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ABSTRACT 

Driven by rapid technological advances and ever-increasing demand for new applications, 

system complexities have grown at almost an exponential rate. In this scenario, the traditional 

system design methods have rapidly become incapable of providing solutions that meet 

system requirements as, neither purely software-based nor purely hardware-based systems are 

able to meet the various expectations from the system solution. Modern-day complex systems 

inevitably necessitate inclusion of heterogeneous software and hardware components in the 

system. In particular, the rapid growth of image and video processing applications has created 

increasing demands for high-performance configurable hardware architectures and algorithms 

for building requisite electronic systems. To achieve high performance goals and fulfill the 

conflicting design needs of low power and easy system upgradeability, integrated 

hardware/software system are required. 

Modern field-programmable gate arrays (FPGAs) have evolved to offers an embedded 

processor and many hard intellectual property (IP) components, required to create integrated 

hardware/software systems. The presence of logic blocks in FPGAs provides hardware 

configurability, whereas the embedded processor supports the programmability and the 

necessary control. With the advent of platform-based design methodology and associated 

integrated design tools, it is possible to utilize a variety of soft/hard IPs along with various 

off-the-shelf components available on the platform to build system solutions that meet 

required expectations.  

In this work, architectures and algorithms have been proposed and developed for frequently 

used image and video processing applications. These architectures have been realized in the 

Xilinx Virtex-5 FX FPGA device available on the ML-507 platform. Apart from having 

sufficient logic blocks on which hardware is implemented this FPGA device also has an 
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embedded PowerPC 440 processor with requisite system software, to implement the 

application software around it. To start with, we have used the platform for developing an 

embedded architecture for real-time video capture, acquisition and its display for the standard 

640 480× VGA resolution video through the FPGA fabric and for its frame-by-frame 

buffering in the external double-data rate synchronous dynamic random-access memory 

(DDR2 SDRAM).  

We have then attempted to realize various complex arithmetic functions that are frequently 

required in image and video processing applications such as division, square root, inverse 

square root etc., through the use of logarithmic number system. For this purpose, a simple 

integer datapath has been created for processing 32-bit unsigned fixed-point numbers. 

Architectures for the binary logarithm and antilogarithm units are proposed that compute 

their approximate values within the specified range. These units have been utilized to realize 

the hardware architectures for various image processing functions that have been proposed in 

the thesis.  

A novel hardware architecture for global image thresholding operation has been proposed 

that results in a resource-efficient FPGA implementation of the computation of between class 

variance (BCV) computation for realizing the Otsu’s image thresholding algorithm. The 

compute-intensive BCV requires the computation of normalized cumulative histogram and 

normalized cumulative intensity area. The proposed architecture is logic resource efficient 

and has the ability to process large datasets by performing time-critical functions using 

available BRAMs and DSP slices. 

We have next proposed an improved label-equivalence based connected component 

labeling algorithm that works on the binary images obtained from the image thresholding unit 

and identifies an object on a video frame. The proposed algorithm improves upon the 
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Stefano-Bulgarelli (SB) algorithm by modifying its equivalence handling procedure, and 

removes the partial merging problem associated with the SB algorithm. The improved 

algorithm is implemented on the embedded PowerPC processor of ML-507 platform. Results 

demonstrate that the improved algorithm handles equivalences efficiently and gives an 

accurate count of connected components.  

Finally, all the hardware building blocks and algorithms described so far are utilized for an 

embedded implementation of a representative video processing application, e.g., object 

tracking based on kernel-based mean shift (KBMS) algorithm. The required application-

specific architectural building blocks have been proposed for its embedded realization on 

Xilinx ML-507 platform. To understand issues related to the embedded realization of the 

KBMS algorithm, a MATLAB/C implementation is created. Subsequently, hardware 

architectures have been proposed for the time-critical parts, namely, the computations of 

weighted local histogram, kernel-smoothed local histogram (KSLH), Bhattacharyya 

coefficient based local similarity measure, center of gravity and the new mean shift location.  

The embedded design also utilizes the soft IPs, which include, joint test action group 

(JTAG) controller, Block RAM (BRAM) controller, multi-port memory controller (MPMC), 

processor local bus (PLB), inter-integrated circuit (I2C) controller and the UART controller. 

The hard IPs utilized include the PowerPC 440 processor, BRAMs, digital clock manager 

(DCM) and DSP48E slices. The frame buffer part of the design is created in the available off-

chip DDR2 SDRAM memory, which is controlled through the MPMC.  

Embedded PowerPC processor has been used to configure and control various off-the-shelf 

system peripherals available on the platform along with the running of the application 

program. The application software, written in C language, runs on top of a standalone 

software platform and uses the application programmer interface (API) provided by the 
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software platform. In order to develop the required hardware and software in an integrated 

manner, the Xilinx embedded development kit (EDK) design tool has been used. To analyze 

the design in real-time, Xilinx ChipScope Pro integrated logic analyzer has been utilized. 

Xilinx XPower Analyzer tool has been used, for computing power consumption associated 

with different architectural modules. 

In summary, the thesis explores and presents some of the concepts of emerging embedded 

system design techniques. It does so by way of identifying, building and integrating all the 

necessary hardware and software components for a real-time video processing application, 

namely object tracking (utilizing the kernel-based mean shift algorithm). The thesis also 

illustrates the use of platform-based design to achieve an efficiently configured hardware-

software system solution that can meet the conflicting demands of high performance, low 

power and quick turnaround times for system development. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background and Context 

Image and video processing is used in a wide variety of applications such as video 

conferencing, video broadcasting and motion estimation [1], military aerial and satellite 

surveillance [2,3], biometric recognition [4], object tracking [5] and medical imaging 

applications [6,7]. The goal of real-time image and video processing system is to process the 

captured video, extract specific information and take appropriate action as needed [8]. The 

general structure of any image and video processing system consists of data acquisition, 

computation, communication, storage and display elements [9]. The data acquisition part 

performs the image data capture process. The captured data needs intermediate storage 

elements for its later processing as per the requirements. The computation unit does the 

required processing and communicates with all the other units via dedicated communication 

channels.  

With the increasing popularity of multimedia, image processing and other vision-based 

applications, there is always a demand for high-resolution data processing elements. High-

resolution standard image and video have large data, which needs processing within 

stipulated frame of time. With the increasing processing requirements of large data, the 

system complexity has also increased. Even though the recent computers are getting faster 

and faster, invariably, there is an emerging demand for even faster data processing 

mechanism. Modern image and video processing applications demand more specialized 

processing than is normally available in computers. 
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With high computational complexity of the modern algorithms, current software-based 

image and video processing systems are unable to meet the performance requirement in real-

time. They do not achieve the required high performance that is required while working with 

available video frame rates. The effectiveness of real-time processing is primarily based on 

the idea of completing the required tasks in the time available between successive input 

frames of the incoming video, also known as sampling rate of frames or frame rate. Further, 

the image and video processing systems have ever-increasing demand for higher 

performance, lower power requirement and flexibility. These systems also need to process 

and manage a large amount of data within the constraint of real-time performance [2]. 

Therefore, quite often, dedicated embedded systems along with their architectures are 

required to be designed. Architectures for these image and video processing algorithms need 

to manage a large amount of data within real-time constraints; and parallelism is a 

fundamental requirement for most of these systems. Thus, their design as embedded system 

continues to be a challenging problem. 

The dominant approaches that are used to implement complex image and video processing 

algorithms are using digital signal processors (DSP), application specific integrated circuits 

(ASICs), application-specific instruction-set processors (ASIPs), and field programmable 

gate arrays (FPGAs) [10,11,12]. The DSPs are high-performance programmable processors 

specifically designed for signal processing applications. They are extremely flexible, low 

power, and cost efficient, but lack hardware acceleration capabilities for leading image and 

video processing algorithms. ASICs provide very high performance, small silicon area and 

low power consumption but do not have the flexibility to adapt to new algorithms. ASIP is a 

promising design approach that offers an intermediary solution between ASIC and 

programmable processors. However, for ASIPs, commercially established system-level 

design tools are still under development. Compared to ASICs, FPGAs provide both 
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reasonably good performance and adaptability to many different algorithms for applications. 

In addition, in the case of FPGAs, the non-recurring engineering (NRE) cost and the design 

time are not as high as for ASICs [13,14]. The amount of resources in present-day FPGAs is 

quite high and can practically handle many processing operations without any difficulty. 

FPGAs have shorter development time, lot more computation power, reasonably good 

hardware fabric that adds to parallel processing capabilities which are very suitable for 

implementing various image and video processing algorithms as against the fixed architecture 

devices such as DSPs, ASIPs and ASICs [15,16,17].  

Modern FPGAs embed many predefined and pre-fabricated IP components, such as digital 

signal processing (DSP) elements, embedded memories along with plenty of logic resources 

in a single chip. FPGAs are computationally even more powerful with the presence of 

embedded processors.  In addition, the required system buses are embedded in the FPGA 

fabric so that entire systems-on-chip (SoC) can be implemented on these platforms [18]. In 

fact, the use of these embedded processors could easily represent the best solution when 

devising the optimal design for an embedded system as they involve consideration of 

constraints of performance, NRE cost, area, power consumption etc. from a dual hardware 

and software perspective. 

A typical image and video processing application can be considered as an embedded 

system, which consists of multiple heterogeneous resources such as, processor, peripherals, 

dedicated logic blocks, memories, and software [11]. A general classification of different 

hardware and software components and the various resources are shown in Fig. 1.1. As 

apparent from the figure, the available hardware resources can broadly be classified as 

memory resources, functional resources and interface resources. The functional resources are 

used to process vast amount of data. They implement arithmetic or logic functions and can be 
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grouped into three main subclasses: primitive resources, intellectual properties (IPs) and 

application specific resources.  

The primitive resources are general-purpose sub-circuits that are designed once and often 

used. The IPs could be functional IPs with domain-specific features or it could be a 

controller’s IP. Fully characterized IPs in terms of area and performance can be stored in the 

design library from where we can reuse them as per the need. 

The application-specific resources are the subsystems designed for the application-specific 

needs. The interface resources support data transfer and include different types of busses, 

whereas, the different types of memory resources are used to store data. The software 

resources include device drivers, real-time operating system (RTOS), application-program 

interface (API) and network communications, which are managed by the processor [8]. 

FPGA provides an excellent platform for implementing an embedded system with the 

required resources as above.  The application-specific hardware architecture of the system in 

an FPGA can be a design choice to the user and has proved to be very effective. In the image 

and video processing applications, FPGA platform based design methodology can be 

effectively employed for rapidly achieving the goal from conception to a successful system 

model [19]. The wide range of requisite peripherals and the high performance FPGA device 

available on the platform provide adequate support to build new architectures and realize a 

complete system over the platform.  In addition, the embedded processor present in the FPGA 

device makes it more versatile. The FPGA-based platform has an important bearing on the 

architectural choices and algorithm development for the implementation and verification of 

emerging heterogeneous real-time image and video processing systems. 
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With the advent of modern FPGA-based platform and its heterogeneous resource offerings, 

the platform based design of image and video processing systems are getting more popular 

[20,21]. Apart from the other architectural developmental benefits, one of the main 

advantages of using the platform-based design and its associated integrated design 

environment is its wide range offerings of generic IP elements. These generic IP elements 

include processor IP core, interface/bus/bridge IP core, peripheral IP core, communication IP 

core, infrastructure IP core, memory controller IP core and debug IP core [20,22]. The 

notable FPGA platforms that support the IP core based embedded platform-centric design 

approach are offered by Xilinx [23], Altera [24] and Celoxica [25]. 

In this thesis, the IP based design approach is followed and various hardware architectural 

blocks have been designed that are required for image and video processing applications. The 

thesis deals with some of the important aspects of hardware-software partitioning and 

development of relevant architectures and algorithms. The work in the thesis uses Xilinx  

ML-507 FPGA platform that contains a Virtex-5 FXT FPGA device. The details of the     

Xilinx ML-platform and Virtex-5 device are illustrated in Appendix-A. 

1.2 Motivation for the Work 

Image and video processing systems and their associated algorithms can be implemented in 

software, hardware or in combination of both. The software implementation takes less 

development time but offers flexibility for any future change in the functionality of the tasks. 

However, the processing time of the software implementation is rather high. On the contrary, 

the hardware implementations can exploit the inherent parallelism of the tasks, and usually 

result in faster processing. Nonetheless, the hardware implementations are fixed and do not 

provide the necessary flexibility for prompt changes in the behavior of the systems. In 

addition, the development time for the hardware implementation is high as compared to 
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software implementation. Thus, the traditional design methodologies of providing complete 

hardware or software solutions are fast becoming infeasible. It is apparent that a mixed 

hardware-software realization would provide a better solution, which judiciously leverages 

the flexibility offered by the software and performance gain offered by the hardware.  

In a hardware/software based design approach the optimal design choice can be obtained 

for handling conflicting design requirements, such as flexibility, power, resources, design 

time and cost [10]. Depending upon the specifications of data processing algorithm, the 

computational task can be sequential, concurrent or mixed. A processor available with the 

processing unit can easily manage the sequential part of the algorithm. However, for the 

computation of complex and other concurrent operations there are essential requirements of 

designing custom computing engines. These computing engines are made synchronous with 

the processor and used for complex image data processing. Thus, the best design choice leads 

to hardware/software mixed implementation.  

To meet performance goals of various image and video processing systems, including the 

real-time constraints, a systemic arrangement of general purpose and some application-

tailored hardware and software components is required. Both the development of hardware 

blocks with new features and the reuse of existing IP components are essential. Furthermore, 

design complexities are progressively rising with an increasing number of hardware and 

software components that have to work together in unison. The fast evolving specification of 

image and video processing system needs a configurable and flexible system architecture and 

associated components, so that, the system can also support new features. 

In order to develop the required hardware and software components in an integrated 

fashion, the platform-based design approach offers the best possible features of both 

hardware and software [19,26]. Using the platform-based design approach, flexible system 
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architectures and their derivatives for any reasonably complex image and video processing 

algorithm can be rapidly developed [20]. The platform-based design approach has been 

hugely popular on field-programmable gate array (FPGA) devices. Some of the popular 

FPGA-based platforms are listed in Table 1.1 and elaborated in Section 1.3.1. The presence 

of processor and configurable blocks in the FPGA makes both the hardware and software 

components programmable. The configurability of hardware and software components makes 

the platform-based design a superior implementation choice for the image and video 

processing system.  

As discussed in the Background and Context section, for embedded realization of image 

and video processing systems, apart from the standard heterogeneous components, we also 

need many hardware and software modules for the chosen application. Even though the 

general-purpose components are available in the form of standard image and video 

processing IP suite, the need for development of application-specific blocks based on 

hardware software partitioning cannot be undermined. This is in view of achieving the 

performance goal for a particular application. We have also utilized FPGA based platform for 

proposing new architectures and algorithms for frequently used components required for 

image and video processing applications. 

In the proposed work, we have developed area-efficient new architectures and algorithms 

for some of the frequently used architectural and generic components in the image and video 

processing area. The image and video processing systems use numerous components, which 

are widely used across many applications. Some of the most commonly used modules include 

image/video read, image/video acquisition, video display, image conversion, histogram 

computation, similarity measure computation, global image thresholding, connected 

component analysis, smoothing function computation, center of gravity (COG) computation 

and some specialized arithmetic building blocks. These vital architectural building blocks are 
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designed to provide the foundation for building image and video processing systems, in IP 

based design environment. In addition, the proposed modules are also used to realize a 

standard object tracking algorithm [27]. The following section describes the platform-based 

design approach and the associated design tools, along with some of the popular image and 

video processing FPGA platforms. 

1.3 Platform-Based Design Approach 

Modern-day complex systems consist of heterogeneous hardware and software components. 

The hardware and software components provide the complete system’s functionality. The 

absolute requirement of the system design aims to provide system functionality with adequate 

performance level while reducing its design time. 

With the advent of new FPGA devices, it is possible to have a software programmable 

processor and the hardware accelerating engines in the same FPGA device. The logic blocks 

within the FPGA can be interconnected through the programming of interconnects to design 

desired hardware with embedded processor for general-purpose applications. The innovative 

development of FPGAs whose configuration could be reprogrammed unlimited number of 

times, thus providing the designer the option of developing reconfigurable architectures. 

In application-driven architectural design context, the term platform is defined as a 

collection of subsystems and required interfaces that form a common arrangement of 

functional units from which a system and its derivatives can be efficiently developed and 

shaped [28,29,30]. Platform is an abstraction of a group of varied micro-architectures, which 

are programmable, and occasionally, run-time configurable in nature. It offers a universal 

architectural component that can support a variety of applications as well as the future 

derivatives of a given application space. Apart from having vital architectural building 

blocks, it also provides for the trade-offs among a set of essential architectural constraints, 
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such as, power, performance, area, design time, and cost [28,29,30]. In Fig. 1.2, such a 

platform-based design approach is depicted schematically. Here, the platform can be used by 

utilizing the available integrated design environment (IDE), which manages various IPs and 

their integration along with the configuration of available peripherals as per the specific 

application needs.  

 

Fig. 1.2: A general-purpose FPGA-based platform. 
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The platform-based design approach is an amalgamation of several design approaches, 

which emphasizes systematic reuse for developing multipart products based upon the 

platform-compatible hardware and software. Every element of the platform can be selected 

and used through the customization of an appropriate set of design parameters through 

standard bus and application programmer interface (API) offered by the platform. There are 

various integrated design environments available, which offer complete support for the 

development of platform architecture and associated application software [26,31]. Thus, the 

platform-based design leverages the performance of most efficient derivative of an 

architecture and the flexibility offered by the programmability of the processor. The support 

of custom design hardware and reuse of IPs and other functional components makes the 

platform-based design approach more favorable for architecture exploration of complex 

digital system [28,29,30]. 

In an embedded FPGA-based platform, the software programmability comes from the 

availability of processor and hardware programmability comes from the presence of 

reconfigurable blocks of FPGA [28]. One such recent FPGA device is the Xilinx Virtex-5 FX 

family, which offers PowerPC 440 hard processor embedded in the FPGA fabric [32]. The 

combination of processor and run-time reconfigurable logic makes the FPGA-based platform 

very suitable for providing sufficient balance between the demands of application space and 

the architectural space. With embedded processor inside the FPGA, we can make trade-offs 

between hardware and software to maximize the performance. To use Xilinx FPGA-based 

platform, extensive peripherals and soft IP libraries are available [33]. 

The Xilinx ML-507 platform is shown in Fig. 1.3 that contains the PowerPC 440 processor 

in the Virtex-5 FPGA device and the other required platform peripherals. In the Xilinx design 

environment, the processor IP core can be a soft IP core like MicroBlaze processor or it can 

be a hard IP core such as PowerPC processor [34]. The interface IP core supports the 
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processor local bus (PLB), fast simplex link bus and the PowerPC device control register bus. 

In the peripheral IP core category, there are many general peripheral cores available including 

inter-integrated circuit (I2C) controller, TFT controller, watchdog timer, and interrupt 

controller. The communication IP provides universal asynchronous receiver transmitter 

(UART) controller and the Ethernet controller through which the platform can communicate 

with the host system or communicate in a network-based environment.  

The external memory controller communicates through the memory control interface 

(MCI) bus that connects the external memory, such as the DDR2 memory with the PowerPC 

processor. The other important controllers are the joint test action group (JTAG) controller 

for PowerPC processor, processor reset controller, bus splitter and clock generator. Similarly, 

the memory controller IP supports multi-port memory controller (MPMC), Block RAM 

(BRAM) interface controller, and direct memory access (DMA) controller. Finally, the debug 

IP provides ChipScope Pro integrated logic analyzer (ILA), ChipScope Pro bus analyzer and 

ChipScope Pro virtual I/O [35]. 

Apart from the wide range of standard IP support, the application specific custom IPs 

developed by individual users can also be ported in the IP library using the ML-507 platform. 

The standard IPs are configurable and parameterizable in nature [36]. Depending upon the 

application needs these standard IPs can be configured and integrated with the custom IP. A 

high abstraction electronic design automation (EDA) tool manages the amalgamation of 

different varieties of IP [37]. The requirement of IP suite is highly dependent upon the 

selected application domain. 
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1.3.1 FPGA-Based Embedded Vision Platforms  

There are many popular embedded vision platforms on FPGAs. The Xilinx Celoxica RC1000 

XCV2000E FPGA-based platform is used to perform image pre-processing functions for 

embedded vision applications [16]. A general-purpose, multitasking, and reconfigurable 

platform is presented in [21]. Based on the Xilinx Virtex-II FPGA, a system level architecture 

is proposed and developed, which integrates embedded processor, memory control and 

interface technologies.  

The system includes different functional modules, such as edge detection, zoom-in and 

zoom-out functions, which provide the flexibility of using the system as a general video 

processing platform according to different application requirements. Table 1.1 shows some of 

the related embedded platforms for image and video processing applications.  

An FPGA-based embedded platform for real-time image acquisition and processing is 

presented in [38]. It contains a Texas Instrument’s TMS320C6416T digital signal processor 

and Altera’s FPGA EP3C25F324. The digital image data is first transferred into FPGA 

fabrics. After pre-processing, the data is transferred into DSP6416 by the interface of first in, 

first out (FIFO) in the FPGA and DSP6416 external memory interface (EMIF). Further, the 

image data is processed in DSP by real-time algorithms. Bravo et al. [20] have used Xilinx 

Virtex-4 xc4vfx12 FPGA-based platform, which contains an embedded PowerPC405 

microprocessor. In this work, architecture for image acquisition and processing using a 

complementary metal oxide semiconductor (CMOS) sensor is presented. The sensor is 

interfaced with the FPGA platform for the smart camera application.  

A reconfigurable open architecture computing hardware (ROACH) is a standalone FPGA 

processing board [39]. The main part of ROACH is a Xilinx Virtex-5 FPGA (either lx110t for 

logic-intensive applications, or sx95t for DSP-slice-intensive applications) device. A separate 

PowerPC runs Linux and it is used to control the platform [39]. Similarly, ROACH2 is a 
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Virtex-6 sx475t FPGA- based (xc6vsx475t device) platform. Here, an embedded PowerPC 

440EPx stand-alone processor controls the required functions [40]. 

Table 1.1: FPGA-based platforms 

S. No. Work Year Platform 

1 
The platform of image acquisition and 
processing system based on DSP and FPGA 
Y. Lei, Z. Gang et al [38].  

2008 
Altera FPGA EP3C25F324 + TI 
TMS320C6416T  DSP  

2 
A general-purpose FPGA-based 
reconfigurable platform for video and image 
processing J. Li, H. He et al. [21] 

2009 Xilinx Virtex-II FPGA  

3 
Efficient smart CMOS camera based on 
FPGAs oriented to embedded image 
processing I. Bravo,  J. Balinas et al. [20]   

2011 
Xilinx Virtex-4 FX FPGA 
(XC4VFX12)  

4 
A high-performance FPGA platform for 
adaptive optics real-time control Heng 
Zhang , Zoran Ljusic , et al. [41] 

2012 
Kermode Xilinx Virtex-6 SX475 
FPGAs  

5 
An FPGA-based platform for accelerated 
offline spike sorting Sarah Gibson, Jack W. 
Judy and Dejan Markovic [42]  

2013 

Berkeley’s CASPER- ROACH 
(Xilinx Virtex-5 
XC5VLX110T/XC5VSX95T 
FPGA )  

6 

Berkeley’s CASPER- ROACH 
(Reconfigurable Open Architecture 
Computing Hardware) a standalone FPGA 
processing board 
https://casper.berkeley.edu/wiki/ROACH 
[39] 

2013 
Xilinx Virtex-5 XC5VLX110T or 
Virtex-5 XC5VSX95T FPGA  

7 
Berkeley’s CASPER-ROACH-2  
https://casper.berkeley.edu/wiki/ROACH2 
[40] 

2013 
Xilinx Virtex-6 SX475T FPGA 
(XC6VSX475T-1FFG1759C)  

 

For the basic image and video processing, video starter kits can also be used. There are a 

numbers of video starter kits available [43,44,45]. However, these kits are expensive and do 

not contain top-of-the-line FPGA devices. The mounted FPGA on these platforms has limited 

resources, which imposes constraints for implementing any reasonably complex video 

processing algorithms on these kits.  



16 
 

Apart from the above issues, the mounted camera on the above mentioned kits is fixed and 

has very low resolution. For many real-time applications like video surveillance, tracking etc. 

there is a need for interfacing a higher resolution camera or a pan-tilt-zoom (PTZ) camera 

and other custom interfacing peripherals with a high performance processor. Thus, to 

implement a complex image and video processing algorithm there is requirement of a high-

end device based FPGA platform, which can perform such applications competitively. The 

uses of the various tools for working with platform-based design are explained below. 

1.3.2 Platform Design Tools 

An embedded system is an amalgamation of hardware and software entities, which are 

managed by the hardware, software and the configuration tools. The platform peripherals are 

configured by using their high-level functions provided by the platform, which are available 

in the form of APIs. Similarly, the custom APIs can be developed for the application-specific 

user IPs. 

Xilinx provides embedded development kit (EDK), design tool to manage the hardware 

and software components of the system [37]. It is an integrated design and development 

environment for designing embedded processing systems. This pre-configured kit includes 

Xilinx platform studio (XPS) and the software development kit (SDK), as well as all the 

documentation and IPs that are required for designing Xilinx platform FPGAs, such as 

Virtex-5 FXT  FPGA with embedded PowerPC 440 hard processor cores and/or MicroBlaze 

soft processor cores [46]. Some of the platform design tools and their uses are explained 

below, 

• XPS tool suite including graphical integrated design environment (IDE) and 

command-line support for developing hardware platforms for embedded 

applications.  



17 
 

• The Base System Builder (BSB) wizard enables creation of a working embedded 

system with the desired FPGA platform such as Xilinx ML-507 [33].   

• SDK is the software-centric design environment based on the Eclipse IDE. It 

includes the GNU C/C++ compiler and debugger, Xilinx Microprocessor Debug 

(XMD) target server,  Data2MEM (D2M) utility for bit stream loading and 

updating [46]. 

• Real-time operating system (RTOS) and embedded OS (EOS) provide design 

support and board support package (BSP) generation for numerous third party 

suppliers in the Xilinx environment [46]. 

• IP catalog that includes a wide variety of processing and peripheral cores such as 

processing IP (PIP) and flexible MicroBlaze soft processor (MSP) core for 

customizing the embedded system [46]. 

1.4 Scope and Objectives  

In this thesis, we have proposed various hardware architectural modules along with their 

requisite software integration for embedded realization of a video processing application. The 

hardware/software implementation choices and development of hardware architectures 

needed are the main motivations of this thesis. The Xilinx ML-507 FPGA-based platform, 

tools and its associated design tools and methodologies support the required path to meet the 

various goals of the thesis. The embedded PowerPC processor, available on the Virtex-5 FXT 

FPGA device on the selected platform, fulfills the specific needs of hardware/software 

implementation. The main objectives of this thesis are as given below. 

The first objective of the thesis is the development of the required configuration of Xilinx 

ML-507 platform on which the integrated hardware-software solutions are proposed for 

various embedded image and video processing applications. This requires the configuration 
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of the FPGA-platform peripherals using APIs and other required hardware building blocks. 

This configuration is necessary for accessing of the image pixels by the FPGA and for testing 

various architectural blocks designed subsequently. The required video acquisition unit is 

developed on the configured platform that uses some of the standard IP components and 

peripherals available on the platform. The real-time video acquisition module buffers 

640 480×  VGA resolution video frame available at 60 frames per second.  

The second objective of the thesis is to propose and develop various architectural building 

blocks, that are mostly generic in nature and which can widely be used in many practical 

image and video processing systems. The developed intellectual property (IP) cores of the 

architectures can be used in any IP-based design environment and can be utilized to design a 

practical image and video processing system. 

In the proposed architectures, most of the operations are performed using the 32-bit fixed-

point format. The complex arithmetic operations are realized through a fixed-point binary 

logarithmic and antilogarithmic unit. Architectures based on the logarithmic number system 

(LNS) have the advantages of minimizing logic resources and the processing of large 

datasets, by realizing time-critical processes in the available BRAM and DSP slices available 

on the FPGA device and show effective use of resources for the required throughput and 

speed goal. The logarithm and antilogarithm units are utilized for various requisite complex 

operations such as square root, powering, inverse square root and division operations and 

provide the backbone of the many architectural blocks developed in the thesis. 

For developing resource-efficient and high performance architectural building blocks for 

the compute-intensive modules, the fixed-point number system has been used in contrast to 

the floating-point number system [47,48]. The primary reason for this is that the fixed-point 

arithmetic uses simple integer datapath and can be easily realized in the small FPGA fabric, 
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thus, consuming fewer resources. The optimized FPGA macro elements available in the 

FPGA device can be customized and used as per the specific needs. Apart from this, the 

fixed-point arithmetic also offers higher clock rates, which are required to implement real-

time image and video processing system.  

The third objective of the thesis is to design a hardware architecture for the global image 

thresholding unit that works on the gray scale pixels and provides the corresponding binary 

image. The gray pixels are obtained from the RGB color pixels and the required hardware 

architecture for RGB to gray conversion is designed. The direct implementation of the chosen 

thresholding algorithm, i.e., the Otsu’s algorithm [49] requires numerous computation 

intensive resources such as iterative squaring, complex multipliers, and dividers with 

fractional value accuracy [50,51]. Thus, we present a resource-efficient architecture for the 

design of Otsu’s image thresholding algorithm for implementing in the Virtex-5 device 

available in ML-507 board. The between-class variance computation in Otsu’s algorithm 

requires the hardware blocks for computing normalized cumulative histogram, mean and 

cumulative moments in single-cycle read-modify-write operations, that are implemented in 

the thesis. To simplify the thresholding operation, hardware architectures for the computation 

of normalized cumulative histogram (NCH), normalized cumulative intensity area (NCIA) 

and logarithm units are proposed that find usages in many image and video processing 

applications. 

The fourth objective is the study and improvement of connected component analysis 

(CCA) algorithm. The CCA algorithm works on the binary image obtained from the image 

thresholding unit and segments out the object by region labeling.  The popular raster-scan 

based CCA labeling algorithm proposed by Stefano and Bulgarelli (SB) is taken up for our 

study. An improved version of the algorithm is proposed that improves the equivalence 
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handling of the SB algorithm. As the proposed algorithm is rich in control and decision loops, 

it is implemented in the embedded PowerPC processor. 

The fifth and final objective is to demonstrate a video processing application that utilizes 

the various blocks proposed and designed as above. Object tracking is selected as this 

application; the block diagram of the flow of processing is given in Fig. 1.5. After video 

acquisition, the processing is done in two stages, namely target object identification and 

object tracking. The identification of an object in a particular frame is done by first 

converting the color pixels to grayscale, and applying an image thresholding algorithm to 

segment out the foreground pixels from its background. The binary image obtained from 

output of the image thresholding unit is used by the connected component labeling algorithm 

to identify and segment the object from the background for the tracking application. 

Subsequently, the coordinates of the target, thus obtained from the object identification block, 

are input to the video tracking algorithm. The chosen video tracking algorithm is based on 

kernel-based mean shift approach (KBMS). 

The KBMS algorithm is based on the concept of the mean shift clustering [5]. After, color 

space quantization, the histogram works on the local image statistics for target modeling and 

target candidate modeling.  For smoothing of the probability density functions (pdf)  

histogram, a kernel weight computation is needed. The proposed architectures constitute the 

kernel smoothed local histogram block (KSLH) for modeling the target object. Further, a 

hardware architecture for similarity measure computation has been proposed, which computes 

similarities between two discrete histogram pdf-s. In the KBMS algorithm, this module plays 

the role for finding the distance between object’s next position, with respect to its previous 

position [27].  
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The new location of the object is obtained by computing the center of gravity (COG) in this 

mean shift based tracking [27].  To realize the KBMS algorithm, the various building blocks 

as discussed above are shown in the Fig. 1.6. In the IP centric system environment, all the 

developed hardware and software blocks are used as per the specific bus interface. The 

specific integration of various modules for realization of the kernel-based object tracking 

algorithm is carried out. The Xilinx embedded development kit (EDK) design tool integrates 

the communication of the required IPs with the embedded PowerPC processor, which runs 

the application program and the configuration software. Xilinx XPower Analyzer tool has 

been used to compute power consumption associated with various architectural modules [52]. 

1.5 Proposed Hardware/Software Modules for an Embedded Video 
Processing Application 

In this section, we describe the hardware architectural blocks and the algorithms that have 

been proposed in the thesis for implementation on Xilinx FPGA platform. The proposed 

blocks are needed for many image and video processing applications. Using the embedded 

approach and utilizing the hardware and software blocks, we have also implemented a 

reference video processing application, namely, object tracking based on the platform-based 

design methodology on the FPGA. A generic video processing system is shown in Fig. 1.4. 

Here, the video camera captures the real-time video within its region-of-interest (ROI). The 

video acquisition unit acquires the frame of images from the camera. The data processing unit 

does the computation necessary to realize the specific application algorithm. This unit and a 

display unit along with the requisite communication interface control, communicate and 

display the processed results.  The feedback from the data processing unit to video camera is 

used for controlling the camera movement based on the processing and application 

requirement. The following subsections describe the proposed hardware blocks and software 

components along with the configurations necessary to implement the targeted application. 



23 
 

 

Fig. 1.5: A generic image and video processing system. 

1.5.1 Platform Configuration 

The configuration of the ML-507 FPGA-based platform is of foremost importance for 

realizing any real-time video processing application using platform based design. Subsequent 

to the appropriate configuration, the platform becomes ready for embedded video processing 

realization. This is achieved by using various off-the-shelf peripherals available on the 

platform and generic IPs available in its associated integrated design tools. The configuration 

is validated by capturing the real-time video and passing it out to the displaying unit for 

preliminary testing of the implementation framework. The configuration requires I2C and 

VGA bus protocols, which are controlled and managed by the embedded processor. The 

connectivity of the VGA video source is supported by the video input video codec (VDEC) 

chip that is available on the platform. The VDEC is configured by programming the various 

control registers in it through the PowerPC processor. Similarly, the display portion of the 

system uses display controller chip, which provides the facility to connect a video graphics 

array (VGA) or digital visiual interface (DVI) monitor through it.  

The control registers of the display controller peripheral are also programmed through I2C 

bus protocol by sending data from the PowerPC embedded processor. Some simple hardware 
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modules are realized in the FPGA fabric to facilitate the streaming of real-time video for 

standard 640 480× VGA input and its subsequent display for validating the configuration. 

The design and configuration of the platform is of generic nature and is extensible which can 

be managed as per the application needs. The developed video/image read and display unit 

facilitates the development of a wide range of image and video streaming applications. Some 

of the video streaming application are, video streaming system [53], video streaming over 

wireless network [54], traffic management [55] and wireless network quality management 

system [56].  

1.5.2 Video Acquisition 

After configuring the platform, the VGA input video coder-decoder (codec) provides the 

image frame to the FPGA fabrics. To perform the requisite image processing operations on 

the image pixels, the image or frame(s) of video is/are required to reside in a memory. An 

image or video acquisition unit fulfills the need of buffering the large set of image pixels in 

the memory. The Xilinx ML-507 platform offers a 256 MB DDR2 SDRAM memory, in 

which a large number of frames can be stored. In the proposed unit of image and video 

acquisition, the DDR2 SDRAM memory is used to store a real-time video captured by the 

camera. In the embedded architecture, as proposed, the ML-507 platform is utilized to realize 

an image and video acquisition unit for buffering a standard 640 480×  pixel frame at 60 

frames per second. A video-to-frame converter hardware module is realized in the FPGA 

fabric that converts the video into frames and sends them to the memory. Similarly, frame to 

video conversion is realized using a frame to video conversion hardware module in the 

FPGA. To control and access the DDR2 SDRAM memory, a multi-port memory controller 

(MPMC) is utilized. The MPMC offers a video frame buffer controller (VFBC) protocol 

which supports the frame buffering operation. The architecture uses one port of the MPMC, 

which is dedicated for buffering the image frame and another port is utilized to retrieve back 
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the frame from the memory. Here, both the ports work as per the VFBC protocol. To control 

and manage the data buffering operation, the embedded PowerPC processor communicates 

with the memory controller interface (MCI) bus. This communication is supported by the 

third port of the MPMC, which independently works as per the MCI bus protocol. The 

architectural arrangement uses a few generic IP elements that are offered by the integrated 

design tool. 

1.5.3 Arithmetic Datapath 

The video processing blocks need high-performance arithmetic datapath with reasonably 

good arithmetic precision. Integer arithmetic based computational operations provide 

resource-efficient, high performance datapath, but they lack the arithmetic precision needed. 

To achieve the required precision floating-point number system could be a good choice but 

its realization is resource-intensive that slows down the datapath as compared to the integer-

based datapath. A fixed-point number system offers the area and speed advantage of integer 

datapath with reasonably good precision. The fixed-point number system based datapath can 

work at higher clock frequencies and provides the ease of implementation of an integer-based 

datapath. In addition to this, most of the integer arithmetic based off-the-shelf hard IP 

components offered by the FPGA device can also be efficiently utilized by the fixed-point 

arithmetic based datapath. Thus, to fulfill the high-performance computational needs of 

image processing, most of the compute-intensive operations are realized by utilizing the 

fixed-point arithmetic number system. The hardware architectures are thus proposed with 

fixed-point arithmetic. 

1.5.4 Logarithm and Antilogarithm Units  

It is well known that complex computations, such as the computation of square root and 

division, can be achieved by using the logarithmic number system (LNS). The LNS 

architectures require simple arithmetic operations, such as only addition/subtraction and 
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shifting. The proposed hardware architectures of logarithm and antilogarithm units use the 

fixed-point arithmetic. These units have been utilized for the computation of between-class-

variance needed for the global thresholding operation and for designing the hardware 

architecture for other application-specific blocks.  

1.5.5 Hardware Architecture of Global Thresholding 

The thresholding unit works on the gray image data and computes the optimum threshold 

value for the required binary conversion of gray level image. The image thresholding unit 

finds a wide range of applications. Some of the popular applications are noise reduction for 

human action recognition [57], automated visual inspection of defects [58], change detection 

[59], real-time segmentation of images with complex backgrounds [60], text detection in 

natural images [61], optical character recognition and image extraction [62,63], adaptive 

progressive thresholding [6], and personal verification [4]. To achieve the real-time 

computational efficiency of the global image thresholding process, the hardware 

implementation of the thresholding algorithm is necessary [50,51,64]. The direct hardware 

implementation of the global image thresholding algorithm as proposed by Otsu [49] boils 

down to the computation of between-class variance (BCV).  The BCV architecture is broken 

down in hardware blocks for the computation of normalized cumulative histogram, mean and 

cumulative moments, using single-cycle read-modify-write operations. The hardware unit also 

requires many computation intensive resources such as iterative squaring, complex multipliers, 

and dividers with fractional value accuracy [50,51]. In our work, a resource-efficient 

architecture for the design of Otsu’s image thresholding algorithm and its implementation in 

the Virtex-5 device available in ML-507 platform is presented.  

1.5.6 PowerPC Realization of Connected Component Analysis 

The connected component analysis (CCA) algorithm is taken up next for its implementation 

and utilization in the embedded design framework. The CCA algorithm, segments out objects 
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of interest from the background pixels by means of connected component or region labeling 

[8,9]. The connected component analysis is used in a variety of applications, which includes, 

finding individual letters in complex color images [65], automatic feature extraction from 

scanned topographic maps [66], reading text in scene images [67], face recognition [68], 

fingerprint identification [69], automated inspection [70], automatic writer identification 

[71,72], computer-aided diagnosis [73], video and signal based surveillance, barcode 

recognition [74], medical image analysis [7] and object recognition and tracking [75].  One of 

the most widely used CCA algorithms is proposed by Stefano and Bulgarelli (SB) [76]. In our 

proposed work, the equivalence handling of SB algorithm is improved upon so that number 

of conflicts is less and precise results are obtained. The improved algorithm is abundant in 

control and simple decision loops. Thus, the CCA algorithm has been given a software 

implementation and runs on the embedded PowerPC processor [34].  

1.5.7 Embedded Realization of Kernel-based Mean Shift Algorithm  

In our work, we have chosen the application of real-time object tracking that utilizes the 

proposed architectures and algorithms, and gives an embedded realization of it using platform-

based design methodology. Object tracking is defined as the problem of estimating the 

trajectory of an object in the image plane as it moves around a scene. The object tracking 

algorithm finds a wide use in the image and video processing applications including those for 

augmented reality [77], automated vehicle tracking [78], target localization in unmanned air 

vehicles [79], face tracking [80], identity verification [81] and many more [5,8,82]. The 

object tracking algorithm that we have selected for embedded implementation is the KBMS 

algorithm [27]. Researchers have reported that a hardware or hardware/software 

implementation is necessary for the KBMS algorithm to achieve effective real-time 

computational efficiency [83,84].  
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The KBMS algorithm utilizes most of the proposed hardware architectural block along with 

the CCA algorithm. The block diagram of the flow of processing is given in Fig. 1.5. After 

video acquisition, the processing is done in two stages, namely target object identification 

and object tracking. The identification of an object in a particular frame is done by first 

converting the color pixels to grayscale, and applying an image thresholding algorithm to 

segment out the foreground pixels from their background. The binary image obtained from 

the output of the image thresholding unit is used by connected component labeling algorithm 

to identify and segment the object from the background for the tracking application. 

Subsequently, the coordinates of the target, thus obtained from object identification block, are 

input to the video tracking algorithm that is based on kernel-based mean shift approach. 

 The datapath uses the fixed-point arithmetic, which offers reasonably good performance 

with reduced hardware consumption. Apart from utilizing the hardware architectural blocks 

as designed, the software tasks such as simpler data movement and control operations 

required in the KBMS algorithm are handled by the embedded processor available in Xilinx 

ML-507. The PowerPC processor manages the control steps of the KBMS algorithm along 

with running the CCA algorithm. 

1.6 Major Contributions and Organization of the Thesis 

In this thesis, we have proposed various hardware architectural modules along with their 

requisite software integration for embedded realization of video processing application. The 

approach followed in our work is based on the platform-based design methodology on Xilinx 

ML-507 FPGA platform. The reference application chosen for utilizing various hardware 

architectural blocks is KBMS object tracking algorithm.The work carried out in the thesis 

makes some important contributions. The specific contributions of the thesis are listed below: 
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• An embedded architecture has been proposed for capturing 640 480× resolution real-

time video and buffering it in the DDR2 SDRAM and implemented in Virtex-5 FX 

FPGA of ML-507 platform.  This work has been accomplished after the required 

configuration of the Xilinx ML-507 FPGA-based platform. This approach can further 

be utilized for several video streaming applications and for applications requiring 

DDR2 SDRAM frame buffering.  

• Resource-efficient hardware architectures for logarithm and antilogarithm computing 

units have been proposed. The proposed architectures are implemented in the Virtex-5 

FPGA. Using logarithmic number system (LNS), these architectures are utilized for 

realizing complex arithmetic functions, as required. 

• The global image thresholding architecture proposed by Otsu [49] has been 

implemented using the proposed architectural blocks namely, NCH, NCIA and 

between-class variance (BCV).  

• An efficient and improved two-scan equivalence-based connected component labeling 

algorithm has been proposed drawing on the work of on Stefano and Bulgarelli [76] 

and implemented in the PowerPC embedded processor of Xilinx ML-507. 

• Hardware/software partitioning and an embedded implementation of the KBMS 

object tracking algorithm has been implemented on using the ML-507 platform. 

• Hardware architecture for various modules have been proposed, which are shown Fig. 

1.6. The proposed architectures include computation of KSLH, kernel weight 

computation, weighted local histogram (WLH) computation, the similarity measure 

computation, center of gravity computation (COG) and some application-specific 

hardware modules. These architectural blocks are implemented in the Virtex-5 FXT 

device. 
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The different units of the architectures and algorithms for image and video processing 

application are organized in individual chapters. The related literature review has been 

covered in the respective chapters. Each chapter is dedicated to addressing the of specific 

image/video processing need. The second chapter illustrates the hardware/software approach 

for supporting the platform for various image and video processing applications. The various 

computational building blocks used in the thesis are based on the logarithm and antilogarithm 

components, which are covered in chapter three. Chapter four illustrates the thresholding unit 

need for the connected component labeling algorithm that is discussed in chapter five. 

Chapter six of the thesis covers the implementation approach for the kernel-based mean shift 

object tracking algorithm. The detailed organization of each chapter is follows: 

Chapter 2 covers the details of the hardware/software based extensible embedded 

architecture for the real-time video capture/ acquisition, streaming, and its display. The 

architecture is based on the shared bus topology, which is controlled by the embedded 

PowerPC processor.  The real-time VGA resolution for this work is 640 480× and the video 

frame rate is 60 fps. The hardware architectures for the video capture, video display and some 

standard IP components are synthesized in the available Xilinx Virtex-5 xc5vfx70t FPGA 

device. The execution of software is monitored and controlled on the hyper-terminal 

managed by the UART interface provided on the platform. The video camera and the display 

monitor are interfaced through the configuration of video input video codec and display 

controller peripherals available on the platform. The work described in this chapter provides 

the foundation for building the required architectural blocks that are needed for realizing 

image and video processing applications. 

Chapter  3 illustrates FPGA-based architectures for computing different complex arithmetic 

functions such as division, square root and powering. To simplify the computational overhead 

a very simple datapath is created. The concept of the fixed-point arithmetic is utilized to 
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propose architectures for the binary logarithmic and antilogarithmic units using logarithmic 

number system (LNS). This chapter also describes the details of each architectural building 

block and their FPGA realization in the Virtex-5 FXT device. The fixed-point elements used 

in the architectural units use the FPGA native hard IP components. 

Chapter 4 proposes an area-efficient architecture for realizing an automatic image 

thresholding algorithm. The selected algorithm is the Otsu’s global automatic image 

thresholding algorithm. As shown in Fig. 1.6, the proposed architecture uses various building 

blocks such as normalized cumulative histogram, normalized cumulative intensity area for 

computing the between-class variance. The proposed architecture also utilizes the logarithmic 

computational unit developed in Chapter 3. Chapter 4 also discusses the system-level 

arrangement of the image thresholding computational block as soft IP along with its 

communications with other IPs and different kinds of buses. 

Chapter  5 proposes an improved version of one of the widely used Stefano-Bulgarelli (SB) 

algorithm on connected component analysis. In our work, the equivalence handling 

mechanism of the SB algorithm is improved to achieve complete merger for all the possible 

cases. The improved algorithm is tested using a variety of test patterns and standard images 

and compared with the SB algorithm. The results demonstrate that the improved algorithm is 

simple, manages equivalences efficiently, and gives accurate count of connected components. 

The  algorithm runs on the embedded PowerPC 440 processor available in the Xilinx Virtex-

5 xc5vfx70t device.  

Chapter 6 proposes hardware software embedded implementation of KBMS tracking 

algorithm. To analyze the various implementation needs, the KBMS object tracking 

algorithm is realized in MATLAB and C. After analyzing the software implementation the 

hardware/software implementation is proposed. The image acquisition block described in the 
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Chapter 2 works as a frame buffer for the object tracking. The work of Chapter 3 is utilized to 

propose and implement various architectural modules needed by the object tracking 

algorithm. The work of Chapter 4 together with that of Chapter 5 provides the segmented 

object for its subsequent tracking. This chapter proposes architectures for KSLH 

computation, kernel weighted histogram (KWH) computation, similarity measurement, center 

of gravity (COG), cumulative histogram computation, and some application specific blocks 

required in the kernel-based mean shift object tracking algorithm  

Chapter  7 summarizes the thesis and provides its conclusion. The chapter also discusses the 

future scope of work pertaining to the thesis and each of its chapters. 
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CHAPTER 2  

REAL-TIME VIDEO STREAMING, ACQUISITION AND DISPLAY USING 

FPGA-BASED PLATFORM 

2.1 Introduction  

A typical image or video processing system invariably consists of an acquisition block and an 

application-specific data processing unit. The block diagram of a generic video processing 

system is shown in Fig. 1.1. It consists of a video camera that captures the real-time video 

within its region-of-interest (ROI), a data processing unit and a display unit along with the 

requisite communication interfaces to control, communicate and display the processed 

results. Quite often, prior to data processing unit, a video acquisition module for frame 

buffering application is required. Some applications which do not need image memory 

storage and for which video streaming is good enough include, video streaming over wireless 

network [54], traffic management [55], wireless network quality management in different 

network conditions [56]. In [85] an FPGA-based license plate recognition system has been 

designed, which processes streaming video data. Nevertheless, a majority of image and video 

processing systems require an intermediate image buffer [8,9,86]. 

For the rudimentary image acquisition and processing, video starter kits can also be used. 

There are a numbers of video starter kits are available [43,44,45] and are elaborated in 

Section 1.3 of Chapter 1. The acquisition of image and video and their processing using these 

starter kits is straightforward. However, these kits are costlier and do not contain top-of-the-

line FPGA devices. The mounted FPGAs on these platforms have limited resources, which 

impose constraints on implementing any reasonably complex video processing algorithms on 
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these kits. Apart from the above issues, the mounted camera on the above-mentioned kits is 

fixed and has very low resolution.  

For many real-time applications like video surveillance, tracking etc. there is a need for 

interfacing a higher resolution camera or a pan-tilt-zoom (PTZ) camera and other custom 

peripherals with a high performance processor. Thus, to implement a complex image and 

video processing algorithm there is requirement of a high-end device based FPGA platform, 

which can perform such applications competitively. Therefore, for video acquisition and 

display, we have selected Xilinx ML-507 platform [33], which has Virtex-5 FX FPGA device 

[87] and the necessary peripherals needed for image and video processing applications. The 

Virtex-5 FX series FPGAs are optimized for embedded processing and memory-intensive 

applications with high-speed serial connectivity. Hey have a high-performance embedded 

PowerPC 440 processor [34] which can be used to implement area-efficient embedded 

systems. To handle high-resolution video, the platform requires a high-end camera, to be 

interfaced with the platform. For this interfacing, the platform requires some specific 

configurations. 

As discussed above, in the image and video processing system the image acquisition block 

plays a vital role of capturing the incoming video [2,88,89] and thus, determines the overall 

performance of the system [20,90,91,92,93]. In [17] a frame grabber has been used to capture 

and exchange video data with the hardware co-processor. In this approach, a LabVIEW-based 

graphical development environment is used to control the frame grabber. In another approach 

to capture still frames from an analog video camera, an FPGA platform based image 

acquisition module is used [94]. In this method, a frame grabber card, which is a daughter 

card to the FPGA board, is interfaced through an I/O port of the FPGA platform. An 

embedded platform for image acquisition and processing has been developed by [91] which 
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uses a combination of DSP and FPGA devices. In their prototype, a Texas Instrument’s 

digital signal processor (TMS320C6416T) and an Altera FPGA (EP3C25F324) are used. In 

[92] a real-time image acquisition and VGA display system has been realized on DE2 

development board. This work is based on Cyclone II series FPGA (EP2C35F672C6) 

available on Altera DE2 development and education board as the core control device. Along 

with the platform resources, a Terasic CMOS image sensor (TRDB-D5M) has been used for 

the hardware configuration. Some of the real-time implementation issues in embedded image 

processing using FPGA-based architectures are presented in [93]. In this work, an Altera 

Stratix FPGA (EPISF1020C7) device has been used to implement a smart camera platform. 

In [20] an architecture is presented for image acquisition and processing using a CMOS 

sensor for the smart camera system. In their design a Xilinx Virtex-4 FX (XC4VFX12) 

FPGA based platform has been used along with embedded PowerPC 405 microprocessor. 

In this chapter, we present our work on the module for video streaming, acquisition and 

display on a VGA monitor using Xilinx ML-507 FPGA-based platform. The module provides 

an essential common architectural block for realizing most of the practical image and video 

processing applications. The ML-507 platform provides a video input video codec peripheral, 

which supports the capturing of a real-time video. Similarly, to display-out the results, there 

is a display controller chip available on the platform. The details of video codec and display 

controller peripheral chips are covered in Appendix-B. To achieve the goals of acquiring and 

then displaying out the video, the platform requires appropriate configurations of these 

peripheral chips. The VGA input video codec peripheral is programmed through inter-

integrated circuit (I2C) bus protocol so that the input video can be accessed by the hardware 

blocks realized in the FPGA fabrics. To interface a VGA/DVI display monitor, the control 

registers of the display controller peripheral are programmed through I2C bus. The 
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interfacing of a camera and a display unit to the platform set it up completely for the video 

streaming applications.  

This chapter additionally focuses on the architectural arrangement for real-time image 

acquisition and its display. Here, real-time video in RGB analog format is captured from an 

analog PTZ camera. The captured video is converted into frames and buffered in the DDR2 

SDARM memory. This requires a multi-port-memory controller (MPMC). The stored frames 

can be retrieved and converted back into the standard VGA resolution of 640 480×  and 

displayed on the VGA monitor. This module is an essential predecessor to any image and 

video processing application. In the design, we stream the video frames on an individual 

basis, buffer the frames in the external DDR2 SDRAM memory and display the buffered 

frames through the hardware cores in FPGA fabric on VGA monitor in real-time. The 

embedded PowerPC 440 processor, available on the Xilinx Virtex-5 FX FPGA device is used 

to configure the platform peripherals.  

This module is essential for developing any complete real-time video processing system, 

which grabs image or video, processes it and shows the result on display. The module can be 

utilized in a wide range of applications such as, image barcode recognition [74], change 

detection [95], edge detection [96], face recognition [97] and object tracking [5,82] 

application described in Chapter 6. The architectural arrangement for image acquisition and 

display module presented in this chapter is also utilized for validating various 

hardware/software embedded video processing architectural units researched in this thesis 

such as units for image thresholding described in Chapter 4 and the unit for connected 

component analysis described in Chapter 5. 

The organization of rest of the chapter is as follows: in Section 2.2, we describe the Xilinx 

ML-507 FPGA platform set up and its required configuration for making the platform 
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suitable for image and video processing applications. In Section 2.3, we describe a real-time 

embedded video streaming module and its hardware/software components. Section 2.4 covers 

an FPGA-based embedded architecture for acquisition of real-time video and its 

implementation in the Xilinx Virtex-5 FPGA device. Section 2.5 presents the results and 

Section 2.6 concludes the chapter. 

2.2 Xilinx ML-507 Platform Configuration 

The Xilinx ML-507 platform [33] has a Virtex-5 FX FPGA device [87] and the necessary 

peripherals needed for an image and video processing system. The Virtex-5 FX series FPGAs 

are optimized for embedded processing and memory-intensive applications with high-speed 

serial connectivity. They have a high-performance embedded PowerPC 440 processor [34] 

which can be used to implement area-efficient embedded systems. The dedicated memory 

interface port of the processor enables it to simultaneously access both the memory bus and 

Processor Local Bus (PLB) to maximize the throughput [98].  The Virtex-5 xc5vfx70t FPGA 

device has one PowerPC440 (PPC440) processor surrounded by the FPGA fabric [33], the 

details of which are given in Appendix-A. Appendix-A also illustrates about the embedded 

PPC440 processor. To use the ML-507 platform for the embedded image and video 

processing applications, the platform requires interfacing of an analog camera, a PAL to 

VGA converter, and a VGA monitor.  

We have done the required platform configuration for the Xilinx ML-507 using embedded 

PowerPC processor. The PowerPC processor uses preconfigured I2C bus controller and the 

processor local bus (PLB) bus controller. The processor configures the control registers of the 

video input video codec. For accessing the Virtex-5 FXT FPGA embedded PowerPC 

processor a design has been created in Xilinx embedded development kit (EDK) using joint 
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test action group (JTAG), I2C, PLB and UART controller soft IPs. Similarly, the processor 

programs the control registers of the display controller chip.  

Table 2.1: VGA Timings for  Resolution Video 

No. of pixels Active Front Porch  (FP) Sync Back Porch (BP) Total

Horizontal 640 20 96 44 800 

Vertical 480 13 2 30 525 
 

The details of the necessary components for performing the configuration are given in 

Appendix-B.  Appendix-B also covers the VGA and the I2C bus protocols, which are used 

for the configuration of the VGA input video codec and the display controller peripheral 

available on the FPGA platform. In addition, Appendix-B also focuses on the programming 

of IDT clock generator, which is used for the generation of custom clock frequency [99]. In 

Table 2.1, the timing details of the VGA protocol for 640 480× video resolution at 60 frames 

per second are shown.  The configuration process for the interfacing of VGA input video 

codec and the display controller peripheral chips on the Xilinx ML-507 FPGA platform is 

given below.  

2.2.1 Configuration of VGA Input Video Codec 

The ML-507 platform contains a VGA input video codec connector that supports 

connectivity to an external VGA source.  The circuit-level arrangement of interfacing the 

VGA input video codec with the FPGA pin is shown in Fig. 2.1.  Table 2.2 shows the I/O 

connections for the VGA input video codec. The addresses of AD9980 control registers and 

the configuration values are given in Table 2.3.  The control registers of AD9980 is 

configured by sending data as a master on the I2C bus by writing application software in the 

‘C’ programming language. This application software runs on top of a standalone software 

platform and uses the API provided by standalone software platform.  
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Fig. 2.1: AD9980 with an FPGA 

Table 2.2: I/O Connection of VGA Input Video Codec with FPGA 

Pin Type Pin Function Pin No.

Inputs 

RAIN0 Channel 0 Analog Input for converter R 14 

GAIN0 Channel 0 Analog Input for converter G 6 

BAIN0 Channel 0 Analog Input for converter B 2 

HSYNC0 Horizontal Sync input for channel 0 70 

VSYNC0 Vertical Sync input for channel 0 71 

Outputs 

RED[7:0] Outputs of converter R, bit-7 is the MSB 28-35 

GREEN[7:0] Outputs of converter G, bit-7 is the MSB 42-49 

BLUE[7:0] Outputs of converter B, bit-7 is the MSB 55-61 

DATACK Data output clock 25 

HSOUT 
Hsync output clock 

(Phase-aligned with DATACK) 
23 

VSOUT Vsync output clock 22 

Control SDA Serial port data I/O 66 

 SCL Serial Port Data Clock 67 
 

AD9980 is configured for 640 480×  at 60 frames per second (fps) video resolution through 

programming of its internal registers. The details of each register are given in [100]. An I2C 

controller is used to write and read the control registers of the AD9980.  
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Table 2.3: Control Registers of AD9980 

Address 
(Hex) 

Value
(Hex) 

Address
(Hex) 

Value
(Hex) 

Address
(Hex) 

Value 
(Hex) 

01 32 0A 00 14 18 

02 00 0B 02 15 0A 

03 48 0C 00 18 00 

04 80 0D 02 19 04 

05 40 0E 00 1A 1A 

06 00 0F 02 1B 3B 

07 40 10 00 1C FF 

08 00 12 18 2D E8 

09 40 13 60 2E E0 

An example of the configuration of control registers using XIic_DynSend function is 

shown in Fig. 2.2.   

 

Fig. 2.2: Configuration of control registers of the video input video codec using I2C API 
(XIic_DynSend). 

where,    

BaseAddress  : Base address of the I2C Device  

Address            : 7 bit I2C address of the device to send the specified data  

BufferPtr      : Points to the data to be sent  

ByteCount    : Number of bytes to be sent  
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Table 2.4: FPGA Interface Pins of AD9980 

Net 
Name 

FPGA 
Pin 

Net 
Name 

FPGA 
Pin 

Net 
Name 

FPGA 
Pin 

Net 
Name 

FPGA 
Pin 

R[0] AG5 G[0] Y8 B[0] AC4 CLAMP AH7 

R[1] AF5 G[1] Y9 B[1] AC5 COAST AG7 

R[2] W7 G[2] AD4 B[2] AB6 EVEN_B W6 

R[3] V7 G[3] AD5 B[3] AB7 VSOUT Y6 

R[4] AH5 G[4] AA6 B[4] AA5 HSOUT AE7 

R[5] AG6 G[5] Y7 B[5] AB5 SOGOUT AF6 

R[6] Y11 G[6] AD6 B[6] AC7 DATACK AH18 

R[7] W11 G[7] AE6 B[7] AD7 - - 
 

The configuration of the control registers of AD9980 is accomplished by using the 

XIic_DynSend function of I2C. The macro function, XIic_DynSend, sends the 7-bit address 

during both read and write operations. It sends data using polled I/O and blocks until the data 

has been sent. It takes care of the details to format the address correctly. This macro is 

designed to be called internally to the drivers for dynamic controller functionality. The FPGA 

pins for interfacing the Analog Devices AD9980 video decoder (VDEC) device [100] is 

shown in Table 2.4. 

2.2.2 Display Controller Configuration 

A DVI/VGA monitor can be interfaced with the Xilinx ML-507 platform by using a DVI 

connector present on the ML-507 platform [101].  The DVI connector uses Chrontel 

CH7301C DVI transmitter/display controller device [101]. To facilitate the display controller 

for accessing the FPGA pins, the circuit level arrangement is shown in Fig. 2.3. The FPGA 

device provides the digital graphics input signals to the CH7301C display controller device, 

which are subsequently encoded and transmitted to the DVI/VGA monitor. The CH7301C 

device accepts data over one 12-bit wide variable voltage data port, which supports different 

data formats including RGB and YCrCb. The CH7301C device is controlled through I2C bus. 
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The control registers of the device, which are programmed through the I2C bus, are shown in 

Table 2.5. 

 

Fig. 2.3: CH7301C interface with the FPGA device. 

Table 2.5: Control Registers Value of Chrontel CH7301C Device 

Address(Hex) 21 2D 2E 33 34 36 49 

Value (Hex) 09 E8 E0 08 16 60 C0 

 

The signals, which are used with the FPGA device, are explained in the Table 2.6. Similar 

to the VDEC register configurations, the control registers of CH7301C are configured 

through IIC XIic_DynSend function. After configuring the IDT clock generator (as detailed 

in Appendix-B), the VGA input video codec and the display controller devices, the Xilinx 

ML-507 FPGA platform is all set for the image and video processing applications. To 

interface the display controller chip with the FPGA the pin configurations are shown in Table 

2.7.  
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Table 2.6: CH7301C Chrontel Device Signals 

Signal Description 

Data Enable (DE) 
This pin accepts data enable signal, which is high when active 
video data is input to the device, and low all other times. 

Horizontal Sync(H) 
This I/O pin receives/sends out horizontal sync input from/output to the 
graphics controller. 

Vertical Sync (V) 
This I/O pin receives/sends out vertical sync input from/output to the 
graphics controller. 

RESET 
When this pin is low, the device is held in the power-on reset condition, 
otherwise reset is controlled through the serial port register. 

SPD This pin functions as the serial data pin of the serial port interface. 

SPC This pin functions as the clock pin of the serial port interface. 

D[11:0] 
These pins accept the twelve data inputs from a digital video port of a 
graphics controller. 

 

Next section illustrates an extensible hardware-software video streaming module. This 

serves as a module in the general framework for all vision-based applications leveraging the 

features of reconfigurable platforms, which are necessary for vision systems like camera 

sensors and standard display ports. After configuring the platform peripherals, the platform is 

ready to capture the real-time video. 

Table 2.7: CH7301C Interface with the FPGA 

Net FPGA Pin Net FPGA Pin 

D[0] AB8 D[9] AB10 

D[1] AC8 D[10] AP14 

D[2] AN12 D[11] AN14 

D[3] AP12 CLK_P AL11 

D[4] AA9 CLK_N AL10 

D[5] AA8 HSYNC AM12 

D[6] AM13 VSYNC AM11 

D[7] AN13 DE AE8 

D[8] AA10 RESET_B AK6 
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2.3 Embedded Video Streaming Module 

Embedded system architecture for video streaming application is developed around the 

Xilinx ML-507 FPGA platform. This optimal system integration makes use of the embedded 

PowerPC440 processor, integration of intellectual property (IPs) blocks along with the design 

of custom hardware realized in the FPGA fabric. The design in the FPGA is capable of 

internal image and video acquisition without the aid of an external frame grabber or any 

software running on an external computer. The design can work on a stream of image data 

coming into the FPGA from an external camera sensor. The incoming image data is 

organized into frames by the design internally and sent for the required processing and then 

on to the display unit. The system offers the requisite flexibility to design and implement 

embedded image and video processing applications. Here, the PTZ camera acts as a pure 

input sensor for the vision based application. The design decouples the processing from the 

image sensor to the FPGA and in that sense extends the functionality of the camera. The aim 

is to develop the core components of this design that are implemented in the FPGA and are 

part of the general underlying infrastructure of all vision-based systems and letting the 

applications build themselves naturally over these components.  

The existence of an embedded processor in the FPGA provides the system with the 

flexibility to choose which parts of an image processing algorithm are to be implemented on 

the software (PowerPC 440) and rest in the hardware as custom design logic blocks in the 

FPGA fabrics. This flexible hardware/software system facilitates the development of a 

vision-based system. The FPGA has sufficient computational power and proves to be a 

suitable platform for developing complex applications over the lightweight acquisition, 

storage and display components built inside it. In this design PowerPC 440, embedded 

processor is used for the interfacing of FPGA-based custom modules and IPs along with the 

configuration of platform peripherals. Fig. 2.4 shows the block diagram of the design. 
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Fig. 2.4: The Xilinx ML-507 FPGA platform as an embedded vision platform. 

 

 

Fig. 2.5: Hardware blocks for the real-time video streaming. 
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The software environment of the system consists of application software and device 

drivers. The hardware part of the system includes the configurable logic blocks in the FPGA 

fabric. This integration of software and hardware provides the complete system functionality. 

The system requires interfacing of PTZ analog camera with the FPGA platform. For this 

interfacing VGA IN port is used. The video decoder chip registers are configured using the 

I2C bus according to the resolution and frame rate of the incoming video. This is achieved by 

using the I2C bus controller’s low-level device driver functions.  

 

Fig. 2.6: Block-diagram of the embedded video streaming module in Xilinx EDK. 
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To interface a VGA monitor, DVI OUT port is used after configuring video display 

controller chip registers through the I2C bus. The required FPGA platform configurations for 

the above and other vision-based applications are explained in Appendix-B. In next section 

the details of the hardware components of the video streaming module are explained. 

2.3.1 Hardware Components of the Video Streaming Module 

A design is implemented in the FPGA logic which facilitates the streaming of video from 

camera to the monitor through the FPGA logic in real-time. For implementation of the 

design, Xilinx provided IPs, namely, digital clock manager (DCM), PLB, XPS I2C interface 

together with some of the IPs from Xilinx Spartan-3A DSP video starter kit [45] IPs are 

utilized along with the PowerPC 440 embedded processor.  Hardware blocks used in the 

implemented system are shown in Fig. 2.5. Block diagram view of the design in the Xilinx 

EDK tool is shown in Fig. 2.6. A snapshot of the streaming video is shown in Fig. 2.7. 

Details of each module are described in the following subsections. 

 

Fig. 2.7: A frame of size captured video from the video camera. 
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Table 2.8: VGA_IN I/O Signals 

Signal Name Direction Interface Description 

vsync I To the FPGA pin Vertical Sync input 

hsync I To the FPGA pin Horizontal Sync Input 

red(7:0) I To the FPGA pin Red input 

green(7:0) I To the FPGA pin Green input 

blue(7:0) I To the FPGA pin Blue input 

clk I To the FPGA pin Clock input(pixel rate) 

ce I To the FPGA pin Clock enable(Active High) 

de_o O VGA_VIDEO_OUT Data Enable output(Active video)

hsync_o O VGA_VIDEO_OUT  Vertical Sync output 

vsync_o O VGA_VIDEO_OUT Horizontal Sync output 

red_o (7:0) O VGA_VIDEO_OUT Red output 

green_o (7:0) O VGA_VIDEO_OUT Green output 

blue_o (7:0) O VGA_VIDEO_OUT Blue output 
 

2.3.1.1 VGA_IN 

VGA_IN peripheral core provides a connection to the AD9980 video decoder chip. This 

peripheral core brings in the input signals from the video input video codec chip, registers the 

signals, and groups the video signals into a unified bus that interconnects to other IPs for 

processing. Along similar lines, a bus interface called VGA_VIDEO_OUT is defined for the 

VGA_IN peripheral core outputs. The details of VGA_IN I/O signals are given in Table 2.8. 

2.3.1.2 DE_GEN 

DE_GEN peripheral core provides the ability to generate a data enable (de) signal for analog 

video streams. The data enable signal marks the beginning of the active video that needs to be 

written to the external memory. The DE_GEN core achieves this by analyzing the input 

hsync and vsync signals combined with the front porch and back porch clock cycles based on 

the VGA protocol. The PowerPC processor communicates the porch values to DE_GEN  core 

over the PLB interface based on the video resolution. The vertical back porch value contains 
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the number of clock cycles that lie between the active edge of hsync and the first active video 

pixel. Thus, it includes the vertical back porch, the hsync pulse width, and the border 

preceding the first active video pixel.  

The vertical front porch value contains the number of clock cycles that lie between the last 

active video pixel and the active edge of hsync. This includes the vertical front porch and the 

border following the last active video pixel. The horizontal back porch value contains the 

number of the lines of data that lie between the active edge of vsync and the first line of 

active video. This includes the horizontal back porch, the vsync pulse width, and the border 

preceding the first line of active video. The horizontal front porch value includes the number 

of lines of data that lie between the last line of active video and the active edge of vsync, 

which indicates start of a new frame. This includes the horizontal front porch as well as the 

border following the last line of active video. Bus interfaces called VGA_VIDEO_IN and 

VGA_VIDEO_OUT are defined for the de_gen peripheral core. The details of the DE_GEN 

I/O signals are given in Table 2.9. 

Table 2.9: DE_GEN I/O Signals 

Signal Name Bus Direction Interface Description 

Vsync I - Vertical Sync input 

Hsync I - Horizontal Sync Input 

red(7:0) I - Red input 

green(7:0) I - Green input 

blue(7:0) I - Blue input 

clk I - Clock input(pixel rate) 

ce I - Clock enable(Active High) 

de_o O VGA_VIDEO_OUT Data Enable output(Active video)

hsync_o O VGA_VIDEO_OUT Vertical Sync output 

vsync_o O VGA_VIDEO_OUT Horizontal Sync output 

red_o (7:0) O VGA_VIDEO_OUT Red output 

green_o (7:0) O VGA_VIDEO_OUT Green output 

blue_o (7:0) O VGA_VIDEO_OUT Blue output 
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2.3.1.3 VGA_OUT 

VGA_OUT peripheral core provides a connection to the CH7301C DVI transmitter device. 

This peripheral core takes in the VGA_VIDEO_IN bus (that is driven by the 

VGA_VIDEO_OUT port of the DE_GEN core) and formats the video data to the format 

required by the display controller device. Details of the VGA_OUT I/O signals are given in 

Table 2.10. 

The CH7301 is capable of driving either the DVI displays or the analog VGA displays. For 

analog displays, the de signal is required. The ML-507 platform has a DVI port as the output 

port, so the digital video interface signals are generated by the dvi_out core. A DVI-to-VGA 

converter is used externally in case of analog displays. In the next section, we describe the 

embedded video acquisition and display module. 

Table 2.10: VGA_OUT I/O Signals 

Signal Name Direction Interface Description 

de_i I - data enable input 

vsync_i I - Vertical Sync input 

hsync_i I - Horizontal Sync Input 

red_i(7:0) I - Red input 

green_i(7:0) I - Green input 

blue_i(7:0) I - Blue input 

clk I - Clock input(pixel rate) 

ce I - Clock Enable(Active High) 

reset I - Reset(Active High) 

de O To the FPGA pin Data Enable output 

hsync O To the FPGA pin Vertical Sync output 

vsync O To the FPGA pin Horizontal Sync output 

VGA_data(11:0) O To the FPGA pin Data Output 

VGA_clk_p O To the FPGA pin VGA Clock(Positive Phase) 

VGA_clk_n O To the FPGA pin VGA Clock(Negative Phase)

reset_n O To the FPGA pin VGA Reset(Active Low) 
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2.4 Embedded Video Acquisition and Real-Time Display 

As discussed in the Section 2.1, for extracting the meaning from streaming video, a selective 

image and video acquisition module is necessary. The video frame that needs to be processed 

requires a frame buffer memory. The frame buffer is a memory that is used to hold video 

frames, which require further processing. The acquisition module stores the required frames 

in the frame buffer as per the needs of the particular application. The image and video 

acquisition module provides data from the extracted video frames to the application-specific 

data processing unit, which, in turn, processes the data as per the required application 

algorithm and provides necessary control signals to the camera to capture the subsequent 

frames of interest. 

The amount of memory needed to retain the frames depends primarily on the video 

resolution and per pixel color depth. Following formula provides the amount of video 

memory needed for particular video resolution with known per pixel color depth. 

Video memory=X-resolution Y-resolution Number of bits per pixel× ×        (2.1) 

In standard VGA video resolution of 640 480×  pixels, each pixel is represented by 32-

bits. Thus, one video frame requires around 2 MB of memory. Therefore, to make a frame 

buffer there is a requirement of large memory space. The available Block RAMs, which can 

store up to 36 K bits of data in the Xilinx Virtex-5 FPGA, do not suffice for this purpose. 

Apart from the memory size limitation, these memory elements are utilized for other fast 

logic realizations in the design. Therefore, in our design a 256 MB DDR2 SDRAM memory 

available on the Xilinx ML-507 platform is used for the frame buffer application. Our design 

routes the frame of video from camera to the monitor through the DDR2 SDRAM memory 

and the FPGA logic in real-time.  
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The top-level system architecture is shown in Fig. 2.8. It consists of a Xilinx ML-507 

FPGA platform, a Sony PTZ camera [102], a PAL to VGA converter [103], and a VGA 

monitor for displaying the output video. It uses the video input video codec (VDEC), and the 

display controller (DC) peripherals of the Xilinx ML-507 platform. 

 

Fig. 2.8: Development platform set-up for embedded video acquisition. 

2.4.1 The System Architecture 

The system architecture of video acquisition, storage and display system is shown in Fig. 2.9. 

The software environment of the system consists of application software and device drivers. 

The hardware part of the system includes the configurable logic blocks in FPGA. This 

integration of software and hardware provides the complete system functionality.  

In this design PowerPC 440 embedded processor is used for the interfacing of FPGA-based 

custom modules and IPs along with the configuration of platform peripherals. The video 

input video codec chip registers and the video DVI transmitter chip registers are configured 

by using the I2C bus controller’s low-level device driver functions for the resolution of 
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640 480× @60 frames/sec. Programmable clock generator is used to provide the custom 

clock for the VGA display. Subsequently, the design is implemented in the FPGA logic 

which facilitates the streaming of video from camera to the monitor through the FPGA logic 

in real-time. Details of the hardware building blocks and the IPs used are discussed below. 

 

Fig. 2.9: System architecture for video acquisition. 

To interface a DVI monitor, DVI OUT port of the ML-507 platform has been used after 

configuring the on-board video display controller chip registers [101] through the I2C bus. 

The application software is written in C language and it runs on the Xilinx-provided 

standalone software platform [104]. Further, it uses the developed APIs as needed and also 

utilize the required ones from among those provided by the software platform. In this 

embedded architecture, peripherals like video input video codec (VDEC), display controller 

(DC), and some of the Xilinx provided IPs, such as, multi-port-memory controller (MPMC) 
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[105], digital clock manager (DCM) [106], Xilinx Platform Studio (XPS) I2C controller, 

along with some of the Xilinx Spartan-3A DSP video starter kit [45] IPs are used. For 

bussing this variety of IPs, the architecture uses two bus protocols. The 128-bit processor 

local bus (PLB) protocol [98] provides the infrastructure for connecting an optional number 

of PLB masters and slaves into an overall PLB system. The second bus is the memory 

controller interface (MCI) which provides an interface between PowerPC 440 microprocessor 

and a soft memory controller implemented in the FPGA logic [34].  

The arrangement of a video frame in the DDR2 memory is shown in Fig. 2.10. Here, each 

color R, G and B requires 8-bit memory storage. The last byte remains zero. One pixel 

representation, this requires 32-bit storage. The row and column is defined as,  

( , ) (Row No. No. of Column+Col. No.) 4= × ×r c                  (2.2) 

where,  r= Row number of pixel in the memory 

c= Column number of the pixel in the memory 

 

Fig. 2.10: A video frame in the DDR2 SDRAM. 
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The graphical view of the design is shown in Fig. 2.13. As apparent, apart VGA-IN, 

DE_GEN and VGA_OUT hardware cores, the architecture utilizes a few more hardware 

cores like MPMC, video to frame, frame to video core and display controller cores. Further, 

details of each core are provided in the following sub-sections.

 

Fig. 2.13: EDK graphical view of the video acquisition design. 

2.4.1.1 Multi-port Memory Controller (MPMC) 

The MPMC is a parameterizable memory controller that supports DDR2 SDRAM [105]. 

MPMC provides access to memory for one to eight ports. It has been used for interfacing to 

DDR2 SDRAM. Video frame buffer controller (VFBC) is a special interface for video frame 
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data and is an essential part of the multi-port memory controller. It is used in video 

applications where hardware control of two-dimensional (2D) data is needed to achieve real-

time operation. The VFBC allows a user-defined Intellectual Property (IP) to read and write 

data in 2D sets regardless of the size or the organization of external memory transactions. It 

has separate asynchronous first-in first-out (FIFO) interfaces for write data input, command 

input and read data output. 

2.4.1.2 Video to Frame Core 

The video to frame peripheral core controls the storing of video frames into frame buffers. It 

writes video data to the VFBC interface on the MPMC memory controller. The video to 

frame core is connected with DDR2 SDRAM via the multi-port memory controller and it 

works in synchrony with the VGA_IN and DE_GEN cores.  

2.4.1.3 Frame to Video Core 

The frame to video peripheral core reads video frames out of memory. It provides pixel clock 

of 25.175 MHZ to the display controller peripheral core to display digital video resolution of 

640 480×  video on the DVI/VGA monitor. The frame to video core retrieves the active 

video data from the DDR2 SDRAM memory via VFBC interface of the MPMC controller. 

The fetched data is used by the display controller unit. 

2.4.1.4 Display Controller Core  

The display controller peripheral core provides a connection to the CH7301C DVI transmitter 

device. This peripheral core accepts the external clock signal generated by the IDT clock 

generator along with the output data of frame to video peripheral core and formats the active 

video data to the format required by the DVI transmitter device. The ML-507 platform has a 

DVI port as the output port. A DVI-to-VGA converter is used for the display on a VGA 

monitor.  
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2.4.2 System Validation  

The system arrangement to validate the real-time video acquisition, storage and display 

system is shown in Fig. 2.14. In this arrangement, the ML-507 platform is connected with 

host computer running EDK, via a platform cable USB II and a RS-232 serial cable. The   

RS-232 connection is made to observe execution of the C program running on PPC440 

processor on the hyper-terminal. A VGA monitor is connected to the platform through the 

DVI OUT port by using DVI to VGA converter.  

 

Fig. 2.14: System arrangement to validate the real-time video acquisition. 

2.5 Results 

The real-time video is captured from the PTZ camera, which is interfaced via a PAL to VGA 

converter with the Xilinx ML-507 platform. The VGA timing details of the design as 

obtained from Xilinx ChipScope Pro analyzer for 640 480× @60 fps video resolution is 

shown in Fig. 2.15.  
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The complex functions, such as division, square root, exponential, power and inverse 

square-root can be easily realized through the logarithmic and antilogarithmic computational 

circuits [48]. The logarithmic number system (LNS) simplifies complex arithmetic operations 

into simple arithmetic operations such as, addition/subtraction and shifting operations.  The 

mechanism of this simpler arithmetic approach is shown in Fig. 3.2.  

( , , , )+ − >> <<

 

Fig. 3.2: A simple arithmetic approach for realizing complex arithmetic functions. 

The mathematical expressions for the realization of complex arithmetic functions are 

shown in Table 3.1. This simplicity and improvement in design metrics are obtained at the 

cost of conversion overheads from integer to logarithmic and vice versa, yet the overhead is 

much smaller and it is bearable for realizing most of the practical embedded systems 

[48,108,109]. 

Thus, the hardware realization of logarithm and antilogarithm functions is of paramount 

importance, not to mention their usefulness in implementing other important complex 

arithmetic operations [48,108]. For hardware implementation, field programmable gate array 

(FPGAs) is one of the most promising candidates where many predefined and pre-fabricated 

components, such as dedicated adder, multiplier, embedded memories and embedded 

processors are available along with plenty of logic resources within a single FPGA device 

[34,87]. The FPGA macro elements can be utilized for the basic hardware building blocks, 

like RAM, adder, multiplier [87]. Usually, the elements of the FPGA are available for non-
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floating point data path, as the need of floating point data type is very specific and consumes 

large amount of logic resources. These pre-fabricated elements can be used by incorporating 

fixed-point data type [47,110,111] which leads to a low-cost, fast and energy efficient circuit 

implementation. A datapath incorporating the fixed-point arithmetic unit can be implemented 

using minimal FPGA resources. Thus, we can make compact, fast and power saving 

hardware architecture using minimal logic resources.  

Table 3.1: Complex Arithmetic Operations using Logarithmic Number System 

Operation Representation Normal Arithmetic
Binary Logarithmic 

Arithmetic 

Division DIV /x y
2 2log logx y−  

Reciprocal RICP 1/ x  2log x−  

Square root SQRT x  2log 2x  

Reciprocal square root RSQR 1/ x  2log 2x−   

Square SQR 2x  2log 2x  

Powering PWR yx  2.logy x  

 
In this chapter, two architectures are proposed for the hardware realization of logarithmic 

and antilogarithmic functions, which are subsequently realized in the FPGA. The 

architectures are based on piecewise approximation methods for binary logarithm and 

antilogarithm functions. The fixed-point number system is employed for implementing these 

architectures. The architecture of logarithm computation is capable of finding approximate 

logarithm of an integer number, integer with fractional number and only fractional number. 

The architecture uses the same set of circuit elements for all computations.  

The architecture for antilogarithm computation, works for both positive and negative 

binary numbers. In the proposed architecture, a unique barrel-shifter is designed which shifts 

the input data to the left or right by the given count. To validate the approximation efficiency, 
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error analysis with thousands of uniformly distributed numbers is performed. The proposed 

architectures are then implemented in the Xilinx Virtex-5 xc5vfx70t FPGA device. 

The logarithm unit designed in this chapter is utilized for the implementation of image 

thresholding algorithm discussed in Chapter 4. In addition, computational blocks such as 

square root and divider required for kernel-smoothed local histogram computation discussed 

in Chapter 6 are realized in hardware utilizing these logarithmic and antilogarithmic blocks 

using the concept of LNS. Further, the Bhattacharya coefficient computation, center of 

gravity computation and computation of mean shift based object tracking algorithm discussed 

in Chapter 6 primarily rely on the hardware blocks developed in this chapter. These 

realizations are explained in subsequent chapters of this thesis.  

The rest of this chapter is structured as follows: Section 3.2 presents the piecewise linear 

approximation methods for computing binary logarithm and antilogarithm. The formats of 

fixed-point number system are explained in Section 3.3. Section 3.4 presents the proposed 

architecture of the binary logarithmic approximation unit along with all its constituent 

architectural building blocks. This section also covers the error analysis performed. Section 

3.5 provides the details of the FPGA implementation of the proposed binary logarithmic unit. 

Section 3.6 presents the proposed architecture of the binary antilogarithmic approximation 

unit along with all the constituent architectural building blocks. This section also presents the 

error analysis results of the proposed binary antilogarithmic approximation unit. The FPGA 

implementation results of the proposed architecture are illustrated in Section 3.7. Finally, 

Section 3.8 concludes this chapter. 

3.2 Approximation Methods for Computing Binary Logarithm and 
Antilogarithm 

To compute binary logarithm and antilogarithm the popular computational methods used are 

as follows: The first method is the straight-line approximation method as suggested by 
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Mitchell [111]. The second method is comprised of the piecewise linear approximation 

methods, given in [48,108,109,112,113] and the approximation method followed by error 

correcting method [109]. The piecewise linear approximation method is suitable for an area-

efficient implementation. In the proposed work, for the computation of logarithm and 

antilogarithm of a binary number the piecewise linear approximation method is used, which 

is explained below.  

3.2.1 Binary Logarithmic Approximation Method 

Let B be a binary number in the range 12 2J KB +≤ < , ( 1, 2, 3, ..., ),j J= − − − (0,1, 2, 3, ..., )lk K=  

and lk j≥ . Here, B can be expressed as: 4 3 2 1 0 1 2 3 4 5lk JB b b b b b b b b b b b b− − − − −= ⋅  . The number 

B can be further written as:
 
 

2
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i J

B b
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=                                   (3.1) 

where ib = ‘0’ or ‘1’. Let 
lkb  be the most significant leading-one bit, i.e., '1 '
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 Since ≥lk j , lf will be in the range 0 1lf≤ < . Therefore, the number B becomes, 

2 (1 )lk
lB f= + . Now, by taking the binary logarithm of this equation we can get, 

2 2log log (1 )l lB k f= + + . Thus, the characteristic part (integer) of 2log B is simply lk and 

the mantissa part (fractional) is the term 2log (1 )lf+ .To obtain logarithm of a fractional 
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number we used a shifting method. Let x be a fractional binary number and we have to 

calculate it’s logarithm. When the number x is left-shifted by n bits (n=16) it becomes

( ) .2<< = nx n x . Let the shifted value is represented as ′x , so, 2 2 log logx x n′ = − .  

3.2.2 Approximation Method for Antilogarithm Computation 

Let X be a binary number in the range 16 42 2X− ≤ < (1.4.16 fixed-point format). Let ak

represents the integer (characteristic) part with most significant bit as the sign bit and af  

represents the fractional part (mantissa) of the fixed-point binary number X. The value 

[20] 0X = represents that the input binary number is a positive number and if [20] 1X =   the 

input number is a negative number. Based on the fixed-point number format, the computation 

of antilogarithmic value is given in (3.4):  

Antilog ( ) 2 2 .2= = a ak fXX                            (3.4) 

Depending on the sign bit, the ak and af  values of (3.4) are modified. Here, in piecewise 

linear approximation the fractional data ( af ) is approximated in the range of 0 1af≤ < . When 

the data is negative it goes outside the above range, we simply subtract the fractional part 

from ‘1’, and the integer part is decremented by ‘1’.  By this, the same approximation is also 

used for the negative binary numbers. The modified values of ak  and af can be incorporated 

to obtain the antilogarithm and (3.4) can be written as, 

1 1

2 .2 sign bit 0
Antilog ( ) 2

2 .2 sign bit 1− −

 == = 
=

a a

a a

k f
X

k f
X                      (3.5) 

Based on the piece wise linear approximation method, the fixed-point datapath is used for 

the computation of binary logarithm and antilogarithm computation. The formats of the 

fixed-point number are given below. 
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3.3 Fixed-Point Number Formats for the Proposed Architectures 

The fixed-point number system can be used in place of a floating-point number system 

[47,48]. The hardware architecture for fixed-point arithmetic is much simpler as compared to 

that for floating-point arithmetic, as fixed-point arithmetic uses only integer datapath. 

Therefore, the fixed-point unit requires less area and hence it consumes less power [47]. 

Further, the hardware architecture of the fixed-point arithmetic can be easily implemented in 

a small FPGA fabric. Along with this, we can also use the available optimized FPGA macro 

elements, which are customized for the desired arithmetic operations at higher clock 

frequencies. For the implementation of the binary logarithmic architecture, a 16.16 fixed-

point format is used which is shown in Fig. 3.3. 

0212152 12− 22− 162−

0b15b16b
31b

•

 

Fig. 3.3: Fixed-point number format for the binary logarithm computation. 

Similarly, for the implementation of datapath for the proposed antilogarithm architecture, a 

1.4.16 fixed-point format is used, which is shown in Fig. 3.4. 

0212
42 12− 22− 162−

[0]X

•

[15]X[16]X[20]X

 

Fig. 3.4: Fixed-point number format for the binary antilogarithm computation. 
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3.4 Binary Logarithmic Approximation Circuit and the Proposed 
Architecture 

Mitchell introduced a binary logarithmic conversion algorithm [111]. It is demonstrated that 

by using binary logarithmic operation, the multiplication and division can be modified in the 

form of a simple binary addition (or subtraction) operation. The other mathematical 

operations such as squaring, powering, reciprocal etc. can also be derived by incorporating 

the binary logarithmic and antilogarithmic units [48] which is given below. 

The straight-line approximation of binary logarithmic as proposed by [111] requires an 

error-correcting stage. To improve the functional accuracy level of Mitchell’s algorithm some 

VLSI architectures have been proposed [48,108,109,112]. In most of these approaches, the 

logarithmic curve is divided into a number of different regions and the piecewise straight line 

approximates each region.  

A two-region approximation is presented in [112]. A four-region linear approximation with 

look-up table (LUT) based residual error correction stage that compensates for the piecewise 

interpolation error is presented in [88]. In [108,114] the two, three and six regions are 

considered. A CMOS VLSI implementation of a 16-bit logarithmic converter is proposed in 

[114]. A CMOS VLSI implementation of 32-bit binary-to-binary logarithm converter is 

presented in [88]. A region approximation scheme for binary logarithmic conversion is 

presented in [108]. It illustrates a CMOS VLSI implementation of a logarithmic computation 

circuit. All the above methods use straight-line segments to approximate the precise 

logarithmic curve such that the values of constant and slopes in each region of the intervals 

become multiple of powers-of-two integers, so that the hardware cost of the interpolation is 

minimal. The truncated fractional part is used to correct the approximation error. 
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3.4.1 The Proposed Architecture 

As explained in the approximation approach (Section 3.2.1), the characteristic part ( lk ) can 

be easily generated by incorporating a leading-one finder (LOF) block whereas the fractional 

part approximation (FPA) unit obtains the mantissa part. The block diagram of the binary 

logarithmic computation scheme is shown in Fig. 3.5. 

Here, the LOF block represents a 16-bit leading-one finder circuit, which receives 16-bit 

input and provides a 4-bit encoded output containing the position of leading-one bit in the 4-

bit binary number format. The bits after the leading-one position are applied to the FPA unit, 

which provides the approximated fractional part of the input number. The outputs of LOF and 

FPA units are combined which provides the binary logarithmic of the input number. One 

extra bit (S) represents the sign of the result. 

2log (1 )+ lf

2log ( )B

( )lk

 

Fig. 3.5: Binary logarithmic computation scheme. 

Based on the above concept, we propose an area-efficient architecture of a binary 

logarithmic approximation unit. The proposed architecture utilizes fixed-point data format 

and is capable of finding its binary logarithm in the range (2 2 1)n nN− ≤ ≤ −  with n =16. Along 
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with the FPGA fabric, the datapath of the proposed architecture uses FPGA off-the-shelf 

component such as, adder and multiplier (DSP48E). The proposed architecture is able to find 

out the binary logarithm of a 16-bit integer number, 16-bit fractional number or a 16.16-bit 

fixed-point number. The error analysis is performed for both the cases, with only fractional 

number in the range of 0 1lf≤ <  as well as with the fixed-point number. The implementation 

results show the presented architecture is simple and area-efficient i.e. it consumes very few 

FPGA slices. The error analysis up to the five places of decimal depicts that the proposed 

architecture has 0.05 % error with 16.16 fixed-point numbers and 0.34 % with fractional 

number ( lf ). This error is minimal and it is bearable for a practical embedded system.  

In the proposed architecture, the eight-region piecewise linear approximation is used as in 

[48]. The approximation coefficients are stored in the eight locations of an 18-bit ROM. The 

top-level view of the proposed architecture is shown in Fig. 3.6.  

2
lo

g
B

 

Fig. 3.6: Proposed architecture for the binary logarithmic computation. 
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Here, the OR gate (five 4-bit OR gate network makes a 16-bit OR gate) receives sixteen 

bits of the input B[31:16]. As discussed in the fixed-point format representation, the upper 

sixteen bits of the input contain the integer part and the lower sixteen bits contain the 

fractional part. If the input number has an integer part, the OR gate output will be ‘1’ 

otherwise the OR gate output will be ‘0’. The output of the OR gate is provided to a 32-bit,  

2-to-1 multiplexer select line which selects either the input word or the fractional part with 

appended zeros. Based on the OR gate output the input multiplexer routes the selected data to 

the leading-one finder (LOF16) and to the barrel shifter (BSHFT) circuit [108,114]. The 

LOF16 circuit receives the upper 16-bits of the multiplexer output, which are examined for 

leading-one. The internal detail of the LOF16, BSHFT and FPA blocks are discussed below. 

3.4.2 Leading-One Finder (LOF) Circuit 

The leading-one finder (LOF) is a 16-bit circuit. Usually a normal leading-one finder 

searches for the leading-one serially from MSB to LSB, which is a slow process as shown in 

Fig. 3.7. 

 

Fig. 3.7: Serial evaluation of the leading-one bit. 

We can make a parallel/serial combination of leading-one finders to make a fast leading-

one finder circuit as shown in Fig. 3.8. Here the 16-bit data is organized into four groups, 

each group having 4-bits. The 4-bits of a group are evaluated serially using a serial 4-bit LOF 

circuit [108], and all groups work concurrently. The 4-bit LOF circuit utilizes six 2-to-1 

multiplexers and evaluates the inputs from MSB to LSB serially. As shown in Fig. 3.9, the 4-
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bit output of the circuit provides the information about the leading-one bit and its 

corresponding position. To realize a 16-bit leading-one finder circuit (LOF16), the 4-bit LOF 

circuits are organized in to two stages so that concurrent evaluation of four LOF4 groups 

could take place. The circuit organization for the LOF16 is shown in Fig. 3.10. 

 

Fig. 3.8: Parallel/ serial evaluation of the leading-one bit. 

 

Fig. 3.9: 4-bit leading-one finder (LOF4). 
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Fig. 3.10: Detailed circuit of a 16-bit leading-one finder (LOF16). 
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Fig. 3.11: Block diagram of the LOF16. 

The simplified block diagram of the 16-bit LOF circuit (LOF16) is shown in the Fig. 3.11. 

In the (LOF16), four 4-bit LOF circuits are organized in the first stage, which receives 16-bit 

input and provides four 4-bit output groups. The output of each LOF4 circuit is provided to a 

4-bit OR gate (OR4). The outputs of each OR4 gates are provided to the second stage of the 

LOF4 circuit. The second stage LOF4 circuit selects the first stage LOF4 circuit, which 

carries the leading-one. The four outputs of the second stage LOF circuit are fed to the select 
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lines of four 4-bit multiplexers. The first input of each multiplexer receives 4-bits from the 

outputs of the first stage LOF circuits and the second input is connected to logic ‘0’. The four 

4-bit outputs of the multiplexers are fed to a binary encoder circuit which encodes these 16-

bits into a 4-bit binary equivalent. 

The 4-bits of the encoder output provide the position of the leading-one bit in the input. 

The truth table of the encoder is shown in Table 3.2. Here, ‘X’ can be logic ‘0’ or logic ‘1’. 

The computed leading-one bit carries the information about the characteristic part of the 

binary logarithm. To compute the fractional value of the binary logarithmic, the bits 

following the leading-one bit, are passed on to a barrel shifter (BSHFT) circuit  for further 

processing as discussed below. 

Table 3.2: Leading-One Finder (LOF16) Encoder 

Address Encoder Out 
(S) 

0000000000000000 0000 

0000000000000001 0000 

000000000000001X 0001 

00000000000001XX 0010 

0000000000001XXX 0011 

000000000001XXXX 0100 

00000000001XXXXX 0101 

0000000001XXXXXX 0110 

000000001XXXXXXX 0111 

00000001XXXXXXXX 1000 

0000001XXXXXXXXX 1001 

000001XXXXXXXXXX 1010 

00001XXXXXXXXXXX 1011 

0001XXXXXXXXXXXX 1100 

001XXXXXXXXXXXXX 1101 

01XXXXXXXXXXXXXX 1110 

1XXXXXXXXXXXXXXX 1111 
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3.4.3 The Barrel Shifter (BSHFT) Unit  

After obtaining the leading-one bit, we evaluate the information about the characteristic part 

of the binary logarithm. In order to compute the fractional value of the binary logarithmic, the 

lower order bits following the leading-one bit are provided to a binary barrel shifter (BSHFT) 

circuit. The BSHFT circuit is composed of two 31-bit, 8-to-1 multiplexers and one 31-bit,    

2-to-1 multiplexer as shown in Fig. 3.12.  

 

Fig. 3.12: Barrel shifter circuit (BSHFT) used in the binary logarithm computation unit. 
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It provides selection bits for the fractional-part approximation (FPA) circuit for computing 

fractional value of the binary logarithm. The selection process for required bit shifting in the 

BSHFT circuit is shown in Table 3.3. As explained in the Section 3.4.2 and shown in Fig. 

3.11, the LOF16 circuit provides 4-bit output which is represented as S[3:0]. Bit S[3] is 

utilized to select the right most multiplexer of BSHFT circuit, which is shown in Fig. 3.12. In 

the circuit S [2:0] are used to select sixteen different input combinations through two 8-bits 

multiplexers. Here, bits S [2:0] are provided to the select lines of two multiplexers. 

Depending upon the bit value of S [3], any one of the multiplexer is selected. The selected 

multiplexer routes its input data to the output. The selection criteria is given in the Table 3.3. 

The output of BSHFT circuit is provided to a FPA unit, which is explained below. 

Table 3.3: Truth Table for Realizing the Barrel Shifter 

S Z 

0000 X “00000000” 

0001 input(16 downto 0) & “00000000000000” 

0010 input(17 downto 0) & “0000000000000” 

0011 input(18 downto 0) & “000000000000” 

0100 input(19 downto 0) & “00000000000” 

0101 input(20 downto 0) & “0000000000” 

0110 input(21 downto 0) & “000000000” 

0111 input(22 downto 0) & “00000000” 

1000 input(23 downto 0) & “0000000” 

1001 input(24 downto 0) & “000000” 

1010 input(25 downto 0) & “00000” 

1011 input(26 downto 0) & “0000” 

1100 input(27 downto 0) & “000” 

1101 input(28 downto 0) & “00” 

1110 input(29 downto 0) & ‘0’ 

1111 input(30 downto 0) 
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3.4.4 Fractional Part Approximation (FPA) Unit for Logarithm Computation  

The architecture of a 31-bit fractional part approximation (FPA) unit is shown in Fig. 3.13. In 

the circuit shown in the Fig. 3.13, an 18 8× bit size ROM is used to store the approximated 

coefficients obtained from [48]. First 3-bits of the BSHFT output ( lf ) are used to address the 

ROM. The contents of the ROM are shown in Table 3.4. The first eight-bits from the MSB 

side of the ROM content are multiplied with the output of the BSHFT unit  ( lf ). For this 

multiplication, an FPGA hard IP multiplier (DSP48E) is used.  

2log (1 )+ lf× +

lf

 

Fig. 3.13: Fractional part approximation (FPA) unit for the binary logarithm computation. 

The output of the multiplier and the rest ten bits of the ROM are added by a fixed-point 

adder. The output of the adder provides the approximated mantissa (value of fractional part    

( lf ) of the binary logarithmic of the numbers).  

 

 



82 
 

Table 3.4: ROM Contents for the Binary Logarithm Computation 

Address Content 

000 101011110000000000 

001 100110110000010100 

010 100011100000101110 

011 100000010001010100 

100 011101110001111011 

101 011011100010100111 

110 011001100011010111 

111 010111110100001000 
 

As discussed and shown in the Fig. 3.5, the generated characteristic and mantissa parts are 

combined which gives the binary logarithm of any 16.16 bit fixed-point binary number, in the 

1.4.16 fixed-point format. Here, the first bit represents the sign of the output, the next four 

bits represent the characteristic part and the remaining 16-bits show the fractional value of the 

output. The functionality of the proposed architecture is validated by performing the required 

error analysis. The next section illustrates the details of error analysis performed using 

uniform random numbers. 

3.4.5 Error Analysis of Logarithmic Approximation 

To perform error analysis for the design, multiple sets of uniform random numbers (N) are 

generated. The range of N is (0 2 1)nN≤ ≤ − . These random numbers are converted into a 32-

bit (16.16) fixed-point data format. The converted random numbers are applied to the 

implemented design through a VHDL test-bench input file [115]. The output of the test-bench 

is converted into its corresponding real data type. The converted data, which consists of the 

computed binary logarithm result, is written into a binary file. The computed data are 

compared with the standard binary logarithm outputs up to five places of decimal digits. The 

graph of the computed logarithm is shown in Fig. 3.14(a). The percentage error between the 
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standard logarithmic output and the computed outputs are plotted in a graph, which is shown 

in Fig. 3.14(b).  

 

Fig. 3.14: (a) Computed logarithms for 16.16 fixed-point numbers (b) associated percentage 
error in computation. 

The computational error of the implemented logarithmic computation circuit vis-à-vis the 

standard logarithmic values is less than 0.05 % over the entire range. Along similar lines, the 

computed outputs of the circuit for various random fractional values are plotted Fig. 3.15 (a). 

The fractional input numbers lie in the range 0 1lf≤ < . The percentage of computational error 

in the computed output is shown in Fig. 3.15 (b), maximum percentage error being 0.34 % . 

 

Fig. 3.15: Computed logarithms for the fractional numbers (b) associated percentage error in 
the computation. 
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The above error analysis shows that the proposed circuit has minimal errors in both the 

cases. The associated error is acceptably small for most of the practical image processing 

applications requiring embedded real-time solutions. 

3.5 FPGA Implementation of Binary Logarithm Unit  

The proposed architecture is implemented in Xilinx Virtex-5 xc5vfx70t FPGA device. The 

technology schematic of the implemented design as obtained from the Xilinx ISE tool is 

shown in Fig. 3.16.  

 

Fig. 3.16: FPGA-based technology schematic for the proposed architecture of the binary 
logarithm computation unit. 
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3.6 Binary Antilogarithm Approximation Unit and its Proposed 
Architecture 

An antilogarithm approximation process without any hardware implementation is presented 

in [111,116]. As discussed in [108,109,114] the hardware implementation of antilogarithm 

converter is not very common in the literature. An antilogarithm converter architecture using 

CMOS is proposed in [114]. In this implementation, the circuit accepts 4-bit binary word to 

control a 16-bit logical shifter. The circuit is primarily designed for the positive binary 

numbers and the computational error analysis is not covered. The same concept is used to 

design a 32-bit antilogarithm converter [108,109]. Here, a 5-bit word of the characteristic part 

is used to control a 32-bit logarithmic shifter [108]. The upper 12-bits of the mantissa are 

provided to an arithmetic correcting circuit, which is based on 2, 6, and 7 region-correcting 

algorithms [108]. In another approach, a lookup table (LUT) and interpolation-based method 

is used to find the antilogarithm and has been implemented in the Xilinx xc2vp30 FPGA 

[117]. The implementation also focuses on the positive binary numbers. A piecewise linear 

approximation method for the positive and negative input numbers is discussed in [109]. In 

an implementation of the method, the integer and the fractional parts are computed separately 

which are then utilized by a barrel-shifter [48].  

We propose a new architecture for the binary antilogarithm computation, which accepts 

both positive and negative input numbers. A curve-fitting method for the eight-regions of 

piecewise linear approximation of the fractional part is used to obtain the approximation 

coefficients. The computed approximation coefficients are stored in a small ROM, which are 

used by a fractional part approximation (FPA) unit. The integer part controls a unique barrel-

shifter (BSHFT) which shifts the FPA output data. Depending upon the polarity of the input 

binary number the shifter shifts the input number to either left or right. The datapath of the 
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proposed architecture utilizes fixed-point arithmetic. The architecture is implemented in a 

Xilinx Virtex-5 xc5vfx70t FPGA device. 

The implemented architecture utilizes available off-the-shelf FPGA components like 

multiplier and adder along with some of the FPGA slices. The device utilization shows that 

the proposed architecture utilizes minimal FPGA resources. The computational error analysis 

using thousands of uniform random numbers is performed and it is established that the 

proposed architecture provides antilog computation with acceptably small error values. 

3.6.1 Architectural Building Blocks  

As discussed in Section 3.2.2, the approximate antilogarithm value of an input binary number 

(X) is calculated by (3.4). The top-level block diagram of the proposed antilogarithm 

architecture is shown in Fig. 3.18. Here, a fractional part approximation (FPA) unit finds the 

value 2 af as required in (3.4). After finding the fractional part, a barrel-shifter (BSHFT) is 

used to left or right shift the computed FPA output value by the number of bits corresponding 

to the characteristic part as per (3.4).  

2
A

nt
il

og
(

)
X

 

Fig. 3.18: Block diagram of the binary antilogarithm computational unit. 
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Depending upon the sign bit of the input number X[20], the input values for the FPA unit 

are selected by the two multiplexers (MUX (U) and MUX (L). The upper MUX (U) selects 

the values of ak  (4-bit) of the integer part of X [19:16], as per (3.5). The output of the MUX 

(U) is provided to the BSHFT unit which is used for the required shifting of the fractional 

part approximate value computed by the FPA unit. In a similar way, depending upon the sign 

bit, the lower MUX(L) selects the 16-bit fractional input number (5). The output of this 

multiplexer is also provided to the BSHFT unit. The details of the FPA and BSHFT units are 

given below: 

3.6.1.1 The Fractional Part Approximation (FPA) Unit 

In the proposed architecture the eight-region piecewise approximations is used to find the 

fractional part 2 af  [48,116]. The fractional part can be approximately represented as:  

2 .af
i a im f c= +                                  (3.6) 

where 0 7i≤ ≤ and it represents the eight piecewise linear regions. The calculated 

approximation coefficients ( im and ic ) are stored in the eight locations of a 19-bit ROM, 

which is implemented in the FPGA fabric. The contents of the ROM are given in Table 3.6.  

Table 3.6: ROM Contents for the Antilogarithmic Computation 

ROM  Address Values 

000 0101110010000000000 

001 0110000001111111110 

010 0110111101111100011 

011 0111100101111000100 

100 1000001001110100000 

101 1000111101101100000 

110 1001101101100011000 

111 1010100101010110111 
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The first 8-bits from the MSB of the 19-bit ROM content are used to store the values of im

and the rest 11-bits retain the values of ic . To calculate the binary approximation of 2 af as per 

(3.6), the first three bits of the fractional binary number address the ROM. The ROM 

provides the above approximation coefficients. To compute (3.6), a fixed-point binary 

multiplier is used for the multiplication of im with the 16-bit fractional input number ( af ). 

The multiplier output is fed to a fixed-point adder, which adds ic  to it. The complete circuit 

arrangement of the FPA unit is shown in Fig. 3.19. 

[15 : 0]X

[15 : 0]X [15 :13]X

2 af

×

+

 

Fig. 3.19: Fractional part approximation (FPA) unit for binary antilogarithm computation. 

3.6.1.2 Barrel Shifter (BSHFT) Unit for the Binary Antilogarithm Computation 

A barrel shifter unit is used to shift the computed value of the ‘FPA_Out’. The shifted data 

(BSHFT_32) is output of the fractional part approximation unit (3.4) shown in Fig. 3.20. As 

discussed in the Section 3.6.1, depending upon the sign bit of X, the shift can be to the right 

or left. When input number is positive, the FPA output value is left-shifted by ak bits. 
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Whereas, when the number is negative, the FPA output value is right-shifted by the ak bits. 

Depending upon the sign bit the appropriate input data (3.5) is selected which is shown in 

Fig. 3.18. The four bits of the integer part of the input number (X) controls the BSHFT data 

routing operation. The details of shift operation are given in Table 3.7.  
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Fig. 3.20: Barrel shifter (BSHFT) unit for the binary antilogarithm computation. 

  The BHSFT unit is composed of five 32-bit multiplexers (MUX32) arranged as per the 

diagram shown in Fig. 3.20. As given in Table 3.7, the [19]X bit is used to control a two-
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channel 32-bit multiplexer (MUX32A). The MUX32A takes the two groups of 32-bit data, 

which comes from two multiplexer (MUX32B and MUX32C). These two multiplexers are 

eight-channel 32-bit multiplexers that are controlled by bit [18 :16]X . When bit [19] '0 'X = , 

the MUX32 (A) routes the data of the MUX32(C) to the output, and when [19] '1'X =  it 

passes the MUX32 (B) data to the output. 

Table 3.7: BSHFT Data Routing Operation for the Binary Antilogarithm Computation 

MUX Select Lines 32-bit MUX2 (A) Input Values 

[19]X  [18 :16]X [20] 1X = [20] 0X =   

0 000 FPA_Out FPA_Out  

0 001 FPA_Out 1 FPA_Out << 1 

0 010 FPA_Out 2 FPA_Out << 2 

0 011 FPA_Out 3 FPA_Out << 3 

0 100 FPA_Out 4 FPA_Out << 4 

0 101 FPA_Out 5 FPA_Out << 5 

0 110 FPA_Out 6 FPA_Out << 6 

0 111 FPA_Out 7 FPA_Out << 7 

1 000 FPA_Out 8 FPA_Out << 8 

1 001 FPA_Out 9 FPA_Out << 9 

1 010 FPA_Out 10 FPA_Out << 10 

1 011 FPA_Out 11 FPA_Out << 11 

1 100 FPA_Out 12 FPA_Out << 12 

1 101 FPA_Out 13 FPA_Out << 13 

1 110 FPA_Out 14 FPA_Out << 14 

1 111 FPA_Out 15 FPA_Out << 15 

 

MUX32 (B) and MUX32(C) take their input data from a chain of two-channel 32-bit 

MUXs (D, E). These multiplexers receive the seventeen-bit data from ‘FPA_Out’. While 

shifting, the required amount of zeros is appended to the left or right of the input data 

(FPA_Out) to make a 32-bit data width for all the multiplexers.  Here, depending upon the 
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sign-bit polarity, the two-channels of the MUX-chain operate. The multiplexer chain routes 

the left shifted data for positive input data and the right shifted input data for the case of 

negative input data. 

3.6.2 Error Analysis of the Binary Antilogarithm Approximation 

To perform the error analysis multiple sets of uniformly distributed random numbers (N) in 

the range of 2 2 1N NN− ≤ ≤ −  are generated. These random numbers are changed into a 21-bit 

(1.4.16) fixed-point data format. These inputs are applied to the implemented design through 

a VHDL test-bench input file. The output of the test-bench is converted into the real data type 

and written into a binary file. The converted data are compared with the standard binary 

antilogarithm outputs up to five places of decimal digits. The percentage error between the 

standard antilogarithm output and the output obtained from the proposed architecture are 

plotted in a graph, which is shown in Fig. 3.21. The maximum percentage of computational 

error is 0.16 %, which is acceptable for most image processing applications. 

 

Fig. 3.21: Percentage computational error (a) for positive input binary numbers (b) for the 
negative input binary numbers. 
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The FPGA device resource utilization summary of the design is given in Table 3.8. It can 

be observed from Table 3.8, that the proposed architecture requires only 0.37 % of the FPGA 

LUTs. Along with this, the antilogarithm computation block requires 0.78% (1 out of 148) of 

the DSP48E slice available with the Virtex-5 FPGA device. The proposed architecture, 

utilizes simple arithmetic circuits that use a fixed-point datapath, which leads to reduction of 

the number of input/output blocks (IOBs). The implemented architecture utilizes only 8.28 % 

IOBs. The total power consumption of the proposed architecture is found to be 21 mW. 

Table 3.8: FPGA Device Utilization for the Binary Antilogarithmic Computation 

Elements Proposed Architecture 

Slice LUTs 163 /44800 (0.37 %) 

External IOBs 53/640 (8.28 %) 

DSP48Es 1/128 (0.78 %) 

3.8 Conclusion  

Hardware architectures for binary logarithm and antilogarithm approximation circuits are 

proposed in this chapter. The proposed architectures are suitable for embedded image and 

video processing applications. The proposed architectures are based on fixed-point data type 

and are implemented in Xilinx Virtex-5 xc5vfx70t FPGA device.  

The hard macro cores like the adder and the multiplier available in FPGA device are 

utilized for the computation of the mantissa part of the binary logarithm. A leading-one finder 

circuit obtains the characteristic portion of the binary logarithm. The FPGA device utilization 

shows that the proposed architecture utilizes minimal FPGA resources. The power 

consumption of the proposed architecture for logarithm computation as computed using 

XPower analyzer is 40.29 mW. The error analysis of the implemented architecture is 

performed with thousands of uniform random numbers. The error analysis shows that the 

proposed architecture provides adequate levels of accuracy. Maximum error is percentage of 
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0.05 % with 16.16 fixed-point numbers and 0.34 % with fractional numbers in the range 

0 1lf≤ < . 

For the design of the antilogarithm unit, the characteristic portion of the binary number is 

used to shift the computed mantissa part with the help of a barrel-shifter. The barrel-shifter 

uses a few multiplexers to route the logical shifted value of the mantissa part. The output of 

the barrel-shifter is the approximate value of the binary antilogarithm. The FPGA device 

utilization data shows that the proposed architecture uses minimal FPGA resources and it 

consumes 21 mW power. The error analysis of the implemented architecture is performed 

with thousands of uniformly distributed random numbers. The error analysis shows that the 

proposed architecture provides adequate level of accuracy.  The percentages of computational 

errors are found to lie in the range of 0.08%± for positive binary numbers and 0.2 %− to 

0.6 %+  for negative binary numbers. 

The real-time realization of complex arithmetic functions such as square root function, the 

raised to the power function, and the division function on fixed-point numbers required in 

Chapter 4 and 6, have been made possible through the transformation and realization of the 

computations in the logarithmic domain and then back into the fixed-point number system 

using the logarithm approximation and antilogarithm approximation unit described in this 

chapter. 
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CHAPTER 4  

ARCHITECTURE AND HARDWARE REALIZATION OF AN IMAGE 

THRESHOLDING ALGORITHM 

4.1 Introduction 

In various image and video processing applications, it is necessary to extract the gray levels 

of object pixels, which are significantly different from the object’s background [3,8,118]. The 

image thresholding is defined as an operation, by which a gray-level image is converted into 

its corresponding binary image. The thresholding operation is used to extract an object from 

its background such that each pixel is either classified as an object pixel (white) or a 

background pixel (black) [119]. The image/video acquisition module developed in Chapter 2 

provides 640 480×  pixel RGB image. A RGB-to-gray conversion module converts the RGB 

image into its corresponding gray-scale form. The thresholding unit provides an optimum 

threshold value by which the gray scale image is converted into a binary image. The obtained 

binary image is used by the connected component labeling algorithm, which is described in 

Chapter 5. 

In an image, the thresholding operation can be performed globally or locally. In the global 

or fixed thresholding process, the threshold value is constant throughout the image, whereas, 

in the local or variable thresholding, multiple threshold values of the same image can exist. 

Many image and video processing applications need image thresholding unit [119], which 

include, text detection in natural images [61], adaptive progressive thresholding [6], noise 

reduction for human action recognition [57], real-time segmentation of images with complex 

backgrounds  [60], personal verification [4], optical character recognition and image 

extraction [62,63], automatic target recognition [120].  
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 In [119], the thresholding methods are categorized into six broad groups namely, histogram 

shape-based methods, clustering-based methods, entropy-based methods, object attribute-

based methods, spatial methods and local methods. 

A clustering-based nonparametric, unsupervised method of automatic threshold selection 

for image segmentation in gray-level images was presented by Otsu [49]. Otsu’s method is a 

very popular thresholding technique, which is applied to a wide variety of applications such 

as: text detection in natural images [61], adaptive progressive thresholding [6], noise 

reduction for human action recognition [57], real-time segmentation of images with complex 

background  [60], personal verification [4], optical character recognition and image 

extraction [62,63]. 

These applications require real-time computational efficiency of the image thresholding 

process. To achieve this, hardware implementation of the thresholding algorithm is necessary 

[50,51,64]. A direct implementation of Otsu’s algorithm in hardware requires many 

computation intensive resources such as iterative squaring, complex multipliers, and dividers 

with fractional value accuracy [50,51]. A VLSI architecture for the segmentation of 

endoscopic images using Otsu’s approach has been proposed in [50]. A field-programmable 

gate array (FPGA) based architecture for the between-class variance (BCV) computation of 

Otsu’s algorithm has been presented in [51] for Xilinx Virtex xcv800 hq240-4 FPGA device 

where a 256 256×  image data is stored in four 16 K RAM chips. Along similar lines, an 

architecture for the BCV, which employs Altera’s divider and multiplier megacores, is 

presented in [64].  

This chapter presents a resource-efficient architecture for the design of Otsu’s thresholding 

algorithm and its implementation in the FPGA device. The proposed architecture is 

implemented for a 640 480×  size of input image that is captured by a real-time high-
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resolution analog camera and buffered in a DDR2 SDRAM memory. The computation of 

between-class variance in Otsu’s algorithm requires the evaluation of a normalized 

cumulative histogram, mean and cumulative moments, which need single-cycle read-modify-

write operations. These operations are achieved by incorporating the FPGA slices, dual-port 

Block RAM memories and DSP slices with DDR2 SDRAM as a frame buffer. The datapath 

of the architecture is fixed-point arithmetic based and it does not require any divider. The 

proposed design is implemented in the Xilinx Virtex-5 xc5vfx70tffg1136-1 FPGA device, 

available on the Xilinx ML-507 platform [33]. In order to develop the required hardware and 

software in an integrated manner, the Xilinx Embedded Development Kit (EDK) design tool 

is used [46]. The proposed architecture is utilized for the connected component analysis 

algorithm, which is covered in Chapter 5.  

The rest of the chapter is organized as follows. In Section 4.2, the RGB-to-gray conversion 

process is described. Section 4.3 discusses the Otsu’s automatic threshold selection method. 

In Section 4.4 the hardware implementation issues of Otsu’s algorithm are covered. Section 

4.5 is used to describe the proposed architecture for FPGA implementation of Otsu’s global 

automatic image thresholding algorithm. This section also covers the details of each building 

blocks of the proposed architecture. Section 4.6 shows the implementation results. The 

proposed architecture can also be utilized as a core, Section 4.7 covers the details of system 

arrangement with thresholding unit used as a core. Finally, Section 4.8 concludes the chapter.  

4.2 RGB to Gray Conversion 

Image thresholding algorithm works on the gray scale pixels. The gray pixels are obtained 

from the RGB color pixels. The captured RGB pixels (each 8-bit) can be converted into the 

8-bit gray level format by the following expression [121,122]. 

Grayscale 0.2989 0.5870 0.1140R G B= × + × + ×                     (4.1) 
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The above expression uses the weighted sum of R, G and B. Since division by powers of 

two (through shifting) is hardware friendly, we have used division friendly approximations 

for coefficient values of (4.1). The following equation is used to convert the RGB image, into 

reasonably acceptable results in the form of the gray level image. 

Grayscale 0.25 0.5 0.125R G B= × + × + ×                        (4.2) 

To obtain a gray-level image from RGB data, the above expression (4.2) uses only shifting 

and addition operations. The components in expression (4.2) consist of 2-bit right shifted Red 

(R) pixel, 1-bit right-shifted Green (G) pixel and 3-bit right-shifted Blue (B) pixel. The 

shifted R, G and B pixels are accumulated, which provides the corresponding gray-scale 

image. The converted gray-level image with 8-bit gray values (0 255 ) are buffered in the 

DDR2 SDRAM memory. The RGB2Gray unit uses embedded PowerPC 440 processor and 

the Xilinx video frame buffer controller (VFBC) available with its multi-port memory 

controller (MPMC) IP [105]. The read-write process uses a 32-bit native port interface (NPI) 

protocol, which is synchronous with the MPMC controller. The details of the NPI protocol 

are explained in Section 4.7. The converted gray-level image is used in the automatic 

thresholding unit. In the next section, the details of automatic threshold selection method 

given by Otsu are explained. 

4.3 Otsu’s Automatic Threshold Selection Method 

Otsu presented a clustering-based global thresholding method, which is based on the shape 

properties of the gray-level histogram [49]. The algorithm is summarized in the following. 

Let in   represents the number of pixels with gray level i, L be the number of gray levels 

[1,2 ]L in the image and N be the total number of pixels in the image i.e. 

0 1 LN n n n= + + . The probability distribution or the normalized histogram of the gray level 

image is defined as,  
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If we divide the pixels into two classes 0 1and C C corresponding to background (0) and 

foreground (1) pixels by threshold at level k,  then the probabilities of class occurrence are: 
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The class means are given by, 
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The total mean-level of the original image is, 

0

.
L

T i
i

i pm
=

=å                                   (4.6) 

For any value of k 

0 0 1 1 ,Tω μ ω μ μ+ =                                (4.7) 

where, 0 1 1ω ω+ = . 

The individual class variances corresponding to the background and foreground are, 
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Now, the within-class variance (WCV) is defined as,  

2 2 2
0 0 1 1( ) ( ) ( ) ( ) ( )w k k k k ks w s w s= +                         (4.9) 

and the between-class variance (BCV) is given as, 

2 2
0 1 1 0( ) ( ) ( )( )B k k ks w w m m= -                           (4.10) 

We can express the total variance as, 

2 2 2
0 0 0 1( ) ( )[1 ( )][ ( ) ( )]T w k k k k ks s w w m m= + - -                   (4.11) 

In (4.11) the first term is WCV 2( ( ))w ks and the second term is BCV 2( ( ))B ks . It is noted that 

within-class variance is based on the second-order statistics (class variance), while the 

between-class variance is based on the first-order statistics (class mean). The total variance is 

constant and independent of k. So, minimizing the within-class variance is the same as 

maximizing the BCV 2( ( ))B ks .Thus, the gray level for which the BCV is maximum is chosen 

as the most suitable threshold value ( k* ), which can be expressed as, 

* 2

0
arg max ( )B

k L
k kσ

≤ ≤
=                               (4.12) 

The conceptual diagram for the computation of optimum threshold value using Otsu’s 

algorithm is shown in Fig. 4.1.  
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2 ( )B kσ
( )kμ

Tμ

( )kω

( )2max ( )B kσ

( )k∗

 

Fig. 4.1: Block diagram for computing optimum threshold value using Otsu’s algorithm. 

As apparent to compute the BCV, there is requirement of the cumulative histogram ( )kw , 

and cumulative area ( )km  computation. The total mean-level of the image can be computed 

through ( )km computing block. The optimal threshold ( k* ) is obtained through a sequential 

search for the maximum of 2 ( )B kσ for 0 k L£ £ , shown in the Fig. 4.1. 

4.4 Hardware Implementation Issues Related to Otsu’s Algorithm 

As we know that the optimal threshold ( k* ) is obtained through a sequential evaluation for the 

maximum of 2 ( )B kσ for 0 k L£ £ . Now, by using (4.4) and (4.5), we can write (4.10) as, 

[ ]
2

2
0 0

0 0

( ) 1 ( )
1 ( ) ( )

T k k
B k k

k k

μ μ μσ ω ω
ω ω

 −= − − −                      (4.13)  

The direct hardware implementation of the BCV computation (4.13) is shown in Fig. 4.2. 

After computing the cumulative histogram (CH) and the cumulative intensity area (CIA), the 

computed values are stored in to two RAMs. We observe that a direct implementation of 

(4.13) requires a large number of compute-intensive complex operations such as, two 

divisions, one squaring and three multiplications.  



103 
 

2
(

)
B

k
σ

(0
)

ω(1
)

ω

(
)k

ω

(0
)

μ
(1

)
μ(

)k
μ

+
/

+
×

×
×

+

/

N
μ T

+ −

+
+

−
−

 

F
ig

. 4
.2

: D
ir

ec
t i

m
pl

em
en

ta
ti

on
 o

f 
O

ts
u’

s 
al

go
ri

th
m

 in
 h

ar
dw

ar
e.

 



104 
 

Apart from this, to normalize the computed data (4.3) it also requires a separate 

normalization unit, which ultimately turns into a division process [51]. Since Otsu’s method 

needs maximization of BCV of the foreground and background pixels of the image so that an 

optimum threshold ( *k ) can be established. The between-class variance (4.12) can also be 

further written as given as: 

[ ]
[ ]

2

2 . ( ) ( )
( )

( ). 1 ( )
T

B

k k
k

k k

μ ω μ
σ

ω ω
−

=
−

                            (4.14) 

where, the zeroth-order cumulative moment is, 

0

( )ω
=

=
k

i
i

k p                                    (4.15)  

and the first-order cumulative moment is given by,
 

0

( ) .μ
=

=
k

i
i

k i p                                             (4.16) 

and the total mean value can be derived as, 

0

. ( )μ μ
=

= =
L

T i
i

i p L                                      (4.17) 

As evident from the expression of between-class variance (4.14), the computation of 

2 ( )σ ∗
B k requires the computation of terms ( )ω k in (4.3) and (4.15), ( )kμ  in (4.3) and (4.16). 

The BCV equation (4.14) can be converted into simple addition and subtraction operations by 

taking the logarithm of both sides of (4.14) as, 

2
2 2 2 2log ( ) 2log [ . ( ) ( )] log ( ) log [1 ( )]B Tk k k k kσ μ ω μ ω ω= − − − −              (4.18) 

and the optimum threshold can be obtained as,  
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* 2
2

0
arg max log ( )B

k L
k kσ

≤ ≤
=                                      (4.19) 

 Thus, we can get the optimum value of threshold ( ∗k ) by a sequential search for the 

maximum of 2
2log ( )σ B k in the range of k.   

4.5 The Proposed Architecture for Otsu’s Algorithm 

The details of the proposed architecture for computing Otsu’s algorithm are shown in        

Fig. 4.3.  

( ) ( ). ( )Tx k k kω μ μ= −

( ) 1 ( )y k kω= −

( ) ( )z k kω=

( ), Tkμ μ

2 2 22.log ( ) log ( ) log ( )x k y k z k− −

2
2log ( )B kσ

Tμ ( )kμ

+

+

+

+

×

256 32×

256 32×

256 32×

256 40×

256 40×

 

Fig. 4.3: Detailed structure of the proposed architecture for computing Otsu’s algorithm. 
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This architecture for Otsu’s thresholding algorithm is based on the concept of logarithmic 

number system (LNS) as explained in the previous section. It utilizes the realization of 

logarithmic function as presented in Chapter 3. The proposed architecture is realized for the 

640 480×  pixel input image that is captured by a real-time high-resolution analog camera 

and buffered in a DDR2 SDRAM memory. 

The computation of between-class variance in Otsu’s algorithm requires the evaluation of a 

normalized cumulative histogram and the mean and cumulative moments, which is achieved 

through single-cycle read-modify-write operations. These operations are achieved by 

incorporating in the datapath, the FPGA slices, dual-port Block RAM memories and the DSP 

slices along with the DDR2 SDRAM as a frame buffer. The datapath architecture is fixed-

point arithmetic based and it does not require any divider or normalization unit.  

The required normalization in normalized cumulative histogram (NCH) computation is 

obtained through adding the normalization constant (which is the reciprocal weight of the 

total number of pixels) with the computed cumulative histogram. In a similar fashion, the 

need of normalization is also taken care of in the computation of normalized cumulative 

intensity area (NCIA). This following subsection presents the various architectural building 

blocks for the implementation of Otsu’s algorithmic the Virtex-5 FPGA device.  

The simplified block diagram of the proposed architecture is shown in Fig. 4.4. Here, NCH 

and NCIA blocks hold the computed zeroth-order cumulative moment (4.15) and the first-

order cumulative moment (4.16). Both NCH and NCIA blocks are realized using FPGA 

BRAMS. We obtained the result of computations of (4.15) and (4.16) for each intensity level, 

k, using single-cycle read-modify-write operation without the need of any normalizing divider 

unit of equation (4.3).  
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Fig. 4.4: Block diagram of the proposed architecture for computing Otsu’s algorithm. 

The divider to compute the BCV (4.14) is replaced by incorporating a binary logarithmic 

computation circuit, as direct division operation is complex, area-inefficient and slow. The 

modules of the architecture are implemented using fixed-point number format as explained 

below. 
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4.5.1 Fixed-Point Number Format 

To use the optimized FPGA macro elements available with the FPGA device we have used 

fixed-point arithmetic. In the proposed architecture, most of the operations are performed in a 

32-bit (16.16) unsigned fixed-point number format. Fig. 4.5 shows the format of the fixed-

point number, which is same as that used in the computation of logarithm of a binary number 

as discussed in the Section 3.3 of Chapter 3.  

0212152 12− 22− 162−

0b15b16b
31b

•

 

Fig. 4.5: 32-bit fixed-point number format. 

4.5.2 Normalized Cumulative Histogram (NCH) Computation 

Normalized cumulative histogram computation requires hardware acceleration to satisfy the 

high-speed needs for real-time thresholding operation. To compute a histogram in a single-

cycle per pixel manner, a read-modify-write operation is needed. We can achieve a read-

modify-write operation per clock cycle by incorporating a dual port BRAM memory.  The 

single-cycle read-modify-write operation can be achieved by operating one port of the dual-

port BRAM in the read-first mode and other port as a write-first mode as shown in Fig. 4.6(a) 

and Fig. 4.6(b) respectively. 

Each memory cycle can be either a read or a write, so we need to divide each pixel clock 

cycle into two sub-cycles: a read cycle for getting the current value, and a write cycle for 

updating the memory content [123]. This is achieved by operating the dual ported BRAM on 

both the edges of the video clock.  The circuit arrangement for the NCH computation is 

shown in Fig. 4.7. With active high enable (ENA) and write enable (WE) signals, the port A 
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of the BRAM operates on the rising edge of the video clock, which is applied at port CLKA 

in the read-first mode. Similarly, with the active high enable (ENB) and write enable (WEB) 

signals along with active low reset (RSTB) signal, the port B operates on the falling edge of 

the video clock, which is applied at CLKB port. 

256 32×

256 32×

 

Fig. 4.6: BRAM read-write mode (a) read-first mode (b) write-first mode. 

We can get the normalized cumulative histogram in the same clock cycle in which the 

read-modify write operation is being performed. For this, the reciprocal weight of the total 

number of pixels, i.e., 1/ N  is calculated. The content of the memory locations addressed by 
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each newly arrived pixel is incremented by the computed constant value (1/ N ). After 

completion of read-modify-write cycle, the BRAM memory locations hold the normalized 

cumulative histogram.  

( )kω

+

256 32×

256 32×
 

Fig. 4.7: Normalized cumulative histogram (NCH) computation block. 

An example of this process is shown in the Fig. 4.8. Here for each arrival of a new pixel the 

respective value in NCH BRAM is incremented by 1/ N and written back to the same 

memory location. By taking reciprocal value of the total pixel counts (i.e., 

1/N=1/307200=0.0000032552) we have obtained a fractional value, which can be easily 

represented in 32-bit unsigned fixed-point format as 0.0000369D (Hex). Here, we have used 

all the 32 bits for the internal datapath in 0.32 fixed-point format. Based on the data size of 

this constant value we have selected a 256 32×  bit size dual port BRAM memory. The 

computed normalized cumulative histogram for all the data pixels is available in the BRAM 
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memory locations in 32-bit unsigned fixed-point format (16.16) as per the format shown in 

Fig. 4.5. 

 

Fig. 4.8: Normalized cumulative histogram (NCH) computation timing diagram. 

The ModelSim [124] snapshot of the normalized cumulative histogram (NCH) 

computation block is shown in Fig. 4.9. Here, it is shown that the BRAM which stores the 

NCH values are incremented with each arrival of its input data on its input port.  

With the active enable (en) and write-enable (WE), the BRAM works at each edge of the 

clock (clk) and it increments its address locations at each arrival of input by 1/N. In the 

timing diagram shown in Fig. 4.9, the RAM memory locations 0, 8, 253, 254 and 255 are 

shown. 
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4.5.3 Normalized Cumulative Intensity Area (NCIA) and Total Mean Computation 

To compute the first-order normalized cumulative intensity area, ( )μ k  (4.16), we pre-

calculate the constant terms, /i N, in the range of 0 255i≤ ≤ . These values are stored in 256 

locations of a ROM, starting from 0 to 255, in the 32-bit unsigned fixed-point format. Similar 

to the NCH computation, the circuit for the first-order cumulative moment and mean 

computation also utilizes dual-port BRAMS. The circuit arrangement for the ( )μ k  

computation is shown in Fig. 4.10. 

( ), Tkμ μ

+

256 48×

256 48×

256 24×

 

Fig. 4.10: Normalized cumulative intensity area (NCIA) total mean computational block. 

In this circuit arrangement, a read-modify-write operation per clock cycle is obtained by 

incorporating a dual port BRAM memory, similar to the NCH computation. The data for 

which the cumulative moment, ( )kμ and mean( )Tμ , are to be computed, address the dual port 

BRAM at its address bus. Here, the maximum value of μT
can consist of 16-bit integer value; 

whereas the minimum value of ( )μ k can be represented in 32-bit fractional value. Therefore, 
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we have selected a 48-bit internal data width of the RAM as well as that of fixed-point adder 

circuits. The outputs of the circuit is in 32-bit (16.16) unsigned fixed-point format. The 

representation has 1.53 5× −e  level fractional value accuracy. 

4.5.4 Binary Logarithmic Between Class Variance (LOGBCV) Computation Unit 

As explained in Section 4.4, the between-class variance (4.14) is calculated by taking the 

binary logarithm of 2 ( )σ B k  (4.18), which is shown in Fig. 4.11. For the computation of binary 

logarithm of binary number, the architecture developed in Chapter 3 is used.  In the present 

context, it is summarized below.  

(
)

(
).

(
)

T
x

k
k

k
ω

μ
μ

=
−

( ) 1 ( )y k kω= −

2
2log ( )B kσ

Tμ( )kω ( )kμ

2 2 22.log ( ) log ( ) log ( )x k y k kω− −

+

+×
−

−

 

Fig. 4.11: LOGBCV computation. 

To compute the logarithm of the binary number we have to compute the characteristic and 

mantissa parts separately as shown in Fig. 4.12. The characteristic part of the logarithmic 
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value (k) is obtained by incorporating a leading-one finder (LOF) circuit, whereas, the 

fractional part approximation unit provides the fractional part of the logarithm. The details of 

these units are discussed in the Chapter 3 (Section 3.4.2). 

The 16-bit leading-one finder (LOF16) circuit is designed by arranging four 4-bit leading-

one finder (LOF4) circuits in first stage and one 4-bit LOF in second stage. The circuit also 

uses four 4-bit OR gates (OR4) and four 4-bit multiplexers (MUX4). The 16-bits from the 

MUX4 outputs are provided to a binary encoder, which provides 4-bit binary equivalent of 

the leading-one bit position in the input binary sequence. The circuit arrangement of LOF16 

is shown in Fig. 4.13.  

2log (1 )f+

2log ( )N

 

Fig. 4.12: Logarithmic conversion unit with leading-one finder and fractional part 
approximation units. 

The LOF16 output controls a barrel-shifter (BSHFT), which sends the required bits to the 

fractional point approximation (FPA) unit, which is covered in the Chapter 3 (Section 3.4.4) 

and re-shown  in Fig. 4.14.  Here, in our implementation of the Otsu’s thresholding 

algorithm, the anti-logarithm conversion circuit is not required as we are interested in finding 

out at which grey-level the logarithm value attains its maximal value. 
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2log (IN)

 

Fig. 4.13: 16-bit Leading-one finder (LOF16). 

2log (1 )f+

+×
 

Fig. 4.14: The fractional part approximation (FPA) unit of binary logarithm computation. 
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4.5.5 MAX Circuit 

The MAX circuit receives input from the LOGBCV unit and searches for the appropriate 

value of threshold ( ∗k ) for which 2
2log ( )B kσ  obtains its maximum value. This is shown in  

Fig. 4.4. This block has been designed using a 16-bit comparator circuit.  

4.6 Results and Discussion 

The proposed architecture for Otsu’s thresholding algorithm has been implemented by us in 

VHDL and synthesized using Xilinx ISE 14.2 targeted for the Xilinx Virtex-5 xc5vfx70t 

ffg1136-1 FPGA device. The device utilization summary for the main resource elements is 

shown in Fig. 4.17. In order to compare the implementation results of the proposed 

architecture we have selected the architecture proposed in [50], and [51]. The hardware 

architecture for computation of between-class variance as proposed by [50] and that by [51] 

had been implemented by [51] on Xilinx Virtex xcv800 FPGA. Table 4.1 shows the 

comparative results. 

Table 4.1: FPGA Device Utilization for the Proposed Architecture for Threshold 
Computation 

Elements Architecture [50] Architecture [51] Proposed Architecture 

Image Size 256 256×  256 256×  640 480×  

Image Buffer RAM RAM DDR2 

Area (Slices) 622/9408 (6.6%) 109/9408 (1.2%) 168/11200 (1.5%) 

External IOBs 113/166 (68.1%) 49/166 (29.5%) 33/640 (5.2%) 
 

It can be observed that the proposed architecture requires only 1.5 % of the FPGA slices 

for the computation of between-class variance (4.14). Along with this, to compute the 

cumulative mean (4.15) and moments (4.16) we are using 2.7% (4 out of 148) of the Block 

RAMs and 3.9% (5 out of 128) of DSP48E slices available with the Virtex-5 FPGA. The total 

power consumtion of the proposed thresholding architecture is 15 mW. 
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Fig. 4.15: Device utilization summary for the implementation of the thresholding architecture 
in the FPGA. 

In addition, the number of IOBs (input/output blocks) used is also reduced. This is because, 

in the proposed architecture, the threshold value can be readily obtained by logarithmic 

approximation of between-class variance, which requires a simpler arithmetic circuit with 

fewer bit representations using fixed-point arithmetic. In the implementation, we have used a 

standard VGA resolution image of size of 640 480×  pixels which is stored in the off-chip 

DDR2 SDRAM, whereas in the implementations of [50,51] the image has been kept on 

FPGA-based RAM resources. 

4.7 Thresholding Unit as an IP Core and the Required System-Level 
Arrangement 

The system-level arrangement of the image thresholding computational block as a 

hardware IP along with its communications with other IPs and buses is shown in Fig. 4.16. 

The proposed architecture uses two bus protocols for communication with the processor. The 

first one is a 128-bit processor local bus (PLB) protocol, which provides the infrastructure for 

connecting a PLB master and slave into an overall PLB system. The second bus is the 
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memory controller interface (MCI) bus which provides an interface between the PowerPC 

440 microprocessor and a soft memory controller implemented in FPGA logic. In order to 

develop the required hardware and software in an integrated manner, Xilinx Embedded 

Development Kit (EDK) design tool has been used. 

 

Fig. 4.16: System arrangement with the threshold computational unit. 

Real-time analog video is captured from the camera with a resolution of640 480×  pixels at 

60 fps. The captured data is converted into 8-bit gray level format and stored in the DDR2 

SDRAM memory using embedded PowerPC 440 processor and the Xilinx video frame buffer 

controller (VFBC) available with its multi-port memory controller (MPMC) IP [105]. The 

system arrangement for image acquisition uses the peripherals available on the Xilinx      
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ML-507 platform along with some of the IP elements in a similar manner as described in 

Chapter 2.  

 

Fig. 4.17: The native port interface (NPI) protocol. 

The platform contains a VGA input video codec connector that supports connectivity to an 

external VGA source. It utilizes an Analog Devices AD9980 video decoder device, which is 

programmed to generate a video clock of 25.175 MHz for the thresholding unit and other 

required blocks that are controlled by inter-integrated circuit (I2C) general-purpose input-

output registers [100]. For this, the control registers of AD9980 is configured by sending data 
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as a master on the I2C bus controller’s low-level device driver functions [100]. The generated 

video clock is routed through the digital clock manager (DCM) to the various internal design 

modules.  

Table 4.2: Native Port Interface (NPI) Signals 

Signal Description 

Addr Indicates the starting address of a particular request.  

AddrReq Indicates that NPI is ready for MPMC to arbitrate an address request. 

RNW Read/Not Write; 0 = Write request; 1 = Read request. 

Size 0x00 = Word transfers (32-bit NPI). 

RdModWr Read/ modify/write. 

InitDone Initialization is complete and FIFOs are available for use.  

AddrAck Indicates that MPMC has begun arbitration for address request.  

WrFIFO_Data Data to be pushed into MPMC write FIFOs.  

WrFIFO_BE Indicates which bytes of WrFIFO_Data to write.  

WrFIFO_Push Indicates push WrFIFO_Data into write FIFOs . 

RdFIFO_Data Data to be popped out of MPMC read FIFOs.  

RdFIFO_Pop 
Indicates that read FIFO fetch the next value of RdFIFO_Data. 
(Must be asserted for one cycle of MPMC clock.) 

RdFIFO_Empty When 0, it indicates that enough data is in the read FIFOs to assert. 

RdFIFO_Latency 

Indicates the number of cycles from the time   RdFIFO_Pop is asserted and/or 
RdFIFO_Empty is de asserted until RdFIFO_Data and RdFIFO_RdWdAddr are 
valid. 

0 =RdFIFO_Data and RdWdAddr are valid in the same cycle as the assertion of 
RdFIFO_Pop. 

1=RdFIFO_Data and RdFIFO_RdWdAddr are valid in the cycle following the 
assertion of RdFIFO_Pop. 

2=RdFIFO_Data and RdFIFO_RdWdAddr are valid two cycles following the 
assertion of RdFIFO_Pop. 

 

The application software, written in ‘C’ language, runs on top of a standalone software 

platform and controls all the hardware blocks and platform peripherals through PowerPC 

processor. We have utilized the application programmer interface (API) offered by the 
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software platform. The thresholding block communicates with the DDR2 SDRAM memory 

through a 32-bit native port interface (NPI) which is synchronized with the MPMC controller. 

NPI protocol is shown in Fig. 4.17. The signals used in NPI protocol are shown in Table 4.2. 

4.8 Conclusion  

An FPGA-based architecture for the computation of Otsu’s normalized cumulative mean, 

moment and between-class variance is presented. The proposed architecture is implemented 

on Xilinx Virtex-5 xc5vfx70tffg1136-1 FPGA device available with the Xilinx ML-507 

FPGA platform. The system operates at standard VGA clock frequency of 25.175 MHz, for 

the frame size of 640 480×  pixels at 60 frames per second. To save the system resources, we 

have created a very simple and efficient datapath, which does not contain any complex 

hardware building blocks. In the proposed architecture, most of the operations are performed 

on the 32-bit unsigned fixed-point numbers, requiring only a single-cycle per operation. The 

architecture has the advantages of minimizing logic resources and the processing of large 

datasets, by conducting time critical processes on BRAMS and DSP slices. The total device 

utilization summary shows that, the total FPGA resources utilized are around only fourteen 

percent (14%). The remaining FPGA resources are sufficient for implementing many 

practical real-time image and video processing applications. The power consumption of the 

proposed architecture for threshold computation is 15 mW. In order to manage the required 

hardware IPs and configuration software in an integrated manner, Xilinx Embedded 

Development Kit (EDK) design tool has been used. 
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CHAPTER 5  

CONNECTED COMPONENT LABELING ALGORITHM AND ITS 

POWERPC IMPLEMENTATION 

5.1 Introduction 

In binary image analysis, objects are usually extracted by means of connected components or 

region labeling operation [3,8,89]. The connected components are defined as regions of 

adjacent foreground pixels that have the same input label (value). The output of connected 

component analysis operation is a labeled image in which distinct objects have unique labels, 

which distinguishes them for the system (processor) recognition. The binary image obtained 

from Chapter 4 is used by connected component labeling algorithm to segment the object for 

tracking application, which has been described in detail in Chapter 6. In this chapter, we 

propose an improved label-equivalence based two-scan connected component labeling 

algorithm which improves upon an existing algorithm [76] and implement the same in the 

embedded PowerPC processor available in the Xilinx Virtex-5 FPGA device. 

Labeling connected components in a binary image is one of the most essential operations in 

the field of image processing, pattern recognition and computer vision [125,126,127,9]. Once 

objects are individually labeled, they can be separately processed, modified or used for 

further image processing applications. The connected component analysis can be used in a 

variety of applications, such as, finding individual letters in a scanned document, object 

recognition and its tracking [7,128,129,68], face recognition, fingerprint identification, 

automated inspection, computer-aided diagnosis [130,131,132], video and signal based 

surveillance, barcode recognition, and medical image analysis, [74,1]. 
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Raster-scan and label-equivalence resolving based algorithms are one of the most popular 

categories of labeling algorithms. These algorithms can be either pixel-based [76], 

[133,134,135,136] or run-based [137,138,139,140,141,142]. The pixel-based method resolves 

label equivalences between pixels whereas the run-based ones resolve label equivalences 

between the block of consecutive object pixels, i.e., runs. Other important labeling algorithms 

such as, searching and label propagation algorithms [143,144,145,146,147] and the contour 

tracing algorithms [148,149], process an image in an irregular manner. In hierarchical tree-

based algorithms, the provisional label to a pixel is assigned as per its surrounding neighbors. 

The searching of neighbors is based on a decision tree structure [150,151,152,153,154] which 

can be an exhaustive search. Some of the parallel algorithms are specifically developed for 

the parallel machines, which are based on divide-and-conquer approach [155,156,157]. These 

algorithms are unsuitable for applications which use simple computer architectures. 

In a digital system, images are generally scanned in a raster fashion. Therefore, in order to 

label the connected component pixels, most of the algorithms rely on raster-scan and label-

equivalence resolving method [133,134,135,136]. This simple method is sequential in nature 

and is widely used digital image processing, [134,143]. Moreover, the raster-scan algorithms 

are quite suitable for pipeline processing [130]. 

In the raster-scan and label-equivalence based algorithms there are various methods to 

handle the equivalences associated with the foreground pixels, which are discussed in [76] 

and [144,145]. Among these methods, the class-based label-equivalence resolving approach 

as proposed in [144,145] and expanded by Stefano and Bulgarelli (SB) in [76] is found to be 

very efficient. In this two-scan based approach, a class is defined to be a simple one-

dimensional array which can be as large as the maximum number of provisional labels. With 

a class identifier associated with each label, equivalences are processed during the first scan 
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by merging equivalence classes as they arrive. Subsequently, in the second scan the 

connected component labeling is performed [76]. 

In the SB algorithm, the main advantage of checking for new equivalence in the class 

domain is to exploit the transitive property for class merging. Whenever two classes are 

merged, the class identifier of the survivor equivalent class modifies the class identifier of the 

deleted equivalent class. In various cases, the SB algorithm fails to merge all the members of 

the deleted class as implied by the transitive property. These cases occur during first scan 

when an expanding label set of a connected component runs across a new equivalence, which 

involves a label (from the growing label set) other than the maximum of expanding label set. 

Partial merging occurs in such cases, in which a few of the labels from deleted class move to 

the survivor class, while the others are left behind due to an improper equivalence handling 

mechanism. 

In this chapter, we propose an improved label-equivalence based two-scan connected 

component labeling algorithm, which improves upon the SB algorithm and eliminates the 

partial merging problem. This is achieved by modifying the equivalence handling loop of SB 

algorithm such that full merger of equivalences is accomplished. Some of the random binary 

test patterns and standard gray scale images [158] which are converted to binary using Otsu’s 

method of thresholding [49] are used to test the improved SB algorithm in 4-connectivity 

case and its performance is compared with that of the SB algorithm. The results show that our 

improved SB algorithm handles the equivalent class conflicts efficiently, has lower conflicts 

and gives the correct number of connected components. 

The raster-scan based connected component labeling algorithm, such as the SB and its 

improved version, are sequential in nature and do not need any computational resource other 

than those required for decision processing. The algorithm essentially works on the selection 
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decisions and looping, which can be easily handled by a processor. Based on the above 

reasoning, we have chosen to implement the improved SB algorithm, proposed in the chapter 

in the embedded PowerPC 440 processor available in the Xilinx Virtex-5 FPGA of ML-507 

[34]. 

The rest of this chapter is organized as follows. The basics of connected component 

labeling process and related algorithms are discussed in Section 5.2. Section 5.3 introduces 

the improved SB algorithm. Section 5.4 provides details of the improved SB algorithm. A 

comparative analysis with the SB algorithm is given in Section 5.5. This section also 

discusses the results obtained with artificial binary test patterns and with standard gray scale 

images. Section 5.6 gives the PowerPC implementation results and finally, Section 5.7 

concludes the chapter. 

5.2 Two-scan Connected Component Label-Equivalence Process 

The basic terminology of the two-scan connected component label-equivalence algorithm is 

discussed in Subsection 5.2.1. Subsection 5.2.2 covers the conventional pixel-based two-scan 

label-equivalence algorithms. The outline of Stefano-Bulgarelli’s algorithm is given in 

Subsection 5.2.3. 

5.2.1 Basic Terminology 

Let I be a binary image with ‘1’ representing the foreground pixels and ‘0’ representing the 

background pixels. A pixel value at position ( , )x y is represented by ( , )P x y . The definition 

of connected component depends on the pixel’s surroundings. Two pixels, ( , )P x y and

( , )Q x y , are connected if there exists a path of pixels 0 1( , ,....... )mP P P such that 0 =P P ,

=mP Q . The other pixels in the path are known as the surrounding (neighbor) pixels such 

that iP is a neighbor of 1−iP  for 1 ≤ ≤i m . A connected component may be 4-connected or 8-
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connected. In a 4-connected situation, any pixel with coordinate ( , )x y  has at least one 

element in that connected component having coordinates in 4-neighbor set as: 

( ) ( ) ( ) ( ) }{ , 1 , , 1 , 1, , 1,− + − +x y x y x y x y                      (5.1) 

similarly the 8-connected component has at least one element having coordinates in 8-

neighbor set as: 

( ) ( ) ( ){ }1, 1 , 1, , 1, 1 , ( , 1), ( , 1), ( 1, 1), ( 1, ), ( 1, 1)x y x y x y x y x y x y x y x y− − − − + − + + − + + +

                                      (5.2) 

Labeling of connected component is an operation where groups of connected pixels 

(connected component) of a binary image are classified as different objects with unique 

labels. Let n ( )∈n N  represent the index of a connected component in the image and 
nCC  

represent the individual connected components.  

In the labeling process, we assign a unique label to each connected component. The 

resultant labeled image consists of various connected components in which a unique label is 

assigned to pixels belonging to the same connected component and different labels are 

assigned to distinct components. The labeled image can be represented as: 

if ( , )
( , )

if ( , )

=
=  ∈ n

B P x y B
I x y

n P x y CC
               

           (5.3)
 

Thus, an input binary image is transformed into a frame in which the foreground pixels are 

modified into labels which indentify the connected components. In a raster scan, the labeling 

of a pixel{ , }x y is done with the help of its neighboring pixels, which have already been run 

across by the raster scan. In 4-connectivity case, such neighbors are { , }p q as shown in the 

Fig. 5.1 (a), where p is a pixel at {( 1), }−x y and q is a pixel at{ , ( 1)}−x y of (5.1). Similarly, in 
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the case of 8-connectivity, the already labeled pixels are{ , , , }p q r s .In this case the pixels

, ,p q r and s are located at positions{( 1), ( 1)}− −x y ,{( 1), }−x y , {( 1), ( 1)}− +x y  and{ , ( 1)}−x y  

respectively, as given in (5.2) and shown in Fig. 5.1 (b). The following sub-section discusses 

some of the pixel-based conventional two-scan label-equivalence algorithms. 

 

Fig. 5.1: Pixel connectivity (a) 4-connectivity (b) 8-connectivity. 

5.2.2 Pixel-based Conventional Two-Scan Label-Equivalence Algorithms 

Pixel-based conventional raster-scan and label-equivalence algorithms scan an image in the 

raster fashion. During the first raster-scan, a provisional label is assigned to the foreground 

pixels [76], [134,139], [144,145]. After the first scan, a connected component may consist of 

many provisional labels. Therefore, a second scan is required to assign a unique label to each 

component [76,139]. After completion of second scan, the new image is segregated into 

various connected components, each marked distinctly by a unique label.  

The classical two scan labeling algorithm [139] processes label equivalences after 

completion of the first scan. To improve efficiency of the labeling process, a class array can 

be used [76,144,145]. Class-based equivalence resolving algorithms for connected 

component labeling are presented in [144,145]. To reduce the complexity of the earlier 
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algorithms and to expedite the labeling process, an improved connected component labeling 

algorithm was presented by Stefano-Bulgarelli (SB) [76].  In this algorithm, equivalences are 

processed during the first scan itself (rather than processing the equivalences in the second 

scan). The following section discusses the SB algorithm in detail. 

 

Fig. 5.2: Processing of equivalences in the first scan. 

5.3 The Stefano-Bulgarelli’s Algorithm 

This algorithm processes the equivalences in the first pass to determine the equivalent classes 

associated with the labels. The equivalence handling mechanism uses a class for this purpose, 

which is a one-dimensional array and can be as large as maximum number of labels. A class 

exists for every provisional label assigned. In the first raster scan, the pixel under scan is 

labeled with the help of its neighboring pixels and the conflict between the labels of 

neighboring pixel is resolved instantly as shown in Fig. 5.2. Merging of equivalence classes 

as soon as a new equivalence is found, improves the efficiency of the labeling process. It 

happens because the equivalence check is carried out in the class domain rather than in the 

label domain [76].   
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Fig. 5.3: C-Code for two-scan Stefano-Bulgarelli’s (SB) algorithm. 

After completion of first scan, the class array holds the updated class identifiers associated 

with corresponding provisional labels. A second scan is run over the image by replacing 

temporary labels with the class identifier of its equivalence class. Fig. 5.3 shows C code of 

the algorithm in the case of 4-connectivity [76]. 

 To validate the efficiency of the above algorithm, we have taken a number of artificial 

test patterns and standard binary images which will be explained in later sections. Out of 
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various binary test patterns, a simple test pattern, as shown in Fig. 5.4(a), is used to discuss 

this algorithm in detail. 

 

Fig. 5.4: Two-scan labeling in the SB algorithm  (a) artificial binary pattern (b) provisional 
labeling. 

The provisional labeling of the test pattern, after the first pass, is shown Fig. 5.4(b). In     

Fig 5.4(b), when a pixel at pixel position (4, 8) had been scanned, a conflict occurred between 

label 3 and label 2 (refer the label mask shown in Fig. 5.1(a) for the 4-connectivity case). As 

per SB algorithm, the two labels were held equivalent and their corresponding classes were 

merged (as in Fig. 5.2). The class of label 2 (i.e., C[2] =2) was transferred to the class of label 

3, therefore, C[3] =2. Similar equivalences occur at pixels (5, 5) and (7, 5). The processing of 

equivalences associated with the labels of Fig. 5.4 (b) is shown in Table 5.1. 

In various cases, the SB algorithm fails to merge all the members of the deleted class as 

implied by the transitive property. Such failure occurs because of partial merging as 

explained here. Let us consider a case in which an equivalence (or conflict) of labels jl and 
kl

occurs, where >k jl l , and the class of 
kl i.e., [ ]kC l  is replaced by class [ ]jC l  in the class array. 
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Suppose a new conflict occurs between labels 
il  and jl  where [ ]iC l  is the survivor class of 

the two. In such cases, all the members of the equivalent class [ ]jC l should be merged with 

members of equivalent class [ ]iC l   and therefore, [ ]jC l  is replaced with [ ]iC l  in the class 

array. However, all members of the equivalent class [ ]jC l  are not merged due to a problem in 

equivalence handling mechanism of SB algorithm. As depicted in Fig. 5.3, the inner for loop, 

used for maintaining equivalences, merges the label 
xl  from [ ]jC l  to [ ]iC l , [ ] [ ]=x jiff C l C l  

and <x jl l  (and not in case when >x jl l ). It happens because the loop changes the class of label 

jl  from [ ]jC l  to [ ]iC l , at the count of jl  and therefore, label 
kl  ( >k jl l ) now belong to a 

different class from label jl , and hence not merged to equivalence class [ ]iC l . Due to this 

reason, in case of various geometric patterns and images, the algorithm presented in [76] fails 

to connect the components correctly. 

Table 5.1: Processing of Equivalence Classes as in the SB Algorithm. 

 

The SB algorithm is applied to the test pattern in Fig. 5.4(a). The partial merging problem 

in SB algorithm is shown in Fig. 5.5(a). The result of SB algorithm shows five numbers of 

connected components, while the correct count of connected components is four as shown in 

Fig. 5.5 (b) and discussed in the next section. As a result of this problem, a single connected 

component labeled ‘5’ is split into two components labeled as ‘5’ and ‘2’, which is not the 

Position NewLabel pl  ql  
xl C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7]

(1,1) 0 0 0 0 0 1 2 3 4 5 6 7 

(4,8) 4 3 2 2 0 1 2 2 4 5 6 7 

(5,5) 6 2 6 6 0 1 6 2 4 5 6 7 

(7,5) 7 6 5 5 0 1 5 2 4 5 5 7 
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case. To remove the limitations of SB algorithm [76], we propose an improved and efficient 

algorithm for equivalence handling as discussed in the next section. 
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Fig. 5.5: Two-scan labeling algorithm results for (a) SB Algorithm (b) The improved SB 
algorithm. 

5.4 Improved SB Algorithm  

The algorithm being proposed improves the SB algorithm and eliminates partial merging 

problem. It is achieved by modifying the equivalence handling loop of SB algorithm to 

realize complete merging. To resolve the equivalences, we have used the notion of class 

identifier in this algorithm which is similar to [76], [144,145]. Along with the class identifier, 

we have also selected the 4-connectivity case so that we can compare the improved SB 

algorithm with [76]. 

 Complete merging necessitates previous equivalences must also be considered for 

modification along with current modification. In case of class merger in the current scan, all 

the labels associated with current deleted class move to current survivor class. An important 

thing to consider is that this current deleted class must have been a survivor class when it has 
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encountered equivalence in a previous scan. It implies that the members of a current deleted 

class also include labels that it has acquired from all the previous conflicts. It is, therefore, 

necessary that all the labels of the current deleted class (including the one acquired from all 

the previous conflicts) must move to current survivor class. Complete merging is achieved 

when all labels from deleted class move to the survivor class. 

 

Fig. 5.6: C-code for the improved SB algorithm. 



135 
 

The C code for the improved SB algorithm is given in Fig. 5.6 and it is discussed here for 

thecase of  example given in subsection 2.3. In this algorithm the inner for loop, used for 

maintaining equivalences is modified to handle all kinds of conflicts. It merges label 
xl  from 

[ ]jC l  to [ ]iC l , [ ] [ ]x jiff C l C l=  irrespective of whether <x jl l  or >x jl l . Only after merging all 

such
xl , the class of label jl  is changed from [ ]jC l  to [ ]iC l  and thus the problem of partial 

merging is avoided.   

The various different cases are covered with the help of previous artificial binary test 

pattern which is given in Fig. 5.4(a). The various conflicts associated with the two labels of 

Fig. 5.4(b) are shown in Table 5.2. When a pixel at pixel position (4, 8) is scanned, a conflict 

occurs between label ‘3’ and label ‘2’. In this case, the two labels are held equivalent and 

their corresponding classes are merged. That is, the class of label ‘2’ (C [2] =2) is transferred 

to the class of label ‘3’, so C [3] =2. Now when the pixel position (5, 5) is scanned, a conflict 

occurs between label ‘6’ and label ‘2’. The two labels are again held equivalent and therefore, 

C [2] must get the class of C [6].  As C [3] had the class of C [2], it must also be updated with 

the class of C[6]. Since label ‘3’ is greater than label ‘2’, this would have posed a partial 

merging problem in SB’s case. However, in the improved SB algorithm both C [2] and C [3] 

get the class of C [6].  

The processing of equivalence classes in the improved SB algorithm is shown in Table 5.2. 

In the context of the labeled image shown in Fig. 5.4(b), class C [3] is modified with the class 

of C [5] which is shown in Table 5.2. When the first scan is over, each provisional label is 

changed to their corresponding class representative as is shown in Fig. 5.5(b). In the next 

section, we demonstrate the experimental results obtained with various artificial test patterns 

and standard images. 
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Table 5.2: Processing of Equivalence Classes in the Improved SB Algorithm. 

Position NewLabel pl  ql  
xl C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7]

(1,1) 0 0 0 0 0 1 2 3 4 5 6 7 

(4,8) 4 3 2 2 0 1 2 2 4 5 6 7 

(5,5) 6 2 6 6 0 1 6 6 4 5 6 7 

(7,5) 7 6 5 5 0 1 5 5 4 5 5 7 

5.5  Comparative Analysis of the Improved SB Algorithm 

To demonstrate efficiency of the improved SB algorithm, we have generated several 

specialized artificial binary patterns. Apart from the artificial binary patterns, various gray-

level images are obtained from the standard image database (SIDBA) developed by the 

University of Tokyo [158]. Some of the images have also been selected from the USC-SIPI 

image database of University of southern California [159]  and from Gonzalez and Woods 

[127].  Such selection ensures that images differ in aerial, medical, artificial, natural and 

textural properties so that the performance of our algorithm for varied applications can be 

tested.  

The artificial images contain specialized patterns (for example, spiral-like, checkerboard-

like, honeycomb-like). True gray scale images of size (150 150, 256 256,× ×

300 300, 512 512)and× ×  are selected for the test without any preprocessing. These gray-level 

images are transformed into binary images by using Otsu’s unsupervised automatic threshold 

selection method [49].  

These specialized artificial binary patterns and the standard images are applied to the 

Stefano-Bulgarelli (SB) algorithm [76] and to the improved SB algorithm, where, both 

algorithms are implemented in the C language. The results with specialized artificial binary 

patterns and that with standard images are separately discussed below. 
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5.5.1 Results for Specialized Artificial Binary Test Patterns 

Out of the several binary test patterns, six test patterns are selected for algorithm verification. 

These patterns are shown in Fig. 5.7 and Fig. 5.8. The six cases associated with each artificial 

binary pattern are shown in Table 5.3. The results in each case are discussed below. 

Table 5.3: Comparison Between Different Labels Assigned and the Number of Connected 
Components (#CC) Detected for Artificial Binary Test Patterns. 

 SB Algorithm [76] Improved SB Algorithm 

Case Labels #CC Labels #CC 

1 5, 6 2 6 1 

2 1, 3, 5 3 5 1 

3 1, 3 2 3 1 

4 3, 4, 5 3 5 1 

5 1, 5, 7 3 7 1 

6 1, 2, 4 3 4 1 

 

Case 1: In Fig. 5.7(a), the SB algorithm identifies two connected components (labels 5 and 6 

in Fig. 5.7(b)) while the improved SB algorithm identifies only one connected component 

(labels 6 in Fig. 5.7 (c)). 

Case 2: In Fig. 5.7(d), the SB algorithm identifies three connected components (labels 1, 3 

and 5 in Fig. 5.7(e)) while the improved SB algorithm identifies only one connected 

component (label 5 in Fig. 5.7 (f)). 

Case 3: In Fig. 5.7(g), the SB algorithm identifies two connected components (labels 1 and 3 

in Fig. 5.7(h)) while the improved SB algorithm identifies only one connected component 

(label 3 in  Fig. 5.7(i)). 
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1IC = [0, 1, 2, 3, 4, 5, 6] 1SC = [0, 6, 6, 5, 5, 5, 6] 1OC = [0, 6, 6, 6, 6, 6, 6]

2IC =[0, 1, 2, 3, 4, 5] 2SC =[0, 5, 1, 3, 3, 5] 2OC =[0, 5, 5, 5, 5, 5]

3IC =[0, 1, 2, 3] 3SC =[0, 3, 1, 3]
3OC =[0, 3, 3, 3]

 

Fig. 5.7: Number of connected components (#CC) and equivalence class for different 
artificial binary test  patterns in Stefano-Bulgarelli’s (SB) and in improved SB algorithm (a) 
First artificial binary test pattern (b) #CC identified by SB algorithm (c) #CC identified by 
improved SB algorithm (d) Second artificial binary test pattern (e) #CC identified by SB 

algorithm (f) #CC identified by improved SB algorithm (g) Third artificial binary test pattern 
(h) #CC identified by SB algorithm (i) #CC identified by improved SB algorithm. 
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4 [0,1, 2, 3, 4, 5]IC =
4 [0, 4, 5, 3, 4, 5]SC = 4 [0, 5, 5, 5, 5, 5]OC =

5 [0,1, 2, 3, 4, 5, 6, 7]IC = 5 [0, 5, 7,1, 7, 5, 7, 7]SC = 5 [0, 7, 7, 7, 7, 7, 7, 7]OC =

6 [0,1, 2, 3, 4]IC = 6 [0, 4,1, 2, 4]SC = 6 [0, 4, 4, 4, 4]OC =

 

Fig. 5.8: Number of connected components (#CC) and equivalence class for different 
artificial binary patterns in Stefano-Bulgarelli’s (SB) and in the improved SB algorithm (a) 

Fourth artificial binary test pattern (b) #CC identified by SB algorithm (c) #CC identified by 
improved SB algorithm (d) Fifth artificial binary test pattern (e) #CC identified by SB 

algorithm (f) #CC identified by improved SB algorithm (g) Sixth artificial binary test pattern 
(h) #CC identified by SB algorithm (i) #CC identified by improved SB algorithm. 
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Case 4: In Fig. 5.8(a), the SB algorithm identifies three connected components (labels 3, 4 

and 5 in Fig. 5.8(b)) while the improved SB algorithm identifies only one connected 

component (label 5 in Fig. 5.8(c)). 

Case 5: In Fig. 5.8(d) the SB algorithm identifies three connected components (labels 1, 5 

and 7 in  Fig. 5.8(e)) while the improved SB algorithm identifies only one connected 

component (label 7 in Fig. 5.8(f)). 

Case 6: In Fig. 5.8(g) the SB algorithm identifies three connected components (labels 1, 2 

and 4 in  Fig. 5.8(h)) while the improved SB algorithm identifies only one connected 

component (label 4 in Fig. 5.8(i)). 

5.5.2 Results for Standard Images 

The number of connected components identified by the improved SB algorithm is also 

compared with the SB algorithm using several standard images. The selected images for 

performance evaluation are: 5873_1g, 5882_1g, 5888_1g, 5888_1r, beans and CHEST_X-

RAY each of size 150 150×  from the standard database of SIDBA [158]. The next set of 

images used for comparison are: Fig0106(c)(cygnusloop-gamma), Fig0107(e)(cygnusloop-

Xray), Fig0118(b)(crabpulsar-xray), Fig0118(c)(crabpulsar-optical), Fig0118(d)(crabpulsar-

infrared) and Fig0222(a)(face) of size 300 300×  are selected from the database of Gonzalez 

and Woods [127]. In addition, we have selected the images: 5.1.10, 5.1.13, 5.1.09, 6.2.09, 

5.1.12, 6.2.11 each having size of 256 256× and boat.512, 7.1.10, numbers.512, 7.1.02, 7.1.07 

and elaine.512 of size 512 512×  from USC-SIPI image database of the University of Southern 

California [159]. 

The description of the comparison is summarized below. The number of connected 

components (#CC) detected by the SB algorithm and by the improved SB algorithm is listed 

in Table 5.4. 
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Table 5.4: Comparison between the Numbers of Connected Components (#CC) Identified by 
the SB Algorithm and by the Improved SB Algorithm for Standard Images. 

Source 
Image 
Size 

Image 
#CC 
(SB) 

#CC 
(Improved 

SB ) 

SIDBA [158] 
 

150 150×  

5873_1g.jpg 173 128 

5882_1g.jpg 213 168 

5888_1g.jpg 409 364 

5888_1r.jpg 459 408 

beans.jpg 88 56 

CHEST_X-RAY.jpg 367 313 

USC-SIPI [159] 256 256×  

5.1.10.tiff 622 517 

5.1.13.tiff 15 4 

5.1.09.tiff 741 646 

6.2.09.tiff 337 231 

5.1.12.tiff 129 109 

6.2.11.tiff 295 202 

Gonzalez and 
Woods [127] 

300 300×  

Fig0106(c)(cygnusloop-
gamma).tiff 

597 563 

Fig0107(e)(cygnusloop-Xray).tiff 2757 2698 

Fig0118(b)(crabpulsar-xray).tiff 6844 6686 

Fig0118(c)(crabpulsar-
optical).tiff 

245 227 

Fig0118(d)(crabpulsar-
infrared).tiff 

27 14 

Fig0222(a)(face).tif 148 110 

USC-SIPI [159] 512 512×  

boat.512.tiff 392 251 

7.1.10.tiff 1092 763 

numbers.512.tiff 2171 1908 

7.1.02.tiff 106 69 

7.1.07.tiff 2580 1855 

elaine.512.tiff 2826 2581 

 

In Table 5.5, the conflicts handled (#CH) by these two algorithms are tabulated. It can be 

observed from the above table that in comparison to the SB algorithm, the improved SB 
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algorithm has lesser number of conflicts. It provides accurate number of conflicts as the 

equivalent classes are already resolved. This results in lesser and accurate number of 

connected components as expected and observed from Table 5.5. 

Table 5.5: Comparison Between Numbers of Conflicts Handled (#CH) by the SB Algorithm 
and by the Improved SB Algorithm with Standard Images. 

Source 
Image 
Size 

Image 
#CH 
(SB) 

#CH 
(Improved 

SB) 

SIDBA [158] 
 

150 150×  

5873_1g.jpg 259 241 

5882_1g.jpg 274 251 

5888_1g.jpg 395 388 

5888_1r.jpg 386 376 

beans.jpg 396 390 

CHEST_X-RAY.jpg 375 343 

USC-SIPI 
[159] 

256 256×  

5.1.10.tiff 905 882 

5.1.13.tiff 97 82 

5.1.09.tiff 596 528 

6.2.09.tiff 1120 1006 

5.1.12.tiff 211 207 

6.2.11.tiff 1098 982 

Gonzalez and 
Woods [127] 

300 300×  

Fig0106(c)(cygnusloop-gamma).tif 333 313 

Fig0107(e)(cygnusloop-Xray).tif 553 537 

Fig0118(b)(crabpulsar-xray).tif 1837 1624 

Fig0118(c)(crabpulsar-optical).tif 232 226 

Fig0118(d)(crabpulsar-infrared).tif 152 146 

Fig0222(a)(face).tif 413 401 

USC-SIPI 
[159] 

512 512×  

boat.512.tiff 1146 1045 

7.1.10.tiff 2435 2114 

numbers.512.tiff 2545 2268 

7.1.02.tiff 447 431 

7.1.07.tiff 4636 3861 

elaine.512.tiff 1845 1745 
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5.6 Embedded PowerPC Implementation of the Improved SB Algorithm 

The system arrangement has been made for running the connected component analysis 

algorithm on the PowerPC processor for the embedded environment is shown in Fig. 5.9. The 

required hardware and software configurations are developed in Xilinx Platform Studio 

(XPS). Subsequently, the bit stream and the Block RAM memory map (BMM) files are 

exported to Xilinx Software Development Kit (SDK) for the required software configuration.  

 

Fig. 5.9: PowerPC running the connected component analysis in an embedded environment. 
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5.7 Conclusion 

An improved label-equivalence based connected component labeling algorithms has been 

presented. The algorithm resolves any label-equivalences in the first scan itself, as soon as 

they are found. The label-equivalence process is independent from the different temporary 

labels assigned. The presented algorithm improves the SB algorithm by modifying the 

equivalence handling procedure, which removes the partial merging problem. Thus, the 

algorithm eliminates the component disintegration in cases when expanding component runs 

across a new equivalence, which involves a label other than the maximum of expanding label 

set. This makes the improved SB algorithm efficient and provides correct count of connected 

components.  

To show the experimental results, we have presented C-code for the 4-connectivity case. 

However, the improved SB algorithm is independent of n-connectivity and works well in the 

case of 8-connectivity too. The presented algorithm is tested using a variety of artificial test 

patterns and random standard images. The results demonstrate that the improved algorithm, is 

simple, manages equivalences efficiently, suffers a lesser number of label conflicts and gives 

correct count of connected components. The algorithm is simple in principle and easy to 

implement in C/MATLAB. The C implementation of the improved connected component 

algorithm runs efficiently on PowerPC 440 processor available as an embedded processor in 

the Xilinx Virtex-5 xc5vfx70t FPGA device. The PowerPC implementation of connected 

component analysis is primarily developed for implementing embedded systems for 

automated object tracking application. The connected component analysis algorithm can also 

be used as module for other image and video processing applications. The systemic 

arrangement for running the connected component software module on embedded PowerPC 

processor along with other image read and display modules is shown in Fig. 5.9. 
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CHAPTER 6  

EMBEDDED IMPLEMENTATION OF KERNEL-BASED MEAN SHIFT 

OBJECT TRACKING ALGORITHM 

6.1 Introduction 

Object tracking can be defined as the problem of estimating the trajectory of an object in the 

image plane as it moves around a scene. Object tracking has a wide range of image and video 

processing applications such as automated vehicle tracking [78], target localization in 

unmanned air vehicles [79], augmented reality [160], face tracking [80], identity verification 

[161] and many more [82,8,5]. A large number of object tracking methods exist, which 

primarily depend upon the object attributes such as, representation, features, motion, 

appearance, shape and the environment in which the tracking is performed. The classification 

of different types of object tracking approaches is shown in Fig. 6.1. 

As shown in the figure, the object tracking method mainly fall in three groups, namely 

point tracking, kernel tracking and silhouette tracking [82]. The point tracking methods are 

mainly suitable for very small objects. These tracking methods can be deterministic or 

statistical. In kernel tracking method, the kernel refers to the object shape and appearance 

[27]. For example, the kernel can be rectangular template or an elliptical shape with an 

associated histogram. Objects are tracked by computing the motion of the kernel in 

consecutive frames. The motion computation involves identifying the associated parametric 

transformations such as translation, rotation and affine. The kernel-based method is further 

divided into two categories one is based on multi-view approach and the other one is template 

based. The two sub-categories of multi-view are view subspace and classifier based. In 

silhouette tracking, the silhouette represents the object, which is a region inside the contour of 
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the object [162]. Here, the contour representation defines the boundary of the object [163]. 

The two broad sub-categories of silhouette tracking methods are shape matching and contour 

tracking. The contour tracking can be state-space based or direct minimization based, which 

is further categorized in variational and heuristic forms [82]. 

 

Fig. 6.1: Classification of object tracking methods. 

Based on the object attributes, the object tracking operation can, further, be divided into a 

series of steps, such as object representation, feature selection, and object detection [27,82]. 

An object can be represented by its shape and appearance. Commonly used object-shape 

representations include, point or a set of points, primitive geometric shapes, object silhouette 

and contour, and articulated shape models [82]. Similarly, commonly used appearance 
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features of the objects are probability densities of object appearance, templates, active 

appearance models, and multi-view appearance models. Feature selection is the second most 

vital part of object tracking [164]. Some of the widely used visual features are color, edge, 

optical flow, and texture. Undoubtedly, most important aspect of object tracking is object 

detection [82]. The object detection is required in every frame or when the object first 

appears in the scene. Some of the commonly used object detection methods are point 

detectors, segmentation, background modeling, and supervised classifiers [27,82].  

Depending upon the object shape and its tracking environment, several effective techniques 

such as particle filter [165,166], optical flow [167,168], continuously adaptive mean shift 

(camshaft) [169,170], and mean shift [5,27] are widely used in the image and video 

processing applications. 

In real-time system implementations, only a small percentage of total system resources 

should generally be utilized for the tracking part, so that the rest can be used for other 

compute-intensive application-specific tasks. Therefore, it is desirable to keep the 

computational complexity of the tracker minimal. In this context, mean shift algorithm is a 

popular algorithm for real-time object tracking. It  needs the definition of a similarity 

function to measure the distance between histograms of the target object and the target 

candidates. The Bhattacharyya distance is a popular distance measure, which can be used for 

the measurement of distances between two probability distributions (histograms). In the 

kernel-based object-tracking algorithm, the similarity between the target candidates and the 

target model is measured with the help of Bhattacharyya distance [27,171].  

The implementation of kernel-based mean shift algorithm using a soft processor is reported 

in [83,84]. In this approach, the Xilinx MicroBlaze soft processor is used to run the 

algorithm. The soft processor along with the other logic resources is synthesized in the Xilinx 

xc3s500e FPGA device. The implementation uses the Xilinx Spartan-3E FPGA platform 
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[83]. The FPGA device utilization summary shows that with a320 256× size image frame, 

almost 84% of the total available slices, 70% of total available BRAMs and 50% of the 

arithmetic computational blocks get utilized. A different approach, which mainly uses FPGA 

BRAMs to implement mean shift filter is given in [172].  It uses the Xilinx xc4vlx160 FPGA 

device mounted on the Celoxica RC2000-4 FPGA platform. In the implementation, the image 

is stored in the FPGA Block RAMs. It is reported in [172] that to implement a filter size of

31 31× , the circuit needs 376 BRAMs, which is larger than the available 288 BRAMs in the 

device [172]. A similar kind of implementation for a mean shift based image segmentation 

application is given in [173]. 

For our work, we have selected an FPGA based platform, namely the Xilinx ML-507, for 

efficient real-time implementation of object tracking. With the availability of an embedded 

processor in the FPGA device we can completely do away with the uses of the soft processor 

as utilized by [83] and [84]. As discussed in [83], the soft processor itself takes 60% of the 

total available FPGA slices which is a substantial portion of the FPGA resources. Similarly, 

the need of capturing the image in BRAMs as proposed in [172,173] can be completely done 

away with by considering other memory resources, such as DDR2. In spite of the availability 

of large BRAM resources, a real-time image can be buffered in the available off-chip 

memory (DDR2). The available BRAM resources can then be utilized for other application-

related operations requiring time-critical computations with large throughput.  

In our work, the consecutive video frames with a resolution of 640 480×  are first buffered 

in the DDR2 SDRAM memory, which uses the frame acquisition module described in 

Chapter 2. Subsequently, an embedded implementation of kernel-based mean shift (KBMS) 

algorithm is done in the Xilinx Virtex-5 FPGA device available on the Xilinx ML-507 

platform. The available embedded PowerPC processor provides the necessary controls and 
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manages the various peripherals and IPs, as required. The time consuming tasks such as, 

computation of complex arithmetic functions and performing frequent iterative operations are 

accelerated by hardware realizations. The KBMS algorithm requires the design of various 

building blocks including those required for the computation of kernel-weight, kernel-

smoothed local histogram, computation of distance measure (using Bhattacharyya 

coefficient), mean shift weight and new location for the mean shift. This chapter proposes 

efficient architectures for the above building blocks, which are used to implement the KBMS 

algorithm.  

In this chapter, an embedded design approach for implementing the KBMS algorithm is 

presented. Before implementing the algorithm through different hardware and software 

blocks, the KBMS algorithm is realized in the MATLAB programming language. It uses the 

MATLAB in-built functions for image/video read, image/video display along with some of 

the available arithmetic functions. Further, in order to explore algorithmic level 

transformations and tradeoffs necessary for mapping the algorithm on to hardware, a C 

implementation is developed. In order to get improved speed, analysis of time critical 

functions is performed and suitable data types are selected for the intended performance gain.  

The compute-intensive and time-consuming operations are identified for hardware 

realizations where as simple data movement and control operations are marked for handling 

by the processor. The embedded implementation of the KBMS algorithm is done on the 

Xilinx ML-507, a Virtex-5 FX FPGA based platform. The embedded PowerPC 440 processor 

available in the FPGA device is used for implementing the software tasks, and the hardware 

blocks are realized with the FPGA using the FPGA fabric, the BRAMs, and the DSP slices. 

The datapath uses the fixed-point arithmetic, which offers reasonably good performance with 

reduced hardware consumption. Furthermore, to simplify the complex arithmetic function 

into simple addition/subtraction and shift operations, the concepts of logarithmic number 
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system (LNS) is utilized, as presented in Chapter 3. The implementation also uses the image 

acquisition module described in the Chapter 2. The frame acquisition module provides a 

640 480× resolution video frame containing the object. 

Following paragraph describes the organization of the rest of this chapter. The kernel-based 

mean shift algorithm and its related constituent units are discussed in Section 6.2. In Section 

6.3, the kernel-based mean shift (KBMS) algorithm flow is described. Section 6.4 presents 

the MATLAB/C implementation results. In Section 6.5 the embedded implementation of the 

kernel-based mean shift algorithm is illustrated along with its constituent building blocks. An 

architecture for kernel-smoothed local histogram has been proposed in the Section 6.6, which 

is used in target and the candidate modeling. Section 6.7 proposes an architecture for 

computing the Bhattacharyya coefficient. In Section 6.8, we give an architecture for 

computing the mean shift weights. Section 6.9 gives architecture for new mean shift location 

computational unit. Integration of various architectural modules is described in Section 6.10. 

The overall control mechanism is described in Section 6.11. FPGA implementation results 

are provided in Section 6.12.  In Section 6.13, a complete system view of the design is shown 

and Section 6.14 concludes the chapter.  

6.2 Kernel-based Mean Shift (KBMS) Object Tracking 

An object tracker typically consists of two components, which are combined together 

depending on the tracking needs of specific application. The first component, namely, target 

representation and localization deals with the changes in the appearance of the target, and is a 

bottom-up process. Filtering and data association is the other component, which is mostly a 

top-down process and deals with the dynamics of the tracked object, learning the scene priors 

and evaluation of the different hypotheses. The formulation of filtering and data association 

process is through the state-space approach for modeling discrete-time dynamic systems [27]. 
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The tracking application developed in this chapter relies on the target representation and 

localization and is based on kernel-based mean shift approach. The basic premise of this 

tracking method is, that only a small change takes place in the location and appearance of the 

target in two consecutive frames. Thus, the localization can be achieved by maximizing a 

likelihood type function. First, the target is spatially masked with an isotropic kernel and a 

smooth similarity function is defined next. Similarity between the target model and the target 

candidates in the next frame is measured using a similarity metric. Thus, the target localization 

problem is reduced to finding the maximum of the similarity metric. This method of target 

representation and localization can be integrated with various motion filters and data 

association techniques. The mean shift clustering is described below which is followed by the 

various steps of the kernel-based mean shift (KBMS) object tracking algorithm. 

6.2.1 Mean Shift Clustering 

Mean shift is a non-parametric density estimation technique used for various low-level vision 

tasks [5,171]. The mean shift clustering algorithm starts with the initialization of a large 

number of hypothesized cluster centers randomly chosen from the large data set [174]. Each 

cluster center is moved to the center of gravity (COG) lying inside within its region-of-interest 

(ROI). The vector that is defined by the old and the new cluster centers is called the mean shift 

vector (MSV). The MSV is computed iteratively until the cluster centers do not change their 

positions. A pictorial representation of mean shift clustering is shown in Fig. 6.2. Here, a set of 

random data has been shown. In the first cluster the COG is at location x.  The algorithm 

checks for the new clusters. In the new cluster, the COG is at location y. As apparent from the 

figure, the center of gravity is shifted from the location x to y. The MSV is the distance 

between x and y vectors. Similarly, when the center of gravity is shifted at location z, the MSV 

moves ahead.  
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Fig. 6.2: Pictorial representation of mean shift clustering. 

Kernel-based object tracking utilizes the principle of mean shift clustering approach [5]. In 

this approach, color is used as the visual feature to from an appearance model [5]. To satisfy 

the low computational cost requirement imposed by real-time processing, the m-bin discrete 

density histogram as suggested in [5] is used. Probabilistic distribution for the target in the 

target frame is compared with the probabilistic distribution of the target to be tracked (also 

known as candidate model or candidate target) in the consecutive frames. The flow of the 

KBMS algorithm [5], is explained below.  

6.2.2 Target Representation 

Color as the feature space is selected to characterize the target. The reference target model is 

represented by its probability density function (pdf), q in R, G, B color. The target model is 

considered as centered at the spatial location zero. In the subsequent frames, a target 

candidate is defined at location y, and is characterized by the pdf, p(y). Both pdf-s are 

estimated from the image data [5,27]. The target model is defined by 
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Here, the histograms defined in (6.1) and (6.2) are the non-parametric density estimates of 

the target model and the target candidates in the m-bin reduced color feature space. The 

similarity function between the histogram pdf-s, ˆ( )p y  and q̂  is denoted by, 

[ ]ˆ ˆ ˆ( ) ( ),ρ ρ≡y p y q                                (6.3)
 

This function plays the role of a likelihood function and its local maximum in the image 

points to the presence of the object in the second frame having a representation similar to q̂ 

(6.1) defined in the first frame. The similarity function is regularized by masking the objects 

with an isotropic kernel in the spatial domains [27]. When the kernel weights ( )kw , carrying 

continuous spatial information, are used in defining the feature space representations,
 

ˆ( )ρ y  

becomes a smooth function in y.  

6.2.3 Target Model 

A target is represented by an elliptical/circular region in the image. To remove the influence 

of different target dimensions, all targets are first normalized to a unit circle [27].  Let 

{ }*

1i i n=
x


be the normalized pixel locations in the region defined as the target model. The 
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region is centered at zero. An isotropic kernel, with convex and monotonic decreasing kernel 

profile, ( )k x assigns smaller weights to pixels (at location, x ) farther from the center, given 

by, ( )2
( )k k=x x . By using these weights, robustness of the density estimation increases. 

The function { }2: 1,2,3, ,b R m→   associates with the pixel at location *
ix  the index 

*)ib(x  of its bin in the quantized feature space. The probability of feature 1,2,3, ,u m=    in 

the target model is then computed as: 

( )2

1
1

ˆ ( )
n

u i i
i

q C k b uδ∗ ∗

=

 = −  x x
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where δ is the Kronecker delta function. The normalization factor 1C is derived by imposing 

the condition
1

ˆ 1
m

uu
q

=
= , since the summation of delta functions for 1,2,3, ,u m=   is equal 

to one.  We thus obtain the value of 1C as: 
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6.2.4 Target Candidates 

Let the normalized pixel locations of the target candidate, centered at y in the current frame 

be { }
1i i n=

x
 . The probability of feature 1, 2,3, ,= u m  in the target candidate is given in [27] 

as: 

( ) [ ]2

2
1

ˆ ( ) ( )
n

u i i
i

p C k b uδ
=

= − −y y x x                       (6.6) 

where,  

( )
2

2

1

1
n

i
i

C
k

=

=
− y x

                           (6.7) 
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The above profile can be extended to multiple dimensions and the exact form of the 

Epanechnikov kernel profile at d-dimensional coordinate x is given by [27,171], 

( )( )211
2 1 if 1

( ) 2
0 otherwise

dc d
k

− + − ≤= 


x x
x                      (6.9) 

where, dc  is the volume of the unit d-dimensional sphere.  

6.2.6 Bhattacharyya Coefficeint based Distance Metric 

Bhattacharyya distance is used for the measurement of distances between two smoothed 

histograms [175]. It solves many image/video processing and pattern recognition problems 

and find numerous image/video processing applications which includes classification, 

clustering [171], distributed frequency comparisons [176], and image retrieval [177].  We can 

collect data sets at different times or under different conditions and then by using the 

similarity measure, the distributional testing can be used to determine whether they are 

identical or not.  

The Bhattacharyya distance between the distributions (6.1) and (6.2) is defined as, 

[ ]ˆ ˆ( ) 1 ( )d ,ρ= −y p y q                             (6.10) 

where,  

1

ˆ ˆ ˆ ˆ( ) [ ( ), ] ( )
m

u u
u

p qρ ρ
=

≡ =y p y q y                         (6.11) 

The expression in (6.11) is known as the sample estimate of the Bhattacharyya coefficient 

and it increases with the decrease of distance between the two histograms. 

 



159 
 

6.2.7 Distance Minimization and the Mean Shift Weight 

Minimization of Bhattacharyya distance (6.10) necessitates the maximization of 

Bhattacharyya coefficient (6.11) [27]. Identification of the new target position in the current 

frame begins at position 0ŷ  of the target in the previous frame. It requires computing 

{ }0 1
ˆ ˆ( )

=u u m
p y

 
of the target candidate at location 0ŷ in the current frame. As illustrated in 

[27], it is assumed that the target candidate { }
1

ˆ ( )
=u u m

p y  does not change abruptly from the 

initial { }0 1
ˆ ˆ( )

=u u m
p y , which is often a valid assumption between successive frames.

 
With this 

assumption, using a Taylor expansion around { }0 1
ˆ ˆ( )

=u u m
p y , the linear approximation of the 

Bhattacharyya coefficient (6.11) can be approximately obtained as [27], 

( )22
0

1 1

1
ˆ ˆ ˆ ˆ ˆ[ ( ), ] ( )

2 2

m n

u u i i
u i

C
p q wkρ

= =

≈ + − p y q y y x                 (6.12) 

where, iw s′  are the weights, defined as, 

[ ]
1 0

ˆ
( )

ˆ ˆ( )

m
u

i i
u u

q
w b u

p
δ

=

= − x
y

                         (6.13) 

As is evident from (6.12), to minimize the Bhattacharyya distance (6.10), the second term in 

(6.12) has to be maximized, which is dependent on y. This term represents the density 

estimate computed with the kernel profile ( )k x  (6.9) at y in the present frame. Here, iw  

(6.13) weights the data. By using the mean shift procedure [5], the kernel is recursively 

moved from the present location, ˆ 0y  to the new location 1ŷ . The expression for 1ŷ  scan be 

obtained as per the following relation, 

1
1

1

ˆ

n

i i
i

n

i
i

w

w

=

=

=




x
y                                  (6.14) 
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Expression (6.14) is a form of center of gravity (COG) computation. The center of gravity 

computation is a widely used operations in the area of image and video processing [9]. The 

concepts of COG is used, in many image and video processing applications. Some of the 

work that uses COG concept includes, the accurate object localization in gray level images 

[178], feature-based image registration [179], augmented reality conferencing system [180], 

and system for landing unmanned aerial vehicle [181,182]. 

The center of gravity (COG) computation for the mean shift new location [27] is 

constituted of two parts. The first part computes the center of gravity of the x-coordinate, 

which is the average of the x-coordinates of all the pixels. The second part computes the 

COG of the y-coordinate, which is the average of the y-coordinates of all the pixels in the 

image. To arrive at (6.14), the Epanechnikov kernel profile is used that is described in 

Section 6.2.5 [5]. The complete kernel-based mean shift target localization algorithm is 

explained in the following section. 

6.3 The KBMS Tracking Algorithm Flow 

The kernel-based object tracking algorithm whose primary goal is to maximize the 

Bhattacharyya coefficient [ ]ˆ ˆ( ),ρ p y q  is summarized below [27]. 

The target model { }
1

ˆ
=u u m

q and its location 0ŷ  in the previous frame are known a priori.    

Step 1: Initialize the location of the target in the current frame with 0ŷ , compute 

( ){ }0 1
ˆ ˆ

= u u m
p y and evaluate, 

0 0
1

ˆ ˆ ˆ ˆ ˆ[ ( ), ] ( )ρ
=

=
m

u u
u

p qp y q y as in (6.11) 

Step 2: Derive the mean shift weights { }
1=i n

w  as in (6.13). 
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Step 3: Find the new location of the target candidate using mean shift iteration (6.14). 

Step 4: Compute { }1 1
ˆ ˆ( )u u m
p

=
y

 and evaluate  

1 1
1

ˆ ˆ ˆ ˆ[ ( ), ] ( )
m

u u
u

p qρ
=

=p y q y  as in (6.11). 

Step 5: While [ ] [ ]1 0ˆ ˆ ˆ ˆˆ ˆ( ), ( ),ρ ρ<p y q p y q  

Do  ( )1 0 1

1
ˆ ˆ ˆ

2
← +y y y ,  

Evaluate [ ]1ˆ ˆˆ( ),ρ p y q  

Step 6:  If   1 0ˆ ˆ ε− <y y   Stop. 

Otherwise, set  0 1ˆ ˆ←y y
 
and go to Step 2. 

To analyze the algorithm in detail, the KBMS algorithm is implemented in MATLAB and in 

C language, which is described below. 

6.4 MATLAB/C Implementation of the KBMS Tracking Algorithm 

The KBMS algorithm, as elaborated in Section 6.3 is implemented in MATLAB for 

understanding the steps in the algorithm and the convergence issues. The MATLAB code is 

verified with several stored video files. To identify the embedded implementation issues and 

to formulate the quantitative analysis, the KBMS algorithm is subsequently implemented in C 

language. All the functions in C language implementation are custom-made except the video 

read and display. To capture and display the video, the C implementation utilizes the standard 

OpenCV video read and write functions [183]. 
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Fig. 6.4: C implementation of the KBMS algorithm. (a) Frame No.=12 (b) Frame No.=25 (c) 
Frame No.=32 (d) Frame No.=38 (e) Frame No.=42 (f) Frame No.=50 (g) Frame No.=55 (h) 

Frame No.=57. 
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While integrating the C code with OpenCV functions we have selectively integrated the 

video capture and display functions. Later, in the embedded implementation of the complete 

system, the developed video acquisition and display unit described in Chapter 2 replaces the 

OpenCV functions.  

The C code is compiled using the GCC complier [184] in Linux environment and it runs on 

a normal computer. Fig. 6.4 shows the results of tracking of a car at various frame numbers 

(Frame Nos. 25, 32, 38, 42, 50, 55 and 57) where the circular target coordinates are specified 

in Frame No. 12. To determine the time-consuming portion of the program, the code is 

profiled using the GNU gprof profiler [185]. To view the graphical representation of the 

different functions call, the Valgrind and Callgrind open source software are used [186]. 

In the C implementation, it is observed that the function which compute kernel-smoothed 

local histogram and the Bhattacharyya coefficient, consume most of the computation time. To 

achieve better performance these two functions are therefore identified for hardware 

implementation. In the next section, the embedded implementation of the KBMS tracking 

algorithm is presented. 

6.5 Embedded Implementation of the KBMS Tracking Algorithm 

In this section the embedded implementation approach for kernel-based object tracking 

algorithm is and various building blocks are utilized. The embedded system arrangement for 

realizing the KBMS algorithm is shown in Fig. 6.5. As depicted in the figure, a 640 480×  

resolution video frame is captured from an analog camera and is buffered in the DDR2 

SDRAM memory available on the Xilinx ML-507 FPGA platform, by the video acquisition 

unit as described in Chapter 2. The embedded PowerPC processor, available with the Xilinx 

Virtex-5 FX FPGA, accesses the stored frame. Application software running on the 

embedded PowerPC processor controls the frame acquisition process. 
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Fig. 6.5: Embedded system arrangement for the mean shift object tracking. 

The complete hardware and software arrangement is shown in Fig. 6.6. To design the 

complex arithmetic elements, the logarithmic and antilogarithmic blocks illustrated in 

Chapter 3 are used. The image thresholding blocks of Chapter 4 is used by the connected 

component labeling algorithm to segment out and identify the object, which is covered in 

Chapter 5. The hardware portion of the object tracking algorithm includes color space 

quantization, candidate/target modeling, kernel-weight computation, computation of 

Bhattacharyya coefficient, mean shift weight computation and the computation of new mean 

shift location. The various hardware architectural units for realizing the KBMS algorithm are 

shown in   Fig. 6.7.  

 



165 
 

  

F
ig

. 6
.6

: C
om

pl
et

e 
ha

rd
w

ar
e/

so
ft

w
ar

e 
ar

ra
ng

em
en

t f
or

 r
ea

li
zi

ng
 th

e 
ob

je
ct

 tr
ac

ki
ng

 a
lg

or
it

hm
. 



166 
 

As shown in above figure, the color space quantization is simply a data selection process, 

which is easily realized in the hardware. The candidate and target modeling needs weighted 

local histogram (WLH) computation, which is smoothed by the kernel profile. Thus, the 

candidate and the target modeling hardware need kernel-smoothed local histogram (KSLH) 

computation. The KSLH unit utilizes the kernel-weight and weighted local histogram 

computation. The mean shift weight computational unit is a form of center of gravity (COG) 

computation.  

 

Fig. 6.7: Complete hardware architectural units for KBMS algorithm. 

The binary logarithm and antilogarithm units illustrated in the Chapter 3 compute the 

kernel-weight. The weighted histogram is computed by using BRAMs with fixed-point 
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multiplier and fixed-point adder. The concept of LNS is also used to compute the 

Bhattacharyya coefficient, the mean shift weights and to find out the new mean shift location. 

Following sections describe the detail of the above architectural units. 

6.6 Kernel-Smoothed Local Histogram Computation 

As illustrated in Step 1 of the KBMS algorithmic flow covered in the Section 6.3, the target 

model (6.4) and the target candidate (6.6) require kernel-smoothed local histogram (KSLH) 

computation. The basic building blocks of KSLH computation and their architectural 

arrangement is shown in Fig. 6.8.  

 

Fig. 6.8: Architecture for computing kernel-smoothed local histogram. 

The proposed implementation requires single-cycle read-modify-write operations, which is 

achieved by operating one port of the dual-port BRAM in the read-first mode and other port as 

a write-first mode. Each pixel clock cycle is divided into two sub-cycles: a read cycle for 

getting the current value, and a write cycle for updating the memory content. This is achieved 

by operating the dual port BRAMS on both the edges of the video clock. After completion of 

all the read-modify-write cycles, the BRAM memory locations hold the kernel smoothed local 
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histogram of the image. The proposed architecture effectively utilizes various off-the-shelf 

FPGA macro elements and platform peripherals for the required throughput. The KSLH in the 

RGB color space is obtained by normalizing the pixel coordinates of the region of interest 

(ROI) to an unit circle before applying the weighting with the kernel profile which is defined 

for a unit circle [27]. The KSLH unit requires three main sub-units namely, color-space 

quantization, kernel-weight computation and weighted local histogram computation units. 

These architectural units are described below. 

6.6.1 Color-space Quantization (m-Bins) and Color Histogram 

Full color space of size 256 256 256× ×  is quantized into 16 16 16× ×  color-space, as shown 

in Fig. 6.9. In Fig. 6.9 (a) the values of R varies from 0 to 15 for all the possible values of G 

and B values. Fig. 6.9 (b) shows the case where the value of R varies from 16 to 31 for each 

possible value of G and B. Similarly, in the case shown in Fig. 6.9 (c), the value of R varies 

from 240 to 255 for the full range of G and B.  

The full R, G, and B space contains 4096 color bins, which can be addressed by 

concatenating the upper 4-bits of each of R, G and B. Thus, the 4096 locations are addressed 

by 12-bits, which can be written as: 

= R [7:4] & G[7:4] & B[7:4]Bin address                      (6.15) 

 The probability density function of color u is represented by the use of m-bin histogram and 

the R, G, B feature space is quantized into 16 16 16× × bins. Each bin corresponds to a range of 

pixel value as range of bin-0 is ( 0 15 ), bin-1 is (16 31 ) and so on. The value of m is 4095 

colors and range of color is ( 0 4095( ) m ). By the use of above identity, the probability of 

color u is derived for the target model. While deriving the probability of each color in the 

target space, first three-color component (R, G, B) is checked as per (6.15) to find out the 

corresponding color bin it belongs to and further we put that pixel into the corresponding 
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location in the histogram. This process quantizes the full color space into the reduced color 

space. 

 

Fig. 6.9: RGB color-space quantization into m-bins (a) R=0-15, G=0-255, B=0-255 (b) R=16-
31, G=0-255, B=0-255 (c) R=240-255, G=0-255, B=0-255. 

6.6.2 Kernel Weight Computation 

Weights are required to smoothen the kernel function; it gives faster target localization in the 

successive frames because it increases the robustness of the estimation of color histogram, as 

surrounding pixels of the target center are less reliable owing to being frequently affected by 

the occlusion or background [27]. Here, the radius of kernel profile is taken equal to ‘1’ and by 

assuming that the pixel coordinates of the target are normalized. Weights ( kw ) are derived by 

using the kernel function in normalized coordinates. After finding the distance ( id ) of the 

pixel coordinates from the center the weights are computed using the kernel function. Distance 

of the pixel from the center of the target is, 
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2 2
i i id x y= +                                  (6.16) 

( )

20 if ( ) 1

2
1 otherwise

i

i

d
kw

d
π

 ≥
= 

−

                           (6.17)
 

where id , is the distance of the pixel from center of the target and kw is derived from the
 

Epanechnikov kernel profile. A pictorial view of the kernel weights ( kw ) for the 

Epanechnicov profile is shown in Fig. 6.10. The detailed architecture of the kernel-weight 

computation block is shown in Fig. 6.11. 

 

Fig. 6.10: A pictorial view of the kernel weights for the Epanechnikov kernel profile. 

 Here, the computed id  is applied to both the inputs of the 32-bit fixed-point multiplier (in 

16.16 format), which provides 2
id . The square rooting in (6.16) is performed by computing 

binary logarithm, one-bit right shift and the  antilogarithm. The subsequent component in the 

architecture is used to compute the kernel weight ( )kw based on the condition of (6.17). The 

upper 16-bits of the multiplier, i.e., the integer part is applied to an OR network which is a 16-

bit OR gate made from four 4-bit OR gates. 
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The output of the OR network is used as the select line for a multiplexer. Based on the OR 

network output, the multiplexer routes the appropriate data as per (6.17).  To remove the 

divider for the computation of (6.17), the term, (2 / )π , which is a fractional constant value is 

pre-computed and multiplied with (1 )id− . The first input of the multiplexer comes from the 

output of a subtractor and a multiplier unit, which computes (2 / ) (1 )idπ × − . The second 

input of the multiplexer is kept at logic zero level. 

+

−

×

×

*2
ix

*2
iy

0c
ix

0d

kw

1 R

1 R

iy

 

Fig. 6.11: Architecture for computing kernel weights. 

 

6.6.3 Normalization unit 
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The normalization unit accepts the center coordinates 0 0( , )c d and the radius of the circle (R) to 

normalize all the local pixels and obtain * * *( , )i ix y=xi . Normalization is required to eliminate 

the influence of different target dimensions as the object can have irregular shape. This is 

achieved by first normalizing the pixel coordinates of the target space to a unit circle. Further, 

independent rescaling of the row and column dimensions of the target space is done. The 

equations used for the rescaling, are as follows: 

*
0

1
( )i ix x c

R
= −                                (6.18) 

*
0

1
( )i iy y d

R
= −                                (6.19)

 

where, ix and iy are the row and column pixel coordinates from the circular (in general, this 

could be an ellipsoidal region) target region, respectively. Further, *
ix and *

iy are the 

normalized values of the x-cordinate and y-coordinate. Here, the enter coordinates of the 

circle is denoted by 0 0( , )c d .  

6.6.4 Weighted Local Histogram Computation  

The weighted local histogram (6.4) is computed by incorporating a BRAM along with an 

incrementer. For this, each pixel clock cycle is divided into two sub-cycles: a read cycle for 

getting the current value, and a write cycle for updating the memory contents, as shown in Fig. 

6.12. The content of the memory locations addressed by each newly arrived pixel is 

incremented by the computed kernel weight value ( )kw  based on the pixel location. After 

completion of the read-modify-write cycle, the BRAM memory locations hold the KSLH, q̂  

of the image.  
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Proposed architecture for KSLH computation is shown in Fig. 6.13. Note that, in Fig. 6.13, 

the newly arrived color count is scaled with the corresponding kernel weight value( )kw

(derived according to their distance from the center of ROI) before accumulation with the 

existing count. 

 

Fig. 6.12: Weighted local histogram computation timing diagram. 

 

+

+

 

Fig. 6.13: Architecture for computing the kernel-smoothed local histogram of an image. 
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6.7 Bhattacharyya Coefficient Computation 

As described in Section 6.3, after computing the target model q̂
 
(6.1) and the candidate model 

ˆ ( )p y  (6.2), the KBMS algorithm needs Bhattacharyya coefficient in Step 1. The concept of 

LNS-based implementation is used to construct the datapath of the Bhattacharyya coefficient 

(6.11) computation unit. To compute the Bhattacharyya coefficient (6.11), can be expressed 

as, 

1 2 1

ˆ ˆ( )
( )

m
u u

u

p q

C C
ρ

=

= y
y                              (6.20) 

where, 1C  is a constant and it is the accumulated value of (6.2) and 2C  is the accumulated 

value of (6.1). The values of 1C  and 2C  are computed as per (6.5) and (6.7) respectively. The 

terms in (6.20), for 1, 2,3,...,u = m  can be written in logarithmic domain as, 

( ) ( ) ( ) ( )1 2
2 1

ˆ ˆ( ) 1
ˆ ˆlog log ( ) log log log

2
u u

u u

p q
p q C C

C C
 = + − − 

y
y           (6.21) 

So we can write (6.20) as, 

( ) ( ) ( ) ( )1 2
1

1 ˆ ˆ( ) Antilog log ( ) log  log log2

m

u u
u

p q  C  Cρ
=

  = + − −  y y         (6.22) 

 It is evident from (6.22), that, after computing the cumulative histograms (6.1) and (6.2) we 

require LNS-based datapath.  To construct a LNS-based architecture and the associated system 

architectural building blocks, binary logarithmic units, right shifter and one binary 

antilogarithmic unit is needed. Based on these architectural units, the proposed architecture for 

computing the Bhattacharyya coefficient is shown in Fig. 6.14.  In the Fig. 6.14, the BRAM-1 

stores the kernel-smoothed local histogram of the target, which is defined in (6.1). 
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+

+
−



+

4096×324096×32

q̂ ˆ ( )p y

( )ˆlog ( )u p y( )ˆlog u q

( )1log C ( )2log C

+

 

Fig. 6.14: Architecture for computing the Bhattacharyya coefficient. 
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Similarly, the BRAM-2 retains the kernel-smoothed local histogram of the candidate 

(6.3).The architecture shown in Fig. 6.14 works in five different stages, which are as follows: 

Stage 0: In Stage ‘0’, the BRAM-1, BRAM-2 and the last register is initialized to zeros. 

Stage 1: In this stage, we compute the kernel-smoothed local histogram (6.1) using Block 

RAM memory (BRAM-1). The kernel-smoothed histogram as required in (6.1) and (6.2) is 

computed by the method described in Section 6.6 and shown in the Fig. 6.14. The computed 

value is in 32-bit fixed-point format. 

Stage 2: In Stage ‘2’, the kernel-smoothed local histogram of (6.6) is computed. The detailed 

computational process is illustrated in Section 6.6. The computed values are in 32-bit fixed-

point and retained in the BRAM-2. 

Stage 3: In Stage ‘3’, the value of ( )1log C  and ( )2log C  is computed. The computed values 

are in 21-bit fixed-point format, which are added by a 21-bit fixed-point adder.  

Stage 4: Stage ‘4’, provides the computed Bhattacharyya coefficient value. 

6.8 Mean Shift Weight Computational Unit 

The KBMS algorithm requires mean shift weights in Step 2. As discussed and explained in 

Section 6.2.7, the mean shift weight can be computed by (6.13). Similar to Section 6.7, the 

concept of the LNS is used for computing (6.13), which is expressed as,  

[ ]1

1 0 2

ˆ
( )

ˆ ˆ( )

m
u

i i
u u

q C
w b u

p C
δ

=

= − x
y

                        (6.23) 

where, 1C  represents the accumulated value of (6.2) and 2C  is the accumulated value of (6.1). 

The value of 1C  is computed as per (6.5) and the 2C  is computed by (6.7). Expression (6.23), 

can be written as, 
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+


4096×324096×32

q̂ ˆ ( )p y

( )ˆlog ( )u p y( )ˆlog u q

( )1log C ( )2log C

4096×32

w

−

−+

+

 

Fig. 6.15: Architecture for computing mean shift weights. 
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( ) ( ) ( ) ( ) [ ]0 2 1
1

1 ˆ ˆ ˆAntilog log log ( ) log log ( )2

m

i u u i
u

w q p   C  C b uδ
=

  = − + − −   y x   (6.24)
 

 After computing the kernel-smoothed local histograms (6.1) and (6.2), we require an LNS-

based datapath to obtain iw (6.24). To construct an LNS-based architecture and the required 

architectural building blocks, four binary logarithmic units, one right shifter and one binary 

antilogarithmic unit are required. By utilizing these architectural units, the proposed 

architecture for mean shift weight computation is shown in Fig. 6.15. The proposed 

architecture works in five different stages, which are discussed below: 

Stage 0: In Stage ‘0’, all the BRAMs are initialized to zero. 

Stage 1: In this stage, we compute the kernel-smoothed local histogram (6.1) using BRAM-1 

(this is the same computation using BRAM-1, as described in Section 6.7). 

Stage 2: In Stage ‘2’, the histogram (6.3) is computed. The computed histogram values are 

retained in the BRAM-2(this is the same BRAM-2 as described in the Section 6.7). 

Stage 3: In Stage ‘3’, the subtraction of two logarithmic values is performed.  

Stage 4: Stage ‘4’, provides the computed mean shift weights, which reside in BRAM-3. 

6.9 New Mean Shift Location Computation 

As explained in the above section the mean shift weights are computed and stored in   

BRAM-3. The 4096 locations of BRAM-3 contain 32-bit values. Similar to the 

Bhattacharyya coefficient and the mean shift location computations the LNS based approach 

is used to design the architecture for computing the new mean shift location. It uses three 

binary logarithmic units, two binary antilogarithmic units, four fixed-point adder/subtractor 

and two fixed-point multipliers. As explained in Section 6.2.7, the new location of the mean 
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shift is computed by (6.14), which is a simple weighted average. The x-coordinate of (6.14), 

which is represented by 1( )ˆ x coor−y  can be written as, 

1( ) ( )
1 1

ˆ Antilog log log
n n

x coor i x coor i i
i i

w w− −
= =

    = −    
    
 y x

               

(6.25) 

and similarly, the y-coordinate of (6.24) is expressed as, 

1( ) ( )
1 1

ˆ Antilog log log
n n

y coor i y coor i i
i i

w w− −
= =

    = −    
    
 y x                (6.26)  

Based on expressions (6.25) and (6.26), an architecture for computing the new mean shift 

location is proposed. The details of the architecture for computing the new mean shift 

location is shown in Fig. 6.16.  

The proposed architecture works in two stages, which are explained below. First, each 

BRAM memory location is accessed for obtaining the new mean shift location coordinates. 

There are three concurrent computations in the iterative computing process. The objective of 

the first computation is to find out the summation of all the mean shift weights. This is 

obtained by accessing each locations of the BRAM and accumulating its value in a register, 

which results in a total mean shift weight
4095

0t ii
w w

=
= . 

In concurrence, the second computation uses each BRAM memory location and multiplies 

it with the x-coordinate, ( )i xx  of the normalized pixel coordinate, ( )ix . The x-coordinate of 

the weighted sum (WS) computation provides as ( )4095

0
WSx i i xi

w x
=

= × . Similarly, in 

parallel, the y coordinates ( )i yx of ix  are multiplied with the total mean shift weight, tw   to 

provide ( )4095

0
WS y i ii y

w x
=

= × . After getting the values of tw , WSx  and the WSy  
the binary 

logarithmic circuits are used in the second stage of the computation.  
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Fig. 6.16: Architecture for the new mean shift location computation. 

As shown in Fig. 6.16, the leftmost logarithmic circuit provides the logarithmic equivalent 

of the denominator and the remaining two logarithmic blocks provide the numerator terms of 

(6.14) in the logarithmic form. With the LNS based approach, two fixed-point subtractors and 
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two antilogarithmic units compute (6.14). The computed new mean shift locations are 

represented as 1( )ˆ x coor−y
 
and 1( )ˆ y coor−y . 

6.10 Integration of Architectural Building Blocks 

While all the independent architectural units as general-purpose hardware components have 

been described in the foregoing sections, their integration for realizing the KBMS algorithm 

is described in this section. The full circuit level organization integrating the KSLH units, the 

Bhattacharyya coefficient computational unit, the mean shift weight computational unit and 

the new mean shift location computing unit is shown in Fig. 6.17. Here, the Block RAM-1 

(BRAM-1) retains the kernel-smoothed local histogram of the target (q̂), and it is represented 

as KSLH-1 in the figure. Similarly, the Block RAM-2 (BRAM-2) holds the kernel-smoothed 

local histogram of the candidate ( ˆ(y)p ) shown as KSLH-2 in    Fig. 6.17.  

The first section of the circuit computes the Bhattacharyya coefficient, which uses the 

KSLH-1 and the KSLH-2 units, four logarithmic units, four arithmetical blocks for addition, 

one shifter for right shifting, one antilogarithmic unit and a register. In a concurrent, manner 

the middle block of the circuit computes the mean shift weight by using the KSLH-1 and 

KSLH-2 units. The computed mean shift weights are simultaneously stored in BRAM-3.  

The weights are used by the last block of Fig. 6.17, which computes the new mean shift 

location. The architecture shown in Fig. 6.17 uses the shares the hardware resources across its 

units. The hardware resources which are shared among the Bhattacharyya coefficient 

computation unit and the mean shift weight computation unit includes, the logarithmic 

blocks, 1log( )C , 1log( )C , ˆlog( )uq
 
and the

 
log( ( ))up y . Similarly, the log( )tw  hardware block 

is shared within the new mean shift location computation unit. 
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The computed value of Bhattacharyya coefficient ( ρ ), mean shift weights ( iw ), and new 

mean shift locations 1( )ˆ x coor−y
 
and 1( )ˆ y coor−y are utilized by the KBMS algorithm explained in 

the Section 6.3. The Bhattacharyya coefficient ( ρ ) is utilized in Step 1, the mean shift 

weights ( iw ) are used in Step 2, whereas, the new mean shift locations 1( )ˆ x coor−y
 
and 1( )ˆ y coor−y

are utilized in Step 3 of the KBMS algorithmic flow. 

6.11 The System Control 

The application software, written in ‘C’ programming language, runs on top of a Xilinx 

standalone software platform. The application program controls all the hardware blocks and 

platform peripherals by using the application programmer interface (API) offered by the 

software platform along with some of the basic functions developed for individual hardware 

blocks. The core communicates with the DDR2 SDRAM memory through a 32-bit native port 

interface (NPI) which is synchronous with the MPMC controller [105]. 

The embedded PowerPC processor, available in the Xilinx Virtex-5 xc5vfx70t FPGA 

device, is used to control the above architectural units. The PowerPC embedded processor 

uses the general-purpose registers of the I2C controller for the required control. The 

application program runs in the Xilinx SDK environment and it controls the complete system.  

6.12 Results and Discussions 

The proposed architecture has been implemented using the Very-high speed integrated circuit 

Hardware Description Language (VHDL) and synthesized with Xilinx ISE 14.2 for the Virtex-

5 xc5vfx70tffg1136-1 FPGA device available on the Xilinx ML-507 platform. The FPGA 

device utilization summary for various modules is described below: 
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6.12.1 FPGA Device Utilization for the KSLH Module 

The FPGA device utilization summary for implementing the kernel-smoothed local histogram 

(KSLH) computation is shown in Table 6.1. As shown in the table, the proposed architecture 

need around 1% of the FPGA slices. The architecture utilizes 2.7% (4 out of 148) of Block 

RAMs and 10.16% (13 out of 128) of DSP48E slices of Virtex-5 FX FPGA device. The 

computed power of the KSLH unit is 45.6 mW.  

Table 6.1: FPGA Device Utilization for Implementing the Proposed Architecture for 
Computing Kernel-Smoothed Local Histogram of an Image. 

 

  

In the proposed architecture, the complex arithmetic operations are converted into simple 

arithmetic operations by using binary logarithmic and antilogarithmic circuits using fixed-

point datapath. The architecture uses standard 640 480× VGA resolution image. The image is 

captured from a high-resolution camera and subsequently buffered in the off-chip DDR2 

SDRAM memory.  

6.12.2 FPGA Device Utilization for the Bhattacharyya Coefficient Computation 

The Bhattacharyya coefficient (BC) computation needs around 5% of the FPGA slices. Table 

6.2, shows the device utilization summary of the proposed BC architecture. The architecture 

utilizes 5.4% (8 out of 148) of the Block RAM and 27.34% (35 out of 128) of DSP48E slices 

available in the Virtex-5 xc5vfx70t FPGA device.  

 The block-level architectural view of the proposed architecture for computing the 

Bhattacharyya coefficient is shown in the Fig. 6.18. It utilizes the two instances of the KSLH 

Elements Device Utilization Utilization (%) 

Slice LUTs 441 /44800 0.98 

External IOBs 113/640 17.66 

BRAMs 4/148 2.70 

DSP48Es 13/128 10.16 
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Fig. 6.18 shows the graphical representation of the post-synthesis (optimized and mapped) 

netlist containing Xilinx primitives elements, which includes, look-up-tables (LUTs),digital 

clock manager (DCM), I/O buffers, and flip-flops. The ISE schematic viewer is use to 

visualize the properties of all the elements. 

6.12.3 FPGA Device Utilization for the Mean Shift Weight Computation 

The mean shift weight computational unit uses the same set of architectural components as 

required in the Bhattacharyya coefficient unit with the exception of an additional BRAM. As 

shown in Fig. 6.15 it uses four logarithmic units, one shifter and one binary antilogarithmic 

unit with three BRAMs. The FPGA device utilization summary for the mean shift weight 

computational unit is shown in Table 6.3. 

Table 6.3: FPGA Device Utilization for Implementing the Mean Shift Weight Computational 
Architecture. 

Elements Device Utilization Utilization (%) 

Slice Registers 49/44800 0.10 

Slice LUTs 1998 /44800 4.46 

Bonded IOBs 145/640 22.66 

BRAMs/FIFOs 12/148 8.10 

BUFG/BUFGCTRLs 1/32 3.1 

DSP48Es 35/128 27.34 
 

After optimization and technology-targeting phase of the synthesis process, a schematic 

representation of the synthesized design is shown in Fig. 6.19. This schematic shows a 

representation of the design in terms of logic elements optimized to the target Xilinx Virtex-5 

xc5vfx70t FPGA device. It contains LUTs, carry logic, I/O buffers, and other technology-

specific components. The schematic shows a technology-level representation of the developed 

HDL. The computed power of the proposed architecture has been found to be 69.2 mW. 
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In Fig. 6.21, the Xilinx synthesis tool (XST) infers components, such as, carry logic, 

BRAMs, shift registers, LUTs, clock buffers, multiplexers, arithmetic functions (DSP48E), 

which are associated with the Xilinx Virtex-5 xc5vfx70t FPGA device.  

Table 6.6:  FPGA Device Utilization Summary for Implementing Various Units of KBMS 
Algorithm. 

Independent 
Architectures 

Slices 
(11200)

BRAMs
(148) 

DSP48Es
(128) 

Bonded IOBs
(640) 

Image Acquisition 2240 28 0 121 

Binary logarithm 53 0 2 53 

Binary antilogarithm 41 0 1 53 

Image thresholding 168 4 5 33 

KBMS algorithm 868 12 46 273 

 
Table 6.6 summarizes the FPGA device utilization for all the units. The complete system 

view with the KBMS core is discussed below.  

6.13 The Complete System View for implementation of KBMS Algorithm 

The proposed architecture can be used as an intellectual property (IP) core in an embedded 

system environment. The placement of the KBMS core along with its interfaces with other IPs 

and buses is shown in Fig. 6.21. For communication with the embedded PowerPC 440 

(PPC440) processor, the proposed system architecture utilizes processor local bus (PLB) and 

memory controller interface (MCI) bus protocols. The MCI provides an interface between 

PPC440 processor and a soft multi-port memory controller (MPMC) implemented in the 

FPGA fabric [34]. The frame acquisition uses the PPC440 processor and the Xilinx video 

frame buffer controller (VFBC) available with the MPMC IP. The AD9980 video decoder 

chip is programmed through inter-integrated circuit (I2C) bus, which generates 25.175 MHz 

video clock. All the various architectural units utilize the generated video clock, which is 

managed by the digital clock manager (DCM).  
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Fig. 6.22: KBMS core in a system environment. 

6.14 Conclusion 

In this chapter, architectures for the kernel-smoothed local histogram (KSLH) computation, 

Bhattacharyya coefficient computation, mean shift weight computation and new mean shift 

location computation have been proposed.  The proposed architectures have been utilized to 

implement the kernel-based mean shift (KBMS) object tracking algorithm. The presented 

architecture uses dual-port BRAMS with single cycle read-modify-write operation to compute 

the kernel-smoothed local histogram for an image. Here, an embedded PowerPC processor 

controls the frame acquisition part of the architecture, which uses DDR2 SDRAM memory, 

video decoder and display controller chips, available on the Xilinx ML-507 Virtex-5 FX 

FPGA device based platform. Xilinx embedded development kit (EDK) design tool is used to 

integrate the required IPs with the embedded PowerPC processor, which runs application 

program and the configuration software.  
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 In the proposed architectures, most of the operations are performed in the 32-bit fixed-point 

format. The complex arithmetic operations are realized through fixed-point binary 

logarithmic and antilogarithmic units. The architecture has the advantages of minimizing 

logic resources, and processing of large datasets in real-time, by realizing time-critical 

processes through the available BRAMS and DSP slices. The design results in an effective 

use of FPGA resources for the required throughput and speed goal. The work presents and 

demonstrates an effective design approach for realizing high-performance embedded 

hardware-software based systems. 
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CHAPTER 7  

 CONCLUSIONS  

7.1 Summary of Achievements 

In this thesis, a set of hardware architectural modules have been presented for resource-

efficient embedded realization of image and video processing applications. These 

architectures have been designed using platform-based design methodology that allows 

exploration and development of new and emerging image and video processing systems. The 

hardware architectures are realized in the Virtex 5 FPGA device available on the ML-507 

platform. The designed modules can be utilized as intellectual property (IP) cores for rapid 

development of systems.  

We have presented a real-time image and video acquisition and display module that is 

required across a wide range of image/video processing applications. Next, to efficiently 

realize complex arithmetic functions such as square root, division, and raise-to-the-power 

function by using logarithm number system (LNS), architectures for binary logarithm and 

antilogarithm have been presented. Many image/video processing applications require an 

efficient hardware architecture for image thresholding. We have presented a resource-

efficient FPGA-based architecture for global image thresholding. Also in various 

image/video applications, it is necessary to find connected components present in binary 

images. We have presented an improved label-equivalence based two-scan connected 

component algorithm along with its implementation on the embedded PowerPC processor. 

The presented algorithm improves upon the Stefano-Bulgarelli (SB) algorithm by modifying 

the equivalence handling procedure of SB algorithm for efficient identification of connected 

components. The improved connected component algorithm has been used for obtaing target 
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coordinates, which are required for embedded implementation of kernel-based mean shift 

(KBMS) object tracking algorithm.  

Finally, all the above described hardware and software modules alongwith some 

additionally required hardware blocks have been utilized for the embedded FPGA 

implementation of the KBMS object tracking application. The additionally required hardware 

architectural blocks for implementation of the KBMS algorithm are blocks for similarity 

measure computation, center of gravity computation, mean shift weight computation and new 

mean shift location computation. FPGA-based architectures for these blocks have been 

proposed and implemented on the Virtex-5 FX series device available on Xilinx ML-507 

platform. The developed architectures have the advantages of reduced logic resources and 

processing of large datasets by realizing time-critical processes in the available BRAMS and 

DSP slices. The Xilinx embedded development kit (EDK) design tool has been used to 

manage the integration of various architectures and algorithms presented in this thesis. 

Register-transfer-level (RTL) modeling of all the architectural building blocks has been 

done in VHDL language. The datapath of the architecture has been optimized by using the 

concepts of functional unit sharing and operator merging. In the designed datapath, outputs of 

the different functional units share the common destinations at different times. Therefore, in 

the datapath, several signals are merged into a bus. This design strategy leads to the 

minimization of substantial amount of FPGA resources. In the same way, registers with non-

overlapping access times are merged to share the register input and output ports. The modular 

structure of the developed datapath also supports pipelining for higher throughput. 

The work starts with configuration of the Xilinx FPGA-based platform and the required 

peripherals for image and video processing applications. The embedded PowerPC processor 

available in the FPGA device is used to configure the VGA input video codec and the display 
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controller on-platform peripherals. The control registers of these peripherals are programmed 

through inter-integrated circuit (I2C) bus using low-level device driver functions and their 

application programming interfaces (API). The design is implemented in the Virtex-5 FPGA 

fabrics, which facilitates real-time video streaming on a VGA monitor. Subsequently, an 

FPGA-based embedded architecture is implemented in the Xilinx ML-507 platform for the 

frame acquisition application. The architecture presented allows buffering of 640 480×  

resolution video frames in the DDR2 SDRAM memory. This embedded design is utilized by 

different applications for further processing of captured video frames. 

To compute the complex arithmetic functions required for image/video processing a simple 

integer datapath is created. The designed datapath uses 32-bit unsigned fixed-point numbers 

and utilizes the concepts of logarithmic number system. Architectures for the binary 

logarithm and antilogarithm units are proposed for finding their approximate values within 

the specified range. To find the characteristic part of the logarithm of a binary numbers, a 

novel leading-one finder circuit has been proposed. The fractional part approximation unit 

proposed, computes the mantissa part of the binary logarithm. The same circuit arrangement 

has been used to compute the binary logarithm of integer and fractional numbers. The 

proposed architecture for logarithm computation utilizes only 209 LUTs out of available 

44800 LUTs, which represent around 0.47 % utilization. Similarly, out of the 128 available 

DSP48E slices, the proposed architecture uses only 02 slices, which represents around 1.6 % 

utilization. In antilogarithm computation, the characteristic portion of the binary number is 

used to shift the computed mantissa part with the help of a barrel-shifter. The barrel-shifter of 

the proposed architecture of antilogarithm unit uses a few multiplexers to route the logically 

shifted value of the mantissa part. The circuit arrangement for computing binary 

antilogarithm also uses same set of circuit elements to compute binary antilogarithm of 

positive and negative numbers. The proposed architecture for binary antilogarithm 
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computation requires only 0.37 % of the FPGA LUTs, 0.78% of the DSP48E slice available 

with the Virtex-5 FPGA device.  

Error analysis has been performed on the implemented architectures using thousands of 

uniformly distributed random numbers. It shows that the maximum error is percentage of 

0.05 % with 16.16 fixed-point numbers and 0.34 % with fractional numbers for binary 

logarithm computation. In binary antilogarithm computation the percentages of 

computational errors are found to lie in the range of 0.08%± for positive binary numbers and 

0.2 %− to 0.6 %+  for negative binary numbers. The associated percentage computational 

errors are relatively small percentage band, which is acceptable for a wide range of image and 

video processing applications. The developed logarithmic and antilogarithmic units are 

utilized for the purpose of hardware architecting of various compute-intensive blocks 

presented in the thesis.  

A novel hardware architecture for global image thresholding operation has been presented 

next. Thresholding operation is performed on gray-level images, so that optimal value of 

threshold could be obtained for binary conversion of images. An efficient global automatic 

image thresholding algorithm, proposed by Otsu, is taken for hardware implementation. The 

compute-intensive between class variance computation (BCV) is required for implementing 

Otsu’s algorithm. In the presented work, an area-efficient FPGA-based architecture for the 

computation of BCV is proposed. It requires computing normalized cumulative histogram 

(NCH) and normalized cumulative intensity area (NCIA). These modules are developed by 

incorporating the embedded components available in the FPGA, which include digital clock 

manager (DCM), BRAMs, and DSP slices. The proposed architecture requires only 1.5 % of 

the FPGA slices for the computation of between-class variance,  2.7% of the Block RAMs 

have been used to compute the cumulative mean and moments and we are using total 3.9% of 
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available DSP48E slices. The proposed architecture has the advantages of minimizing logic 

resources and the ability to process large datasets by conducting time-critical functions on 

available BRAMs and DSP slices. The FPGA device utilization of the design shows that the 

proposed architecture utilizes a small number of FPGA BRAMs, DSP slices and LUTs.  

The binary image obtained from the image thresholding unit is utilized by the connected 

component analysis algorithm. In our work, we have proposed an improved label-equivalence 

based connected component analysis algorithm. The proposed algorithm improves on the 

Stefano-Bulgarelli (SB) algorithm by modifying its equivalence handling procedure, and 

removes the partial merging problem associated with the SB algorithm. It searches for the 

label-equivalence and as soon as it is found, the algorithm resolves the label-equivalences in 

the first scan itself. The label-equivalence process is independent from the different 

temporary labels assigned. The improved algorithm is implemented on the embedded 

PowerPC processor of the ML-507 platform. The results demonstrate that the improved 

algorithm handles equivalences efficiently and gives accurate count of connected 

components.  

An embedded architecture for object tracking application is considered next, which utilizes 

the developed architectural building blocks and algorithms. Additionally required 

application-specific architectural building blocks are developed for this purpose. The kernel-

based mean shift (KBMS) algorithm is taken for the embedded realization of the object 

tracking application. To perform analysis on the KBMS algorithm its MATLAB/C 

implementation is developed. Computation of kernel-smoothed local histogram, center of 

gravity, Bhattacharyya coefficient based local similarity measure and the mean shift weight 

are found to be the main time-critical parts of the KBMS algorithm. FPGA-based hardware 

architecture blocks for implementing the computations are proposed and presented in detail. 

The embedded PowerPC processor has been used to run the software components as well as 
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to configure and control various on-platform system peripherals used. The power 

consumption associated with different architectural modules is obtained by using Xilinx 

XPower Analyzer tool. 

7.2 Future Scope of Work 

Rapid growth of image and video processing systems has raised increasing demand for 

system functionality and diversity. Hardware architectures and algorithms presented in this 

thesis can be part of the architectural development for any practical image and video 

processing system using FPGA-based platform. The approach followed can easily be 

transferred on to future FPGA-based platforms and their associated embedded processors 

leading to design gains in terms of programmable systems integration, increased system 

performance and overall cost reduction.  

Today and in foreseeable future application-specific system designing will demand 

integration of various heterogeneous components. Intellectual property (IP) based design and 

implementation approach as presented in this thesis can support the development of 

application-specific complex image and video processing systems and their derivatives. With 

the presented design approach, development of complex practical system architectures and 

their prototypes is feasible in minimal amounts of time. The developed hardware/software 

building blocks along with standard IPs can also be leveraged for the development of highest 

performance-lowest power solutions for applications that target mass markets.  

Finally, designing of various derivatives of the developed architectures and their 

integration is possible for any processor of choice.  We have so far considered only a single 

processor, which is embedded in the FPGA device, however, with the availability of multiple 

or multi-core processors in various upcoming platforms, the hardware/software units can be 

efficiently exploited for designing future embedded image/video processing systems.  
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APPENDIX A  

AN OVERVIEW OF THE FPGA-BASED PLATFORM 

A.1 Xilinx ML-507 FPGA Platform 

The Xilinx ML-507 platform [187] contains a Virtex-5 FPGA (XC5VFX70T) which has one 

PowerPC440 (PPC440) processor surrounded by the FPGA fabric [33]. The software tasks 

can be executed on the PPC440 processor, while the FPGA is used for hardware acceleration. 

Fig. A.1 shows the organization of different components of the platform [33]. Some of the 

important features of this platform are follows: 

● PPC 440 embedded reduced instruction set computing (RISC) processor [34]. 

● Memory controller interface (MCI); provides an interface between PPC440 processor 

and a soft memory controller implemented in the FPGA logic [34]. 

● Processor local bus (PLB) is a 128-bit bus, which provides bus infrastructure for 

connecting an optional number of PLB masters and slaves into an overall PLB system 

[98]. 

● VGA input video codec connector; supports connectivity to an external VGA source 

[100]. 

● Inter-integrated circuit (I2C) bus support [188,189]. 

● 64-bit wide, 256 MB Micron MT4HTF3264HY-667 DDR2 small outline dual in-line 

memory module (SODIMM) [190]; acts as a video frame buffer for the image 

acquisition system. 

● 11,200 configurable logic block (CLB) slices; provided for implementing 

combinational and sequential logic functions [32]. 
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Fig. A.1: Xilinx ML-507 Platform. (a) front view (b) rear view. 
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● Programmable system clock generator chip; available for generating a variety of non-

integer clocks from 4.9 KHz to 500 MHz to the platform peripherals and FPGA 

[191,99]. 

● Digital clock manager (DCM); provides integer multiple of clocks to various 

peripherals [106].  

● Multi-port memory-controller (MPMC); for external memory support [105]. 

● 5328 Kb Block RAMs (BRAMs); available as configurable internal RAM for the 

FPGA.  

● RS-232 serial port; allows the FPGA to communicate serial data with another device 

or with PC. 

● JTAG configuration port. 

● DVI connector with display controller chip; to support an external DVI/VGA monitor 

[101]. 

A.2 Field-Programmable Gate Array (FPGA) Device 

The field-programmable gate array (FPGA) is a semiconductor device. It is based on a matrix 

of configurable logic blocks (CLBs) connected through programmable interconnects. Instead 

of being restricted to any predetermined hardware function (as in ASIC, where the device is 

custom built for the particular design), an FPGA can be programmed to modify the product 

features and functions to reconfigure hardware for specific applications. This modification in 

the hardware can be done even after the product is installed in the field and that makes it a 

“field-programmable” device [192]. The FPGAs can be used to implement any logical 

function that an ASIC circuit (ASIC) can perform. Today’s FPGAs can be partially or fully 

re-configurable to implement a desired logic function. The partial re-configuration feature 

allows a portion of the FPGA to be always running, while another portion of the same FPGA 

is being re-configured for the new set of logic functionality. 
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The previous generation FPGAs used I/Os with programmable logic and interconnects. The 

modern FPGAs consist of configurable embedded memory, high-speed transceivers, high-

speed I/Os, logic blocks. FPGAs have evolved far beyond the basic capabilities present in 

their predecessors, and now incorporate pre-fabricated blocks of intellectual property (IP) of 

commonly used functionality such as Block RAM (single/dual port), clock management, and 

DSP (multiplier, adder, arithmetic-logic unit). Intellectual property (IP) blocks built into the 

FPGA fabric provide rich functions while lowering power and cost. Apart from this, the 

FPGA families are available which contain hard-embedded processor(s), transforming the 

devices into systems on a chip (SoC) [23]. 

 

Fig. A.2: FPGA block structure (reproduced from embedded processor block in Virtex-5 
FPGAs). 

The block structure of an FPGA is shown in Fig. A.2 [32]. The main components of the 

FPGAs are: CLBs, BRAMs, programmable interconnects, programmable I/O, digital clock 

manager. As discussed earlier, the present day FPGAs also contain hard IP blocks like an 
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embedded processor and DSP slices (multiplier, adder). The details of each block are given 

below. 

A.2.1 Configuration Logic Block (CLB) 

The CLB is the basic logic unit of FPGAs. The number of CLBs and CLB features vary from 

device to device, but every CLB consists of a configurable switch matrix with 4 or 6 inputs, 

some selection circuitry (MUX, etc.), and flip-flops. The switch matrix is flexible and can be 

configured to implement combinatorial logic and shift register or RAM bits. 

 

Fig. A.3: Arrangement of slices within the CLB. 

User writes into the configuration memory, which defines function of the system. This 

includes the connectivity between the CLBs and the I/O cells, the logic to be implemented 

onto the CLBs, and the configuration of the I/O blocks. By changing data in the configuration 

memory, the function of the system can be changed. This change in data can be implemented 

at anytime during the FPGA operation (run-time configuration). In Xilinx Virtex-5 FPGA, a 
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CLB element contains a pair of independent slices, slice (0) and slice (1) as shown in Fig. 

A.3.  

These slices are organized in a column and contain carry chains. The Xilinx tools assign 

slices as follows: X followed by a number identifies the position of each slice in a pair as well 

as the column position of the slice. The X number counts slices starting from the bottom in 

sequence 0, 1 (the first CLB column); 2, 3 (the second CLB column); etc. A Y followed by a 

number categorizes a row of slices. The number remains the same within a CLB, but 

increases in sequence from one CLB row to the next CLB row, starting from the bottom. The 

detail of the slice is given below. 

A.2.2 Slice Description 

Each slice includes four logic-function generators or look-up tables (six input LUTs), four 

storage elements, wide-function multiplexers, and carry logic. By these resources, the slice 

provides logic, arithmetic, and ROM functions. In addition to this, some slices support two 

extra functions: storing data using distributed RAM and shifting data with registers. Slices 

that support these additional functions are known as SLICEM; others are called SLICEL [32]. 

An arrangement of SLICEL is shown in Fig. A.4 and the SLICEM is shown in Fig. A.5 [32] 
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Fig. A.4: Arrangement of SLICEL. 
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Fig. A.5: Arrangement of SLICEM. 
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A.2.3 Interconnect 

While the CLB provides the logic capability, flexible interconnect routing routes the signals 

between CLBs and to/from I/Os. Routing comes in several ways, from that designed to 

interconnect between CLBs to fast horizontal and vertical long lines spanning the device, to 

global low-skew routing for clocking and other global signals [32]. 

A.2.4 Select I/O 

The basic IOB and its connections to the internal logic and the device pad are shown in       

Fig. A.6 [32]. 

 

Fig. A.6: Arrangement of IOB. 

FPGAs provide support for dozens of I/O standards thus providing the ideal interface 

bridge in the system. I/O in FPGAs is grouped in banks with each bank independently able to 

support different I/O standards [32]. Each IOB contains input, output, and 3-state SelectIO 

drivers. These drivers can be configured to various I/O standards. Differential I/O uses the 

two IOBs grouped together in one tile. 

• Single-ended I/O standards (LVCMOS, LVTTL, HSTL, SSTL, GTL, PCI) 
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• Differential I/O standards (LVDS, HT, LVPECL, BLVDS, Differential HSTL and 

SSTL) 

• Differential and VREF dependent inputs are powered by VCCAUX 

Each Virtex-5 FPGA I/O tile contains two IOBs, and also two ILOGIC blocks and two 

OLOGIC blocks.  

 

Fig. A.7: Modern FPGA device. 

A.2.5 Special-Purpose Function Blocks 

A large portion of the FPGA consists of logic blocks and routing logic to connect the 

programmable logic. Today’s FPGA combine programmable logic with additional resources 

that are embedded into the fabric of the FPGA. The block diagram of a modern FPGA is 

shown in Fig. A.7 [192]. It shows the arrangement of special-purpose function blocks placed 
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throughout the FPGA. The logic blocks still occupy a majority of the FPGA fabric in order to 

support a variety of complex digital designs.  

A.2.5.1 Digital Clock Manager (DCM) 

Sometimes there are needs of different clock frequencies, as different logic cores can operate 

at different frequencies. A digital clock manager (DCM) allows different clock periods to be 

generated from a single reference clock. Digital clock management is provided by most 

FPGAs (all Xilinx FPGAs have this feature). The most advanced FPGAs from Xilinx offer 

both digital clock management and phase-looped locking that provide precision clock 

synthesis combined with jitter reduction and filtering [192]. 

A.2.5.2 Block RAM 

Designers require the use of some amount of on-chip memory. Using logic cells it is possible 

to build variable-sized memory elements; however, as the amount of memory needed 

increases, these resources are quickly consumed. The solution is to provide a fixed amount of 

on-chip memory embedded into the FPGA fabric called Block RAM (BRAM). The amount 

of memory depends on the device. 

In Virtex-5 FPGAs BRAM stores up to 36K bits of data and can be configured as either 

two independent 18 Kb RAMs, or one 36 Kb RAM. Each 36 Kb Block RAM can be 

configured as a 64K x 1 (when cascaded with an adjacent 36 Kb block RAM), 32K x 1, 16K 

x 2, 8K x 4, 4K x 9, 2K x 18, or 1K x 36 memory. Each 18 Kb block RAM can be configured 

as a 16K x 1, 8K x2 , 4K x 4, 2K x 9, or 1K x 18 memory [32]. 

A.2.5.3 Digital Signal Processing (DSP) Blocks 

Complex designs may consist of either digital signal processing (DSP) or just some variety of 

multiplication, addition, and subtraction. It is possible to combine DSP blocks to perform 

larger operations, such as single and double precision floating point addition, subtraction, 
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multiplication, division, and square root. The number of DSP blocks is device dependent; 

however, they are typically located near the BRAMs, which is useful when implementing 

processing requiring input and/or output buffers [23], [192]. In Xilinx Virtex-5 FPGAs the 

DSP (DSP48E) slice resources contain a 25x18 two’s complement multiplier and a 48-bit 

adder/subtacter/accumulator. Each DSP48E slice also contains extensive cascade capability 

to efficiently implement high-speed DSP algorithms [32]. 

A.2.5.4 Embedded Processor 

One of the most important additions to the FPGA fabric is a processor (one or two 

processors) embedded within the FPGAs fabric, such as the FX series in Xilinx Virtex-5 

FPGAs [32]. The availability of an embedded processor can simplify the design process 

significantly, while reducing resource usage and power consumption. The IBM PowerPC440  

(PPC440) processor is the processor included in the Xilinx Virtex-5 FX FPGAs device [32]. 

A.3 FPGA Configuration Options  

The Virtex-5 FPGA device on the ML-507 Platform can be configured by following ways 

[33]. 

• Xilinx download cable (JTAG) 

• System ACE controller (JTAG) 

• Two platform flash PROMs 

• Serial peripheral interface (SPI) flash memory 

• Linear flash memory 

Following section provides an overviews of the possible means through which FPGAs can 

be configured. 
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A.3.1 JTAG (Xilinx Download Cable and System ACE Controller) Configuration 

The JTAG port is used to configure the main devices of the board like FPGA, two Platform 

Flash PROMs, and CPLD. Fig. A.8 shows the JTAG chain of the board. The chain starts at 

the PC4 connector and goes through the Platform Flash PROMs, the CPLD, the System ACE 

controller, the FPGA, and an optional extension of the chain to the expansion card. Jumper 

J21 is used for the JTAG chain extension to the expansion card.  The JTAG chain is utilized 

to program the Virtex-5 FPGA device and access the FPGA for hardware and software 

debug.  

 

Fig. A.8: FPGA configurations. 

The PC4 JTAG connection to the JTAG chain allows a host computer to download bit 

streams to the FPGA using the Xilinx iMPACT software tool. The PC4 JTAG connection 

also permits debug tools like the Xilinx ChipScope Pro analyzer or a software debugger to 

access the FPGA device. 

The system ACE controller can also be utilized to program the FPGA through the JTAG 

port. The configuration information can be stored for the FPGA by using a compact flash 

card, which supports up to eight configuration images. The images can be selected by using 

the three configuration address dual in-line package (DIP) switches. The FPGA controls, the 

system ACE chip to reconfigure to any of the eight configuration images. 
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A.3.2 Platform Flash PROM Configuration 

The FPGA device can also be programmed by utilizing a platform flash PROMs. A platform 

flash PROM can hold up to two configuration images (up to four with compression), which 

are selectable by the two least significant bits of the configuration address DIP switches. The 

board is wired so the platform flash PROM can download bitstreams in master serial, slave 

serial, master parallel, or slave parallel modes. The Xilinx iMPACT tool is used to program 

the platform flash PROM. 

A.3.3 Linear Flash Memory Configuration 

Data stored in the linear flash can also be used to program the FPGA (BPI mode). Up to four 

configuration images can be supported.  

A.3.4 SPI Flash Memory Configuration 

Data stored in SPI can be used to program the FPGA. The FPGA device is programmed upon 

power-up or whenever the Program button is pressed. 

A.4 PowerPC 440 Embedded Processor 

The Virtex 5 FX series FPGAs include one or two PowerPC 440 processors embedded within 

the FPGA fabric [32], [34] . The PowerPC 440 is a dual-issue, superscalar RISC processor 

with an operating frequency of up to 550 MHz. It contains seven-stage pipeline with out-of-

order execution capabilities.  Each comes with 32 KB, 64-way set associative level-1 

instruction and data cache and a memory management unit (MMU) with a translation look-

aside buffer (TLB) to support virtual memory. In addition to three separate 128-bit processor 

local bus (PLB) interfaces, the embedded processor provides interfaces for custom 

coprocessors and floating-point functions [34]. The block diagram of the PowerPC 440 

embedded processor is shown in Fig. A.9. 
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Fig. A.9: Block diagram of an embedded PowerPC 440 processor (reproduced from Xilinx 
UG200). 

The main components of the embedded processor block in Virtex-5 FXT FPGAs are the 

processor, the crossbar and its interfaces, the auxiliary processing unit (APU) controller, and 

the control (clock and reset) module [34]. Fig. A.10 shows the embedded processor block and 

its components.  

The processor has three PLB interfaces: one for instruction reads, one for data reads, and 

one for data writes. Typically, all three interfaces access a single large external memory. 

Peripheral access in PowerPC 440 systems is memory mapped, and the data PLB interfaces 

typically connect to various peripherals directly or via bridges. Peripherals can be 

implemented in hard IP elements (implemented in the FPGA fabrics) or soft logic, using the 

lookup tables (LUTs) and other primitive logic elements provided by the FPGA. 
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Fig. A.10: Embedded processor block in Virtex-5 FPGAs (reproduced from Xilinx UG200). 

A.4.1 Crossbar and its Interfaces 

The crossbar acts as a central arbitration and switching module that accepts master requests 

from up to five groups of master devices and redirects the transactions to one of two groups 

of slave devices. The crossbar also directs the responses from the slave devices back to the 

correct master devices. All data passing from any master device to any slave device within 

the embedded processor block in Virtex-5 FPGAs passes through the crossbar. The crossbar 

and its interfaces allow the processor with its three PLB interfaces, soft peripherals with PLB 

interfaces, and peripherals with LocalLink interfaces to share access to a high-performance 

memory controller. 

A.4.2 PLB Interface 

The PLB interface can be either mater PLB (MPLB) or slave PLB (SPLB). These interfaces 

are explained below. 
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A.4.2.1 MPLB Interface 

The primary purpose of the crossbar MPLB interface is to provide access from the processor 

to PLB-based memory (if any) and non-memory peripherals. The MPLB also allows access 

from PLB-based masters outside the embedded processor block in Virtex-5 FXT FPGAs, 

connected via one of the SPLB interfaces, to PLB based memories and non-memory 

peripherals, which are also to be shared with the processor. 

A.4.2.2 SPLB Interfaces 

The primary purpose of two crossbar SPLB interfaces is to allow PLB-based masters outside 

the embedded processor block in Virtex-5 FPGAs to share access to the main memory on the 

crossbar memory controller interface (MCI). The crossbar is the primary means of 

establishing multi-ported access to the main memory in PowerPC 440 based systems. The 

SPLB interfaces also allow access to PLB-based memories and non-memory peripherals 

connected to the crossbar MPLB interface, which are also to be shared with the processor. A 

maximum of four masters can be connected to each SPLB interface. 

A.4.3 PLB Interconnection Techniques 

The crossbar in the embedded processor block provides a high-performance pathway to allow 

memory and other peripherals to be shared between the processor and other masters in the 

system. There are many ways that external masters, memories, and peripherals can be 

connected to the crossbar, which are explained below. 

A.4.3.1 Simple Processor-Centric Shared Bus Design 

In simple processor-centric shared bus design the “main memory” for the processor is 

attached to a memory controller on the PLB. The performance of this topology might be 

sufficient, particularly if there is no other masters in the system that need to share any of 

these memory or peripheral devices. Even so, access to any high-latency peripherals by the 
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data load/store unit might occasionally stall the processor’s instruction fetch. Fig. A.11 shows 

the simple processor-centric shared bus design topology. 

 

Fig. A.11: Simple processor-centric shared bus design (reproduced from Xilinx UG200). 

A.4.3.2 Simple Processor-Centric Design Using Memory Controller Based Main 
Memory 

In simple processor-centric design using memory controller based main memory topology, 

the PLB-based memory controller is replaced with one connected to the crossbar MCI, which 

is shown in Fig. A.12. Overall latency to memory is slightly improved due to the elimination 

of PLB arbitration cycles. Because the pathways to main memory and peripherals are now 

independent, peripheral access can no longer interfere with instruction fetch. 
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Fig. A.12: Simple processor-centric design using memory controller based main memory 
(reproduced from Xilinx UG200). 

A.4.3.3 Other Topologies 

Other PLB interconnection techniques include: main memory and peripherals shared between 

processor and external master, main memory shared between processor and DMA, external 

bridge with remote access to main memory and processor access to remote peripherals, 

external bridge with remote access to main memory and locally shared peripherals [34]. 

A.5 Memory Controller Interface (MCI) 

The memory controller interface (MCI) block provides a bridge between the high-speed 

crossbar and a soft memory controller implemented in FPGA logic. The MCI provides a 

simple protocol that allows the soft memory controller to run much faster because it does not 

need to implement the more complex and more general PLB protocol [34].  
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A.6 Other Embedded Processor Blocks 

Other important embedded processor blocks include: reset, cock, and power management 

interfaces, device control register bus, interrupt controller interface, JTAG interface, debug 

interface, and trace interface [34]. 

A.7 Controllers 

The PPC440 supports auxiliary processing unit (APU) and DMA controller, which are 

explained below. 

A.7.1 Auxiliary Processing Unit (APU) 

The APU connects to the fabric coprocessor bus (FCB) to support custom instructions 

implemented in the FPGA fabric through APU programming [34]. For example, a double 

precision floating point unit (FPU) can be connected to the APU. Then, anytime the 

application needs to perform a floating-point computation, the processor will offload the 

computation to hardware where the computation can be performed faster than a software-

emulated FPU [192] . 

A.7.2 DMA Controller 

The DMA controller consists of four independent DMA engines that provide high 

performance direct memory access for streaming data. Peripherals can directly transfer data 

to and from a memory controller connected to the processor block. Peripherals are connected 

to the DMA engines through the LocalLink interface. The DMA engines can be monitored 

and controlled through their device control registers (DCRs) [34]. 
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APPENDIX B  

XILINX ML-507 PLATFORM CONFIGURATION FOR EMBEDDED 

VSION APPLICATION 

B.1 Introduction 

Xilinx ML-507 platform contains a Virtex-5 FPGA (XC5VFX70T), which has one 

PowerPC440 (PPC440) processor surrounded by FPGA fabric [33]. To use the platform for 

the embedded image and video processing applications, the Xilinx ML-507 FPGA platform 

requires interfacing of a video camera, a PAL to VGA converter, and a VGA monitor.  The 

detail of the development platform configuration along with its various components is 

described below. 

B.2 Pan-Tilt-Zoom (PTZ) Video Camera  

The pan-tilt-zoom (PTZ) cameras get their name because of their ability to pan (left and 

right), tilt (up and down), and zoom in and out of a picture plane. The PTZ cameras are able 

to enhance the image quality and increase the coverage area. It allows the user to have 

arbitrary viewing angle in a surveillance scene [102]. The PTZ cameras provide uniform 

resolution and are able to provide close observations of particular targets. These cameras are 

able to adopt a variety of roles such as following an object, zooming to acquire high 

resolution images, or imitating fixed view cameras, and, as a result, can support highly 

dynamic, reconfigurable task oriented surveillance.  

The PTZ camera can adjust its orientation with respect to the region-of-interest (ROI) 

which is a very important functionality for any vision system. The selected camera for the 

development system is Sony EVI-D70P PTZ camera [102], which is shown in Fig. B.1(a) and 

Fig. B.1(b). The orientation of the camera can easily be controlled through RS-232 port on 
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the Xilinx ML-507 platform. The motivation behind the platform configuration is more 

towards developing an underlying infrastructure for acquisition, storage and display of video 

data and the design is independent of the resolution of the image data passed through. It 

works on all kinds of resolutions with or without pan-tilt or zoom need. The PTZ camera can 

be interfaced with VGA IN port of the ML-507 platform. The camera works with PAL signal 

system with composite video and S-video as the analog video outputs available having 

effective pixels of 752 (H) x 582 (V). The output of the camera is connected to the video IN 

port of the PAL to VGA converter, which is described below.  

 

Fig. B.1: Sony PTZ camera (a) front view (b) rear view (reproduced from Sony EVI-D70 
PTZ camera). 

B.3 PAL to VGA Converter 

The composite video output of the PTZ camera is taken as the input for the video acquisition 

platform. The PAL standard of composite video is incompatible with ML-507 FPGA 

platform which uses RGB video signals. A PAL to VGA converter is used to convert the 

composite video format into VGA format. We have used V2V Pro video converter [103], 
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Horizontal sync (hsync) : digital signal, used for synchronization of the video. 

Vertical sync (vsync)  : digital signal, used for synchronization of the video. 

Red (R)        : analog signal, used to control the color. 

Green (G)       : analog signal, used to control the color. 

Blue (B)        : analog signal, used to control the color. 

 

Fig. B.3: A 640 480×  VGA resolution frame. 

By changing the analog levels of RGB signals, all other colors are produced. The vsync 

signal controls the monitor to start displaying a new image or a new frame. The horizontal 

sync signal controls the monitor to refresh another row of 640 pixels. The video signal 

redraws the entire screen 60 times per second to provide for motion in the image and to 
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reduce flicker, this period is called the refresh rate. The duration in which the video data is 

being transmitted is called the active period. The remaining is the blanking portion. In the 

blanking interval, a sync pulse is generated. The sync pulse is followed by a back porch; 

which is used to decode the color information from composite signals. The front porch is a 

brief period inserted between the end of each transmitted line of picture and the leading edge 

of the next line sync pulse. The timing diagram of VGA signals is shown in Fig. B.3. 

B.4.2 Inter-Integrated Circuit (I2C) Bus Protocol 

Inter-integrated circuit (I2C) bus is used to form a system in which microprocessor controls 

one or more devices. An I2C bus consists of two wires named serial data (SDA) and serial 

clock (SCL), which carry information between the devices connected to the bus [188,189]. 

Both SDA and SCL transport bidirectional data between connected devices. By default, SDA 

and SCL are at logic-1. Therefore, when the bus is idle, both SDA and SCL are high. Each 

device on the bus has a unique address and can operate as either a transmitter or receiver.  

 

Fig. B.4: I2C bus protocol. 

In addition, devices can also be configured as either master or slave. A master initiates a 

data transfer on the bus and generates the clock signals to permit the transfer. Any other 

addressed device is considered a slave. The interface is identical for master and slave devices. 

All devices have a unique address. They look at the address sent by the master, to decide 

whether the data is intended for them or not. The device generates acknowledge signal if it 

sees its address on the data bus. For interfacing with a device, the master sends transfer 
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START, followed by device address, data bytes and then transfer STOP. Data transfers on the 

I2C bus are initiated with a START condition, and are terminated with a STOP condition as 

shown in Fig. B.4. 

Normal data on the SDA line must be stable during the clock High period. The High or 

Low state of the data line can only change when SCL is Low. The START condition is a 

unique case and is defined by a High-to-Low transition on the SDA line while SCL is High. 

Likewise, the STOP condition is a unique case and is defined by a Low-to-High transition on 

the SDA line while SCL is High. The START and STOP data definitions ensure that the 

START and STOP conditions will never be confused as data [188]. 

B.5 Platform Set-up for the Embedded Vision Applications 

The Xilinx ML-507 platform is suited for embedded vision applications. This needs some 

specific platform tuning. For example to use the platform for 640x480 video resolution the 

control registers of video codec and the display controller are configured by specific values. 

Apart from this for displaying the video in particular resolution a specific clock frequency is 

needed. The specific clock frequency is generated by programming the IDT clock generator, 

which is explained below. 

B.5.1 Programming the IDT Clock Generator 

The ML-507 platform has an IDT5V9885 EEPROM programmable clock generator device. 

To generate custom clock frequency, the registers of the programmable clock generator are 

programmed. Programmable clock software provided by the IDT is used for the clock 

generator programming. The programmable interface of the IDT chip is shown in Fig. B.5(a). 

The various register settings of the IDT5V9885 are shown in Fig. B.5(b).  To make the 

configured clock frequency available at the FPGA pin, the serial vector format (SVF) output 

of the software is downloaded to the platform, through the Xilinx iMPACT tool. 
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Fig. B.5: (a) IDT programmable clock structure (b) IDT programmable clock register 
settings. 
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To download the configuration bits, we have used Xilinx platform USB II download cable 

with flying leads connected in-between the platform and the iMPACT tool.  An internal 

EEPROM allows saving and restoring the configuration of the device without having to 

reprogram it on power-up.  The SVF file procedure is given below: 

Connect a Xilinx download cable to the board using flying leads connected to jumper J3 as 

shown in Fig. 6. 

Click Start iMPACT. 

Click Boundary Scan. 

Locate the SVF file (as generated by the IDT software) and click Open. 

TMS

TDI

TDO

TCK

GND

VDD

J3

 

Fig. B.6: IDT5V9885 JTAG connector. 

Right-click on the device and select Execute XSVF/SVF, shown in Fig. B.7. 

To finish programming the chip, cycle the power by turning off the board power switch. 

After turning the board back on, verify that the clock frequencies are correct. 
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clock frequency is then divided by an integer value, such that the output is phase-locked to 

Hsync. This PLLDIV value determines the number of pixel times per line.  

 

Fig. B.8: AD9980 functional block diagram (reproduced from AD9980). 

The recommended VCO range and charge pump and current settings for the VGA standard 

display are as follows: 

0x01: As for the 25.175 MHz clock the PLL divider must have the value of “800” or 0x320. 

Therefore, the register 0x01 is written with 0x32. 

0x02: Similarly, the register 0x02 is used for the PLL divide ratio LSBs. As explained above 

this register is written with 0x00 data. 
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0x03: The register 0x03 is used for the clock generator control. The configuration of this 

register is as follows: 

Bit [7:6]: These two bits establish the operating range of the clock generator. To configure 

the AD9980 chip for 25.175 MHz clock frequency the bits [7:6] of the register 0x03 must 

contain 01 data.  

Table B.1: VCO Range and Charge Pump and Current Settings 

Item Settings 

Standard VGA 

Resolution 640 × 480 

Refresh rate 60 

Horizontal Frequency 31.500 

Pixel rate (MHZ) 25.175 

PLL Divider 800 

VCORNGE 01 

Current (uA) 100 

 

Bits [5:3] of this register are used to control the charge pump current. These three bits 

establish the current driving the loop filter in the clock generator. To set the clock frequency 

of 25.175 MHz the current must be set to 100. As given in the data sheet of AD9980, the bits 

[5:3] must be written with 001 to generate the above frequency. Bit 2 of register 0x03 

determines the source of the pixel clock frequency. To use an internally generated clock bit 2 

of this register must be zero. Logic 0 enables the internal PLL that generates the pixel clock 

from an externally provided Hsync. 

• 0x04: ADC clock phase adjust 

• 0x05: 7-bit Red channel gain control 
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• 0x06: Must be written 0x00 following a write of register 0x05 for the proper 

operation. 

• 0x07: 7-bit Green gain control 

• 0x08: Must be written 0x00 following a write of register 0x07 for the proper 

operation. 

• 0x09: 7-bit Blue gain control 

• 0x0A: Must be written 0x00 following a write of register 0x09 for the proper 

operation. 

• 0x0B: 8-bit MSB of the Red channel offset control. It controls the brightness of each 

respective channel. 

• 0x0C: Linked with 0x0B to form the 9-bit red offset that controls the brightness of 

the red-channel in auto-offset mode. 

• 0x0D: 8-bit MSB of the Green channel offset control. It controls the brightness of 

each respective channel. 

• 0x0E: Linked with 0x0D to form the 9-bit green offset that controls the brightness of 

the green-channel in auto-offset mode. 

• 0x0F: 8-bit MSB of the Blue channel offset control. It controls the brightness of each 

respective channel. 

• 0x10: Linked with 0x0F to form the 9-bit blue offset that controls the brightness of the 

blue-channel in auto-offset mode. 

• 0x11: This register sets the threshold of the sync separator’s digital comparator.  

• 0x12: Hsync Control. 

 Bit [7]: 0, The chip determines the active Hsync source. 

 Bit [6]: 0, Hsync is from Hsyc input pin. 

 Bit [5]: 0, The chip selects the Hsync input polarity. 
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 Bit [4]: 1, Active high input Hsync. 

 Bit [3]:1, Active high input Hsync output. 

 Bit [2:0]: Reserved. 

• 0x13: Sets the number of pixel clocks that Hsync out is active. 

• 0x14: Vsync Control 

 Bit [7]: 0 The chip determines the active Vsync source. 

 Bit [6]: 0 Vsync is from Vsyc input pin. 

 Bit [5]: 0 The chip selects the Vsync input polarity. 

 Bit [4]: 1 Active high input Vsync. 

 Bit[ 3]:0 Active low input Vsync output. 

 Bit[ 2]: 0 The Vsync filter is disabled. 

 Bit [1]:Vsync output duration is unchanged. 

 Bit [0]: Reserved. 

• 0x15: Sets the number of Hsync that Vsync out is active. (This is only used if 0x14, 

Bit 1 is set to 1). 

• 0x16: The number of Hsync periods to Coast prior to Vsync. 

• 0x17:  The number of Hsync periods to Coast after Vsync. 

• 0x18:  Coast source 

• 0x19: Clamp placement. 

• 0x1A: Clamp duration. 

• 0x1B: Clamp and offset 

• 0x1C: Must be set to 0xFF for proper operation 

• 0x1D: SOG control 

• 0x1E: Power. 

• 0x1F: Output select 1. 
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 Bit [7]: Reserved. 

 Bit [6:5]:00, RGB Mode. 

 Bit[4]:  1, Primary output is enabled. 

 Bit[3]: 0, Secondary output is enabled. 

 Bit[2:1]:10, Medium high output drive strength. 

 Bit[0]: 0, Noninverted pixel clock. 

• 0x20: Output select 2. 

• 0x21: Must be set to default for proper operation. 

• 0x22: Must be set to default for proper operation. 

• 0x23: Sync filter window width. 

• 0x24: Sync detect. 

• 0x25: Sync polarity detect. 

• 0x26: Hsync per Vsync MSBs. 

• 0x27: Hsync per Vsync LSBs. 

• 0x28: Must be written 0xBF for proper operation. 

• 0x29: Must be written 0x02 for proper operation. 

• 0x2A: Reserved. 

• 0x2B: Reserved. 

• 0x2C: Offset hold. 

• 0x2D: Must be written 0xE8 for proper operation. 

• 0x2E: Must be written 0xE0 for proper operation. 

B.5.3 Chrontel CH7301C Display Controller 

The functional block diagram of the CH7301C is shown in Fig. B.9 [101]. A DVI/VGA 

monitor can be interfaced with the ML-507 platform by using a DVI connector present on the 

ML-507 platform [33].   
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Fig. B.9: CH7301C functional block diagram (reproduced from CH7301 DVI transmitter). 

The DVI connector uses Chrontel CH7301C DVI transmitter device or display controller 

device. It accepts a digital graphics input signal, and encodes and transmits data through the 

DVI connector. The device accepts data over one 12-bit wide variable voltage data port, 

which supports different data formats including RGB and YCrCb.  


