessor to any image and video processing application. In this design, we stream the
video frames on an individual basis, buffer the frames in the external DDR2 SDRAM
memory and display the stored frames through the hardware cores in FPGA fabric on a VGA
monitor in real-time. The embedded PowerPC 440 processor, available on the Xilinx Virtex-5

FX FPGA device, is used to configure the platform peripherals for both the above designs.
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CHAPTER 3

HARDWARE REALIZATIONS OF LOGARITHM AND ANTILOGARITHM

FUNCTIONS

3.1 Introduction

Real-time data processing applications such as image and video processing, multimedia,
digital signal processing (DSP) and 3D graphics require area-efficient complex arithmetic
elements like divider, square-root, exponential, powering and inverse square-root circuits
[48,107]. These computing elements should be fast, area-efficient and low power. The
straight hardware implementation of these complex circuit elements is slow, power hungry
and takes large silicon area. A representative graph, which shows the time consumption of
arithmetic operations in 3D graphics processor, is shown in Fig. 3.1 [47]. As apparent, the
division (DIV) operation takes around eighty-one percent (81 %) of the total computation

time.

Fig. 3.1: Time consumption of arithmetic operations in a 3D graphics processor. Adapted
from [47].

64



The complex functions, such as division, square root, exponential, power and inverse
square-root can be easily realized through the logarithmic and antilogarithmic computational
circuits [48]. The logarithmic number system (LNS) simplifies complex arithmetic operations
into simple arithmetic operations such as, addition/subtraction and shifting operations. The

mechanism of this simpler arithmetic approach is shown in Fig. 3.2.

Input Output
Data Si Data
oy imple .
. ) Antil '
> Logarlthmlc . Arithmetic — nti g —»
Conversion Conversion
(+,—,>>,<<)

Fig. 3.2: A simple arithmetic approach for realizing complex arithmetic functions.

The mathematical expressions for the realization of complex arithmetic functions are
shown in Table 3.1. This simplicity and improvement in design metrics are obtained at the
cost of conversion overheads from integer to logarithmic and vice versa, yet the overhead is

much smaller and it is bearable for realizing most of the practical embedded systems

[48,108,109].

Thus, the hardware realization of logarithm and antilogarithm functions is of paramount
importance, not to mention their usefulness in implementing other important complex
arithmetic operations [48,108]. For hardware implementation, field programmable gate array
(FPGASs) is one of the most promising candidates where many predefined and pre-fabricated
components, such as dedicated adder, multiplier, embedded memories and embedded
processors are available along with plenty of logic resources within a single FPGA device
[34,87]. The FPGA macro elements can be utilized for the basic hardware building blocks,

like RAM, adder, multiplier [87]. Usually, the elements of the FPGA are available for non-
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floating point data path, as the need of floating point data type is very specific and consumes
large amount of logic resources. These pre-fabricated elements can be used by incorporating
fixed-point data type [47,110,111] which leads to a low-cost, fast and energy efficient circuit
implementation. A datapath incorporating the fixed-point arithmetic unit can be implemented
using minimal FPGA resources. Thus, we can make compact, fast and power saving

hardware architecture using minimal logic resources.

Table 3.1: Complex Arithmetic Operations using Logarithmic Number System

Operation Representation | Normal Arithmetic Bina'rax i'&?r%a;tiilhmic
Division DIV X/y log, x—log, y
Reciprocal RICP 1/X —log, X
Square root SQRT Ix log, x> 2
Reciprocal square root RSQR 1//x —log, x> 2
Square SQR X2 log, X< 2
Powering PWR XY y.log, X

In this chapter, two architectures are proposed for the hardware realization of logarithmic
and antilogarithmic functions, which are subsequently realized in the FPGA. The
architectures are based on piecewise approximation methods for binary logarithm and
antilogarithm functions. The fixed-point number system is employed for implementing these
architectures. The architecture of logarithm computation is capable of finding approximate
logarithm of an integer number, integer with fractional number and only fractional number.

The architecture uses the same set of circuit elements for all computations.

The architecture for antilogarithm computation, works for both positive and negative
binary numbers. In the proposed architecture, a unique barrel-shifter is designed which shifts

the input data to the left or right by the given count. To validate the approximation efficiency,
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error analysis with thousands of uniformly distributed numbers is performed. The proposed

architectures are then implemented in the Xilinx Virtex-5 xc5vfx70t FPGA device.

The logarithm unit designed in this chapter is utilized for the implementation of image
thresholding algorithm discussed in Chapter 4. In addition, computational blocks such as
square root and divider required for kernel-smoothed local histogram computation discussed
in Chapter 6 are realized in hardware utilizing these logarithmic and antilogarithmic blocks
using the concept of LNS. Further, the Bhattacharya coefficient computation, center of
gravity computation and computation of mean shift based object tracking algorithm discussed
in Chapter 6 primarily rely on the hardware blocks developed in this chapter. These

realizations are explained in subsequent chapters of this thesis.

The rest of this chapter is structured as follows: Section 3.2 presents the piecewise linear
approximation methods for computing binary logarithm and antilogarithm. The formats of
fixed-point number system are explained in Section 3.3. Section 3.4 presents the proposed
architecture of the binary logarithmic approximation unit along with all its constituent
architectural building blocks. This section also covers the error analysis performed. Section
3.5 provides the details of the FPGA implementation of the proposed binary logarithmic unit.
Section 3.6 presents the proposed architecture of the binary antilogarithmic approximation
unit along with all the constituent architectural building blocks. This section also presents the
error analysis results of the proposed binary antilogarithmic approximation unit. The FPGA
implementation results of the proposed architecture are illustrated in Section 3.7. Finally,

Section 3.8 concludes this chapter.

3.2 Approximation Methods for Computing Binary Logarithm and
Antilogarithm

To compute binary logarithm and antilogarithm the popular computational methods used are

as follows: The first method is the straight-line approximation method as suggested by
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Mitchell [111]. The second method is comprised of the piecewise linear approximation
methods, given in [48,108,109,112,113] and the approximation method followed by error
correcting method [109]. The piecewise linear approximation method is suitable for an area-
efficient implementation. In the proposed work, for the computation of logarithm and
antilogarithm of a binary number the piecewise linear approximation method is used, which

is explained below.

3.2.1 Binary Logarithmic Approximation Method

Let B be a binary number in the range2J <B< 2", 1=(-1,-2,-3,..,3), k =(0,1,2,3,...,K)

B can be further written as:
K .

B=Y2'h (3.1)
i=J

where = ‘0" or ‘I’. Let b, be the most significant leading-one bit, i.e., b, ='1". Now the

number B can be written as:

k-1
B =2" (”ZTWJ (3.2)
i=J
Let,
k-1
fi=>2"h (3.3)

Sincek > j, f,will be in the range0< f <1. Therefore, the number B becomes,
B=2“(1+ f,). Now, by taking the binary logarithm of this equation we can get,
log, B=k +log,(1+ f,). Thus, the characteristic part (integer) of log, B is simply k; and

the mantissa part (fractional) is the termlog,(1+ f,).To obtain logarithm of a fractional
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number we used a shifting method. Let X be a fractional binary number and we have to

calculate it’s logarithm. When the number X is left-shifted by n bits (n=16) it becomes

(x<<n)=x2". Let the shifted value is represented as X', so, log,X =log,x—n.

3.2.2 Approximation Method for Antilogarithm Computation

Let X be a binary number in the range 27'° <X <2*(1.4.16 fixed-point format). Let k,
represents the integer (characteristic) part with most significant bit as the sign bit and f,

represents the fractional part (mantissa) of the fixed-point binary number X. The value

X[20] = 0 represents that the input binary number is a positive number and if X[20]=1 the

input number is a negative number. Based on the fixed-point number format, the computation

of antilogarithmic value is given in (3.4):
Antilog (X)=2% =2%2" (3.4)

Depending on the sign bit, the k,and f, values of (3.4) are modified. Here, in piecewise
linear approximation the fractional data ( f,) is approximated in the range of 0<f, <1. When

the data is negative it goes outside the above range, we simply subtract the fractional part
from ‘1°, and the integer part is decremented by ‘1°. By this, the same approximation is also

used for the negative binary numbers. The modified values of k, and f, can be incorporated

to obtain the antilogarithm and (3.4) can be written as,

2% 2f sign bit=0

Antilog (X)=2% =
2% 2% sjgn bit =1

(3.5)

Based on the piece wise linear approximation method, the fixed-point datapath is used for
the computation of binary logarithm and antilogarithm computation. The formats of the

fixed-point number are given below.
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3.3 Fixed-Point Number Formatsfor the Proposed Architectures

The fixed-point number system can be used in place of a floating-point number system
[47,48]. The hardware architecture for fixed-point arithmetic is much simpler as compared to
that for floating-point arithmetic, as fixed-point arithmetic uses only integer datapath.
Therefore, the fixed-point unit requires less area and hence it consumes less power [47].
Further, the hardware architecture of the fixed-point arithmetic can be easily implemented in
a small FPGA fabric. Along with this, we can also use the available optimized FPGA macro
elements, which are customized for the desired arithmetic operations at higher clock
frequencies. For the implementation of the binary logarithmic architecture, a 16.16 fixed-

point format is used which is shown in Fig. 3.3.

Bit index‘ b31 ......................... bI6 b15 ........................ bo |
Value
(091) 215 .............. 21 20 2—1 2—2 .............. 2—16

‘ Imaginary Decimal Point ‘
<—16 bit Integer part > 16 bit fraction part —>

A

Fig. 3.3: Fixed-point number format for the binary logarithm computation.

Similarly, for the implementation of datapath for the proposed antilogarithm architecture, a

1.4.16 fixed-point format is used, which is shown in Fig. 3.4.

Bit index X[20]] o v e XII6] [X[I5] « v vovoe e eeeaes X[0]
Value
(0,1)

........ 21 20 2—1 2—2 2—16

Sign |«—— 4 bit integer part —»«——— 16 bit fraction part —»

Fig. 3.4: Fixed-point number format for the binary antilogarithm computation.
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3.4 Binary Logarithmic Approximation Circuit and the Proposed
Architecture

Mitchell introduced a binary logarithmic conversion algorithm [111]. It is demonstrated that
by using binary logarithmic operation, the multiplication and division can be modified in the
form of a simple binary addition (or subtraction) operation. The other mathematical
operations such as squaring, powering, reciprocal etc. can also be derived by incorporating

the binary logarithmic and antilogarithmic units [48] which is given below.

The straight-line approximation of binary logarithmic as proposed by [111] requires an
error-correcting stage. To improve the functional accuracy level of Mitchell’s algorithm some
VLSI architectures have been proposed [48,108,109,112]. In most of these approaches, the
logarithmic curve is divided into a number of different regions and the piecewise straight line

approximates each region.

A two-region approximation is presented in [112]. A four-region linear approximation with
look-up table (LUT) based residual error correction stage that compensates for the piecewise
interpolation error is presented in [88]. In [108,114] the two, three and six regions are
considered. A CMOS VLSI implementation of a 16-bit logarithmic converter is proposed in
[114]. A CMOS VLSI implementation of 32-bit binary-to-binary logarithm converter is
presented in [88]. A region approximation scheme for binary logarithmic conversion is
presented in [108]. It illustrates a CMOS VLSI implementation of a logarithmic computation
circuit. All the above methods use straight-line segments to approximate the precise
logarithmic curve such that the values of constant and slopes in each region of the intervals
become multiple of powers-of-two integers, so that the hardware cost of the interpolation is

minimal. The truncated fractional part is used to correct the approximation error.
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3.4.1 TheProposed Architecture

As explained in the approximation approach (Section 3.2.1), the characteristic part (K, ) can
be easily generated by incorporating a leading-one finder (LOF) block whereas the fractional
part approximation (FPA) unit obtains the mantissa part. The block diagram of the binary

logarithmic computation scheme is shown in Fig. 3.5.

Here, the LOF block represents a 16-bit leading-one finder circuit, which receives 16-bit
input and provides a 4-bit encoded output containing the position of leading-one bit in the 4-
bit binary number format. The bits after the leading-one position are applied to the FPA unit,
which provides the approximated fractional part of the input number. The outputs of LOF and
FPA units are combined which provides the binary logarithmic of the input number. One

extra bit (S) represents the sign of the result.

32{3
16

/ A

16

OR LOF FPA
(S) (k) log,(1+ f,)

f 1 4 16
\J y
21 %logz(B)

Fig. 3.5: Binary logarithmic computation scheme.

Based on the above concept, we propose an area-efficient architecture of a binary
logarithmic approximation unit. The proposed architecture utilizes fixed-point data format

and is capable of finding its binary logarithm in the range (27" < N <2"—1) with n=16. Along
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with the FPGA fabric, the datapath of the proposed architecture uses FPGA off-the-shelf
component such as, adder and multiplier (DSP48E). The proposed architecture is able to find
out the binary logarithm of a 16-bit integer number, 16-bit fractional number or a 16.16-bit
fixed-point number. The error analysis is performed for both the cases, with only fractional

number in the range of o< f, <1 as well as with the fixed-point number. The implementation

results show the presented architecture is simple and area-efficient i.e. it consumes very few
FPGA slices. The error analysis up to the five places of decimal depicts that the proposed
architecture has 0.05 % error with 16.16 fixed-point numbers and 0.34 % with fractional

number ( f, ). This error is minimal and it is bearable for a practical embedded system.

In the proposed architecture, the eight-region piecewise linear approximation is used as in
[48]. The approximation coefficients are stored in the eight locations of an 18-bit ROM. The

top-level view of the proposed architecture is shown in Fig. 3.6.

B[31:16] >

sign
\{
B[31:0] » 1 SEL
\ 4 m
MUX_OUT[31:16] .
MUX . 1 SEL 2
> LOFI6 20
- 16 4 (4.16)
B[15:0] &—— »{0 MUX [/
X*0000"
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31 20
Y
n

- /
™| BSHFT 7 FPA 7
31

Fig. 3.6: Proposed architecture for the binary logarithmic computation.
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Here, the OR gate (five 4-bit OR gate network makes a 16-bit OR gate) receives sixteen
bits of the input B[31:16]. As discussed in the fixed-point format representation, the upper
sixteen bits of the input contain the integer part and the lower sixteen bits contain the
fractional part. If the input number has an integer part, the OR gate output will be ‘I’
otherwise the OR gate output will be ‘0’. The output of the OR gate is provided to a 32-bit,
2-to-1 multiplexer select line which selects either the input word or the fractional part with
appended zeros. Based on the OR gate output the input multiplexer routes the selected data to
the leading-one finder (LOF16) and to the barrel shifter (BSHFT) circuit [108,114]. The
LOF16 circuit receives the upper 16-bits of the multiplexer output, which are examined for

leading-one. The internal detail of the LOF16, BSHFT and FPA blocks are discussed below.

3.4.2 Leading-OneFinder (LOF) Circuit

The leading-one finder (LOF) is a 16-bit circuit. Usually a normal leading-one finder
searches for the leading-one serially from MSB to LSB, which is a slow process as shown in

Fig. 3.7.

TR

Fig. 3.7: Serial evaluation of the leading-one bit.

We can make a parallel/serial combination of leading-one finders to make a fast leading-
one finder circuit as shown in Fig. 3.8. Here the 16-bit data is organized into four groups,
each group having 4-bits. The 4-bits of a group are evaluated serially using a serial 4-bit LOF
circuit [108], and all groups work concurrently. The 4-bit LOF circuit utilizes six 2-to-1

multiplexers and evaluates the inputs from MSB to LSB serially. As shown in Fig. 3.9, the 4-
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bit output of the circuit provides the information about the leading-one bit and its
corresponding position. To realize a 16-bit leading-one finder circuit (LOF16), the 4-bit LOF
circuits are organized in to two stages so that concurrent evaluation of four LOF4 groups

could take place. The circuit organization for the LOF16 is shown in Fig. 3.10.
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Fig. 3.8: Parallel/ serial evaluation of the leading-one bit.
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Fig. 3.9: 4-bit leading-one finder (LOF4).
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Fig. 3.10: Detailed circuit of a 16-bit leading-one finder (LOF16).
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The simplified block diagram of the 16-bit LOF circuit (LOF16) is shown in the Fig. 3.11.
In the (LOF16), four 4-bit LOF circuits are organized in the first stage, which receives 16-bit
input and provides four 4-bit output groups. The output of each LOF4 circuit is provided to a
4-bit OR gate (OR4). The outputs of each OR4 gates are provided to the second stage of the
LOF4 circuit. The second stage LOF4 circuit selects the first stage LOF4 circuit, which

carries the leading-one. The four outputs of the second stage LOF circuit are fed to the select

Fig. 3.11: Block diagram of the LOF16.
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lines of four 4-bit multiplexers. The first input of each multiplexer receives 4-bits from the
outputs of the first stage LOF circuits and the second input is connected to logic ‘0°. The four
4-bit outputs of the multiplexers are fed to a binary encoder circuit which encodes these 16-

bits into a 4-bit binary equivalent.

The 4-bits of the encoder output provide the position of the leading-one bit in the input.
The truth table of the encoder is shown in Table 3.2. Here, ‘X’ can be logic ‘0’ or logic ‘1°.
The computed leading-one bit carries the information about the characteristic part of the
binary logarithm. To compute the fractional value of the binary logarithmic, the bits
following the leading-one bit, are passed on to a barrel shifter (BSHFT) circuit for further

processing as discussed below.

Table 3.2: Leading-One Finder (LOF16) Encoder

Address Encoder Out
S
0000000000000000 0000
0000000000000001 0000
000000000000001X 0001
00000000000001XX 0010
0000000000001 XXX 0011
000000000001 XXXX 0100
00000000001 XXXXX 0101
0000000001 XXX XXX 0110
000000001 XXXXXXX 0111
00000001 XXXXXXXX 1000
0000001 XXX XXXXXX 1001
000001 XXXXXXXXXX 1010
00001 XXXXXXXXXXX 1011
0001 XXXXXXXXXXXX 1100
O0I XXX XXXXXXXXXX 1101
OIXXXXXXXXXXXXXX 1110
IXXXXXXXXXXXXXXX 1111
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3.4.3 TheBarrd Shifter (BSHFT) Unit

After obtaining the leading-one bit, we evaluate the information about the characteristic part
of the binary logarithm. In order to compute the fractional value of the binary logarithmic, the
lower order bits following the leading-one bit are provided to a binary barrel shifter (BSHFT)
circuit. The BSHFT circuit is composed of two 31-bit, 8-to-1 multiplexers and one 31-bit,

2-to-1 multiplexer as shown in Fig. 3.12.
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Fig. 3.12: Barrel shifter circuit (BSHFT) used in the binary logarithm computation unit.
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It provides selection bits for the fractional-part approximation (FPA) circuit for computing
fractional value of the binary logarithm. The selection process for required bit shifting in the
BSHFT circuit is shown in Table 3.3. As explained in the Section 3.4.2 and shown in Fig.
3.11, the LOF16 circuit provides 4-bit output which is represented as J3:0]. Bit §3] is
utilized to select the right most multiplexer of BSHFT circuit, which is shown in Fig. 3.12. In
the circuit S[2:0] are used to select sixteen different input combinations through two 8-bits
multiplexers. Here, bits S [2:0] are provided to the select lines of two multiplexers.
Depending upon the bit value of S[3], any one of the multiplexer is selected. The selected
multiplexer routes its input data to the output. The selection criteria is given in the Table 3.3.

The output of BSHFT circuit is provided to a FPA unit, which is explained below.

Table 3.3: Truth Table for Realizing the Barrel Shifter

S Z
0000 | X “00000000”
0001 | input(16 downto 0) & “00000000000000”
0010 | input(17 downto 0) & “0000000000000”
0011 | input(18 downto 0) & “000000000000”
0100 | input(19 downto 0) & “00000000000”
0101 | input(20 downto 0) & “0000000000”
0110 | input(21 downto 0) & “000000000”
0111 | input(22 downto 0) & “00000000”
1000 | input(23 downto 0) & “0000000”
1001 | input(24 downto 0) & “000000”
1010 | input(25 downto 0) & “00000”
1011 input(26 downto 0) & “0000”
1100 | input(27 downto 0) & “000”
1101 | input(28 downto 0) & “00”
1110 | input(29 downto 0) & ‘0’
1111 input(30 downto 0)
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3.4.4 Fractional Part Approximation (FPA) Unit for Logarithm Computation

The architecture of a 31-bit fractional part approximation (FPA) unit is shown in Fig. 3.13. In

the circuit shown in the Fig. 3.13, an 18X 8 bit size ROM is used to store the approximated

coefficients obtained from [48]. First 3-bits of the BSHFT output ( f, ) are used to address the

ROM. The contents of the ROM are shown in Table 3.4. The first eight-bits from the MSB

side of the ROM content are multiplied with the output of the BSHFT unit ( f,). For this

multiplication, an FPGA hard IP multiplier (DSP48E) is used.

/ » ROM

3
c
m 3 10
31 log,(1+ f))
/ I , 2 |
/ X Fo—
16 16
Fixed-Point Fixed-Point
Multiplier Adder

Fig. 3.13: Fractional part approximation (FPA) unit for the binary logarithm computation.

The output of the multiplier and the rest ten bits of the ROM are added by a fixed-point

adder. The output of the adder provides the approximated mantissa (value of fractional part

( f,) of the binary logarithmic of the numbers).
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Table 3.4: ROM Contents for the Binary Logarithm Computation

Address Content
000 101011110000000000
001 100110110000010100
010 100011100000101110
011 100000010001010100
100 011101110001111011
101 011011100010100111
110 011001100011010111
111 010111110100001000

As discussed and shown in the Fig. 3.5, the generated characteristic and mantissa parts are
combined which gives the binary logarithm of any 16.16 bit fixed-point binary number, in the
1.4.16 fixed-point format. Here, the first bit represents the sign of the output, the next four
bits represent the characteristic part and the remaining 16-bits show the fractional value of the
output. The functionality of the proposed architecture is validated by performing the required
error analysis. The next section illustrates the details of error analysis performed using

uniform random numbers.

3.4.5 Error Analysisof Logarithmic Approximation

To perform error analysis for the design, multiple sets of uniform random numbers (N) are
generated. The range of N is (0<N<2"—1). These random numbers are converted into a 32-
bit (16.16) fixed-point data format. The converted random numbers are applied to the
implemented design through a VHDL test-bench input file [115]. The output of the test-bench
is converted into its corresponding real data type. The converted data, which consists of the
computed binary logarithm result, is written into a binary file. The computed data are
compared with the standard binary logarithm outputs up to five places of decimal digits. The

graph of the computed logarithm is shown in Fig. 3.14(a). The percentage error between the
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standard logarithmic output and the computed outputs are plotted in a graph, which is shown

in Fig. 3.14(b).

log,(N)

K

(a) (b)

Fig. 3.14: (a) Computed logarithms for 16.16 fixed-point numbers (b) associated percentage
error in computation.

The computational error of the implemented logarithmic computation circuit vis-a-vis the
standard logarithmic values is less than 0.05 % over the entire range. Along similar lines, the
computed outputs of the circuit for various random fractional values are plotted Fig. 3.15 (a).

The fractional input numbers lie in the rangeo < f, <1. The percentage of computational error

in the computed output is shown in Fig. 3.15 (b), maximum percentage error being 0.34 % .
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Fig. 3.15: Computed logarithms for the fractional numbers (b) associated percentage error in
the computation.
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The above error analysis shows that the proposed circuit has minimal errors in both the
cases. The associated error is acceptably small for most of the practical image processing

applications requiring embedded real-time solutions.

3.5 FPGA Implementation of Binary Logarithm Unit

The proposed architecture is implemented in Xilinx Virtex-5 xc5v{x70t FPGA device. The
technology schematic of the implemented design as obtained from the Xilinx ISE tool is

shown in Fig. 3.16.

[ Lt .

Fig. 3.16: FPGA-based technology schematic for the proposed architecture of the binary
logarithm computation unit.
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It is evident from the schematic, the implemented design consumes only a few FPGA slices
and other logic resources. The FPGA device resource utilization summary for the design is
given in Table 3.5. It is evident from the Table 3.5, that the proposed architecture utilizes
only 209 LUTs out of available 44800 LUTs, which represent around 0.47 % utilization. The
IOB utilization is 8.3 % (53 out of 640). Similarly, out of the 128 available DSP48E slices,

the proposed architecture uses only 02 slices, which represents around 1.6 % utilization.

Table 3.5: FPGA Device Utilization for the Binary Logarithm Computation

Device Elements Utilization
LUTs 209 /44800 (0.47 %)
External IOBs 53/640 (8.3 %)
DSP48Es 2/128 (1.6 %)
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Fig. 3.17: Power analysis of logarithm computation architecture.

The architecture consumes 40.29 mW of total power, computed using Xilinx XPower
analyzer [52], as shown in Fig. 3.17. Next section illustrates details of the binary

antilogarithm approximation unit and its implementation in the FPGA device.
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3.6 Binary Antilogarithm Approximation Unit and its Proposed
Architecture

An antilogarithm approximation process without any hardware implementation is presented
in [111,116]. As discussed in [108,109,114] the hardware implementation of antilogarithm
converter is not very common in the literature. An antilogarithm converter architecture using
CMOS is proposed in [114]. In this implementation, the circuit accepts 4-bit binary word to
control a 16-bit logical shifter. The circuit is primarily designed for the positive binary
numbers and the computational error analysis is not covered. The same concept is used to
design a 32-bit antilogarithm converter [108,109]. Here, a 5-bit word of the characteristic part
is used to control a 32-bit logarithmic shifter [108]. The upper 12-bits of the mantissa are
provided to an arithmetic correcting circuit, which is based on 2, 6, and 7 region-correcting
algorithms [108]. In another approach, a lookup table (LUT) and interpolation-based method
is used to find the antilogarithm and has been implemented in the Xilinx xc2vp30 FPGA
[117]. The implementation also focuses on the positive binary numbers. A piecewise linear
approximation method for the positive and negative input numbers is discussed in [109]. In
an implementation of the method, the integer and the fractional parts are computed separately

which are then utilized by a barrel-shifter [48].

We propose a new architecture for the binary antilogarithm computation, which accepts
both positive and negative input numbers. A curve-fitting method for the eight-regions of
piecewise linear approximation of the fractional part is used to obtain the approximation
coefficients. The computed approximation coefficients are stored in a small ROM, which are
used by a fractional part approximation (FPA) unit. The integer part controls a unique barrel-
shifter (BSHFT) which shifts the FPA output data. Depending upon the polarity of the input

binary number the shifter shifts the input number to either left or right. The datapath of the
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proposed architecture utilizes fixed-point arithmetic. The architecture is implemented in a

Xilinx Virtex-5 xc5vix70t FPGA device.

The implemented architecture utilizes available off-the-shelf FPGA components like
multiplier and adder along with some of the FPGA slices. The device utilization shows that
the proposed architecture utilizes minimal FPGA resources. The computational error analysis
using thousands of uniform random numbers is performed and it is established that the

proposed architecture provides antilog computation with acceptably small error values.

3.6.1 Architectural Building Blocks

As discussed in Section 3.2.2, the approximate antilogarithm value of an input binary number
(X) is calculated by (3.4). The top-level block diagram of the proposed antilogarithm
architecture is shown in Fig. 3.18. Here, a fractional part approximation (FPA) unit finds the
value 2" as required in (3.4). After finding the fractional part, a barrel-shifter (BSHFT) is
used to left or right shift the computed FPA output value by the number of bits corresponding

to the characteristic part as per (3.4).

X [20] * f
1 1
v
X[19:16] —e—» 1 SEL
MUX(U) —> 8
0 4 o
=
E
1 <
BSHFT >
X[15:0]—
FPA —>
» 17

Fig. 3.18: Block diagram of the binary antilogarithm computational unit.
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Depending upon the sign bit of the input number X[20], the input values for the FPA unit
are selected by the two multiplexers (MUX (U) and MUX (L). The upper MUX (U) selects

the values of k, (4-bit) of the integer part of X [19:16], as per (3.5). The output of the MUX

(U) 1s provided to the BSHFT unit which is used for the required shifting of the fractional
part approximate value computed by the FPA unit. In a similar way, depending upon the sign
bit, the lower MUX(L) selects the 16-bit fractional input number (5). The output of this
multiplexer is also provided to the BSHFT unit. The details of the FPA and BSHFT units are

given below:

3.6.1.1 TheFractional Part Approximation (FPA) Unit

In the proposed architecture the eight-region piecewise approximations is used to find the

fractional part 2" [48,116] The fractional part can be approximately represented as:
2 =m.f, +¢ (3.6)

where 0<i<7and it represents the eight piecewise linear regions. The calculated

approximation coefficients (m andc ) are stored in the eight locations of a 19-bit ROM,

which is implemented in the FPGA fabric. The contents of the ROM are given in Table 3.6.

Table 3.6: ROM Contents for the Antilogarithmic Computation

ROM Address Values
000 0101110010000000000
001 0110000001111111110
010 0110111101111100011
011 0111100101111000100
100 1000001001110100000
101 1000111101101100000
110 1001101101100011000
111 1010100101010110111
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The first 8-bits from the MSB of the 19-bit ROM content are used to store the values of m,

and the rest 11-bits retain the values ofc . To calculate the binary approximation of 2" as per

(3.6), the first three bits of the fractional binary number address the ROM. The ROM
provides the above approximation coefficients. To compute (3.6), a fixed-point binary

multiplier is used for the multiplication of m with the 16-bit fractional input number ( f,).
The multiplier output is fed to a fixed-point adder, which adds ¢ to it. The complete circuit

arrangement of the FPA unit is shown in Fig. 3.19.

l X[15:0]
X[15:0] X[15:13]
Y
m
Fixed-Point / /
Multiplier ! / ROM
8 19
17

11 f ¢

Fixed-Point
Adder

\\ 17 FPA /

2 fa l FPA Out

Fig. 3.19: Fractional part approximation (FPA) unit for binary antilogarithm computation.
3.6.1.2 Barrel Shifter (BSHFT) Unit for the Binary Antilogarithm Computation
A barrel shifter unit is used to shift the computed value of the ‘FPA_Out’. The shifted data
(BSHFT 32) is output of the fractional part approximation unit (3.4) shown in Fig. 3.20. As
discussed in the Section 3.6.1, depending upon the sign bit of X, the shift can be to the right
or left. When input number is positive, the FPA output value is left-shifted by k_ bits.
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Whereas, when the number is negative, the FPA output value is right-shifted by the k, bits.

Depending upon the sign bit the appropriate input data (3.5) is selected which is shown in
Fig. 3.18. The four bits of the integer part of the input number (X) controls the BSHFT data

routing operation. The details of shift operation are given in Table 3.7.
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Fig. 3.20: Barrel shifter (BSHFT) unit for the binary antilogarithm computation.

The BHSFT unit is composed of five 32-bit multiplexers (MUX32) arranged as per the

diagram shown in Fig. 3.20. As given in Table 3.7, the X[19]bit is used to control a two-

90



channel 32-bit multiplexer (MUX32A). The MUX32A takes the two groups of 32-bit data,
which comes from two multiplexer (MUX32B and MUX32C). These two multiplexers are

eight-channel 32-bit multiplexers that are controlled by bit X[18:16]. When bit X[19]="0",
the MUX32 (A) routes the data of the MUX32(C) to the output, and when X[19]="1" it

passes the MUX32 (B) data to the output.

Table 3.7: BSHFT Data Routing Operation for the Binary Antilogarithm Computation

MUX Select Lines 32-bit MUX2 (A) Input Values
X[19] X[18:16] X[20]=1 X[20]=0
0 000 FPA_ Out FPA Out
0 001 FPA Out >1 FPA Out<<1
0 010 FPA Out>>2 FPA Out <<2
0 011 FPA Out >3 FPA Out <<3
0 100 FPA Out>>4 FPA Out <<4
0 101 FPA Out >5 FPA Out <<5
0 110 FPA Out>>6 FPA Out <<6
0 111 FPA Out>>7 FPA Out<<7
1 000 FPA Out >8 FPA Out <<8
1 001 FPA Out>>9 FPA Out<<9
1 010 FPA Out>>10 FPA Out<<10
1 011 FPA Out>>11 FPA Out<<11
1 100 FPA Out>>12 FPA Out<<12
1 101 FPA Out>>13 FPA Out<<13
1 110 FPA Out >14 FPA Out<<14
1 111 FPA Out >15 FPA Out<<15

MUX32 (B) and MUX32(C) take their input data from a chain of two-channel 32-bit
MUXs (D, E). These multiplexers receive the seventeen-bit data from ‘FPA_Out’. While
shifting, the required amount of zeros is appended to the left or right of the input data

(FPA_Out) to make a 32-bit data width for all the multiplexers. Here, depending upon the
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sign-bit polarity, the two-channels of the MUX-chain operate. The multiplexer chain routes
the left shifted data for positive input data and the right shifted input data for the case of

negative input data.

3.6.2 Error Analysisof the Binary Antilogarithm Approximation

To perform the error analysis multiple sets of uniformly distributed random numbers (N) in
the range of 27" < N <2 —1 are generated. These random numbers are changed into a 21-bit
(1.4.16) fixed-point data format. These inputs are applied to the implemented design through
a VHDL test-bench input file. The output of the test-bench is converted into the real data type
and written into a binary file. The converted data are compared with the standard binary
antilogarithm outputs up to five places of decimal digits. The percentage error between the
standard antilogarithm output and the output obtained from the proposed architecture are
plotted in a graph, which is shown in Fig. 3.21. The maximum percentage of computational

error is 0.16 %, which is acceptable for most image processing applications.

% Error
E
% Error
mar

N
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Fig. 3.21: Percentage computational error (a) for positive input binary numbers (b) for the
negative input binary numbers.
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3.7 FPGA Implementation Results of the Binary Antilogarithm Unit

The proposed architecture for the antilogarithm computation is implemented in the Xilinx
Virtex-5 xc5vix70t FPGA device. The FPGA technology schematic for the implemented
design is shown in Fig. 3.22. As it is evident from the technology schematic, the implemented

design utilizes a few FPGA resources.
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Fig. 3.22: FPGA-based technology schematic for the implemented binary antilogarithm
computational unit.
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The FPGA device resource utilization summary of the design is given in Table 3.8. It can
be observed from Table 3.8, that the proposed architecture requires only 0.37 % of the FPGA
LUTs. Along with this, the antilogarithm computation block requires 0.78% (1 out of 148) of
the DSP48E slice available with the Virtex-5 FPGA device. The proposed architecture,
utilizes simple arithmetic circuits that use a fixed-point datapath, which leads to reduction of
the number of input/output blocks (IOBs). The implemented architecture utilizes only 8.28 %

IOBs. The total power consumption of the proposed architecture is found to be 21 mW.

Table 3.8: FPGA Device Utilization for the Binary Antilogarithmic Computation

Elements Proposed Architecture

Slice LUTs 163 /44800 (0.37 %)
External IOBs 53/640 (8.28 %)

DSP48Es 1/128 (0.78 %)

3.8 Conclusion

Hardware architectures for binary logarithm and antilogarithm approximation circuits are
proposed in this chapter. The proposed architectures are suitable for embedded image and
video processing applications. The proposed architectures are based on fixed-point data type

and are implemented in Xilinx Virtex-5 xc5v{x70t FPGA device.

The hard macro cores like the adder and the multiplier available in FPGA device are
utilized for the computation of the mantissa part of the binary logarithm. A leading-one finder
circuit obtains the characteristic portion of the binary logarithm. The FPGA device utilization
shows that the proposed architecture utilizes minimal FPGA resources. The power
consumption of the proposed architecture for logarithm computation as computed using
XPower analyzer is 40.29 mW. The error analysis of the implemented architecture is
performed with thousands of uniform random numbers. The error analysis shows that the

proposed architecture provides adequate levels of accuracy. Maximum error is percentage of
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0.05 % with 16.16 fixed-point numbers and 0.34 % with fractional numbers in the range

0<f <l1.

For the design of the antilogarithm unit, the characteristic portion of the binary number is
used to shift the computed mantissa part with the help of a barrel-shifter. The barrel-shifter
uses a few multiplexers to route the logical shifted value of the mantissa part. The output of
the barrel-shifter is the approximate value of the binary antilogarithm. The FPGA device
utilization data shows that the proposed architecture uses minimal FPGA resources and it
consumes 21 mW power. The error analysis of the implemented architecture is performed
with thousands of uniformly distributed random numbers. The error analysis shows that the
proposed architecture provides adequate level of accuracy. The percentages of computational

errors are found to lie in the range of 0.08%for positive binary numbers and —0.2 % to

+0.6 % for negative binary numbers.

The real-time realization of complex arithmetic functions such as square root function, the
raised to the power function, and the division function on fixed-point numbers required in
Chapter 4 and 6, have been made possible through the transformation and realization of the
computations in the logarithmic domain and then back into the fixed-point number system
using the logarithm approximation and antilogarithm approximation unit described in this

chapter.
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CHAPTER 4

ARCHITECTURE AND HARDWARE REALIZATION OF AN |IMAGE

THRESHOLDING ALGORITHM

4.1 Introduction

In various image and video processing applications, it is necessary to extract the gray levels
of object pixels, which are significantly different from the object’s background [3,8,118]. The
image thresholding is defined as an operation, by which a gray-level image is converted into
its corresponding binary image. The thresholding operation is used to extract an object from
its background such that each pixel is either classified as an object pixel (white) or a
background pixel (black) [119]. The image/video acquisition module developed in Chapter 2
provides 640x480 pixel RGB image. A RGB-to-gray conversion module converts the RGB
image into its corresponding gray-scale form. The thresholding unit provides an optimum
threshold value by which the gray scale image is converted into a binary image. The obtained
binary image is used by the connected component labeling algorithm, which is described in

Chapter 5.

In an image, the thresholding operation can be performed globally or locally. In the global
or fixed thresholding process, the threshold value is constant throughout the image, whereas,
in the local or variable thresholding, multiple threshold values of the same image can exist.
Many image and video processing applications need image thresholding unit [119], which
include, text detection in natural images [61], adaptive progressive thresholding [6], noise
reduction for human action recognition [57], real-time segmentation of images with complex
backgrounds [60], personal verification [4], optical character recognition and image

extraction [62,63], automatic target recognition [120].
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In [119], the thresholding methods are categorized into six broad groups namely, histogram
shape-based methods, clustering-based methods, entropy-based methods, object attribute-

based methods, spatial methods and local methods.

A clustering-based nonparametric, unsupervised method of automatic threshold selection
for image segmentation in gray-level images was presented by Otsu [49]. Otsu’s method is a
very popular thresholding technique, which is applied to a wide variety of applications such
as: text detection in natural images [61], adaptive progressive thresholding [6], noise
reduction for human action recognition [57], real-time segmentation of images with complex
background [60], personal verification [4], optical character recognition and image

extraction [62,63].

These applications require real-time computational efficiency of the image thresholding
process. To achieve this, hardware implementation of the thresholding algorithm is necessary
[50,51,64]. A direct implementation of Otsu’s algorithm in hardware requires many
computation intensive resources such as iterative squaring, complex multipliers, and dividers
with fractional value accuracy [50,51]. A VLSI architecture for the segmentation of
endoscopic images using Otsu’s approach has been proposed in [50]. A field-programmable
gate array (FPGA) based architecture for the between-class variance (BCV) computation of
Otsu’s algorithm has been presented in [51] for Xilinx Virtex xcv800 hq240-4 FPGA device
where a 256x256 image data is stored in four 16 K RAM chips. Along similar lines, an
architecture for the BCV, which employs Altera’s divider and multiplier megacores, is

presented in [64].

This chapter presents a resource-efficient architecture for the design of Otsu’s thresholding
algorithm and its implementation in the FPGA device. The proposed architecture is

implemented for a 640x480 size of input image that is captured by a real-time high-
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resolution analog camera and buffered in a DDR2 SDRAM memory. The computation of
between-class variance in Otsu’s algorithm requires the evaluation of a normalized
cumulative histogram, mean and cumulative moments, which need single-cycle read-modify-
write operations. These operations are achieved by incorporating the FPGA slices, dual-port
Block RAM memories and DSP slices with DDR2 SDRAM as a frame buffer. The datapath
of the architecture is fixed-point arithmetic based and it does not require any divider. The
proposed design is implemented in the Xilinx Virtex-5 xc5vfx70tffgl136-1 FPGA device,
available on the Xilinx ML-507 platform [33]. In order to develop the required hardware and
software in an integrated manner, the Xilinx Embedded Development Kit (EDK) design tool
is used [46]. The proposed architecture is utilized for the connected component analysis

algorithm, which is covered in Chapter 5.

The rest of the chapter is organized as follows. In Section 4.2, the RGB-to-gray conversion
process is described. Section 4.3 discusses the Otsu’s automatic threshold selection method.
In Section 4.4 the hardware implementation issues of Otsu’s algorithm are covered. Section
4.5 is used to describe the proposed architecture for FPGA implementation of Otsu’s global
automatic image thresholding algorithm. This section also covers the details of each building
blocks of the proposed architecture. Section 4.6 shows the implementation results. The
proposed architecture can also be utilized as a core, Section 4.7 covers the details of system

arrangement with thresholding unit used as a core. Finally, Section 4.8 concludes the chapter.

4.2 RGB to Gray Conversion

Image thresholding algorithm works on the gray scale pixels. The gray pixels are obtained
from the RGB color pixels. The captured RGB pixels (each 8-bit) can be converted into the

8-bit gray level format by the following expression [121,122].
Grayscale = Rx0.2989+Gx0.5870+ Bx0.1140 (4.1)
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The above expression uses the weighted sum of R, G and B. Since division by powers of
two (through shifting) is hardware friendly, we have used division friendly approximations
for coefficient values of (4.1). The following equation is used to convert the RGB image, into

reasonably acceptable results in the form of the gray level image.

Grayscale = Rx0.25+Gx 0.5+ Bx0.125 (4.2)

To obtain a gray-level image from RGB data, the above expression (4.2) uses only shifting
and addition operations. The components in expression (4.2) consist of 2-bit right shifted Red
(R) pixel, 1-bit right-shifted Green (G) pixel and 3-bit right-shifted Blue (B) pixel. The
shifted R, G and B pixels are accumulated, which provides the corresponding gray-scale
image. The converted gray-level image with 8-bit gray values (0...255) are buffered in the
DDR2 SDRAM memory. The RGB2Gray unit uses embedded PowerPC 440 processor and
the Xilinx video frame buffer controller (VFBC) available with its multi-port memory
controller (MPMC) IP [105]. The read-write process uses a 32-bit native port interface (NPI)
protocol, which is synchronous with the MPMC controller. The details of the NPI protocol
are explained in Section 4.7. The converted gray-level image is used in the automatic
thresholding unit. In the next section, the details of automatic threshold selection method

given by Otsu are explained.

4.3 Otsu’s Automatic Threshold Selection M ethod

Otsu presented a clustering-based global thresholding method, which is based on the shape

properties of the gray-level histogram [49]. The algorithm is summarized in the following.
Let N, represents the number of pixels with gray level i, L be the number of gray levels
[LL2...L]in the image and N be the total number of pixels in the image i.e.
N =n, +n, +...n_. The probability distribution or the normalized histogram of the gray level

image is defined as,
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r] L
p=ﬁ, p=0, > p=I
i=0

(4.3)

If we divide the pixels into two classesC, and C, corresponding to background (0) and

foreground (1) pixels by threshold at level k, then the probabilities of class occurrence are:

() =Pr(C)=>"p

w,(k)=Pr(C) = Z p

i=k+1

The class means are given by,

=3~

— W,

L

The total mean-level of the original image is,

For any value of k

Oy + O = My,

where, @)+ @ =1.

The individual class variances corresponding to the background and foreground are,
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(4.5b)
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(4.7)



709 =3 i~ (WP

L

700 = Dl -m T~

Now, the within-class variance (WCV) is defined as,
(K) = wy (K)o (K) +w, (K)oy (K)

and the between-class variance (BCV) is given as,

g (K) = wy (K)w, (K)(1, — 41’

We can express the total variance as,

UTZ = U\,zv(k) + wo(k)[l - wo(k)][ﬂo(k) — (k)]2

(4.8a)

(4.8b)

(4.9)

(4.10)

4.11)

In (4.11) the first term is WCV (o (K))and the second term is BCV (o (K)). It is noted that

within-class variance is based on the second-order statistics (class variance), while the

between-class variance is based on the first-order statistics (class mean). The total variance is

constant and independent of k. So, minimizing the within-class variance is the same as

maximizing the BCV (o} (K)).Thus, the gray level for which the BCV is maximum is chosen

as the most suitable threshold value (K" ), which can be expressed as,

* 2
k' =arg max og(K)

(4.12)

The conceptual diagram for the computation of optimum threshold value using Otsu’s

algorithm is shown in Fig. 4.1.
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Cumulative Histogram a(K)

Computation
Between-Class Variance <
ﬂ(k) Computation
Cumulative Intensity Area )
Computation yaas Og ( k)
Y
max ( o (K) )
Computation

l(k*)

Fig. 4.1: Block diagram for computing optimum threshold value using Otsu’s algorithm.

As apparent to compute the BCV, there is requirement of the cumulative histogram w(K),
and cumulative area ((K) computation. The total mean-level of the image can be computed
through 14(K) computing block. The optimal threshold (K*) is obtained through a sequential

search for the maximum of & (K) for0 <k < L, shown in the Fig. 4.1.

4.4 Hardware lmplementation | ssues Related to Otsu’s Algorithm
As we know that the optimal threshold (K" ) is obtained through a sequential evaluation for the

maximum of o (K) for 0 < k < L. Now, by using (4.4) and (4.5), we can write (4.10) as,

05> =@, (K) [H%(k)]L‘f ;f‘kk) - a)ﬂ(kk)} (4.13)

The direct hardware implementation of the BCV computation (4.13) is shown in Fig. 4.2.
After computing the cumulative histogram (CH) and the cumulative intensity area (CIA), the
computed values are stored in to two RAMs. We observe that a direct implementation of
(4.13) requires a large number of compute-intensive complex operations such as, two

divisions, one squaring and three multiplications.
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Apart from this, to normalize the computed data (4.3) it also requires a separate
normalization unit, which ultimately turns into a division process [51]. Since Otsu’s method

needs maximization of BCV of the foreground and background pixels of the image so that an

optimum threshold (k*) can be established. The between-class variance (4.12) can also be

further written as given as:

[ 1ty .X(K) = (k)] (4.14)

(0=
709 = i = k)]

where, the zeroth-order cumulative moment is,
k
(k) = Z o (4.15)
i=0
and the first-order cumulative moment is given by,
k -
uky=>i.p (4.16)
i=0
and the total mean value can be derived as,
L .
e = i = u(L) (4.17)
i=0

As evident from the expression of between-class variance (4.14), the computation of
o4 (K") requires the computation of terms a(k)in (4.3) and (4.15), u(k) in (4.3) and (4.16).
The BCV equation (4.14) can be converted into simple addition and subtraction operations by

taking the logarithm of both sides of (4.14) as,

log,02(K) = 2log, [, (k) — (k)] - log,@(K) ~ log,[1 — (k)] (4.18)

and the optimum threshold can be obtained as,

104



k' =arg max log,oz (K)

Thus, we can get the optimum value of threshold (K™ ) by a sequential search for the

maximum of log,o5 (K)in the range of k.

4.5 TheProposed Architecturefor Otsu’s Algorithm

The details of the proposed architecture for computing Otsu’s algorithm are shown in

Fig. 4.3.
40
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CLK  ———»{Clka 32
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Fig. 4.3: Detailed structure of the proposed architecture for computing Otsu’s algorithm.
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This architecture for Otsu’s thresholding algorithm is based on the concept of logarithmic
number system (LNS) as explained in the previous section. It utilizes the realization of
logarithmic function as presented in Chapter 3. The proposed architecture is realized for the
640x480 pixel input image that is captured by a real-time high-resolution analog camera

and buffered in a DDR2 SDRAM memory.

The computation of between-class variance in Otsu’s algorithm requires the evaluation of a
normalized cumulative histogram and the mean and cumulative moments, which is achieved
through single-cycle read-modify-write operations. These operations are achieved by
incorporating in the datapath, the FPGA slices, dual-port Block RAM memories and the DSP
slices along with the DDR2 SDRAM as a frame buffer. The datapath architecture is fixed-

point arithmetic based and it does not require any divider or normalization unit.

The required normalization in normalized cumulative histogram (NCH) computation is
obtained through adding the normalization constant (which is the reciprocal weight of the
total number of pixels) with the computed cumulative histogram. In a similar fashion, the
need of normalization is also taken care of in the computation of normalized cumulative
intensity area (NCIA). This following subsection presents the various architectural building

blocks for the implementation of Otsu’s algorithmic the Virtex-5 FPGA device.

The simplified block diagram of the proposed architecture is shown in Fig. 4.4. Here, NCH
and NCIA blocks hold the computed zeroth-order cumulative moment (4.15) and the first-
order cumulative moment (4.16). Both NCH and NCIA blocks are realized using FPGA
BRAMS. We obtained the result of computations of (4.15) and (4.16) for each intensity level,
k, using single-cycle read-modify-write operation without the need of any normalizing divider

unit of equation (4.3).

106



Normalized Cumulative Normalized Cumulative

Histogram (NCH) Intensity Area (NCIA)

w(K) u(k)

(k) He 7
32
1
0 40
= (0)
RAM 1(K) RAM
Fixed-Point 32
Multiplier v
Fixed-Point Adder ? ’@ g \"‘ %
3 32 |
3
=
3
1 Il
<
y(K) =1-ax(k) 32 32 32 X
A h v
RST —"1 LOGBCV
CLK —*
2.log,x(k) —log, y(k) —log, (k)

v log, st(k)

MAX

max(logzaé(k))
' K

Fig. 4.4: Block diagram of the proposed architecture for computing Otsu’s algorithm.

The divider to compute the BCV (4.14) is replaced by incorporating a binary logarithmic
computation circuit, as direct division operation is complex, area-inefficient and slow. The
modules of the architecture are implemented using fixed-point number format as explained

below.
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45.1 Fixed-Point Number Format

To use the optimized FPGA macro elements available with the FPGA device we have used
fixed-point arithmetic. In the proposed architecture, most of the operations are performed in a
32-bit (16.16) unsigned fixed-point number format. Fig. 4.5 shows the format of the fixed-
point number, which is same as that used in the computation of logarithm of a binary number

as discussed in the Section 3.3 of Chapter 3.

Bitindex | B - - oo b, Bs b,
Value
(0,1) 215 ............... 21 20 2—1 2—2 ............... 2—]6

<«—— 16-bit integer part ———»<———— 16-bit fractional part ——

Fig. 4.5: 32-bit fixed-point number format.

4.5.2 Normalized Cumulative Histogram (NCH) Computation

Normalized cumulative histogram computation requires hardware acceleration to satisfy the
high-speed needs for real-time thresholding operation. To compute a histogram in a single-
cycle per pixel manner, a read-modify-write operation is needed. We can achieve a read-
modify-write operation per clock cycle by incorporating a dual port BRAM memory. The
single-cycle read-modify-write operation can be achieved by operating one port of the dual-
port BRAM in the read-first mode and other port as a write-first mode as shown in Fig. 4.6(a)

and Fig. 4.6(b) respectively.

Each memory cycle can be either a read or a write, so we need to divide each pixel clock
cycle into two sub-cycles: a read cycle for getting the current value, and a write cycle for
updating the memory content [123]. This is achieved by operating the dual ported BRAM on
both the edges of the video clock. The circuit arrangement for the NCH computation is

shown in Fig. 4.7. With active high enable (ENA) and write enable (WE) signals, the port A

108



of the BRAM operates on the rising edge of the video clock, which is applied at port CLKA

in the read-first mode. Similarly, with the active high enable (ENB) and write enable (WEB)

signals along with active low reset (RSTB) signal, the port B operates on the falling edge of

the video clock, which is applied at CLKB port.

PORT A 256%32
EN — \
> WEA DO
RE ] / DOA 5 IN 7@»
DATA DIA 32
32 CE
ADDRA » ADDRA
8
CLKA - BRAM REG
(Read First Mode)
(@)
256%32
PORT B S sE
EN . 32 N
we — WEB DOB . MUX 32 32
32 * CE DO
DATA » DIB
32 * REG
8
CLKB » CLKB
BRAM
(Write First Mode)

Fig. 4.6: BRAM read-write mode (a) read-first mode (b) write-first mode.

(b)

We can get the normalized cumulative histogram in the same clock cycle in which the

read-modify write operation is being performed. For this, the reciprocal weight of the total

number of pixels, i.e., 1/ N is calculated. The content of the memory locations addressed by
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each newly arrived pixel is incremented by the computed constant value (1/N). After
completion of read-modify-write cycle, the BRAM memory locations hold the normalized

cumulative histogram.

PORT A 256%x32
=
]
BRAM OI
. (@)
» DIA (@)
Const <
CLK —» CLKA
32
EN — | ENA (Read First Mode)
RE —» WEA 32
DDR2 Data » ADDRA
S Incrementer

8 >  ADDRB 2

[

=

EN — | ENB §

Write First Mode
WE ——» WEB ( ) a(k)
RST ———»{ RSTB DOB / .
/ / o
CLKB —» CLKB 32 1
PORT B 256%32

Fig. 4.7: Normalized cumulative histogram (NCH) computation block.

An example of this process is shown in the Fig. 4.8. Here for each arrival of a new pixel the
respective value in NCH BRAM is incremented by 1/Nand written back to the same
memory location. By taking reciprocal value of the total pixel counts (i.e.,
1/N=1/307200=0.0000032552) we have obtained a fractional value, which can be easily
represented in 32-bit unsigned fixed-point format as 0.0000369D (Hex). Here, we have used
all the 32 bits for the internal datapath in 0.32 fixed-point format. Based on the data size of
this constant value we have selected a 256x32 bit size dual port BRAM memory. The

computed normalized cumulative histogram for all the data pixels is available in the BRAM
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memory locations in 32-bit unsigned fixed-point format (16.16) as per the format shown in

oW WA OW AN O
L

o
Z

Data 10> 10 < 3 >—< 10 >—< 3 >—<I 10 >
| |

Read > “—.—.—o <2/N >—< I/N >—<3/N >
F?rit 0 >_<|1/N | | | |
| | | | |
Write [ [ | [ [

First /N >—<2/N <IN <3N >—<2/N >—<4/N >

Fig. 4.8: Normalized cumulative histogram (NCH) computation timing diagram.

The ModelSim [124] snapshot of the normalized cumulative histogram (NCH)
computation block is shown in Fig. 4.9. Here, it is shown that the BRAM which stores the

NCH values are incremented with each arrival of its input data on its input port.

With the active enable (en) and write-enable (WE), the BRAM works at each edge of the
clock (clk) and it increments its address locations at each arrival of input by I/N. In the
timing diagram shown in Fig. 4.9, the RAM memory locations 0, 8, 253, 254 and 255 are

shown.
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4.5.3 Normalized Cumulative Intensity Area (NCIA) and Total Mean Computation

To compute the first-order normalized cumulative intensity area, (K) (4.16), we pre-
calculate the constant terms,i/N, in the range of 0<i<255. These values are stored in 256
locations of a ROM, starting from 0 to 255, in the 32-bit unsigned fixed-point format. Similar
to the NCH computation, the circuit for the first-order cumulative moment and mean
computation also utilizes dual-port BRAMS. The circuit arrangement for the u(k)

computation is shown in Fig. 4.10.

RAM OUT
48 48
A\ Y
ROM =
)
CLKB —{ CLK ; Adder
RST —= RST 2 +
EN o EN 54 PORT A 256x48
48 4 ADD OUT
RE —» RE » DIA
CLK ——»CLKA
ADDRA EN » ENA (Read First Mode)
256x24 RE — »|{WEA
»ADDRA BRAM
ADDRESS 8 *| ADDRB
EN ——»| ENB -
(Write First Mode) K
RST——»{RSTB DOB >

CLKB——»{ CLKB 32

PORTB  256x48

Fig. 4.10: Normalized cumulative intensity area (NCIA) total mean computational block.

In this circuit arrangement, a read-modify-write operation per clock cycle is obtained by
incorporating a dual port BRAM memory, similar to the NCH computation. The data for

which the cumulative moment, #(k) and mean (), are to be computed, address the dual port
BRAM at its address bus. Here, the maximum value of 4 _can consist of 16-bit integer value;

whereas the minimum value of (k) can be represented in 32-bit fractional value. Therefore,
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we have selected a 48-bit internal data width of the RAM as well as that of fixed-point adder
circuits. The outputs of the circuit is in 32-bit (16.16) unsigned fixed-point format. The

representation has 1.53xe—5 level fractional value accuracy.

45.4 Binary Logarithmic Between Class Variance (LOGBCV) Computation Unit

As explained in Section 4.4, the between-class variance (4.14) is calculated by taking the
binary logarithm of o (K) (4.18), which is shown in Fig. 4.11. For the computation of binary

logarithm of binary number, the architecture developed in Chapter 3 is used. In the present

context, it is summarized below.

Ur
(k) (k)
32 32 32
Fixed-Point —
Multiplier
! - X .
Fixed-Point 32 U 32 —_
Adder — %
|
3
1 L Py
/ 4
y(kK)=1-a(k) T
32 1 3 0
32 <
<
A A
RST —» LOGBCV

CLK —» 2log,x(k)—log, y(k) —log, (k)

l 1Og20-28(k)

Fig. 4.11: LOGBCV computation.

To compute the logarithm of the binary number we have to compute the characteristic and

mantissa parts separately as shown in Fig. 4.12. The characteristic part of the logarithmic
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value (K) is obtained by incorporating a leading-one finder (LOF) circuit, whereas, the
fractional part approximation unit provides the fractional part of the logarithm. The details of

these units are discussed in the Chapter 3 (Section 3.4.2).

The 16-bit leading-one finder (LOF16) circuit is designed by arranging four 4-bit leading-
one finder (LOF4) circuits in first stage and one 4-bit LOF in second stage. The circuit also
uses four 4-bit OR gates (OR4) and four 4-bit multiplexers (MUX4). The 16-bits from the
MUX4 outputs are provided to a binary encoder, which provides 4-bit binary equivalent of
the leading-one bit position in the input binary sequence. The circuit arrangement of LOF16

is shown in Fig. 4.13.

R LOF
16 (k) 4
log,(N)
N ——F—» >
37 16
> FPA
16 log,(1+ f) 12

Fig. 4.12: Logarithmic conversion unit with leading-one finder and fractional part
approximation units.

The LOF16 output controls a barrel-shifter (BSHFT), which sends the required bits to the
fractional point approximation (FPA) unit, which is covered in the Chapter 3 (Section 3.4.4)
and re-shown in Fig. 4.14. Here, in our implementation of the Otsu’s thresholding
algorithm, the anti-logarithm conversion circuit is not required as we are interested in finding

out at which grey-level the logarithm value attains its maximal value.
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Fig. 4.13: 16-bit Leading-one finder (LOF16).
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Fig. 4.14: The fractional part approximation (FPA) unit of binary logarithm computation.
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455 MAX Circuit

The MAX circuit receives input from the LOGBCV unit and searches for the appropriate
value of threshold (K" ) for which log, o (K) obtains its maximum value. This is shown in

Fig. 4.4. This block has been designed using a 16-bit comparator circuit.

4.6 Resultsand Discussion

The proposed architecture for Otsu’s thresholding algorithm has been implemented by us in
VHDL and synthesized using Xilinx ISE 14.2 targeted for the Xilinx Virtex-5 xc5vfx70t
ffg1136-1 FPGA device. The device utilization summary for the main resource elements is
shown in Fig. 4.17. In order to compare the implementation results of the proposed
architecture we have selected the architecture proposed in [50], and [51]. The hardware
architecture for computation of between-class variance as proposed by [50] and that by [51]
had been implemented by [51] on Xilinx Virtex xcv800 FPGA. Table 4.1 shows the

comparative results.

Table 4.1: FPGA Device Utilization for the Proposed Architecture for Threshold

Computation
Elements Architecture[50] | Architecture[51] Proposed Architecture
Image Size 256256 256x256 640480
Image Buffer RAM RAM DDR2
Area (Slices) 622/9408 (6.6%) 109/9408 (1.2%) 168/11200 (1.5%)
External IOBs 113/166 (68.1%) 49/166 (29.5%) 33/640 (5.2%)

It can be observed that the proposed architecture requires only 1.5 % of the FPGA slices
for the computation of between-class variance (4.14). Along with this, to compute the
cumulative mean (4.15) and moments (4.16) we are using 2.7% (4 out of 148) of the Block
RAMs and 3.9% (5 out of 128) of DSP48E slices available with the Virtex-5 FPGA. The total

power consumtion of the proposed thresholding architecture is 15 mW.
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Device utilization Summary
(FPGA:Xilinx Virtex-5 xc5vfx70t)
33

Device Utilization (%)

Logic Resource Utilized

Fig. 4.15: Device utilization summary for the implementation of the thresholding architecture
in the FPGA.

In addition, the number of IOBs (input/output blocks) used is also reduced. This is because,
in the proposed architecture, the threshold value can be readily obtained by logarithmic
approximation of between-class variance, which requires a simpler arithmetic circuit with
fewer bit representations using fixed-point arithmetic. In the implementation, we have used a
standard VGA resolution image of size of 640x480 pixels which is stored in the off-chip
DDR2 SDRAM, whereas in the implementations of [50,51] the image has been kept on

FPGA-based RAM resources.

4.7 Thresholding Unit as an IP Core and the Required System-Level
Arrangement

The system-level arrangement of the image thresholding computational block as a
hardware IP along with its communications with other IPs and buses is shown in Fig. 4.16.
The proposed architecture uses two bus protocols for communication with the processor. The
first one is a 128-bit processor local bus (PLB) protocol, which provides the infrastructure for

connecting a PLB master and slave into an overall PLB system. The second bus is the
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memory controller interface (MCI) bus which provides an interface between the PowerPC
440 microprocessor and a soft memory controller implemented in FPGA logic. In order to
develop the required hardware and software in an integrated manner, Xilinx Embedded

Development Kit (EDK) design tool has been used.

A riB  FPGA
XPS IIC
DVIOUT |g— —p |CONTROLLER -
CODEC —
[ Thresholding |« =
DISPLAY | g
CONTROLLER
%
—
CLOCK | — =
GENERATOR al 2
DCM  ja—p| FRAME TO ol & 5
1 viko core [*]E A g
> O é)
— >
& =
UART L% > ;5
Other I/O Controller <> T s a
Peripherals & |«— —» ol £
P €| VIDEOTO |apefz| >
Connectors FRAME CORE 21 = 8
DATA ENABLE| 4, — 5
CORE g
VGA IN VIDEO INPUT =
— !
copec [T " CORE le—»| rprcaso  [EPE

Fig. 4.16: System arrangement with the threshold computational unit.

Real-time analog video is captured from the camera with a resolution of 640x480 pixels at
60 fps. The captured data is converted into 8-bit gray level format and stored in the DDR2
SDRAM memory using embedded PowerPC 440 processor and the Xilinx video frame buffer
controller (VFBC) available with its multi-port memory controller (MPMC) IP [105]. The

system arrangement for image acquisition uses the peripherals available on the Xilinx
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ML-507 platform along with some of the IP elements in a similar manner as described in

Chapter 2.

Enable=0
WR=1
WR=0

Addr Ack=0 Addr_Ack=0

Read-1

Addr_Ack=1
Addr_Ack=1

Read-2
RAFIFO_Empty=0 &
RAFIFO_Latency=00

Read-3
RAFIFO_Latency=00|01
RAFIFO_Latency=10
Read-4

Fig. 4.17: The native port interface (NPI) protocol.

The platform contains a VGA input video codec connector that supports connectivity to an
external VGA source. It utilizes an Analog Devices AD9980 video decoder device, which is
programmed to generate a video clock of 25.175 MHz for the thresholding unit and other
required blocks that are controlled by inter-integrated circuit (I2C) general-purpose input-

output registers [100]. For this, the control registers of AD9980 is configured by sending data
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as a master on the 12C bus controller’s low-level device driver functions [100]. The generated

video clock is routed through the digital clock manager (DCM) to the various internal design

modules.
Table 4.2: Native Port Interface (NPI) Signals
Signal Description
Addr Indicates the starting address of a particular request.
AddrReq Indicates that NPI is ready for MPMC to arbitrate an address request.
RNW Read/Not Write; 0 = Write request; 1 = Read request.
Size 0x00 = Word transfers (32-bit NPI).
RdModWr Read/ modify/write.
InitDone Initialization is complete and FIFOs are available for use.
AddrAck Indicates that MPMC has begun arbitration for address request.
WrFIFO_Data | Data to be pushed into MPMC write FIFOs.
WrFIFO_BE Indicates which bytes of WrFIFO_Data to write.

WrFIFO_Push

Indicates push WrFIFO_Data into write FIFOs .

RAFIFO Data

Data to be popped out of MPMC read FIFOs.

RAFIFO_Pop

Indicates that read FIFO fetch the next value of RAFIFO_Data.
(Must be asserted for one cycle of MPMC clock.)

RAFIFO_Empty

When 0, it indicates that enough data is in the read FIFOs to assert.

RAFIFO_Latency

Indicates the number of cycles from the time  RdFIFO_Pop is asserted and/or
RAFIFO_Empty is de asserted until RAFIFO_Data and RAFIFO_RdAWdJAddr are
valid.

0 =RdFIFO_Data and RAWdAddr are valid in the same cycle as the assertion of
RAFIFO_Pop.

1=RdFIFO_Data and RAFIFO_RdWJAddr are valid in the cycle following the
assertion of RAFIFO_Pop.

2=RdFIFO_Data and RAFIFO_RdWdAddr are valid two cycles following the
assertion of RAFIFO_Pop.

The application software, written in ‘C’ language, runs on top of a standalone software

platform and controls all the hardware blocks and platform peripherals through PowerPC

processor. We have utilized the application programmer interface (API) offered by the
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software platform. The thresholding block communicates with the DDR2 SDRAM memory
through a 32-bit native port interface (NPI) which is synchronized with the MPMC controller.

NPI protocol is shown in Fig. 4.17. The signals used in NPI protocol are shown in Table 4.2.

4.8 Conclusion

An FPGA-based architecture for the computation of Otsu’s normalized cumulative mean,
moment and between-class variance is presented. The proposed architecture is implemented
on Xilinx Virtex-5 xc5vix70tffgl136-1 FPGA device available with the Xilinx ML-507
FPGA platform. The system operates at standard VGA clock frequency of 25.175 MHz, for
the frame size of 640x480 pixels at 60 frames per second. To save the system resources, we
have created a very simple and efficient datapath, which does not contain any complex
hardware building blocks. In the proposed architecture, most of the operations are performed
on the 32-bit unsigned fixed-point numbers, requiring only a single-cycle per operation. The
architecture has the advantages of minimizing logic resources and the processing of large
datasets, by conducting time critical processes on BRAMS and DSP slices. The total device
utilization summary shows that, the total FPGA resources utilized are around only fourteen
percent (14%). The remaining FPGA resources are sufficient for implementing many
practical real-time image and video processing applications. The power consumption of the
proposed architecture for threshold computation is 15 mW. In order to manage the required
hardware IPs and configuration software in an integrated manner, Xilinx Embedded

Development Kit (EDK) design tool has been used.
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CHAPTER 5

CONNECTED COMPONENT LABELING ALGORITHM ANDITS

POWERPC IMPLEMENTATION

5.1 Introduction

In binary image analysis, objects are usually extracted by means of connected components or
region labeling operation [3,8,89]. The connected components are defined as regions of
adjacent foreground pixels that have the same input label (value). The output of connected
component analysis operation is a labeled image in which distinct objects have unique labels,
which distinguishes them for the system (processor) recognition. The binary image obtained
from Chapter 4 is used by connected component labeling algorithm to segment the object for
tracking application, which has been described in detail in Chapter 6. In this chapter, we
propose an improved label-equivalence based two-scan connected component labeling
algorithm which improves upon an existing algorithm [76] and implement the same in the

embedded PowerPC processor available in the Xilinx Virtex-5 FPGA device.

Labeling connected components in a binary image is one of the most essential operations in
the field of image processing, pattern recognition and computer vision [125,126,127,9]. Once
objects are individually labeled, they can be separately processed, modified or used for
further image processing applications. The connected component analysis can be used in a
variety of applications, such as, finding individual letters in a scanned document, object
recognition and its tracking [7,128,129,68], face recognition, fingerprint identification,
automated inspection, computer-aided diagnosis [130,131,132], video and signal based

surveillance, barcode recognition, and medical image analysis, [74,1].
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Raster-scan and label-equivalence resolving based algorithms are one of the most popular
categories of labeling algorithms. These algorithms can be either pixel-based [76],
[133,134,135,136] or run-based [137,138,139,140,141,142]. The pixel-based method resolves
label equivalences between pixels whereas the run-based ones resolve label equivalences
between the block of consecutive object pixels, i.e., runs. Other important labeling algorithms
such as, searching and label propagation algorithms [143,144,145,146,147] and the contour
tracing algorithms [148,149], process an image in an irregular manner. In hierarchical tree-
based algorithms, the provisional label to a pixel is assigned as per its surrounding neighbors.
The searching of neighbors is based on a decision tree structure [150,151,152,153,154] which
can be an exhaustive search. Some of the parallel algorithms are specifically developed for
the parallel machines, which are based on divide-and-conquer approach [155,156,157]. These

algorithms are unsuitable for applications which use simple computer architectures.

In a digital system, images are generally scanned in a raster fashion. Therefore, in order to
label the connected component pixels, most of the algorithms rely on raster-scan and label-
equivalence resolving method [133,134,135,136]. This simple method is sequential in nature
and is widely used digital image processing, [134,143]. Moreover, the raster-scan algorithms

are quite suitable for pipeline processing [130].

In the raster-scan and label-equivalence based algorithms there are various methods to
handle the equivalences associated with the foreground pixels, which are discussed in [76]
and [144,145]. Among these methods, the class-based label-equivalence resolving approach
as proposed in [144,145] and expanded by Stefano and Bulgarelli (SB) in [76] is found to be
very efficient. In this two-scan based approach, a class is defined to be a simple one-
dimensional array which can be as large as the maximum number of provisional labels. With

a class identifier associated with each label, equivalences are processed during the first scan
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by merging equivalence classes as they arrive. Subsequently, in the second scan the

connected component labeling is performed [76].

In the SB algorithm, the main advantage of checking for new equivalence in the class
domain is to exploit the transitive property for class merging. Whenever two classes are
merged, the class identifier of the survivor equivalent class modifies the class identifier of the
deleted equivalent class. In various cases, the SB algorithm fails to merge all the members of
the deleted class as implied by the transitive property. These cases occur during first scan
when an expanding label set of a connected component runs across a new equivalence, which
involves a label (from the growing label set) other than the maximum of expanding label set.
Partial merging occurs in such cases, in which a few of the labels from deleted class move to
the survivor class, while the others are left behind due to an improper equivalence handling

mechanism.

In this chapter, we propose an improved label-equivalence based two-scan connected
component labeling algorithm, which improves upon the SB algorithm and eliminates the
partial merging problem. This is achieved by modifying the equivalence handling loop of SB
algorithm such that full merger of equivalences is accomplished. Some of the random binary
test patterns and standard gray scale images [158] which are converted to binary using Otsu’s
method of thresholding [49] are used to test the improved SB algorithm in 4-connectivity
case and its performance is compared with that of the SB algorithm. The results show that our
improved SB algorithm handles the equivalent class conflicts efficiently, has lower conflicts

and gives the correct number of connected components.

The raster-scan based connected component labeling algorithm, such as the SB and its
improved version, are sequential in nature and do not need any computational resource other

than those required for decision processing. The algorithm essentially works on the selection
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decisions and looping, which can be easily handled by a processor. Based on the above
reasoning, we have chosen to implement the improved SB algorithm, proposed in the chapter
in the embedded PowerPC 440 processor available in the Xilinx Virtex-5 FPGA of ML-507

[34].

The rest of this chapter is organized as follows. The basics of connected component
labeling process and related algorithms are discussed in Section 5.2. Section 5.3 introduces
the improved SB algorithm. Section 5.4 provides details of the improved SB algorithm. A
comparative analysis with the SB algorithm is given in Section 5.5. This section also
discusses the results obtained with artificial binary test patterns and with standard gray scale
images. Section 5.6 gives the PowerPC implementation results and finally, Section 5.7

concludes the chapter.

5.2 Two-scan Connected Component L abel-Equivalence Process

The basic terminology of the two-scan connected component label-equivalence algorithm is
discussed in Subsection 5.2.1. Subsection 5.2.2 covers the conventional pixel-based two-scan
label-equivalence algorithms. The outline of Stefano-Bulgarelli’s algorithm is given in

Subsection 5.2.3.

5.2.1 Basic Terminology
Let | be a binary image with ‘1’ representing the foreground pixels and ‘0’ representing the

background pixels. A pixel value at position (X, Y)is represented by P(X, y) . The definition
of connected component depends on the pixel’s surroundings. Two pixels, P(X Yy)and
Q(X,Y), are connected if there exists a path of pixels (P,,P,....... P.) such thatPF, =P,
P,=Q. The other pixels in the path are known as the surrounding (neighbor) pixels such

that P is a neighbor of P_, for 1<i <m. A connected component may be 4-connected or 8-
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connected. In a 4-connected situation, any pixel with coordinate(x, y) has at least one

element in that connected component having coordinates in 4-neighbor set as:
{(x,y—l),(x,y+1),(x—1,y),(x+1,y)} (5.1)

similarly the 8-connected component has at least one element having coordinates in 8-
neighbor set as:
{ (X_ln y_l)n (X—l, Y), (X_19 y+1)a (Xa y—l),(X, y+1)7 (X+17 y_l)a(x+1’ y)’ (X+19 y+1)}
(5.2)
Labeling of connected component is an operation where groups of connected pixels

(connected component) of a binary image are classified as different objects with unique

labels. Let n(ne N) represent the index of a connected component in the image and CC,

represent the individual connected components.

In the labeling process, we assign a unique label to each connected component. The
resultant labeled image consists of various connected components in which a unique label is
assigned to pixels belonging to the same connected component and different labels are

assigned to distinct components. The labeled image can be represented as:

B if P(x,y)=B

O Y) :{n if P(x, y)e CC, (5-3)

Thus, an input binary image is transformed into a frame in which the foreground pixels are
modified into labels which indentify the connected components. In a raster scan, the labeling

of a pixel {x, y} is done with the help of its neighboring pixels, which have already been run
across by the raster scan. In 4-connectivity case, such neighbors are {p, g} as shown in the

Fig. 5.1 (a), where p is a pixel at {(x-1), y}and q is a pixel at{x, (y—1)}of (5.1). Similarly, in
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the case of 8-connectivity, the already labeled pixels are{p,q,r,s}.In this case the pixels

P, d, r andsare located at positions {(x—1),(y—1)},{(X=1D), Yy}, {(x=1),(y+1)} and{x (y—D}
respectively, as given in (5.2) and shown in Fig. 5.1 (b). The following sub-section discusses

some of the pixel-based conventional two-scan label-equivalence algorithms.

> J > j
T

' P p q
1 .
1

S X

q X
(a) (b)

Fig. 5.1: Pixel connectivity (a) 4-connectivity (b) 8-connectivity.

5.2.2 Pixel-based Conventional Two-Scan L abel-Equivalence Algorithms

Pixel-based conventional raster-scan and label-equivalence algorithms scan an image in the
raster fashion. During the first raster-scan, a provisional label is assigned to the foreground
pixels [76], [134,139], [144,145]. After the first scan, a connected component may consist of
many provisional labels. Therefore, a second scan is required to assign a unique label to each
component [76,139]. After completion of second scan, the new image is segregated into

various connected components, each marked distinctly by a unique label.

The classical two scan labeling algorithm [139] processes label equivalences after
completion of the first scan. To improve efficiency of the labeling process, a class array can
be used [76,144,145]. Class-based equivalence resolving algorithms for connected

component labeling are presented in [144,145]. To reduce the complexity of the earlier
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algorithms and to expedite the labeling process, an improved connected component labeling
algorithm was presented by Stefano-Bulgarelli (SB) [76]. In this algorithm, equivalences are
processed during the first scan itself (rather than processing the equivalences in the second

scan). The following section discusses the SB algorithm in detail.

\f[p]=C[q]

IS

Fig. 5.2: Processing of equivalences in the first scan.

5.3 The Stefano-Bulgarelli’s Algorithm

This algorithm processes the equivalences in the first pass to determine the equivalent classes
associated with the labels. The equivalence handling mechanism uses a class for this purpose,
which is a one-dimensional array and can be as large as maximum number of labels. A class
exists for every provisional label assigned. In the first raster scan, the pixel under scan is
labeled with the help of its neighboring pixels and the conflict between the labels of
neighboring pixel is resolved instantly as shown in Fig. 5.2. Merging of equivalence classes
as soon as a new equivalence is found, improves the efficiency of the labeling process. It
happens because the equivalence check is carried out in the class domain rather than in the

label domain [76].
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// C has been initialized as C[i]=1i;

//First SCAN

for (i=1;i<ROWS-1;i++)

for (j=1;3<COLUMNS-1;j++) {
1E(I[11031==1){

lp=I[1i-11[3J17

lg=I[i][3-11;

if (1lp==0 && 1g==0) {

NewLabel++;

1x=NewLabel; }

else 1if ((C[lpl!=Cl[lg]l)&&(lp!=0)&&(1lg!=0)) {
for (k=0;k<=NewLabel;k++)

if (Clk]==C[lp])C[k]=C[1lq];

1x=1qg;}

else if (1g!=0)1lx=1qg;

else if (lp!=0)1lx=1p;

I[i]1[3]1=1x;1}}

//Second Scan

for (i=0;i<7;i++)

for (3=0;73<10;j++)

if (T[i10J1!1=0)TI[1]1[31=C[I[1]1[311:}

Fig. 5.3: C-Code for two-scan Stefano-Bulgarelli’s (SB) algorithm.
After completion of first scan, the class array holds the updated class identifiers associated
with corresponding provisional labels. A second scan is run over the image by replacing
temporary labels with the class identifier of its equivalence class. Fig. 5.3 shows C code of

the algorithm in the case of 4-connectivity [76].

To validate the efficiency of the above algorithm, we have taken a number of artificial

test patterns and standard binary images which will be explained in later sections. Out of
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various binary test patterns, a simple test pattern, as shown in Fig. 5.4(a), is used to discuss

this algorithm in detail.

(@ (b)

Fig. 5.4: Two-scan labeling in the SB algorithm (a) artificial binary pattern (b) provisional
labeling.

The provisional labeling of the test pattern, after the first pass, is shown Fig. 5.4(b). In
Fig 5.4(b), when a pixel at pixel position (4, 8) had been scanned, a conflict occurred between
label 3 and label 2 (refer the label mask shown in Fig. 5.1(a) for the 4-connectivity case). As
per SB algorithm, the two labels were held equivalent and their corresponding classes were
merged (as in Fig. 5.2). The class of label 2 (i.e., C[2] =2) was transferred to the class of label
3, therefore, C[3] =2. Similar equivalences occur at pixels (5, 5) and (7, 5). The processing of

equivalences associated with the labels of Fig. 5.4 (b) is shown in Table 5.1.

In various cases, the SB algorithm fails to merge all the members of the deleted class as
implied by the transitive property. Such failure occurs because of partial merging as

explained here. Let us consider a case in which an equivalence (or conflict) of labels | and I,

occurs, wherel, >1,, and the class of |, i.e., C[l,] is replaced by class C[l,] in the class array.
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Suppose a new conflict occurs between labels | and |, where C[l;] is the survivor class of
the two. In such cases, all the members of the equivalent classC[l,]should be merged with
members of equivalent classC[l;] and therefore, CJ[I;] is replaced with CI[I] in the class
array. However, all members of the equivalent classC[l, ] are not merged due to a problem in

equivalence handling mechanism of SB algorithm. As depicted in Fig. 5.3, the inner for loop,

used for maintaining equivalences, merges the label | from C[l;] to C[I,], iff C[l,]=C[l,]
and |, <I, (and not in case whenl, >1,). It happens because the loop changes the class of label
|, fromC[l;] toC[l;], at the count of |, and therefore, label |, (I, >I;) now belong to a
different class from labell,, and hence not merged to equivalence classC[l;]. Due to this

reason, in case of various geometric patterns and images, the algorithm presented in [76] fails

to connect the components correctly.

Table 5.1: Processing of Equivalence Classes as in the SB Algorithm.

Position | NewLabel | I, | I, | I, | C[0] | C[1]| C[2] | C[3] | C[4] | C[5] | C[6] | C[7]
(1,1) 0 0(0]0] 0 1 2 3 4 5 6 7
(4,8) 4 30212] 0 1 2 2 | 4 5 6 7
(5,5) 6 21616] 0 1 6 | 2 | 4 5 6 7
(7,5) 7 655 0 1 5 | 2 4 5 5 | 7

The SB algorithm is applied to the test pattern in Fig. 5.4(a). The partial merging problem
in SB algorithm is shown in Fig. 5.5(a). The result of SB algorithm shows five numbers of
connected components, while the correct count of connected components is four as shown in
Fig. 5.5 (b) and discussed in the next section. As a result of this problem, a single connected

component labeled ‘5’ is split into two components labeled as ‘5’ and ‘2°, which is not the
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case. To remove the limitations of SB algorithm [76], we propose an improved and efficient

algorithm for equivalence handling as discussed in the next section.

1|2|3|4|5|6|7|8|9|10
- 1R 0 @ 0 O 0 O 0 O 0
=
(5]
g
=9 20N 1 eSS 55|55 @
=
S
- 3 pm 1 D BREEN 0 EERE O
B
<
& 4 U 4 W5 |5|5|5|5 @
5]
5B S5 KR S5 5 e 55 Jl
6 N5 BN 5 N 7 B 0
THRES | 5|55 7 |7 |7 H
8 QU [ 1 I 1 I | I 1 I

(@ (b)

Fig. 5.5: Two-scan labeling algorithm results for (a) SB Algorithm (b) The improved SB
algorithm.

5.4 Improved SB Algorithm

The algorithm being proposed improves the SB algorithm and eliminates partial merging
problem. It is achieved by modifying the equivalence handling loop of SB algorithm to
realize complete merging. To resolve the equivalences, we have used the notion of class
identifier in this algorithm which is similar to [76], [144,145]. Along with the class identifier,
we have also selected the 4-connectivity case so that we can compare the improved SB

algorithm with [76].

Complete merging necessitates previous equivalences must also be considered for
modification along with current modification. In case of class merger in the current scan, all
the labels associated with current deleted class move to current survivor class. An important

thing to consider is that this current deleted class must have been a survivor class when it has
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encountered equivalence in a previous scan. It implies that the members of a current deleted
class also include labels that it has acquired from all the previous conflicts. It is, therefore,
necessary that all the labels of the current deleted class (including the one acquired from all
the previous conflicts) must move to current survivor class. Complete merging is achieved

when all labels from deleted class move to the survivor class.

// C has been initialized as C[1]=I;
//First SCAN

for (i=1;i<7;i++)

for (J=1;3<10;3++) {
f(I[1113]1==1){

lp=I[i-1]1[J1;

1g=I[1i][j-11;

if (lp==0 && 1lg==0) {

NewLabel++;

1x=NewLabel;

else if ((C[lp]!=C[lg])&&(1lp!=0)&&(1g!l=0))
for (k=0;k<=NewLabel; k++) {
if (Clkl==C[lp]) {

if (k!=1lp)C[k]=C[lqg];}

if (k==NewLabel)C[lpl=C[lg];
1x=1qg;}

else if (1lg!=0)1x=1qg;

else if (1lp!=0)1x=1p;
I[i][J]1=1x;}}

//Second Scan

for (i=0;1i<7;1i++)

for (3=0;73<10;J++)

if (I[11([311=0)
[11[31=CII[1]1[3]11;}

Fig. 5.6: C-code for the improved SB algorithm.
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The C code for the improved SB algorithm is given in Fig. 5.6 and it is discussed here for
thecase of example given in subsection 2.3. In this algorithm the inner for loop, used for

maintaining equivalences is modified to handle all kinds of conflicts. It merges label | from
Cl[l;] to C[I], iff C[l,1=C[l,] irrespective of whether | <I, or | >1,. Only after merging all
suchl, the class of label |, is changed fromCf[l,] toC[l;] and thus the problem of partial

merging is avoided.

The various different cases are covered with the help of previous artificial binary test
pattern which is given in Fig. 5.4(a). The various conflicts associated with the two labels of
Fig. 5.4(b) are shown in Table 5.2. When a pixel at pixel position (4, 8) is scanned, a conflict
occurs between label ‘3° and label ‘2°. In this case, the two labels are held equivalent and
their corresponding classes are merged. That is, the class of label ‘2’ (C [2] =2) is transferred
to the class of label ‘3°, so C [3] =2. Now when the pixel position (5, 5) is scanned, a conflict
occurs between label ‘6’ and label ‘2°. The two labels are again held equivalent and therefore,
C [2] must get the class of C [6]. As C[3] had the class of C [2], it must also be updated with
the class of C[6]. Since label ‘3’ is greater than label ‘2°, this would have posed a partial
merging problem in SB’s case. However, in the improved SB algorithm both C [2] and C [3]

get the class of C [6].

The processing of equivalence classes in the improved SB algorithm is shown in Table 5.2.
In the context of the labeled image shown in Fig. 5.4(b), class C [3] is modified with the class
of C [5] which is shown in Table 5.2. When the first scan is over, each provisional label is
changed to their corresponding class representative as is shown in Fig. 5.5(b). In the next
section, we demonstrate the experimental results obtained with various artificial test patterns

and standard images.
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Table 5.2: Processing of Equivalence Classes in the Improved SB Algorithm.

Position | NewLabel | I, [ 1y | 1| C[0] | C[1] | C[2] | C[3] | Cl4] | C[5] | Cl6] | C[7]
(1,1) 0 olojo|l o | 1| 2|3 | 41|51 6] 7
(4,8) 4 312020 1] 2| 2| 4|5 ]| 6/|7
(5,5) 6 2166/ 0| 1|6 |6 | 4] 5| 6/|7
(7,5) 7 6|5/5/ 0| 1|5 |5 ]| 4|5 ]|5]7

5.5 Comparative Analysis of the Improved SB Algorithm

To demonstrate efficiency of the improved SB algorithm, we have generated several
specialized artificial binary patterns. Apart from the artificial binary patterns, various gray-
level images are obtained from the standard image database (SIDBA) developed by the
University of Tokyo [158]. Some of the images have also been selected from the USC-SIPI
image database of University of southern California [159] and from Gonzalez and Woods
[127]. Such selection ensures that images differ in aerial, medical, artificial, natural and
textural properties so that the performance of our algorithm for varied applications can be

tested.

The artificial images contain specialized patterns (for example, spiral-like, checkerboard-
like, honeycomb-like). True gray scale images of size (150x150,256x256,
300%300, and 512x512) are selected for the test without any preprocessing. These gray-level

images are transformed into binary images by using Otsu’s unsupervised automatic threshold

selection method [49].

These specialized artificial binary patterns and the standard images are applied to the
Stefano-Bulgarelli (SB) algorithm [76] and to the improved SB algorithm, where, both
algorithms are implemented in the C language. The results with specialized artificial binary

patterns and that with standard images are separately discussed below.
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5.5.1 Resultsfor Specialized Artificial Binary Test Patterns
Out of the several binary test patterns, six test patterns are selected for algorithm verification.
These patterns are shown in Fig. 5.7 and Fig. 5.8. The six cases associated with each artificial

binary pattern are shown in Table 5.3. The results in each case are discussed below.

Table 5.3: Comparison Between Different Labels Assigned and the Number of Connected
Components (#CC) Detected for Artificial Binary Test Patterns.

SB Algorithm [76] Improved SB Algorithm

Case Labels #CC L abels #CC
1 5,6 2 6 1
2 1,3,5 3 5 1
3 1,3 2 3 1
4 3,4,5 3 5 1
5 1,5,7 3 7 1
6 1,2,4 3 4 1

Case 1: In Fig. 5.7(a), the SB algorithm identifies two connected components (labels 5 and 6
in Fig. 5.7(b)) while the improved SB algorithm identifies only one connected component

(labels 6 in Fig. 5.7 (¢)).

Case 2: In Fig. 5.7(d), the SB algorithm identifies three connected components (labels 1, 3
and 5 in Fig. 5.7(e)) while the improved SB algorithm identifies only one connected

component (label 5 in Fig. 5.7 (f)).

Case 3: In Fig. 5.7(g), the SB algorithm identifies two connected components (labels 1 and 3
in Fig. 5.7(h)) while the improved SB algorithm identifies only one connected component

(label 3 in Fig. 5.7(1)).
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Fig. 5.7: Number of connected components (#CC) and equivalence class for different

artificial binary test patterns in Stefano-Bulgarelli’s (SB) and in improved SB algorithm (a)
First artificial binary test pattern (b) #CC identified by SB algorithm (c) #CC identified by
improved SB algorithm (d) Second artificial binary test pattern (e) #CC identified by SB
algorithm (f) #CC identified by improved SB algorithm (g) Third artificial binary test pattern
(h) #CC identified by SB algorithm (1) #CC identified by improved SB algorithm.

138



12345 [e[7[8]s]10

qooooo oooo

'HEEHERER

12345678|910

00000 OOOCOO

‘EREEIREER

00000 OCOOO

‘EHEEEEE

O] 0 0 0O OpE O

ooon 55
0

oo
(100
(100
00000 0000

Cio=10,5,5,5,5,5]

000 O O 0 00 O3 OEA O
000 O O3 0 0 0 OEaEIEs 0

Case 4
1 0 O3S 0 0 BN 00
000 0 O ORENEE] OB O
il EER ]
000000000 00000 DOOOO
C, =10,1,2,3,4,5] C,s=[0,4,5,3,4,5]

(b)

5?

Case 5
000
oo.o

0000 00DO0O0O
C, =[0,1,2,3,4,5,6,7] Cs=10,5,7,1,7,5,7,7]
©)
12| 34| 5 6| 7| 8| 9| 10
00000 00O0O0O
0 41 0
Case 6

0000 OO0OO0OO0OOD

C, =[0,1,2,3,4]
()

Cys=10,4,1,2,4]
(h)

000 DODOOO

@R

®

oﬂ 0
A o A o
Hoo

Cyo=[0,4,4,4,4]
(@

Fig. 5.8: Number of connected components (#CC) and equivalence class for different
artificial binary patterns in Stefano-Bulgarelli’s (SB) and in the improved SB algorithm (a)
Fourth artificial binary test pattern (b) #CC identified by SB algorithm (c) #CC identified by
improved SB algorithm (d) Fifth artificial binary test pattern (e) #CC identified by SB
algorithm (f) #CC identified by improved SB algorithm (g) Sixth artificial binary test pattern
(h) #CC identified by SB algorithm (1) #CC identified by improved SB algorithm.
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Case 4: In Fig. 5.8(a), the SB algorithm identifies three connected components (labels 3, 4
and 5 in Fig. 5.8(b)) while the improved SB algorithm identifies only one connected

component (label 5 in Fig. 5.8(c)).

Case 5: In Fig. 5.8(d) the SB algorithm identifies three connected components (labels 1, 5
and 7 in Fig. 5.8(e)) while the improved SB algorithm identifies only one connected

component (label 7 in Fig. 5.8(f)).

Case 6: In Fig. 5.8(g) the SB algorithm identifies three connected components (labels 1, 2
and 4 in Fig. 5.8(h)) while the improved SB algorithm identifies only one connected

component (label 4 in Fig. 5.8(1)).

5.5.2 Resultsfor Standard I mages

The number of connected components identified by the improved SB algorithm is also
compared with the SB algorithm using several standard images. The selected images for
performance evaluation are: 5873 1g, 5882 1g, 5888 1g, 5888 1r, beans and CHEST X-
RAY each of size 150x150 from the standard database of SIDBA [158]. The next set of
images used for comparison are: Fig0106(c)(cygnusloop-gamma), Fig0107(e)(cygnusloop-
Xray), Fig0118(b)(crabpulsar-xray), Fig0118(c)(crabpulsar-optical), Fig0118(d)(crabpulsar-
infrared) and Fig0222(a)(face) of size 300x300 are selected from the database of Gonzalez
and Woods [127]. In addition, we have selected the images: 5.1.10, 5.1.13, 5.1.09, 6.2.09,
5.1.12, 6.2.11 each having size of 256x256and boat.512, 7.1.10, numbers.512, 7.1.02, 7.1.07
and elaine.512 of size 512x512 from USC-SIPI image database of the University of Southern

California [159].

The description of the comparison is summarized below. The number of connected
components (#CC) detected by the SB algorithm and by the improved SB algorithm is listed

in Table 5.4.
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Table 5.4: Comparison between the Numbers of Connected Components (#CC) Identified by
the SB Algorithm and by the Improved SB Algorithm for Standard Images.

#CC
Sour ce I mage Image HCC (Improved
Size (SB)
SB)
5873 lg.jpg 173 128
5882 lg.jpg 213 168
5888 lgj 409 364
SIDBA [158] 150150 _18.)pg
5888 lIr.jpg 459 408
beans.jpg 88 56
CHEST X-RAY .jpg 367 313
5.1.10.tiff 622 517
5.1.13.tiff 15 4
5.1.09.tiff 741 646
USC-SIPI [159] | 256x256 :
6.2.09.tiff 337 231
5.1.12.tiff 129 109
6.2.11.tiff 295 202
F1g0106(c)(cygpusloop- 597 563
gamma).tiff
Fig0107(e)(cygnusloop-Xray).tiff | 2757 2698
Fig0118(b)(crabpulsar-xray).tiff 6844 6686
Gonzalez and 3005300 -
Woods [127] Fig011 8(9)(crabpulsar- 245 227
optical).tiff
Fig0118(d)(crabpulsar-
infrared).tiff 27 14
Fig0222(a)(face).tif 148 110
boat.512.tiff 392 251
7.1.10.tiff 1092 763
numbers.512.tiff 2171 1908
USC-SIPI [159] | 512x512
7.1.02.tiff 106 69
7.1.07.tiff 2580 1855
elaine.512.tiff 2826 2581

In Table 5.5, the conflicts handled (#CH) by these two algorithms are tabulated. It can be

observed from the above table that in comparison to the SB algorithm, the improved SB
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algorithm has lesser number of conflicts. It provides accurate number of conflicts as the
equivalent classes are already resolved. This results in lesser and accurate number of
connected components as expected and observed from Table 5.5.

Table 5.5: Comparison Between Numbers of Conflicts Handled (#CH) by the SB Algorithm
and by the Improved SB Algorithm with Standard Images.

Image #CH #CH
Source Size Image (SB) { mglrsc;ved
5873 lg.jpg 259 241
5882 lg.jpg 274 251
SIDBA [158] | 1 150 5888 _1g.jpg 395 388
5888 Ir.jpg 386 376
beans.jpg 396 390
CHEST_X-RAY jpg 375 343
5.1.10.tiff 905 882
5.1.13.tiff 97 82
USC-SIPI 5.1.09.tiff 596 528
[159] 2362236 6.2.09.tiff 1120 1006
5.1.12.tiff 211 207
6.2.11.tiff 1098 982
Fig0106(c)(cygnusloop-gamma).tif 333 313
Fig0107(e)(cygnusloop-Xray).tif 553 537
Gonzalez and 3005300 Fig0118(b)(crabpulsar-xray).tif 1837 1624
Woods [127] Fig0118(c)(crabpulsar-optical).tif 232 226
Fig0118(d)(crabpulsar-infrared).tif 152 146
Fig0222(a)(face).tif 413 401
boat.512.tiff 1146 1045
7.1.10.tiff 2435 2114
USC-SIPI S19x512 numbers.512.tiff 2545 2268
[159] 7.1.02.tiff 447 431
7.1.07.tiff 4636 3861
elaine.512.tiff 1845 1745
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5.6 Embedded Power PC Implementation of the Improved SB Algorithm

The system arrangement has been made for running the connected component analysis
algorithm on the PowerPC processor for the embedded environment is shown in Fig. 5.9. The
required hardware and software configurations are developed in Xilinx Platform Studio
(XPS). Subsequently, the bit stream and the Block RAM memory map (BMM) files are

exported to Xilinx Software Development Kit (SDK) for the required software configuration.

DDR2 SDRAM Memory

)
y

MULTI PORT MEMORY CONTROLLER

VFBC-1 MCI VFBC-2
VIDEO TO PPC440 FRAME TO
FRAME CORE (Connected Component Analysis) VIDEO CORE

S L
N

DATA
XPS 1IC VIDEO INPUT DISPLAY
CONTROLLER CORE OTHER CONTROLLERS EISSEEE CONTROLLER
T FPGA
| : .
OTHER 1/0 CLOCK
DCM PERIPHERALS GENERATOR

Fig. 5.9: PowerPC running the connected component analysis in an embedded environment.
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The C program for connected component labeling algorithm is developed and kept either in
DDR2 memory or in Block RAMs (BRAMs). We have chosen the BRAM option for faster
processing and execution. A BRAM size of 16 KB suffices for executing the program. In the

SDK environment, the linker script generator produces the executable and linking format file

(ELF). The generated linker script is shown in Fig. 5.10.

The generated ELF, BMM and the bit stream files are used to configure the Xilinx Virtex-5
xc5vix70t FPGA device and the embedded PowerPC 440 processor. The processor uses a
standalone operating system (version 3.06a), which is a low-level software-layer, that

provides access to the basic processor features which can be selected by configuring the

board support package shown in Fig. 5.11.

g
= ;;G.Wiii_ Generate lnker script 'L‘
& Induded  Control your appicabon's memory map. &
(= Debug '
® g ) -
= M5 helo_weordd | """‘T Bt | adverced|
o i Project: hello_werld 0 = -
s :_ ﬂn‘f Output Serp: Place Code Sectians : | xps_brom F_mir_L v
£ iboeni] | CéConnected Component_sndyssifela_world_Dsrefsoript (e Place Dt Seconsin: | *ps_beam_F_mnb_L -
:::‘: Vindify project buid settings 2 foloss: Plao= Heap and Skackine | xpes_beam_f_mmir_L -
W system| | |Setwenerated st on allpraet bdd configurations * | temsem: e ]
Hartware Menmory Map Stack See: 1E of a hosted
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xps_bram F ot 1 DFFFRBO00 ]
hE_scram_MPMC_BASEAIDR 00000000 125M8
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Fig. 5.10: Generated linker script for the connected component analysis algorithm.

We have used the powerpc-eabi-gcc GNU GCC compiler to compile the program. The
hyper-terminal snapshot of the execution of connected component analysis program in

PowerPC 440 processor is shown in Fig. 5.12. Here, the PowerPC processor runs at 125
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MHz for the 640x480 sized image. The processing time required for executing the

programme is found to be 0.1 ms.
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Fig. 5.11: Board support package settings for the connected component analysis algorithm.
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Fig. 5.12: Execution of connected component analysis program on PowerPC 440 processor.
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5.7 Conclusion

An improved label-equivalence based connected component labeling algorithms has been
presented. The algorithm resolves any label-equivalences in the first scan itself, as soon as
they are found. The label-equivalence process is independent from the different temporary
labels assigned. The presented algorithm improves the SB algorithm by modifying the
equivalence handling procedure, which removes the partial merging problem. Thus, the
algorithm eliminates the component disintegration in cases when expanding component runs
across a new equivalence, which involves a label other than the maximum of expanding label
set. This makes the improved SB algorithm efficient and provides correct count of connected

components.

To show the experimental results, we have presented C-code for the 4-connectivity case.
However, the improved SB algorithm is independent of n-connectivity and works well in the
case of 8-connectivity too. The presented algorithm is tested using a variety of artificial test
patterns and random standard images. The results demonstrate that the improved algorithm, is
simple, manages equivalences efficiently, suffers a lesser number of label conflicts and gives
correct count of connected components. The algorithm is simple in principle and easy to
implement in C/MATLAB. The C implementation of the improved connected component
algorithm runs efficiently on PowerPC 440 processor available as an embedded processor in
the Xilinx Virtex-5 xc5vfx70t FPGA device. The PowerPC implementation of connected
component analysis is primarily developed for implementing embedded systems for
automated object tracking application. The connected component analysis algorithm can also
be used as module for other image and video processing applications. The systemic
arrangement for running the connected component software module on embedded PowerPC

processor along with other image read and display modules is shown in Fig. 5.9.
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CHAPTER 6

EMBEDDED IMPLEMENTATION OF KERNEL-BASED MEAN SHIFT

OBJECT TRACKING ALGORITHM

6.1 Introduction

Object tracking can be defined as the problem of estimating the trajectory of an object in the
image plane as it moves around a scene. Object tracking has a wide range of image and video
processing applications such as automated vehicle tracking [78], target localization in
unmanned air vehicles [79], augmented reality [160], face tracking [80], identity verification
[161] and many more [82,8,5]. A large number of object tracking methods exist, which
primarily depend upon the object attributes such as, representation, features, motion,
appearance, shape and the environment in which the tracking is performed. The classification

of different types of object tracking approaches is shown in Fig. 6.1.

As shown in the figure, the object tracking method mainly fall in three groups, namely
point tracking, kernel tracking and silhouette tracking [82]. The point tracking methods are
mainly suitable for very small objects. These tracking methods can be deterministic or
statistical. In kernel tracking method, the kernel refers to the object shape and appearance
[27]. For example, the kernel can be rectangular template or an elliptical shape with an
associated histogram. Objects are tracked by computing the motion of the kernel in
consecutive frames. The motion computation involves identifying the associated parametric
transformations such as translation, rotation and affine. The kernel-based method is further
divided into two categories one is based on multi-view approach and the other one is template
based. The two sub-categories of multi-view are view subspace and classifier based. In

silhouette tracking, the silhouette represents the object, which is a region inside the contour of
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the object [162]. Here, the contour representation defines the boundary of the object [163].

The two broad sub-categories of silhouette tracking methods are shape matching and contour

tracking. The contour tracking can be state-space based or direct minimization based, which

is further categorized in variational and heuristic forms [82].
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Fig. 6.1: Classification of object tracking methods.

Variational

Heuirstic

Based on the object attributes, the object tracking operation can, further, be divided into a

series of steps, such as object representation, feature selection, and object detection [27,82].

An object can be represented by its shape and appearance. Commonly used object-shape

representations include, point or a set of points, primitive geometric shapes, object silhouette

and contour, and articulated shape models [82]. Similarly, commonly used appearance
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features of the objects are probability densities of object appearance, templates, active
appearance models, and multi-view appearance models. Feature selection is the second most
vital part of object tracking [164]. Some of the widely used visual features are color, edge,
optical flow, and texture. Undoubtedly, most important aspect of object tracking is object
detection [82]. The object detection is required in every frame or when the object first
appears in the scene. Some of the commonly used object detection methods are point
detectors, segmentation, background modeling, and supervised classifiers [27,82].
Depending upon the object shape and its tracking environment, several effective techniques
such as particle filter [165,166], optical flow [167,168], continuously adaptive mean shift
(camshaft) [169,170], and mean shift [5,27] are widely used in the image and video

processing applications.

In real-time system implementations, only a small percentage of total system resources
should generally be utilized for the tracking part, so that the rest can be used for other
compute-intensive application-specific tasks. Therefore, it is desirable to keep the
computational complexity of the tracker minimal. In this context, mean shift algorithm is a
popular algorithm for real-time object tracking. It needs the definition of a similarity
function to measure the distance between histograms of the target object and the target
candidates. The Bhattacharyya distance is a popular distance measure, which can be used for
the measurement of distances between two probability distributions (histograms). In the
kernel-based object-tracking algorithm, the similarity between the target candidates and the

target model is measured with the help of Bhattacharyya distance [27,171].

The implementation of kernel-based mean shift algorithm using a soft processor is reported
in [83,84]. In this approach, the Xilinx MicroBlaze soft processor is used to run the
algorithm. The soft processor along with the other logic resources is synthesized in the Xilinx

xc3s500e FPGA device. The implementation uses the Xilinx Spartan-3E FPGA platform
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[83]. The FPGA device utilization summary shows that with a320x256size image frame,
almost 84% of the total available slices, 70% of total available BRAMs and 50% of the
arithmetic computational blocks get utilized. A different approach, which mainly uses FPGA
BRAMs to implement mean shift filter is given in [172]. It uses the Xilinx xc4vlx160 FPGA
device mounted on the Celoxica RC2000-4 FPGA platform. In the implementation, the image
is stored in the FPGA Block RAMs. It is reported in [172] that to implement a filter size of
31x31, the circuit needs 376 BRAMs, which is larger than the available 288 BRAMs in the
device [172]. A similar kind of implementation for a mean shift based image segmentation

application is given in [173].

For our work, we have selected an FPGA based platform, namely the Xilinx ML-507, for
efficient real-time implementation of object tracking. With the availability of an embedded
processor in the FPGA device we can completely do away with the uses of the soft processor
as utilized by [83] and [84]. As discussed in [83], the soft processor itself takes 60% of the
total available FPGA slices which is a substantial portion of the FPGA resources. Similarly,
the need of capturing the image in BRAMs as proposed in [172,173] can be completely done
away with by considering other memory resources, such as DDR2. In spite of the availability
of large BRAM resources, a real-time image can be buffered in the available off-chip
memory (DDR2). The available BRAM resources can then be utilized for other application-

related operations requiring time-critical computations with large throughput.

In our work, the consecutive video frames with a resolution of 640x480 are first buffered
in the DDR2 SDRAM memory, which uses the frame acquisition module described in
Chapter 2. Subsequently, an embedded implementation of kernel-based mean shift (KBMS)
algorithm is done in the Xilinx Virtex-5 FPGA device available on the Xilinx ML-507

platform. The available embedded PowerPC processor provides the necessary controls and
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manages the various peripherals and IPs, as required. The time consuming tasks such as,
computation of complex arithmetic functions and performing frequent iterative operations are
accelerated by hardware realizations. The KBMS algorithm requires the design of various
building blocks including those required for the computation of kernel-weight, kernel-
smoothed local histogram, computation of distance measure (using Bhattacharyya
coefficient), mean shift weight and new location for the mean shift. This chapter proposes
efficient architectures for the above building blocks, which are used to implement the KBMS

algorithm.

In this chapter, an embedded design approach for implementing the KBMS algorithm is
presented. Before implementing the algorithm through different hardware and software
blocks, the KBMS algorithm is realized in the MATLAB programming language. It uses the
MATLAB in-built functions for image/video read, image/video display along with some of
the available arithmetic functions. Further, in order to explore algorithmic level
transformations and tradeoffs necessary for mapping the algorithm on to hardware, a C
implementation is developed. In order to get improved speed, analysis of time critical

functions is performed and suitable data types are selected for the intended performance gain.

The compute-intensive and time-consuming operations are identified for hardware
realizations where as simple data movement and control operations are marked for handling
by the processor. The embedded implementation of the KBMS algorithm is done on the
Xilinx ML-507, a Virtex-5 FX FPGA based platform. The embedded PowerPC 440 processor
available in the FPGA device is used for implementing the software tasks, and the hardware
blocks are realized with the FPGA using the FPGA fabric, the BRAMSs, and the DSP slices.
The datapath uses the fixed-point arithmetic, which offers reasonably good performance with
reduced hardware consumption. Furthermore, to simplify the complex arithmetic function

into simple addition/subtraction and shift operations, the concepts of logarithmic number
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system (LNS) is utilized, as presented in Chapter 3. The implementation also uses the image
acquisition module described in the Chapter 2. The frame acquisition module provides a

640480 resolution video frame containing the object.

Following paragraph describes the organization of the rest of this chapter. The kernel-based
mean shift algorithm and its related constituent units are discussed in Section 6.2. In Section
6.3, the kernel-based mean shift (KBMS) algorithm flow is described. Section 6.4 presents
the MATLAB/C implementation results. In Section 6.5 the embedded implementation of the
kernel-based mean shift algorithm is illustrated along with its constituent building blocks. An
architecture for kernel-smoothed local histogram has been proposed in the Section 6.6, which
is used in target and the candidate modeling. Section 6.7 proposes an architecture for
computing the Bhattacharyya coefficient. In Section 6.8, we give an architecture for
computing the mean shift weights. Section 6.9 gives architecture for new mean shift location
computational unit. Integration of various architectural modules is described in Section 6.10.
The overall control mechanism is described in Section 6.11. FPGA implementation results
are provided in Section 6.12. In Section 6.13, a complete system view of the design is shown

and Section 6.14 concludes the chapter.

6.2 Kernel-based Mean Shift (KBMS) Object Tracking

An object tracker typically consists of two components, which are combined together
depending on the tracking needs of specific application. The first component, namely, target
representation and localization deals with the changes in the appearance of the target, and is a
bottom-up process. Filtering and data association is the other component, which is mostly a
top-down process and deals with the dynamics of the tracked object, learning the scene priors
and evaluation of the different hypotheses. The formulation of filtering and data association

process is through the state-space approach for modeling discrete-time dynamic systems [27].
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The tracking application developed in this chapter relies on the target representation and
localization and is based on kernel-based mean shift approach. The basic premise of this
tracking method is, that only a small change takes place in the location and appearance of the
target in two consecutive frames. Thus, the localization can be achieved by maximizing a
likelihood type function. First, the target is spatially masked with an isotropic kernel and a
smooth similarity function is defined next. Similarity between the target model and the target
candidates in the next frame is measured using a similarity metric. Thus, the target localization
problem is reduced to finding the maximum of the similarity metric. This method of target
representation and localization can be integrated with various motion filters and data
association techniques. The mean shift clustering is described below which is followed by the

various steps of the kernel-based mean shift (KBMS) object tracking algorithm.

6.2.1 Mean Shift Clustering

Mean shift is a non-parametric density estimation technique used for various low-level vision
tasks [5,171]. The mean shift clustering algorithm starts with the initialization of a large
number of hypothesized cluster centers randomly chosen from the large data set [174]. Each
cluster center is moved to the center of gravity (COG) lying inside within its region-of-interest
(ROI). The vector that is defined by the old and the new cluster centers is called the mean shift
vector (MSV). The MSV is computed iteratively until the cluster centers do not change their
positions. A pictorial representation of mean shift clustering is shown in Fig. 6.2. Here, a set of
random data has been shown. In the first cluster the COG is at location X. The algorithm
checks for the new clusters. In the new cluster, the COG is at location y. As apparent from the
figure, the center of gravity is shifted from the location X to y. The MSV is the distance
between X and Yy vectors. Similarly, when the center of gravity is shifted at location z the MSV

moves ahead.
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. . ROI Mean Shift Vector .

Fig. 6.2: Pictorial representation of mean shift clustering.

Kernel-based object tracking utilizes the principle of mean shift clustering approach [5]. In
this approach, color is used as the visual feature to from an appearance model [5]. To satisfy
the low computational cost requirement imposed by real-time processing, the m-bin discrete
density histogram as suggested in [5] is used. Probabilistic distribution for the target in the
target frame 1s compared with the probabilistic distribution of the target to be tracked (also
known as candidate model or candidate target) in the consecutive frames. The flow of the

KBMS algorithm [5], is explained below.

6.2.2 Target Representation

Color as the feature space is selected to characterize the target. The reference target model is
represented by its probability density function (pdf), g in R, G, B color. The target model is
considered as centered at the spatial location zero. In the subsequent frames, a target
candidate is defined at location Yy, and is characterized by the pdf, p(y). Both pdf-s are

estimated from the image data [5,27]. The target model is defined by
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G={q}\ss 6.1)

m
where, qu =1,
u=l
Similarly, the target candidate is defined as

PY) ={ B}, . (6.2)

m
where, Z ﬁ)u =1,

u=1

Here, the histograms defined in (6.1) and (6.2) are the non-parametric density estimates of
the target model and the target candidates in the m-bin reduced color feature space. The

similarity function between the histogram pdf-s, p(y) and § is denoted by,

A(Y) = p[p(y).q] (6.3)

This function plays the role of a likelihood function and its local maximum in the image
points to the presence of the object in the second frame having a representation similar to §
(6.1) defined in the first frame. The similarity function is regularized by masking the objects

with an isotropic kernel in the spatial domains [27]. When the kernel weights (KW), carrying

continuous spatial information, are used in defining the feature space representations, O(Y)

becomes a smooth function in y.

6.2.3 Target Model

A target is represented by an elliptical/circular region in the image. To remove the influence

of different target dimensions, all targets are first normalized to a unit circle [27]. Let

{xi*}i:1 nbe the normalized pixel locations in the region defined as the target model. The
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region is centered at zero. An isotropic kernel, with convex and monotonic decreasing kernel

profile, k(x) assigns smaller weights to pixels (at location, X ) farther from the center, given

by, k(X) = k(||X||2) . By using these weights, robustness of the density estimation increases.

The function b: R —{1,2,3,...,m} associates with the pixel at location X; the index

b(X') of its bin in the quantized feature space. The probability of feature U=1,2,3,....m in

the target model is then computed as:
6, =Clzn:k(uxfuz) 5[bex)-u] (6.4)
i=1

where O is the Kronecker delta function. The normalization factor C, is derived by imposing
the condition ZL g, =1, since the summation of delta functions for U=1,2,3,...,m is equal

to one. We thus obtain the value of C, as:

c-—— 1 (6.5)

{pe

6.24 Target Candidates

Let the normalized pixel locations of the target candidate, centered at y in the current frame

be {Xi}izl..n' The probability of featureu=1,2,3,...,m in the target candidate is given in [27]

as:
b, =C. Y k(ly-x ) olbex)-ul (6.6)
1
where, C,=———— (6.7)
> k(ly—x[)

i=1
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is the normalization constant for the pdf of the target candidate. Note that, it is assumed that
the size of the target does not change with time, and no adaptation has been incorporated to
tackle this in our implementation. This eventually assumes that the target candidate is
contained in the same number of pixels in the subsequent target frames. The similarity
function in (6.3) inherits the properties of the kernel profile, K(X) as both the target model

and target candidate models contain k(x). Thus, a differentiable kernel profile yields a

differentiable similarity function and efficient gradient-based optimizations can be employed

for finding the maximum of the similarity function, O .

6.2.5 Kernd Profile

A convex and monotonic decreasing Epanechnikov kernel profile [171] is used for assigning

a smaller weight to the locations that are farther from the center of the target and higher

weight to the nearby locations. A representative picture of the Epanechnikov kernel is shown

in Fig. 6.3.

Fig. 6.3: Epanechnikov kernel profile.

The profile is a nonnegative, non-increasing and piecewise continuous function. The

Epanechnikov kernel for a scalar X is defined as,

K(X) = 1-x 0<x<1 68
o x>1 (6.8)
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The above profile can be extended to multiple dimensions and the exact form of the

Epanechnikov kernel profile at d-dimensional coordinate X is given by [27,171],

| )
0ol 3% (@+2(1-BE) ifds1

0 otherwise

(6.9)

where, Gy is the volume of the unit d-dimensional sphere.

6.2.6 Bhattacharyya Coefficeint based Distance Metric

Bhattacharyya distance is used for the measurement of distances between two smoothed
histograms [175]. It solves many image/video processing and pattern recognition problems
and find numerous image/video processing applications which includes -classification,
clustering [171], distributed frequency comparisons [176], and image retrieval [177]. We can
collect data sets at different times or under different conditions and then by using the
similarity measure, the distributional testing can be used to determine whether they are

identical or not.

The Bhattacharyya distance between the distributions (6.1) and (6.2) is defined as,

d(y)=/1-p[p(y).4] (6.10)

where,

pY)= P, A1= 3 RO, (611

The expression in (6.11) is known as the sample estimate of the Bhattacharyya coefficient

and it increases with the decrease of distance between the two histograms.
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6.2.7 Distance Minimization and the Mean Shift Weight

Minimization of Bhattacharyya distance (6.10) necessitates the maximization of

Bhattacharyya coefficient (6.11) [27]. Identification of the new target position in the current

frame begins at position ¥, of the target in the previous frame. It requires computing

{ﬂ](yo)}u=lmm of the target candidate at location Y,in the current frame. As illustrated in

[27], it is assumed that the target candidate { Q,(Y)} does not change abruptly from the

u=L..m

initial { f)u(yo)} w1 m> Which is often a valid assumption between successive frames. With this

assumption, using a Taylor expansion around 1 P,(¥,) the linear approximation of the
p g y p 0 pp

u=l..m’

Bhattacharyya coefficient (6.11) can be approximately obtained as [27],

IO ——— C ¢
AIBKLAT=2 D (04, +§Zwk(Hy—Xi Hz) 6.12)
u=l1 i=l

where, W,'S are the weights, defined as,

w=y |-% 5[b0c)-u 6.13)

As is evident from (6.12), to minimize the Bhattacharyya distance (6.10), the second term in

(6.12) has to be maximized, which is dependent on y. This term represents the density

estimate computed with the kernel profile k(x) (6.9) at y in the present frame. Here, W
(6.13) weights the data. By using the mean shift procedure [5], the kernel is recursively
moved from the present location, Y, to the new location Y, . The expression for Y, scan be

obtained as per the following relation,

Y= (6.14)
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Expression (6.14) is a form of center of gravity (COG) computation. The center of gravity
computation is a widely used operations in the area of image and video processing [9]. The
concepts of COG is used, in many image and video processing applications. Some of the
work that uses COG concept includes, the accurate object localization in gray level images
[178], feature-based image registration [179], augmented reality conferencing system [180],

and system for landing unmanned aerial vehicle [181,182].

The center of gravity (COG) computation for the mean shift new location [27] is
constituted of two parts. The first part computes the center of gravity of the X-coordinate,
which is the average of the X-coordinates of all the pixels. The second part computes the
COG of the y-coordinate, which is the average of the y-coordinates of all the pixels in the
image. To arrive at (6.14), the Epanechnikov kernel profile is used that is described in
Section 6.2.5 [5]. The complete kernel-based mean shift target localization algorithm is

explained in the following section.

6.3 TheKBMS Tracking Algorithm Flow

The kernel-based object tracking algorithm whose primary goal is to maximize the

Bhattacharyya coefficient ,O[f)(Y), Q] is summarized below [27].

The target model {q,} nand its location Y, in the previous frame are known a priori.

u=L...

Sep 1: Initialize the location of the target in the current frame with Y,, compute

1. (Y, )}u=1_4.m and evaluate,

plp(y,).a]= Z\/ P.(¥Y,)4, asin (6.11)
u=l

Sep 2: Derive the mean shift weights {W}i= as in (6.13).

1..n
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Sep 3: Find the new location of the target candidate using mean shift iteration (6.14).

Step 4: Compute { 0, (¥, )}u=1‘..m and evaluate

PO, 1= A/ B (V)G asin (6.11).

Sep 5: While p[P(9,),6] < p[B(¥,),4]

. L. .
Do y1<_5(yo+y1),

Evaluate p[ p(y,), Q]
Sep6: If |V, —Y,| <€ Stop.

Otherwise, set )70 691 and go to Step 2.

To analyze the algorithm in detail, the KBMS algorithm is implemented in MATLAB and in

C language, which is described below.

6.4 MATLAB/C Implementation of the KBM S Tracking Algorithm

The KBMS algorithm, as elaborated in Section 6.3 is implemented in MATLAB for
understanding the steps in the algorithm and the convergence issues. The MATLAB code is
verified with several stored video files. To identify the embedded implementation issues and
to formulate the quantitative analysis, the KBMS algorithm is subsequently implemented in C
language. All the functions in C language implementation are custom-made except the video
read and display. To capture and display the video, the C implementation utilizes the standard

OpenCV video read and write functions [183].
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While integrating the C code with OpenCV functions we have selectively integrated the
video capture and display functions. Later, in the embedded implementation of the complete
system, the developed video acquisition and display unit described in Chapter 2 replaces the

OpenCV functions.

The C code is compiled using the GCC complier [184] in Linux environment and it runs on
a normal computer. Fig. 6.4 shows the results of tracking of a car at various frame numbers
(Frame Nos. 25, 32, 38, 42, 50, 55 and 57) where the circular target coordinates are specified
in Frame No. 12. To determine the time-consuming portion of the program, the code is
profiled using the GNU gprof profiler [185]. To view the graphical representation of the

different functions call, the Valgrind and Callgrind open source software are used [186].

In the C implementation, it is observed that the function which compute kernel-smoothed
local histogram and the Bhattacharyya coefficient, consume most of the computation time. To
achieve better performance these two functions are therefore identified for hardware
implementation. In the next section, the embedded implementation of the KBMS tracking

algorithm is presented.

6.5 Embedded Implementation of the KBM S Tracking Algorithm

In this section the embedded implementation approach for kernel-based object tracking
algorithm is and various building blocks are utilized. The embedded system arrangement for
realizing the KBMS algorithm is shown in Fig. 6.5. As depicted in the figure, a 640x480
resolution video frame is captured from an analog camera and is buffered in the DDR2
SDRAM memory available on the Xilinx ML-507 FPGA platform, by the video acquisition
unit as described in Chapter 2. The embedded PowerPC processor, available with the Xilinx
Virtex-5 FX FPGA, accesses the stored frame. Application software running on the

embedded PowerPC processor controls the frame acquisition process.
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DDR2 RGB to Binary PowerPC
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= Virtex-5 FXT FPGA

mesor [ ] [ ] [ [ [ []

Fig. 6.5: Embedded system arrangement for the mean shift object tracking.

The complete hardware and software arrangement is shown in Fig. 6.6. To design the
complex arithmetic elements, the logarithmic and antilogarithmic blocks illustrated in
Chapter 3 are used. The image thresholding blocks of Chapter 4 is used by the connected
component labeling algorithm to segment out and identify the object, which is covered in
Chapter 5. The hardware portion of the object tracking algorithm includes color space
quantization, candidate/target modeling, kernel-weight computation, computation of
Bhattacharyya coefficient, mean shift weight computation and the computation of new mean
shift location. The various hardware architectural units for realizing the KBMS algorithm are

shown in Fig. 6.7.
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As shown in above figure, the color space quantization is simply a data selection process,
which is easily realized in the hardware. The candidate and target modeling needs weighted
local histogram (WLH) computation, which is smoothed by the kernel profile. Thus, the
candidate and the target modeling hardware need kernel-smoothed local histogram (KSLH)
computation. The KSLH unit utilizes the kernel-weight and weighted local histogram

computation. The mean shift weight computational unit is a form of center of gravity (COG)

computation.
Kernel-Smoothed Local Bhattacharyya W7 Meap St
: . Location
Histogram Coefficient :
Computation
/ Y \
Color Space Kernel Weight Weighted Local
Quantization Computation Histogram
______ & ] 4 \ Y

Fixed-Point Fixed-Point
Adder Multiplier

Fig. 6.7: Complete hardware architectural units for KBMS algorithm.

The binary logarithm and antilogarithm units illustrated in the Chapter 3 compute the

kernel-weight. The weighted histogram is computed by using BRAMs with fixed-point
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multiplier and fixed-point adder. The concept of LNS is also used to compute the
Bhattacharyya coefficient, the mean shift weights and to find out the new mean shift location.

Following sections describe the detail of the above architectural units.

6.6 Kernel-Smoothed Local Histogram Computation

As illustrated in Sep 1 of the KBMS algorithmic flow covered in the Section 6.3, the target
model (6.4) and the target candidate (6.6) require kernel-smoothed local histogram (KSLH)
computation. The basic building blocks of KSLH computation and their architectural

arrangement is shown in Fig. 6.8.

DDR2 SDRAM
P
1
a 24 RGB Pixels
t
f Y
° Multi-Port
s . ‘; Memory Color-Space .
/ Controller Quantization 12
ll I: MERA [T Weighted
\ CAMERA [T, peweis .
K ocal Histogram
\\ i Pixel Computation E §
> P - 1 3 B
h PowerPC | Coordinates Kernel Weight g
N Processor 32 Computation ow £ T
r > =
[SHR3]
i 53
s FPGA
Xilinx ML-507 Platform [~ — = -« o ~ & A or-osora— o

Fig. 6.8: Architecture for computing kernel-smoothed local histogram.

The proposed implementation requires single-cycle read-modify-write operations, which is
achieved by operating one port of the dual-port BRAM in the read-first mode and other port as
a write-first mode. Each pixel clock cycle is divided into two sub-cycles: a read cycle for
getting the current value, and a write cycle for updating the memory content. This is achieved
by operating the dual port BRAMS on both the edges of the video clock. After completion of
all the read-modify-write cycles, the BRAM memory locations hold the kernel smoothed local
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histogram of the image. The proposed architecture effectively utilizes various off-the-shelf
FPGA macro elements and platform peripherals for the required throughput. The KSLH in the
RGB color space is obtained by normalizing the pixel coordinates of the region of interest
(ROI) to an unit circle before applying the weighting with the kernel profile which is defined
for a unit circle [27]. The KSLH unit requires three main sub-units namely, color-space
quantization, kernel-weight computation and weighted local histogram computation units.

These architectural units are described below.

6.6.1 Color-space Quantization (m-Bins) and Color Histogram

Full color space of size 256X256%256 is quantized into 16xX16X16 color-space, as shown
in Fig. 6.9. In Fig. 6.9 (a) the values of R varies from 0 to 15 for all the possible values of G
and B values. Fig. 6.9 (b) shows the case where the value of R varies from 16 to 31 for each
possible value of G and B. Similarly, in the case shown in Fig. 6.9 (¢), the value of R varies

from 240 to 255 for the full range of G and B.

The full R, G, and B space contains 4096 color bins, which can be addressed by
concatenating the upper 4-bits of each of R, G and B. Thus, the 4096 locations are addressed

by 12-bits, which can be written as:

Bin address= R [7:4] & G[7:4] & B[7:4] (6.15)

The probability density function of color U is represented by the use of m-bin histogram and
the R, G, B feature space is quantized into 16Xx16Xx16 bins. Each bin corresponds to a range of
pixel value as range of bin-0 is (0...15), bin-1 is (16..31) and so on. The value of mis 4095
colors and range of color is (0...4095(m) ). By the use of above identity, the probability of
color U is derived for the target model. While deriving the probability of each color in the
target space, first three-color component (R, G, B) is checked as per (6.15) to find out the

corresponding color bin it belongs to and further we put that pixel into the corresponding
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location in the histogram. This process quantizes the full color space into the reduced color
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Fig. 6.9: RGB color-space quantization into m-bins (a) R=0-15, G=0-255, B=0-255 (b) R=16-
31, G=0-255, B=0-255 (c) R=240-255, G=0-255, B=0-255.

6.6.2 Kerne Weight Computation

Weights are required to smoothen the kernel function; it gives faster target localization in the
successive frames because it increases the robustness of the estimation of color histogram, as
surrounding pixels of the target center are less reliable owing to being frequently affected by
the occlusion or background [27]. Here, the radius of kernel profile is taken equal to ‘1’ and by
assuming that the pixel coordinates of the target are normalized. Weights (kw) are derived by
using the kernel function in normalized coordinates. After finding the distance (d,) of the
pixel coordinates from the center the weights are computed using the kernel function. Distance

of the pixel from the center of the target is,
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d =x>+y’ (6.16)
0 if (d) >1

kw= 6.17
g(l—di) otherwise (17
z

where di , is the distance of the pixel from center of the target and kw is derived from the

Epanechnikov kernel profile. A pictorial view of the kernel weights (kw) for the

Epanechnicov profile is shown in Fig. 6.10. The detailed architecture of the kernel-weight

computation block is shown in Fig. 6.11.

©,1)

(-1,0) f R (1,0)
1/

(03_1)

Fig. 6.10: A pictorial view of the kernel weights for the Epanechnikov kernel profile.
Here, the computed d. is applied to both the inputs of the 32-bit fixed-point multiplier (in

16.16 format), which provides d’. The square rooting in (6.16) is performed by computing
binary logarithm, one-bit right shift and the antilogarithm. The subsequent component in the
architecture is used to compute the kernel weight (Kw)based on the condition of (6.17). The
upper 16-bits of the multiplier, i.e., the integer part is applied to an OR network which is a 16-

bit OR gate made from four 4-bit OR gates.
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The output of the OR network is used as the select line for a multiplexer. Based on the OR
network output, the multiplexer routes the appropriate data as per (6.17). To remove the

divider for the computation of (6.17), the term, (2/ ), which is a fractional constant value is
pre-computed and multiplied with (1—d.). The first input of the multiplexer comes from the
output of a subtractor and a multiplier unit, which computes (2/7)x(1-d,). The second

input of the multiplexer is kept at logic zero level.

X; —
Co—| Normalization X*Z
JR—» i
Binary _,@_, Binary
Logarithmic Antilogarithmic
Yi — y*l2
d, —* Normalization
I/R—> Fixed-Point
Adder
7 OR
Network
1 Const

Fig. 6.11: Architecture for computing kernel weights.

6.6.3 Normalization unit
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The normalization unit accepts the center coordinates (G,,d,)and the radius of the circle (R) to

normalize all the local pixels and obtain XT = ()g*, yi*) . Normalization is required to eliminate

the influence of different target dimensions as the object can have irregular shape. This is
achieved by first normalizing the pixel coordinates of the target space to a unit circle. Further,
independent rescaling of the row and column dimensions of the target space is done. The

equations used for the rescaling, are as follows:

X =lR(>§ -G) (6.18)

« 1
Y = (% —=d) (6.19)

where, X and Y, are the row and column pixel coordinates from the circular (in general, this

could be an ellipsoidal region) target region, respectively. Further, X and Y are the
normalized values of the x-cordinate and y-coordinate. Here, the enter coordinates of the

circle is denoted by (G,,d,).

6.6.4 Weighted L ocal Histogram Computation

The weighted local histogram (6.4) is computed by incorporating a BRAM along with an
incrementer. For this, each pixel clock cycle is divided into two sub-cycles: a read cycle for
getting the current value, and a write cycle for updating the memory contents, as shown in Fig.
6.12. The content of the memory locations addressed by each newly arrived pixel is

incremented by the computed kernel weight value (kW) based on the pixel location. After

completion of the read-modify-write cycle, the BRAM memory locations hold the KSLH, §

of the image.
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Proposed architecture for KSLH computation is shown in Fig. 6.13. Note that, in Fig. 6.13,
the newly arrived color count is scaled with the corresponding kernel weight value (Kw)

(derived according to their distance from the center of ROI) before accumulation with the

existing count.
A A Y S W AN A W A W O
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Fig. 6.12: Weighted local histogram computation timing diagram.
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Fig. 6.13: Architecture for computing the kernel-smoothed local histogram of an image.
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6.7 Bhattacharyya Coefficient Computation

As described in Section 6.3, after computing the target model § (6.1) and the candidate model

P(y) (6.2), the KBMS algorithm needs Bhattacharyya coefficient in Sep 1. The concept of

LNS-based implementation is used to construct the datapath of the Bhattacharyya coefficient
(6.11) computation unit. To compute the Bhattacharyya coefficient (6.11), can be expressed

as,

p(y)= Z %% (6.20)

where, C, is a constant and it is the accumulated value of (6.2) and C, is the accumulated

value of (6.1). The values of C, and C, are computed as per (6.5) and (6.7) respectively. The

terms in (6.20), for U= 1,2,3,...,m can be written in logarithmic domain as,

tog, [P b iog (b (1) +1og (@)~ Iog (G, )~ log (C: )] (6.21)

So we can write (6.20) as,

py)=3 Antilog] 14[log( p,(y) +log (4,) - log(C)~log(C,) T] ©22)

u=1

It is evident from (6.22), that, after computing the cumulative histograms (6.1) and (6.2) we
require LNS-based datapath. To construct a LNS-based architecture and the associated system
architectural building blocks, binary logarithmic units, right shifter and one binary
antilogarithmic unit is needed. Based on these architectural units, the proposed architecture for
computing the Bhattacharyya coefficient is shown in Fig. 6.14. In the Fig. 6.14, the BRAM-1

stores the kernel-smoothed local histogram of the target, which is defined in (6.1).
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Fig. 6.14: Architecture for computing the Bhattacharyya coefficient.
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Similarly, the BRAM-2 retains the kernel-smoothed local histogram of the candidate

(6.3).The architecture shown in Fig. 6.14 works in five different stages, which are as follows:
Sage 0: In Sage ‘0°, the BRAM-1, BRAM-2 and the last register is initialized to zeros.

Sage 1: In this stage, we compute the kernel-smoothed local histogram (6.1) using Block
RAM memory (BRAM-1). The kernel-smoothed histogram as required in (6.1) and (6.2) is
computed by the method described in Section 6.6 and shown in the Fig. 6.14. The computed

value is in 32-bit fixed-point format.

Sage 2: In Sage 2°, the kernel-smoothed local histogram of (6.6) is computed. The detailed
computational process is illustrated in Section 6.6. The computed values are in 32-bit fixed-

point and retained in the BRAM-2.

Sage 3: In Sage ‘3’, the value of log(Q) and log(C2) is computed. The computed values
are in 21-bit fixed-point format, which are added by a 21-bit fixed-point adder.

Sage 4: Sage ‘4’, provides the computed Bhattacharyya coefficient value.

6.8 Mean Shift Weight Computational Unit

The KBMS algorithm requires mean shift weights in Sep 2. As discussed and explained in

Section 6.2.7, the mean shift weight can be computed by (6.13). Similar to Section 6.7, the

concept of the LNS is used for computing (6.13), which is expressed as,
w=3 |-—%/C sipx)-u] (6.23)
u y

where, C, represents the accumulated value of (6.2) and C, is the accumulated value of (6.1).

The value of C, is computed as per (6.5) and the C, is computed by (6.7). Expression (6.23),

can be written as,
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Fig. 6.15: Architecture for computing mean shift weights.
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W= iAntﬂog[%[log (6,)~log(B,(9,)) +log (C.)~log (C)] | 8[b0x)-u]  (624)

After computing the kernel-smoothed local histograms (6.1) and (6.2), we require an LNS-
based datapath to obtain W (6.24). To construct an LNS-based architecture and the required
architectural building blocks, four binary logarithmic units, one right shifter and one binary
antilogarithmic unit are required. By utilizing these architectural units, the proposed

architecture for mean shift weight computation is shown in Fig. 6.15. The proposed

architecture works in five different stages, which are discussed below:
Sage 0: In Sage ‘0’, all the BRAM s are initialized to zero.

Sage 1: In this stage, we compute the kernel-smoothed local histogram (6.1) using BRAM-1

(this is the same computation using BRAM-1, as described in Section 6.7).

Sage 2: In Sage ‘2°, the histogram (6.3) is computed. The computed histogram values are

retained in the BRAM-2(this is the same BRAM-2 as described in the Section 6.7).
Sage 3: In Sage ‘3’, the subtraction of two logarithmic values is performed.

Sage 4: Sage ‘4’, provides the computed mean shift weights, which reside in BRAM-3.

6.9 New Mean Shift Location Computation

As explained in the above section the mean shift weights are computed and stored in
BRAM-3. The 4096 locations of BRAM-3 contain 32-bit values. Similar to the
Bhattacharyya coefficient and the mean shift location computations the LNS based approach
is used to design the architecture for computing the new mean shift location. It uses three
binary logarithmic units, two binary antilogarithmic units, four fixed-point adder/subtractor

and two fixed-point multipliers. As explained in Section 6.2.7, the new location of the mean
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shift is computed by (6.14), which is a simple weighted average. The X-coordinate of (6.14),

which is represented by V, ., can be written as,

=

YI(X—coor) = Antilog {log (Z_; Xi (x-coor) M ] - log( £ W j} (6.25)

and similarly, the y-coordinate of (6.24) is expressed as,

Yiy-coor) = Antilog{log[z Xi(y-coor) M j —log(zwi H (6.26)
i=1 i=1

Based on expressions (6.25) and (6.26), an architecture for computing the new mean shift
location is proposed. The details of the architecture for computing the new mean shift

location is shown in Fig. 6.16.

The proposed architecture works in two stages, which are explained below. First, each
BRAM memory location is accessed for obtaining the new mean shift location coordinates.
There are three concurrent computations in the iterative computing process. The objective of
the first computation is to find out the summation of all the mean shift weights. This is

obtained by accessing each locations of the BRAM and accumulating its value in a register,

which results in a total mean shift weightw, = z:‘fss W .

In concurrence, the second computation uses each BRAM memory location and multiplies

it with the X-coordinate, (X ), of the normalized pixel coordinate, (X;). The x-coordinate of

the weighted sum (WS) computation provides as \7&7SX:Z:409SV\/i x(x), . Similarly, in

i=0
parallel, the y coordinates (%), of X; are multiplied with the total mean shift weight, W, to

4095

provide ws, = Z o WX (X )y. After getting the values of W, WS, and the WS, the binary

logarithmic circuits are used in the second stage of the computation.
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Fig. 6.16: Architecture for the new mean shift location computation.

As shown in Fig. 6.16, the leftmost logarithmic circuit provides the logarithmic equivalent
of the denominator and the remaining two logarithmic blocks provide the numerator terms of

(6.14) in the logarithmic form. With the LNS based approach, two fixed-point subtractors and
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two antilogarithmic units compute (6.14). The computed new mean shift locations are

represented as V), ooy a0d Y,y conr) -

6.10 Integration of Architectural Building Blocks

While all the independent architectural units as general-purpose hardware components have
been described in the foregoing sections, their integration for realizing the KBMS algorithm
is described in this section. The full circuit level organization integrating the KSLH units, the
Bhattacharyya coefficient computational unit, the mean shift weight computational unit and

the new mean shift location computing unit is shown in Fig. 6.17. Here, the Block RAM-1
(BRAM-1) retains the kernel-smoothed local histogram of the target (0), and it is represented
as KSLH-1 in the figure. Similarly, the Block RAM-2 (BRAM-2) holds the kernel-smoothed

local histogram of the candidate (P(Y)) shown as KSLH-2 in  Fig. 6.17.

The first section of the circuit computes the Bhattacharyya coefficient, which uses the
KSLH-1 and the KSLH-2 units, four logarithmic units, four arithmetical blocks for addition,
one shifter for right shifting, one antilogarithmic unit and a register. In a concurrent, manner
the middle block of the circuit computes the mean shift weight by using the KSLH-1 and

KSLH-2 units. The computed mean shift weights are simultaneously stored in BRAM-3.

The weights are used by the last block of Fig. 6.17, which computes the new mean shift
location. The architecture shown in Fig. 6.17 uses the shares the hardware resources across its
units. The hardware resources which are shared among the Bhattacharyya coefficient

computation unit and the mean shift weight computation unit includes, the logarithmic
blocks, log(C,), log(C,), log(q,) and the log(p,(Y)). Similarly, the log(W) hardware block

is shared within the new mean shift location computation unit.
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The computed value of Bhattacharyya coefficient ( 0 ), mean shift weights (W ), and new
mean shift locations ¥, o, and ¥, oy, are utilized by the KBMS algorithm explained in
the Section 6.3. The Bhattacharyya coefficient (0 ) is utilized in Sep 1, the mean shift
weights (W ) are used in Step 2, whereas, the new mean shift locations ¥, o) and ¥,y o)

are utilized in ep 3 of the KBMS algorithmic flow.

6.11 The System Control

The application software, written in ‘C’ programming language, runs on top of a Xilinx
standalone software platform. The application program controls all the hardware blocks and
platform peripherals by using the application programmer interface (API) offered by the
software platform along with some of the basic functions developed for individual hardware
blocks. The core communicates with the DDR2 SDRAM memory through a 32-bit native port

interface (NPI) which is synchronous with the MPMC controller [105].

The embedded PowerPC processor, available in the Xilinx Virtex-5 xc5vfx70t FPGA
device, is used to control the above architectural units. The PowerPC embedded processor
uses the general-purpose registers of the 12C controller for the required control. The

application program runs in the Xilinx SDK environment and it controls the complete system.

6.12 Results and Discussions

The proposed architecture has been implemented using the Very-high speed integrated circuit
Hardware Description Language (VHDL) and synthesized with Xilinx ISE 14.2 for the Virtex-
5 xc5vix70tffgl136-1 FPGA device available on the Xilinx ML-507 platform. The FPGA

device utilization summary for various modules is described below:

183



6.12.1 FPGA Device Utilization for the KSLH Module

The FPGA device utilization summary for implementing the kernel-smoothed local histogram
(KSLH) computation is shown in Table 6.1. As shown in the table, the proposed architecture
need around 1% of the FPGA slices. The architecture utilizes 2.7% (4 out of 148) of Block
RAMs and 10.16% (13 out of 128) of DSP48E slices of Virtex-5 FX FPGA device. The

computed power of the KSLH unit is 45.6 mW.

Table 6.1: FPGA Device Utilization for Implementing the Proposed Architecture for
Computing Kernel-Smoothed Local Histogram of an Image.

Elements Device Utilization Utilization (%)
Slice LUTs 441 /44800 0.98
External IOBs 113/640 17.66
BRAMs 4/148 2.70
DSP48Es 13/128 10.16

In the proposed architecture, the complex arithmetic operations are converted into simple
arithmetic operations by using binary logarithmic and antilogarithmic circuits using fixed-
point datapath. The architecture uses standard 640x480VGA resolution image. The image is
captured from a high-resolution camera and subsequently buffered in the off-chip DDR2

SDRAM memory.

6.12.2 FPGA Device Utilization for the Bhattacharyya Coefficient Computation

The Bhattacharyya coefficient (BC) computation needs around 5% of the FPGA slices. Table
6.2, shows the device utilization summary of the proposed BC architecture. The architecture
utilizes 5.4% (8 out of 148) of the Block RAM and 27.34% (35 out of 128) of DSP48E slices

available in the Virtex-5 xc5vix70t FPGA device.

The block-level architectural view of the proposed architecture for computing the
Bhattacharyya coefficient is shown in the Fig. 6.18. It utilizes the two instances of the KSLH
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unit, four instances of the binary logarithmic unit and one binary antilogarithmic unit. The

power consumption of the Bhattacharyya coefficient architecture is 52.1 mW.

Table 6.2: FPGA Device Utilization for Implementing the Proposed architecture for
Bhattacharyya Coefficient.

Elements Device Utilization Utilization (%)
Slice Registers 81/44800 0.18
Slice LUTs 2020 /44800 4.51
Bonded IOBs 131/640 20.47
BRAMSs/FIFOs 8/148 5.4
BUFG/BUFGCTRLs 1/32 3.1
DSP48Es 35/128 27.34

Fig. 6.18: FPGA technology schematic of Bhattacharyya coefficient computational unit.

185



Fig. 6.18 shows the graphical representation of the post-synthesis (optimized and mapped)
netlist containing Xilinx primitives elements, which includes, look-up-tables (LUTs),digital
clock manager (DCM), I/O buffers, and flip-flops. The ISE schematic viewer is use to

visualize the properties of all the elements.

6.12.3 FPGA Device Utilization for the Mean Shift Weight Computation

The mean shift weight computational unit uses the same set of architectural components as
required in the Bhattacharyya coefficient unit with the exception of an additional BRAM. As
shown in Fig. 6.15 it uses four logarithmic units, one shifter and one binary antilogarithmic
unit with three BRAMs. The FPGA device utilization summary for the mean shift weight

computational unit is shown in Table 6.3.

Table 6.3: FPGA Device Utilization for Implementing the Mean Shift Weight Computational

Architecture.

Elements Device Utilization Utilization (%)
Slice Registers 49/44800 0.10
Slice LUTs 1998 /44800 4.46
Bonded IOBs 145/640 22.66
BRAMSs/FIFOs 12/148 8.10

BUFG/BUFGCTRLs 1/32 3.1

DSP48Es 35/128 27.34

After optimization and technology-targeting phase of the synthesis process, a schematic
representation of the synthesized design is shown in Fig. 6.19. This schematic shows a
representation of the design in terms of logic elements optimized to the target Xilinx Virtex-5
xcS5vix70t FPGA device. It contains LUTs, carry logic, I/O buffers, and other technology-
specific components. The schematic shows a technology-level representation of the developed

HDL. The computed power of the proposed architecture has been found to be 69.2 mW.
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Fig. 6.19: Synthesized view of the mean shift weight computation module.
6.12.4 FPGA Device Utilization for the New Mean Shift L ocation Computation Unit
Computation of the new mean shift location is performed as shown in Fig. 6.16, using
logarithmic and antilogarithmic units. The FPGA device utilization for it is shown in
Table 6.4.

Table 6.4: FPGA Device Utilization for Implementing the Proposed Architecture for New
Mean Shift Location Computation.

Elements Device Utilization Utilization (%)
Slice Registers 64/44800 0.14
Slice LUTs 1139 /44800 2.54
Bonded I0OBs 145/640 22.67
BRAMSs/FIFOs 4/148 6.75
BUFG/BUFGCTRLs 1/32 3.13
DSP48Es 12/128 9.36
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I

Fig. 6.20: Synthesized view of the new mean shift location computation.
The computed power of the design is found to be 45.7 mW. All the above architectural
building blocks are used to realize the KBMS algorithm. The integrated design to realize the
KBMS algorithm has been discussed in Section 6.10. In the following subsection the FPGA

device utilization of the integration is covered.

6.12.5 FPGA Device Utilization for the KBM S Unit

The integrated module shown in Fig. 6.17 has been synthesized in the FPGA device. The

device utilization for the complete KBMS unit is presented in Table 6.5.

Table 6.5: FPGA Device Utilization of Implementing the Complete KBMS Algorithm.

Elements Device Utilization Utilization (%)
Slice Registers 144/44800 0.32
Slice LUTs 3470 /44800 7.75
Bonded IOBs 273/640 42.66
BRAMSs/FIFOs 12/148 8.11
BUFG/BUFGCTRLs 1/32 3.13
DSP48Es 46/128 35.94
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As shown in Table 6.5, the KBMS unit uses 7.75 % FPGA slices, 8.11 % BRAMs, 3.13 %
BUFG and 35.94 % DSP48E i.e. DSP slices. The synthesized view of the complete KBMS

unit is shown in Fig. 6.21.

Fig. 6.21: Synthesized view of the complete KBMS unit.
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In Fig. 6.21, the Xilinx synthesis tool (XST) infers components, such as, carry logic,
BRAMs, shift registers, LUTs, clock buffers, multiplexers, arithmetic functions (DSP48E),

which are associated with the Xilinx Virtex-5 xc5vfx70t FPGA device.

Table 6.6: FPGA Device Utilization Summary for Implementing Various Units of KBMS

Algorithm.

I ndependent Slices | BRAMs | DSP48Es | Bonded 10Bs
Architectures (11200) (148) (128) (640)
Image Acquisition 2240 28 0 121
Binary logarithm 53 0 2 53
Binary antilogarithm 41 0 1 53
Image thresholding 168 4 5 33
KBMS algorithm 868 12 46 273

Table 6.6 summarizes the FPGA device utilization for all the units. The complete system

view with the KBMS core is discussed below.

6.13 The Complete System View for implementation of KBM S Algorithm

The proposed architecture can be used as an intellectual property (IP) core in an embedded
system environment. The placement of the KBMS core along with its interfaces with other IPs
and buses is shown in Fig. 6.21. For communication with the embedded PowerPC 440
(PPC440) processor, the proposed system architecture utilizes processor local bus (PLB) and
memory controller interface (MCI) bus protocols. The MCI provides an interface between
PPC440 processor and a soft multi-port memory controller (MPMC) implemented in the
FPGA fabric [34]. The frame acquisition uses the PPC440 processor and the Xilinx video
frame buffer controller (VFBC) available with the MPMC IP. The AD9980 video decoder
chip is programmed through inter-integrated circuit (12C) bus, which generates 25.175 MHz
video clock. All the various architectural units utilize the generated video clock, which is

managed by the digital clock manager (DCM).
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Fig. 6.22: KBMS core in a system environment.

6.14 Conclusion

In this chapter, architectures for the kernel-smoothed local histogram (KSLH) computation,
Bhattacharyya coefficient computation, mean shift weight computation and new mean shift
location computation have been proposed. The proposed architectures have been utilized to
implement the kernel-based mean shift (KBMS) object tracking algorithm. The presented
architecture uses dual-port BRAMS with single cycle read-modify-write operation to compute
the kernel-smoothed local histogram for an image. Here, an embedded PowerPC processor
controls the frame acquisition part of the architecture, which uses DDR2 SDRAM memory,
video decoder and display controller chips, available on the Xilinx ML-507 Virtex-5 FX
FPGA device based platform. Xilinx embedded development kit (EDK) design tool is used to
integrate the required IPs with the embedded PowerPC processor, which runs application

program and the configuration software.
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In the proposed architectures, most of the operations are performed in the 32-bit fixed-point
format. The complex arithmetic operations are realized through fixed-point binary
logarithmic and antilogarithmic units. The architecture has the advantages of minimizing
logic resources, and processing of large datasets in real-time, by realizing time-critical
processes through the available BRAMS and DSP slices. The design results in an effective
use of FPGA resources for the required throughput and speed goal. The work presents and
demonstrates an effective design approach for realizing high-performance embedded

hardware-software based systems.
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CHAPTER 7

CONCLUSIONS

7.1 Summary of Achievements

In this thesis, a set of hardware architectural modules have been presented for resource-
efficient embedded realization of image and video processing applications. These
architectures have been designed using platform-based design methodology that allows
exploration and development of new and emerging image and video processing systems. The
hardware architectures are realized in the Virtex 5 FPGA device available on the ML-507
platform. The designed modules can be utilized as intellectual property (IP) cores for rapid

development of systems.

We have presented a real-time image and video acquisition and display module that is
required across a wide range of image/video processing applications. Next, to efficiently
realize complex arithmetic functions such as square root, division, and raise-to-the-power
function by using logarithm number system (LNS), architectures for binary logarithm and
antilogarithm have been presented. Many image/video processing applications require an
efficient hardware architecture for image thresholding. We have presented a resource-
efficient FPGA-based architecture for global image thresholding. Also in various
image/video applications, it is necessary to find connected components present in binary
images. We have presented an improved label-equivalence based two-scan connected
component algorithm along with its implementation on the embedded PowerPC processor.
The presented algorithm improves upon the Stefano-Bulgarelli (SB) algorithm by modifying
the equivalence handling procedure of SB algorithm for efficient identification of connected

components. The improved connected component algorithm has been used for obtaing target
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coordinates, which are required for embedded implementation of kernel-based mean shift

(KBMS) object tracking algorithm.

Finally, all the above described hardware and software modules alongwith some
additionally required hardware blocks have been utilized for the embedded FPGA
implementation of the KBMS object tracking application. The additionally required hardware
architectural blocks for implementation of the KBMS algorithm are blocks for similarity
measure computation, center of gravity computation, mean shift weight computation and new
mean shift location computation. FPGA-based architectures for these blocks have been
proposed and implemented on the Virtex-5 FX series device available on Xilinx ML-507
platform. The developed architectures have the advantages of reduced logic resources and
processing of large datasets by realizing time-critical processes in the available BRAMS and
DSP slices. The Xilinx embedded development kit (EDK) design tool has been used to

manage the integration of various architectures and algorithms presented in this thesis.

Register-transfer-level (RTL) modeling of all the architectural building blocks has been
done in VHDL language. The datapath of the architecture has been optimized by using the
concepts of functional unit sharing and operator merging. In the designed datapath, outputs of
the different functional units share the common destinations at different times. Therefore, in
the datapath, several signals are merged into a bus. This design strategy leads to the
minimization of substantial amount of FPGA resources. In the same way, registers with non-
overlapping access times are merged to share the register input and output ports. The modular

structure of the developed datapath also supports pipelining for higher throughput.

The work starts with configuration of the Xilinx FPGA-based platform and the required
peripherals for image and video processing applications. The embedded PowerPC processor

available in the FPGA device is used to configure the VGA input video codec and the display
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controller on-platform peripherals. The control registers of these peripherals are programmed
through inter-integrated circuit (12C) bus using low-level device driver functions and their
application programming interfaces (API). The design is implemented in the Virtex-5 FPGA
fabrics, which facilitates real-time video streaming on a VGA monitor. Subsequently, an
FPGA-based embedded architecture is implemented in the Xilinx ML-507 platform for the
frame acquisition application. The architecture presented allows buffering of 640x480
resolution video frames in the DDR2 SDRAM memory. This embedded design is utilized by

different applications for further processing of captured video frames.

To compute the complex arithmetic functions required for image/video processing a simple
integer datapath is created. The designed datapath uses 32-bit unsigned fixed-point numbers
and utilizes the concepts of logarithmic number system. Architectures for the binary
logarithm and antilogarithm units are proposed for finding their approximate values within
the specified range. To find the characteristic part of the logarithm of a binary numbers, a
novel leading-one finder circuit has been proposed. The fractional part approximation unit
proposed, computes the mantissa part of the binary logarithm. The same circuit arrangement
has been used to compute the binary logarithm of integer and fractional numbers. The
proposed architecture for logarithm computation utilizes only 209 LUTs out of available
44800 LUTs, which represent around 0.47 % utilization. Similarly, out of the 128 available
DSP48E slices, the proposed architecture uses only 02 slices, which represents around 1.6 %
utilization. In antilogarithm computation, the characteristic portion of the binary number is
used to shift the computed mantissa part with the help of a barrel-shifter. The barrel-shifter of
the proposed architecture of antilogarithm unit uses a few multiplexers to route the logically
shifted value of the mantissa part. The circuit arrangement for computing binary
antilogarithm also uses same set of circuit elements to compute binary antilogarithm of

positive and negative numbers. The proposed architecture for binary antilogarithm
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computation requires only 0.37 % of the FPGA LUTs, 0.78% of the DSP48E slice available

with the Virtex-5 FPGA device.

Error analysis has been performed on the implemented architectures using thousands of
uniformly distributed random numbers. It shows that the maximum error is percentage of
0.05 % with 16.16 fixed-point numbers and 0.34 % with fractional numbers for binary
logarithm computation. In binary antilogarithm computation the percentages of
computational errors are found to lie in the range of 10.08%for positive binary numbers and

-0.2 %to +0.6% for negative binary numbers. The associated percentage computational

errors are relatively small percentage band, which is acceptable for a wide range of image and
video processing applications. The developed logarithmic and antilogarithmic units are
utilized for the purpose of hardware architecting of various compute-intensive blocks

presented in the thesis.

A novel hardware architecture for global image thresholding operation has been presented
next. Thresholding operation is performed on gray-level images, so that optimal value of
threshold could be obtained for binary conversion of images. An efficient global automatic
image thresholding algorithm, proposed by Otsu, is taken for hardware implementation. The
compute-intensive between class variance computation (BCV) is required for implementing
Otsu’s algorithm. In the presented work, an area-efficient FPGA-based architecture for the
computation of BCV is proposed. It requires computing normalized cumulative histogram
(NCH) and normalized cumulative intensity area (NCIA). These modules are developed by
incorporating the embedded components available in the FPGA, which include digital clock
manager (DCM), BRAMs, and DSP slices. The proposed architecture requires only 1.5 % of
the FPGA slices for the computation of between-class variance, 2.7% of the Block RAMs

have been used to compute the cumulative mean and moments and we are using total 3.9% of
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available DSP48E slices. The proposed architecture has the advantages of minimizing logic
resources and the ability to process large datasets by conducting time-critical functions on
available BRAMs and DSP slices. The FPGA device utilization of the design shows that the

proposed architecture utilizes a small number of FPGA BRAMs, DSP slices and LUTs.

The binary image obtained from the image thresholding unit is utilized by the connected
component analysis algorithm. In our work, we have proposed an improved label-equivalence
based connected component analysis algorithm. The proposed algorithm improves on the
Stefano-Bulgarelli (SB) algorithm by modifying its equivalence handling procedure, and
removes the partial merging problem associated with the SB algorithm. It searches for the
label-equivalence and as soon as it is found, the algorithm resolves the label-equivalences in
the first scan itself. The label-equivalence process is independent from the different
temporary labels assigned. The improved algorithm is implemented on the embedded
PowerPC processor of the ML-507 platform. The results demonstrate that the improved
algorithm handles equivalences efficiently and gives accurate count of connected

components.

An embedded architecture for object tracking application is considered next, which utilizes
the developed architectural building blocks and algorithms. Additionally required
application-specific architectural building blocks are developed for this purpose. The kernel-
based mean shift (KBMS) algorithm is taken for the embedded realization of the object
tracking application. To perform analysis on the KBMS algorithm its MATLAB/C
implementation is developed. Computation of kernel-smoothed local histogram, center of
gravity, Bhattacharyya coefficient based local similarity measure and the mean shift weight
are found to be the main time-critical parts of the KBMS algorithm. FPGA-based hardware
architecture blocks for implementing the computations are proposed and presented in detail.

The embedded PowerPC processor has been used to run the software components as well as
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to configure and control various on-platform system peripherals used. The power
consumption associated with different architectural modules is obtained by using Xilinx

XPower Analyzer tool.

7.2 Future Scope of Work

Rapid growth of image and video processing systems has raised increasing demand for
system functionality and diversity. Hardware architectures and algorithms presented in this
thesis can be part of the architectural development for any practical image and video
processing system using FPGA-based platform. The approach followed can easily be
transferred on to future FPGA-based platforms and their associated embedded processors
leading to design gains in terms of programmable systems integration, increased system

performance and overall cost reduction.

Today and in foreseeable future application-specific system designing will demand
integration of various heterogeneous components. Intellectual property (IP) based design and
implementation approach as presented in this thesis can support the development of
application-specific complex image and video processing systems and their derivatives. With
the presented design approach, development of complex practical system architectures and
their prototypes is feasible in minimal amounts of time. The developed hardware/software
building blocks along with standard IPs can also be leveraged for the development of highest

performance-lowest power solutions for applications that target mass markets.

Finally, designing of various derivatives of the developed architectures and their
integration is possible for any processor of choice. We have so far considered only a single
processor, which is embedded in the FPGA device, however, with the availability of multiple
or multi-core processors in various upcoming platforms, the hardware/software units can be

efficiently exploited for designing future embedded image/video processing systems.
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APPENDIX A

AN OVERVIEW OF THE FPGA-BASED PLATFORM

A.1 Xilinx ML-507 FPGA Platform

The Xilinx ML-507 platform [187] contains a Virtex-5 FPGA (XC5VFX70T) which has one
PowerPC440 (PPC440) processor surrounded by the FPGA fabric [33]. The software tasks
can be executed on the PPC440 processor, while the FPGA 1is used for hardware acceleration.
Fig. A.1 shows the organization of different components of the platform [33]. Some of the

important features of this platform are follows:

e PPC 440 embedded reduced instruction set computing (RISC) processor [34].

e Memory controller interface (MCI); provides an interface between PPC440 processor
and a soft memory controller implemented in the FPGA logic [34].

e Processor local bus (PLB) is a 128-bit bus, which provides bus infrastructure for
connecting an optional number of PLB masters and slaves into an overall PLB system
[98].

e VGA input video codec connector; supports connectivity to an external VGA source
[100].

e Inter-integrated circuit (I2C) bus support [188,189].

e 64-bit wide, 256 MB Micron MT4HTF3264HY-667 DDR2 small outline dual in-line
memory module (SODIMM) [190]; acts as a video frame buffer for the image
acquisition system.

e 11,200 configurable logic block (CLB) slices; provided for implementing

combinational and sequential logic functions [32].
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Virtex-5 FPGA.

256 MB DDR2 SODIMM.

Differential clock I/0 with SMA connectors.
Oscillators.

LCD brightness and contrast adjustment.
GPIO DIP switches (Active-High).

User and error LEDs (Active-High).

User pushbuttons (Active-High).

9. CPU reset button (Active-Low).

10. XGI expansion headers.

11. Stereo AC97 audio codec.

12. RS-232 serial port.

13. 16-character x 2-line LCD.

14. 12C bus with 8-Kb EEPROM.

15. DVI connector.

16. PS/2 mouse and keyboard ports.

17. System ACE and CompactFlash connector.
18. ZBT synchronous SRAM.

19. Linear flash chips.

20. Xilinx XC95144XL CPLD.

21. 10/100/1000 Tri-speed ethernet PHY.

@) 22. USB controller with host and peripheral ports.
23. Xilinx XCF32P platform flash PROM.

24. JTAG configuration port.

25. Onboard power supplies.

26. AC adapter and input power switch/jack.

27. Power indicator LED.

28. DONE LED.

29. INIT LED.

30. Program switch.

31. Configuration address and mode DIP switches.
32. Encryption key battery.

33. SPI flash.

34.12C fan controller and temp./voltage monitor.
35. Piezo.

36. VGA input video codec.

37.JTAG trace/debug.

38. Rotary encoder

39. Differential GTP/GTX I/O with SMA connectors.
40. PCI express interface.

41. Serial-ATA host connectors.

42. SFP connector.

43. GTP/GTX clocking circuitry.

44. Soft touch landing pad.

45. System monitor.
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Fig. A.1: Xilinx ML-507 Platform. (a) front view (b) rear view.
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e Programmable system clock generator chip; available for generating a variety of non-
integer clocks from 4.9 KHz to 500 MHz to the platform peripherals and FPGA
[191,99].

e Digital clock manager (DCM); provides integer multiple of clocks to various
peripherals [106].

e Multi-port memory-controller (MPMC); for external memory support [105].

e 5328 Kb Block RAMs (BRAMs); available as configurable internal RAM for the
FPGA.

e RS-232 serial port; allows the FPGA to communicate serial data with another device
or with PC.

e JTAG configuration port.

e DVI connector with display controller chip; to support an external DVI/VGA monitor

[101].

A.2 Field-Programmable Gate Array (FPGA) Device

The field-programmable gate array (FPGA) is a semiconductor device. It is based on a matrix
of configurable logic blocks (CLBs) connected through programmable interconnects. Instead
of being restricted to any predetermined hardware function (as in ASIC, where the device is
custom built for the particular design), an FPGA can be programmed to modify the product
features and functions to reconfigure hardware for specific applications. This modification in
the hardware can be done even after the product is installed in the field and that makes it a
“field-programmable” device [192]. The FPGAs can be used to implement any logical
function that an ASIC circuit (ASIC) can perform. Today’s FPGAs can be partially or fully
re-configurable to implement a desired logic function. The partial re-configuration feature
allows a portion of the FPGA to be always running, while another portion of the same FPGA

is being re-configured for the new set of logic functionality.
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The previous generation FPGAs used I/Os with programmable logic and interconnects. The
modern FPGAs consist of configurable embedded memory, high-speed transceivers, high-
speed 1/Os, logic blocks. FPGAs have evolved far beyond the basic capabilities present in
their predecessors, and now incorporate pre-fabricated blocks of intellectual property (IP) of
commonly used functionality such as Block RAM (single/dual port), clock management, and
DSP (multiplier, adder, arithmetic-logic unit). Intellectual property (IP) blocks built into the
FPGA fabric provide rich functions while lowering power and cost. Apart from this, the
FPGA families are available which contain hard-embedded processor(s), transforming the

devices into systems on a chip (SoC) [23].
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Fig. A.2: FPGA block structure (reproduced from embedded processor block in Virtex-5
FPGAs).

The block structure of an FPGA 1is shown in Fig. A.2 [32]. The main components of the
FPGAs are: CLBs, BRAMs, programmable interconnects, programmable 1/O, digital clock

manager. As discussed earlier, the present day FPGAs also contain hard IP blocks like an
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embedded processor and DSP slices (multiplier, adder). The details of each block are given

below.

A.2.1 Configuration Logic Block (CLB)

The CLB is the basic logic unit of FPGAs. The number of CLBs and CLB features vary from
device to device, but every CLB consists of a configurable switch matrix with 4 or 6 inputs,
some selection circuitry (MUX, etc.), and flip-flops. The switch matrix is flexible and can be

configured to implement combinatorial logic and shift register or RAM bits.

COPT Cq‘UT

- — Slice(1)
Switch
Matrix

< > Slice(0)

i
CLB
CIN CIN

Fig. A.3: Arrangement of slices within the CLB.

User writes into the configuration memory, which defines function of the system. This
includes the connectivity between the CLBs and the I/O cells, the logic to be implemented
onto the CLBs, and the configuration of the I/O blocks. By changing data in the configuration
memory, the function of the system can be changed. This change in data can be implemented

at anytime during the FPGA operation (run-time configuration). In Xilinx Virtex-5 FPGA, a
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CLB element contains a pair of independent slices, slice (0) and slice (1) as shown in Fig.

A3.

These slices are organized in a column and contain carry chains. The Xilinx tools assign
slices as follows: X followed by a number identifies the position of each slice in a pair as well
as the column position of the slice. The X number counts slices starting from the bottom in
sequence 0, 1 (the first CLB column); 2, 3 (the second CLB column); etc. A Y followed by a
number categorizes a row of slices. The number remains the same within a CLB, but
increases in sequence from one CLB row to the next CLB row, starting from the bottom. The

detail of the slice is given below.

A.2.2 Slice Description

Each slice includes four logic-function generators or look-up tables (six input LUTSs), four
storage elements, wide-function multiplexers, and carry logic. By these resources, the slice
provides logic, arithmetic, and ROM functions. In addition to this, some slices support two
extra functions: storing data using distributed RAM and shifting data with registers. Slices
that support these additional functions are known as SLICEM; others are called SLICEL [32].

An arrangement of SLICEL is shown in Fig. A.4 and the SLICEM is shown in Fig. A.5 [32]
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Fig. A.4: Arrangement of SLICEL.
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Fig. A.5: Arrangement of SLICEM.
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A.2.3 Interconnect

While the CLB provides the logic capability, flexible interconnect routing routes the signals
between CLBs and to/from I/Os. Routing comes in several ways, from that designed to
interconnect between CLBs to fast horizontal and vertical long lines spanning the device, to

global low-skew routing for clocking and other global signals [32].

A.24 Select 1/0

The basic IOB and its connections to the internal logic and the device pad are shown in

Fig. A.6 [32].
DIFFO_IN
PAD 4D DIFFO_OUT
T D I > PADOUT
o[> !
QUTBUF
INBUF
DIFFI_IN | >

Fig. A.6: Arrangement of IOB.

FPGAs provide support for dozens of I/O standards thus providing the ideal interface
bridge in the system. I/O in FPGAs is grouped in banks with each bank independently able to
support different I/O standards [32]. Each IOB contains input, output, and 3-state SelectlO
drivers. These drivers can be configured to various I/O standards. Differential I/O uses the

two IOBs grouped together in one tile.

e Single-ended I/O standards (LVCMOS, LVTTL, HSTL, SSTL, GTL, PCI)
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e Differential I/O standards (LVDS, HT, LVPECL, BLVDS, Differential HSTL and
SSTL)
e Differential and VREF dependent inputs are powered by VCCAUX

Each Virtex-5 FPGA 1/O tile contains two IOBs, and also two ILOGIC blocks and two

OLOGIC blocks.
Block
RAM DTP DCM/PLL/I0Bs
l S==Stis
s § - A
Processor ; 5
blocks poiicoim: )
1/0 & 10Bs
g g Ethernet
§ S T PCle
]!U & EEE EEESERE| TEEERE| MGTS
I0Bs s
EEREE, %é é EEEREE %E; ======ﬁi===:
SEEETINEEE S .
DSP
Logic blocks Block
RAM

Fig. A.7: Modern FPGA device.

A.2.5 Special-Purpose Function Blocks

A large portion of the FPGA consists of logic blocks and routing logic to connect the
programmable logic. Today’s FPGA combine programmable logic with additional resources
that are embedded into the fabric of the FPGA. The block diagram of a modern FPGA is

shown in Fig. A.7 [192]. It shows the arrangement of special-purpose function blocks placed
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throughout the FPGA. The logic blocks still occupy a majority of the FPGA fabric in order to

support a variety of complex digital designs.

A.25.1 Digital Clock Manager (DCM)

Sometimes there are needs of different clock frequencies, as different logic cores can operate
at different frequencies. A digital clock manager (DCM) allows different clock periods to be
generated from a single reference clock. Digital clock management is provided by most
FPGAs (all Xilinx FPGAs have this feature). The most advanced FPGAs from Xilinx offer
both digital clock management and phase-looped locking that provide precision clock

synthesis combined with jitter reduction and filtering [192].

A.25.2 Block RAM

Designers require the use of some amount of on-chip memory. Using logic cells it is possible
to build variable-sized memory elements; however, as the amount of memory needed
increases, these resources are quickly consumed. The solution is to provide a fixed amount of
on-chip memory embedded into the FPGA fabric called Block RAM (BRAM). The amount

of memory depends on the device.

In Virtex-5 FPGAs BRAM stores up to 36K bits of data and can be configured as either
two independent 18 Kb RAMs, or one 36 Kb RAM. Each 36 Kb Block RAM can be
configured as a 64K x 1 (when cascaded with an adjacent 36 Kb block RAM), 32K x 1, 16K
x2,8Kx4,4Kx9, 2K x 18, or 1K x 36 memory. Each 18 Kb block RAM can be configured

asa 16K x 1, 8K x2,4K x4,2K x 9, or 1K x 18 memory [32].

A.2.5.3 Digital Signal Processing (DSP) Blocks

Complex designs may consist of either digital signal processing (DSP) or just some variety of
multiplication, addition, and subtraction. It is possible to combine DSP blocks to perform

larger operations, such as single and double precision floating point addition, subtraction,
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multiplication, division, and square root. The number of DSP blocks is device dependent;
however, they are typically located near the BRAMs, which is useful when implementing
processing requiring input and/or output buffers [23], [192]. In Xilinx Virtex-5 FPGAs the
DSP (DSP48E) slice resources contain a 25x18 two’s complement multiplier and a 48-bit
adder/subtacter/accumulator. Each DSP48E slice also contains extensive cascade capability

to efficiently implement high-speed DSP algorithms [32].

A.2.5.4 Embedded Processor

One of the most important additions to the FPGA fabric is a processor (one or two
processors) embedded within the FPGAs fabric, such as the FX series in Xilinx Virtex-5
FPGAs [32]. The availability of an embedded processor can simplify the design process
significantly, while reducing resource usage and power consumption. The IBM PowerPC440

(PPC440) processor is the processor included in the Xilinx Virtex-5 FX FPGAs device [32].

A.3 FPGA Configuration Options
The Virtex-5 FPGA device on the ML-507 Platform can be configured by following ways

[33].

e Xilinx download cable (JTAQG)

e System ACE controller (JTAG)

e Two platform flash PROMs

e Serial peripheral interface (SPI) flash memory

e Linear flash memory

Following section provides an overviews of the possible means through which FPGAs can

be configured.

A-12



A.3.1 JTAG (Xilinx Download Cable and System ACE Controller) Configuration

The JTAG port is used to configure the main devices of the board like FPGA, two Platform
Flash PROMs, and CPLD. Fig. A.8 shows the JTAG chain of the board. The chain starts at
the PC4 connector and goes through the Platform Flash PROMs, the CPLD, the System ACE
controller, the FPGA, and an optional extension of the chain to the expansion card. Jumper
J21 is used for the JTAG chain extension to the expansion card. The JTAG chain is utilized

to program the Virtex-5 FPGA device and access the FPGA for hardware and software

debug.
Platform I.Tlash CPLD System ACE FPGA Expnsion
Memories Controller
»TDI TDO[™TDI TDO[—*TDI TDO »TSTTDI CFGTDO [™TDI TDO TDI
PC4
Connector
- TSTDO CFGTDI - TDO

—
[\S}

Fig. A.8: FPGA configurations.

The PC4 JTAG connection to the JTAG chain allows a host computer to download bit
streams to the FPGA using the Xilinx iMPACT software tool. The PC4 JTAG connection
also permits debug tools like the Xilinx ChipScope Pro analyzer or a software debugger to

access the FPGA device.

The system ACE controller can also be utilized to program the FPGA through the JTAG
port. The configuration information can be stored for the FPGA by using a compact flash
card, which supports up to eight configuration images. The images can be selected by using
the three configuration address dual in-line package (DIP) switches. The FPGA controls, the

system ACE chip to reconfigure to any of the eight configuration images.
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A.3.2 Platform Flash PROM Configuration

The FPGA device can also be programmed by utilizing a platform flash PROMs. A platform
flash PROM can hold up to two configuration images (up to four with compression), which
are selectable by the two least significant bits of the configuration address DIP switches. The
board is wired so the platform flash PROM can download bitstreams in master serial, slave
serial, master parallel, or slave parallel modes. The Xilinx iMPACT tool is used to program

the platform flash PROM.

A.3.3 Linear Flash Memory Configuration

Data stored in the linear flash can also be used to program the FPGA (BPI mode). Up to four

configuration images can be supported.

A.3.4 SPI Flash Memory Configuration

Data stored in SPI can be used to program the FPGA. The FPGA device is programmed upon

power-up or whenever the Program button is pressed.

A.4 Power PC 440 Embedded Processor

The Virtex 5 FX series FPGAs include one or two PowerPC 440 processors embedded within
the FPGA fabric [32], [34] . The PowerPC 440 is a dual-issue, superscalar RISC processor
with an operating frequency of up to 550 MHz. It contains seven-stage pipeline with out-of-
order execution capabilities. Each comes with 32 KB, 64-way set associative level-1
instruction and data cache and a memory management unit (MMU) with a translation look-
aside buffer (TLB) to support virtual memory. In addition to three separate 128-bit processor
local bus (PLB) interfaces, the embedded processor provides interfaces for custom
coprocessors and floating-point functions [34]. The block diagram of the PowerPC 440

embedded processor is shown in Fig. A.9.
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Fig. A.9: Block diagram of an embedded PowerPC 440 processor (reproduced from Xilinx

The main components of the embedded processor block in Virtex-5 FXT FPGAs are the
processor, the crossbar and its interfaces, the auxiliary processing unit (APU) controller, and

the control (clock and reset) module [34]. Fig. A.10 shows the embedded processor block and

its components.

The processor has three PLB interfaces: one for instruction reads, one for data reads, and
one for data writes. Typically, all three interfaces access a single large external memory.
Peripheral access in PowerPC 440 systems is memory mapped, and the data PLB interfaces
typically connect to various peripherals directly or via bridges. Peripherals can be

implemented in hard IP elements (implemented in the FPGA fabrics) or soft logic, using the

UG200).

lookup tables (LUTs) and other primitive logic elements provided by the FPGA.
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Fig. A.10: Embedded processor block in Virtex-5 FPGAs (reproduced from Xilinx UG200).

A.4.1 Crosshar and its|nterfaces

The crossbar acts as a central arbitration and switching module that accepts master requests
from up to five groups of master devices and redirects the transactions to one of two groups
of slave devices. The crossbar also directs the responses from the slave devices back to the
correct master devices. All data passing from any master device to any slave device within
the embedded processor block in Virtex-5 FPGAs passes through the crossbar. The crossbar
and its interfaces allow the processor with its three PLB interfaces, soft peripherals with PLB
interfaces, and peripherals with LocalLink interfaces to share access to a high-performance

memory controller.

A.4.2 PLB Interface

The PLB interface can be either mater PLB (MPLB) or slave PLB (SPLB). These interfaces

are explained below.
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A.4.2.1 MPLB Interface

The primary purpose of the crossbar MPLB interface is to provide access from the processor
to PLB-based memory (if any) and non-memory peripherals. The MPLB also allows access
from PLB-based masters outside the embedded processor block in Virtex-5 FXT FPGAs,
connected via one of the SPLB interfaces, to PLB based memories and non-memory

peripherals, which are also to be shared with the processor.

A.4.2.2 SPLB Interfaces

The primary purpose of two crossbar SPLB interfaces is to allow PLB-based masters outside
the embedded processor block in Virtex-5 FPGAs to share access to the main memory on the
crossbar memory controller interface (MCI). The crossbar is the primary means of
establishing multi-ported access to the main memory in PowerPC 440 based systems. The
SPLB interfaces also allow access to PLB-based memories and non-memory peripherals
connected to the crossbar MPLB interface, which are also to be shared with the processor. A

maximum of four masters can be connected to each SPLB interface.

A.4.3 PLB Interconnection Techniques

The crossbar in the embedded processor block provides a high-performance pathway to allow
memory and other peripherals to be shared between the processor and other masters in the
system. There are many ways that external masters, memories, and peripherals can be

connected to the crossbar, which are explained below.

A.4.3.1 Simple Processor-Centric Shared Bus Design

In simple processor-centric shared bus design the “main memory” for the processor is
attached to a memory controller on the PLB. The performance of this topology might be
sufficient, particularly if there is no other masters in the system that need to share any of

these memory or peripheral devices. Even so, access to any high-latency peripherals by the
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data load/store unit might occasionally stall the processor’s instruction fetch. Fig. A.11 shows

the simple processor-centric shared bus design topology.

To External
Main Memory
Virtex-5 FXT FPGA ]
Embedded Processor Block
Crossbar Memory
CPU Controller UART
s MPLB PLB
DWPLB
DRPLB
Block RAM General-
Controller Purpose /O
Block RAM
Block

Fig. A.11: Simple processor-centric shared bus design (reproduced from Xilinx UG200).

A.4.3.2 Simple Processor-Centric Design Using Memory Controller Based Main
Memory

In simple processor-centric design using memory controller based main memory topology,
the PLB-based memory controller is replaced with one connected to the crossbar MCI, which
is shown in Fig. A.12. Overall latency to memory is slightly improved due to the elimination
of PLB arbitration cycles. Because the pathways to main memory and peripherals are now

independent, peripheral access can no longer interfere with instruction fetch.



Virtex-5 FXT FPGA
Embedded Processor Block

Crossbar Memory
CPU \ Controller UART
MCI
IPLB
PR MPLB PLB
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/ Block RAM General-
Controller Purpose /O
Block RAM
Block

Fig. A.12: Simple processor-centric design using memory controller based main memory
(reproduced from Xilinx UG200).

A.4.3.3 Other Topologies

Other PLB interconnection techniques include: main memory and peripherals shared between
processor and external master, main memory shared between processor and DMA, external
bridge with remote access to main memory and processor access to remote peripherals,

external bridge with remote access to main memory and locally shared peripherals [34].

A.5 Memory Controller Interface (MCI)

The memory controller interface (MCI) block provides a bridge between the high-speed
crossbar and a soft memory controller implemented in FPGA logic. The MCI provides a
simple protocol that allows the soft memory controller to run much faster because it does not

need to implement the more complex and more general PLB protocol [34].

A-19



A.6 Other Embedded Processor Blocks

Other important embedded processor blocks include: reset, cock, and power management
interfaces, device control register bus, interrupt controller interface, JTAG interface, debug

interface, and trace interface [34].

A.7 Controllers

The PPC440 supports auxiliary processing unit (APU) and DMA controller, which are

explained below.

A.7.1 Auxiliary Processing Unit (APU)

The APU connects to the fabric coprocessor bus (FCB) to support custom instructions
implemented in the FPGA fabric through APU programming [34]. For example, a double
precision floating point unit (FPU) can be connected to the APU. Then, anytime the
application needs to perform a floating-point computation, the processor will offload the
computation to hardware where the computation can be performed faster than a software-

emulated FPU [192] .

A.7.2 DMA Controller

The DMA controller consists of four independent DMA engines that provide high
performance direct memory access for streaming data. Peripherals can directly transfer data
to and from a memory controller connected to the processor block. Peripherals are connected
to the DMA engines through the LocalLink interface. The DMA engines can be monitored

and controlled through their device control registers (DCRs) [34].
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APPENDIX B
XILINX ML-507 PLATFORM CONFIGURATION FOR EMBEDDED

VSION APPLICATION

B.1 Introduction

Xilinx ML-507 platform contains a Virtex-5 FPGA (XC5VFX70T), which has one
PowerPC440 (PPC440) processor surrounded by FPGA fabric [33]. To use the platform for
the embedded image and video processing applications, the Xilinx ML-507 FPGA platform
requires interfacing of a video camera, a PAL to VGA converter, and a VGA monitor. The
detail of the development platform configuration along with its various components is

described below.

B.2 Pan-Tilt-Zoom (PTZ) Video Camera

The pan-tilt-zoom (PTZ) cameras get their name because of their ability to pan (left and
right), tilt (up and down), and zoom in and out of a picture plane. The PTZ cameras are able
to enhance the image quality and increase the coverage area. It allows the user to have
arbitrary viewing angle in a surveillance scene [102]. The PTZ cameras provide uniform
resolution and are able to provide close observations of particular targets. These cameras are
able to adopt a variety of roles such as following an object, zooming to acquire high
resolution images, or imitating fixed view cameras, and, as a result, can support highly

dynamic, reconfigurable task oriented surveillance.

The PTZ camera can adjust its orientation with respect to the region-of-interest (ROI)
which is a very important functionality for any vision system. The selected camera for the
development system is Sony EVI-D70P PTZ camera [102], which is shown in Fig. B.1(a) and

Fig. B.1(b). The orientation of the camera can easily be controlled through RS-232 port on
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the Xilinx ML-507 platform. The motivation behind the platform configuration is more
towards developing an underlying infrastructure for acquisition, storage and display of video
data and the design is independent of the resolution of the image data passed through. It
works on all kinds of resolutions with or without pan-tilt or zoom need. The PTZ camera can
be interfaced with VGA IN port of the ML-507 platform. The camera works with PAL signal
system with composite video and S-video as the analog video outputs available having
effective pixels of 752 (H) x 582 (V). The output of the camera is connected to the video IN

port of the PAL to VGA converter, which is described below.

(a) (b)

Fig. B.1: Sony PTZ camera (a) front view (b) rear view (reproduced from Sony EVI-D70
PTZ camera).

B.3 PAL to VGA Converter

The composite video output of the PTZ camera is taken as the input for the video acquisition
platform. The PAL standard of composite video is incompatible with ML-507 FPGA
platform which uses RGB video signals. A PAL to VGA converter is used to convert the
composite video format into VGA format. We have used V2V Pro video converter [103],
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which is shown in Fig. B.2. This converter converts composite analog video into the
corresponding RGB analog form. The output of the PAL to VGA converter is connected with

the VGA IN connector of the ML-507 platform.
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Fig. B.2: V2V Pro PAL to VGA converter (reproduced from MyGica V2V Pro).
B.4 BusProtocols
To interface a PTZ camera and a VGA monitor with PPC440 processor for the system, the
control registers of VGA input video CODEC and a DVI transmitter device are configured by
I2C bus. These protocols are imperative for the proposed video acquisition system. This

section describes the I2C and VGA protocol in detail.

B.4.1 VGA Protocol

A VGA video signal contains five types of active signals:
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Horizontal sync (hsync) : digital signal, used for synchronization of the video.

Vertical sync (vsync) : digital signal, used for synchronization of the video.

Red (R) : analog signal, used to control the color.
Green (G) : analog signal, used to control the color.
Blue (B) : analog signal, used to control the color.
v 5
£ gl &
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Fig. B.3: A 640x480 VGA resolution frame.

By changing the analog levels of RGB signals, all other colors are produced. The vsync
signal controls the monitor to start displaying a new image or a new frame. The horizontal
sync signal controls the monitor to refresh another row of 640 pixels. The video signal

redraws the entire screen 60 times per second to provide for motion in the image and to
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reduce flicker, this period is called the refresh rate. The duration in which the video data is
being transmitted is called the active period. The remaining is the blanking portion. In the
blanking interval, a sync pulse is generated. The sync pulse is followed by a back porch;
which is used to decode the color information from composite signals. The front porch is a
brief period inserted between the end of each transmitted line of picture and the leading edge

of the next line sync pulse. The timing diagram of VGA signals is shown in Fig. B.3.

B.4.2 Inter-Integrated Circuit (12C) Bus Protocol

Inter-integrated circuit (I2C) bus is used to form a system in which microprocessor controls
one or more devices. An I2C bus consists of two wires named serial data (SDA) and serial
clock (SCL), which carry information between the devices connected to the bus [188,189].
Both SDA and SCL transport bidirectional data between connected devices. By default, SDA
and SCL are at logic-1. Therefore, when the bus is idle, both SDA and SCL are high. Each
device on the bus has a unique address and can operate as either a transmitter or receiver.

r—

o\ CCOC X/
| |

SCL 1 I
] N\ AN

— — )

START ACK STOP

Fig. B.4: 12C bus protocol.

In addition, devices can also be configured as either master or slave. A master initiates a
data transfer on the bus and generates the clock signals to permit the transfer. Any other
addressed device is considered a slave. The interface is identical for master and slave devices.
All devices have a unique address. They look at the address sent by the master, to decide
whether the data is intended for them or not. The device generates acknowledge signal if it

sees its address on the data bus. For interfacing with a device, the master sends transfer
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START, followed by device address, data bytes and then transfer STOP. Data transfers on the
12C bus are initiated with a START condition, and are terminated with a STOP condition as

shown in Fig. B.4.

Normal data on the SDA line must be stable during the clock High period. The High or
Low state of the data line can only change when SCL is Low. The START condition is a
unique case and is defined by a High-to-Low transition on the SDA line while SCL is High.
Likewise, the STOP condition is a unique case and is defined by a Low-to-High transition on
the SDA line while SCL is High. The START and STOP data definitions ensure that the

START and STOP conditions will never be confused as data [188].

B.5 Platform Set-up for the Embedded Vision Applications

The Xilinx ML-507 platform is suited for embedded vision applications. This needs some
specific platform tuning. For example to use the platform for 640x480 video resolution the
control registers of video codec and the display controller are configured by specific values.
Apart from this for displaying the video in particular resolution a specific clock frequency is
needed. The specific clock frequency is generated by programming the IDT clock generator,

which is explained below.

B.5.1 ProgrammingthelDT Clock Generator

The ML-507 platform has an IDT5V9885 EEPROM programmable clock generator device.
To generate custom clock frequency, the registers of the programmable clock generator are
programmed. Programmable clock software provided by the IDT is used for the clock
generator programming. The programmable interface of the IDT chip is shown in Fig. B.5(a).
The various register settings of the IDT5V9885 are shown in Fig. B.5(b). To make the
configured clock frequency available at the FPGA pin, the serial vector format (SVF) output

of the software is downloaded to the platform, through the Xilinx iMPACT tool.
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Fig. B.5: (a) IDT programmable clock structure (b) IDT programmable clock register
settings.
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To download the configuration bits, we have used Xilinx platform USB II download cable
with flying leads connected in-between the platform and the iIMPACT tool. An internal
EEPROM allows saving and restoring the configuration of the device without having to

reprogram it on power-up. The SVF file procedure is given below:

Connect a Xilinx download cable to the board using flying leads connected to jumper J3 as

shown in Fig. 6.

Click Start-> iMPACT.

Click Boundary Scan.

Locate the SVF file (as generated by the IDT software) and click Open.

53
® TMS
® DI
® TDO
® TCK
® GND
o VDD

Fig. B.6: IDT5V9885 JTAG connector.

Right-click on the device and select Execute XSVF/SVF, shown in Fig. B.7.

To finish programming the chip, cycle the power by turning off the board power switch.

After turning the board back on, verify that the clock frequencies are correct.
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Fig. B.7: SVF output in Xilinx iMPACT.

B.5.2 VGA Input Video Codec

The FPGA platform supports connectivity to an external VGA source. The VGA input codec
circuitry utilizes an Analog Devices AD9980 device. This is an 8-bit 95 MSPS interface
optimized for capturing YPbPr video and RGB graphics signals. The AD9980 device is
controlled by way of the Video 12C bus. The block diagram of the AD9980 high performance
8-bit display interface is shown in Fig. B.8.

The AD9980 is configured for the 640X480@601fps video resolution through programming
of its internal registers. The details of each register are given in [100]. An I2C controller is

used to write and read the control registers of the AD9980.

For example, the register address 0x01 is assigned to PLL Divide ratio MSBs register. This
register is for bits [11:4] of the PLL divider. This register should be loaded first whenever a

change is needed. The PLL derives a pixel clock from the incoming Hsync signal. The pixel
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clock frequency is then divided by an integer value, such that the output is phase-locked to

Hsync. This PLLDIV value determines the number of pixel times per line.

8, | AUTO OFFSET |
AUTO OFFSET AD9980
PRIRED g1 2:1 &BIT | 8, BE
3 » | 4w CBICRRED
PRIRED 0 E‘;: Mux st . sl ) >
[ 4
8 AUTO OFFSET E
GREEN o] g
CLAMP PGA “ow L —“*={) Y/GREEN
YIGREEN g0 El;: it e Lo 2 .
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HSYNC2 .-'I:lii DTACK
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i b MANAGEMENT VSOUTIAD
-""-F'H
EXTCLKICOAST
CLAMP
FILT
REFHI
SDA "’{:—E‘;SGE REFCM
i SERIAL REGISTER REFLO

Fig. B.8: AD9980 functional block diagram (reproduced from AD9980).
The recommended VCO range and charge pump and current settings for the VGA standard

display are as follows:

0x01: As for the 25.175 MHz clock the PLL divider must have the value of “800” or 0x320.

Therefore, the register 0x01 is written with 0x32.

0x02: Similarly, the register 0x02 is used for the PLL divide ratio LSBs. As explained above

this register is written with 0x00 data.



0x03: The register 0x03 is used for the clock generator control. The configuration of this

register is as follows:

Bit [7:6]: These two bits establish the operating range of the clock generator. To configure
the AD9980 chip for 25.175 MHz clock frequency the bits [7:6] of the register 0x03 must

contain 01 data.

Table B.1: VCO Range and Charge Pump and Current Settings

Item Settings
Standard VGA
Resolution 640 x 480
Refresh rate 60
Horizontal Frequency 31.500
Pixel rate (MHZ) 25.175
PLL Divider 800
VCORNGE 01
Current (UA) 100

Bits [5:3] of this register are used to control the charge pump current. These three bits
establish the current driving the loop filter in the clock generator. To set the clock frequency
of 25.175 MHz the current must be set to 100. As given in the data sheet of AD9980, the bits
[5:3] must be written with 001 to generate the above frequency. Bit 2 of register 0x03
determines the source of the pixel clock frequency. To use an internally generated clock bit 2
of this register must be zero. Logic 0 enables the internal PLL that generates the pixel clock

from an externally provided Hsync.

e 0x04: ADC clock phase adjust

e 0x05:7-bit Red channel gain control
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0x06:Must be written 0x00 following a write of register 0x05 for the proper
operation.
0x07:7-bit Green gain control
0x08:Must be written 0x00 following a write of register 0x07 for the proper
operation.
0x09: 7-bit Blue gain control
0x0A: Must be written 0x00 following a write of register 0x09 for the proper
operation.
0x0B: 8-bit MSB of the Red channel offset control. It controls the brightness of each
respective channel.
0x0C: Linked with 0x0B to form the 9-bit red offset that controls the brightness of
the red-channel in auto-offset mode.
0x0D: 8-bit MSB of the Green channel offset control. It controls the brightness of
each respective channel.
0x0E:Linked with 0x0D to form the 9-bit green offset that controls the brightness of
the green-channel in auto-offset mode.
0xOF:8-bit MSB of the Blue channel offset control. It controls the brightness of each
respective channel.
0x10: Linked with 0xOF to form the 9-bit blue offset that controls the brightness of the
blue-channel in auto-offset mode.
0x11: This register sets the threshold of the sync separator’s digital comparator.
0x12:Hsync Control.

= Bit[7]: 0, The chip determines the active Hsync source.

= Bit[6]: 0, Hsync is from Hsyc input pin.

= Bit[5]: 0, The chip selects the Hsync input polarity.
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Bit [4]: 1, Active high input Hsync.

Bit [3]:1, Active high input Hsync output.

Bit [2:0]: Reserved.
e (x13:Sets the number of pixel clocks that Hsync out is active.

e 0x14:Vsync Control

Bit [7]: 0 The chip determines the active Vsync source.
= Bit [6]: 0 Vsync is from Vsyc input pin.

= Bit [5]: 0 The chip selects the Vsync input polarity.

= Bit [4]: 1 Active high input Vsync.

= Bit[ 3]:0 Active low input Vsync output.

= Bit[ 2]: 0 The Vsync filter is disabled.

= Bit [1]:Vsync output duration is unchanged.

Bit [0]: Reserved.

e 0x15:Sets the number of Hsync that Vsync out is active. (This is only used if 0x14,
Bit 1 is setto 1).

e 0x16: The number of Hsync periods to Coast prior to Vsync.

e 0x17: The number of Hsync periods to Coast after Vsync.

e 0x18: Coast source

e 0x19:Clamp placement.

e O0OxlA: Clamp duration.

e 0x1B: Clamp and offset

e O0Ox1C: Mustbe set to OxFF for proper operation

e 0x1D: SOG control

e OxlE:Power.

e  Ox1F:Output select 1.

B-13



= Bit[7]: Reserved.

= Bit [6:5]:00, RGB Mode.

= Bit[4]: 1, Primary output is enabled.

= Bit[3]: 0, Secondary output is enabled.

= Bit[2:1]:10, Medium high output drive strength.

Bit[0]: 0, Noninverted pixel clock.

e 0x20:Output select 2.

e 0x21:Must be set to default for proper operation.
e 0x22:Must be set to default for proper operation.
e (x23:Sync filter window width.

e 0x24:Sync detect.

e (x25:Sync polarity detect.

e (x26:Hsync per Vsync MSBs.

e 0x27:Hsync per Vsync LSBs.

e 0x28:Must be written 0xBF for proper operation.
e 0x29: Must be written 0x02 for proper operation.
e 0x2A: Reserved.

e 0x2B: Reserved.

e 0x2C: Offset hold.

e 0x2D: Must be written 0xE8 for proper operation.

e (Ox2E:Must be written OxEO for proper operation.

B.5.3 Chrontel CH7301C Display Controller
The functional block diagram of the CH7301C is shown in Fig. B.9 [101]. A DVI/VGA

monitor can be interfaced with the ML-507 platform by using a DVI connector present on the

ML-507 platform [33].
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Fig. B.9: CH7301C functional block diagram (reproduced from CH7301 DVI transmitter).

The DVI connector uses Chrontel CH7301C DVI transmitter device or display controller
device. It accepts a digital graphics input signal, and encodes and transmits data through the

DVI connector. The device accepts data over one 12-bit wide variable voltage data port,

which supports different data formats including RGB and YCrCb.



