
Online Handwritten Word Recognition for Indic
Scripts using Hidden Markov Models and
Data-driven Modeling of Writing Styles

THESIS

Submitted in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Bharath A.

Under the supervision of

Dr. Sriganesh Madhvanath

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN) INDIA

2009

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN)

CERTIFICATE

This is to certify that the thesis entitled Online Handwritten Word Recognition for Indic Scripts

using Hidden Markov Models and Data-driven Modeling of Writing Styles and submitted

by Bharath A. ID No 2005PHXF040P for award of Ph.D. Degree of the Institute embodies

original work done by him/her under my supervision.

Signature in full of the Supervisor:

Name in block letters: Dr. SRIGANESH MADHVANATH

Designation: Senior Research Scientist, Hewlett-Packard Labs India

Date:

To my beloved parents

Acknowledgments

I am immensely thankful to Prof. L. K. Maheshwari, Vice-Chancellor, BITS, Pilani for provid-

ing me this opportunity to pursue the off-campus PhD of the Institute. I express my gratitude to

Prof. Ravi Prakash, Dean, Research and Consultancy Division (RCD), BITS, Pilani for his con-

stant official support, encouragement and making the organization of my research work through

the past few years easy.

I thank Dr. Hemanth Jadav, Mr. Dinesh Kumar, Ms. Monica Sharma, Mr. Sharad Shri-

vastava, Mr. Gunjan Soni, Mr. Amit Kumar and Ms. Sunita Bansal, nucleus members of RCD,

BITS, Pilani, without their cooperation and guidance it would not have been possible for me

to pursue such goal oriented research during each of the past few semesters. I also express my

gratitude to the office staff of RCD whose secretarial assistance helped me in submitting the

various evaluation documents in time and give pre-submission seminar smoothly.

I thank my Doctoral Advisory Committee (DAC) members, Dr. Rajkumar Gupta and Dr.

Mukesh Kumar Rohil, who spared their valuable time to go through my draft thesis and were

audience to my pre-submission seminar in order to provide several valuable suggestions that

immensely helped in improving the quality of my PhD thesis report.

It has been a stimulating experience to purse my PhD research at HP Labs India under the

BITS - HP Labs PhD Fellowship Programme. I would like to thank all my present and former

colleagues at HP Labs India for supporting me during this work.

First of all, I am deeply grateful to my supervisor, Dr. Sriganesh Madhvanath, for his guid-

ance, support and encouragement during my PhD. It has been an excellent learning experience

working under him. His expertise in the field has played a pivotal role in this research.

I would also like to thank Dr. Kuchibhotla Anjaneyulu for offering me this fellowship and

providing an opportunity to work in an environment of high standards.

Special thanks are due to Dinesh Mandalapu for the numerous insightful discussions on

handwriting recognition and pattern recognition.

I would like to extend my appreciation to former colleagues - Deepu Vijayasenan for

introducing me to the world of handwriting recognition during my Masters’ internship, Dr.

Kalika Bali for the guidance on data collection and defining the symbol sets, Jagannadhan V. for

organizing and accompanying me during Tamil data collection, and Neemala Sridhar Krishna

for the discussions on Hidden Markov Models.

I am thankful to the interns Jagadeesh, Prashanth, Praveen, Kalyan and Vibhas for their

assistance in creating the Devanagari dataset. I am also grateful to the members of the Lipi

Toolkit development team and intern Saravanan for their support. Without their help it would

have taken much longer time to complete this thesis. I also thank Muthu, Balu, Tarun and

Vandana for making this experience a fun-filled and memorable one.

Finally, I would like to thank my parents for their contribution in my PhD. I am extremely

grateful for their love, prayers and untiring support, without which I could have never accom-

plished this endeavor.

Bharath A.

Abstract

Online handwriting recognition (OHWR) refers to the problem of machine recognition of hand-

writing captured in the form of pen trajectories, via a digitizing tablet and stylus. Over the years,

a number of algorithms have been proposed for recognizing online handwriting, and today there

are several commercial systems for recognizing European and Oriental scripts. OHWR tech-

nology holds significant promise for the Indic family of scripts, given that the Indic languages

are used by a sixth of the world’s population, and the greater ease of use of handwriting-based

text input compared to keyboard-based methods for these scripts. The structure of the scripts

and the variety of shapes and writing styles pose some unique challenges that make adoption

of existing word recognition systems developed for English or other languages, difficult. While

there has been considerable research on recognition of isolated symbols and characters in Indic

scripts, research for recognizing larger writing units such as words or phrases is in its early

stages. The systems developed to date have assumed various constraints on writing, or have

been script-specific, or both.

In this thesis, we address the problem of online handwritten word recognition for Indic

scripts. In contrast to prior approaches, we propose techniques that are script-independent and

data-driven, involving minimal manual intervention during training, and validate our approach

for two important Indic scripts - Devanagari and Tamil. Our approach employs Hidden Markov

Models (HMM) to model strokes, symbols and words in the script. The HMMs are trained

using a large number of word samples collected from over a hundred writers for each script,

cleaned and annotated at the symbol level.

From the perspective of recognition, this thesis addresses two central issues that arise in the

context of online Indic scripts: (i) variations in writing style of individual symbols, (ii) symbol

order variations within and across characters. Variations in writing style at the symbol level

result from variations in the shape, position, number, ordering, or direction of the constituent

strokes. In this work, the writing styles of a symbol are automatically discovered from the

i

training data and a stroke-based modeling approach is adopted to represent them. A novel

technique based on constrained stroke clustering that exploits constraints in the handwriting

domain is proposed to identify the optimal set of strokes and styles in the dataset. The results

obtained for Devanagari recognition demonstrate substantial improvement in accuracy when

compared to alternate techniques such as unsupervised clustering of stroke samples.

For word recognition, we explore lexicon-driven and lexicon-free approaches based on

HMMs. The lexicon-driven approach works well when the symbol order is standard or known

in advance. In order to deal with the second central issue - that of symbol order variations,

we propose a lexicon-free approach that uses a novel Bag-of-Symbols (BoS) representation

of words. When compared to the lexicon-driven scheme for word recognition, our lexicon-

free approach performs significantly better for samples having symbol orders different from the

standard order. In the case of Devanagari, our investigation reveals that a simple combination of

lexicon-driven and lexicon-free recognizers results in considerably higher accuracy than using

either of them alone. Maximum accuracies obtained for 20,000 word lexicons are 87.13% for

Devanagari when the lexicon-driven and lexicon-free recognizers are combined, and 91.8% for

Tamil using the lexicon-driven approach.

Over the last decade, there has been tremendous growth in mobile devices in the Indian

subcontinent. Many of these devices now offer natural interaction using touchscreens where

one can simply use a finger, instead of the stylus, to tap or write on the surface. Given that

one of the main applications of OHWR is text input, it is important that the developed recog-

nition technology caters to these newer devices supporting touch-based interaction. In the last

part of the thesis, we propose a novel Input Method Editor (IME) named FreePad, that allows

one to “overwrite” a complete word on a small touch surface by ignoring the standard left to

right writing order and the relative positions of the strokes. A different preprocessing step that

operates at the stroke level is used along with the word recognition schemes developed earlier,

to recognize such position-free handwriting. In this context, we also explore the relevance of

position information for recognizing handwriting in Devanagari and Tamil, which like other

Indic scripts, is two-dimensional in nature. Our experiments show that it is indeed possible to

recognize handwriting written as discrete symbols reliably, even in the absence of any position

information. Maximum accuracies obtained for 20,000 word lexicons are 88.78% for Devana-

gari and 93.18% for Tamil when the lexicon-driven and lexicon-free recognizers are combined.

The script-independent and data-driven approach developed in this thesis for online hand-

ii

written word recognition for Indic scripts is promising. Given that there is no prior work on

Devanagari or Tamil online word recognition, we hope that the recognition performances re-

ported in this work will serve as a benchmark for future efforts.

iii

Contents

Abstract i

List of Tables ix

List of Figures x

Abbreviations xiii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Problem Definition . 2

1.4 The Structure of Indic Scripts . 3

1.5 Challenges in Online Indic Script Recognition 6

1.5.1 Large Alphabet Size . 6

1.5.2 Two-dimensional Structure . 7

1.5.3 Inter-class Similarity . 8

1.5.4 Issues with Writing Styles . 8

1.5.5 Language-specific and Regional Differences in Usage 10

1.5.6 Comparison with Latin and CJK Scripts 11

1.6 Outline of Thesis . 11

2 Literature Review 15

2.1 Latin Script Recognition . 15

2.1.1 Segmentation-based Approach . 15

2.1.2 Segmentation-free or Holistic Approach 17

iv

2.1.3 Human Reading Inspired Approach 18

2.1.4 HMM-based Approaches . 19

2.2 CJK Script Recognition . 21

2.2.1 Challenges for Recognition . 22

2.2.2 HMM-based Approaches . 23

2.3 Indic Script Isolated Character Recognition 25

2.3.1 Strategies . 25

2.3.2 Preprocessing . 27

2.3.3 Features . 27

2.3.4 Classification . 28

2.4 Indic Script Word Recognition . 31

2.5 Summary . 34

3 Creation of Word Datasets for Devanagari and Tamil 35

3.1 Identification of Symbols . 35

3.2 Handwriting Data Collection . 38

3.2.1 Identification of Words for Data Collection 38

3.2.2 Data Collection for Tamil . 39

3.2.3 Data Collection for Devanagari . 39

3.3 Data Cleanup . 40

3.4 Annotation . 41

3.5 Summary . 41

4 Preprocessing and Feature Extraction 43

4.1 Shirorekha Detection for Devanagari . 43

4.1.1 Issues in Online Shirorekha Detection 44

4.1.2 Features . 45

4.1.3 Algorithm . 46

4.1.4 Evaluation . 46

4.2 Word Size Normalization . 48

4.3 Resampling . 49

4.4 Feature Extraction . 50

4.5 Summary . 51

v

5 Symbol Modeling 52

5.1 Introduction . 52

5.1.1 Modeling Writing Styles . 53

5.1.2 Advantages of Stroke-based Modeling 53

5.2 Related Work . 55

5.2.1 Character-level Clustering and Modeling 55

5.2.2 Stroke-level Clustering and Modeling 57

5.2.3 Limitations of Unsupervised Stroke Clustering 58

5.3 Writing Style Identification using Domain Constraints 59

5.3.1 Initial Stroke Clustering . 59

5.3.2 Constraint Generation . 60

5.3.3 Constrained Stroke Clustering . 61

5.3.4 Identifying Unique Writing Styles . 63

5.4 Finding Writing Styles in Devanagari . 63

5.4.1 Preprocessing and Feature Extraction for Clustering 63

5.4.2 Unsupervised Within-Character, Character-level Clustering 64

5.4.3 Generating Constraints . 64

5.4.4 Constrained Stroke Clustering . 65

5.4.5 Results . 66

5.5 Character Modeling using Stroke HMMs . 67

5.5.1 HMM Training . 69

5.6 Experimental Evaluation . 70

5.6.1 Evaluation Methodology . 71

5.6.2 Results and Discussion . 72

5.7 Summary . 73

6 Word Recognition using Lexicon-driven and Lexicon-free Approaches 74

6.1 Introduction . 74

6.2 Symbol Modeling using HMM . 75

6.3 Lexicon-driven Word Recognition . 75

6.3.1 Word and Lexicon Modeling using HMM 75

6.3.2 Impact of Non-standard Symbol Orders 76

vi

6.4 Lexicon-free Word Recognition . 77

6.4.1 Arbitrary Symbol Sequence Recognition using HMM 78

6.4.2 Bag-of-Symbols Representation . 79

6.4.3 Lexicon Matching . 81

6.5 Experimental Evaluation . 83

6.5.1 Analysis of Writing Styles . 84

6.5.2 Evaluation Methodology . 85

6.5.3 Lexicon-driven Word Recognition . 86

6.5.4 Lexicon-free Word Recognition . 86

6.5.5 Combination of Lexicon-driven and Lexicon-free Approaches 90

6.5.6 Performance with Samples having Symbol Order Variations 91

6.6 Summary . 92

7 Position-free Handwriting Input for Small Touch Interfaces 94

7.1 Introduction . 94

7.2 Prior Work on Continuous Handwriting Input for Small Writing Surfaces . . . 96

7.3 Prior Work on Handwriting-based Input Method Editors for Indic Scripts . . . 97

7.4 FreePad IME: Position-free Handwriting Input 98

7.5 Consequences of Loss of Position Information 99

7.6 Recognition of Position-free Handwriting . 102

7.6.1 Preprocessing . 102

7.6.2 Feature Extraction . 103

7.7 Experimental Evaluation . 103

7.7.1 Performance of Position-free Recognition 104

7.7.2 Relevance of Position Information . 104

7.7.3 User Acceptance and Usability . 106

7.8 Summary . 106

8 Conclusions 108

8.1 Summary . 108

8.2 Contributions . 110

8.3 Future Research Directions . 112

8.3.1 Symbol Modeling . 112

vii

8.3.2 Word Recognition . 112

8.3.3 FreePad . 113

8.3.4 Extension to other Indic Scripts . 113

viii

List of Tables

1.1 Comparison of Indic, Latin and CJK scripts 12

2.1 Reported accuracies for Indic script isolated character recognition 32

5.1 Results of Constrained Stroke Clustering on the entire dataset 68

5.2 Devanagari character recognition accuracy and total number of states to train,

averaged across 10 folds . 72

6.1 Within-character symbol order variations observed in the word dataset 78

6.2 Across-character symbol order variations observed in the word dataset 79

6.3 Frequencies of number of words sharing the same BoS representation in the

Devanagari lexicon . 83

6.4 Frequencies of number of words sharing the same BoS representation in the

Tamil lexicon . 84

6.5 Distribution of word samples in the datasets 85

6.6 Average accuracy (%) across 9-folds for Devanagari word recognition 87

6.7 Average accuracy (%) across 9-folds for Tamil word recognition 88

6.8 Average accuracy (%) across 9-folds for type-1 Devanagari word samples hav-

ing symbol order variations, with 20K lexicon 92

7.1 Average accuracy (%) across 9-folds for position-free Devanagari word recog-

nition using Type-1 samples . 105

7.2 Average accuracy (%) across 9-folds for position-free Tamil word recognition

using Type-1 samples . 105

ix

List of Figures

1.1 Combinations of the consonant /ka/ with different vowels and the vowel muting

halanth . 5

1.2 Combination of consonants resulting in a distinct conjunct character in Devanagari 6

1.3 Two-dimensional structure: (a) some possible matras for a consonant in De-

vanagari (b) two-part matra surrounding the consonant in Tamil (c) consonant

conjunct in Telugu . 7

1.4 Similar-looking half-consonant and matras varying only in their position rela-

tive to the base consonant /ta/ . 7

1.5 Similar-looking characters in (a) Malayalam (b) Tamil 8

1.6 Two different ways of writing the Devanagari character /nna/ 9

1.7 Symbol order variations within a character . 9

1.8 Writing styles identified for a Devanagari character 10

1.9 Some challenges for Online HWR of Devanagari script 11

1.10 High-level architecture of the word recognition system. 13

2.1 Segmentation ambiguities in the cursive word invade (adapted from Madhvanath

and Govindaraju [1]) . 16

2.2 A badly written sample of the word Malaysia 17

2.3 Left-to-right HMM without state skipping . 20

2.4 Hierarchical representation for Kanji character recognition 25

2.5 DTW for matching two samples of a Tamil character 29

2.6 Subspace based approach for character recognition (adapted from Balaji et al.

[2]) . 31

3.1 Symbol set defined for Devanagari . 36

x

3.2 Symbol set defined for Tamil . 37

3.3 Tablet PC based data collection tool used for Tamil 39

3.4 A sample data collection ‘paper’ form for Devanagari 40

3.5 Data cleanup tool . 41

3.6 Data annotation tool . 42

4.1 Shirorekha - the top horizontal stroke in a Devanagari character or word 44

4.2 Multi-part shirorekha . 44

4.3 Variability in vertical position of shirorekha 45

4.4 Shirorekha written along with the character (black square shows the starting

point of the stroke) . 45

4.5 Examples of strokes not detected or falsely detected as shirorekha by the pro-

posed algorithm . 48

4.6 Normalization of word size for (a) Tamil (b) Devanagari 49

4.7 Word sample from Tamil: (a) before resampling (b) after resampling 50

5.1 Different writing styles of ‘H’ identified from the IRONOFF dataset. The num-

bers indicate the order of writing. The start of each stroke is indicated with a

square box. 53

5.2 Stroke-based HMM Model of the Devanagari character /ka/ representing differ-

ent writing styles (paths) and with sharing of stroke models. 54

5.3 Clustering error from unsupervised stroke clustering 58

5.4 Proposed approach for incorporating handwriting domain knowledge into stroke

clustering for obtaining optimal set of strokes and styles 59

5.5 Clustering with constraints . 62

5.6 Constraint generation for Devanagari character samples: (a) Trivial across-

character constraint between character 3 and character 24 (b) Trivial within-

character constraint in character 12 (c) Non-trivial within-character constraint

in character 43 . 65

5.7 Progression of constrained clustering of stroke prototypes. 67

5.8 Writing styles identified by the proposed approach 69

5.9 Effect of number of Gaussians per state on the SINGLE-HMM accuracy 71

xi

5.10 Devanagari character recognition accuracy for different approaches and dataset

folds . 72

6.1 Lexicon-driven recognition using prefix-tree representation. Each box repre-

sents a symbol HMM. ‘S’ and ‘E’ are start and end nodes. 76

6.2 Lexicon-free recognition using recurrent HMM. 80

6.3 BoS representation . 80

6.4 Categorization of word samples based on style of writing. Examples from the

Devanagari word dataset. 85

6.5 Error in lexicon-free Tamil word recognition 90

6.6 Accuracy improvements achieved by the combination over lexicon-driven for

Devanagari word recognition with 20K lexicon 91

7.1 Insufficient space to enter the word intelligent using a finger: (a) portrait mode

(b) landscape mode . 95

7.2 Gesture keyboard for entering Devanagari characters (Adapted from Balaji et

al. [2]) . 98

7.3 Comparison between input recognized by (a) overlaid handwriting (b) FreePad 99

7.4 FreePad interface for (a) Devanagari, (b) Tamil and (c) English. The last four

strokes of the writing are displayed with different shades, and the recognition

of the word is triggered using a timeout. 100

7.5 Ambiguity due to loss of position information within a symbol 101

7.6 Ambiguity due to loss of position information between symbols 101

7.7 Ambiguity due to loss of position information within and between symbols . . 102

7.8 Position-free input of a Tamil word before and after stroke-level preprocessing . 103

xii

Abbreviations

OHWR - Online Handwriting Recognition

HMM - Hidden Markov Model

DTW - Dynamic Time Warping

NN - Nearest Neighbor

BoS - Bag of Symbols

IME - Input Method Editor

CJK - Chinese, Japanese and Korean

OTS - Optimal Text Selection

ML - Must-Link

CL - Cannot-Link

AHC - Agglomerative Hierarchical Clustering

CCL - Constrained Complete Link

xiii

Chapter 1

Introduction

1.1 Background

Handwriting recognition refers to the problem of machine recognition of handwritten script.

It is broadly classified as online and offline recognition. In the case of Online Handwriting

Recognition (OHWR), special devices such as pen-based tablets are used to capture handwriting

in the form of digital ink. Digital ink normally contains the pen trajectory represented as X-Y

coordinates along with the time information. In the offline scenario, handwriting is captured

in the form of digitized images using a scanner or a camera. Online data embeds additional

information such as writing order, temporal information (velocity, pressure etc.) and pen lift

events. However the same dynamic information proves to be a burden at times, since it captures

variations in stroke number and order which do not change the identity of what is written. A

stroke refers to the ink in between a pen-down and the successive pen-up event. The major

advantages of OHWR are the possibilities for user interactivity and adaptation [3].

OHWR is commonly used to enable handwriting input for general-purpose applications

on fixed and mobile devices such as Table PCs and mobile phones. It is also used for specific

applications in education, manufacturing and so on. Decades of research have made handwrit-

ing input a reality for several European and Oriental languages represented respectively using

the Latin and the Chinese, Japanese, Korean (CJK) scripts [4, 5, 6, 7]. Handwriting input meth-

ods are now commonly built into mobile devices and Tablet PCs and feature acceptably high

recognition accuracies. However similar technology for the Indic languages and scripts is still

in its infancy.

1

1.2 Motivation

India plays host to 22 official languages and 10 scripts, in addition to a large number of oth-

ers which do not have ‘official’ status. The official languages invariably have large numbers

of speakers (e.g. approximately 500 million speakers of Hindi, 200 million of Bangla [8]).

Many Indic languages have substantial global presence – Tamil for instance is also one of the

official languages in countries such as Singapore, Malaysia, and Sri Lanka. The users of these

languages and scripts constitute approximately a sixth of the world’s population.

In India, Information Technology (IT) is still largely limited to the small fraction of the

population that is English-literate. One reason for this has been the complexity of text input

in local Indic languages. Over the years a number of QWERTY-overlays and specific key-

board layouts have been devised for different Indic languages, but they remain non-standard

and difficult to learn and use. The large alphabet size typically requires multiple keystrokes for

entering a character and mandates complex key-character mappings to be remembered, present-

ing a substantial barrier to use, especially for occasional users. The use of handwriting, on the

other hand, is widely entrenched in the home, government and business, and forms the basis for

record-keeping and communication.

In this setting, technology for OHWR in Indic languages and scripts can play a significant

role in promoting IT in local languages. As compared to speech, the processing of handwriting

input for text entry is less expensive computationally on mobile platforms, and potentially more

accurate, especially in the presence of ambient noise.

The structure of the scripts and the variety of shapes and writing styles pose some unique

challenges that make adoption of existing word recognition systems developed for English or

other languages, difficult. While there has been considerable research on recognition of isolated

symbols and characters in Indic scripts, research for recognizing larger writing units such as

words or phrases is in its early stages. The systems developed to date have assumed various

constraints on writing, or have been script-specific, or both.

1.3 Problem Definition

The input to a typical OHWR system is in the most general case, a digital ink document or

stream that contains several lines of handwritten text, with each line comprised of a set of

words separated by spaces. Once lines in the document are separated out and each line is in

2

turn segmented into words, the problem of online handwritten word recognition is defined as

recognizing a given isolated word, i.e. finding the optimal sequence of characters from the

script given the corresponding digital ink.

The thesis addresses the problem of online handwritten word recognition in the context of

Indic scripts. The problem has two parts:

1. To propose an approach for online word recognition for Indic scripts with the following

desired characteristics:

• Script-independent: The approach should not be strongly coupled to the nature of

shapes present in a particular script, but should be generalizable to all Indic scripts.

• Automatic and data-driven: Minimal manual intervention should be required dur-

ing training of the system.

• Support for writer-independent and unconstrained handwriting recognition:

The approach should work for a large class of users and should not impose any

constraints on the writing style that makes the system unusable in practice.

2. To propose a handwriting-based text input solution for entering Indic scripts on small,

touch-based mobile devices based on the proposed approach.

While the first part is concerned with developing recognition techniques that are most appro-

priate for natural handwriting in Indic scripts, the second part looks at an important practical

application scenario wherein conventional writing may not be possible.

1.4 The Structure of Indic Scripts

The 10 official Indic scripts - Devanagari, Tamil, Gurmukhi, Telugu, Kannada, Gujarati, Oriya,

Bangla, Malayalam and Urdu - differ by varying degrees in their visual characteristics, but

share some important similarities. With the exception of the Urdu script which is of Perso-

Arabic origin, they have evolved from a single source, the phonographic Brahmi script, first

documented extensively in the edicts of Emperor Asoka of the third century BC. They are de-

fined as “syllabic alphabets” or abugidas in that the unit of encoding is a syllable of speech,

however the corresponding orthographic units show distinctive internal structure and a con-

stituent set of graphemes or symbols [9, 10]. A word in these scripts is written as a sequence

3

of these orthographic syllabic units. For simplicity, we will henceforth refer to these units as

“characters”, a term commonly used to refer to the building blocks of recognition systems (as

in “isolated character recognition”). Some common classes of characters are described below

with examples:

• V: An independent vowel /ii/1

Devanagari: Tamil: Telugu:

• C: An isolated consonant /ta/ with inherent neutral vowel /a/

Devanagari: Tamil: Telugu:

• CH: An isolated consonant /t/ with the inherent vowel muted by a special diacritic called

halanth. This form is used rarely; the linear form (CH)(C) of two consecutive consonant

sounds is instead generally represented by a single consonant conjunct character (C’C),

where C’ denotes the half-form of the first consonant. A notable exception is Tamil,

wherein the use of the CH form is the norm.

Devanagari: Tamil: Telugu:

• CV: A consonant /ta/ combined with vowel /ii/ to produce /tii/. The vowel overrides the

inherent /a/ and is indicated using a matra or diacritic symbol (also see Fig. 1.1).

Devanagari: Tamil: Telugu:

• CVM: A CV character with a modifier M to indicate nasalization of the vowel V. Devana-

gari has four different kinds of nasalization, indicated using different kinds of diacritic

1In this thesis, we have used ITRANS Romanisation scheme (http://www.aczoom.com/itrans/

tblall/tblall.html) for indicating the sounds of Indic symbols and characters

4

http://www.aczoom.com/itrans/tblall/tblall.html
http://www.aczoom.com/itrans/tblall/tblall.html

marks, e.g. /tii.n/

• C’C: A conjunct that combines two consonant sounds - /k/ with /ta/ to produce /kta/. In

Devanagari, the leading consonant /k/ is indicated by a ‘half form’ to suggest that it is

missing its inherent vowel. However in Telugu it is just the reverse - the leading con-

sonant /ka/ is shown in its full form but /ta/, indicated by the horizontal diacritic at the

bottom, is shown in its half form. As mentioned earlier, Tamil does not use half forms.

Instead, consonant conjuncts are “unraveled” into a linear sequence of (CH) characters

followed by the base consonant C.

Devanagari: Tamil: Telugu:

• CC: A distinct conjunct wherein the constituent consonants are not identifiable e.g. con-

sonant /sh/ combines with consonant /ra/ to produce a distinct shape /shra/ in

Devanagari. Many C’C conjuncts have alternative representations as distinct conjuncts.

Figure 1.1: Combinations of the consonant /ka/ with different vowels and the vowel muting
halanth

The above classes represent subsets of the set of all possible characters. In its most com-

plex form a character is composed of a base consonant C, surrounded by modifiers for other

consonants C’, a vowel unit V and modifier M. For example, /ktii.n/ in Devangari has the

structure C’CVM. This example also shows an alternative representation of /kta/ as a distinct

conjunct. The first two classes of characters C and V are sometimes collectively called “simple

characters” and have been the focus of early efforts at recognizing Indic scripts. Most Indic

5

scripts have an order of 600 CV characters and as many as 20,000 C’CV ones in theory, al-

though a much smaller subset of C’CV characters are used in practice. While Devanagari has

35 consonants, 11 vowels and 4 vowel modifiers, Telugu has 18 vowels and 36 consonants. The

total numbers of characters in both the scripts run into the thousands (around 1500 for Devana-

gari and 5000 for Telugu), though smaller numbers are encountered in common usage. Tamil

has 12 vowels, 18 consonants, 6 Grantha letters (that can combine with vowels for writing San-

skrit words) and a special symbol, with the number of characters summing up to 325 [11]. The

much smaller number compared to Devanagari and Telugu is largely due to consonant conjunct

characters such as C’C being written as linear sequences of separate characters CH and C, as

previously mentioned.

1.5 Challenges in Online Indic Script Recognition

The structure of characters in Indic scripts was introduced in the previous section. In this section

we describe some of the challenges for Online HWR of characters and words in Indic scripts,

and highlight key differences from Latin and CJK scripts. Some of these stem from the structure

of these scripts; others from established writing practice.

1.5.1 Large Alphabet Size

As mentioned earlier, most Indic scripts use a large (> 1000) number of characters, as opposed

to less than 100 in English. The internal graphemic structure makes a divide and conquer

approach to recognition feasible in theory. However many consonant conjuncts are represented

by visually distinct conjuncts bearing no resemblance to the constituent consonant shapes (Fig.

1.2). Similarly, many consonant and vowel combinations give rise to new symbols (e.g. ‘ ’

/thu/ in Tamil) which cannot be segmented into the base consonant and matra. These may need

to be dealt with as opaque symbols and exceptions in a divide and conquer recognition strategy.

Figure 1.2: Combination of consonants resulting in a distinct conjunct character in Devanagari

6

1.5.2 Two-dimensional Structure

As is evident from Fig. 1.1, matras or vowel diacritics can occur to the left, right, bottom, top,

or even as multiple components surrounding the base consonant. Some possible vowel matras

for a consonant symbol in Devanagari are shown in Fig. 1.3(a). In Fig. 1.3(b), a two-part

matra with components occurring on the left as well as on the right of a base consonant in

Tamil is shown. Similarly, half-consonant forms in consonant conjuncts can occur in different

positions around the base consonant. In the case of Telugu, they are aligned vertically below

the consonant as shown in Fig. 1.3(c). Position is also important to distinguish certain matras

and consonant forms that have very similar shapes and differ only in their position relative to

the base consonant e.g. half-consonant /n/ and matras /e/ and /uu/ shown in Fig. 1.4. Thus

Indic scripts exhibit a two-dimensional structure much like the CJK scripts. Modeling Indic

characters for recognition in terms of the constituent strokes or graphemes requires modeling

of their spatial relationships in addition to their shapes. Further, the two dimensional structure

results in added variability in symbol and stroke order across writers, unlike the linear left-to-

right ordering of the Latin script.

(a) (b) (c)

Figure 1.3: Two-dimensional structure: (a) some possible matras for a consonant in Devanagari
(b) two-part matra surrounding the consonant in Tamil (c) consonant conjunct in Telugu

Figure 1.4: Similar-looking half-consonant and matras varying only in their position relative to
the base consonant /ta/

7

1.5.3 Inter-class Similarity

In certain Indic scripts, there is intrinsically high inter-class similarity between some pairs of

symbols. Fig. 1.5(a) shows two characters from Malayalam that look very similar except for the

small loop present in the first. Fig. 1.5(b) shows two Tamil characters with a subtle difference

in the shapes of their matras. This calls for reliable, highly distinctive features to describe the

shapes of characters and graphemes.

(a) (b)

Figure 1.5: Similar-looking characters in (a) Malayalam (b) Tamil

1.5.4 Issues with Writing Styles

Indic scripts with the exception of Urdu are written as a left-to-right sequence of characters

(syllabic units). As already discussed, the characters themselves have two-dimensional ar-

rangements of graphemes corresponding to consonants, vowels and vowel modifiers. Since

characters can vary widely in width, height and complexity, there is no boxed style. This is a

key difference from CJK scripts wherein characters are complex but of approximately the same

size and may be written in boxes.

In general, character transitions are marked by pen-lifts. Writing an entire word cursively

is possible in some Indic scripts (e.g. Bangla), but rare. However cursiveness is common within

characters, and found generally wherever a pen-up requires additional effort.

While writing a character, users are generally concerned with reconstructing its visual

appearance rather than its phonological structure. Various factors such as the relative positions

of different strokes, the effort required to move from one stroke to the next given the overall

flow of writing, and writing styles taught in school - all have an influence on the stroke order

that is eventually used. The consequences for Online HWR are many:

8

Different character forms

An Indic character could be written in different forms that are identical phonetically but signif-

icantly different in their visual appearance. As a result, a given character with a single UNI-

CODE value could have more than one representation in terms of the constituent symbols. Fig.

1.6 shows two different ways of writing the same conjunct character /nna/ in Devanagari (UNI-

CODE value 0928-094d-0928). It is important to take into account such alternate forms when

lexicon entries encoded in UNICODE are used for recognition.

Figure 1.6: Two different ways of writing the Devanagari character /nna/

Symbol Order Variations

The sequence of writing of consonant and vowel units in a character need not correspond to

the phonological order of their occurrence in the corresponding syllable. For instance, the ‘ ’

matra in Tamil is often written before writing the base consonant, since it occurs to its left.

In contrast, the UNICODE representation of CV characters in Indic scripts is based on their

phonological structure, and always encodes the consonant before the vowel. Fig. 1.7 shows an

example from Devanagari where a character contains two symbols (marked in different colors).

While one might expect the base consonant (shown in black) to be written first, the order of

writing is likely to vary across writers.

Figure 1.7: Symbol order variations within a character

Stroke Order Variations Spanning Multiple Symbols

Strokes from different graphemes may be interleaved while writing a character. For example,

a two-stroke matra may be written partially and completed only after the base consonant is

9

written. This is somewhat related to the phenomenon of delayed strokes in English, wherein

some strokes are entered only after the completion of the entire word. However for Indic scripts

this happens at the level of individual characters, and the variations are widespread and not

limited to a small number of strokes such as t-crossings and i-dots in English. Further, because

of the 2-D nature of the scripts, it is often not possible to use heuristics to reorder out-of-order

strokes as is common practice for dealing with delayed strokes in English.

Stroke Number, Order and Direction Variations within Symbols

In general, stroke order, number and direction variations are quite high in Indic characters and

constitute one of the central challenges in online recognition of Indic scripts. For example,

Fig. 1.8 shows different styles of writing the consonant /pha/ in Devanagari, where each style

(shown along the columns) differs in the number and/or the order of strokes.

Figure 1.8: Writing styles identified for a Devanagari character

1.5.5 Language-specific and Regional Differences in Usage

Marked differences in the use of symbols may be observed in the use of a script like Devanagari

across languages such as Hindi, Sanskrit, Marathi and Nepali. For instance, the halanth (vowel

muting diacritic) and the CH form are used frequently in Sanskrit, but rarely in Hindi. The

shapes of symbols may also show regional variations, influenced by other languages and scripts

in use in the region and its surrounding areas. Due to the fact that languages such as Tamil

and Bangla span multiple countries, one may also expect country-specific differences in the

use of the corresponding scripts. In all these cases, models of symbol shape, as well as any

language models, used by the handwriting recognition system to improve accuracy need to be

10

appropriately customized for the specific language or region.

1.5.6 Comparison with Latin and CJK Scripts

Figure 1.9: Some challenges for Online HWR of Devanagari script

The challenges for online recognition of Indic scripts are sufficiently different from those

for Latin. Chief among them as already mentioned are the large number of classes, the stroke

order and number variations within and across characters, and the two dimensional nature of

the script. There are several others. For example, small vowel modifiers may get interpreted as

noise in the input, and the shirorekha or headline which is often written after completing the

word requires special treatment (Fig. 1.9).

Indic script recognition also differs from that of CJK scripts in a few significant ways. In

the case of CJK scripts, the shape of each stroke in a character is generally a straight line and

hence stroke direction based features are often sufficient. But in the case of Indic scripts, the

basic strokes are often nonlinear or curved, and hence features that provide more information

than just the directional properties are required. Moreover, in CJK scripts, a word is generally

written discretely and hence segmenting it into characters is much easier when compared to

Indic scripts where the most common style of writing is run-on. Table 1.1 summarizes the

salient characteristics of Indic, Latin and CJK scripts from the perspective of Online HWR.

1.6 Outline of Thesis

In this thesis, we address the problem of online handwritten word recognition for Indic scripts.

In contrast to prior approaches, we propose techniques that are script-independent and data-

driven, involving minimal manual intervention during training, and validate our approach for

two important Indic scripts - Devanagari and Tamil. Devanagari, being the script used for

11

Table 1.1: Comparison of Indic, Latin and CJK scripts

Property Indic Latin CJK

writing system
syllabic

alphabet
alphabetic

Chinese and Kanji:

pictographic-ideographic,

Kana: syllabary, Hangul:

syllabic alphabet

number of units > 1500 < 100

Chinese and Kanji: few

thousands, Kana: 48,

Hangul: few thousands

common style of

writing a word
run-on cursive discrete

structure of writing 2-D 1-D 2-D

stroke shape

complexity
high high low

stroke order/number

variation
high low high

languages such as Sanskrit, Hindi (500 million speakers), Nepali (30 million speakers), Marathi

(70 million speakers) and Konkani, is by far the most significant Indic script. Tamil, on the other

hand, has 80 million native speakers and substantial global presence, being a national language

of countries such as Singapore, Malaysia, and Sri Lanka. Our approach uses HMMs to model

strokes, symbols and words in the script. HMMs are suitable for handwriting recognition for a

number of reasons. Since these are stochastic models, they can cope with noise and variations in

the handwriting. The observation sequence that corresponds to features of an input word can be

of variable length, and most importantly, word HMMs can solve the problem of segmentation

implicitly.

When handwritten symbols are modeled using HMMs, an important problem to address

is modeling variations in writing style of individual symbols. Variations in writing style at the

symbol level result from variations in the shape, position, number, ordering, or direction of the

constituent strokes. In this work, the writing styles of a symbol are automatically discovered

from the training data and a stroke-based modeling approach is adopted to represent them. A

12

novel technique based on constrained stroke clustering that exploits constraints in the handwrit-

ing domain is proposed to identify the optimal set of strokes and styles in the dataset.

For word recognition, we explore lexicon-driven and lexicon-free approaches based on

HMMs. The lexicon-driven approach represents the words in the lexicon as a prefix-tree as-

suming a standard symbol order. In order to deal with symbol order variations, we propose a

lexicon-free approach that uses a novel Bag-of-Symbols representation of words.

In this thesis, we also propose a novel Input Method Editor named FreePad, that allows

one to “overwrite” a complete word on a small touch surface by ignoring the standard left to

right writing order and the relative positions of the strokes. For recognition of such position-free

handwriting, we apply the symbol modeling and word recognition techniques developed earlier

for normal handwriting, but with a different preprocessing step that operates at the stroke level.

The high-level architecture of our word recognition system is shown below in Fig. 1.10.

The input word is first preprocessed to address writer-specific variations in size and speed of

the handwriting. Then features are extracted at each point on the trajectory. During training,

different writing styles of each symbol are automatically identified, and symbol models that

share strokes are built. These symbol models are used along with the lexicon for recognition of

a feature-extracted word sample.

Training

Phase

Recognition

Phase
Feature

Extraction

Word Recognition

Lexicon-driven

Lexicon-free

Discovering

Writing Styles

Stroke-shared

Symbol

Models

Lexicon

Test Word

Sample

Symbol-labeled

Word Samples

Recognition

Result

Preprocessing

Training

Phase

Recognition

Phase
Feature

Extraction

Word Recognition

Lexicon-driven

Lexicon-free

Word Recognition

Lexicon-driven

Lexicon-free

Discovering

Writing Styles

Stroke-shared

Symbol

Models

Lexicon

Test Word

Sample

Symbol-labeled

Word Samples

Recognition

Result

Preprocessing

Figure 1.10: High-level architecture of the word recognition system.

In the next chapter, an overview of the OHWR literature for Latin, and Chinese, Japanese

13

and Korean scripts, with an emphasis on HMM-based approaches, is presented along with the

research to date for online Indic script recognition. Chapter 3 describes the different stages

in the creation of word datasets for Devanagari and Tamil in order to support the training and

evaluation of our system. These include definition of appropriate symbol sets for these scripts,

data collection from a large number of writers, and annotation (labeling) of the collected word

samples at the symbol level. In Chapter 4, the steps of preprocessing and feature extraction are

described, along with an algorithm for shirorekha detection for the Devanagari script. Chapter

5 describes our approach for modeling symbols using HMMs, based on constrained stroke

clustering for automatically identifying writing styles from the dataset. Using these symbol

models, we propose and evaluate lexicon-driven and lexicon-free recognition strategies for word

recognition for both Devanagari and Tamil in Chapter 6. Our novel BoS representation for

words to address the problem of symbol order variation is also described and evaluated in this

chapter. In Chapter 7, we describe our solution for Indic handwriting input on small, touch-

based mobile devices and evaluate the recognition accuracies of position-free handwriting for

both Devanagari and Tamil. Conclusions and future directions for our research are outlined in

the final chapter.

14

Chapter 2

Literature Review

This chapter presents an overview of prior work and common strategies for online recognition

of Latin and CJK scripts, with a special emphasis on HMM-based approaches. This is followed

by a detailed discussion of the state of the art for Indic script recognition covering features,

classification techniques and systems for isolated character and word recognition.

2.1 Latin Script Recognition

The Latin script falls into the category of “alphabetic” writing systems. An alphabet consists

of a set of letters, and the letters are written sequentially to form words. The Latin alphabet

consists of 52 letters (both uppercase and lowercase), ten numerals, punctuation marks and

some symbols such as &, $ and @. Some languages that use the Latin script have diacritical

marks (accents) added to the fundamental letters. A Latin word is written from left to right

and often cursively in one stroke, except for the diacritical marks, dots in ‘i’ and ‘j’, and ‘t’

and ‘x’ crossings. Recognition of cursive words is considered a difficult problem [12] due to

ambiguous character boundaries, co-articulation effects on the shape of a character due to its left

and right neighbors, and the existence of ligatures (inter-letter connecting patterns). A summary

of strategies for Latin script recognition is presented in the following subsections.

2.1.1 Segmentation-based Approach

The segmentation-based approach is also referred to as the ‘analytical’ or ‘model-based’ ap-

proach [1]. The word is broken down into simpler recognition units and the recognition results

on the individual units are then combined to form the word hypotheses. The recognition units

15

may be characters or sub-characters. Identification of characters or sub-characters in a cur-

sive word is not an easy problem. To illustrate the difficulty in segmentation, ambiguities in

segmenting the cursive word ‘invade’ are shown in Fig. 2.1. To identify the subunits from

a word sample, two approaches are commonly followed - explicit segmentation and implicit

segmentation.

Figure 2.1: Segmentation ambiguities in the cursive word invade (adapted from Madhvanath
and Govindaraju [1])

Explicit segmentation - Explicit segmentation is a ‘double segmentation’ process [13].

In the first stage, also know as ‘pre-segmentation’, graphemes (subunits of a word) are ex-

tracted from the word using landmark features. Each grapheme could correspond to one or

more characters in the word. In the second stage, the segmentation points or boundaries are

modified using contextual information (or recognition). Explicit segmentation is often error

prone because of Sayre’s paradox [14]: “To recognize a letter, one must know where it starts

and where it ends; to isolate a letter, one must recognize it first”. The simplest way to carry out

explicit segmentation is by constraining the writing, as with the boxed or discrete forms. In the

case of non-cursive and discrete character writing, vertical projections of the handwritten word

provide cues for segmentation. However, in the recognition of unconstrained writing, explicit

segmentation is usually carried out by applying heuristics. An example of this approach is the

early work of Frishkopf and Harmon at Bell Labs in the 1960s. Their approach was based on

detecting “landmark” features such as ascenders and descenders in a word. Segments are then

determined by centering landmarks within the estimated character width. However, the scheme

does not work for characters such as ‘u’, ‘n’, ‘m’ etc. which do not contain landmarks.

Implicit segmentation - Implicit segmentation bypasses the segmentation problem by

adopting the strategy of ‘over segmentation’. The word is split into several small pieces with

the only criterion that none of the pieces should contain parts of more than one character. In

16

other words, the intention is that the actual segmentation points are always a subset of the seg-

mentation boundaries obtained by over segmenting the word. The right groupings of segments

that could form characters are then determined based on recognition results. Contextual infor-

mation such as lexicon may also be used for this purpose. As a result of recognition, the word

is automatically segmented into characters. Hence, segmentation is a byproduct of recognition.

For this reason, this approach is also known as ‘recognition-based segmentation’ [15]. The two

most popular techniques employed for implicit recognition are Dynamic Programming (DP)

and HMMs.

2.1.2 Segmentation-free or Holistic Approach

Techniques that follow the segmentation-free or holistic approach circumvent the problem of

segmentation completely by considering a word as a single indivisible unit. Holistic methods

follow a two-step process [13]. In the first step, high level features such as ascenders, descenders

and word length are extracted from the word. In the second step, the features are compared with

those of words present in the lexicon and the most similar word is considered the recognition

result. The training of holistic recognition algorithms is inseparable from the lexicon because

adding a new word to the lexicon typically requires retraining the recognizer with the samples

of that word. When the lexicon is large, similarities between words increase and hence the

recognition accuracy deteriorates. Therefore, the approach works well only for applications

featuring static and small lexicons such as bank check recognition and postal mail sorting.

However, the approach has its own advantages. It is robust as it deals with global word shape

and is not as sensitive to local shape variations that are predominant in unconstrained writing.

Holistic methods are believed to perform better than segmentation-based methods when the

word is badly written and segmenting it into constituent characters is virtually impossible (Fig.

2.2).

Figure 2.2: A badly written sample of the word Malaysia

17

2.1.3 Human Reading Inspired Approach

Findings from research on human reading capability have inspired the development of recog-

nition systems that attempt to model the human reading process. These systems can be either

segmentation-based or holistic, based on the underlying theory. Word superiority effect [14] -

the observation that it is easier to recognize a letter embedded in a word than in isolation is one

such finding. In other words, this effect describes the influence of the word context on the in-

dividual letter recognition. A system developed based on this theory is described by Vinciarelli

[14]. The architecture of the system consists of three levels corresponding to features, letters

and words. The levels are interlinked and work in parallel. The output from a particular level

inhibits or excites the neighboring levels. For instance, detection of an ascender in the feature

level excites letters such as ‘l’ and ‘k’ but inhibits ‘s’ and ‘o’ at the letter level. Similarly detec-

tion of a letter can excite a word at the word level, which in turn can provide feedback to excite

a letter that was not previously detected at the letter level. The inhibitory links work in a similar

fashion to reduce the excitation of incompatible letters or words.

An experiment to uncover the usage of geometrical features by human readers for the Latin

script was carried out by Schomaker and Segers [16]. The experiment was based on enhancing

an obscured handwritten word image under a time constraint. The results show that humans

pay most attention to the initial and final parts of the word. The results also confirm the findings

of previous studies that the sequence of ascenders, descenders, crossings and points of high

curvature in the handwriting pattern aid the recognition process.

Steinherz et al. [17] argue that human reading does not happen from left to right; instead, it

always tries to identify characters which can be recognized without any ambiguity. Handwritten

word recognition based on this theory of human reading works as follows. Letter templates

are represented as sequences of features. The features extracted from a handwritten word are

compared with the letter templates, and presence or absence of a letter is determined. Features

that do not match with any letter template are denoted by blank spaces. The temporary string

containing hypothesized letters and blank characters is then replaced with the most similar string

in the lexicon.

Word Ending Postulation technique suggested by Powalka [18] is also based on theories

of human psychology. People often get sloppy when they are about to complete writing a word.

Readers cope with this by using the beginning part of the word, and the context to resolve the

identity of the word. Powalka’s approach attempts to break up the word into the ‘stem’ (distinct

18

part) and the indistinguishable segment that needs to be postulated. The postulation point is

determined relative to the word length. Recognition of the stem shortlists candidate choices

from the lexicon, and the characters in the rest of the word are postulated using features such

as the number of vertical down strokes and the width of the segment present in the illegible

portion.

2.1.4 HMM-based Approaches

The application of HMMs to Latin script recognition has its roots in speech recognition where it

has seen remarkable success. Indeed there are many HWR systems [19] for Latin script built by

just replacing the features in existing speech recognition systems with features from handwrit-

ing. This is because of the similarities between speech and cursive handwriting. Both speech

and handwriting can be considered as signals varying over time. The phonemes in speech cor-

respond to characters in handwriting. Both need to handle co-articulation effects, and another

important similarity is that both can make use of language models for improving recognition

accuracy. However, there are also dissimilarities. Unlike in speech, word segmentation in Latin

HWR is relatively simpler. Further, preprocessing of handwriting has seen greater success than

speech because judging the uniformity achieved does not require expertise as it is often visually

evident [20]. On the other hand, Latin script HWR suffers from the issue of delayed strokes (or

stroke order variation in general) which is not applicable to speech.

The most commonly used HMM topology for both speech and handwriting is the left-

to-right model, also know as the Bakis model. One may further constrain the model by not

permitting state skipping, resulting in a strictly left-to-right HMM. In this model (Fig. 2.3), the

state index is non-decreasing as time increases, the state transition probability aij is zero for all

j < i and j > i + 1, and πi = 1 only when i is equal to one, or else it is zero. It is interesting

to note that there is no evidence that models allowing more complex state transitions would

result in better recognition accuracy [20]. These left-to-right HMMs intrinsically impose the

temporal order of the signal, wherein preceding states account for observations earlier to those

of subsequent states [21].

Most of the efforts for Latin script recognition use HMMs to model isolated letters, and

for modeling words, the constituent letter models are concatenated [13, 15, 14]. The advantages

of such an approach are: (i) The model set does not increase with the size of the vocabulary

and (ii) Adding a new word to the lexicon does not require training of the models. Oh et al.

19

state index i : 1 2 3 4

Figure 2.3: Left-to-right HMM without state skipping

[22] see a handwritten word as an alternating sequence of characters and ligatures, and propose

a circularly connected network with each edge containing a character or a ligature model. Due

to this circular topology, the network is capable of recognizing words of arbitrary length. For

training the system, isolated character samples are collected for each style (cursive and discrete)

and HMMs are built for each style of the character.

A two-stage approach which combines implicit and explicit segmentation is proposed by

Cavalin et al. [23]. Two different sets of character models trained on different features are

employed in stages. In the first stage, the character models in the first set are concatenated

to form word models and by implicit segmentation (recognition-based segmentation) possible

segmentation points are identified and the topN hypotheses are determined. In the second stage,

the other set of character models which use different features is used to score the segmentation

obtained for each character in the first stage just on the basis of recognition confidence. The

combination of the two scores is used to re-rank the hypotheses and the results are found to be

better than using only the first stage.

Hu et al. [20] use a left-to-right HMM without any state skipping and the basic model-

ing units are called “nebulous stroke models”. The authors call them “nebulous” because these

stroke segments are learnt automatically from the training data and do not correspond to any

logical writing unit. Nebulous stroke models are concatenated according to the sequence speci-

fied in the character lexicon to form the character model. The advantages mentioned for having

shared stroke models are a reduced model set, and having a large number of training samples

available per model. The word model is formed by concatenating the individual character and

ligature models but the ligature models are allowed to be bypassed in the network to support

mixed (cursive as well as discrete) styles of writing.

An HMM topology consists of number of states, connectivity between the states and num-

ber of Gaussians used to model the feature vectors in a state. The work by Li et al. [24] deals

with optimizing the HMM topology for handwriting recognition. The number of states in a

model should ideally depend on the complexity of the character being modeled. For instance

20

it may not be appropriate for the characters ‘.’ and ‘W’ to have the same number of states.

This is made possible by having the number of states be a fraction of the average number of

feature vectors per sample of a class or the mode of the feature-vector-count histogram of the

class. This is shown to yield better performance than having the same number of states for all

the letters. Li’s work uses Bayesian Information Criterion (BIC) to find the optimal topology,

which is found to produce results comparable with that of heuristic-based approaches, but with

fewer parameters. The work also suggests that when each style of lexeme (letter allograph) is

modeled by a separate HMM, robustness to writer style variability increases.

Zimmermann and Bunke [25] also compare different schemes such as fixed length model-

ing, Bakis length modeling and quantile length modeling, to optimize the number of states in a

left-to-right HMM used for handwriting recognition. In the work of Han Shu [26], fixed length

modeling where each letter is modeled by a seven-state left-to-right discrete HMM is employed.

Word models are then formed by concatenating the letter models.

Nathan et al. [27] address the space and time complexity issues involved in applying

HMMs for real-time recognition of unconstrained handwriting. A two-stage approach involving

“fast match” in the first stage followed by a “detailed match” is proposed. In the fast match

stage, a single state degenerate model is used to represent a character. The top N results are

then subjected to the detailed match, which re-ranks the recognition results.

2.2 CJK Script Recognition

Due to the pictographic-ideographic nature of CJK scripts [7], they pose different challenges for

OHWR compared to the Latin script. The complexity of CJK character recognition is said to

be comparable with that of Latin word recognition [7]. For instance, the basic building units for

Latin words are characters, whereas radicals combine together to form Chinese and Japanese

characters. Similarly, in the case of Korean Hangul script, there are 51 graphemes consisting

of vowels and consonants. These graphemes are combined based on certain rules and arranged

in a two-dimensional fashion to form a character. Ligatures are common within and between

graphemes, but not across characters.

While numerous approaches have been proposed for online CJK character recognition

[6, 7], we only describe HMM-based approaches in this section.

21

2.2.1 Challenges for Recognition

The recognition challenges in CJK script recognition are different from those in Latin script

recognition. In this section we list these challenges and mention a few techniques that have

been proposed in the literature to address them.

Stroke-order variation - A multi-stroke character can be written in different ways by fol-

lowing different stroke orders. Even though the overall shape of the character doesn’t change

with different stroke orders, the change in temporal sequence of strokes poses problems to an

online recognizer. Integrating techniques from offline recognition can help solve this problem of

stroke-order variation [28]. Methods based on graph (e.g. Attributed Relational Graph (ARG)

[29]) matching, and stroke correspondence [6] also address the problem. In a complete ARG,

the nodes represent stroke segments and the edges describe the relations between the segments.

The shapes of stroke segments are described by their direction codes and length. The relation-

ship between two stroke segments is described using the relative locations of their bounding

box centers as (top, below, or aligned), (left, right, or aligned), and whether they cross each

other or not.

Stroke-number variation - In cursive Chinese or Korean character writing, two or more

strokes can be written in a single stroke causing the stroke number to differ from the standard

form of writing the character [28, 30]. The inter-stroke connecting patterns, known as ligatures,

also form the principal source of shape variations. Such cursive writing needs to be segmented

before recognition. In the work by Sin and Kim for Korean character recognition [31], the

problem of stroke-number variation is addressed by modeling ligatures as separate entities along

with the grapheme models.

Shape variations - The same character, even if written using a particular stroke order

and number, may differ in shape especially across different writers. To handle such variations,

a two-stage classification scheme is proposed by Wakahara and Okada [28]. The first stage

performs rigid stroke matching and identifies potential candidates. In the second stage, Stroke-

based Affine Transformation (SAT) is applied on the input pattern for each of the candidates

from the first stage. The transformed input pattern represents the deformation required to match

with the reference pattern. The reference pattern which has the minimum distance with the

deformed input is declared as the recognized character.

Handling the 2-D nature of the script - Latin characters are normally written in one

stroke except for delayed strokes and the diacritical marks over the lowercase characters. These

22

diacritical marks are typically identified using simple heuristics before the recognition of the

main stroke is handled. However in the case of CJK, each character is often written in several

strokes at different positions (left, right, top or bottom) within the character. Due to the two-

dimensional nature of these scripts, unlike in Latin script recognition, spatial information about

the constituent strokes plays an important role.

Spatial information can be captured in two forms: absolute and relative. Absolute posi-

tion of a component (grapheme or stroke) in a character is often determined with respect to the

bounding box of the character. Relative positions are determined with respect to other compo-

nents in the character. Absolute position information is effective for simple characters whereas

relative position information improves accuracy for complex characters [32]. Marukatat and

Artieres [32] encode the spatial information between strokes in a character using discrete and

continuous attributes. Discrete attributes described include vertical position (above/aligned/below),

horizontal position (left/aligned/right) and connectivity (touching or not). Continuous attributes

corresponding to a stroke include fraction of its bounding box area that is above, below or

aligned with the bounding box of another stroke. Attributes that take into account the directions

of the strokes are also described.

2.2.2 HMM-based Approaches

Due to the two dimensional nature and stroke order/number variations in CJK scripts, HMMs

are not as popular as they are for Latin script recognition [7]. Most of the efforts that apply

HMMs for CJK scripts try to break a character down into subunits (radicals, or consonant and

vowel graphemes) and then use HMMs to model these subunits.

Kim et al. [33] apply HMMs for Korean character recognition. An HMM network is built

to represent the entire set of characters wherein each path corresponds to a Korean character.

Since searching through all the paths in the network is computationally very expensive, the

authors propose an efficient modified level building algorithm whose time complexity is depen-

dent on the number of graphemes and ligature models in each level, and not on the number of

search paths. The graphemes and ligatures are modeled using left-to-right HMMs trained us-

ing samples manually segmented from characters. A modified level building algorithm is also

employed for Chinese character recognition by Kim et al. [34]. The Chinese characters are

represented by a finite state network which also incorporates the grammatical constraints that

exist in the radical sequences to form characters. The major disadvantage of the approach is

23

that it does not handle stroke order variation.

Sin and Kim [31, 35] propose a network of HMMs called BongNet, for recognition of the

characters in the Hangul script. Each HMM models a grapheme or a ligature pattern. While

each node in the network represents a cluster of similar graphemes, the transitions represent

ligature classes. A path from the start node to the end node corresponds to a Hangul character.

The network also accounts for relative position between the graphemes in each character by

clustering the graphemes based on end point of the previous grapheme and start point of the

following grapheme. The maximum probability path through the network corresponds to the

recognized character.

A substroke-based approach for online Kanji character recognition is proposed by Nakai

et al. [36]. The Kanji character set has around 6000 characters. As a result, building character-

level models requires a large amount of training data and may not fare well in terms of space

and time complexity required for real-time recognition. To overcome these problems, substroke

models are proposed. Twenty five substrokes based on the eight directions are classified into

four categories: long pen-down strokes (8), short pen-down strokes (8), pen-up strokes (8) and

pen-down-up stroke (1). Delta x and delta y features are extracted from the input ink and the

substrokes are modeled using HMMs (3-state HMMs for pen-down substrokes and single state

HMMs for pen-up substrokes). After the substrokes are defined, for all the Kanji characters, a

hierarchical dictionary (Fig. 2.4) is built manually. In the hierarchy, the character occupies the

topmost level, followed by the radicals that make up the character and finally the sequence of

substrokes that form the radicals at the bottom level. To deal with the problem of stroke-order

variation, alternate substroke sequences are defined in the dictionary. One major advantage of

this approach is the possibility of writer adaptation with fewer samples. Since the substroke

model set is shared across all the characters, samples of a few characters are typically sufficient

to train the rest. However, the limitations of this approach are: (i) substantial effort is needed

to build the dictionary of character, radicals and substroke sequences, (ii) the technique cannot

handle unseen stroke orders. Context-dependent substroke models using the same approach

are described by Tokuno et al. [37]. These models incorporate not only the variations in a

substroke, but also the co-articulation effects due to preceding and succeeding substrokes.

Hasegawa et al. [38] propose a discrete HMM for the problem of Japanese character

recognition. The slope features obtained from the input ink trajectory are quantized and used

along with pen-up/pen-down information. Each character is modeled by a left-to-right HMM.

24

Figure 2.4: Hierarchical representation for Kanji character recognition

In order to deal with the stroke order and shape variations, separate models for different styles

are created. The decision to create a separate model is taken based on the normalized log-

likelihood ratio – the ratio of the likelihood of a trained model H producing a trained sample,

to that of the likelihood of model H producing the current input sample. If this ratio exceeds a

predefined threshold a new model is created and trained using the input sample.

2.3 Indic Script Isolated Character Recognition

In the first chapter, we saw that characters (syllabic units) of varying complexity form the basic

building blocks of Indic scripts, and are difficult to recognize for a number of reasons. A

number of early efforts in the literature have focused on recognition of simple characters such

as independent vowels and isolated consonants. The primary challenges in recognizing these

characters, as previously outlined, come from their number, shape complexity and symbol and

stroke order variations.

2.3.1 Strategies

There are several strategies possible for recognition of isolated characters:

1. Characters may be viewed as compositions of strokes

2. Characters may be viewed as compositions of C, C’, V and M graphemes

3. Characters may be viewed as indivisible units

In the stroke-centric strategy [39, 40, 41, 42], a set of unique stroke shapes that constitute

all characters is found and characters expressed as combinations of these strokes. The number

25

of unique strokes in most Indic scripts is believed to be less than 300. A key problem with this

strategy is that these strokes are not known in advance for a given script, and are a function

of writing styles. The determination of unique strokes is performed manually by analysis of

training data, and are estimated as 123 and 98 for Devanagari and Tamil respectively [42].

However these approaches are rule-based, script-specific and may require significant manual

intervention in the training phase.

The second strategy leverages the internal graphemic structure of the character. Recogni-

tion of a character is a result of recognizing the (much smaller set of) constituent graphemes.

Potential segmentation points are typically at stroke transitions, and alignment using Dynamic

Programming may be used for segmentation. HMMs may also be used to solve this problem

implicitly. For Telugu script recognition [43], basic graphemes including core characters and

ligatures, summing up to 141 when their positions are ignored, are manually identified and then

HMMs are used to model each one of them. A major advantage of this strategy is the reduced

effort involved in data collection as only samples of the identified graphemes are required. In

its simplest form, this strategy does not address stroke order variations across symbols in the

character, symbol order variations, co-articulation effects, and the cases where opaque symbols

are created by CC and CV combinations. It is highly effective when constraints may be imposed

on the writer to aid recognition.

The last strategy of treating complex characters directly as pattern classes has to deal with

their large numbers. It also requires large quantities of data for training. Consequently this

strategy has been explored primarily for simple characters such as isolated vowels and conso-

nants in different Indic scripts. It has also been used for Tamil characters, which as mentioned

earlier are limited in number due to the linearization of consonant conjuncts [44, 45, 41, 46].

An obvious advantage of this strategy is that standard character recognition techniques in the

literature may be used without much knowledge of the structure of the script, as is evident

from the results of the Tamil character recognition competition organized in conjunction with

IWFHR-10 [47]. Joshi et al. [48] assume that Devanagari can be “linearized” like Tamil by

constraining writers to unravel consonant clusters into sequences of vowel-muted consonant

characters. The linearization assumption reduces the number of characters to 441 - still a large

number - when vowel modifiers are not considered. An accuracy of around 90% is reported for

writer-dependent recognition using the subspace based method.

26

2.3.2 Preprocessing

Preprocessing techniques for Indic scripts are similar to those used for other scripts. Dehook-

ing, smoothing, resampling, size normalization etc. are commonly performed. In the work by

Swethalakshmi [42], different types of size normalization for Devanagari strokes are investi-

gated. Genetic Programming has also been explored as a way of designing an optimal scaling

function that reduces classification error [49].

Nonlinear normalization which has been found to be effective for CJK scripts does not

appear useful for Indic scripts [42]. In the case of Devanagari, the shirorekha is often detected

and removed prior to recognition. During word recognition the shirorekha also serves as a

valuable cue for detecting core lines.

2.3.3 Features

Features used for Latin scripts have been found to be useful for Indic scripts as well. Low-

level features such as the normalized x and y coordinates have been widely used. Additional

features such as normalized first and second derivatives and curvature have shown promising

results for Tamil and Telugu [50, 51]. Structural features such as cusps, bumps, loops and semi-

loops have also been explored for Tamil [41, 52] and Devanagari [42] character recognition. In

some early work on Tamil character recognition [53], angle features, Fourier coefficients and

Wavelet features are compared using a Neural Network classifier. Angle features are shown

to be susceptible to noise leading to high intra-class variability. On the other hand, Fourier

coefficients do not capture subtle differences between two characters as the change in the values

of x and y over a small interval of time gets nullified over the entire frequency domain. Wavelet

features are shown to be the most effective for Tamil as they retain both the intra-class similarity

and inter-class differences. In general, directional coding approaches popular for CJK scripts

are not effective for Indic scripts since the strokes do not have simple shapes.

In the work of Toselli et al. [50], a combination of time-domain and frequency-domain

features is shown to improve recognition accuracy on Tamil characters. For Telugu character

recognition, Rao and Ajitha [54] propose the use of x and y extrema, direction of pen mo-

tion (clockwise/anticlockwise) and relative displacement from the previous point of the same

extrema category (x or y).

Offline features which model the input as a raster image rather than a trajectory may

27

also be used to improve recognition accuracy when compared to using online features alone

[55]. Being invariant to stroke order, number and direction variations, offline features are very

promising in the context of Indic script recognition.

2.3.4 Classification

A number of different classification techniques have been applied to the problem of Indic script

character recognition. While some approaches [42] are aimed at recognizing all the characters

in the script, others [55, 43] only address specific subsets. These classification approaches may

broadly be categorized as follows:

• Template matching

• Rule-based approaches

• Neural Networks

• Hidden Markov Models

• Subspace-based approach

Template matching - In this approach, the features extracted from the test character are

compared with those of stored prototypes or templates. The test character is assigned the label

of the template that is most similar to it. The templates could either be samples selected from

the training set or a categorical representation [56]. In the context of Indic script recognition, ef-

forts based on template matching are aplenty and a majority of them have reported encouraging

results. For example, a two stage classification scheme [46] using Nearest Neighbor (NN) clas-

sifiers is described for writer-dependent Tamil character recognition. The first stage filters the

templates based on the Euclidean distance from the test sample, and the second stage computes

the more expensive Dynamic Time Warping (DTW) distance (Fig. 2.5) from the shortlisted

templates. The label of the nearest template is assigned to the test sample.

The same scheme has also been applied for writer-independent Telugu and Tamil character

recognition using a different set of features [51]. For the problem of Telugu character recog-

nition, Rao and Ajitha [54] perform a coarse matching with the templates using the number of

X-Y extrema points in the test sample and a fine matching using Dynamic Programming.

In another effort on Tamil character recognition [57], templates are identified from the

training set using Agglomerative Hierarchical Clustering and Learning Vector Quantization

28

(LVQ) with DTW as the distance measure. A DTW-based NN classifier is then employed

for matching the test sample.

Figure 2.5: DTW for matching two samples of a Tamil character

Rule-based approaches - These approaches do not have an explicit training phase; instead

they exploit human knowledge about the problem. The task of classification now becomes

a deterministic verification procedure. Although the approach has the advantage of requiring

minimal training data, it suffers from being labor-intensive and highly script-specific. Another

disadvantage is that the approach typically does not provide alternate recognition choices. In a

recent effort on Devanagari character recognition [42], strokes are first classified using Support

Vector Machines (SVM) and predefined rules are then used for grouping the stroke labels into

characters.

In the work of Ranade [56] for the Devanagari script, a set of stroke templates is derived

from analysis of common writing styles of different Devanagari characters, and each character

is represented by a set of combinations of these stroke templates.

In another effort [41], Tamil strokes are represented as strings of shape features. In order

to recognize an unknown stroke, its equivalent feature string is computed. The test stroke is

then identified by searching the database using a flexible string matching algorithm. Once all

the strokes in the input are known, the character is determined using a Finite State Automaton.

Prior knowledge about popular writing styles has also been exploited to design a first stage

classifier for Tamil characters [52]. The authors observe that the start of any Tamil character is

either a line, semi-loop or a loop. Accordingly, the candidate choices are pruned during recog-

nition.

29

Neural Networks - In the work of Kunte and Samuel [58], Feed-forward Neural Net-

works with a single hidden layer are used for the recognition of handwritten Kannada charac-

ters. The authors use approximation coefficients derived from Wavelet decomposition on the

preprocessed (x,y) as features for representing characters. The input character is initially clas-

sified into its consonant group (defined as a consonant and any of its vowel combinations), and

separate Neural networks are used for further classification within the consonant group.

The Neural Network based approach is also adopted by Sundaresan and Keerthi [53] for

the recognition of online Tamil characters. Their work compares the performance of Time Delay

Neural Network (TDNN) and a single hidden layer network for the classification task. Due to

the presence of similar-looking characters and high dimensionality of the input, TDNN exhibits

poor performance when compared to the single hidden layer network. The work also studies

the relevance of different features such as (x,y) coordinates, sequence of directions, curvature,

sequence of cosine angles, and wavelet features.

Another example is the use of Multi-layer Perceptrons (MLP) trained on eight-direction

code histogram features for the problem of Bangla character recognition [59].

Hidden Markov Models - While HMMs have been used widely for English character

recognition, they have seen limited application for Indic scripts. Connell et al. [55] use a com-

bination of two HMM classifiers trained with online features, and three NN classifiers each

trained on different sets of offline features, for Devanagari character recognition. The combi-

nation of online and offline classifiers is shown to improve the accuracy from 69.2% (online,

HMM alone) to 86.5%.

HMMs have also been used for Telugu [43] and Tamil [50] character recognition. Each

character is modeled as a left-to-right HMM and a combination of time-domain and frequency-

domain features is shown to result in accuracies higher than using either of them alone.

Subspace based approach - In this approach, Principal Component Analysis (PCA) is

applied separately to feature vectors extracted from the training samples of each class. The sub-

space formed by the first few eigenvectors is considered to represent the model for that class.

During recognition, the test sample is projected onto each subspace and the class corresponding

to the one that is closest is declared as the recognition result (Fig. 2.6). Joshi et al. [48] apply

30

the subspace method to writer-dependent Devanagari character recognition. The shirorekha and

vowel modifiers are pre-classified using heuristics before recognizing the core character using

the subspace method. The approach has also been employed for Tamil character recognition

[44]. In these efforts, the feature vectors used for eigenanalysis are composed of the normal-

ized (x,y) coordinates extracted following equi-spaced resampling of the character trajectory.

Consequently different feature dimensions may not have stable interpretations (e.g. as salient

points along the trajectory), and the method as used is outperformed by DTW-based template

matching [45].

Figure 2.6: Subspace based approach for character recognition (adapted from Balaji et al. [2])

In a recent effort by Sundaram and Ramakrishnan [60], two-dimensional Principal Com-

ponent Analysis is applied for the recognition of Tamil characters. In this approach, multi-

dimensional features extracted at each point of the character sample are stacked in the form a

matrix called the ‘character matrix’. Recognition of a test character is carried out by computing

its Mahalanobis distance to the projection on each character subspace learnt during the train-

ing phase. An accuracy improvement of 3% is reported over the simpler PCA-based method

described previously.

Recognition accuracies of some of the systems described are shown in Table 2.1. The

accuracies in the case of Devanagari are not comparable as the datasets used and the classes

addressed differ widely.

2.4 Indic Script Word Recognition

Word recognition for Indic scripts is a nascent area of research, and published literature on the

topic is limited. The general strategies for word recognition for Indic scripts may be classified

31

Table 2.1: Reported accuracies for Indic script isolated character recognition

System Number
of Classes Features Classification Accuracy

Devanagari

Swethalakshmi
[42]

123
strokes

X-Y coordinates,
Fourier descriptors

and structural
features

SVM and rule-based
stroke regrouping

89.88%

Connell et al.
[55]

40 simple
characters

Online and offline
Combination of HMM

and NN classifiers
86.5%

Tamil
Vision Objects

[47]
156

characters
Online and offline Neural Networks 93.53%

Bulacu M.
[47]

156
characters

X-Y coordinates
NN Classifier using

DTW distance
91.20%

Toselli et al.
[47, 50]

156
characters

Time-domain and
frequency-domain

HMM 90.72%

Telugu

Prashanth et
al. [51]

141 core
characters

and
ligatures

X-Y coordinates,
normalized first &
second derivatives

and curvature

NN Classifier using
Euclidean and DTW

distance
89.77%

Babu et al.
[43]

141 core
characters

and
ligatures

Time-domain and
frequency-domain

HMM 91.6%

Bangla
Bhattacharya

et al. [59]
50 simple
characters

8-direction code
histogram

MLP 83.61%

32

broadly along the lines of those available for Latin scripts (Section 2.1) into analytic approaches

based on explicit segmentation, those based on implicit segmentation, and holistic approaches.

Some efforts that adopt the explicit segmentation approach [48, 61] presuppose that In-

dic scripts may be written as a sequence of space separated or boxed characters. As already

observed, this is not natural given that syllabic units can vary greatly in size and complexity.

Further, there may be multiple ways of decomposing syllabic units into simpler symbols, and

different possible symbol orders adopted while writing in boxed form. However preliminary

studies suggest that “standard” ways of decomposing complex characters and ordering symbols

can be successfully learned as part of a training phase [61].

The stroke-based approach adopted by Swethalakshmi [42] does not require boxed input,

but performs explicit segmentation based on proximity analysis for grouping strokes into char-

acters. Proximity analysis is based on the spatial information between consecutive strokes in a

character. For scripts such as Devanagari where the most proximal strokes need not be consec-

utively written (e.g. /ko/, ‘ ’), a two-stage proximity analysis is proposed. In the first stage,

consecutive strokes are grouped together based on the spacing between their bounding rectan-

gles. In the second stage, character-like units whose bounding boxes overlap with one another

are grouped together. Any residual over-segmentation or under-segmentation of characters is re-

solved in a postprocessing step when the stroke labels are used to classify the characters. Given

the interpretation of individual syllabic units, the best word level interpretation is determined

using a lexicon or other language model.

Explicit segmentation has also been applied for cursive Bangla word recognition [62].

The segmentation points are determined based on the intersection of the ink trajectory with

the computed ‘headline’. Based on the segmentation results, the input word is represented as

a sequence of stroke segments. During recognition, each stroke segment of the test word is

recognized as one of the 73 groups (determined manually during the training phase) using the

Modified Quadratic Discriminant Function (MQDF) classifier. From the stroke labels, the con-

stituent characters are determined through table lookup. Word recognition accuracy of 82.34%

is reported even in the absence of a dictionary or language models. However, since the training

of the system involves significant manual intervention during stroke categorization and con-

struction of the table of character entries, the extensibility of the approach to other Indic scripts

may not be straightforward.

33

2.5 Summary

In this chapter a brief overview of the established approaches for Latin and CJK scripts was

presented, with an emphasis on HMM-based approaches. In the second part of the chapter,

we attempted to provide a bird’s eye view of the state of the research for online recognition of

Indic scripts. It can be seen that research in recognition of larger units of writing such as words

and phrases is at a very nascent stage, and to date, there has been no work on recognition of

unconstrained handwritten words.

34

Chapter 3

Creation of Word Datasets for Devanagari

and Tamil

Given the scarcity of online handwriting datasets for Indic script recognition research, the struc-

ture of the scripts, and ambiguities in representation and lack of common definitions (e.g. for

units smaller than a character), the creation of standard datasets for training and evaluation is the

first challenge one encounters. This chapter describes the methodology we adopted in creating

datasets of handwritten word samples for Devanagari and Tamil.

3.1 Identification of Symbols

It is important to first identify the basic units of writing in the script. These basic units, which

are referred to as “symbols” in the thesis, form the building blocks of our recognition approach.

Figures 3.1 and 3.2 show the symbols we have identified for Devanagari1 and Tamil respectively.

In the list for Devanagari, symbol 0 is shirorekha, symbols 1 to 11 are independent vowels,

symbols 12 to 44 correspond to consonants with implicit vowel sound, 48 to 63, 109 and 110

are matras, symbol 64 is to indicate sentence ending, the half-consonants range from 65 to 95,

and symbols 45 to 47 and 96 to 108 correspond to conjuncts.

In Tamil, symbols 0 to 10 correspond to vowels, 11 (aytham) is a special symbol, 12 to

33 correspond to consonants with implicit vowel sound, and symbols 72 to 80 correspond to

matras. A consonant gets converted to its half form when symbol 72 (vowel-muting diacritic) is

1The symbols for Devanagari are shown with shirorekha, only for better readability. While labeling the word

samples shirorekha is considered as an independent symbol.

35

Figure 3.1: Symbol set defined for Devanagari

placed above it. Symbol 81, which always occurs with 75, and symbol 82 are conjuncts. Symbol

83 corresponds to the period. The rest of the symbols are distinct syllabic units formed by

consonant-vowel combination where both the consonant and the matra have lost their individual

identities, and hence are best represented as unique symbols.

The following important aspects were taken into account while defining the symbol set:

1. Coverage - A general-purpose recognition system is expected to recognize all the charac-

ters and words in the script. Therefore, the symbol set for such a system would have to

be large enough to allow any character (syllabic unit) to be expressed as a combination

of one or more symbols in the set. This is unlike Latin scripts where the symbols for

recognition and the letters in the alphabet are essentially the same.

2. Position - As mentioned in Chapter 1, there are certain matras in the script which are very

similar in shape but vary only in their relative positions in the context of a character. The

position of a matra may also change with respect to the base consonant to which it is

36

Figure 3.2: Symbol set defined for Tamil

attached. For instance, the /uu/ matra in Devanagari appears on the right for /ra/ (Symbol

110 in Fig. 3.1) but at the bottom for all other consonants (Symbol 52). Therefore, these

are captured as two different symbols while defining the symbol set.

3. Shape Consistency - While there are fused CV characters (e.g. Tamil symbols 34 to 71

in Fig. 3.2) which are often written as a single symbol, there are symbol patterns that

may not have any linguistic interpretation but occur consistently as distinct shapes across

different characters. For instance, the s-shaped lower part of Telugu /ka/ (Fig. 1.1 of

Chapter 1) appears across all CV combinations of the consonant /ka/ but by itself does

not represent any character. Such shapes may be considered as independent symbols

based on knowledge of the script and the popular writing styles.

4. Linguistic interpretation - Defining symbols that have linguistic interpretation has sev-

eral advantages from the perspective of recognition. For instance, it becomes possible

to directly adopt the grammar of the script to prune invalid recognition results. Further,

one can also incorporate language models to improve word recognition accuracy. In ad-

37

dition, when lexicons are used, conversion of UNICODE to symbol IDs becomes simpler

when the symbols correspond to linguistic units. The use of linguistically-valid symbols

also simplifies data collection, as they may otherwise appear unfamiliar to the writers,

especially when seen in isolation.

While shape consistency is important from a practical stand point, linguistic interpretation

is essential to develop standard representation units. In defining the symbol sets above, we have

strived to find the right tradeoff between the two aspects [63].

3.2 Handwriting Data Collection

In this section, we describe the process used for data collection, including details of the devices

and the software tools used. In order to collect data samples, writers were prompted to write a

set of words, and allowed to write naturally without imposing any constraints on their writing

style.

3.2.1 Identification of Words for Data Collection

The first step in data collection was to identify a minimal set of words that covers all the de-

fined symbols and can be used as prompts for handwriting data collection. Collection of word

samples, as opposed to isolated symbols or syllabic units, is important in order to understand

various factors such as: (i) the degree of cursiveness in the script as practised by native writers,

(ii) the change in the shape of a symbol due to the influence of its neighbors (also known as

co-articulation effect), (iii) symbol order variations within and across syllabic units, and (iv)

stroke order variations that occur at the word level (i.e. delayed strokes).

Unlike Latin scripts where pangrams (sentences that use every letter of the alphabet at

least once) are popular for data collection, similar sentences for Indic scripts are uncommon

owing to the large number of characters. In order to identify the minimal set of words, we made

use of a large text corpus [64]. We identified the unique words in the corpus and eliminated the

low-frequency words, assuming that these unfamiliar words would lead to unnatural writing if

collected. We then ran an Optimal Text Selection (OTS) program [65] on the remaining words,

which in turn applied the Set Cover Algorithm to determine an optimal subset that covers all

the symbols.

38

The OTS program identified a total of 85 words for Tamil and 70 words for Devanagari,

which were then used as prompts for handwriting data collection.

3.2.2 Data Collection for Tamil

Word samples for Tamil were collected using a Tablet PC which had a sampling rate of 1200

Hz and a spatial resolution of 2500 dpi (dots per inch) along both X and Y directions. A total of

132 writers belonging to different age groups contributed handwriting samples. Each writer was

prompted to provide two samples of 30 words selected randomly from the 85 words selected

by the OTS program. A majority of the writers who participated in the data collection activity

were native Tamil speakers and used the Tamil script everyday. Figure 3.3 shows a screenshot

of the data collection tool that runs on a Tablet PC.

Figure 3.3: Tablet PC based data collection tool used for Tamil

3.2.3 Data Collection for Devanagari

Even though interactive devices such as the Tablet PC and PDA are appropriate and convenient

for online handwriting data collection, they fail to recreate the feel of writing on paper. For

Devanagari, we experimented with the ACECAD Digimemo device [66] for collecting hand-

writing samples. The Digimemo is a portable electronic clipboard which digitally captures and

stores what is written on ordinary paper using a special pen, and thus provides a more natural

interface for collecting handwriting data. It also provides an affordable alternative to devices

such as TabletPCs and PDAs for larger scale data collection efforts. Devanagari handwriting

was collected from a total of 110 writers of different age groups and each writer was provided

39

with an A4-sized booklet of printed paper forms clipped to the Digimemo pad. Each form

contained the words to be written and empty boxes for writing them in (Fig. 3.4).

Figure 3.4: A sample data collection ‘paper’ form for Devanagari

Both the Tablet-based and Digimemo-based data collection tools2 store the collected ink in

the UNIPEN [67] format along with writer information such as name, age, gender, educational

background, and left/right handedness.

3.3 Data Cleanup

Some of the collected word samples contained different types of noise due to erratic pen move-

ments made by the writer, or as a result of fatigue faced by the writer especially when writing

the last few samples, or due to hardware errors in the device while registering the ink. We de-

veloped a simple HTML-based data cleanup tool that displays all the samples from a selected

2The data collection tools are a part of the open source Lipi Toolkit from HP Labs and are freely available for

download at http://lipitk.sourceforge.net

40

http://lipitk.sourceforge.net

writer, and allows one to mark the samples that are noisy. The marked samples were deleted

using a batch script. A screenshot of the tool is shown in Fig. 3.5.

Figure 3.5: Data cleanup tool

3.4 Annotation

The cleaned word samples were annotated manually using a GUI tool (Fig. 3.6). The annotation

of each word sample was carried out at the symbol level by labeling one or more strokes that

together form a particular symbol, with the ID (truth) of that symbol as in Figures 3.1 and 3.2.

Additional annotation captured information about the quality of the symbol samples, whether

two or more symbols are written together in a single stroke, and if a stroke is a delayed stroke

written out of sequence. Once a word sample is annotated, the tool updates the ink file with its

annotation information using the UNIPEN format.

The word samples and associated annotation were organized in the form of a file hierarchy

categorized progressively by writer ID, word ID and trial number.

3.5 Summary

This chapter described the methodology we adopted for creating handwriting datasets for De-

vanagari and Tamil, beginning with the definition of a symbol set covering the graphemes in

the scripts while meeting various other criteria such as coverage, position, shape consistency

and linguistic interpretation. The chapter also briefly described the different steps in the process

41

Figure 3.6: Data annotation tool

such as data collection, cleaning and annotation, and the tools that we used in each step. The

result of the data collection exercise was the development of datasets for Devanagari and Tamil

containing word samples from over a hundred writers each, organized by writer and annotated at

the symbol level. These datasets were used for training and evaluation of the symbol modeling

and word recognition approaches described in the remaining chapters.

42

Chapter 4

Preprocessing and Feature Extraction

In this chapter, the different steps involved in preprocessing the raw ink corresponding to a

given word sample, and extracting features from it are described. Preprocessing includes the

steps of size normalization and resampling, both of which are quite common for the recognition

of Latin scripts as well. However, in the case of Devanagari, the first step of preprocessing is

to detect the stroke(s) that correspond to shirorekha, the top horizontal stroke of a character or

word.

4.1 Shirorekha Detection for Devanagari

A distinct feature of the Devanagari script is the presence of shirorekha (Fig. 4.1). When written

as part a word, shirorekhas of individual characters are often, but not always, merged into a

single stroke barring a few exceptions. In this section, we first summarize some of the issues

in detecting the shirorekha present in an online handwritten Devanagari word or character. We

then describe our approach for shirorekha detection, including the features and the algorithm

used.

The published literature for online shirorekha detection is very limited. Namboodiri and

Jain [68] address the problem of identifying the individual scripts present in a multi-script doc-

ument and exploit the characteristics of the shirorekha stroke in this context. Even though their

work does not address the problem of shirorekha detection directly, the features extracted based

on height and width of the strokes are noteworthy. Joshi et al. [48] describe a heuristic-based

shirorekha detection algorithm in the context of online Devanagari character recognition. For

each stroke in the character, features such as mean (x, y), length and 8-directional histogram are

43

computed. All strokes whose directional histograms have more than 60% frequency along the

East or West direction are added to Shirorekha Candidate Set (SCS). This set is further pruned

by removing the lowermost stroke of the character, if present. The stroke that has the maximum

length in the SCS is then declared as the shirorekha. A major limitation of their approach hav-

ing been developed for isolated characters is that it cannot identify multiple shirorekha strokes

present in larger input units such as words. Moreover, since the technique does not model the

position of the strokes it may lead to more ambiguities, e.g. when the lengths of the strokes in

the SCS are comparable.

shirorekhashirorekha

Figure 4.1: Shirorekha - the top horizontal stroke in a Devanagari character or word

4.1.1 Issues in Online Shirorekha Detection

Some of the issues to be addressed in order to accurately identify the shirorekha stroke(s) in a

given word sample are the following:

1. Multi-part nature - Even though shirorekha is normally written as a single stroke spanning

the entire word, there are a few notable exceptions. For instance when consonants such as

/bha/, /dha/ and /tha/ are present in the middle of a word, the shirorekha is broken

up as shown in Fig. 4.2.

Figure 4.2: Multi-part shirorekha

2. No fixed vertical position - Although shirorekha is perceived as the topmost stroke in a

word, the vertical position of the stroke with respect to the word may change significantly

based on the presence of matras as shown in Fig. 4.3.

44

Figure 4.3: Variability in vertical position of shirorekha

3. No fixed writing order - Our analysis of the collected word samples shows that when the

shirorekha is written as a single stroke, it is the last stroke in approximately 90% of the

cases. On the other hand, in the case of a multi-part shirorekha, the constituent strokes

may get temporally interleaved with other symbols and there is no guarantee that they are

written sequentially or from left to right.

4. Segmentation - Sometimes the shirorekha and a symbol are written together as a single

stroke (Fig. 4.4) calling for a sophisticated segmentation technique to separate them.

Figure 4.4: Shirorekha written along with the character (black square shows the starting point
of the stroke)

5. Variability in writing - Even as the length of the shirorekha increases with the length of

the word, one may find that due to the inherent variability in handwriting, the stroke is

often not written perfectly horizontally. Also in the case of a multi-part shirorekha, the

constituent strokes may not be perfectly aligned vertically. These differences necessitate

better modeling of the shirorekha stroke.

6. Shape similarity - In a word or a character in Devanagari, there are many other strokes

(e.g. the horizontal strokes in /a/ or /sa/) that resemble the shirorekha in shape.

Therefore it is important to capture the vertical position of the strokes for accurate deter-

mination of the shirorekha.

4.1.2 Features

In our approach for shirorekha detection, we compute and use three features from each stroke

in the input. While the aspect ratio feature is absolute in that it depends only on the size of the

stroke under consideration, height fraction and width fraction are relative to the word size.

45

1. Aspect ratio of a stroke is defined as:

Aspect Ratio =
height(stroke)

width(stroke)

For a stroke to be a candidate for shirorekha, its aspect ratio is expected to be less than

ASPECT RATIO MAX.

2. Height fraction captures the vertical location of the stroke with respect to the word or

character and is defined as follows:

Height Fraction = 1−
(
ȳ(stroke)

ymax(word)

)
where ȳ(stroke) is the average y value of the stroke and ymax(word) corresponds to the

y value of the lower most point in the word. For two strokes to form a part of the shi-

rorekha, their difference in Height Fraction is not expected to be more than a threshold

(NON ALIGN MAX).

3. Width fraction captures the extent to which the stroke spans horizontally across the word,

according to the equation below:

Width Fraction =
width(stroke)

width(word)

where width(stroke) and width(word) correspond to the bounding box width of the

stroke and the word (including the stroke under consideration) respectively. The sum of

Height Fraction and Width Fraction of a shirorekha stroke is expected to be at least

SIZE POS MIN.

The optimum values for ASPECT RATIO MAX, NON ALIGN MAX and SIZE POS MIN

were determined empirically from the histograms of the feature values using the training data.

4.1.3 Algorithm

The features extracted are used to identify the shirorekha stroke(s) in the input word sample, as

described in Algorithm 1.

4.1.4 Evaluation

The proposed algorithm for shirorekha detection was evaluated using a word dataset, different

from the training dataset used for learning the thresholds. The training dataset contained approx-

imately 14,000 word samples written by 44 writers. The test dataset contained approximately

46

Algorithm 1: Pseudo-code for shirorekha detection in Devanagari
Input: Set of ink strokes corresponding to a word or a character where n is the number

of strokes

Output: Shirorekha List S containing indices of strokes that correspond to shirorekha

1: S ← φ, Candidate List CS ← φ

2: for i← 1 to n do

3: Compute Aspect Ratioi, Height Fractioni and Width Fractioni for stroke

with index i

4: Compute Size Posi = Height Fractioni +Width Fractioni

5: if Aspect Ratioi < ASPECT RATIO MAX and Size Posi > SIZE POS MIN then

6: Add i to CS

7: end if

8: end for

9: if CS is empty then

10: return S

11: end if

12: Sort CS in descending order using Size Pos

13: Add CS[1] to S /* adding stroke with largest Size Pos to the shirorekha list */

14: for j ← 2 to size(CS) do

15: if |Height FractionCS[1] −Height FractionCS[j]| < NON ALIGN MAX then

16: if stroke CS[j] not horizontally subsumed by any stroke in S then

17: Add CS[j] to S

18: end if

19: end if

20: end for

21: return S

47

2500 word samples contributed by a different set of 20 writers. The accuracy of shirorekha

detection was found to be 99.3%. The shirorekha in the input word sample was considered to

be recognized correctly only if all the strokes forming it were detected with no false positives.

It is important to note that the proposed technique is capable of identifying even the ab-

sence of shirorekha. However, it does not segment the shirorekha when written along with a

symbol in a single stroke (Fig. 4.4), which is quite rare. Some of the word samples where not

all the shirorekha strokes were detected correctly are shown in Figure 4.5.

Figure 4.5: Examples of strokes not detected or falsely detected as shirorekha by the proposed
algorithm

4.2 Word Size Normalization

Word size normalization is frequently performed to deal with writer-specific variations in size,

and is often preceded by determination of virtual core lines present in the handwritten word.

For Indic scripts, upper and lower core lines are generally used to delineate the upper matra

zone, the middle zone and the lower matra zone.

We implemented a simple algorithm for determining the core lines. The mean value of

y across all points in the word sample was first computed. The strokes that intersect with the

line y = ymean were then identified. The mean values of y for the lower most and upper most

points in the intersecting strokes were taken to be the lower and upper core lines respectively.

Figure 4.6(a) shows the estimated core lines for a word sample from Tamil. To achieve size

normalization, the distance (h) between the two lines was scaled to a constant value (100) while

retaining the aspect ratio of the word sample.

48

upper

100

0

middle

lower

upper

100

0

middle

lower

(a)

shirorekha
detected

core lines
computed

shirorekha
detected

core lines
computed

(b)

Figure 4.6: Normalization of word size for (a) Tamil (b) Devanagari

In the case of Devanagari, the upper core line of a word was determined from the average

y value of the shirorekha strokes. However, when no shirorekha was found, the core lines

were computed as described earlier. A Devanagari word normalized using the automatically-

determined shirorekha stroke is shown in Fig. 4.6(b).

4.3 Resampling

Resampling is performed to obtain a set of points along the trajectory that are uniformly sampled

in space, whereas the input data captured from the device is the result of uniform sampling in

time. This step is especially necessary for a writer-independent system to deal with writing

speed variations across writers. Typically, the original points are replaced with a new set of

points regularly spaced in arc length using piece-wise linear interpolation. In our resampling

method (Fig. 4.7), the distance between two consecutive points was fixed to a fraction (1/15th)

of the distance (h) between the core lines. When a stroke was identified as a dot based on a

size threshold, the average values of x (i.e. xavg) and y (i.e. yavg) in the stroke were computed

and the entire stroke was replaced with the point (xavg, yavg), duplicated a constant number of

times.

49

(a) (b)

Figure 4.7: Word sample from Tamil: (a) before resampling (b) after resampling

4.4 Feature Extraction

While the objective of preprocessing is to eliminate variations in the input that might adversely

impact recognition, in the feature extraction step, characteristics that best represent the shape of

the trajectory are extracted. After experimenting with a number of features, we used a set of 9

features adapted from the NPen++ recognition system [69]. The features extracted at each point

in the trajectory include normalized y value, four angle features that capture writing direction

and curvature, ‘aspect’, ‘curliness’, ‘linearity’ and ‘slope’. While each feature is described here

in brief, detailed descriptions of these features may be found in the NPen++ paper [69].

1. Normalized y - The y value at each point of the normalized and resampled word. This is

the most common feature used in the literature for online word recognition.

2. Angle features - They are widely used in word recognition systems due to their translation

and scale invariant nature. The angle features extracted capture the writing direction and

curvature of the trajectory. The writing direction is represented using the cosine and sine

of the angle subtended by the line segment joining the neighboring points on either side

with the horizontal line. The curvature at a point is represented by the cosine and sine of

the angle formed by the line segments joining the point of consideration and its second

neighboring points on either side.

3. Aspect - It captures the ratio of the height of the bounding box to its width, and is given

by

A(t) =
∆y(t)−∆x(t)

∆y(t) + ∆x(t)

50

where ∆x(t) and ∆y(t) are the width and the height of the bounding box containing the

points in the ‘vicinity’ of the point under consideration. In all our experiments, we have

used a vicinity of length 11 i.e. five points to the left and right of the point at which the

feature is extracted.

4. Curliness - Curliness at a point gives the deviation of the points in the vicinity from the

line joining the first and last point. It is expressed as:

C(t) =
L(t)

max(∆x,∆y)
− 2

where L(t) is the sum of all the line segments along the trajectory in the vicinity of the

point under consideration.

5. Linearity - It is defined as the average squared distance between every point in the vicinity

and the line joining the first and last point. It is expressed as:

LN(t) =
1

N
∗
∑

i

di
2

6. Slope - It is given as the cosine of the angle formed by the line joining the first and last

point of the vicinity with the x-axis.

4.5 Summary

In this chapter, the different steps in preprocessing the input handwritten word and extracting

features from it, were described. For Devanagari preprocessing, identification of shirorekha in

the input word sample is an essential first step. An algorithm that makes use of coarse stroke

features, and threshold values learnt from training data was proposed to identify one or more

shirorekha strokes in the input. The performance of the algorithm was also evaluated on a test

set and was found to be more than 99% accurate. We then proposed a simple technique to

identify the virtual core lines present in a word sample in order to normalize its size. In the

case of Devanagari, the vertical position of the shirorekha stroke(s) identified was assumed to

correspond to the upper core line. Finally, we described a set of features extracted from each

point along the trajectory of the input ink which included writing angles, aspect, curliness,

linearity and slope.

In the next chapter, we describe how HMM-based symbol models may be constructed

from the extracted features.

51

Chapter 5

Symbol Modeling

5.1 Introduction

In this chapter, we address the subproblem of modeling symbols in Indic scripts using HMMs.

As discussed in the introductory chapter, Indic characters1 are often characterized by variations

in the temporal ordering and number of strokes written. This phenomenon is by no means

limited to Indic scripts. For example, Figure 5.1 shows character samples from the IRONOFF

dataset [70] where the uppercase English character ‘H’ is written in different ways. It is clear

that the number, order and shapes of strokes can vary widely. Apart from the ordering of strokes,

the direction of a stroke may also vary across writers. Such alternate ways of writing a character

are broadly referred to as styles in this chapter. They have also been referred to as ‘lexemes’

[71] or ‘dynamic allographs’ [72] in the literature. Two samples of a character class are said to

be written in different styles if they differ in the shape (including position), number, ordering,

or direction of the constituent strokes.

While a single writer may have a specific style of writing a character, styles are bound to

differ across writers. Even though such variations may not alter the visual appearance of the

character written, they may have serious implications for OHWR as most of the commonly-

used algorithms such as HMM and DTW are sequence-dependent. Therefore it is important for

a writer-independent recognition system to model at least the common writing styles during the

training phase, using data collected from a large user population.

1In this chapter, the terms ‘character’ and ‘symbol’ are used interchangeably. This is to emphasize that the

proposed approach is applicable not only for symbols in Indic scripts but also for characters in alphabetic scripts

such as the Latin.

52

 1

2

1

1 2

1

2

3

1

2

3

Figure 5.1: Different writing styles of ‘H’ identified from the IRONOFF dataset. The numbers
indicate the order of writing. The start of each stroke is indicated with a square box.

5.1.1 Modeling Writing Styles

When using model-based approaches such as HMMs, many studies have shown that it is advan-

tageous to independently model each style of writing instead of having a single model represent

all the styles of a character class [71][73][74][55][75]. When all the samples of a character

class are modeled using a single HMM following the commonly-used left-to-right topology,

the HMM may under-fit the training data due to substantial differences in the feature values of

samples belonging to different styles.

As previously mentioned, different character writing styles may be thought of as variations

in the number, order, shape etc. of the strokes constituting the character. There are two popular

strategies to model these variations: character-based modeling and stroke-based modeling. In

the character-based approach, the variations are modeled implicitly at the character level by

clustering the samples of the character as a whole and treating each resulting cluster as a sub-

class within the character class. On the other hand in the stroke-based approach, the variations

in the character are modeled explicitly as sequences of stroke labels, where these stroke labels

represent ‘distinct’ strokes obtained by clustering the available stroke samples within and/or

across character classes. Thus, character-based modeling of writing styles requires clustering at

the character level whereas stroke-based modeling requires clustering at the stroke level. When

HMMs are used for modeling, an HMM is built for each character or stroke cluster accordingly.

5.1.2 Advantages of Stroke-based Modeling

When compared to character-based modeling, stroke-based modeling of a character is especially

suitable for scripts with a large number of multi-stroke characters, such as the Indic family

53

of scripts, and offers numerous advantages. Stroke clustering carried out as part of stroke-

based modeling can potentially identify the minimal set of distinct strokes that occur across

different styles of the same character or different character classes, and be used to describe

all the character writing styles represented in the available data, in an optimal manner. Figure

5.2 shows how an HMM model of the Devanagari character /ka/ may be built. Each path

corresponds to a writing style, and each labeled circle corresponds to a stroke HMM. The figure

shows how stroke HMMs may be shared across different styles of the character class.

S0

S1 S2

S2 S1

S2 S3 S4

S0

S1 S2

S2 S1

S2 S3 S4

Figure 5.2: Stroke-based HMM Model of the Devanagari character /ka/ representing different
writing styles (paths) and with sharing of stroke models.

The identification of such common strokes and modeling characters as sequences of strokes

significantly reduces the storage requirements for capturing distinct character writing styles, and

can reduce the computation time in the context of character recognition. Since the strokes are

shared across styles and/or character classes, fewer character samples may be sufficient to train

the models [20]. As a corollary, the recognition system can be adapted to a specific user with a

smaller number of training samples. Moreover, a new style of writing differing only in stroke

order, can easily be supported by simply defining the corresponding style in the dictionary [36],

thereby circumventing the need for more samples and fresh training. The sharing of stroke

labels across character classes also allows the design of stroke-based recognition strategies

[76][36][77], and enables the realization of certain incremental handwriting-based text entry

methods (e.g. QuickStroke [78]).

For these reasons, our primary concern in this chapter is with stroke-based modeling of

character writing styles by stroke-level clustering, in order to obtain a minimal set of strokes

and styles. The main contributions may be summarized as follows:

1. While unsupervised clustering techniques are popular in the OHWR literature, we pro-

pose a novel approach based on constrained clustering for clustering strokes to determine

54

the minimal stroke set. We show how simple handwriting domain specific constraints can

be exploited to obtain better stroke clusters when compared to unsupervised approaches.

2. We demonstrate how the aforementioned constraints can be derived automatically from

the data, and independent of the script.

3. We apply the approach to online Devanagari character (symbol) recognition using HMM,

and show that our approach allows the modeling of variety of styles, while significantly

reducing the number of states when compared to character-based modeling, with almost

no compromise on accuracy.

5.2 Related Work

In this section, we briefly survey the literature for character-level and stroke-level clustering

and modeling of writing styles. While character-level clustering and modeling has been applied

widely for Latin scripts, stroke-level clustering and modeling is popular for oriental scripts -

Chinese, Japanese and Korean. This is because of the inherently multi-stroke nature of these

scripts and presence of similar-looking strokes across different characters.

5.2.1 Character-level Clustering and Modeling

In this subsection, we review some of the techniques described in the literature for character-

level clustering and modeling. The approaches for character-level clustering can broadly be

classified as supervised and unsupervised, based on whether or not the labels of character sam-

ples are used to obtain desired clusters, and have been used primarily for prototype selection.

Character-level clustering has also been used for HMM modeling of writing styles in various

scripts.

Supervised Clustering

Supervised clustering approaches such as those based on Learning Vector Quantization (LVQ)

[79] and Minimum Classification Error (MCE) [80] exploit the class labels of the character

samples to derive informative prototypes (from the perspective of recognition accuracy) across

all classes. With LVQ, the character prototypes from unsupervised clustering serve as initial

seeds for an iterative procedure that morphs them over successive iterations based on their

55

labels and classification results. In contrast, MCE based approaches pose prototype selection

as an optimization problem wherein the objective is to minimize the classification error of the

training samples. The prototypes (or clusters) resulting from these approaches are expected to

contain discriminative information in them, yielding good classification performance.

We focus in the rest of this section on prior work related to unsupervised techniques for

character-level clustering. For their supervised counterparts, the reader is referred to the study

by Liu and Nakagawa [81].

Unsupervised Clustering

A majority of past efforts that employ unsupervised character-level clustering address the prob-

lem of English character recognition (e.g. digits, lowercase and uppercase characters). DTW

is a popular distance measure for clustering character samples [82][83][84][85]. Some of these

efforts disallow two samples that differ in the number of strokes from being assigned to the

same cluster, by setting their DTW distance to infinity [84][82]. Among the different cluster-

ing algorithms, Hierarchical Clustering has been widely adopted for identifying writing styles

[82][86][84][87][88]. Vuori and Laaksonen [82] study different versions of Agglomerative Hi-

erarchical Clustering (AHC) with different cluster validity indices and note that determining the

correct number of clusters is a difficult task and may require human intervention. Connell and

Jain [83] represent each sample by an N -dimensional feature vector where each dimension i

corresponds to its proximity with the ith sample of the class. Clustering is carried out using the

Means Squared Error (MSE) criterion and they address the problem of deciding the optimum

number of clusters by determining the ‘knee’ of the MSE versus number-of-clusters plot. When

AHC is employed, one may also apply an empirically-determined threshold on the merging

distance to obtain a desirable set of clusters [86][84].

Modeling of Writing Styles

While character-level clustering is popular in the context of Nearest-Neighbor (NN) classifica-

tion to reduce memory and computation time [83], it has also been used when HMMs are used

for recognition. A character is modeled as a parallel network of one or more “style HMMs”,

depending on the number of character clusters i.e. distinct styles of writing the character. Per-

onne and Connell [75] proposes an integrated approach for clustering and training style HMMs

for English word recognition, where the distance measure for K-Means clustering is the class-

56

conditional probability obtained from the style HMM. Apart from English, character modeling

using multiple character style HMMs has also been successfully adopted for other scripts such

as Kanji [74], Hangul [73] and Devanagari [55].

5.2.2 Stroke-level Clustering and Modeling

Supervised clustering techniques used for clustering characters are in general not applicable

for stroke-level clustering due to the non-availability of class labels for the strokes forming the

character samples. Manual labeling at the stroke level is a laborious task, often potentially

biased by the individual’s judgement, and hence generally not adopted. One example of such

manual labeling in the context of the Devanagari script is the work of Shwethalakshmi et al.

[42] wherein the distinct strokes and styles in the script are identified manually. By and large,

the techniques used for stroke-level clustering and modeling are unsupervised and as mentioned

earlier, have widely been applied to CJK scripts.

Nakai et al. [36] identified 25 substrokes in Kanji characters based on their direction and

length, and claim that any Kanji character can be expressed as a sequence of these substrokes re-

sulting in a reduced model set. While a hierarchical dictionary consisting of substrokes, strokes,

radicals and characters is manually built for Kanji character recognition, the new stroke orders

are learnt by generating permutations of the known stroke orders in the dictionary and matching

with the samples in the training data [76].

Yamasaki [77] proposes a two-stage stroke clustering approach for Japanese character

recognition. In the first stage, the samples of a character class are categorized according to

the number of strokes they contain. The sets of strokes having the same time index within

each category are considered as the initial stroke clusters. Due to stroke order variations, a

stroke cluster corresponding to a time index may have samples that are dissimilar. Therefore, a

‘top-down cluster splitting step’ is adopted to divide clusters that have different stroke shapes.

The decision to partition a cluster ensures that the farthest sample from the mean stroke is at

a distance less than the threshold. The same criterion is also applied in the ‘bottom-up cluster

merging’ step where clusters of strokes with different time indices are grouped together. Finally,

the stroke representatives of the clusters within a character class are clustered across character

classes. The resulting stroke prototypes are used to determine different styles of a character that

retain the original stroke sequence and position information.

Prior work on identifying writing styles in Devanagari is relatively limited. While Connell

57

Y1

Y2

Y3

Sample Y

X1

X2

Sample X

Unsupervised

Stroke

Clustering

Cluster a

Clustering error

Cluster b

X2

Y3

Y2
X1

Y1

Y1

Y2

Y3

Sample Y

X1

X2

Sample X

Unsupervised

Stroke

Clustering

Cluster a

Clustering error

Cluster b

X2

Y3

Y2
X1

Y1

Figure 5.3: Clustering error from unsupervised stroke clustering

et al. [55] employ character-level clustering for identifying writing styles in Devanagari, to

the best of our knowledge, there has been no previous work on automatically determining the

writing styles with stroke sharing for Devanagari character recognition, which is the focus of

our approach.

5.2.3 Limitations of Unsupervised Stroke Clustering

In an unsupervised stroke clustering based approach, resulting styles are typically represented

as sequences of stroke cluster labels. In our earlier work on style identification [89], when

stroke clustering was attempted across the basic Devanagari characters, we found that some of

the resulting styles were ‘invalid’. When we disregarded the ordering and considered each style

merely as a collection2 of stroke cluster labels, we found that there were pairs of styles of the

same character class where one style was a sub-collection of the other.

We illustrate this with an example in Figure 5.3, which shows two samples of uppercase

letter ‘E’ written in two different styles. Sample X contains two strokes whereas Sample Y

has three. Unsupervised stroke clustering correctly assigns strokes X2, Y2 and Y3 to the same

cluster (say with label a), but wrongly clusters stroke X1 and Y1 into one cluster (say with label

b). As a result, the style corresponding to Sample X is identified as b→a and that of Sample

Y as b→a→a. However, when the temporal order of the strokes is ignored and each style is

regarded as a collection of strokes, this leads to the strange situation wherein the style of Sample

X i.e. {a, b} becomes a sub-collection of the style of Sample Y i.e. {a, b, b}. Given that both

samples belong to the same character class ‘E’, one cannot contain an extra shape in addition

to the shapes present in the other, implying that one of them is not a valid style of the character

2The term ‘collection’ is used instead of ‘set’ to indicate that the stroke labels forming a style may not be

unique.

58

Initial

stroke

clusters
Labeled

character

samples

Unsupervised within-

character, character-level

clustering based on
stroke number

Constraint

imposition within

and/or between
character classes

Domain

knowledge

Constrained

Clustering of

strokes

Identification

of unique

styles

Prototypes

of stroke

clusters

Stroke-based

style models

Figure 5.4: Proposed approach for incorporating handwriting domain knowledge into stroke
clustering for obtaining optimal set of strokes and styles

class. This situation could have been avoided if strokes X1 and Y1 had been correctly assigned

to two different clusters by the clustering algorithm.

The sub-collection rule that was violated in our example is generally applicable to any two

samples of a character class. A few exceptions do exist, e.g. uppercase letter ‘Z’, which may

be written in a single stroke as ‘Z’ or with an additional horizontal bar in the middle as ‘Z ’. As

a result, the sub-collection rule may not be applicable in this case. The application of the sub-

collection rule to such cases may result in redundant clusters, i.e. two clusters containing the

same shape ‘Z’, which may still be acceptable when compared to having invalid styles resulting

from unconstrained over-clustering.

In the next section we describe a new approach for stroke clustering that avoids the issue

of invalid styles by enforcing the sub-collection rule.

5.3 Writing Style Identification using Domain Constraints

While a majority of the approaches for stroke clustering are either unsupervised or heuristic-

based, in this section, we propose a novel approach based on constrained clustering that at-

tempts to identify the minimal set of strokes and writing styles for the given samples of hand-

written characters. The approach, illustrated in Figure 5.4, involves 4 steps:

5.3.1 Initial Stroke Clustering

Given the labeled character samples, the objective of the first step in our approach is to ob-

tain initial stroke clusters. The stroke clusters are obtained from unsupervised character-level

clustering. Unlike approaches where all the samples of a character class are clustered together,

the samples are first categorized based on the number of strokes they contain [77] and within

each of the resulting groups of samples, character-level clustering using a conventional unsu-

59

pervised clustering algorithm is carried out. The initial stroke clusters are then obtained from

each character cluster by assigning the same label to the stroke samples that have the same time

index. For instance, from a character cluster that has two-stroke samples, two stroke clusters

are derived by assigning all the first strokes to one cluster and the second strokes to the other. It

is important to note a difference between this first step and the approach adopted by Yamasaki

[77]. There, character-level clustering is not carried out but instead all the character samples

with the same number of strokes are assigned to the same group. The strokes with the same

time index are then clustered using a heuristic-based, divisive clustering algorithm within a

group and agglomerative clustering across groups and other character classes.

Initial categorization based on stroke number leverages the fact that two samples that differ

in their stroke number will necessarily belong to two different styles. As a result, there must

be at least as many number of styles for a character class as there are different stroke numbers

using which its samples are written. Instead of explicit categorization, one may also set the

distance between two samples that vary in their stroke number to infinity [84][82] and cluster

all the samples together. Preliminary categorization based on the stroke number has twofold

advantages: Firstly, within a group containing samples of equal stroke number, any two samples

that do not belong to the same style will differ in the ordering, direction or shape of strokes they

contain. Since either of these variations will typically result in significant dissimilarity in the

feature space, one may expect the clusters within each group to be well-separated. Secondly,

the smaller number of samples within each group when compared to all the samples of the

character helps reduce both time and memory requirements of subsequent clustering.

5.3.2 Constraint Generation

The stroke clusters obtained using the character-level clustering process are only the initial

clusters. A reduced set of stroke clusters is then obtained by combining similar-looking clus-

ters across groups formed within different character classes by performing a second level of

clustering. However, as mentioned in Section 5.2.3, if the second-level stroke clustering is un-

supervised, it may result in invalid styles. Therefore, our approach pro-actively attempts to

avoid the possibility of deriving invalid writing styles by imposing constraints between the ini-

tial stroke clusters. The constraints encode handwriting domain specific knowledge, are script-

independent and can automatically be determined from the samples using only the character

class labels. We generate three types of constraints:

60

1. Trivial across-character constraint - This is the most intuitive constraint one may apply

during stroke clustering. According to this, two single-stroke samples belonging to dif-

ferent classes cannot be assigned to the same cluster. Thus, the constraint allows us to

leverage the class label information available at the character level to obtain better stroke

clusters.

2. Trivial within-character constraint - When there are two samples in a character class -

one written in a single stroke and the other in two strokes, none of the strokes in the latter

sample can possibly fall into the same cluster as that of the former. If it does, then the

style of the first sample becomes a sub-collection of that of the second, which violates the

sub-collection rule described earlier in Section 5.2.3.

3. Non-trivial within-character constraint - This is a generalization of the previous con-

straint and can be stated as follows. For a given character class, if there is an m-stroke

sample Sm and an n-stroke sample Sn where m < n, and if one-to-one correspondence

has been established between any m− 1 strokes of Sm and m− 1 strokes of Sn, then the

remaining stroke of Sm cannot fall into any of the clusters of the remaining n − m − 1

strokes of Sn. Let us examine how such a constraint could have averted the clustering

error earlier shown in Fig. 5.3. If we could ‘automatically’ determine that stroke X2 is

similar to stroke Y2 (or Y3) i.e. they should be assigned to the same cluster, then we can

impose a constraint that stroke X1 cannot fall into the clusters of strokes Y1 and Y3 (or

Y2). Thus, we can eliminate the possibility of deriving invalid styles described in Section

5.2.3.

While the constraints introduced above were in the context of individual samples, they can

be directly extended to the level of clusters. For example, the first constraint may be restated

as: two different stroke clusters that contain single-stroke samples of two different character

classes cannot be merged. The constraints once defined at the cluster level may be imposed on

only the representatives (or prototypes) of the clusters, in order to reduce both space and time

requirements of subsequent clustering.

5.3.3 Constrained Stroke Clustering

The final clustering, given the stroke prototypes and the constraints, is posed as a well-established

‘clustering with constraints’ or ‘semi-supervised clustering’ problem. Constrained clustering

61

Must-link Constraint

Cannot-link Constraint

Must-link Constraint

Cannot-link Constraint

Figure 5.5: Clustering with constraints

has been an active area of research in the machine learning community over the last decade

[90][91][92][93]. Unlike conventional unsupervised clustering where the data points are the

only input, in constrained clustering, the clustering algorithm is also provided with two sets of

constraints: must-link and cannot-link. The constraint sets contain pairs of data points as their

elements and are disjoint. A must-link (ML) constraint between two data points indicates that

they must be assigned to the same cluster, whereas a cannot-link (CL) constraint between them

indicates the opposite (Fig. 5.5). It is apparent that every constraint generated as described in

the previous section, can be treated as either an ML or CL constraint. Specification of these

constraints also has other implications [94]. For instance, given four data points a, b, c and d,

and the constraint sets, one can infer the following [95]:

• Transitivity of Must-link constraints - ML(a, b) and ML(b, c)→ML(a, c)

• Implication of Cannot-link constraints - ML(a, b), ML(c, d) and CL(a, c)→ CL(a, d),

CL(b, c), CL(b, d)

The constrained clustering algorithm is expected to exploit the information provided in

the form of pairwise constraints to discover suitable clusters. The algorithm could learn a

new distance measure between the data points and/or ensure that the constraints are maximally

respected. As one might expect, empirical results reported in the literature indicate that the

quality of clusters obtained from constrained clustering is often better than the unsupervised

one for various machine learning tasks [90]. In Section 5.4.4, we describe the implementation

of a constrained clustering algorithm in detail.

62

5.3.4 Identifying Unique Writing Styles

Once each stroke is assigned to a cluster, identifying unique styles of writing a character is

straightforward [89]. Each character sample is represented as a sequence of the cluster labels to

which the constituent strokes are assigned, and the unique sequences across all the samples of

a character class then represent unique styles of writing the character.

5.4 Finding Writing Styles in Devanagari

As mentioned earlier in Chapter 1, the characters in the Devanagari script are typically written

in multiple strokes and as a result, stroke order and stroke number variations pose a severe

problem for online recognition. In this section, we apply the proposed approach to characters

in the Devanagari script. While the number of characters in the script is very large, for the

purpose of demonstration of the proposed approach, we restrict ourselves to a set of 47 basic

characters (symbols 1 to 47 in Fig. 3.1), which includes vowels (1 to 11), consonants (12 to 44)

and conjuncts (45 to 47).

5.4.1 Preprocessing and Feature Extraction for Clustering

The character samples were extracted from the size-normalized word samples, described in

Chapter 4, using the annotation information. Each stroke in the character sample was further

re-scaled to a fixed size retaining its aspect ratio. This size normalization is necessary from the

perspective of stroke clustering to increase the chances of similar-looking shapes to be assigned

to the same cluster. It is important to note that even though the size of the stroke was altered,

its vertical position (i.e. the y-value of the center of its bounding box) was retained. Each size-

normalized stroke was also resampled to obtain a constant number of points (set to 30) in order

to use the Euclidean distance for clustering.

The 7 features extracted for clustering include normalized X and Y values at each point

and angle-based features such as writing direction (cosine and sine), curvature (cosine and

sine) and slope (cosine), mentioned before in Section 4.4. The values of these features were

also scaled to have the same dynamic range. This is important especially when one uses the

Euclidean distance metric where equal weight would be given to each dimension.

63

5.4.2 Unsupervised Within-Character, Character-level Clustering

The first step in our multi-stage approach is character-level clustering based on the number of

strokes. As described in Section 5.3.1, the samples belonging to a character class were cate-

gorized into groups based on the number of strokes each sample contains. Within each group,

clustering was carried out using the AHC algorithm [96] with complete-linkage as the inter-

cluster distance measure. Complete-linkage generally forms compact clusters when compared

to e.g. single-linkage, which forms elongated clusters. Squared Euclidean Distance was chosen

as the distance measure to compute dissimilarity between two stroke samples. In the first level

of the AHC algorithm, each data point forms a cluster on its own and in subsequent levels the

two most similar clusters are merged. Clustering is stopped at an appropriate level where any

further merging would only result in undesirable clusters. We experimented with two different

stopping criteria to determine the optimum level (or optimum number of clusters): L-method

[97] and Longest Lifetime [98]. While L-method finds the knee of the plot between number

of clusters and the merging distance, Longest Lifetime suggests clusters formed immediately

before the largest change in the merging distance. We found that L-method found very fine

clusters where even minor shape variations in strokes across character samples were distin-

guished. On the other hand, Longest Lifetime criterion found coarse clusters that either varied

in the ordering of strokes or featured significant differences in the shapes of the constituent

strokes. Since we were not concerned about the subtle variations that happen within the shape

of a stroke, especially while determining the style of a character sample, Longest Lifetime cri-

terion was adopted as the stopping criterion. Once the character clusters were obtained, within

each group, character clusters were converted into stroke clusters by simply grouping the stroke

samples that have the same time index within each cluster.

5.4.3 Generating Constraints

All three types of constraints described in Section 5.3.2 were generated in the context of De-

vanagari characters (Fig. 5.6). In particular, the third type was generated as follows. Two stroke

clusters were declared similar if the similarity between their mean representatives µ1 and µ2

was above an empirically determined threshold. We used the similarity measure proposed by

64

Manor and Perona [99]:

similarity(cluster1, cluster2) = similarity(µ1, µ2)

= exp

(
−d2(µ1, µ2)

σ1σ2

)
where σi = d(µi, Sk) is the Euclidean distance between the mean (µi) and the Kth nearest

neighbor (SK) in the stroke cluster. The value of K was set to 7 in our experiment. Once it was

established that certain pairs of stroke clusters present across different character clusters were

similar (must-link), the cannot-link constraints were accordingly generated using the criterion

specified in Section 5.3.2.

1 1

Cannot-link

(a)

1

1

2

Cannot-link

Cannot-link

(b)

1 1

2

2

3

Must-link

Cannot-
link

Cannot-link

1 1

2

2

3

Must-link

Cannot-
link

Cannot-link

(c)

Figure 5.6: Constraint generation for Devanagari character samples: (a) Trivial across-character
constraint between character 3 and character 24 (b) Trivial within-character constraint in char-
acter 12 (c) Non-trivial within-character constraint in character 43

5.4.4 Constrained Stroke Clustering

The stroke clusters formed in the first stage were merged within and between character classes

using the constraints generated in the previous section. As mentioned in Section 5.3.2, instead

of using all the samples of the clusters, we used the mean samples of the clusters as their repre-

sentatives for subsequent clustering. Alternatively one may use the median or adopt any other

technique to identify the sample(s) that would represent the cluster well. In order to construct

the inter-stroke distance matrix for constrained clustering, the similarity measure between stroke

samples described in the previous section, was converted to a distance measure by subtracting

the value from 1. Once the distance matrix and the constraints were obtained, clustering was

carried out using the Constrained Complete Link (CCL) algorithm proposed by Klein et al.

[100].

65

CCL is a constrained or semi-supervised version of the conventional Complete Link AHC

algorithm. Along with the distance matrix of the data points, the algorithm also accepts the

constraint sets ML and CL. The ML constraint between a pair of data points is incorporated

by setting the distance between them to zero. For the constraints to be effective, the algo-

rithm should not only impose the constraints between the pairs of data points specified in the

constraint sets but also propagate the effect to their neighborhood so that the implications of

the constraints (Section 5.3.3) are experienced by the pairs of points that were not originally

present in the ML or CL set. In order to propagate the ML constraints, each data point was

considered as a node in a graph and constraint-imposed pairwise distances (zero between ML

nodes) were used as the edge weights. Executing the ALL-PAIRS-SHORTEST-PATHS (Floyd-

Warshall) algorithm on such a graph provides the shortest distance between each pair of nodes

(data points) which may then be used as the modified distance measure reflecting the effect of

propagation, including transitivity. After propagating the ML constraints, the CL constraints

were enforced in the distance matrix by setting the distance between the corresponding pairs

to the maximum value, i.e. one. However, the CL constraints were not propagated explicitly

in CCL. Under Complete Linkage, the distance between two clusters is defined as the distance

between the farthest neighbors in them. As a result, when a pair of data points participating in

a CL constraint was present in two different clusters, the distance between those two clusters

will always be maximum and would not qualify for merging. Hence, the CL constraint was

implicitly propagated by CCL.

Figure 5.7 shows the plots of the number of clusters versus merging distance as constrained

stroke clustering progresses. The initial and final portions of the graph correspond to merging

of clusters having ML and CL pairs respectively in between them. Clustering was stopped when

the merging distance exceeded an empirically determined threshold. The initial stroke clusters

whose mean prototypes were assigned to the same cluster were then merged to form the final

clusters of strokes. Once the final stroke clusters were determined across character classes, the

unique styles of writing a character were determined as explained in Section 5.3.4.

5.4.5 Results

The proposed approach was applied to all the samples (32,192) of the 47 characters in the

Devanagari dataset, and stroke clusters and writing styles were determined automatically. Table

5.1 provides some details about the clusters and styles determined.

66

0

0.2

0.4

0.6

0.8

1

1.2

3
4
8

3
3
8

3
2
8

3
1
8

3
0
8

2
9
8

2
8
8

2
7
8

2
6
8

2
5
8

2
4
8

2
3
8

2
2
8

2
1
8

2
0
8

1
9
8

1
8
8

1
7
8

1
6
8

1
5
8

1
4
8

1
3
8

1
2
8

1
1
8

1
0
8

9
8

8
8

7
8

6
8

5
8

4
8

3
8

2
8

1
8 8

Number of Clusters

M
e

rg
in

g
 D

is
ta

n
c

e

Must-Link

Constraints

Cannot-Link

Constraints

K = 145

Figure 5.7: Progression of constrained clustering of stroke prototypes.

• Stroke clusters: A total of 149 clusters were determined by constrained stroke clustering.

The vertical line ‘|’ is the most commonly shared stroke across styles and character classes

in Devanagari, and it is interesting to note that the number of times it occurs, across

different styles, is as high as 45. One may note that the second most commonly shared

stroke is also close in appearance to the first, indicating possible over-representation of

the shape due to under-clustering in this instance.

• Writing styles: A total of 179 writing styles were identified from the entire dataset, an

average of 4 styles per character. This provides a good indication of the style variation

problem in online Devanagari. The writing styles identified by the proposed approach for

certain character classes are shown in Figure 5.8. Each row corresponds to a particular

style of writing the character. The stroke labels show how strokes are shared across

characters. Shirorekha strokes are not a part of the character samples as they are detected

and removed during word-level preprocessing.

5.5 Character Modeling using Stroke HMMs

Once the stroke clusters and styles have been identified, HMM models for the different charac-

ters may be built as described in Section 5.1.2, and illustrated in Fig. 5.2. We will henceforth

67

Table 5.1: Results of Constrained Stroke Clustering on the entire dataset

Number of character classes 47

Total number of character samples 32192

Total number of stroke samples 47205

Final number of stroke clusters 149

Number of styles 179

Average number of styles per charac-

ter class

4

Number of strokes shared at least

twice across styles

57

Most commonly shared stroke shapes

with number of times it appears

across styles
(45) (19) (16)

(15) (8)

68

S13

S18

S67

S4

S67

S68

S67

S2

S67

S3

S4

S109

S113

S13

S110

S13

S113

S110

S40

S110

S73

S110

S108

S143

S19

S14

S4

S4

S144

S19

S4 S14

Figure 5.8: Writing styles identified by the proposed approach

refer to this approach for character modeling as CC-STROKE-HMM which denotes that the

model is comprised of stroke HMMs obtained using constrained clustering.

5.5.1 HMM Training

For character modeling using HMMs, the features originally extracted from the word samples

(described in Chapter 4) were used. We used the ‘strictly left-to-right’ HMM topology (Fig.

2.3) for modeling samples assigned to a cluster. The number of Gaussians per state (G) was

fixed to 3. The number of states per HMM was computed as a fraction of the average number of

points (an indicator of shape complexity) present in all the samples of the cluster. This has been

shown to be better than having a fixed number of states for all the classes [20]. The training of

the HMM was carried out using the Baum-Welch procedure.

69

5.6 Experimental Evaluation

The proposed approach (CC-STROKE-HMM) for character modeling was evaluated with re-

spect to recognition accuracy and reduction in the number of states needed for HMM modeling,

and compared with alternate modeling techniques. The alternate models we evaluated are de-

scribed below.

1. Single HMM per character (SINGLE-HMM) - This may be considered as the simplest

way to model a handwritten character. All the samples of a character class were utilized

to train a single HMM to represent the class.

2. Multiple character HMMs per character using first-stage character clusters (US-FIRST-

STAGE-CHAR-HMM) - In this modeling technique, the samples assigned to each cluster,

obtained by the procedure described in Section 5.4.2, were used to model a ‘subclass

HMM’ or ‘allograph-HMM’ [80], and the subclass HMMs were connected in parallel to

model the character class. The key difference between the approach followed here, and

our previous work [101] is that in the latter, each character sample was resampled to a

fixed number of points and all the samples of a character class were clustered together

without pre-categorization based on their stroke number.

3. Multiple style HMMs per character using unsupervised stroke-level clustering (US-STROKE-

HMM) - In this approach, samples of strokes from different character classes were clus-

tered together in an unsupervised manner. Clustering all stroke samples together demands

substantial memory and computation time. Hence, we adopted a two-stage approach for

unsupervised stroke clustering. In the first stage, the stroke samples belonging to each

character class were clustered independently, and subsequently in the second stage, the

mean prototypes of the first-stage clusters alone were further clustered across character

classes to get a reduced set of stroke clusters. While the AHC algorithm and the distance

measure specified in Section 5.4.4 were used for both stages, the stopping criteria used

for the first and second stages were Longest Lifetime [98] and fixed number of clusters,

respectively. For purposes of comparison, the number of clusters for the second stage was

fixed to the same number as that used by the CC-STROKE-HMM approach.

Once the stroke clusters were formed, unique writing styles of a character class were

determined as described in Section 5.3.4. The samples of these clusters were used to train

70

left-to-right stroke HMMs and connected according to the writing style sequence to form

style HMMs. The different style HMMs built for a character class were then connected in

parallel to form the final character model.

5.6.1 Evaluation Methodology

While samples of some characters were present in large numbers in the dataset based on their

frequency in the words collected, there were 685 samples per character class on an average. In

order to evaluate the recognition performance of our approach, the dataset was partitioned into

10 groups based on the writer IDs such that each group had the same number of writers. This

allowed the definition of 10 folds wherein each fold specified one group of writers for testing,

and the remaining 9 groups for training. Since the Devanagari dataset contains word samples

from 110 writers, the first fold specified writers with IDs 0 to 10 for testing and IDs 11 to 109

for training. Since our objective was to evaluate writer-independent recognition, no writer was

present in both the training and test sets. In all the experiments reported in this subsection, the

accuracy was computed as the average over the 10 folds.

For all of the alternative models described above, HMM training was carried out as de-

scribed in Section 5.5.1 for CC-STROKE-HMM. However, for the SINGLE-HMM approach,

given that a single HMM had to model all the styles, the number of Gaussians per state (G) was

set to 5 since it returned the highest accuracy over the 10 folds (Fig. 5.9).

84.50

85.00

85.50

86.00

86.50

87.00

3 4 5 6 7 8

Number of Gaussians per State (G)

A
v

e
ra

g
e

 A
c

c
u

ra
c

y
 (

%
)

a
c

ro
s

s
 1

0
 f

o
ld

s

Figure 5.9: Effect of number of Gaussians per state on the SINGLE-HMM accuracy

71

5.6.2 Results and Discussion

The character recognition performance of the four different approaches of modeling using

HMM, for each fold, is shown in Figure 5.10, and the average accuracy across all 10 folds is

shown in Table 5.2. In terms of purely recognition accuracy, US-FIRST-STAGE-CHAR-HMM

performs best (91.38%), followed by CC-STROKE-HMM (90.74%), SINGLE-HMM (86.81%)

and US-STROKE-HMM (81.62%).

70

75

80

85

90

95

0 1 2 3 4 5 6 7 8 9

Fold #

A
c

c
u

ra
c

y
 (

%
)

SINGLE-HMM (G=5) US-FIRST-STAGE-CHAR-HMM

US-STROKE-HMM CC-STROKE-HMM

Figure 5.10: Devanagari character recognition accuracy for different approaches and dataset
folds

Table 5.2: Devanagari character recognition accuracy and total number of states to train, aver-
aged across 10 folds

Approach Accuracy Number of

States

SINGLE-HMM 86.81% 901

US-FIRST-STAGE-CHAR-HMM 91.38% 4359

US-STROKE-HMM 81.62% 2563

CC-STROKE-HMM 90.74% 2440

The first observation is that the accuracy of CC-STROKE-HMM is marginally lower than

the US-FIRST-STAGE-CHAR-HMM. This may be explained as follows. After the first stage

72

character-level clusters are formed, the second stage only attempts to merge the similar-looking

stroke clusters in order to obtain a reduced stroke set. Since reduction in the number of stroke

clusters does not guarantee improvement in recognition [20], one may expect the accuracy of

US-FIRST-STAGE-CHAR-HMM to be an upper bound on that of CC-STROKE-HMM. How-

ever, it is important to note that while the two accuracies are comparable, the number of states to

train in CC-STROKE-HMM is nearly half of that of US-FIRST-STAGE-CHAR-HMM, which

translates to significant savings in terms of memory and computation time during recognition.

A second, somewhat surprising observation is that the accuracy of US-STROKE-HMM is sub-

stantially lower than even SINGLE-HMM. This may be attributed largely to the errors in stroke

clustering, and reiterates the importance of using handwriting domain information such as the

number of strokes in a character and the sub-collection rule while clustering strokes. Finally, it

is not surprising that the performance of US-FIRST-STAGE-CHAR-HMM and CC-STROKE-

HMM are significantly better than that of the SINGLE-HMM, due to the reasons mentioned

earlier (Section 5.1).

5.7 Summary

We proposed the use of stroke-based modeling for HMM modeling of symbols in Indic scripts.

The symbol model features style HMMs connected in parallel. The style HMMs are in turn

composed from stroke HMMs that are trained from stroke clusters identified in the data, and

shared across character styles. The proposed stroke-based modeling in turn uses a novel ap-

proach based on Constrained Stroke Clustering for identifying the optimal set of strokes and

styles given the character samples. The technique is completely automatic and script-independent

and hence can potentially serve as a generic framework for style identification using stroke clus-

tering. We introduced some basic constraints, inherently present in the handwriting domain, that

one can apply to obtain better stroke clusters. In order to cluster strokes under constraints, we

adopted the Constrained Complete Link algorithm proposed in the Machine Learning domain.

The efficacy of the proposed approach was evaluated for Devanagari characters by measur-

ing its impact on recognition accuracy and the number of states required for HMM modeling.

The symbol models built using the proposed approach were found to outperform alternate ap-

proaches commonly found in the literature. In the next chapter, we describe how these symbol

models are used for the recognition of words.

73

Chapter 6

Word Recognition using Lexicon-driven

and Lexicon-free Approaches

6.1 Introduction

The HMM-based approaches for OHWR presented as part of the literature review indicate a few

significant aspects. In the case of Latin script recognition, where the main challenge is segmen-

tation of cursive writing, HMMs are built at the character level and then concatenated to form

word-HMMs. The word-HMM implicitly segments the input into characters as a by-product of

recognition. On the other hand, for CJK script recognition, HMMs are often built at the stroke

level and these models are connected to form a large network that represents different stroke

orders and/or imposes syntactic constraints. We believe that both the strategies are relevant

for Indic scripts, since both segmentation issues as well as stroke order/number variations are

present.

In this chapter, we propose data-driven and script-independent approaches using HMMs,

for recognizing handwritten words, which need minimal manual intervention during training.

We explore two different recognition strategies: lexicon-driven and lexicon-free. The lexicon-

driven technique models each word in the lexicon as a sequence of symbol HMMs according

to a standard writing order. On the other hand, our lexicon-free technique uses a novel Bag-of-

Symbols representation to deal with the symbol order variation problem and for rapid matching

of the lexicon. We also evaluate the performance of our techniques with Devanagari and Tamil

word samples, through a series of experiments.

74

6.2 Symbol Modeling using HMM

The stroke-based modeling approach using constrained stroke clustering (CC-STROKE-HMM)

described in the previous chapter was used to model the symbols in Devanagari (Fig. 3.1) as

it was shown to be more accurate than using a single HMM per class. However, in the case of

Tamil, where each symbol (Fig. 3.2) is typically written in a single stroke, we noticed only a

marginal improvement in terms of recognition accuracy when compared to using a single HMM

per symbol. Therefore, for Tamil, each symbol is modeled simply using a single HMM.

6.3 Lexicon-driven Word Recognition

In this Section, we describe a lexicon-driven approach for recognition of words, given the sym-

bol models described earlier. In a lexicon-driven approach for word recognition, the lexicon

is used to aid the segmentation-recognition process by exploring only valid symbol sequences.

First, the input handwritten word is matched against each lexicon word model, considering

several segmentation alternatives. The optimum segmentation for a given lexicon word is de-

termined by minimizing the matching cost using approaches such as Dynamic Programming or

Viterbi decoding [69, 102, 103]. Then, the words in the lexicon are sorted based on the minimal

matching cost and the word with the least cost is declared as the recognition result.

6.3.1 Word and Lexicon Modeling using HMM

When HMMs are used for lexicon-driven word recognition, a word model may be constructed

by simply concatenating the constituent symbol HMMs described in the previous section. Even

though such a word model may be appropriate for Latin scripts [69, 20], it suffers from a serious

limitation in the context of Indic scripts - variability in symbol order. Given the UNICODE

representation of a word from the lexicon, one will have to assume a particular order of symbols

in order to construct the word-HMM, which may not always be the one used in the input sample.

Based on our knowledge about the script and manual investigation of the collected hand-

writing samples, we found that people wrote the consonant first followed by the matra, barring

a few exceptions. Such an order is also observed in the study conducted by Vaid and Gupta

[104] for Devanagari. Therefore, we adopted the phonetic order of the symbols as the ‘standard

symbol order’ while creating word-HMMs from the UNICODE strings. However, we took into

75

SYM-1

SYM-2 SYM-3

SYM-4 SYM-5

SYM-6

SYM-1

SYM-7

SYM-2 SYM-3 SYM-4 SYM-5

SYM-7

SYM-6

SYM-40 SYM-32 SYM-12

SYM-3

S E

SYM-1

SYM-2 SYM-3

SYM-4 SYM-5

SYM-6

SYM-1

SYM-7

SYM-2 SYM-3 SYM-4 SYM-5

SYM-7

SYM-6

SYM-40 SYM-32 SYM-12

SYM-3

S E

Figure 6.1: Lexicon-driven recognition using prefix-tree representation. Each box represents a
symbol HMM. ‘S’ and ‘E’ are start and end nodes.

account certain exceptions such as symbols 78, 79 and 80 in Tamil, which are matras that are

almost always written before the consonant, and symbol 86 in Devanagari which phonetically

comes before the consonant sound but is typically written after. Once the word models were

constructed, the lexicon was represented in the form a prefix-tree (Fig. 6.1) where the symbol

models that are part of the common prefixes are shared across word models [69]. The prefix-tree

structure is known to reduce both memory and time requirements during recognition.

Given the features corresponding to the input handwritten word, the Viterbi algorithm

[105] was executed on the prefix-tree to determine the path with the maximum likelihood. The

sequence of symbols that form the maximum-likelihood path is then considered as the recog-

nized word.

6.3.2 Impact of Non-standard Symbol Orders

The imposition of standard symbol order to model a word may be considered as a major lim-

itation of the lexicon-driven approach. As mentioned earlier, even though the phonetic order

of writing is common, there may be situations where one writes the symbols out of order. In

our dataset, when we considered word samples where symbols are written one after another

with a pen-up in between consecutive symbols, we found that approximately 7% of the word

samples in the case of Devanagari and 1% in the case of Tamil were written in a symbol order

different from the standard order. The symbol order variations can broadly be classified into

76

two categories:

1. Symbol order variations within a character - The symbols (e.g. C and V) that constitute

a single character are written in different orders by different writers or even by the same

writer at different times. Table 6.1 shows the symbol orders observed for certain char-

acters in our Devanagari dataset. The difference in the spatial and spoken order when

small /i/ matra (symbol 49 in Fig. 3.1) is involved has also been studied using a Hindi

dictation experiment by Vaid and Gupta [104]. While the matra is written to the left of

the consonant, it is pronounced after the consonant in the phonetic sequence. The authors

conclude that such a discrepancy incurs a certain processing cost while reading the word.

2. Symbol order variations across characters - A symbol that is part of one character is

written after writing one or more symbols of other characters in the word. This is similar

to the notion of delayed strokes in English such as t-crossing, i-dot and j-dot, and may be

called as a delayed symbol in the context of Indic scripts. Table 6.2 shows some examples

from the Devanagari word dataset where symbol order variations occur across characters.

The delayed symbols are typically vowel modifiers (M) such as chandrabindu (symbol

60) and nukta (symbol 63), which are mostly contained in the upper or lower zones and

not part of the body of the word.

It is important to note that it is difficult in practice to learn these variations during training

without access to very large datasets of handwritten words. Given the impact of symbol order

variability, we also explored a lexicon-free approach, which is described in the next section.

6.4 Lexicon-free Word Recognition

In contrast to the lexicon-driven approach described in the previous section, in a lexicon-free

approach, the lexicon is not used to drive the segmentation and recognition of the input word.

Instead, the lexicon is used as a post-processing tool, following recognition, to fix errors if

any in the recognition result. Our lexicon-free recognition strategy is based on two stages, as

described below.

77

Table 6.1: Within-character symbol order variations observed in the word dataset

Scenario Character Standard Writing

Order

Observed Order(s)

/i/ matra is present

Half-consonant

is present

Two or more matras

are spatially close

6.4.1 Arbitrary Symbol Sequence Recognition using HMM

The first stage of lexicon-free recognition is a word recognizer capable of recognizing any

arbitrary symbol sequence. We have adopted the “recurrent HMM” architecture [106, 22] where

the symbol models are connected in parallel to each other as shown in Fig. 6.2 and there is a

recurrent loop back from the final state to the start state. Therefore, in theory, such a topology

can recognize any word without the help of a lexicon. However, in practice, the accuracy of

such a recognizer is poor due to absence of context for pruning invalid paths during the Viterbi

search.

78

Table 6.2: Across-character symbol order variations observed in the word dataset

Word Standard Writing Order Observed Order

The recognized string from the recurrent HMM is matched against the words in the lexi-

con and the closest match is then declared as the final recognition result. In order to improve

recognition, we considered more than one choices from the recurrent HMM.

6.4.2 Bag-of-Symbols Representation

When matching the output word of the recurrent HMM and the words in the lexicon, it is

important to take into account the genuine symbol order variations in the writing. Conventional

matching schemes based on Edit distance [96] will result in a low matching score when the two

words have different symbol orders. Therefore, in order to avoid penalizing genuine symbol

order variations, we use a symbol-order-free representation of the word, which we refer to as

the Bag-of-Symbols representation, along the lines of the popular Bag-of-Words (BoW) model

in the information retrieval literature [107], which has also been recently extended for tasks

such as Content Based Image Retrieval [108] and object recognition [109]. In the BoW model,

a document is represented as a vector where each element in the vector contains the number of

times a word occurs in the document. Thus, the representation of a document does not capture

the order in which the words occur. Similarly, our BoS representation of a word, contains

79

SYM-2

SYM-3

SYM-4

SYM-1

SYM-110

S E

SYM-2

SYM-3

SYM-4

SYM-1

SYM-110

S E

Figure 6.2: Lexicon-free recognition using recurrent HMM.

0…1…2…1…1…0Count

110…104…50…36…27…1

Symbol

ID

0…1…2…1…1…0Count

110…104…50…36…27…1

Symbol

ID

WordWord

Bag of Symbols

104_50_36_27_50
Standard Symbol Order

104_50_36_27_50
Standard Symbol Order

Figure 6.3: BoS representation

only the counts of symbols in the word, and ignores their order. Figure 6.3 illustrates the BoS

representation for a Devanagari word.

Formally, the BoS representation of a given word x, is a vector x of N dimensions corre-

sponding to the N symbols in the script. xi indicates the number of times symbol i is present in

the word x. The distance between two words when represented as BoS is defined as:

Dist(x , y) =

N−1∑
i=0

|xi − yi |+ |
N−1∑
i=0

xi −
N−1∑
i=0

yi |

2

The above distance measure ensures that the cost of substitution, deletion or insertion of a

symbol, when matching two words, is one.

80

We studied the feasibility of the BoS representation for Devanagari and Tamil by deter-

mining the frequencies of number of words that have the same BoS representation when the

symbol order is disregarded. Table 6.3 provides the frequencies for two Devanagari lexicons

containing 20K and 90K words each. In the lexicon of 20K words we find that 18,512 (92.56%)

words have unique BoS representations and even in a lexicon of 90K words, the maximum

number of words having the same BoS representation is only 7 with frequency 2. Similarly in

the case of Tamil (Table 6.4), 97.5% of words in the 20K and 95.65% in the 90K have unique

BoS representations. Thus the identities of the symbols as captured by the BoS representation

can be used for matching the words in the lexicon. Representing the sequence or order of sym-

bols is not valuable except in the rare event of a collision. The BoS representation also supports

efficient matching since unlike distance measures such as the Edit [96] which requires (m× n)

computations, where m and n are the lengths of the two strings, two BoS representations can be

compared using a maximum of (m + n) computations. Hence, the BoS representation permits

one to find potential word matches from the lexicon very rapidly. In the cases where collisions

occur, one may employ costlier matching schemes.

6.4.3 Lexicon Matching

In this subsection, we provide a simple algorithm (Algorithm 2) for matching the lexicon entries

when words are represented using BoS. The algorithm takes the top R choices obtained as

output from the recurrent HMM, and for each choice, finds the top B matching words in the

lexicon using the distance measure described in the previous section. A lexicon word is awarded

a vote when it is one of the top B lexicon choices and as a result, a lexicon word can acquire a

maximum of R votes corresponding to the R choices from the recurrent HMM. Finally, the F

word choices with most votes are extracted from the lexicon. Ties between words having equal

votes are broken by computing the mean edit distance with the R input choices. Finally, the

number of votes for each word is normalized by dividing with the maximum value (R) to obtain

a confidence score.

81

Algorithm 2: Pseudo-code for lexicon matching using BoS
Input: B, F , list H of R word choices from recurrent HMM, and lexicon L

Output: Word choices with confidence scores

1: V otes← 0, Conf ← 0

2: for each word x in H do

3: for each word y in L do

4: x ← BoS(x)

5: y ← BoS(y)

6: DistArr[y] = Dist(x , y)

7: end for

8: Sort DistArr in ascending order and set top B corresponding words to

ShortListedWords

9: for each word z in ShortListedWords do

10: V otes[z] = V otes[z] + 1

11: end for

12: end for

13: Sort V otes in descending order and set top F words to FinalWordChoices

/* Break ties, if any, in FinalWordChoices by computing average Edit distance to

words in H */

14: for each word c in FinalWordChoices do

15: Conf [c] = V otes[c]/R

16: end for

17: return FinalWordChoices, Conf

82

Table 6.3: Frequencies of number of words sharing the same BoS representation in the Devana-
gari lexicon

No. of

words

Frequencies in the

lexicon with size Example

20K 90K

1 18512 80540

2 605 3714

3 82 506

4 8 103

5 - 14

6 - 3

7 - 2

6.5 Experimental Evaluation

We evaluated our approach, and the lexicon-driven and lexicon-free strategies described in the

previous sections using the Devanagari and Tamil datasets described in Chapter 3. In this sec-

tion, we describe our evaluation methodology, the experiments carried out, and the main find-

ings.

83

Table 6.4: Frequencies of number of words sharing the same BoS representation in the Tamil
lexicon

No. of

words

Frequencies in the

lexicon with size Example

20K 90K

1 19498 86092

2 226 1664

3 14 143

4 2 31

5 - 3

6 - 2

6.5.1 Analysis of Writing Styles

Based on manual analysis, we decided to categorize the style of writing into three types, rep-

resenting progressively fewer constraints and greater complexity for recognition. In a type-1

word sample, there is always a pen-up between any two consecutive symbols in the word and

thus may be considered as a ‘discrete’ form of writing. In a sample of type-2 style, there is at

least a pair of symbols in the word which is not separated by a pen-up i.e. the two symbols

are written ‘cursively’. The type-3 category of word samples has at least one delayed stroke

and may contain type-2 writing as well. Therefore, type-3 style may be considered as the most

unconstrained form of writing. Figure 6.4 shows samples of the three types from Devanagari.

Table 6.5 indicates the number of word samples (excluding the ones with one or more symbols

84

Table 6.5: Distribution of word samples in the datasets

Style Devanagari Tamil

Type-1 9407 4801

Type-2 895 1671

Type-3 1213 35

tagged as bad quality) belonging to each style found in the Devanagari and Tamil datasets. One

may note that type-1 style of writing is the most popular form of writing for both Devanagari

and Tamil. Delayed strokes rarely occur while writing Tamil and hence the type-3 samples were

not considered during evaluation.

TYPE-1

two symbols in one stroke

TYPE-2

delayed stroke

TYPE-3

Figure 6.4: Categorization of word samples based on style of writing. Examples from the
Devanagari word dataset.

6.5.2 Evaluation Methodology

For the purpose of evaluating the word recognition performance, the dataset was categorized

into 10 folds as described in Section 5.6.1. While the first fold of the dataset with type-1

style samples in the test set (hereafter referred to as “validation fold”), was used to learn the

recognizer’s parameters such as beam width, the recognition accuracy is reported as an average

across the other 9 folds in all the following experiments.

Evaluation of the word recognition system was carried out on different lexicon sizes such

as 1K, 2K, 5K, 10K and 20K. The lexicons were created using the EMILLE-CIIL text corpus

[64] that contains news articles extracted from online news portals. An N -word lexicon con-

tained the N most frequently occurring words in the corpus. Since the words in the corpus

were in UNICODE encoding, they had to be converted into sequences of symbol IDs using the

standard order as described in Section 6.3.

85

6.5.3 Lexicon-driven Word Recognition

As described in Section 6.3, in a lexicon-driven approach, the standard symbol order is imposed

while modeling the words as HMMs and the lexicon is represented as a prefix-tree. An impor-

tant parameter that has profound impact on recognition is the Beam Width for Viterbi decoding

on the prefix tree. It serves as the central control parameter for pruning the search paths in

the HMM network. Higher beam width allows more paths to be explored, whereas lower beam

width prunes them aggressively. As mentioned earlier, the validation fold from both Devanagari

and Tamil datasets was used for learning the beam width. Beam widths of 300 and 650 were

found to be optimal from the standpoint of trading off recognition accuracy and time.

Tables 6.6 and 6.7 present the average recognition accuracies obtained across 9 folds for

the two scripts and different styles of writing. In the case of Devanagari, across all lexicon

sizes, the accuracies of type-2 and type-3 styles are substantially lower than that of type-1

style. This may be because of insufficient modeling. For instance, the delayed strokes in type-3

and ligatures (connecting parts) in type-2 are not explicitly modeled as done by Brown et al.

[20]. Also, in addition to that, the samples belonging to all the three styles may also contain

symbol orders different from the standard order. However, one may note that the accuracy of

type-1 style of Tamil writing (92.48% for 20K) is substantially higher when compared to that

of Devanagari (83.82%). This may be due to lesser symbol order variations in Tamil writing.

Overall recognition accuracies of 79.01% and 91.80% are obtained for Devanagari and Tamil

respectively with their lexicons containing 20K words. When the 20K-word lexicon was used,

the average time taken for recognizing a word sample for both the scripts was close to 400

milliseconds, on a laptop with the Intel Core2 Duo CPU @ 2 GHz and a RAM of 2 GB.

6.5.4 Lexicon-free Word Recognition

The first stage of the lexicon-free strategy is the recognition of the word sample using the

recurrent HMM. During training, in addition to the Beam Width, an optimal value for inter-

model transition penalty was also determined for the recurrent HMM. The penalty is a constant

added to the total log-likelihood during transition from one symbol model to another. Therefore

a large positive penalty will result in over-segmentation whereas a large negative value will

result in under-segmentation. The two parameters were found using the validation fold. For

Devanagari, a beam width of 250 and an insertion penalty of -75 were found to be optimal.

86

Table 6.6: Average accuracy (%) across 9-folds for Devanagari word recognition

1K 2K 5K 10K 20K

Style Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

Lexicon-driven

TYPE-1 92.01 93.48 90.33 92.56 88.24 91.59 85.97 90.87 83.82 90.22

TYPE-2 68.99 70.87 66.04 70.17 61.91 67.57 60.61 66.27 57.55 64.39

TYPE-3 72.50 74.93 69.45 73.02 65.54 71.19 62.92 68.67 59.53 67.01

All Samples 87.99 89.60 86.06 88.59 83.59 87.39 81.37 86.42 79.01 85.56

Lexicon-free

TYPE-1 87.06 96.06 86.44 95.26 84.65 93.71 83.03 92.98 81.49 91.92

TYPE-2 78.18 92.57 77.12 91.04 75.47 89.27 73.35 86.44 70.52 83.84

TYPE-3 76.33 92.60 75.46 90.95 71.98 87.73 69.45 84.51 66.32 81.90

All Samples 85.16 95.40 84.48 94.44 82.51 92.69 80.75 91.51 78.92 90.16

Combination of lexicon-driven and lexicon-free

TYPE-1 95.42 98.70 94.37 98.19 92.40 97.59 90.63 96.95 89.29 96.31

TYPE-2 83.84 97.05 83.49 96.34 82.08 95.52 81.60 94.34 80.19 92.69

TYPE-3 85.47 95.47 84.07 94.43 82.07 92.78 78.24 91.47 76.41 89.73

All Samples 93.38 98.21 92.35 97.62 90.42 96.89 88.53 96.14 87.13 95.29

87

Table 6.7: Average accuracy (%) across 9-folds for Tamil word recognition

1K 2K 5K 10K 20K

Style Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

Lexicon-driven

TYPE-1 96.46 97.96 95.40 97.78 94.53 97.42 93.51 97.18 92.48 96.68

TYPE-2 94.79 97.42 93.47 97.05 92.21 96.42 90.83 95.73 89.82 95.29

All Samples 96.03 97.82 94.90 97.60 93.93 97.16 92.82 96.80 91.80 96.32

Lexicon-free

TYPE-1 82.88 92.98 82.21 91.94 80.65 89.88 79.39 88.25 77.76 86.73

TYPE-2 82.54 93.84 81.91 93.22 81.16 91.46 80.03 90.45 77.70 89.26

All Samples 82.80 93.21 82.13 92.27 80.78 90.28 79.55 88.82 77.74 87.38

Combination of lexicon-driven and lexicon-free

TYPE-1 93.90 98.39 93.09 98.11 91.85 97.42 90.53 96.66 88.94 95.87

TYPE-2 93.03 98.74 92.46 98.43 91.58 97.42 89.89 97.17 88.69 96.55

All Samples 93.67 98.48 92.93 98.19 91.79 97.42 90.36 96.79 88.88 96.05

88

Similarly, in the case of Tamil, the values were found to be 350 and -45 for beam width and

insertion penalty respectively. Top 20 word choices from the recurrent HMM were passed to

the lexicon matching stage (Algorithm 2) that uses the BoS representation for symbol-order-free

ranking of words.

Tables 6.6 and 6.7 show the performance of the lexicon-free approach for Devanagari and

Tamil respectively. The overall accuracy across all the styles and with the 20K lexicon is 78.92%

and 77.74% for Devanagari and Tamil respectively. In the case of Devanagari (Table 6.6), when

compared to the lexicon-driven approach (83.82% for 20K), the accuracy of type-1 style sam-

ples (81.49%) is lower. However, the performance with type-2 and type-3 styles is substantially

higher and is found to be 70.52% and 66.32% respectively. The higher performance may be

attributed to two important factors: (i) In contrast to lexicon-driven HMM, the recurrent HMM

is context-independent [22] and attempts to spot best-matching individual symbols in the word

sample. As a result, even when a ligature or a delayed stroke is present in the word sample, it

may identify the other well-written discrete symbols correctly. (ii) The recognition scheme is

independent of the symbol order and hence, unlike the lexicon-driven scheme, it can potentially

recognize any symbol order. However, in the case of Tamil (Table 6.7), the performance of

the lexicon-free recognizer is found to be substantially lower than the lexicon-driven approach.

Our analysis reveals that the Tamil symbol set contains many similar-looking symbols and as

a result, the same context-independent symbol-order-free nature of the recurrent HMM, which

was advantageous for Devanagari, is not effective for Tamil. Figure 6.5 shows a Tamil word

sample which was misrecognized by the lexicon-free approach. One may note that the symbol

23 which is a consonant (Fig. 3.2) is written identical to symbol 73 (matra). This is the most

common style of writing the symbol 23 when it is part of the character containing matras 72,

74 or 75. Therefore, the character context is needed to distinguish the two symbols. From the

example, one also finds that segmentation errors, e.g. symbol 54 being over-segmented as two

different symbols 12 and 4 based on shape similarity, also occur in the absence of context. As

a result, the top-20 accuracy of the recurrent HMM, averaged across 9 folds, was found to be

only 54.6%. Such errors in many cases are irrecoverable using the lexicon in the second stage.

The average time taken for recognizing a word sample was 430 milliseconds (320 ms

for recurrent HMM recognition and 110 ms for BoS-based matching of 20K-word lexicon) for

Devanagari and 550 milliseconds (380 ms + 170 ms) for Tamil.

89

Figure 6.5: Error in lexicon-free Tamil word recognition

6.5.5 Combination of Lexicon-driven and Lexicon-free Approaches

While the lexicon-driven approach was found to be more accurate for type-1 style samples

written in the standard symbol order, the lexicon-free approach was suitable for type-2 and

type-3 styles, especially when written in a non-standard symbol order. In order to get the best

of both; we also explored the possibility of combining the two recognizers. We adopted a simple

parallel combination scheme for combining their results, using top 5 choices from the lexicon-

driven recognizer and top 20 choices from the lexicon-free approach. When only one of the

recognizers was confident, the combination scheme returned the results of the corresponding

recognizer. The lexicon-driven recognizer was assumed to be confident of its result when there

was only a single output choice after Viterbi decoding of the input word sample. The other

competing paths might have been pruned due to their low scores. Similarly, the lexicon-free

recognizer was assumed to be confident of its result if the difference in the confidence scores

of the first and second choice was greater than a predefined threshold. On the other hand,

when both the recognizers were confident or when both were not, we combined their individual

choices using the Borda count [110]. In the case of a tie in Borda count between two words

having the same number of votes, the number of votes from the lexicon-free recognizer was

considered to break it. Tables 6.6 and 6.7 show the results obtained by the combination for

Devanagari and Tamil for various lexicon sizes. In the case of Devanagari, with the 20K-word

lexicon, top-1 accuracy of 87.13% and top-5 of 95.29% were obtained. It is interesting to note

that there is a substantial improvement in accuracy when compared to lexicon-driven (Fig. 6.6)

and lexicon-free approaches alone. The improvement is as high as 22.64% and 16.88% for

type-2 and type-3 styles respectively. An overall accuracy improvement of 8.12% was achieved

90

0.00

5.00

10.00

15.00

20.00

25.00

Type-1 Type-2 Type-3 All Samples

Style of Writing

Im
p

ro
v
e
m

e
n

t
in

 A
c
c
u

ra
c
y
 (

%
)

Figure 6.6: Accuracy improvements achieved by the combination over lexicon-driven for De-
vanagari word recognition with 20K lexicon

across the three styles, which may considered as substantial.

In the case of Tamil, it may not be surprising to note that there is actually a decrease

in accuracy due to combination, when compared to the lexicon-driven recognizer. This may be

attributed due to the low performance of the lexicon-free recognizer due to the reasons described

in the previous section.

6.5.6 Performance with Samples having Symbol Order Variations

Besides computing the overall accuracy as explained in the previous section, the performance

of each technique was also evaluated with those type-1 style word samples in Devanagari that

had symbol order variations. In total, 592 type-1 samples in the Devanagari dataset had symbol

orders different from the standard. Along with lexicon-driven, lexicon-free and their combina-

tion, we also computed the accuracy of an oracle lexicon-driven recognizer. Instead of using

the standard symbol order of a word for the lexicon, the oracle recognizer used the exact sym-

bol order in which the writer had written the word. This is achieved by dynamically adding

the actual symbol order of the test word sample, determined from the annotation, to the list of

words in the lexicon before recognizing the word sample [111]. Therefore, the performance

of the oracle recognizer may be considered as an upper bound on that of the lexicon-driven

technique. Table 6.8 presents the results of the techniques. As one may expect, the top-1 accu-

racies of lexicon-free (77.36%) and the combination (74.83%) are substantially higher than the

lexicon-driven (28.38%). There is a marginal decrease in accuracy with the combination when

91

compared to that of lexicon-free. This is mainly due to the false positives from the lexicon-

driven recognizer as it misrecognizes certain samples with high confidence. The top-5 accuracy

of the combination is comparable to the oracle lexicon-driven recognizer.

When all the type-1 style samples were considered, the accuracy of the combination i.e.

89.29% (Table 6.6) was on par with the Top-1 accuracy of the oracle, which was found to be

only 89.23%.

Table 6.8: Average accuracy (%) across 9-folds for type-1 Devanagari word samples having
symbol order variations, with 20K lexicon

Approach Top1 Top5

Lexicon-driven 28.38 39.53

Lexicon-free 77.36 93.92

Combination 74.83 94.26

Oracle lexicon-driven 92.23 95.44

6.6 Summary

In this chapter, we explored lexicon-driven and lexicon-free strategies for HMM-based word

recognition. Our lexicon-free strategy uses a novel Bag-of-Symbols representation for symbol-

order-free representation of words. We demonstrated empirically that the proposed approach

addresses the problem of symbol order variation in Devanagari, and in combination with the

lexicon-driven approach, high recognition accuracies (93.38% and 87.13% with the 1K and

20K lexicons respectively) can be achieved. The results of our investigation also indicate that

the lexicon-driven approach is best suited for Tamil (96.03% and 91.8% with the 1K and 20K

lexicons respectively) since symbol order variation is not significant in the script, and also

because the presence of similar-looking symbols makes the task of recognition difficult without

the context of the lexicon. The strategies proposed are data-driven and script-independent and

are therefore extensible to other Indic scripts.

In the next chapter, we propose a novel IME for Indic scripts that recognizes handwriting

92

input on small touch surfaces.

93

Chapter 7

Position-free Handwriting Input for Small

Touch Interfaces

In this chapter we address the second part of the problem definition, and propose a handwriting-

based text input solution for entering Indic scripts on small touch surfaces.

7.1 Introduction

Many interfaces have been developed for handwriting-based text input on devices that support

stylus or touch for interaction. Handwriting has several intrinsic advantages over hard or soft

keyboards such as naturalness, suitability for scripts with large character sets, and absence of

seek time. These interfaces use discrete symbol based or continuous handwriting input methods.

Examples of discrete symbol based methods include character input interfaces popular on PDAs

and stylus equipped mobile phones. These require symbols to be entered one at a time into

a specific writing area, and generally use a timeout to indicate the end of a symbol. This

considerably slows down the process of writing. Unistroke alphabets such as Graffiti use the

end of stroke to signify the end of a character and eliminate the timeout, but require the user

to learn special sets of symbols. Continuous input interfaces on the other hand allow words

to be written as a continuous stream of strokes (i.e. without explicit indication of character

transitions), often support cursive styles, and may allow several words to be entered at once.

These require larger digitizer surfaces as found on TabletPCs, external tablets, and electronic

paperclip devices. Limited forms are also found on some PDAs. However, continuous input

is difficult if not impossible when the writing area on the device is small and the stylus is

94

substituted for by a finger, as shown in Figure 7.1.

(a) (b)

Figure 7.1: Insufficient space to enter the word intelligent using a finger: (a) portrait mode (b)
landscape mode

Another issue with continuous handwriting input is the attention required during writing.

Existing continuous input interfaces have been designed taking into account the conventional

writing order of the script (for example, left to right in the case of English), so that the spatial

positioning of the characters and words that make up the input is maintained. For example, the

characters and words need to be approximately the same size, written next to one another, and

aligned with a (imaginary or displayed) baseline. In addition to adhering to these requirements,

users also unconsciously tend to read what they have written before sending the ink for recog-

nition. As a result, such input methods require almost continuous user attention while writing,

i.e. the user has to look at the writing surface to make sure that the input is “spatially correct”

and the position of each unit of writing with respect to its predecessors and/or the baseline is

maintained.

Where the writing (digitizing) surface is different from the application display surface (as

in the case of an external digitizing tablet connected to a desktop PC), the user has to look at

the writing surface while writing, and then at the display to see the results of recognition. This

constant switching between the display device and the writing surface after each writing unit

(which could be a character, word, or a larger unit, depending on the recognizer used) results in

significant cognitive load on the user, and impacts the speed of text entry.

As mentioned in Section 1.2, handwriting recognition is even more relevant in the context

95

of Indic scripts, which have large character sets, making text entry through the QWERTY key-

board overlays (for desktop and notebook PCs) and the keypads or soft keyboards (on mobile

devices) extremely cumbersome.

7.2 Prior Work on Continuous Handwriting Input for Small

Writing Surfaces

Given the inherent difficulty in supporting natural handwriting input on small writing surfaces,

various interfaces have been explored by researchers. In an early effort, Goldberg and Richard-

son [112] proposed the “Unistroke” alphabet for entering the English letters. The alphabet

contained carefully-designed single-stroke symbols for the English letters. Some of these sym-

bols had identical shapes and differed only in the direction of writing. By using single-stroke

symbols, Unistroke enabled continuous input while circumventing the problem of letter seg-

mentation. With respect to user interaction, it supported “heads-up” or “eyes-free” writing, and

could be used on small devices. However, a major limitation was that the users were burdened

with the task of learning these new symbols before they could enjoy its benefits. Graffiti from

Palm [113] offers single-stroke symbols that bear closer resemblance to the actual letters, when

compared to Unistroke, but continues to suffer from the same limitations. EdgeWrite [114] also

specifies a set of single-stroke symbols that are expected to be written by tracing along the edges

of a square box (which might be the display surface or touchpad in practice). The sequence in

which the corners of the square are visited during writing determines the input character. This

is based on the observation that there is high stability in the writing when users gesture along

the physical edges, making it particularly suitable for people with motor impairments. Systems

such as Unistroke, Graffiti or EdgeWrite may not be practical for Indic scripts owing to the

large character set sizes of the latter.

TreadMill Ink proposed by Seni [115] addresses the problem of continuous handwriting

input on small devices, by providing a user interface with a virtual writing area that scrolls

from right to left as one writes. Apart from recognizing mixed style natural writing, it can also

automatically detect the end of a word, thereby eliminating the timeout needed for recognition.

One principal shortcoming is that the user has to get accustomed to writing on a scrolling

surface. Moreover, being a software solution, it needs an ‘active’ writing surface capable of

providing continuous visual feedback to the user.

96

Relatively recent efforts by Shimodaira et al. [116] and Tonouchi and Kawamura [117]

have explored “overlaid handwriting” for entering Japanese words. This addresses the problem

of small real-estate by allowing the users to write normal characters one over another to form

the word. However, it assumes that the relative positions between strokes forming a character

are maintained by the user even while overwriting.

7.3 Prior Work on Handwriting-based Input Method Editors

for Indic Scripts

While recognition of unconstrained continuous handwriting is clearly the end-objective, a num-

ber of practical Indic text input solutions (also called Input Method Editors or IMEs) can be

obtained by imposing constraints on the writer. One such constraint is that of phonological

symbol order: for example, constraining the writer to complete the consonant (C) before the

matra (V) while writing a CV character (even when the matra appears to the left of the con-

sonant, and is typically written before). This allows a two-step IME in which the consonant

is first written and recognized (and manually corrected if necessary by selecting from an n-

best list), and the matra written and recognized in a second step. A second constraint could

be to ask the user to unravel consonant clusters or conjuncts into sequences of CH characters

using the halanth (vowel muting diacritic), as opposed to using the half forms or consonant

conjuncts. When used together, these constraints allow recognition of complex characters such

as C’C’CV using only isolated symbol recognizers for C and V. Such strategies are used by

IMEs such as the Gesture Keyboard [2], Guided Handwriting [118], Compact IME [119] and

IndicDasher [120]. The Gesture Keyboard uses a combination of coarse pen position in a grid

of base consonants, and recognition of the written matra, to interpret the user’s CV input (Fig.

7.2). Guided Handwriting uses a set of basic stroke and substroke shapes together with rules to

predict a consonant even as it is being written. Compact IME is proposed for mobile devices

where the consonant is written first and followed by selecting the matra from a visual menu

arranged based on the actual positions of the matras in a character. Srinivas et al. [120] propose

Indic-Dasher, a modification of English Dasher [121] for Indic scripts. While a consonant is

entered by simply pointing to it as in the case of English Dasher, in order to enter the matra, the

user writes the matra around the consonant currently pointed at. The handwritten matra is then

recognized and displayed along with the top N recognition choices.

97

Figure 7.2: Gesture keyboard for entering Devanagari characters (Adapted from Balaji et al.
[2])

7.4 FreePad IME: Position-free Handwriting Input

Taking into account the limitations of the existing approaches for continuous handwriting input

on small devices (Section 7.2), we propose an IME called FreePad. The central idea of FreePad

is that the user can completely disregard the positions and sizes of the input strokes and treat

handwriting input simply as a sequence of independently written strokes and still expect it to

be recognized. Even the relative positions and sizes of the strokes forming a character may be

disregarded by the user. In contrast to systems based on single-stroke alphabets which have

predefined symbols, the user can enter characters in the manner (s)he is used to writing. Since

the positions and sizes of the strokes are ignored, FreePad is well suited for small devices where

the user can “overwrite” the strokes of the word in place.

It is important to note the difference between FreePad and the overlaid handwriting work

[116, 117] mentioned in Section 7.2. That effort also addresses the problem of small real-estate

by allowing the users to write one character over another to form the word. However, it assumes

that the relative positions and sizes of strokes forming a character are maintained by the user.

In contrast, FreePad does not impose this constraint on the user. Figure 7.3 shows an example

where the word ‘this’ is written as overlaid handwriting (Fig. 7.3(a)) and using FreePad (Fig.

7.3(b)). One may note that unlike in the case of overlaid handwriting, in FreePad, even the

positions of the t-crossing and i-dot need not be maintained1.

1Fig. 7.3(b) shows an extreme case of disregarding stroke positions in FreePad. In practice, users tend to

maintain some resemblance of relative size and position especially within a character. However FreePad treats all

input uniformly as being devoid of stroke position and size information.

98

(a) (b)

Figure 7.3: Comparison between input recognized by (a) overlaid handwriting (b) FreePad

Disregarding the positions of the strokes even within a character is an advantage, espe-

cially in the context of Indic scripts, where one is faced with the challenge of entering complex

characters (e.g. CVM or vertically-stacked conjuncts in Telugu) using a finger on a small writ-

ing surface (e.g. mobile phone display, laptop touchpad, watch dial). The ability to recognize

“position-free” handwriting also has other significant advantages. In addition to enabling “eyes-

free” or “heads-up” text input, which was one of the objectives of Unistroke [112], position-free

handwriting input is also appropriate in the absence of visual displays to guide writing, and for

input using devices such as mice and “wands” which can only capture movement but not abso-

lute (x, y) position.

The FreePad IME concept as currently implemented (Fig. 7.4) accepts “position-free”

input of handwritten words written in phonological order and discretely style (i.e. with pen lifts

between symbols). In contrast to the approaches presented in Section 7.3, which only recognize

isolated consonants or matras, it supports continuous input and does not require any explicit

indication of symbol transition.

7.5 Consequences of Loss of Position Information

While an IME that can accept position-free handwriting input has several benefits, there are

some noteworthy challenges in recognizing such input. For instance, ascenders and descenders,

considered to be vital information in some approaches for Latin script word recognition, are

99

(a)

(b)

(c)

Figure 7.4: FreePad interface for (a) Devanagari, (b) Tamil and (c) English. The last four strokes
of the writing are displayed with different shades, and the recognition of the word is triggered
using a timeout.

100

no longer detectable. The effects are even more severe in the case of Indic scripts due to their

intrinsic two-dimensional structure. In this section, we attempt to categorize the ambiguities

that arise in recognition due to loss of position information.

1. Ambiguities between multi-stroke symbols - When relative positions of the strokes within

a symbol are ignored, certain pairs of symbols become indistinguishable, e.g. symbol 26

(/Na/) and symbol 32 (/pa/) in Devanagari, shown on the left and right respectively in Fig.

7.5.

Figure 7.5: Ambiguity due to loss of position information within a symbol

2. Ambiguities between symbols having identical shapes - These arise due to the loss of po-

sition information between symbols. These symbols are visually the same but differ only

in their positions in the context of the character or word (e.g. hyphen ‘-’ and underscore

‘ ’). Fig. 7.6 shows an example from Devanagari: symbol 54 (/ai/ matra) and symbol

62 (halant) differ only in their positions with respect to the base consonant (shown as a

dotted circle).

Figure 7.6: Ambiguity due to loss of position information between symbols

3. Ambiguities between multi-stroke symbols and two or more symbols - Such ambiguities

are a result of loss of position information both within and between symbols. Fig. 7.7

shows an example from Devanagari where symbol 34 (/ba/) is a multi-stroke symbol, and

symbol 40 (/va/) and symbol 54 (/ai/ matra) are two different symbols.

Since FreePad accepts completely position-free input, one can expect all the three forms

of ambiguity to be present. In order to deal with these uncertainties, we take advantage of a

lexicon which serves as a contextual knowledge source.

101

Figure 7.7: Ambiguity due to loss of position information within and between symbols

In the following sections we describe the steps involved in recognition of position-free

handwriting, along with the results of our evaluation.

7.6 Recognition of Position-free Handwriting

The recognition of position-free handwriting may be accomplished using an approach similar

to that used for conventional writing. In this section we describe the preprocessing and feature

extraction steps involved in the recognition of position-free writing. For training the symbol

models, and word recognition after feature extraction, the same approaches developed and de-

scribed earlier for normal handwriting are adopted, and are not repeated here.

7.6.1 Preprocessing

Conventional preprocessing techniques for word recognition (e.g. in Fig. 4.6) typically do not

disturb the positions of the strokes while normalizing their sizes. Therefore, such techniques

are not suitable for processing position-free handwriting where the absolute positions of the

strokes are either unknown or unreliable. We propose stroke-level preprocessing in order to

deal with the variations in the input. In our approach, irrespective of the position of the stroke

on the writing surface, we translate each stroke such that the (xmin, ymin) point of its bounding

box is at the origin. In order to cope with the variability in sizes, each stroke is normalized

by scaling the height or width of the bounding box, whichever is larger, to a constant value

while maintaining the original aspect ratio of the stroke. Once the entire handwritten word has

been preprocessed at the stroke level, each stroke in the temporal order appears to be written

at the same location and with similar size as shown in Fig. 7.8. Following position and size

normalization, each stroke is also resampled as described in Section 4.3 of Chapter 4.

Even though stroke-level preprocessing removes variations in the positions, it is not suit-

able when two symbols in the input are written cursively in a single stroke. As one can imagine,

102

Figure 7.8: Position-free input of a Tamil word before and after stroke-level preprocessing

when such a stroke is normalized to a fixed size, the values of the points (x and y) would change

significantly. Therefore, in the current implementation of FreePad, we restrict the input to be

of the discrete style (type-1 in Section 6.5.1), wherein no two symbols in the word are written

without a pen-up between them. It is important to note that the stroke-level preprocessing does

not in any way impact recognition of different symbol writing styles varying in the shape, num-

ber, sequence or direction of strokes as long as the style was presented during training of the

recognizer (Chapter 5).

7.6.2 Feature Extraction

In addition to the features extracted for normal handwriting described in Section 4.4, we also

extract and use the x-value at each point after size normalization as one of the features. In

conventional writing, the x-value varies with the position of the symbol within the word and is

not directly useful for characterizing the shape of the stroke. However the x-value becomes a

meaningful feature here because of the stroke-level preprocessing described earlier.

7.7 Experimental Evaluation

The datasets containing ‘normal’ handwriting samples (described in Chapter 3), were used for

evaluating the performance of position-free handwriting recognition. This was possible because

of the stroke-level preprocessing step in the recognizer which ignores the original positions of

103

the strokes irrespective of the input. Thus, a word sample written conventionally on a large

surface may be assumed to be no different from position-free handwriting input entered via the

IME for the purpose of evaluating the position-free recognition system2.

The dataset was divided into 10 folds as it was described in Section 5.6.1. For the reasons

mentioned earlier, the performance of our position-free word recognizer was evaluated only

on the type-1 samples, for both Devanagari and Tamil, and the recognition accuracy was com-

puted as the average of 9 folds excluding the validation fold. The validation fold was used to

determine the optimal beam widths and word insertion penalties for the HMM networks. The

approaches (lexicon-driven, lexicon-free and combination) proposed earlier for normal hand-

writing recognition, were evaluated in the context of position-free handwriting. Since the shi-

rorekha stroke(s) do not have any significance in the position-free writing of a Devanagari word

and are not expected to be entered by the user, we removed them (using the symbol label) before

evaluation.

7.7.1 Performance of Position-free Recognition

Table 7.1 shows the results obtained using the three approaches for position-free Devanagari

for different lexicon sizes. As with normal handwriting, the combination of lexicon-driven and

lexicon-free recognizers produced the highest accuracy (88.78% for the 20K-word lexicon).

Similarly for Tamil (Table 7.2), the combination returns the highest accuracy (93.18% for 20K-

word lexicon). The top-5 accuracy for 20K lexicons for both scripts exceeds 96%. From these

results, it is clear that FreePad can be effective as an IME. As with other text input methods,

the user can be given the option of selecting from alternative recognition choices in the event of

misrecognition.

In the next sub-section, we study the relevance of position information by comparing these

results with those for normal handwriting.

7.7.2 Relevance of Position Information

The experimental results for position-free handwriting recognition allow interesting compar-

isons to be made with those for normal handwriting. Some of the specific observations are as

2The assumption may not be valid if the writing surface is too small and has an impact on the shapes of

the strokes written. Moreover, by using the normal handwriting dataset for evaluating position-free handwriting

recognition, we assume that the severity of symbol order variation is the same in both types of input.

104

Table 7.1: Average accuracy (%) across 9-folds for position-free Devanagari word recognition
using Type-1 samples

1K 2K 5K 10K 20K

Approach Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

Lexicon-driven 90.82 92.07 89.02 91.01 86.79 90.07 84.32 89.33 81.88 88.44

Lexicon-free 87.30 95.85 86.46 94.91 85.01 93.76 83.55 92.86 81.91 91.59

Combination 94.81 98.39 93.81 97.94 92.39 97.34 90.51 96.74 88.78 96.16

Table 7.2: Average accuracy (%) across 9-folds for position-free Tamil word recognition using
Type-1 samples

1K 2K 5K 10K 20K

Approach Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

Lexicon-driven 96.03 97.76 94.90 97.52 94.09 97.13 93.46 96.61 92.48 96.42

Lexicon-free 89.16 96.68 88.88 96.50 88.03 95.72 87.73 95.26 86.49 94.57

Combination 96.13 98.78 95.74 98.61 94.98 98.31 94.16 98.13 93.18 97.76

follows.

• In the case of Tamil, the accuracy of the lexicon-free recognizer (86.49% for 20K) is

substantially higher than what was obtained for normal handwriting (77.76% for 20K,

from Section 6.4) with the same set of type-1 samples. We hypothesize that this improve-

ment may be because of the use of the x feature which may have helped the recurrent

HMM avoid the kind of segmentation errors described in Section 6.5.4. As a result, the

combination of lexicon-driven and lexicon-free recognizers (93.18% for 20K) performs

marginally better for position-free input, compared to the lexicon-driven approach alone

(92.48%). This is in contrast to normal writing, where the much poorer performance of

the lexicon-free approach adversely impacts the performance of the combination, causing

it to perform worse than the lexicon-driven approach.

105

• In general, for Type-1 input, there is virtually no loss of accuracy due to the loss of

position information, as compared to normal handwriting recognition.

From the above observations, the following conclusion can be drawn. When compared to

the normal handwriting recognizer which has to preserve the positions of the strokes in order

to recognize both discrete and cursive styles of writing, the position-free recognizer designed

specifically for discrete-style input can achieve comparable accuracy even in the absence of

position information, especially when a lexicon is available.

7.7.3 User Acceptance and Usability

While we have demonstrated the ability to recognize position-free input with acceptable accu-

racy, another important question concerns the user’s ability to change their mental model of

writing in order to use FreePad. In order to study this aspect, we conducted a preliminary user

study involving twelve participants to determine user reactions to FreePad [122]. In particular,

we compared the user experience of using FreePad with T9, a popular text input mechanism for

SMS messaging, for the task of composing SMS messages in English. Subjective ratings by the

users on a Likert scale of 1(lowest) to 7 (highest) corresponding to three attributes: naturalness,

ease of use, and overall experience - were collected. The study subjects rated FreePad higher

than T9 on all three counts. While limited in scale and scope, this study suggests that overwrit-

ing with a finger is easy and effective to use, and users are able to cope with the change in the

model of writing.

7.8 Summary

In this chapter, we proposed a novel handwriting-based text input method for entering Indic

scripts on a small device, using a finger. The proposed approach allows the user to “overwrite”

a word in place, and offers several advantages such as supporting eyes-free writing. A brief

overview of related prior efforts such as Unistroke and Overlaid handwriting, and IMEs for In-

dic scripts was presented. We also described the stroke-level preprocessing step that is used in

FreePad to deal with the unreliable positions of the input strokes. Our results indicate that the

accuracy of position-free handwriting recognition is comparable with that of normal handwrit-

ing when the input word sample is written discretely, and word context (in the form of lexicon)

106

is available. Preliminary user studies (for English) suggest that FreePad is a good alternative to

keypads for text input on small devices.

107

Chapter 8

Conclusions

8.1 Summary

This thesis addressed the problem of online handwritten word recognition for the Indic family

of scripts, which are used by a sixth of the world’s population. Specifically, it explored the

use of script-independent and data-driven approaches for addressing this problem, so that the

approach may easily be extended to other Indic scripts.

In the introductory chapter, having introduced the problem, we briefly discussed the struc-

ture of these scripts, and presented the challenges posed by them for online recognition, espe-

cially when compared to Latin and Oriental scripts. We presented an overview of our HMM-

based approach to online handwritten word recognition, and the key steps of preprocessing and

feature extraction, symbol modeling, and word recognition.

An overview of the established approaches for recognition of Latin and Oriental scripts,

with an emphasis on HMM-based approaches, was then presented. We also presented an

overview of the state of the art in online Indic script recognition. Previously explored ap-

proaches for recognition of handwritten words were seen to be either script-dependent or in-

volve significant human intervention during training of the recognizer.

We then described the methodology adopted for creating handwriting word datasets for

Devanagari and Tamil. The steps of defining the symbol set, identifying a minimal set of words

for data collection using OTS, data cleanup and annotation, along with the various tools used

for these tasks were also briefly described. These datasets have been used for training and

evaluation of the handwriting recognition algorithms proposed in this work.

The various steps in preprocessing of the input word sample such as size normalization and

108

resampling were then described. In the case of Devanagari, shirorekha stroke(s) are identified

as the first step and used for size normalization. The performance of the shirorekha detection

algorithm was evaluated on a test set and found to be more than 99% accurate. We then de-

scribed the features extracted from the preprocessed ink at each point in the trajectory. These

are adopted from the literature and include writing angles, aspect, curliness, linearity and slope.

Next, we described our approach to symbol modeling using HMMs. Our symbol model

is a parallel-path network where each path corresponds to a style of writing the symbol, and

contains a sequence of stroke HMMs. The stroke HMMs are shared across styles of the same or

different symbols. While conventional stroke-based modeling approaches use unsupervised or

heuristic-based stroke clustering algorithms in order to identify the unique strokes in the dataset,

we proposed the use of constrained stroke clustering. We introduced some basic constraints,

inherently present in the handwriting domain that one can apply to obtain better stroke clusters.

We showed through empirical evaluation that Devanagari symbol modeling using writing styles

and stroke clusters determined using the proposed approach achieves significantly higher recog-

nition performance and/or reduced number of HMM states, when compared to alternate mod-

eling techniques. The alternate modeling techniques studied included the use of a single HMM

per character, character-based modeling using character-level clustering, and stroke-based mod-

eling using unsupervised stroke clustering. In the case of Tamil, where writing style variations

at the symbol level were not found to be significant, a single HMM was used to model each

symbol.

We then described two different approaches to word recognition: lexicon-driven and

lexicon-free. The former represented lexicon words as HMMs by concatenating the correspond-

ing symbol HMMs in a predetermined, “standard” order. From the Devanagari word samples

collected, we found that 7% of them are written in a symbol order different from the standard

order. The accuracy of the lexicon-driven approach with these samples was found to be very

low. Therefore we also proposed a lexicon-free approach that uses a novel Bag-of-Symbols rep-

resentation for symbol-order-free representation of words. We demonstrated empirically that

the proposed lexicon-free approach addresses the problem of symbol order variation in Devana-

gari, and using a Borda count combination with the lexicon-driven approach, high recognition

accuracies (93.38% and 87.13% with the 1K and 20K lexicons respectively) can be achieved.

The results of our investigation also indicated that the lexicon-driven approach is well suited for

Tamil (96.03% and 91.8% with the 1K and 20K lexicons respectively) since the symbol order

109

variation problem is not significant in the script.

Finally, we proposed FreePad, a novel text input method (IME) for handwriting Indic

scripts using a finger on small touch surfaces, such as those increasingly common in mobile

phones. The proposed solution allows the user to handwrite a word without regard for the

relative positions and sizes of strokes, and in particular, overwrite a word in place on a small

writing surface. In order to recognize this form of “position-free” writing, we proposed stroke-

level preprocessing which ignores the original position and size of each stroke and normalizes

them to have a fixed location and size. The results of our experiments indicated that the accuracy

of recognizing position-free input is comparable to that of the normal handwriting when written

discretely, despite disregarding the positions of the strokes. The maximum accuracies obtained

for 20K word lexicons were 88.78% for Devanagari and 93.18% for Tamil, when the lexicon-

driven and lexicon-free approaches were used in combination. Preliminary user studies for

English indicate that FreePad is a viable text input method for mobile devices.

8.2 Contributions

This thesis contributes to the field of OHWR in a number of areas. The main contributions are

as follows:

1. Script-independent and data-driven approach for unconstrained online handwritten word

recognition in Indic scripts: To the best of our knowledge, there is no prior work on recog-

nition of online handwritten words in Indic scripts written in an unconstrained manner.

Previous efforts have been script-specific and required manual intervention while training,

or assumed constraints on the writer, or both. This thesis addresses this gap by proposing

a script-independent and data-driven approach using HMMs for online handwritten word

recognition in Indic scripts that requires very little manual intervention beyond the design

of the symbol set and creation of labeled datasets, and is extensible to other Indic scripts.

The approach also addresses the two central issues that arise in the context of online Indic

scripts: (i) variations in writing style of individual symbols, and (ii) symbol order varia-

tions within and across characters. The approach has been validated in this thesis for two

very different and significant Indic scripts - Devanagari and Tamil.

110

2. Stroke-based symbol modeling using Constrained Stroke Clustering for discovering writ-

ing styles: In order to deal with different types of writing style variations at the sym-

bol level, a novel approach for symbol modeling is proposed, that is stroke-based, com-

pletely data-driven, and discovers writing styles automatically from the training data.

The approach uses a novel technique based on constrained stroke clustering that exploits

constraints implicit in the handwriting domain to identify the optimal set of strokes and

writing styles in the dataset. Results obtained for Devanagari symbols using the resulting

symbol models indicate substantial improvement in recognition accuracy and/or reduc-

tion in HMM states, when compared to alternative modeling techniques.

3. Lexicon-driven approach for word recognition: The proposed HMM-based lexicon-driven

approach for Indic scripts represents the lexicon as a prefix-tree assuming standard sym-

bol order, and works well when there is little symbol order variation. For instance, the

top-1 and top-5 recognition accuracies on Tamil words for this approach were 91.8% and

96.32% respectively, for a lexicon containing 20K words.

4. Lexicon-free approach using the BoS representation of words: In order to deal with the

symbol order variations in scripts such as Devanagari, a novel lexicon-free approach was

proposed that uses a novel Bag-of-Symbols (BoS) representation of words. For word

samples with non-standard symbol orders, BoS based lexicon-free recognition achieved

significantly higher accuracy (77.36%) when compared to the lexicon-driven approach

(28.38%). A Borda count combination of the lexicon-driven and lexicon-free approaches

performs well in the general case where a mixture of standard and non-standard symbol

orders may be expected. For Devanagari, maximum accuracies of 93.38% and 87.13%

with the 1K and 20K lexicons respectively were achieved when all the samples were

considered.

5. Enabling handwriting input using a finger on small touch surfaces: Also proposed in

this thesis is a novel text input method (IME) named FreePad that enables “position-free”

handwriting input on small touch surfaces by allowing the user to disregard the positions

and sizes of the strokes in the input. In the absence of other usable methods, FreePad has

considerable potential as a practical solution for enabling text input in Indic scripts into

mobile phones.

111

6. Datasets and dataset creation tools for Indic scripts: As part of the research described in

this thesis, online handwriting datasets containing symbol-level-annotated word samples

of over a hundred writers were created for Devanagari and Tamil. A tool for collecting

handwriting data using the DigiMemo device was developed, which is highly suited for

large-scale data collection efforts and is freely available as part of the Lipi Toolkit [123].

Given that there is no prior work on Devanagari or Tamil online word recognition, we

hope that the recognition performances reported in this work will serve as a benchmark for

future efforts.

8.3 Future Research Directions

In this thesis we have explored various facets of online handwritten word recognition. In doing

so, we have uncovered a number of promising directions for future research. Some of these are

described below.

8.3.1 Symbol Modeling

1. We have used the classical Baum-Welch algorithm for training stroke HMMs. It would

be interesting to exploit the constraints identified during the style identification process

to train the stroke HMMs in a discriminative manner. Alternatively, approaches that learn

subspaces using the given constraints may be investigated. Conditional Random Fields

(CRF) may be explored as an alternative to HMMs for modeling strokes and symbols.

2. While we found the optimum number of stroke clusters based on a threshold distance, we

would like to explore whether the constraints themselves can be exploited for the purpose.

The problem of determining the optimum number of clusters (model selection) based on

constraints appears to be relatively unaddressed in the Constrained Clustering literature.

8.3.2 Word Recognition

1. An important problem in the case of Indic script recognition is supporting the different

forms in which a character may be written. While our lexicons currently use only the

distinct forms of conjuncts (such as symbol 103 in Devanagari), explicitly modeling all

the alternate forms (such as 78 followed by 31) may result in better performance.

112

2. In the case of Devanagari, while the combination of lexicon-driven and lexicon-free rec-

ognizers is able to cope with ligatures in the type-2 style and delayed strokes in type-3 to

some extent, explicit modeling of such artifacts (as is typically done in the case of Latin

script recognition) may further improve performance.

3. The distance function that finds the dissimilarity between two BoS representations cur-

rently assigns Boolean scores while matching pairs of symbols. However, distance func-

tions that take shape similarities into account while continuing to be agnostic of symbol-

order may improve the overall performance of lexicon shortlisting and matching.

4. Both the lexicon-driven and lexicon-free approaches are limited to using a lexicon for

improving accuracy. However, for real-life applications where one may encounter out of

vocabulary words, language models at the word level would be important to include to

aid recognition.

8.3.3 FreePad

1. While FreePad currently recognizes discrete-style word input, it may be extended to sup-

port more cursive styles of writing that do not always have a pen-up between every pair

of symbols. This may be possible by using an appropriate set of features (in lieu of the

current stroke-level preprocessing) such as writing angles and curvature which capture

the shape of the stroke even while being invariant to its size and position.

2. Word or sentence-level language models will be important to further boost the perfor-

mance of position-free handwriting recognition, especially when the word context (from

the lexicon) proves insufficient for resolving ambiguities to loss of position information.

3. The user acceptance and usability of FreePad for Indic scripts needs to be studied along

the lines of the study conducted for English.

8.3.4 Extension to other Indic Scripts

While the proposed approach is script-independent by design and has been evaluated with two

very distinct scripts - Devanagari and Tamil, its extensibility to other Indic scripts needs to

be rigorously evaluated. In particular, Telugu with its vertical stacking of symbols, or Bangla

wherein cursive writing is common, would be good candidates to evaluate this approach with.

113

Bibliography

[1] S. Madhvanath and V. Govindaraju, “The role of holistic paradigms in handwritten word

recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 2, pp. 149–164, Feb.

2001.

[2] R. Balaji, V. Deepu, S. Madhvanath, and J. Prabhakaran, “Handwritten gesture recogni-

tion for gesture keyboard,” in Proc. 10th International Workshop on Frontiers in Hand-

writing Recognition (IWFHR’06), La Baule, France, Oct. 2006.

[3] C. C. Tappert, C. Y. Suen, and T. Wakahara, “On-line handwriting recognition – A sur-

vey,” in Proc. 9th International Conference on Pattern Recognition (ICPR’88), Rome,

Italy, Nov. 1988, pp. 1123–1132.

[4] C. Tappert, C. Suen, and T. Wakahara, “State of the art in on-line handwriting recogni-

tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 8, pp. 787–808, Aug. 1990.

[5] R. Plamondon and S. N. Srihari, “Online and off-line handwriting recognition: A com-

prehensive survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp. 63–84,

Jan. 2000.

[6] C. L. Liu, S. Jaeger, and M. Nakagawa, “Online recognition of Chinese characters: The

state-of-the-art,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp. 198–213,

Feb. 2004.

[7] S. Jaeger, Liu, and M. Nakagawa, “The state of the art in Japanese on-line handwriting

recognition compared to techniques in western handwriting recognition,” International

Journal on Document Analysis and Recognition (IJDAR), vol. 6, no. 2, pp. 75–88, Oct.

2003.

114

[8] List of languages by number of native speakers. [Online]. Available: http:

//en.wikipedia.org/wiki/List of languages by number of native speakers

[9] F. Coulmas, The Blackwell Encyclopedia of Writing Systems. Oxford: Blackwell, 1996.

[10] S. P. Mudur, N. Nayak, S. Shanbhag, and R. K. Joshi, “An architecture for the shaping of

Indic texts,” Computers & Graphics, vol. 23, no. 1, pp. 7–24, Feb. 1999.

[11] Tamil script. [Online]. Available: http://en.wikipedia.org/wiki/Tamil script

[12] G. Seni, R. K. Srihari, and N. Nasrabadi, “Large vocabulary recognition of on-line hand-

written cursive words,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 7, pp. 757–

762, Jul. 1996.

[13] E. Lecolinet and O. Baret, “Cursive word recognition: Methods and strategies,” in Fun-

damentals in Handwriting Recognition, S. Impedovo, Ed. New York: Springer-Verlag,

1994, pp. 235–263.

[14] A. Vinciarelli, “A survey on off-line cursive word recognition,” Pattern Recognition,

vol. 35, no. 7, pp. 1433–1446, Jul. 2002.

[15] R. G. Casey and E. Lecolinet, “A survey of methods and strategies in character segmen-

tation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 7, pp. 690–706, Jul. 1996.

[16] L. Schomaker and E. Segers, “Finding features used in the human reading of cursive

handwriting,” International Journal on Document Analysis and Recognition (IJDAR),

vol. 2, no. 1, pp. 13–18, Jul. 1999.

[17] T. Steinherz, E. Rivlin, and N. Intrator, “Offline cursive script word recognition – A

survey,” International Journal on Document Analysis and Recognition (IJDAR), vol. 2,

no. 2-3, pp. 90–110, Dec. 1999.

[18] R. K. Powalka, “An algorithm toolbox for on-line cursive script recognition,” Ph.D. dis-

sertation, The Nottingham Trent University, Nottingham, May 1995.

[19] T. Starner, J. Makhoul, R. Schwartz, and G. Chou, “On-line cursive handwriting recog-

nition using speech recognition methods,” in Proc. IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP’94), Adelaide, Australia, Apr. 1994,

pp. V/125–V/128.

115

http://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers
http://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers
http://en.wikipedia.org/wiki/Tamil_script

[20] J. Hu, S. G. Lim, and M. K. Brown, “Writer independent on-line handwriting recognition

using an HMM approach,” Pattern Recognition, vol. 33, no. 1, pp. 133–147, Jan. 2000.

[21] L. R. Rabiner and B. H. Juang, “An introduction to Hidden Markov Models,” IEEE

Acoustics, Speech & Signal Processing Magazine, vol. 3, no. 1, pp. 4–16, Jan. 1986.

[22] S.-C. Oh, J.-Y. Ha, and J. H. Kim, “Context dependent search in interconnected Hidden

Markov Model for unconstrained handwriting recognition,” Pattern Recognition, 1995.

[23] P. R. Cavalin, A. de Souza Britto Jr., F. avio Bortolozzi, R. Sabourin, and L. E. S. Oliveira,

“An implicit segmentation-based method for recognition of handwritten strings of carac-

ters,” in Proc. 21st Annual ACM Symposium on Applied Computing, Dijon, France, Apr.

2006, pp. 836–840.

[24] D. Li, A. Biern, and J. Subrahmonia, “HMM topology optimization for handwriting

recognition,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP’01), Salt Lake City, USA, May 2001, pp. 1521–1524.

[25] M. Zimmermann and H. Bunke, “Hidden Markov Model length optimization for hand-

writing recognition systems,” in Proc. 8th International Workshop on Frontiers in Hand-

writing Recognition (IWFHR’02), Ontario, Canada, Aug. 2002, pp. 369–374.

[26] H. Shu, “On-line handwriting recognition using Hidden Markov Models,” Master’s the-

sis, Massachusetts Institute of Technology, Massachusetts, USA, Feb. 1997.

[27] K. S. Nathan, H. S. M. Beigi, J. Subrahmonia, G. J. Clary, and H. Maruyama, “Real-time

on-line unconstrained handwriting recognition using statistical methods,” in Proc. IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP’95), De-

troit, USA, May 1995, pp. 2619–2622.

[28] T. Wakahara and K. Okada, “On-line cursive Kanji character recognition using stroke-

based affine transformation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 12, pp.

1381–1385, Dec. 1997.

[29] J. Liu, Cham, and M. M. Y. Chang, “Stroke order and stroke number free on-line Chinese

character recognition using attributed relational graph matching,” in Proc. 13th Interna-

tional Conference on Pattern Recognition (ICPR’96), Vienna, Austria, Aug. 1996, pp.

259–263.

116

[30] J.-O. Kwon, B. Sin, and J. H. Kim, “Recognition of on-line cursive Korean characters

combining statistical and structural methods,” Pattern Recognition, vol. 30, no. 8, pp.

1255–1263, Aug. 1997.

[31] B.-K. Sin and J. H. Kim, “Ligature modeling for online cursive script recognition,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 19, no. 6, pp. 623–633, Jun. 1997.

[32] S. Marukatat and T. Artieres, “Handling spatial information in on-line handwriting recog-

nition,” in Proc. 9th International Workshop on Frontiers in Handwriting Recognition

(IWFHR’04), Tokyo, Japan, Oct. 2004, pp. 14–19.

[33] H. J. Kim, S. K. Kim, K. H. Kim, and J. K. Lee, “An HMM-based character recognition

network using level building,” Pattern Recognition, vol. 30, no. 3, pp. 491–502, Mar.

1997.

[34] H. J. Kim, K. H. Kim, S. K. Kim, and J. K. Lee, “On-line recognition of handwritten Chi-

nese characters based on Hidden Markov Models,” Pattern Recognition, vol. 30, no. 9,

pp. 1489–1500, Sep. 1997.

[35] B.-K. Sin, J.-Y. Ha, S.-C. Oh, and K. J. H., “Network-based approach to online cursive

script recognition,” IEEE Trans. Syst., Man, Cybern., vol. 29, no. 2, pp. 321–328, Apr.

1999.

[36] M. Nakai, N. Akira, H. Shimodaira, and S. Sagayama, “Substroke approach to HMM-

based on-line Kanji handwriting recognition,” in Proc. 6th International Conference on

Document Analysis and Recognition (ICDAR’01), Seattle, Washington, Sep. 2001, pp.

491–495.

[37] J. Tokuno, N. Inami, S. Matsuda, M. Nakai, H. Shimodaira, and S. Sagayama, “Context-

dependent substroke model for HMM-based on-line handwriting recognition,” in Proc.

8th International Workshop on Frontiers in Handwriting Recognition (IWFHR’02), On-

tario, Canada, Aug. 2002, pp. 78–83.

[38] T. Hasegawa, H. Yasuda, and T. Matsumoto, “Fast discrete HMM algorithm for on-line

handwriting recognition,” in Proc. 15th International Conference on Pattern Recognition

(ICPR’00), Barcelona, Spain, Sep. 2000, pp. 535–538.

117

[39] H. Swethalakshmi, A. Jayaraman, V. S. Chakravarthy, and C. C. Sekhar, “Online hand-

written character recognition of Devanagari and Telugu characters using Support Vector

Machines,” in Proc. 10th International Workshop on Frontiers in Handwriting Recogni-

tion (IWFHR’06), La Baule, France, Oct. 2006.

[40] A. Jayaraman, C. C. Sekhar, and V. S. Chakravarthy, “Modular approach to recognition

of strokes in Telugu script,” in Proc. 9th International Conference on Document Analysis

and Recognition (ICDAR’07), Curitiba, Brazil, Sep. 2007, pp. 501–505.

[41] K. H. Aparna, V. Subramanian, M. Kasirajan, G. V. Prakash, V. S. Chakravarthy, and

S. Madhvanath, “Online handwriting recognition for Tamil,” in Proc. 9th International

Workshop on Frontiers in Handwriting Recognition (IWFHR’04), Tokyo, Japan, Oct.

2004, pp. 438–443.

[42] H. Swethalakshmi, “Online handwritten character recognition for Devanagari and Tamil

scripts using Support Vector Machines,” Master’s thesis, Indian Institute of Technology,

Madras, India, Oct. 2007.

[43] V. Babu, L. Prasanth, R. Sharma, G. Rao, and A. Bharath, “HMM-based online hand-

writing recognition system for Telugu symbols,” in Proc. 9th International Conference

on Document Analysis and Recognition (ICDAR’07), Curitiba, Brazil, Sep. 2007, pp.

63–67.

[44] V. Deepu, S. Madhvanath, and A. G. Ramakrishnan, “Principal Component Analysis

for online handwritten character recognition,” in Proc. 17th International Conference on

Pattern Recognition (ICPR’04), Cambridge, United Kingdom,, Aug. 2004, pp. 327–330.

[45] N. Joshi, G. Sita, A. G. Ramakrishnan, and S. Madhvanath, “Tamil handwriting recogni-

tion using subspace and DTW based classifiers,” in Proc. 11th International Conference

on Neural Information Processing (ICONIP’04), Calcutta, India, Nov. 2004, pp. 806–

813.

[46] N. Joshi, G. Sita, A. G. Ramakrishnan, and S. Madhvanath, “Comparison of elastic

matching algorithms for online Tamil handwritten character recognition,” in Proc. 9th

International Workshop on Frontiers in Handwriting Recognition (IWFHR’04), Tokyo,

Japan, Oct. 2004, pp. 444–449.

118

[47] S. Madhvanath and S. M. Lucas, “IWFHR 2006 online Tamil handwritten character

recognition competition,” in Proc. 10th International Workshop on Frontiers in Hand-

writing Recognition (IWFHR’06), La Baule, France, Oct. 2006.

[48] N. Joshi, G. Sita, A. G. Ramakrishnan, V. Deepu, and S. Madhvanath, “Machine recogni-

tion of online handwritten Devanagari characters,” in Proc. 8th International Conference

on Document Analysis and Recognition (ICDAR’05), Seoul, Korea, Aug-Sep 2005, pp.

1156–1160.

[49] V. Deepu and S. Madhvanath, “Genetically evolved transformations for rescaling on-

line handwritten characters,” in Proc. IEEE India Annual Conference (INDICON’04),

Kharagpur, India, Dec. 2004, pp. 262–265.

[50] A. H. Toselli, M. Pastor, and E. Vidal, “On-line handwriting recognition system for Tamil

handwritten characters,” in Pattern Recognition and Image Analysis. Berlin/Heidelberg:

Springer, 2007, pp. 370–377.

[51] L. Prasanth, V. J. Babu, R. R. Sharma, G. V. P. Rao, and M. Dinesh, “Elastic matching of

online handwritten Tamil and Telugu scripts using local features,” in Proc. 9th Interna-

tional Conference on Document Analysis and Recognition (ICDAR’07), Curitiba, Brazil,

Sep. 2007, pp. 1028–1032.

[52] S. Sundaram and A. G. Ramakrishnan, “A novel hierarchical classification scheme for

online Tamil character recognition,” in Proc. 9th International Conference on Document

Analysis and Recognition (ICDAR’07), Curitiba, Brazil, Sep. 2007, pp. 1218–1222.

[53] C. S. Sundaresan and S. S. Keerthi, “A study of representations for pen based handwriting

recognition of Tamil characters,” in Proc. 5th International Conference on Document

Analysis and Recognition (ICDAR’99), Bangalore, India, Sep. 1999, pp. 422–425.

[54] P. V. S. Rao and T. M. Ajitha, “Telugu script recognition – A feature based approach,” in

Proc. 3rd International Conference on Document Analysis and Recognition (ICDAR’95),

Montreal, Canada, Aug. 1995, pp. 323–326.

[55] S. Connell, R. Sinha, and A. Jain, “Recognition of unconstrained on-line Devanagari

characters,” in Proc. 15th International Conference on Pattern Recognition (ICPR’00),

Barcelona, Spain, Sep. 2000, pp. 368–371.

119

[56] A. Ranade and M. Ranade, “Devanagari pen-written character recognition,” in Proc. 9th

International Conference on Advanced Computing and Communications (ADCOM’01),

Bhubaneshwar, India, Dec. 2001.

[57] R. Niels and L. Vuurpijl, “Dynamic Time Warping applied to Tamil character recog-

nition,” in Proc. 8th International Conference on Document Analysis and Recognition

(ICDAR’05), Seoul, Korea, Aug-Sep 2005, pp. 730–734.

[58] R. S. R. Kunte and R. D. S. Samuel, “On-line character recognition system for hand-

written characters/script with bilingual facility employing neural classifiers and wavelet

features,” in Proc. International Conference on Knowledge based Computer Systems

(KBCS’00), Mumbai, India, Dec. 2000, pp. 1–12.

[59] U. Bhattacharya, B. K. Gupta, and S. K. Parui, “Direction code based features for recog-

nition of online handwritten characters of Bangla,” in Proc. 9th International Conference

on Document Analysis and Recognition (ICDAR’07), Curitiba, Brazil, Sep. 2007, pp.

58–62.

[60] S. Sundaram and A. G. Ramakrishnan, “Two dimensional Principal Component Anal-

ysis for online Tamil character recognition,” in Proc. 11th International Conference on

Frontiers in Handwriting Recognition (ICFHR’08), Montreal, Canada, Aug. 2008, pp.

88–94.

[61] A. Krishna, G. Prabhu, K. Bali, and S. Madhvanath, “Indic scripts based online form

filling – A usability exploration,” in Proc. 11th International Conference on Human-

Computer Interaction (HCII’05), Las Vegas, USA, Jul. 2005.

[62] U. Bhattacharya, A. Nigam, Y. S. Rawat, and S. K. Parui, “An analytic scheme for online

handwritten Bangla cursive word recognition,” in Proc. 11th International Conference

on Frontiers in Handwriting Recognition (ICFHR’08), Montreal, Canada, Aug. 2008,

pp. 320–325.

[63] A. S. Bhaskarabhatla and S. Madhvanath, “Experiences in collection of handwriting data

for online handwriting recognition in Indic scripts,” in Proc. 4th International Conference

on Language Resources and Evaluation (LREC’04), Lisbon, Portugal, May 2004, pp.

2223–2226.

120

[64] The EMILLE/CIIL corpus. [Online]. Available: http://www.elda.org/catalogue/en/text/

W0037.html

[65] B. Kalika, A. G. Ramakrishnan, P. P. Talukdar, and N. S. Krishna, “Tools for the develop-

ment of a Hindi speech synthesis system,” in Proc. 5th ISCA Speech Synthesis Workshop,

Pittsburgh, USA, Jun. 2004, pp. 109–114.

[66] ACECAD DigiMemo A402. [Online]. Available: http://www.acecad.com.tw/dma402.

html

[67] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and S. Janet, “UNIPEN project

of online data exchange and recognizer benchmarks,” in Proc. International Conference

on Pattern Recognition (ICPR’94), Jerusalem, Israel, Oct. 1994, pp. 29–33.

[68] A. Namboodiri and A. K. Jain, “Online handwritten script recognition,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 26, no. 1, pp. 124–130, Jan. 2004.

[69] S. Jaeger, S. Manke, J. Reichert, and A. Waibel, “Online handwriting recognition: The

NPen++ recognizer,” International Journal on Document Analysis and Recognition,

vol. 3, no. 3, pp. 169–180, Mar. 2001.

[70] C. Viard-Gaudin, P. M. Lallican, P. Binter, and S. Knerr, “The IRESTE on/off

(IRONOFF) dual handwriting database,” in Proc. 5th International Conference on Doc-

ument Analysis and Recognition (ICDAR’99), Bangalore, India, Sep. 1999, pp. 455–458.

[71] S. Connell, “Online handwriting recognition using multiple pattern class models,” Ph.D.

dissertation, Michigan State Univ., Michigan, USA, May 2000.

[72] L. Prevost and M. Milgram, “Non-supervised determination of allograph sub-classes for

on-line omni-scriptor handwriting recognition,” in Proc. 5th International Conference

on Document Analysis and Recognition (ICDAR’99), Bangalore, India, Sep. 1999, pp.

438–441.

[73] J. Lee, J. Kim, and J. Kim, “Data-driven design of HMM topology for on-line hand-

writing recognition,” in Proc. 7th International Workshop on Frontiers in Handwriting

Recognition (IWFHR’00), Amsterdam, The Netherlands, Sep. 2000, pp. 107–121.

121

http://www.elda.org/catalogue/en/text/W0037.html
http://www.elda.org/catalogue/en/text/W0037.html
http://www.acecad.com.tw/dma402.html
http://www.acecad.com.tw/dma402.html

[74] K. Takahashi, H. Yasuda, and T. Matsumoto, “A fast HMM algorithm for on-line hand-

written character recognition,” in Proc. 4th International Conference on Document Anal-

ysis and Recognition (ICDAR’97), Ulm, Germany, Aug. 1997, pp. 369–375.

[75] M. P. Perrone and S. Connell, “K-Means clustering for Hidden Markov Models,” in Proc.

7th International Workshop on Frontiers in Handwriting Recognition (IWFHR’00), Am-

sterdam, The Netherlands, Sep. 2000, pp. 229–238.

[76] M. Nakai, H. Shimodaira, and S. Sagayama, “Generation of hierarchical dictionary for

stroke-order free Kanji handwriting recognition based on substroke HMM,” in Proc. 7th

International Conference on Document Analysis and Recognition (ICDAR’03), Edin-

burgh, Scotland,, Aug. 2003, pp. 514–518.

[77] K. Yamasaki, “Automatic prototype stroke generation based on stroke clustering for on-

line handwritten Japanese character recognition,” in Proc. 5th International Conference

on Document Analysis and Recognition (ICDAR’99), Bangalore, India, Sep. 1999, pp.

673–676.

[78] N. Matic, J. Platt, and T. Wang, “QuickStroke: An incremental on-line Chinese handwrit-

ing recognition system,” in Proc. 16th International Conference on Pattern Recognition

(ICPR’02), Quebec City, Canada, Aug. 2002, pp. 435–439.

[79] T. Kohonen, “The self-organizing map,” Proc. IEEE, vol. 78, no. 9, pp. 1464–1480, Sep.

1990.

[80] A. Biem, “Minimum classification error training for online handwriting recognition,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 7, pp. 1041–1051, Jul. 2006.

[81] C.-L. Liu and M. Nakagawa, “Evaluation of prototype learning algorithms for nearest-

neighbor classifier in application to handwritten character recognition,” Pattern Recog-

nition, vol. 34, no. 3, pp. 601–615, Mar. 2001.

[82] V. Vuori and J. Laaksonen, “A comparison of techniques for automatic clustering of

handwritten characters,” in Proc. 16th International Conference on Pattern Recognition

(ICPR’02), Quebec City, Canada, Aug. 2002, pp. 168–171.

122

[83] S. Connell and A. Jain, “Learning prototypes for on-line handwritten digits,” in Proc.

14th International Conference on Pattern Recognition (ICPR’98), Brisbane, Australia,

Aug. 1998, pp. 182–184.

[84] K. Chellapilla, P. Simard, and A. Abdulkader, “Allograph based writer adaptation for

handwritten character recognition,” in Proc. 10th International Workshop on Frontiers in

Handwriting Recognition (IWFHR’10), La Baule, France, Oct. 2006.

[85] V. Vuori, “Clustering writing styles with a self-organizing map,” in Proc. 8th Inter-

national Workshop on Frontiers in Handwriting Recognition (IWFHR’02), Ontario,

Canada, Aug. 2002, pp. 345–350.

[86] C. Bahlmann and H. Burkhardt, “The writer independent online handwriting recogni-

tion system frog on hand and cluster generative statistical dynamic time warping,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 26, no. 3, pp. 299–310, Mar. 2004.

[87] L. Vuurpijl and L. Schomaker, “Coarse writing-style clustering based on simple stroke-

related features,” in Progress in Handwriting Recognition, A. Downton and S. Impedovo,

Eds. London: World Scientific, 1997, pp. 37–44.

[88] L. Vuurpijl and L. Schomaker, “Finding structure in diversity: A hierarchical clustering

method for the categorization of allographs in handwriting,” in Proc. 4th International

Conference on Document Analysis and Recognition (ICDAR’97), Ulm, Germany, Aug.

1997, pp. 387–393.

[89] A. Bharath, V. Deepu, and S. Madhvanath, “An approach to identify unique styles in

online handwriting recognition,” in Proc. 8th International Conference on Document

Analysis and Recognition (ICDAR’05), Seoul, South Korea, Aug-Sep 2005, pp. 775–

778.

[90] S. Basu, “Semi-supervised clustering: Probabilistic models, algorithms and experi-

ments,” Ph.D. dissertation, Univ. of Texas at Austin, Texas, USA, Aug. 2005.

[91] S. Basu, M. Bilenko, A. Banerjee, and R. Mooney, “Probabilistic semi-supervised clus-

tering with constraints,” in Semi-Supervised Learning, O. Chapelle, B. Scholkopf, and

A. Zien, Eds. Cambridge, USA: MIT Press, 2006, pp. 73–102.

123

[92] L. Yi, J. Rong, and A. K. Jain, “BoostCluster: Boosting clustering by pairwise con-

straint,” in Proc. 13th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD’07), San Jose, USA, Aug. 2007, pp. 450–459.

[93] B. Kulis, S. Basu, I. Dhillon, and R. Mooney, “Semi-supervised graph clustering: A ker-

nel approach,” in Proc. 22nd International Conference on Machine Learning (ICML’05),

Bonn, Germany, Aug. 2005, pp. 457–464.

[94] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrdl, “Constrained K-means clustering with

background knowledge,” in Proc. 18th International Conference on Machine Learning

(ICML’01), MA, USA, Jun-Jul 2001, pp. 577–584.

[95] S. Basu and I. Davidson, “Clustering under constraints: Theory and practice,” in Tutorial

presented at the 12th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD’06), Philadelphia, USA, Aug. 2006.

[96] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York: Wiley, 2001.

[97] S. Salvador and P. Chan, “Determining the number of clusters/segments in hierarchical

clustering/segmentation algorithms.”

[98] A. Fred and A. Jain, “Combining multiple clusterings using evidence accumulation,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 6, pp. 835–850, Jun. 2005.

[99] L. Zelnik-Manor and P. Peronam, “Self-tuning spectral clustering,” in Proc. 18th Annual

Conference on Neural Information Processing Systems (NIPS’04), Vancouver, Canada,

Dec. 2004, pp. 1601–1608.

[100] D. Klein, S. Kamvar, and C. Manning, “From instance-level constraints to space-level

constraints: Making the most of prior knowledge in data clustering,” in Proc. 19th Inter-

national Conference on Machine Learning (ICML’02), Sydney, Australia, Jul. 2002, pp.

307–314.

[101] A. Bharath and S. Madhvanath, “A framework based on semi-supervised clustering for

discovering unique writing styles,” in Proc. 10th International Conference on Document

Analysis and Recognition (ICDAR’09), Barcelona, Spain, Jul. 2009, pp. 891–895.

124

[102] G. Kim and V. Govindaraju, “A lexicon driven approach to handwritten word recognition

for real-time applications,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 4, pp.

366–379, Apr. 1997.

[103] A. L. Koerich, R. Sabourin, and C. Y. Suen, “Lexicon-driven HMM decoding for large

vocabulary handwriting recognition with multiple character models,” International Jour-

nal on Document Analysis and Recognition, vol. 6, no. 2, pp. 126–144, Oct. 2003.

[104] J. Vaida and A. Guptab, “Exploring word recognition in a semi-alphabetic script: The

case of Devanagari,” Brain and Language, vol. 81, no. 1-3, pp. 679–690, Apr. 2002.

[105] L. R. Rabiner, “A tutorial on Hidden Markov Models and selected applications in speech

recognition,” Proc. of IEEE, vol. 77, no. 2, pp. 257–286, Feb. 1989.

[106] M.-P. Schambach, “Recurrent HMMs and cursive handwriting recognition graphs,”

in Proc. 10th International Conference on Document Analysis and Recognition (IC-

DAR’09), Barcelona, Spain, Jul. 2009, pp. 1146–1150.

[107] G. Salton and M. McGill, Introduction to Modern Information Retrieval. New York:

McGraw-Hill, 1983.

[108] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to object matching

in videos,” in Proc. 9th IEEE International Conference on Computer Vision (ICCV’03),

Nice, France, Oct. 2003, pp. 1470–1477.

[109] L. Fei-fei, R. Fergus, and A. Torralba. Recognizing and learning object categories.

[Online]. Available: http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html

[110] T. K. Ho, J. J. Hull, and S. N. Srihari, “Decision combination in multiple classifier sys-

tems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 1, pp. 66–75, Jan. 1994.

[111] A. Bharath and S. Madhvanath, “Hidden Markov Models for online handwritten Tamil

word recognition,” in Proc. 9th International Conference on Document Analysis and

Recognition (ICDAR’07), Curitiba, Brazil,, Sep. 2007, pp. 506–510.

[112] D. Goldberg and C. Richardson, “Touch-typing with a stylus,” in Proc. ACM Conference

on Human Factors in Computing Systems – INTERCHI, Amsterdam, The Netherlands,

Apr. 1993, pp. 80–87.

125

http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html

[113] I. S. MacKenzie and S. Zhang, “The immediate usability of graffiti,” in Proc. Graphics

Interface, Kelowna, Canada, May 1997, pp. 129–137.

[114] J. O. Wobbrock, B. A. Myers, and J. A. Kembel, “EdgeWrite: A stylus-based text entry

method designed for high accuracy and stability of motion,” in Proc. ACM Symposium on

User Interface Software and Technology (UIST’03), Vancouver, British Columbia, Nov.

2003, pp. 61–70.

[115] G. Seni, “TreadMill Ink - Enabling continuous pen input on small devices,” in Proc. 8th

International Workshop on Frontiers in Handwriting Recognition (IWFHR’02), Vancou-

ver, British Columbia, Aug. 2002, pp. 215–220.

[116] H. Shimodaira, T. Sudo, M. Nakai, and S. Sagayama, “On-line overlaid-handwriting

recognition based on substroke HMMs,” in Proc. 7th International Conference on Doc-

ument Analysis and Recognition (ICDAR’03), Ontario, Canada, Aug. 2003, pp. 1043–

1047.

[117] Y. Tonouchi and A. Kawamura, “Text input system using online overlapped handwriting

recognition for mobile devices,” in Proc. 9th International Conference on Document

Analysis and Recognition (ICDAR’07), Curitiba, Brazil, Sep. 2007, pp. 754–758.

[118] A. Prasad, A. Prashant, and S. Borgaonkar, “Guided handwriting: Predictive writing

input method environment,” HP Labs India, Internal Technical Report, Dec. 2005.

[119] Manish Kumar, “Compact stylus-based input method for Indic scripts,” National Institute

of Design, Ahmedabad, India, Diploma Thesis, 2007.

[120] N. K. Srinivas, N. Varghese, and R. K. V. S. Raman, “IndicDasher: A stroke and gesture

based input mechanism for Indic scripts,” in Workshop on Intelligent User Interfaces for

Developing Regions (IUI4DR’08), Gran Canaria, Spain, Jan. 2008.

[121] D. J. Ward, A. F. Blackwell, and D. J. C. MacKay, “Dasher - a data entry interface using

continuous gestures and language models,” in Proc. 13th Annual ACM Symposium on

User Interface Software and Technology (UIST’00), San Diego, USA, Nov. 2000, pp.

129–137.

126

[122] A. Bharath and S. Madhvanath, “FreePad: A novel handwriting-based text input for

pen and touch interfaces,” in Proc. 13th International Conference on Intelligent User

Interfaces (IUI’08), Gran Canaria, Spain, Jan. 2008, pp. 297–300.

[123] Lipi toolkit. [Online]. Available: http://lipitk.sourceforge.net

127

http://lipitk.sourceforge.net

Publications and Presentations

Book Chapter
1. Bharath A. and Sriganesh Madhvanath, “Online handwriting recognition for Indic scripts,”
in Guide to OCR for Indic scripts, V. Govindaraju and S. Setlur, Eds. London: Springer, 2009,
pp. 209-234.

Journal Papers
1. Bharath A. and Sriganesh Madhvanath, “Constrained stroke clustering for modeling writ-
ing styles in online handwriting recognition,” Communicated to IEEE Transactions on Pattern
Analysis and Machine Intelligence.

2. Bharath A. and Sriganesh Madhvanath, “HMM-based lexicon-driven and lexicon-free word
recognition for online handwritten Devanagari and Tamil scripts,” Communicated to IEEE
Transactions on Pattern Analysis and Machine Intelligence.

Conference Papers
1. Bharath A. and Sriganesh Madhvanath, “A framework based on semi-supervised clustering
for discovering unique writing styles,” in Proc. 10th International Conference on Document
Analysis and Recognition (ICDAR’09), Barcelona, Spain, Jul. 2009, pp. 891-895.

2. Bharath A. and Sriganesh Madhvanath, “Recognition of eyes-free handwriting input for
pen and touch Interfaces,” in Proc. 11th International Conference on Frontiers in Handwriting
Recognition (ICFHR’08), Montreal, Canada, Aug. 2008.

3. Bharath A. and Sriganesh Madhvanath, “FreePad: A novel handwriting-based text input
for pen and touch interfaces,” in Proc. 13th International Conference on Intelligent User Inter-
faces (IUI’08), Gran Canaria, Spain, Jan. 2008, pp. 297-300.

4. Bharath A. and Sriganesh Madhvanath, “FreePad: Attention-free handwriting-based text
input for pen and touch interfaces,” in Proc. HP TechCon Asia, Kobe, Japan, Nov. 2007 and
Proc. HP TechCon Global, Boston, USA, May 2008.

5. Bharath A. and Sriganesh Madhvanath, “Hidden Markov Models for online handwritten
Tamil word recognition,” in Proc. 9th International Conference on Document Analysis and
Recognition (ICDAR’07), Parana, Brazil, Sep. 2007, pp. 506-510.

6. Babu V.J., Prasanth L., Sharma R.R., Rao G.V.P., and Bharath A., “HMM-based online
handwriting recognition system for Telugu symbols,” in Proc. 9th International Conference on
Document Analysis and Recognition (ICDAR’07), Curitiba, Brazil, Sep. 2007.

128

Patents Filed
1. Handwriting Identification Method, Program and Electronic Device, USPTO, Date of filing:
10 Dec. 2008.

Presentations
1. Online Handwritten Word Recognition for Indic Scripts. Doctoral Symposium in ACM
Compute Conference, Bangalore, India, Jan. 2008
2. FreePad: A Novel Handwriting-based Text Input Method for Pen and Touch interfaces.
Presented at the DGP Lab, University of Toronto, Toronto, Canada, Aug. 2008. Host: Prof.
Ravin Balakrishnan

129

Candidate’s Biography
Bharath A. is a PhD student at Hewlett-Packard Labs India under the BITS - HP Labs PhD
Fellowship Programme. Prior to joining the fellowship programme, he did his M.Tech. in Infor-
mation Technology at the International Institute of Information Technology, Bangalore (IIIT-B)
and B.E. in Electronics and Communication Engineering from the University of Madras. His
research interests include Pattern Recognition and Machine Learning.

Supervisor’s Biography
Dr. Sriganesh Madhvanath is a Senior Research Scientist and the Principal Investigator for
the Intuitive Multimodal and Gestural Interaction (IMaGIn) project at HP Labs India. This
multidisciplinary project aims to explore intuitive touch and visual gesture-based interaction
experiences for personal systems, and create technologies to support them.

Dr. Madhvanath joined HP Labs India in April 2002. At HP Labs, he has led research
into handwriting recognition and linguistic resources for Indic scripts, standards such as W3C
InkML for platform-neutral representation of digital ink, and pen-based interfaces and solu-
tions relevant to developing nations in spaces such as form filling, text input and collaboration.
Some of this work is freely available in the form of two open source toolkits: Lipi Toolkit
(lipitk.sourceforge.net) and InkML Toolkit (inkmltk.sourceforge.net).

Prior to joining HP, Dr. Madhvanath was a senior staff engineer with Narus, a startup in
Palo Alto, California. Earlier he was Research Staff Member with the Document Analysis and
Recognition group at IBM Almaden Research Center, where he researched constraint-driven
interpretation of OCR results in the context of systems for forms processing and interpretation
of names and addresses for postal and banking applications.

Dr. Madhvanath holds a PhD and MS in Computer Science from the State University
of New York at Buffalo and a B.Tech. in Computer Science and Engineering from Indian
Institute of Technology, Mumbai. His PhD research was one of the first to investigate the
holistic paradigm in offline handwritten word recognition, and apply it to real-world problems
such as interpreting handwritten addresses.

Dr. Madhvanath has one granted patent and several others under process. He is also the
author of more than 70 publications in international journals, conferences and workshops.

Dr. Madhvanath’s research interests are in the general areas of pattern recognition and
machine learning. His current research focus is human computer interaction and the design of
gestural and multimodal systems.

Dr. Madhvanath is a Senior Member of the IEEE, life member of IAPR and a Member
of the ACM. He has also served on the program committees or as a reviewer for various con-
ferences and journals in the areas of handwriting recognition, document analysis and pattern
recognition.

130

	Abstract
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Motivation
	Problem Definition
	The Structure of Indic Scripts
	Challenges in Online Indic Script Recognition
	Large Alphabet Size
	Two-dimensional Structure
	Inter-class Similarity
	Issues with Writing Styles
	Language-specific and Regional Differences in Usage
	Comparison with Latin and CJK Scripts

	Outline of Thesis

	Literature Review
	Latin Script Recognition
	Segmentation-based Approach
	Segmentation-free or Holistic Approach
	Human Reading Inspired Approach
	HMM-based Approaches

	CJK Script Recognition
	Challenges for Recognition
	HMM-based Approaches

	Indic Script Isolated Character Recognition
	Strategies
	Preprocessing
	Features
	Classification

	Indic Script Word Recognition
	Summary

	Creation of Word Datasets for Devanagari and Tamil
	Identification of Symbols
	Handwriting Data Collection
	Identification of Words for Data Collection
	Data Collection for Tamil
	Data Collection for Devanagari

	Data Cleanup
	Annotation
	Summary

	Preprocessing and Feature Extraction
	Shirorekha Detection for Devanagari
	Issues in Online Shirorekha Detection
	Features
	Algorithm
	Evaluation

	Word Size Normalization
	Resampling
	Feature Extraction
	Summary

	Symbol Modeling
	Introduction
	Modeling Writing Styles
	Advantages of Stroke-based Modeling

	Related Work
	Character-level Clustering and Modeling
	Stroke-level Clustering and Modeling
	Limitations of Unsupervised Stroke Clustering

	Writing Style Identification using Domain Constraints
	Initial Stroke Clustering
	Constraint Generation
	Constrained Stroke Clustering
	Identifying Unique Writing Styles

	Finding Writing Styles in Devanagari
	Preprocessing and Feature Extraction for Clustering
	Unsupervised Within-Character, Character-level Clustering
	Generating Constraints
	Constrained Stroke Clustering
	Results

	Character Modeling using Stroke HMMs
	HMM Training

	Experimental Evaluation
	Evaluation Methodology
	Results and Discussion

	Summary

	Word Recognition using Lexicon-driven and Lexicon-free Approaches
	Introduction
	Symbol Modeling using HMM
	Lexicon-driven Word Recognition
	Word and Lexicon Modeling using HMM
	Impact of Non-standard Symbol Orders

	Lexicon-free Word Recognition
	Arbitrary Symbol Sequence Recognition using HMM
	Bag-of-Symbols Representation
	Lexicon Matching

	Experimental Evaluation
	Analysis of Writing Styles
	Evaluation Methodology
	Lexicon-driven Word Recognition
	Lexicon-free Word Recognition
	Combination of Lexicon-driven and Lexicon-free Approaches
	Performance with Samples having Symbol Order Variations

	Summary

	Position-free Handwriting Input for Small Touch Interfaces
	Introduction
	Prior Work on Continuous Handwriting Input for Small Writing Surfaces
	Prior Work on Handwriting-based Input Method Editors for Indic Scripts
	FreePad IME: Position-free Handwriting Input
	Consequences of Loss of Position Information
	Recognition of Position-free Handwriting
	Preprocessing
	Feature Extraction

	Experimental Evaluation
	Performance of Position-free Recognition
	Relevance of Position Information
	User Acceptance and Usability

	Summary

	Conclusions
	Summary
	Contributions
	Future Research Directions
	Symbol Modeling
	Word Recognition
	FreePad
	Extension to other Indic Scripts

