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ABSTRACT 

 

In this study we evaluated few novel leads for few protein targets of infectious diseases like 

hepatitis C virus non-structural 5B polymerase, human immunodeficiency virus protease and N-

acetylglucosamine-1-phosphate uridyltransferase of MTB. 

We employed computer-aided drug design tools like structure based drug design and ligand based 

drug design to identify new leads for some of the infectious disease targets like HCV NS5B, HIV 

protease and MTB GlmU. Strategically two major modeling procedures were employed that 

included structure based pharmacophore and ligand based 3D QSAR modeling. For the structure 

based approach we generated energy-based pharmacophore hypotheses based on the crystal 

structures of HCV NS5B and HIV protease bound to inhibitors and validated using enchrichment 

calculations. Simultaneously ligand based pharmacophore hypotheses generated and validated 

and employed for 3D QSAR modeling. Further virtual high-throughput screening and docking 

was performed to identify new inhibitors for the above targets. 

In the present work we selected 5 crystal structures of HCV NS5B polymerase bound with 

inhibitors and obtained 5 e-phamacophores. In ligand based approach 1568 NS5B inhibitors with 

wide range of activity 0.04 nM – 500 μM were used to develop best 3D QSAR model with PLS 

factor five and employed 5 e-pharmacophores and one validated ligand based pharmacophore 

model and structural diversity for HCV NS5B inhibitors for screening the commercially available 

Asinex database. Based on docking score, fitness, number of H-bonds, ADME properties, 

interaction diagram and visual inspection we selected top 10 promising leads for HCV NS5B 

polymerase. These compounds were procured from Asinex compound database and performed 

anti-HCV activity and cytotoxicity studies for our 10 leads. The promising two leads H-5 and H-6 

showed IC50 values as 28.8 µM and 47.3 µM respectively with inhibition of HCV NS5B RdRp 

activity as nearly as 67% and 50%. With regard to HIV protease inhibitor design, we selected 8 
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crystal structures and obtained 12 e-pharmacophores. In the ligand based approach we employed 

1535 compounds in the activity range of 0.026 nM to 316 µM and developed a 3D QSAR model 

with PLS factor five the best statistical model. We employed all 13 pharmacophore for screening 

the Asinex database and obtained 13 lead compounds. We performed anti-HIV protease inhibition 

studies for all our 13 leads and found that all compounds showed more than 60% inhibition at 25 

μM concentration except the compound L-4.  

For MTB GlmU, crystal structure with bound inhibitor was not available. Hence we employed 

ligand based pharmacophore approach with 27 GlmU inhibitors from PubChem Bioassay AID-

1376. AAD was chosen as the best pharmacophore and 3D QSAR model was developed and 

validated for its external predictivity. It showed good rm
2  (LOO), R

2 
and r

2
cv values which showed 

that the developed 3D QSAR model was reliable. The highest active reported compound 1 used 

for 3D QSAR study was then optimized based on contour maps and we designed few compounds. 

The compounds selection was based on docking them in the acetyl transferase substrate binding 

pocket and those that exhibited good docking score, fitness and interaction with important amino 

acid residues and were tested for GlmU acetyltransferase activity. The inhibitors R, S, T, V and 

W showed inhibition at 1 μM concentration. 
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CHAPTER 1 

INTRODUCTION 

 

It is one of the most infamous quotes in the history of biomedicine: “It is time to close the book 

on infectious diseases, and declare the war against pestilence won.” Long attributed to the 

United States Surgeon General, Dr. William H. Stewart (1965-1969), the statement is frequently 

used as a foil by scientific and lay authors to underscore the ever-increasing problems of 

antibiotic-resistant and emerging infections. However, the primary source for the quote has 

never been identified. 

Infectious Disease Poverty. 2013; 2: 3. 
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1.1. INFECTIOUS DISEASES 

Infectious diseases are caused by pathogenic microorganisms, such as bacteria, viruses, parasites 

or fungi; the diseases can be spread, directly or indirectly, from one person to another. Infectious 

diseases kill more people worldwide than any other single cause. Infectious diseases have for 

centuries ranked with wars and famine as major challenges to human progress and survival. The 

last decade has seen a renaissance of advanced low-cost molecular diagnostics to detect and 

monitor the spread of deadly infectious agents, including drug-resistant variants. A single 

organism can now be reliably identified from small amounts of human blood, tissue and 

respiratory specimens, as well as from environmental sources like air and water. 

The ongoing explosion of antibiotic-resistant infections continues to plague global health care. 

Meanwhile, an equally alarming decline has occurred in the research and development of new 

antibiotics to deal with the threat [1]. Emerging infectious diseases are a significant burden on 

global economies and public health. Their emergence is thought to be driven largely by socio-

economic, environmental and ecological factors [2]. Emerging infectious disease (EID) events 

have risen significantly over time after controlling for reporting bias, with their peak incidence (in 

the 1980s) concomitant with the HIV pandemic. EID events are dominated by zoonoses (60.3% 

of EIDs): the majority of these (71.8%) originate in wildlife (for example, severe acute respiratory 

virus, Ebola virus), and are increasing significantly over time. Against a constant background of 

established infections, epidemics of new and old infectious diseases periodically emerge, greatly 

magnifying the global burden of infections. Studies of these emerging infections reveal the 

evolutionary properties of pathogenic microorganisms and the dynamic relationships between 

microorganisms, their hosts and the environment [3]. The need for new antimicrobial agents is 

greater than ever because of the emergence of multidrug resistance in common pathogens, the 
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rapid emergence of new infections, and the potential for use of multidrug-resistant agents in 

bioweapons. Paradoxically, some pharmaceutical companies have indicated that they are 

curtailing anti-infective research programs. Among the most common infections, we have 

attempted to study novel protein targets of various infectious diseases and the details of these are 

summarized in further sections. 

1.2.  HEPATITIS C VIRAL (HCV) INFECTION 

Hepatitis is an inflammatory condition of the liver. The name has its Greek origin. ‘Hepat’ means 

liver and ‘itis’ means inflammation [4]. There are two stages of hepatitis, acute and chronic. The 

generation of scar tissues on the liver is known as liver cirrhosis and further damage to the liver 

leads to liver cancer as shown in Figure 1.  

 
 Figure 1: The structure of Hepatitis C Virus and the HCV affected liver [5] 

Hepatitis C is a liver disease caused by the hepatitis C virus. The disease can range in severity 

from a mild illness lasting a few weeks to a serious, lifelong condition that can lead to cirrhosis of 

the liver or liver cancer. The hepatitis C virus is transmitted through contact with the blood of an 

infected person. According to WHO report [6] about 150 million people are chronically infected 

with hepatitis C virus, and more than 350 000 people die every year from hepatitis C-related liver 

diseases. 
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Every year around 1 lakh people die due to hepatitis. 1.8-2.5% of total population gets infected by 

hepatitis. Around 50-60% of drug users are also affected [6]. HCV infection is ten times more 

contagious than HIV and co-infection with HIV could be lethal. One vial of interferon  costs 

Rs.23, 100 [7]. The full course of the treatment goes around 48 weeks. It is very difficult for a 

common man to afford the expenses for the treatment.  

1.2.1. Hepatitis C virus (HCV) 

HCV is a positive, single-stranded RNA virus that contains a 9.6 kb genome that encodes several 

structural and nonstructural proteins. HCV is a blood-borne pathogen belonging to the 

Flaviviridae 1 family of viruses; this also includes the West Nile, Yellow Fever, and Dengue 

viruses. HCV infection is also one of the most significant cause for liver cirrhosis and 

hepatocellular carcinoma [8] leading to liver failure and as such is a growing medical problem 

that affects an estimated 200 million individuals worldwide. HCV is a positive strand RNA virus, 

and its genome comprises of 9600 base pairs [9, 10]. 

This dreadful pathogen was identified by a team of scientists in 1987, namely Michael Houghton, 

Qui-Lim Choo and George Kuo at Chiron Corporation in collaboration with Dr. D.W. Bradley. 

They developed a diagonistic kit and employed a novel cloning technique. This was confirmed by 

Alter in the year 1988, by confirming its presence in a panel of non-A, non-B hepatitis (NANBH) 

specimens. In 1989, this work was published in the journal Science in two articles [11, 12]. In 

2000, Drs. Alter and Houghton received the Lasker Award for Clinical Medical Research for their 

discovery. 

HCV a positive-strand RNA virus has become a significant global pathogen causing acute 

hepatitis and chronic liver disease, including cirrhosis and liver cancer. About 200 million people 

are chronically infected with HCV, of which ~350,000 die every year from hepatitis C-related 
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liver diseases. Every year, 3-4 million people are newly infected with this virus. In some 

countries chronic infection rate is more than 5%. The main mode of transmission is through the 

usage of contaminated unsafe injections [13]. 

1.2.2.  Life cycle of HCV and interventions  

The life cycle of HCV starts with the entry into the host cell and then there is uncoating of HCV 

particle nucleocapsid as shown in Figure 2. 

 
Figure 2: The various stages of HCV [14] 

 

The factors which are present in the host cell that is important for the HCV entry include the 

tetraspanin, CD81, human scavenger receptor class B type I (SR-BI) and the tight junction 

proteins, claudin 1 (ClDn1), and occluding [15]. HCV E2 envelope glycoprotein also binds to 

dendritic-cell-specific and liver-cell-specific intercellular adhesion molecule-3-grabbing 
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nonintegrins (CD209 and CD209L) [16]. The glycoproteins of HCV envelope, E1 and E2 are 

crucial for the entry into host cells and they have become an attractive target for neutralizing 

antibodies [17]. 

Once the virus enters into the host cell cytoplasm, it undergoes a process of uncoating of HCV 

particle nucleocapsid and then enters to translation step. The presence of viral, double-stranded 

RNA in the cytoplasm initiates several antiviral mechanism in the host, like the activation of 

double-stranded RNA–activated protein kinase (PKR), Toll-like receptor 3 and retinoic-acid-

inducible protein 1 (TLR3 and RIG-1), which helps in the release of Interferon (IFN-) and 

Interferon β (IFN- β). It uses internal ribosome entry site (IRES)-mediated translation 

mechanism to access the viral translation. Host cells would develop few mechanisms to stop the 

use of its own protein-translation mechanism by the viral particle. A single ~3,000 amino-acid 

polyprotein produced by the translation of HCV genome; gets further cleaved into at least 10 

different protein products that include the structural proteins, the viral particle (core and 

envelope proteins E1 and E2) and non-structural proteins like P7, NS3, NS4A, NS4B, NS4A and 

NS5B [18] as shown in Figure 3. In association with intracellular membranes, replication of 

viral RNA happens. But the exact mechanism of HCV-RNA replication is not yet very clear. But 

the important protein which is responsible for viral RNA replication is the HCV-NS5B protein, 

which is a catalytic subunit of the replication complex and possesses the RNA dependent RNA 

polymerase (RdRp) activity [19]. 
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Figure 3: The organization of the HCV genome and the scheme for HCV polyprotein cleavage 

[20] 

 

Proof reading function is absent in HCV RdRp due to this it generates genetically diversed 

genome population within the infected person known as a quasispecies. The replication rate of 

HCV is quite high in the range of 10
10

 to
 
10

12
 virions per day and their predicted half-life is 2 to 3 

hours. Secreted HCV particles are low in density, which combine with lipoproteins for the viral 

release. This combination prevents the viral particle from the attack of host immune system [18]. 

There are few promising drug development targets for HCVs that include NS2-NS3 autoprotease, 

NS3 protease, NS3 helicase, NS4A cofactor, NS5B polymerase and envelope proteins as seen in 

Figure 3. 

1.2.3.  Treatment of HCV infection 

There are 6 genotypes of the hepatitis C virus and they may respond differently to treatment. 

Careful screening is necessary before starting the treatment to determine the most appropriate 

approach for the patient. 

The available standard combination therapy for HCV infection is with peginterferon  and β 

(PEG-IFN plus RBV). More than 50% of patients with genotype 1 are non-responder to standard 

combination therapy [21]. Treatment with interferon alone has effectiveness in 10% to 20% 

patients but combination therapy shows effectiveness in 30% to 50% patients. Hence uses of RBV 
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alone are not so effective. Non-responders to PEG-IFN plus RBV are a major challenge because 

these patients develop lot of complications that are lethal [22].  

Combination antiviral therapy with interferon and ribavirin has been the main stay of hepatitis 

C treatment. Unfortunately, interferon is not widely available globally, it is not always well 

tolerated, some virus genotypes respond better to interferon than others, and many people who 

take interferon do not finish their treatment. This means that while hepatitis C is generally 

considered to be a curable disease, for many people this is not a reality [23]. 

Ribavirin and its liver targeting prodrug viramidine show favorable pharmacokinetic properties 

and viramidine [24] showed very good antiviral activity. Scientific advances have led to the 

development of new antiviral drugs for hepatitis C, which may be more effective and better, 

tolerated than existing therapies. Two new therapeutic agents, telaprevir and boceprevir, have 

recently been licensed in some countries. Much needs to be done to ensure that these advances 

lead to greater access and treatment globally. 

Telaprevir, is a pharmaceutical drug for the treatment of hepatitis C co-developed by Vertex 

Pharmaceuticals and Johnson & Johnson. It is a member of a class of antiviral drugs known as 

protease inhibitors [25]. Specifically, telaprevir inhibits the hepatitis C viral enzyme NS4A serine 

protease. Telaprevir is only indicated for use against hepatitis C genotype 1 viral infections and 

has not been proven to have an effect on or being safe when used for other genotypes of the virus. 

The standard therapy of pegylated interferon and ribavirin is less effective on genotype 1. The 

cost of telaprevir-based triple therapy for hepatitis C is $189,000 per sustained viral response. The 

most common adverse effect is rash. Grade 3 adverse events (mainly anemia and 

leukopenia/neutropenia) were more frequent in the telaprevir groups than in the control group 
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(37% vs. 22%). Boceprevir is a protease inhibitor used as a treatment for hepatitis C genotype 1. 

It binds to HCV nonstructural 3NS3 (HCV) active site [26].  

1.2.4. Hepatitis C vaccine 

Although vaccines exist for hepatitis A and hepatitis B, development of a hepatitis C vaccine has 

presented challenges. Over the last decade numerous HCV vaccine approaches have been 

assessed in mice and primates. Only a small fraction of animal HCV vaccine studies have 

progressed to human trials. Most vaccines work through inducing an antibody response that 

targets the outer surfaces of viruses. However the Hepatitis C virus is highly variable among 

strains and fast mutated, making an effective vaccine very difficult. The detailed structure of E2 

envelope glycoprotein, believed to be the key protein the virus uses to invade liver cells, is 

elucidated by scientists at The Scripps Research Institute (TSRI) in November 2013 [27].  

In recent years many vaccine strategies have shown promising results during clinical trials. Four 

important strategies studied include recombinant protein, peptide, DNA, and vector vaccines. 

Some of these technologies have generated robust antiviral immunity in healthy volunteers and 

infected patients. Novel future vaccine approaches include virus-like particle (VLP)-based 

vaccines that have been successfully employed for viral infections such as hepatitis B. Additional 

strategies include molecules that induce innate immune responses, with secondary effects on 

adaptive responses (such as TLR-9 ligands) that are either encoded within a vaccine construct or 

used as a vaccine adjuvant [28]. Recently vaccines called IC41, Chron Vac-C, and Isomatrix 

have reached the final stages of human clinical trial. 

1.3. HUMAN IMMUNODEFICIENCY VIRAL (HIV) INFECTION 

Human immunodeficiency virus (HIV) is a lentivirus (a member of the retrovirus family) that 

causes acquired immunodeficiency syndrome (AIDS) [29, 30] a condition in humans in which 
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progressive failure of the immune system allows life-threatening opportunistic infections and 

cancers to thrive. Infection with HIV occurs by transfer of blood, semen, vaginal fluid or breast 

milk. Within these bodily fluids, HIV is present as both free virus particles and virus within 

infected immune cells. HIV infection in humans is considered pandemic by the World Health 

Organization (WHO). Nevertheless, complacency about HIV may play a key role in HIV risk. 

From its discovery in 1981 till 2006, AIDS has killed more than 25 million people. For every one 

person around the world getting treatment, there are 2 new reported cases of HIV infection 

records and currently there are 16 million orphans in the world those who have lost either one or 

both parents because of AIDS. Due to global AIDS awareness programs and increase in 

scientific research and drug treatment programs, the number of new HIV infections dropped 20% 

over the past decade [31]. 

1.3.1. Human immunodeficiency virus (HIV) 

HIV, the virus being a member of Lentiviruses, use the most effective replication method and 

transmit their genetic material into host cell through their deoxyribonucleic acid (DNA) and 

replicate in non-dividing cells. The peculiar character of reteroviruses is that they can transform 

ribonucleic acid (RNA) into DNA which is unnatural of the process as RNA is from DNA.  

Reverse transcriptase, a DNA polymerase of reteroviruses is responsible for the transcription of 

single-stranded RNA into single-stranded DNA and hence HIV is also termed as a retrovirus. 

[32, 33]. 

HIV is of 2 types, HIV-1 and HIV-2 with HIV-1 being the major cause for worldwide infections. 

There are few cases in or from West Africa with HIV-2 infections. HIV-1 can be divided into 4 

viral groups: M, N, O and P. HIV-1 from group M plays a major role in global pandemic among 

the various subtypes and recombinants [34].  
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HIV consists of two single chains of RNA and infects mainly the CD4+ lymphocytes ( T cells). 

These infected cells lose their original function in human immuno system and start replicating 

HIV cells. The HIV viral particle is spherical in shape with a diameter of 1/10,000 mm as shown 

in Figure 4. Viral envelope consists of two lipid layers and proteins. The outer spikes consists of  

 

Figure 4: Structure of Human Immunodeficiency Virus [35]  

glycoprotein (gp) 120 and the transmembrane has gp41. The HIV matrix proteins consist p17 

proteins present between the envelope and the core. The viral core consists of viral capsule 

protein p24 that sorrounds two single-stranded HIV RNA and the enzymes needed for viral 

replication. The glycoproteins 120 and 41 (gp120 and gp41) on the surface plays vital role in 

fusion with the immune cells of host cells to form glycoprotein complex, which is the initial 

stage of infection. Protective protein sheath or capsid, which is present inside the virus with viral 

RNA core and enzymes is surrounded by the viral envelope composed of phospholipids [36].  
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1.3.2. Life cycle of HIV 

There are eight stages of HIV life cycle as shown in Figure 5 and it is a complex process. 

I. Attachment: HIV life cycle begins with conformational change of gp120 envelope protein, 

which allows binding with the co-receptors on the T cell’s surface to obtain entry and expose 

gp41 molecules for fusion of the lipid bilayers of the virus and the T cells [37]. 

 

Figure 5: A representation of HIV life cycle [38] 

II. Viral entry and Reverse Transcription: HIV penetration into the T cells occurs and the 

matrix with capsid protein is mixed together which allows the release of viral enzymes and 

RNA into the cytoplasm of the cell. With the help of host nucleotides, the HIV enzyme 
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reverse transcriptase transforms the viral RNA into single-stranded DNA which then 

converts single-stranded DNA into double-stranded DNA [39]. 

III. Integration: The HIV enzyme integrase grasps the viral double-stranded DNA and carries it 

through the nuclear pore into host cell’s nucleus. Then it integrates with the host 

chromosome to insert the HIV DNA [40]. 

IV. Transcription: Viral RNA is produced during this process and acts as a template for new 

viruses to be produced via ribosomes (mRNA). The enzyme RNA polymerase produces 

mRNA that encodes for various viral proteins like envelope proteins. The viral proteins 

embedded in the cell membrane are merged with other newly formed envelope proteins to 

form cluster on the surface of the infected cell. These proteins exist as multi-protein chains 

and transformed to the surface with a strand of RNA and some of the enzymes [41].        

V. HIV morphogenesis: HIV DNA insertion leads to the production of HIV protease enzyme 

which plays a vital role in later stages of HIV morphogenesis. Protease enzymes cut the 

HIV protein chain into individual small chains and a new working virus is produced [42]. 

There are three final stages of HIV life cycle; that consists of assembly, budding and maturation. 

These are carried out by gag polyproteins in combination with proteolytic maturation products. 

During assembly, the viral proteins collected at the plasma membrane are transported to the 

cell’s surface as an irregular form of virus and it involves not only viral and cellular proteins but 

also lipids and RNAs. Finally breakage of immature virus on the surface of the host cell leads to 

budding and mature virions [43]. 

1.3.3. Treatment 

There are six major types of drugs based on their activity towards HIV/AIDS. As HIV life cycle 

has many stages, each stage of its life can be inhibited by drugs. 
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The replicative cycle of HIV comprises a number of steps, which could be considered as 

adequate targets for chemotherapeutic intervention. The important targets are viral adsorption, 

virus-cell fusion, virion uncoating, reverse transcription (RNA  ds DNA) [RT enzyme], 

proviral DNA integration, viral transcription (DNA  RNA), viral translation (mRNA  

Protein), viral budding (assembly/release) and maturation (protease and glucosidase enzymes). 

Most of the substances which have been identified as anti-HIV agents can be allocated to one of 

the ten classes of HIV inhibitors [44], according to the stage at which they interfere with the HIV 

replicative cycle (Table 1). 
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Table 1: Anti-HIV agents 

 

HAART Therapy: 

HAART is nothing but the combinations of two or more of the different class of inhibitors (drugs) 

into a single product to prevent or stop HIV functions in host cells and is also known as multi-

class combination products. The treatment for the patients those who are resistant to one type of 

S.No. Types  Inhibitors 

1. Adsorption  

Inhibitors 

a) Polysulfate- Dextran sulfate, Curdlan sulfate, Pentosan polysulfate 

b) Polysulfonates- Suramin, Evans blue 

c) Polycarboxylate- Aurin tricarboxylic acid 

d) Glycyrrhizin 

2. Fusion 

Inhibitors 

Betulinic acid, Mannose-specific plant lectinoylsulfate 

3. Virus 

uncoating 

Inhibitors 

Bicyclam derivatives 

4. Reverse 

transcription 

Inhibitors 

a) Nucleoside derivatives- Zidovudine, Stavudine, Lamivudine-

Zalcitabine, Didanosine, Abacavir 

b) Non-nucleoside derivatives- Nevirapine, Delavirdine, Efavirenz 

Loviride, Trovirdine, Emivirine 

5. Integration 

Inhibitors 

Curcumin, L-chicoric acid 

6. DNA 

replication 

Inhibitors 

Antisense constructs 

7. Transcription 

Inhibitors 

1,4-Benzodiazepine and Fluoroquinolone derivatives 

8. Translation 

Inhibitors 

Ribozymes, Trichosanthin 

9. Maturation 

Inhibitors 

a) Protease inhibitors – Saquinavir, Indinavir, Ritonavir, Nelfinavir, 

Lopinavir, Amprenavir, Atazanavir, Tipranavir, Darunavir, 

Amprenavir, Lopinavir  

b) Glucosidase inhibitors – Castanospermine  

10. Budding 

Inhibitors 

Interferon, Hypericin 
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antiretroviral drug can take a combination of antiretroviral drugs to get highly effective therapy 

[45]. The combinations of drug commonly employed are given in Table 2. 

Table 2: Multi-class combination products for HAART therapy 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

1.4. TUBERCULOSIS DISEASE 

Tuberculosis (TB) is a lethal, infectious disease caused by various strains of mycobacteria, 

majorly Mycobacterium tuberculosis (MTB). Most infections are asymptomatic and latent, but 

about one in ten latent infections eventually progresses to active form [46]. One third of the 

world's population is thought to have been infected with MTB, with new infections cropping in 

about 1% of the population each year. The distribution of tuberculosis is not uniform across the 

globe; about 80% of the population in many Asian and African countries tests positive in 

tuberculin tests, while only 5–10% of the United States is affected. The risk of TB disease and 

death is highly increased by the usage of tobacco [47].  

Brand 

Name 

Generic Name Manufacturer Name 

Atripla Efavirenz, 

Emtricitabine and 

Tenofovir disoproxil 

fumarate 

Bristol-Myers Squibb and 

Gilead Sciences 

Complera Emtricitabine, 

Rilpivirine, and 

Tenofovir disoproxil 

fumarate 

Gilead Sciences 

Stribild Elvitegravir, 

Cobicistat, 

Emtricitabine, 

Tenofovir disoproxil 

fumarate 

Gilead Sciences 

http://en.wikipedia.org/wiki/Infectious_disease
http://en.wikipedia.org/wiki/Mycobacterium
http://en.wikipedia.org/wiki/Mycobacterium_tuberculosis
http://en.wikipedia.org/wiki/Asymptomatic
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Atripla&SearchType=BasicSearch
http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/202123s000lbl.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203100s000lbl.pdf
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Tuberculosis (TB) is the second greatest killer globally due to a single infectious agent. In 2012, 

8.6 million people were affected by this infectious agent, among which about 1.3 million people 

died. More than 95% of TB deaths occur in low and middle income countries and in these 

countries, it is one of the top three causes of deaths among women between ages 15 to 44.   

Ninety-five per cent of all cases and 99 % of deaths occurred in developing countries, because of 

compromised immunity, largely due to high rates of HIV infection and the corresponding 

development of AIDS and with the greatest burden in sub-Saharan Africa and South East Asia. In 

2013, totally 530,000 children (0-14 years) were affected by TB and 74,000 children with HIV-

negative died because of TB [47].  

People getting affected every year are on a decrease which shows that the world is on track to 

achieve the Millennium Development Goal to reverse the spread of TB by 2015. The TB death 

rate reduced to 45% between 1990 and 2012. Nearly 22 million lives were saved through the use 

of DOTS and because of the strategy Stop TB recommended by WHO. In 2013, about 60% of 

new TB cases came from the region of Asia. But sub-Saharan Africa showed the highest 

proportion of 255 new cases for TB per population in the year 2012. In 2013, 80% of the TB 

cases reported from 22 countries as shown in Figure 6. Among these 22 countries, Brazil and 

China that showed a sustained decline in TB cases over past 20 years [48].  

Multi-drug-resistant TB (MDR-TB) is a form of TB caused by the bacteria which is resistant to 

the most of the available first line anti-TB medicines like isoniazid and rifampicin. This is 

because of the improper treatment, inappropriate use of anti-TB drugs, improper knowledge about 

the disease and low quality of medicines. 

http://en.wikipedia.org/wiki/HIV
http://en.wikipedia.org/wiki/AIDS
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They are treatable only with the second-line anti-TB drugs like fluroquinolones, aminoglycosides, 

etc.  Extensive chemotherapy for more than two years give a complete cure to the patients, but the 

treatment is bit costly and lead to lots of harmful side effects [50]. 

 

 

Figure 6: Countries with TB disease burden 2008-2013 [49] 

More severe drug resistance lead to extensively drug- resistant TB (XDR-TB), a form of multi-

drug resistant tuberculosis that responds to very less number of available the most effective 

second-line anti-TB drugs. Nearly 450,000 people were identified with MDR-TB worldwide in 

2012, among these 50% were reported from India, China and Russian Federation (Figure 7). 

About 9.6 % of all MDR-TB cases had XDR-TB. 

 

 

-- -TB  
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Figure 7: Increasing number of drug resistance cases globally, 1994-2013 [51] 

 

Earlier patients were reported to be totally drug resistant (TDR-TB) and they had resistance to all 

first-line-anti-TB drugs (FLD) and the second-line-anti-TB drugs (SLD) for which they were 

tested. Furthur 15 more people were reported for the TDR-TB who showed resistance to all the 

available anti-TB drugs tested. Later 4 patients with TDR-TB were reported from India with 

subsequent media reports of further 8 patients. This term TDR-TB is not yet recognized by WHO. 

The term “totally drug resistant” is not clearly defined till date [52].  

1.4.1. Mycobacteria 

MTB then known as the tubercle bacillus, was first discovered on 24 March 1882 by Robert 

Koch, who subsequently received the Nobel Prize in physiology or medicine for this discovery in 

1905; the bacterium is also known as Koch's bacillus [53]. MTB is pathogenic bacterial species in 

the genus Mycobacterium and the causative agent of most cases of tuberculosis. MTB has an 

unusual, waxy coating on the cell surface (primarily mycolic acid), which makes the cells 

impervious to Gram staining so acid-fast detection techniques are used instead. The physiology of 
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MTB is highly aerobic and requires high levels of oxygen. Primarily a pathogen of the 

mammalian respiratory system, MTB infects the lungs and is the causative agent of tuberculosis. 

The most frequently used diagnostic methods for TB are the tuberculin skin test, acid-fast stain, 

and chest radiographs. 

The life cycle of MTB infection is depicted as in the Figure 8. The infection starts when MTB 

bacilli, present in droplets are inhaled and are phagocytosed by resident alveolar macrophages. 

This results in proinflammatory response and invasion of epithelium which leads to the 

recruitment of monocytes from the circulation, as well as extensive neovascularization of the 

infection site. The macrophages in the granulomas then gets differentiated to epithelioid cells, 

multinucleate giant cells, and foam cells which are filled with lipid droplets now called as 

granuloma. Finally the virulent bacilli are released into the airways when the granuloma collapses 

into the lungs. 
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   Figure 8: Life cycle of MTB [54]  

1.4.1.1. The mannosylated cell envelope components of MTB 

The MTB cell envelope is characterized by the presence of a variety of unique complex lipids, 

constituting 60% of the bacillus total weight. This lipid-rich low permeability matrix contributes 

to the difficulty in combating mycobacterial diseases by endowing the organism with innate 

resistance to therapeutic agents and host defenses. The complex MTB cell envelope can be 

divided into two major structures, the cell wall and the capsule-like outermost structures 

(Figure 9). The outermost components are solvent-extractable non-covalently bound free lipids, 

carbohydrates and proteins associated with the mycolyl-arabinogalactanepeptidoglycan complex 
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(cell wall core). These surface components may be prone to release, shedding, and/ or cleavage 

upon contact with the host cell or within an appropriate intracellular environment of the cell 

[55]. The surface of MTB is particularly rich in mannose-containing biomolecules, including 

mannose-capped lipoarabinomannan (ManLAM), the related lipomannan (LM), phosphatidyl-

myo-inositol mannosides (PIMs), arabinomannan, mannan and manno-glycoproteins PIMs, LM 

and ManLAM are incorporated into the plasmamembrane and also exposed on the MTB cell 

surface.  They act as ligands for host cell receptors and contribute to the pathogenesis of MTB.  

 

Figure 9: The cell envelope of MTB with an emphasis on exposed mannosylated cell envelope 

components. This scheme depicts the cell envelope “skeleton or core” determinants (mycolyl-

arabinogalactanepeptidoglycan complex) and emphasizes the distribution of intercalated major 

mannosylated cell envelope components that are exposed on the MTB surface. AG is covalently 

linked to PG via the galactan chain and the arabinan chain is in turn linked to the mycolic acids 
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(Myc Ac) which are shown perpendicular to the plasma membrane. The polar groups (i.e. 

carbohydrate domains) of several mannosylated cell envelope components are exposed on the cell 

surface and their lipid domains are intercalated with the Myc Ac acid layer. These envelope 

components include ManLAM, LM, higher- and lower-order PIMs, and lipomannoproteins. Other 

known virulence factors described for MTB that interact with the Myc Ac layer [i.e. TDM, SL; 

and TGs and PGL, the latter on some MTB strains)] are also depicted. Not all Myc Ac are 

depicted interacting with cell surface components. Not shown are capsule-like components (i.e. 

arabinomannan, glucan, mannan, and xylan). In order to maintain simplicity, molecular quantities 

depicted (relative number of molecules) do not accurately reflect experimental data. AG 

(arabinogalactan); PG (peptidoglycan); Myc Ac (mycolicacids); ManLAM (mannose-capped 

lipoarabinomannan); LM (lipomannan); PIMs (phosphatidyl-myo-inositol mannosides); TDM 

(trehalose dimycolate); SL (sulfolipid); TGs (triglycerides); PGL (phenolic glycolipid). [56] 

 

Unlike some fast growing mycobacteria and other actinomycetales, MTB is rarely pleomorphic; it 

does not elongate into filaments, and does not branch in chains when observed in clinical 

specimens or culture. When numerous and actively multiplying, the bacilli are strongly acid fast 

and show an evident and distinctive tendency to form hydrophobic bundles. Free bacilli can also 

be seen, though, especially at the border of the swarms. In unlysed host tissue, the bacilli are more 

numerous within the phagocytic cells. Once the disease has been controlled, dying bacilli become 

sparser, often faintly and unevenly colored, due to partial loss of the internal contents. Of course, 

irregular staining may also be the consequence of technical defectiveness of dyes or staining 

procedures. 

1.4.2. TB treatment 

The standard "short" course treatment for TB is isoniazid, rifampicin (also known as rifampin in 

the United States), pyrazinamide, and ethambutol for two months, then isoniazid and rifampicin 

alone for a further four months. The patient is considered cured at six months (although there is 

still a relapse rate of 2 to 3%). For latent tuberculosis, the standard treatment is six to nine months 

of isoniazid alone.  
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If the organism is known to be fully sensitive, then treatment is with isoniazid, rifampicin, and 

pyrazinamide for two months, followed by isoniazid and rifampicin for four months. Ethambutol 

need not be used. 

First Line: All first-line anti-tuberculous drug names have a standard three-letter and a single-

letter abbreviation as shown in Table 3. 

Second Line: There are six classes of second-line drugs (SLDs) used for the treatment of TB. A 

drug may be classed as second-line instead of first-line for one of three possible reasons: it may 

be less effective than the first-line drugs (e.g., p-Aminosalicylic acid); or, it may have toxic side-

effects (e.g., cycloserine); or it may be unavailable in many developing countries (e.g., 

fluoroquinolones). 

The treatment for MDR-TB patients includes an intensive phase of 8 months treatment and for 

patient newly diagnosed with MDR-TB, total treatment duration of 20 months is recommended 

for most of the patients and the duration may be modified based on the patient’s response rate. 

For HIV-positive patients with drug-resistance TB, antiretroviral therapy is highly recommended 

along with second-line-anti TB drugs, irrespective of their CD4 cell-count, within the first 8 

weeks followed by anti-TB treatment as shown in Table 3. 

Third Line: Other drugs that may be useful, but are not on the WHO list of SLDs. These drugs 

may be considered "third-line drugs" and are listed here in Table 3 either because they are not 

very effective (e.g., clarithromycin) or because their efficacy has not been proven and their 

toxicity and cost are high. Rifabutin is effective, but is not included on the WHO list because for 

most developing countries, it is impractically expensive.  

Adjuvant therapy helps the patients who are getting intensive treatment with SLDs and other third 

line drugs to avoid the serious side effects.  
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 Table 3: Available anti-TB drugs 

 

Vitamin B6 (pyridoxine): It is used to prevent neurological side effects for the patients who are 

using cycloserine. The standard dose is 50mg for every 250mg of cycloserine. Multivitamins and 

TB treatment Drugs 

First Line a) Ethambutol  EMB or E, 

b) Isoniazid  INH or H, 

c) Pyrazinamide PZA or Z, 

d)  Rifampicin RMP or R, 

e)  Streptomycin STM or S. 

Second Line Second-line parenteral 

agent: Injectable anti-TB 

drugs) Aminoglycosides:                                           

amikacin (Amk),  

 kanamycin (Km),           

 capreomycin (Cm); 

 

Fluoroquinolones:  

 

levofloxacin (lfx),  

moxifloxacin (Mxf) 

gatifloxacin (Gfx)  

ofloxacin  (Ofx)                                                                                                                             

 

Oral bacteriostatic SLDs: 

thioamides: 

ethionamide (Eto)  

prothionamide (Pto) 

cycloserine (Cs) 

terizidone (Trd) 

p-aminosalicylic acid (PAS) 

 

Group 5 drugs (Agents with 

unclear role in DR-TB 

treatment ( not 

recommended by WHO for 

routine use in DR-TB 

patients) 

clofazimine (Cfz) 

linezoloid (Lzd) 

amoxicillin/clavulanate 

(Amx/Clv) 

thioacetazone (Thz) 

clarithromycin (Clr) 

imipenem (Ipm) 

 

Third Line a) Rifabutin   b) Vitamin D 

c) Macrolides: 

e.g., clarithromycin 

(CLR)     

d) Imipenen/cilstatin 

e) Linezolid (LZD)                                         f) High-dose isoniazid        

g) Thioacetazone (T)                                      h) Arginine 

i) Thioridazine                                              j) R207910 
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minerals supplements (zinc, iron, calcium, etc.) should be given and they should be avoided when 

fluoroquinolones are used because they can interfere with its absorbtion. The standard dose is 

50mg for every 250mg of cycloserine. Multivitamins and minerals supplements (zinc, iron, 

calcium, etc.) should be given and they should be avoided when fluoroquinolones are used 

because they can interfere with its absorbtion. 

Gastric protection with H2 blockers (e.g. Ranitidine 150 mg once daily); proton pump inhibitors 

(e.g. omeprazole 20mg once daily), it should be avoided for patients prescribed with 

antitubercular therapy due to drug-drug interaction. Corticosteroids can be beneficial in 

conditions such as severe respiratory insufficiency and central nervous system or pericardial 

involvement. To get immediate response it is advisable to use injectable corticosteroids [50-52]. 

1.5. STRATEGIES OF DRUG DESIGN 

Based on biological target knowledge the inventions of new therapeutics begin and become the 

crucial starting point for every drug design. A drug is nothing but a small organic compound 

which either activates or inhibits the activity of macromolecule like protein resulting in 

therapeutic advantage to the patients. Drug design depends on computational modelling tools 

known as computer-aided drug design. There are two strategies in computer drug design:  

1.5.1. Structure based drug design:  

Based on the knowledge of the interacting pattern of the bound inhibitor in the crystal structure of 

protein, the drugs are designed [57]. If the crystal structures are not available, using homology 

modeling tools we can design the crystal structures. Molecular dynamics studies are used to 

predict the drug with high affinity and high selectivity. Docking studies used to screen large 

compound libraries and databases to identify the potent lead. The structure based strategy has 

proved to be successful over random screening of existing chemical libraries. 
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The first success of structure based drug design was the identification of peptide-based HIV 

protease inhibitor [58]. As in the recent years, there is a rise in the structural information on 

protein targets; structure based drug design methods have potential advantages over the 

conventional drug discovery methods.  Identification of target active site plays an important role 

in structure based design protocols. The ligand binding site can be the active site, as in an 

enzyme, an assembly site with another macromolecule, or a communication site necessary in 

mechanism of the molecule.Various strategies involved in structure based drug design include the 

following but not limited to, 

i. Fragment-based lead discovery 

ii. Virtual screening 

iii. Receptor-based pharmacophore modeling 

iv. De nova design 

v. Homology modeling and molecular dynamics 

Over the 35 years that have followed the first published work describing SBDD in 1976, 

computer aided molecular design and SBDD has surmounted several hurdles and has played a key 

role in the development of several marketed drugs [59].  

1.5.2. Ligand based drug design: 

Based on the knowledge of already reported drugs for that particular biological target new drugs 

are designed. The already reported molecules can be used to design the pharmacophore. 

Pharmacophore is nothing but a model which represents the minimum necessary features of the 

molecule should possess to bind to the target. This pharmacophore model is used to screen large 

database compounds to find the potent lead [60]. 
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Pharmacophore approaches is vital tool for accelerating discovery efforts when more extensive 

data are available by providing a means of superimposing structures for 3D quantitative 

structure/activity relationship (QSAR) development, or by acting as a rapid prefilter on real or 

virtual libraries that are too large for routine treatment with more expensive structure-based 

techniques, such as docking. Ligand-based design generally utilizes pharmacophore modeling for 

virtual screening of libraries irrespective of the availability of the target structure. Pharmacophore 

models define important functional groups involved in binding, and the relative positions in 3-

dimensional space which implicates the conformational requirement of a ligand. In the following 

sections, the application of pharmacophore in 3D-QSAR modeling has been described in detail. 

1.5.2.1. Quantitative structure-activity relationship (QSAR) 

Quantitative structure-activity relationships (QSAR) are statistically derived models that can be 

used to predict the physicochemical and biological (including toxicological) properties of 

molecules from the knowledge of chemical structure.  

The description of QSAR models has been a topic for scientific research for more than 40 years 

and a successful topic within the framework of regulatory for more than 20 years. The main aim 

of QSAR field is to examine the relationships using mathematical models which further validate 

and predict the model statistically. QSARs have many applications in diverged fields like drug 

discovery and lead optimization, risk assessment and toxicity prediction, regulatory decisions and 

agrochemicals. One of the major applications of QSAR model is to predict the biological activity 

of untested compounds from their molecular structures. The estimation of accuracy of prediction 

is a critical problem in QSAR modeling. With the advent of molecular modelling, three-

dimensional (3D) descriptors have replaced the traditional physicochemical and bi-dimensional 

descriptors [61]. Rigorous analysis and fine-tuning of independent variables has led to an 
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expansion in development of molecular and atom-based descriptors, as well as descriptors derived 

from quantum chemical calculations and spectroscopy. 

Based on the statistical method which we employ to correlate the structure with activity, QSAR 

techniques can be divided into two types: 

Linear method: Linear QSAR methods include analysis of linear regression, multiple linear 

regression (MLR), partial-least square (PLS), principal component analysis (PCA) and principal 

component regression (PCR). 

Non-Linear method: Non-linear methods include k-nearest neighbors (kNN), artificial neural 

networks, Bayesian neural nets. 

1.5.2.2.  3D QSAR 

3D QSAR techniques are the most powerful computational means to support the chemistry side of 

drug design projects. The primary aim of these techniques is to establish a correlation of the 

biological activities of a group of structurally and biologically characterized compound with a 

spatial finger prints of numerous field properties of each molecule, such as steric, lipophilicity 

and electrostatic interactions. Especially, 3D QSAR study allow to identify the pharmacophoric 

arrangement of molecular fragments in space and provides guidelines for the design of the next 

generation of compounds with enhanced biological potencies [61]. 

1.5.2.3. CoMFA method 

The CoMFA (Comparative Molecular Field Analysis) method was developed as a tool to study 

3D QSAR. A CoMFA analysis begins with a traditional pharmacophore modeling to suggest a 

bioactive conformation for each molecule and to superimpose the molecules under study. Steric 

and electrostatic fields provide the information about the biological properties for a set of 

compounds under study. The steric potential, expressed in a Leonard-Jones function and 
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electrostatic potential expressed in a simple Coulomb function are the two potentials used in 

CoMFA study. The standard application of CoMFA provides only enthalpic contributions of the 

free energy of binding; however, one should find the importance of other contributions from 

hydrophobic and entropic interactions and to judge whether CoMFA will be able find results 

under these extraordinary conditions [62]. 

1.5.2.3. CoMSIA method 

CoMSIA (Comparative Molecular Similarity Indices Analysis) model overcomes the problems 

associated with the functional form of the Lennard-Jones potentials used in most of the CoMFA 

methods. This is based on similarity indices similar to CoMFA and was developed by Klebe et al 

[63]. This method adopted Gaussian type functions instead of traditional CoMFA potentials. The 

descriptors used in this approach are spatial similarity and dissimilarity of the molecules. Three 

different indices related to steric, electrostatic and hydrophobic potentials were used in their study 

of the classical Tripos steroid benchmark dataset. Models of comparable statistical quality with 

respect to both internal cross-validations of the training set and predictivity of the test set were 

derived using the CoMSIA method. The CoMSIA contour maps are easily interpretable compared 

to CoMFA maps. The CoMSIA approach also avoids the cutoff values for the potential functions 

and it also included the hydrogen bond descriptors to evaluate hydrogen bonds [63]. 

1.5.2.3. GRID and GOLPE method 

It is an alternative to the original COMFA method and used by many researches to calculate the 

interaction fields. The reduced number of potential functions (6-4) compared to Lennard-Jones 

potential (6-12) in COMFA, for the calculation of interaction energies at the grid points. A 

statistical method GOLPE (General Optimal Linear PLS Estimation) was developed by Baroni et 

al. to improve the predictivity of QSAR models. GRID force field in combination with GOLPE 
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program yielded very good statistical results. The dataset was particularly interesting because the 

X-ray structures of all protein-ligand complexes were solved. The concept of variable selection 

and reduction was used in the refinement of original CoMFA method. Approaches for separating 

the useful variables from the less useful ones were needed. In GOLPE program several variable 

selection methods, such as D-optimal design and fractional factorial design (FFD) were 

implemented. The predictivity of each variable was determined by generating a large number of 

3D QSAR models, and by calculating the SDEP. After the completion of an FFD run, each 

variable was evaluated and classified into one of three categories: helpful for predictivity, 

detrimental for predictivity or uncertain. By applying this variable selection method, QSAR 

models with higher cross-validated Q
2
 values were derived compared to conventional CoMFA 

method [64]. 

1.5.2.4. QSAR validation 

In recent years, QSAR validation received more attention that there were four tools to validate a 

QSAR models 1. randomization of the response data 2. cross-validation 3. bootstrapping 4. 

external validation by splitting the total data set into test and training set. REACH (Registration, 

Evaluation and Authorization of Chemicals) legislation enforced in the European Unoin agreed 

that QSAR models should be validated scientifically and also regulatory bodies should take 

decisions based on sound scientific background. Many ideas for validating QSAR models were 

proposed at an International workshop held in Setubal (Portugal), that were reformed in 2004 by 

OECD work programme on QSARs. There is an urgent need of a novel parameter to validate the 

QSAR model to overcome the traditional validation parameters. There is always argument 

between the users of internal versus external validation. External validation supporters considered 

that internal validation alone is not a parameter to check the robustness of the models and external 
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validation also must be done. Supporters of internal validation suggested that cross validation was 

able to measure the fitness of the model and also to cross check the datas used for prediction were 

not involved in the QSAR development. There were few inconsistency reported in some QSAR 

models internal and external validations. That is high internal predictivity may have very low 

external predictivity and vice versa.  Recently it has been proved that predictive R
2 

(R
2
pred) may 

not be a suitable to measure external predictability because of its dependence on training set 

mean. An alternative measure rm
2 

was suggested to measure external predictivity. rm
2
 depends on 

the observed and predicted data of the test set compounds, on the training set in LOO method to 

correlate the observed and the predicted values and also depends on the whole test and training set 

in LOO method to calculate the overall correlation. For an acceptable QSAR model, one more 

measure the average correlation coefficient (Rr) of randomized models should be less than the 

correlation coefficient (R) of the non-randomized model. But there is no proper definition for 

these two measures in the literatures. But a parameter which penalizes the model R
2
 for the 

difference between these two squared {(Rr
2
) & (R

2
) values [65]. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1. HCV NS5B Polymerase 

2.1.1. Structure of HCV NS5B RdRp Polymerase  

This non-structural protein 5B (NS5B) is a RNA-dependent RNA polymerase (RdRp) become 

very important as drug target because of its ability to play a crucial role in HCV replication and 

viral genome. Its inhibition doesn’t cause any side effect because of its absence in mammalian 

cells. The crystal structures of NS5B have revealed a unique “right hand” topology of polymerase 

family, with thumb, palm, and fingers subdomains [66]. There were many available high 

resolution 3D crystal structures of NS5B complexes either with nucleoside or non-nucleoside 

inhibitors which revealed that the presence of five distinct allosteric binding pockets as shown in 

Figure 10. Allosteric binding pockets AP-1, AP-2 and AP-3 are presented in thumb and palm 

site. A unique feature of the HCV RdRp and that of related viral RdRps is that the thumb and the 

fingers domains are bridged by two loops called the loop 1 and loop 2. These two loops are 

responsible for the closed conformation of the enzyme that results in a complete encircling of the 

active site from the front side (front side as viewed with the thumb domain at the left and fingers 

domain at the right side of the viewer in (Figure 10). The back side is covered by another loop 

called the β loop that forms part of the template channel. This loop extends toward the metal 

coordinating residues in the active site [20].  
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Figure 10: The protein structure of HCV NS5B with the fingers (F), thumb (T) and palm (P) 

domains [67] 

 

Structural and functional studies of the HCV RdRp have delineated the role of crucial residues in 

the enzymes however the NS5B bound to ternary complex (template/primer/nucleotide) is yet to 

be solved. During virus replication, HCV NS5B forms a replication complex in which, NS5B acts 

as a key component in copying (+) strand HCV RNA into (−) strand HCV RNA. This newly 

copied (-) strand RNA is then used as the template to produce a large number of progeny (+) 

strand RNA. It was shown that in both of these critical replication steps, NS5B is involved as a 

key component and mainly responsible for replicating viral RNA and hence it is a key target for 

drug development. Also, the catalytic subunit of the replicase complex is the HCV encoded 

NS5B, which contains all the sequence motifs highly conserved among all the known RdRps. 

Analogous to the studies from the human immunodeficiency virus (HIV), where the reverse 

1 
2 
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transcriptase is a primary target for effective antivirals, the HCV RdRp is considered an important 

target for drug development. Using the right-hand analogy for polymerases, the HCV RdRp has 

discernable fingers, palm and thumb subdomains. An unusual feature of this polymerase is that, 

due to the extensive interactions between the finger and thumb subdomains, the HCV RdRp has 

an encircled active site. Similar to other known RdRps, the HCV NS5B also contains six 

conserved motifs designated as A-F and more than hundred crystal structures have been 

determined independently by several groups [68]. Many inhibitors bound with HCV NS5B crystal 

structures are also available in the protein databank (PDB). 

2.1.2. HCV NS5B inhibitors 

Based on the structure and site of binding with HCV NS5B polymerase, the inhibitors are 

classified into two types: Nucleoside or nucleotide Inhibitors which during RNA synthesis, they 

act as the competitors of NTPs while non-nucleoside inhibitors (NNI), are the second major class 

of inhibitors which inhibits the starting stage of RNA synthesis. 

2.1.2.1. Nucleoside or nucleotide inhibitors: 

The only FDA approved drug for HCV treatment is the purine analog ribavirin which showed 

pleiotropic effects on both cellular and viral enzymes. Several sugar moieties were reported as 

promising inhibitors of the replication of HCV, among these 2-and 3-substituted analogs of 

ribonucleosides showed very good potency. The important nucleosides (Figure 11) were 2’-C-

methyladenosine (a), 2’-O-methylcytidine (b) 2-C-methylguanosine (c), 2-deoxy-2-flouro-2-C-

methylcytidine (d) and 3-deoxyribonucleosides derivative like 3-deoxycytidine (e).  
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Figure 11: Nucleoside or nucleotide inhibitors as HCV NS5B inhibitors 

These nucleosides were good competitors for the substrate and behaved as chain terminators [69]. 

2-Deoxy-2-flouro-2-C-methylcytidine (Figure 11) showed an EC90 of 5.4 μM, comparable to 

that of 2-deoxy-2-fluorocytidine (d) and it was not cytotoxic upto 100 μM. The compound 3-

deoxycytidine (e) showed submicromolar activity in a biochemical assay [70]. 

Recently, Roche showed interim results from a multiple ascending dose study of R1626, a novel 

nucleoside analog targeting HCV polymerase in chronic HCV-infected individuals. R1626 a pro-

drug of R1479 exhibited potent anti-HCV activity. After oral administration, R1626 was 

efficiently converted to R1479 and was well tolerated in native chronic patients. Moreover, dose 

dependent antiviral activity was observed with a mean serum viral RNA reduction of 1.2 log10 

from baseline after treatment with 1500 mg of R1626 for 14 days [71]. 

 In a recent communication, Varaprasad et al. [72] reported the synthesis of some pyrrolo[2, 3-

d]pyrimidine nucleoside derivatives (Figure 12) as potential anti-HCV agents.  
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Figure 12: Pyrrolo[2, 3-d]pyrimidine nucleoside derivatives as HCV NS5B inhibitors 

Larger size of alkyl group at R2 has been found to improve activity along with increased 

cytotoxicity. Further modifications at C4 and C5 positions were also found to increase the activity 

but resulting compounds were relatively toxic. The carboxamide oximes and carboxamidine 

derivatives revealed good selectivity. These results will lead to further development of potent 

combination therapy with other type of inhibitors of HCV NS5B.  

2.1.2.2. Non-nucleoside inhibitors (NNI):  

Till date, five distinct inhibitor binding pockets have been identified, where NNI were found to 

bind. Allosteric binding pockets AP-1, AP-2 and AP-3 are present in thumb and palm site. 

AP-1 is situated on the surface of thumb domain adjacent to the allosteric GTP-binding site. 

Indole, benzimidazole, quinoxaline, coumestan and thieno[3,2-b]pyyrole derivatives were the 

identified as inhibitors for this site. Thiazolone, N, N-disubstituted phenylalanine, thiophene-2-

carboxylic acid, pyranoindole, dihydropyranone and thiazolidin-4 one derivatives were reported 

as inhibitors for the AP-2 site located in the thumb domain adjacent to AP-1. While, 

benzothiadiazine, benzylidene, proline sulfonamide, anthranilic acid, acrylic acid and pyrrolidine 

derivatives were inhibitors identified for AP-3 site located adjacent to the polymerase active site 

in palm site [14]. There were so many NNIs reported for HCV NS5B. Here we have discussed 

only the recent developments.  
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In 2005, Ding et al. reported few pteridine derivatives with IC50 of 15 μM and 1.6 μM for two 

compounds respectively as shown in Figure 13 and further also reported 5-cyano-6 aryl-2-

thiourail compound with IC50 of 27 μM concentration and later did SAR studies and developed 

few deriatives [73]. 

 

Figure 13: HCV NS5B inhibitors reported by Ding et al [73] 

In 2006, Yan et al. [74] modified the already reported thiazolone derivatives as shown in Figure 

14 and few of the newly synthesized compounds showed IC50 5 μM against HCV. 

 

Figure 14: Thiazolone derivatives as HCV NS5B inhibitors 

In 2007, Puerstiger et al. [75] reported 5-benzyl-2-phenyl-5H imidazolo[4,5-c]pyridines as potent 

lead with antiviral properties and further synthesized based on SAR that showed good EC50 (1.0 

μM) values. Sriram et al. [76] reported some aminopyrimidinimino isatin analogues with good 
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inhibitory activity against HCV (Figure 15), and the most active compound showed 100% 

inhibition and was non-toxic upto 50μg/mL. Parhenolide identified as inhibitor of HCV 

replication by Hwang et al. [77]. 
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Figure 15: Isatin analogues as HCV NS5B inhibitors 

In 2009, Hwu et al. [78] reported the synthesis and evalution of benzimidazole-coumarine 

derivatives with a methylenethio linker and the corresponding N-glucosides. The substituents –F, 

-Cl, and -Me on benzimidazole ring as in Figure 16 showed very little inhibition compared to –

Br, -H, and -OMe groups at the coumarine ring that showed very good inhibition. In the year 

2009, Kim et al. [79] reported few novel aryl diketoacid analogues, in which the p-chloro 

analogues were found to show more efficiency. Optimization of a pyrrolidine-based template was 

reported by Slater et al. [80] and the SAR findings concluded the importance of the bulkier  

 

Figure 16: Benzimidazole-coumarine derivatives as HCV NS5B inhibitors 
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4-tert-Butyl in the benzamide and 2-thiazole at C5 and a primary amide at C4 showed good 

polymerase activity. Lee et al. [81] reported that n-butanol-methanol extract obtained from Acacia 

confuse plant, showed inhibition of HCV replication. The EC50 value and CC50/EC50 selectivity 

index (SI) were found to be 5 ± 0.3 g/ml and >100 with, respectively. The extract also showed 

antiviral synergism in combination with IFN- and Telaprevir; VX-950 and 2’-C methylcytidine; 

and NM-107. The extracts were also found to significantly suppress COX-2 expression in HCV 

replicon cells.  

2.1.3. Molecular modelling studies done on HCV NS5B polymerase target 

Using computer aided drug design tool with high-throughput virtual screening of different 

libraries, some proline derivatives were reported by Gopalsamy et al. [184] and derivatized for 

SAR analysis. Another study on a series of indole-N-acetamide was reported as inhibitors of 

replication of subgenomic HCV RNA in HUH-7 cells in which the role of H-bonding with NS5B 

enzyme was indicated [82].  

In 2007, Yan et al. [83] reported few thiazolone-acylsulfonamides as potent allosteric inhibitors 

of HCV NS5B polymerase using structure based drug design tools and X-ray crystallographic 

tools. Melagraki et al. [84] performed a QSAR study on a set of 98 genotype 1 HCV polymerase 

inhibitors and developed a MLR QSAR model using lipophilicity, HOMO energy, Kier and Hall 

index order 2 (Ki2) and Kier and Hall information indices (KiInf0, KiInf3).  

In 2010, Talele et al. [85] reported 23 inhibitors with rhodanine scaffold with IC50 range from 7.7 

- 68.0 μM by screening ChemBridge database of 260,000 compounds against the tetracyclic 

indole inhibitor binding allosteric pocket (AP-1) of NS5B to identify novel inhibitors through a 

combined use of virtual screening, SAR analysis, synthesis and biological evaluation. In 2010, a 

detailed QSAR study was done by Patil et al. [86] on pyrrolo[2,3,-d]pyrimidine nucleoside 
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derivatives. QSAR study was done by Varaprasad et al. [72] in 2007 on benzimidazole-coumarin 

conjugates and also by Hwu et al. [78].  

In 2010, using kNN-MFA approach, 3D QSAR model was reported on benzimidazole [87] and 

thiouracil [88] derivatives by Gupta et al. They validated the model with q
2
 and predictive r

2
 

values. Combined molecular docking studies and 3D QSAR (COMFA and CoMSIA) studies on 

benzimidazole derivatives by Patel et al. [89] explained the inhibitory activity based on the 

CoMFA steric and electrostatic contour maps. Few naphthyridine compounds which were 

identified through molecular modelling studies of benzimidazoles are given in Figure 17.  

                               

 
 

Figure 17: Leads identified through molecular modeling studies as HCV NS5B inhibitors 
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The site specific HCV inhibitors and their mode of activity are presented in Table 4. There were 

many inhibitors reported till date, but very few have entered into clinical trials. HCV polymerase 

inhibitors that reached clinical trials of certain phases are shown in Table 5. 

Table 4: The site specific important HCV inhibitors and their mode of action [20] 

 

Table 5: The HCV polymerase inhibitors that reached the clinical trials of certain phases 

 

 

 

 

 

 

Polymerase Inhibitors Company Current 

clinical phase 

RG-7128 Mericitabine Roche II 

GS-7977 Sofosbuvir  Gilead III 

NNI-Site 1 BI207127 Bohringer Ingelheim III 

NNI-Site 1 BMS 791325 BMS  II 

NNI-Site 2 Filibuvir  Pfizer II 

NNI-Site 2 VX-222 Vertex II 

NNI-Site 3 Setrobuvir  Anadys I 

NNI-Site 3 ABT 333 Abbott III 

NNI-Site 3 ABT-072 Abbott II 

NNI-Site 4 Gilead II 
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Musmuca et al. [90] reported a detailed study on the combined alignment of on 3D QSAR (ligand 

based) and structure based procedures and used this alignment to identify potent leads for HCV 

NS5B polymerase. 

Wang et al. [91] reported few benzothiadiazine derivatives with the help of 3D QSAR, docking 

studies and molecular dynamics. Also, Zhang et al. [92] reported the requirments needed for the 

benzothiadiazine derivatives as inhibitors of HCV NS5B polymerase using computational tools 

like 3D QSAR, docking and dynamics studies. 

Recently Yu et al. [93] reported in 2013 few 5-hydroxy-2H-pyridazine-3-one derivatives as HCV 

NS5B polymerase inhibitor by employing drug design tools like 3D QSAR, molecular docking, 

molecular dynamic simulation and binding free energy calculation studies. 

Hucke et al. [94] reported a potent lead with picomolar cellular potency by using molecular 

dynamic study and structure based drug design tools in 2013. 

Early 2014, Jin et al. [95] reported few indole derivatives by using virtual screening techniques 

for their in-house library with 6000 compounds and using the identified hits they found the 

presence of indole moiety in most of the hits. Furthur synthesis of few indole derivatives and 

HCV NS5B replication studies yielded a potent lead with IC50 of 292 nM. 

Hence, HCV NS5B is an important target for antiviral therapies, which has both nucleoside and 

non-nucleoside polymerase inhibitors. R7128 is a prodrug of cytidine analog, PSI-6130, which 

shows positive, results in phase I clinical trials and shows promising reports in phase II. HCV 

NS5B nucleoside inhibitor R1626, showed hematological and ocular toxic effects during its 

clinical trials has been halted. GS9190, filibuvir, VCH-222 are non-nucleoside inhibitors shown 

potent antiviral activity in clinical trials. 
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2.2. Human immunodeficiency virus (HIV) protease 

2.2.1. Structure of  HIV protease  

HIV protease plays an important role in the life cycle of the virus by processing the viral gag and 

gag-pol polyproteins into smaller structural and functional proteins which are crucial for the viral 

maturation. Inhibition of HIV protease leads to the generation of non-infectious virus particles 

and acts as a promising drug target for antiviral drug design. HIV protease inhibitors are the most 

potent anti-AIDS drugs reported to date and are crucial components of most active antiretroviral 

therapy (HAART) [96]. Due to HIV mutants that are resistant to current drug regimens it leads to 

the clinical failure of antiviral therapy. Currently FDA approved protease inhibitors must face the 

challenge of the emergence multi-drug-resistant (MDR) protease variants to prove their efficacy. 

There is a need of next generation protease inhibitors which should overcome this MDR virus, 

with improved pharmacological properties and good activity profile. The crystal structure of HIV 

protease was first reported by Navia and colleagues from Merck Laboratories in 1989
 
[97]. 

Various crystal structures of HIV protease revealed a vast difference in the binding mode of the 

substrate and different inhibitors. Substrate form mostly conserved H-bond with backbone not 

with side chains. Inhibitors which show this type of conserved H-bond with the backbone would 

show more effectiveness. Eg: Amprenavir and Darunavir. They form H-bond with backbone 

Asp29 and Asp30 residues. The crystal structure of protease is well characterized in terms of its 

function, substrate specificity and its inhibitor binding nature. It is a homodimer of two identical 

polyprotein chains with only one active site. The interface of the dimer consisted of four stranded 

beta sheet with beta strands of both amino and carboxyl terminals. The outer part of the dimer 

interface is formed by amino terminal beta strand ‘a’ (residues 1-4). It continues through a loop to 

strand ‘b’ (residues 9-15). The strand ‘c’ follows strand ‘b’ ends in the active site trid (three 
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residues 25-27). The beta strand‘d’ follows the active site loop (residues 30-35) followed by a 

broad loop (residues 36-42). The second half monomer topology resembles that of the first half 

topology by pseudo-dyad and is represented in the diagram Figure 18.  

 

Figure 18: The active site pocket of HIV protease [98] 

The residues 43-49 form a beta strand a’which forms a part of flap with residues 52-58 to form 

the other part of flap and part of strand b’ (residues 52-66). Strand c’ with residues 68-78 

continues through a loop (residues 79-82) to chain d’ (residues 83-85) which follows a small helix 

h’ (residue 86-94). A carboxyl terminus beta strand q’ (residues 95-99) is followed by helix h’ 

which form the inner core of the dimer interface of the four stranded beta sheet and  gives psi 

shaped sheet which is a characteristic feature of aspartic proteases [98].  
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The important role of HIV protease is to cleave the polyprotein chain into structural proteins like 

p17, p24, p7, p6, p2, p1 and functional proteins like protease p11, reverse transcriptase p66/p51, 

and integrase p32. Later maturation will occur followed by the infection of virions. Number of 

low molecular weight inhibitors of HIV-1 protease (MW < 1000 Da) are now available including 

saquinavir, ritonavir, indinavir, nelfinavir and amprenavir. These are among the first successful 

examples of receptor/structure based designer drugs and were developed using structures of 

compounds bound in the active site of HIV-1 protease. 

The active site of HIV protease is situated at the dimer interface. The beta ribbons which form the 

roof of the active site contain many glycine moieties and are conformationally highly flexible. 

Compared to free HIV protease crystal structures with Inhibitor bound structures have 7-15 Å 

movement of flap tips around the residues 50/50’. The specificity of the enzyme is confirmed by 

the hydrogen bond interaction of the substrate in its extended conformation with the respective 

amino acid residues [99]. 

The residues which line up the S1/S1’ sub-sites include Arg8, Leu23, Asp25, Gly27, Gly48, 

Gly49, Ile50, Thr80, Pro81 and Val82. The S2/S2’ sub-sites are mostly hydrophobic (Ala28/28’, 

Leu23/23’, Ile47/47’, Gly49/49’, Ile50/50’, Leu76/76’ and Ile84/84’) except Asp29, Asp29’, 

Asp30 and Asp30’ [100]. 

2.2.2. FDA approved protease inhibitors 

US FDA approved, at present 25 compounds for clinical trial for the treatment of AIDS which 

includes 10 protease inhibitors. The 10 FDA-approved protease inhibitors: saquinavir (1), 

ritonavir (2), darunavir (3), indinavir  (4), tipranavir (5), fosamprenavir (6), nelfinavir (7), 

atazanavir (8), lopinavir/ritronavir (9), and amprenavir (10) (Figure 19 & Table 6). There are 

three generations of PIs which aimed to improve the efficacy of drug, to increase the patients 
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survival, their quality of live, immunological response and decrease the rate of infection. Except 

tipranavir (has coumarine scaffold) all PIs have hydroxyl ethylene scaffold which mimics the 

normal peptide linkage [101].  

 

 

Figure 19: FDA approved HIV protease Inhibitors 
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Table 6: FDA approved protease inhibitors (PIs) for HAART therapy 

 

First generation PIs: Saquinavir (Invirase and Fortovase) was the first FDA introduced PIs in the 

year 1996 and followed by ritonavir (Norvir), indinavir (Crixivan) and in 1997 the nelfinavir 

(Crixivan). In 1999, amprenavir (Agenerase and Prozei) was introduced. These were the first 

generation PIs and were the widely available drugs till the end of 1990s [102].  

Saquinavir has low bioavailability and gets metabolised through cytochrome P450. It inhibits both 

HIV-1 and HIV-2. It is well tolerable drug with mild gastrointestinal symptoms [103]. Ritonavir 

has very high oral absorption and is not affected by food and also metabolized by CYP3D6 [104]. 

Indinavir has a major drawback in drug accumulation and has no inductive effect on hepatic CYP 

enzymes which affects its own metabolism and also evident of nephrolithiasis and gastrointestinal 

complaints. Though it has good antiretroviral activity, due to its unfavorable pharmacological 

Brand 

Name 

Generic Name Manufacturer Name Approval 

Date 

Time to 

Approval 

Agenerase  amprenavir, APV (no longer 

marketed) 

GlaxoSmithKline 15-Apr-99 6 months 

Aptivus tipranavir, TPV Boehringer Ingelheim 22-Jun-05 6 months 

Crixivan indinavir, IDV, Merck 13-Mar-96 1.4 months 

Fortovase  saquinavir (no longer marketed) Hoffmann-La Roche 7-Nov-97 5.9 months 

Invirase  saquinavir mesylate, SQV Hoffmann-La Roche 6-Dec-95 3.2 months 

Kaletra lopinavir and ritonavir, LPV/RTV Abbott Laboratories 15-Sep-00 3.5 months 

Lexiva  Fosamprenavir Calcium, FOS-APV GlaxoSmithKline 20-Oct-03 10 months 

Norvir  ritonavir, RTV Abbott Laboratories 1-Mar-96 2.3 months 

Prezista Darunavir Tibotec, Inc. 23-Jun-06 6 months 

Reyataz  atazanavir sulfate, ATV Bristol-Myers Squibb 20-Jun-03 6 months 

Viracept  nelfinavir mesylate, NFV Agouron 

Pharmaceuticals 

14-Mar-97 2.6 months 

http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Agenerase&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Aptivus&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Crixivan&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Fortovase&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Invirase&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Kaletra&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Lexiva&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Norvir&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Prezista&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Reyataz&SearchType=BasicSearch
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.SearchAction&SearchTerm=Viracept&SearchType=BasicSearch
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reports prevented its use for chronic treatment. This was overcome by the co-administration of 

low-dose ritonavir which improved its pharmacokinetic parametres [105]. 

Nelfinavir is a less effective inhibitor compared to other PIs and resistance to a unique mutation 

of the gene. The adverse event in patients using nelfinavir based combination is diarrhea, rashes, 

nausea, head-ache and asthenia. Its prolonged viral suppression, good tolerability and a unique 

resistance report made it as a well known drug for the treatment of adults, pregnant women, 

paediatric patients with HIV infection and patients those who are unable to tolerate other PIs
 
[106, 

107]. 

Amprenavir is a sulfonamide based drug with low toxicity [108]. Due to low bioavailabilty, high 

pill burdens of first generation PIs led to less adherence and limited long-term viral inhibition 

[109]. The second generations PIs were introduced in early 2000, due to resistance to previously 

reported drugs. These includes Lopinavir (Aluviran and Koletra) in 2000 and in 2003, 

fosamprenavir (Lexiva and Telzir). Due to increase in number of potent antiretroviral agents, that 

resulted in complete suppression of viral replication, in 2005, FDA approved third generation PIs 

tipranavir (Aptivus) and in 2008 darunavir (Prezista) which showed high potency and effective 

barrier for resistance than all other reported PIs [110].  

2.2.3. Recent molecular modelling studies on HIV protease as target 

Boutton et al. [111] in 2005 did a genotype dependent QSAR study for HIV protease inhibitors. 

In this study he used computational structure based approach to predict the resistance of HIV 

strains to amprenavir drug by calculating the interaction energy of the drug and HIV protease. 

Surleraux et al. [112] in 2005 reported few fused heteroaromatic sulfonamides and new classes of 

compounds as presented in Figure 20 for P2’ region with improved activity (pEC50 7.5-8) and 

good pharmacokinetic properties by employing the molecular modeling tools.  

9 10 
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 Figure 20: Derivatives of benzoxazole and benzothiazole as HIV protease inhibitors 

 

Ghosh et al. [113] specifically designed few compounds using structure based drug design tools 

to interact with backbone of HIV protease to combat resistance and found that one compound 

showed an IC50 1.8 nM (Figure 21). 

S
O

O

N

O
NH

O

O OH

OH

H

H

H

 
                                        
                                              

Figure 21: 5-Hexahydrocyclopenta[b]furanyl urethane as HIV protease inhibitors 

 

In 2006 Ali et al. [114] designed few phenyloxazolidinone derivatives (Figure 22) by 

incorporating N-phenyloxazolidinone-5-carboxamide into (hydroxyethylamino)sulfonamide 

scaffold using structure based drug design tools and the most potent compound showed Ki of 108 

pM against wild type HIV and against MDR variants it showed picomolar to nanomolar Ki. 
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Figure 22: Phenyloxazolidinone derivatives as HIV protease inhibitors 

 

Ragno et al. [115] reported few indolyl aryl sulfones derivatives using molecular modelling and 

3D QSAR studies as shown in Figure 23. Two compounds showed very good activity with X- 

Me2 and Y-i-Pr against HIV. 
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Figure 23: Indolyl aryl sulfones derivatives as HIV protease inhibitors 

Further Volarath et al. [116] in 2007 discussed about the various structure based drug design tools 

which included from molecular modeling to cheminformatics. Ghosh et al. [117] in 2009 reported 

few non-peptidic macrocyclic HIV protease inhibitors and found that cyclic inhibitors were more 

potent than their acyclic and unsaturated analogs than saturated. The compounds (Figure 24) 

showed good enzyme inhibitory, antiviral and potent activity against MDR HIV-1 variants. 
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Figure 24: Non-peptidic macrocyclic derivatives as HIV protease inhibitors 

Ali et al. [118] reported few substituted phenyloxazolidinones (Figure 25) by incorporating 

phenyloxazolidinones into hydroxyethylamine core based on SAR studies. 
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Figure 25: Substituted phenyloxazolidinones as HIV protease inhibitors 

In 2011 on the basis of pharmacophore modeling of known PIs, conformationally restricted 

sulfonamides (Figure 26) were designed and synthesized by Ganguly et al [119]. 

S
N

F

O

O

N
H

O

O
OH

 

Figure 26: Sulfonamides derivatives as HIV protease inhibitors 
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In 2012 Yadav et al. [120] found few hit molecules from Maybridge library using combined 

structure based and ligand based virtual screening methods. They developed a pharmacophore 

model based on structure based tool and compared that pharmacophore with the ligand based 

pharmacophore and screened the Maybridge database. The final four hit molecules obtained are 

shown in Figure 27. 

 

Figure 27: Four Maybridge hit compounds as HIV protease inhibitors 

Joshi et al. in 2013 [121] reported three 14 and 15-member macrocyclic inhibitors (Figure 28) by 

using drug design tools and also evaluated ten novel linear PIs. They found that the macrocyclic 

systems showed higher activity than the linear ones having Ki=3.1 nM and EC50= 0.37 μM. 
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Figure 28: Macrocyclic compounds as HIV protease inhibitors 
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Recently in 2014 Tiefenbrunn et al. [122] performed a crystallographic fragment-based drug 

discovery to understand the surface sites in soaking experiments. They used 68 brominated 

fragments and identified two new compounds that bound to two known surface sites of HIV 

protease. 

Furthur, 2014 Pang X et al. [123] reported some advances of non-peptidometric inhibitors for 

HIV protease. In this article they broadly discussed about the advantages of the molecules like 

low molecular weight, good bioavailabilty, high stability through in vivo, low resistance and their 

low cost of production. 

Antunes et al. [124] in 2014 used in silico methods like molecular docking and molecular 

dynamic simulation studies to evaluate the unusual mutations which caused the major drug 

resistance to nelfinavir drug.  And Yedidi et al. [125] showed that a compound (Figure 29) with 

para-fluoro phenyl group had shown very good binding effect and enhanced activity against MDR 

HIV protease using structural based virtual screening of extended lopinavir analogs.                                                                
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Figure 29: p-Fluoro phenyl substituted lopinavir as HIV protease inhibitors 
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2.3.  MTB N-Acetylglucosamine 1-phosphate uridyltransferase (GlmU) 

2.3.1. Structure of GlmU 

GlmU (N-Acetylglucosamine-1-phosphate uridyltransferase), a bifunctional enzyme, produces 

UDP-GlcNAc, an essential precursor for the biosynthesis of peptidoglycan and 

lipopolysaccharide  
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Figure 30: Biosynthetic pathway of bifunctional enzyme GlmU 

Shock mutagenesis experiments revealed MTB GlmU to be an essential gene. In line with this, 

recent work demonstrated the inability of M. smegmatis to grow in the absence of GlmU. GlmU 

carries out two important biochemical activities: a C-terminal domain catalyses the transfer of 

acetyl group from acetyl coenzyme A (acetyl-CoA) to glucosamine-1-phosphate (GlcN-1-P) to 

produce N-acetylglucosamine- 1-phosphate (GlcNAc-1-P), which is converted to UDP-N-

acetylglucosamine (UDP-GlcNAc) by the transfer of UMP (from UTP), a reaction catalyzed by 

the N-terminal domain [126] (Figure 30). Though the second step is present in prokaryotes as 
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well as in humans, the first step is present only in prokaryotes. The absence of the first step in 

human makes it suitable for designing non-toxic inhibitors. 

GlmU from MTB displays two-domain architecture – an N-terminal domain (residues 6 – 241) 

with α/β like fold and a C-terminal domain (residues 264 to 473) that forms a left-handed parallel-

β-helix structure (LβH) (Figure 31). A long extended C-terminal tail (residues 450-495) with 

little secondary structure accounts for the remaining C-terminal region [127]. 

The two domains are connected by a 33Å long α-helix (residues 241 to 263) that forms a hinge. 

The N and C-terminal domains are responsible for uridyltransferase and acetyltransferase 

activities, respectively. The formation of the C-terminal active site requires a trimeric 

arrangement [128]. The C terminal tail residues contributes to the acetyltransferase active site by 

making several stabilizing contacts such that its extreme end contributes to the active site formed 

by the other two monomers. In the case of MTB GlmU too, the tail adopts a similar conformation. 

However, a major difference is a 30 amino acid extension of the tail. Structural and biochemical 

analyses showed the significance of a variable C-terminal tail in regulating acetyltransferase 

activity (Figure 31).  
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Figure 31: Structure of GlmU (N-Acetylglucosamine-1-phosphate uridyltransferase) [129] 

 

GlmU is a substrate for eukaryotic like serine/threonine kinase PknB. Kinase assays with PknB 

using the N and C-terminal domains of GlmU as substrates illustrated that PknB phosphorylates 

GlmU in the C-terminal domain. Interestingly, it was demonstrated that PknB mediated 

phosphorylation of GlmU does not affect its uridyltransferase activity, but significantly modulates 

the acetyltransferase activity. 

2.3.2. Recent research on GlmU inhibitors  

Recent studies on the mycobacterial proteome using in silico analysis suggested GlmU to be a 

potential drug target. To date, however, no inhibitors have been reported for the MTB enzyme.  

In the year 1993 Mengin-Lecreulx D. and van Heijenoort J. identified the gene GluM which 

encodes N-acetylglucosamine-1-phosphate uridyl-transferase in E coli. and in 1994, they 

identified the bifunctions of GlmU [130]. 

Brown et al. [126] in 1999 first reported the crystal structures of GlmU. Based on the catalytic 

activity of GlmU, the bio-synthetic pathway of UDP-GlcNAc in prokaryotes and eukaryotes were 
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different. This was reported by Milewski et al. [131] in 2006. The main functions of GlmU were 

reported by Zhang et al. [129] in 2009 they reported the important residues in the binding site 

pocket. 

Further in 2009, Pereira et al. [132] reported 63 identified hits using virtual screening technique, 

among which 37 were acetyltransferase active specified hits but they didn’t reveal the structures 

of the hits. In 2011, Li et al. [133] designed and synthesized few cell wall inhibitors for both 

GlmM and GlmU shown in Figure 32. Only compound c showed inhibitory activity against 

GlmU and other three were inactive in both the cases. 
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Figure 32: Cell wall inhibitors for both GlmM and GlmU 

       

In 2011, Buurman et al. [134] designed some GlmU inhibitors for Haemophilus influenza and the 

sulfonamide derivatives showed some antimicrobial properties and they reported in the same year 

the in vitro studies of acetyltransferase activity of GlmU on H influenza. They proved the 

antibacterial activity of GlmU inhibitors. In this study GlmU acetyltransferase domain was found 

to act as molecular target. X-ray co-crystal structure and this study revealed the binding mode 

affinity of the inhibitors and their lack of potency against Gram-positive GlmU isozymes. This 

was the first report made on the growth inhibitory effects of antimicrobial compounds particularly 

through GlmU. 

Zhou et al. [135] reported kinetic studies done on GlmU. Two colorimetric assays for the 

bifunctional GlmU enzyme activities were performed and its kinetic properties resulted for further 

studies like high-throughput screening of its inhibitors. 
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In 2011, using QSAR and docking studies Singla et al. [136] reported few hit compounds for 

GlmU.  For this study they employed Pubchem Bioassay (AID 1376) results of 84 diverse 

compounds and performed docking studies using AutoDock software tool. 

In 2013, Jagtap et al. [137] reported the crystal structures of MTB GlmU bound with 

substrate/products at the acetyl transferase active site and also found the uniqueness of GlmU 

from MTB possessing a 20 residue extension at the C terminus. 

In 2013 Tran et al. [138] reported few inhibitors for MTB GlmU; which was the first inhibition 

study against MTB GlmU. To design the inhibitors they employed the substrate and putative 

transition state of uridyl transferase reaction as the beginning point. Two transition state mimics 

were designed but they showed very weak inhibition against the enzyme (10% and 60% inhibition 

in vitro at 2 mM (Figure 33). In this compound 5and 6 were already reported by Larsen et al. 

[139] from Astra Zeneca for H. influenza. These compounds were tested for MTB GlmU 

uridyltransferase activity and they showed promising activity i.e. compound 5 showed 44% and 

compound 6 showed 36% inhibition at 50 μM concentration.  
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Figure 33: First generation MTB uridyltransferase inhibitors 

 

These two compounds 4 & 5 were used for SAR studies and based on these two compounds, few 

compounds were designed and synthesized as shown in Figure 34.  The most potent compound 

showed the IC50 of 74 μM against GlmU uridyltransferase activity and this is the first reported 

inhibitor for MTB GlmU uridyltransferase activity. 
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CHAPTER 3 

OBJECTIVES AND WORK PLAN 

From thorough literature survey it was very clear that there is a crucial need for new medication 

or new regimen for microbial targets like TB, HCV and HIV. Against these three targets, drugs 

available now are unable to sustain the growing inherent and emerging challenges of treatment. 

Due to the development of genome biology and medicinal chemistry, there are few identification 

of new targets and pathways for drug discovery. 

Current HCV therapy faces important problems that are inadequate for sustained viral response, 

increasing effect of drug resistance and also lot of side effect which led to discontinuation of 

therapy. There are large numbers of available peptidic inhibitors with lack of non-peptidic 

especially small molecule inhibitors which are easy to synthesize and also may have fewer side 

effects. Current HIV therapy suffers from the rapid viral mutation and resistance to available 

drugs. This MDR-HIV is the recent challenge for HAART therapy. Among all type of inhibitors, 

HIV protease inhibitors play very potent action in inhibiting the HIV virus. Non-peptidic and 

small molecules show promising effect on virus which led to the development of new small 

molecule inhibitors for HIV protease. Current TB therapy also suffers from two main constrains 

like MDR-TB and TDR-TB. The causative organism can be killed by effective means of 

targetting and inhibiting the vital MTB enzymes. There are many new targets available with very 

few leads or no lead. A bi-functional enzyme MTB GlmU (N-Acetylglucosamine-1-phosphate 

uridyltransferase) is a new drug target for tuberculosis as evident from extensive literature survey. 

An effective study involved in these targets could result in introduction of new type of drugs in 

the market which can overcome the problem of resistance, side effects and course of treatment. So 



63 
 

to identify new inhibitors there are two strategies structure based and ligand (3D QSAR) based 

drug design methods that were followed to screen the commercial and in-house databases to 

identify the potent leads. 

Objectives 

 HCV NS5B polymerase & HIV protease inhibitors 

 To develop multiple e-pharmacophores by employing different available crystal 

structures which are downloaded from PDB. 

 Constructions of ligand based pharmacophores using available already reported HCV 

polymerase & HIV protease inhibitors. 

 Validation of both e-pharmacophores and ligand based pharmacophores using enrichment 

calculations. 

 Development of 3D QSAR model and its external validation. 

 Combined virtual screening of databases using the selected pharmacophores and 

employing different stages of docking studies to identify the potent leads.  

 Anti-HCV & anti-HIV activity studies. 

MTB GlmU inhibitors 

 Generation of ligand based pharmacophore using compounds from PubChem assay result. 

 Validation of the pharmacophores. 

 3D QSAR model development and its validation. 

 SAR studies and design of new leads based on the best active compound. 

 Enzymatic and biochemical analysis of the synthesized compounds in MTB GlmU. 
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CHAPTER 4 

MATERIALS & METHODS  

 

4.1. Computational details 

All computations were carried out on an Intel Core 2 Duo E7400 2.80 GHz capacity processor 

with a memory of 2GB RAM running with the RHEL 5.2 operating system. GLIDE 5.8 module 

of Schrödinger suite [140, 141] used to screen the public database like Asinex and in-house 

database. PHASE 3.4 [146-148] implemented in the Maestro 9.2 software package (Schrödinger, 

LLC) was used to generate pharmacophore and 3D QSAR models. Canvas 1.5 chemoinformatics 

package [151] of Schrödinger suite was employed to cluster the molecules. 

4.2. Structure (e-pharmacophore) based approach  

4.2.1.  Preparation of protein  

For protein targets whose crystal structures were available with their crystal ligands from PDB 

with good resolution were employed for the studies. Protein preparation wizard in Maestro which 

is part of the Maestro software package (Maestro, 9.3, Schrodinger, LLC, NY) was used to 

prepare the proteins [140, 141]. If the protein structure is a multimer with duplicate binding sites, 

the redundant site was removed by picking molecules or chains. If the binding interaction 

required both identical units to form active site pocket none were removed. Water molecules were 

removed. A brief relaxation was performed using an all-atom constrained minimization carried 

out with the Impact Refinement module (Impref) [142] using the OPLS-2005 force field to 

alleviate steric clashes that may exist in the original PDB structures. The minimization was 

terminated when the energy converged or the rmsd reached a maximum cutoff of 0.30 Å. 
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4.2.2. Energy-optimized structure based pharmacophores: Hypothesis generation  

Receptor grid generation tool in Maestro software package was used to generate energy grids for 

all prepared protein structures. We docked the crystal ligands using the XP (extra precision) 

docking in Glide 5.8. [143-145]. Default settings were employed to minimize and optimize the 

structure. Based on the XP descriptor information pharmacophore features were generated using 

PHASE 3.4. PHASE [146-148] provided a built-in set of six pharmacophore  features, hydrogen 

bond acceptor (A), hydrogen bond donor (D), hydrophobic group (H), negatively ionizable (N), 

positively ionizable (P), and aromatic ring (R). Hydrogen bond acceptor sites were represented as 

vectors along the hydrogen bond axis in accordance with the hybridization of the acceptor atom. 

Hydrogen bond donors were represented as projected points, located at the corresponding 

hydrogen bond acceptor positions in the binding site. Projected points allow the possibility for 

structurally dissimilar active compounds to form hydrogen bonds to the same location, regardless 

of their point of origin and directionality. Each pharmacophore feature site is first assigned an 

energetic value equal to the sum of the Glide XP contributions of the atoms comprising the site 

[149], allowing sites to be quantified and ranked on the basis of the energetic terms. Glide XP 

descriptors included terms for hydrophobic enclosure, hydrophobically packed correlated 

hydrogen bonds, electrostatic rewards, π-π stacking, π-cation, and other interactions. ChemScore, 

hydrogen bonding and lipophilic atom pair interaction terms were included when the Glide XP 

terms for hydrogen binding and hydrophobic enclosure were zero. 

4.2.3.  Pharmacophore validation 

To prove the specificity and selectivity of a pharmacophore hypothesis we validated the best 

hypotheses with enrichment factor calculation. Ligand decoy sets were available for download 

(http://www.Schrödinger.com/glide_decoy_set). We generated a decoy database by using 

http://www.schrodinger.com/glide_decoy_set
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Generate Phase Database sub application window from PHASE application. Decoy set consists of 

1000 decoys and few known active molecules of interested target inhibitors. Decoy set was used 

to check how well the hypothesis was able to discriminate the active inhibitor compounds from 

other molecules [144], based on parameters such as total number of compounds in the hit list (Ht), 

number of active percent of yields (%Y), percent ratio of actives in the hit list (%A), Enrichment 

factor (EF) and goodness of fit (GH) were calculated using the pharmacophore mapping protocol. 

Equations (1) and (2) were used to calculate the EF and GH.  

     EF =
(Ha×D)

(Ht×A)
                                                                                    ------------------------------- (1)                                                                                                                                

     GH = ((
Ha

4HtA
) × (3A + Ht)) × (1 − (

Ht−Ha

D−A
))                            ------------------------------- (2)                                                                                 

Where in ‘Ht’ represented total number of compounds in the hit list, ‘Ha’ was the total number of 

actives molecules in the hit list, ‘A’ was the total number of actives in the decoy set and ‘D’ was 

the total number of molecules in the decoy set. In addition to EF, parameters like RIE, ROC and 

BEDROC were in-built in the software and were also generated for reascertaining the 

pharmacophore validation as reported earlier [183]. 

4.3. 3D QSAR ( Ligand ) based approach 

4.3.1.  Generation of datasets  

We chose few already reported inhibitors from the literature with known IC50 values for each of 

our targets. These inhibitors showed a wide range of activity (few nM–μM) and structural 

diversity. The LigPrep 2.5 [150] application from Schrödinger software package was utilized to 

build and energetically minimize structures and to add hydrogens and generate stereoisomers at 

neutral pH 7 using ionizer subprogram. Canvas 1.5 chemoinformatics package [151] was 

employed to cluster molecules based on tanimoto similarities between a set of linear fingerprint 
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descriptors to determine the structural diversity among the compounds. Finally a set of 

compounds were selected from clusters as representative molecules. Clustered molecules with 

structural diversity were utilized for 3D QSAR development. Set of already reported inhibitors 

were used as actives to validate the pharmacophores which were also prepared using LigPrep 2.5.  

The IC50 values were converted to pIC50 to get the linear relationship in the QSAR equation, using 

the following formula: 

pIC50 = -log IC50                                                                           ---------------------------------- (3)                                                      

where IC50 was the concentration of the compound producing 50% inhibition of that particular 

enzyme. The dataset consisted of some highly active and inactive molecules with few molecules 

as moderately active.  

4.3.2. Molecular alignment and development of pharmacophore model for 3D QSAR approach 

To develop 3D QSAR model, pharmacophore models and statistical analyses were performed 

using PHASE. Conformers were generated using a Macromodel torsion angle search approach 

followed by minimization of each generated structure using OPLS-2005 as force field with 

implicit distance dependent dielectric solvent model. A maximum of 1000 conformers were 

generated per structure using MacroModel search method (ConfGen) [152] in the preprocess 

minimization of 100 steps, including post process minimization of 50 steps. Each generated 

conformers were further filtered using a relative energy scale of 10.0 kCal/mol and a RMSD of 1 

Å. After conformers generation step there was an essential step of creating pharmacophore sites 

on each ligand structure responsible to facilitate non-covalent binding interaction between the 

ligand and the receptor. The threshold range of the active and inactive pIC50 was selected. 

Structural alignment is one of the most important parameter in 3D QSAR analyses. The accuracy 

of the prediction of 3D QSAR models and the reliability of the contour models depend strongly 
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on the structural alignment. In the development of 3D QSAR approach, pharmacophore models 

and statistical analyses were performed using PHASE [146-148]. After conformers generation 

step there was an essential step of creating pharmacophore sites on each ligand structure 

responsible to facilitate non-covalent binding interaction between the ligand and the receptor. 

Next, ‘find common pharmacophore’ step generated identical sets of features with similar spatial 

arrangements which group to form a common pharmacophore hypothesis with requirement that 

all active must match. Pharmacophore features were created using the clean minimized structure. 

Last step in pharmacophore generation was ‘scoring hypothesis’ in which hypotheses were ranked 

to make rational choices among the hypotheses and the most appropriate one for further 

exploration. Common pharmacophores were examined by a scoring protocol to identify the 

pharmacophore from each surviving n-dimensional box that yielded the best alignment of the 

active set ligands. The inactive molecules were scored to observe the alignment of these 

molecules with respect to the pharmacophore hypothesis to enable selection of the hypothesis. 

Larger the difference between the scores of active and inactives better was the hypothesis in 

distinguishing the actives from inactives. The final selected ligands were aligned with the best 

pharmacophore template of compound with high active score. These EF and GH based validated 

pharmacophores were further validated by building a 3D QSAR model and by external statistical 

validation. 

4.3.3. 3D QSAR modeling 

PHASE QSAR models may be either atom-based or pharmacophore-based, the difference being 

whether all atoms were taken into account, or merely the pharmacophore sites that can be 

matched to the hypothesis. We used the selected promising compounds to develop our 3D QSAR 

model. We divided randomly few compounds for training set and for test set by using the method 
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“Automated Random Selection” option present in the PHASE module. PHASE provided the 

means to build QSAR models using the activities of the ligands that match a given hypothesis. 

PHASE QSAR models were based on PLS regression, applied to a large set of binary valued 

variables which were individually derived from a regular grid of cubic volume elements, with 

each cubic element is represented by a set of bit values (0 or 1) to account for the different type of 

pharmacophore features in the training set [153]. The independent variables in the QSAR model 

were derived from a regular grid of cubic volume elements that span the space occupied by the 

training set ligands. The ligand set used were diverse structures and hence pharmacophore-based 

QSAR models were generated for the best pharmacophore hypothesis using the selected 

molecules of  training set and a grid spacing of 1 Ǻ. QSAR models containing few PLS factors 

were generated. A model with a PLS factor showing high R
2
 and Q

2 
(> 0.5), less standard 

deviation value (< 0.3), less RMSE value and high F-value
 
was considered as the best statistical 

model. This model was validated by predicting activities of test set molecules [154]. 

4.3.4. PLS analysis and external statistical validation of QSAR models: 

All 3D QSAR models were generated by using significant statistical method of partial least 

square analysis. The cross validation analysis was performed using the leave one out (LOO) 

method which evaluated the predictive ability of QSAR model [155]. The cross validated 

coefficient, rcv
2  (also called as LOO-q

2
) was calculated using the following equation: 

Formula: 

rcv
2 = 1 −

∑(Yobs− Ypred)
2

∑(Yobs − Ymean)2
                                                                       ---------------------------- (4)                                                                                           

Where Ypred, Yobs and Ymean were the predicted, observed and mean values of the target 

property (pIC50) respectively. (Yobs-Ymean )² was the predictive residual sum of squares (PRESS). 

The predictive correlation coefficient (r²pred), based on molecules of test set and was defined by, 
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𝑟²𝑝𝑟𝑒𝑑 =
𝑆𝐷−𝑃𝑅𝐸𝑆𝑆

𝑆𝐷
                                                  ------------------------------(5)                                                                                         

Where SD was the sum of the squared deviations between the biological activities of the test set 

and mean activities of the training set molecules. PRESS represented the sum of squared 

deviation between predicted and actual activity values for every molecule in the test set. 

Based on the reported external validation methods of 3D QSAR, we evaluated the true predictive 

abilities of the generated models of target of interest inhibitors. To validate the true predictivity of 

the established models, it was crucial to perform external validation. According to literature 

[155], 3D QSAR models were accepted if they satisfied all of these following conditions: 

rcv
2 > 0.5, 𝑟² > 0.6, R0

2  or R0
′2  close to r², i. e[[(r2 − R0

2)/ r2] ] < 0.1, or [(r2 − R0
′2)/ r2]  <

 0.1,   0.85 ≤ 𝑘 ≤ 1.15, 𝑎𝑛𝑑  𝑟²𝑚 > 0.5                                                                                                                                         

The 𝑟² value was calculated using the following formula: 

R =
∑(Yi−Y̅o)(Ỹi−Y̅p)

√∑(Yi−Y̅o)
2 ∑(Ỹi−Y̅p)

2
                                                             ------------------------------------- (6)                                                                                               

In these above equation, yᵢ and ỹᵢ were the observed and predicted activity, Y̅oand Y̅p were the 

average values of the observed and predicted pIC50 values of the test set molecules. 

If we plot y (observed activity) versus ȳ (predicted activity) for the ideal QSAR model, the 

regression line will bisect the angle formed by positive directions of the orthogonal axes ȳᵢ and yᵢ. 

The regression line is expressed by yʳ=aȳ+b,  

Where 

𝑎 =
∑(𝑦ᵢ−�̄�)(ỹᵢ−ỹ ̄)

∑(ỹᵢ−ỹ ̄)²
                                                                            ------------------------------------ (7)                                                                                        

and 

𝑏 = (𝑦̄̄ − 𝑎ỹ ̄ )                                                                               ------------------------------------- (8)                                                                                       
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In the above equation (7) and (8), ȳ and ỹ ̄are the average values of observed and predicted 

activities respectively, and the summation indicates the overall n compounds in the test set. 

The slopes k and kˈ [156] were calculated using the following equations: 

k=
∈yᵢỹᵢ

∈ỹ2                                                            --------------------------------(9)                                                                            

𝑘ˈ =
∈yᵢỹᵢ

∈yᵢ²
                                                                                               ------------------------------(10)                                                    

Regression lines which were passing through the origin defined by yʳᵒ= kỹ and ỹʳᵒ= kˈy which 

were not close to the optimum regression lines yʳ= aȳ+b and by ỹʳ= aˈȳ+bˈ. Correlation 

coefficients for these lines were R₀² and Rˈ₀² have different values which can be calculated using 

the following formulae: 

R₀2 = 1 −
∑( ỹᵢ− ỹʳᵒ)²

∑(ỹᵢ−ỹ ̄)²
                                                                   ------------------------------------ (11)                                                                                     

Rˈ₀2 = 1 −
∑( 𝑦ᵢ−ỹʳᵒ)²

∑(𝑦ᵢ−𝑦̄)²
                                                                    ----------------------------------- (12)                                                                                       

The summations indicated for overall n compounds in the test set. 

For better external predictive potential of the model, a parameter of modified r
2
 [rm

2 (𝐿𝑂𝑂)] was 

an very important factor , which can be used for the whole set considering LOO-predicted values 

for the training set and predicted values of the test set compounds. The rm   
2 (LOO) statistic 

equation for overall test and training set values was generally used for selection of the best 

predictive models from among comparable models [157, 158]. Substantiation of the particular 

QSAR models with rm
2 (LOO) value can be defined by the following equation: 

rm
2 (loo) = r2 (1 − √|r2 − R0

2|)                                          ----------------------------------- (13)  
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3D QSAR model with good predictive ability and its respective pharmacophore were selected 

among the top pharmacophore models and were used to find newer leads. 

Further the integrity of the model was predicted by rpred
2  for test set with the value of >0.5.The 

accepted leave-one-out (LOO) -cross validated value of training set (R
2
) should be greater than 

0.5, LOO cross validated value for test set (Q
2
) [159] should show a value greater than 0.5 to 

attain good predictive capacity, and standard deviation (SD) below 0.3, with minimum root mean 

square error (RMSE), and high value of variance ratio (F) to provide conventional QSAR 

validation limits. And the predictive correlation coefficient (rpred
2 ) value generated based on 

molecules of test set should demonstrate real predictive capacity and robustness of the QSAR 

model [160-162].  

4.4. High-Throughput Virtual screening (HTVS) and Molecular Docking 

For e-pharmacophore approach, sites with score above -1.0 kcal mol
-1 

were energetically 

favoured. The minimum three of site points should be matched. We set 2.0Ǻ
 
as

 
intersite distance 

matching tolerance for both strong and weak alignment. Pharmacophore screening hits were 

ranked based on their fitness score which gave the knowledge of how well each conformer 

aligned to the pharmacophore hypothesis calculated from the knowledge of  vector score, volume 

score, rmsd, no of site matched, energy. Fitness score value range from 0 to 3 as given in the 

default pharmacophore screening in Phase was empolyed. Database ligands were docked into the 

binding sites of the crystal structures in the active site regions with Glide 5.8 [143] utilizing 

HTVS and scoring function to estimate protein–ligand binding affinities. Glide HTVS was faster 

and more tolerant to suboptimal fits than Glide XP, making it better for comparison in this work. 

The center of the Glide grid was defined by the position of the co-crystallized ligand. Default 

settings were used for both the grid generation and docking. Post docking minimization was 
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implemented to optimize the ligand geometries. Compounds with best docking and Glide scores 

were then subjected to Glide SP and XP screening [163].  

The energy-based and ligand based pharmacophore models were validated using enrichment 

analysis, and all selected models were further employed for the high-throughput virtual screening 

and docking. The filtered hits on the basis of the selected pharmacophore models were subjected 

to molecular docking and application of filtering criteria pertaining to their interaction with amino 

acids in the active site pocket and 3D QSAR predictions. The hit compounds were finally short-

listed for testing against selected target activity. 

4.5. ADME predictions 

The lead compounds were evaluated for the pharmaceutically relevant properties to check drug 

likeness and predictions for drug’s pharmacokinetics in the human body including its ADME. 

QikProp module [164] was used for evaluation of drug-like behavior through analysis of 

pharmacokinetic parameters required for absorption, distribution, metabolism and excretion 

(ADME). 

4.6. Compounds Details 

Few lead compounds were procured from Asinex (ASINEX, ASINEX Platinum Collection, 

ASINECorp, Winston-Salem, NC, USA. http://www.asinex.com ) and few lead compounds were 

procured from commercial outsourcing the synthesis and screened for biological assay. The purity 

of the compounds was found to be ≥95%. 

4.7. Biological assays 

4.7.1. HCV NS5B inhibitory activity 

All compounds were made soluble in DMSO at 10 mM stock and further diluted just prior to 

evaluations. Huh7/Rep-Feo1b cells were grown at 37
°
C with 5% CO2 in Dulbecco’s Modified 

http://www.asinex.com/
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Eagle’s Medium (DMEM) containing 10% FBS, 1% penicillin/streptomycin, 1% glutamine, and 

500 µg/ml of G418.  IC50 values were calculated using CalcuSyn software (Biosoft).  

4.7.1.1. Anti-HCV activity and cytotoxicity in cell culture 

Anti-HCV activity of compounds in cell culture was evaluated in the Huh7/Rep-Feo1b cells 

replicating the subgenomic HCV genotype 1b replicon RNA carrying the firefly luciferase 

reporter. The evaluation of compounds was performed similarly as described earlier [165]. In 

brief, the cells were grown in 98 well plates and treated with compounds or equal amount of 

DMSO (control). Final concentration of DMSO was 1%. After 48h of treatment, cells were 

washed with phosphate buffered saline and inhibitory effect of compounds on HCV replication 

was measured as the level of firefly luciferase activity using luciferase assay system (promega).  

To evaluate the cytotoxic effects of compounds, Huh7/Rep-Feo1b cells were treated with 

compounds or DMSO (control) in 96 well plates similarly as above. After 48 h post treatment, the 

cells were supplemented with 20 µl CellTiter 96 AQueous One solution and cell viability was 

measured by following manufacturer’s protocol (Promega, USA) [166].   

4.7.1.2. NS5B RdRp assay  

HCV NS5B carrying a deletion of 21 hydrophobic amino acids from C terminal and bearing hexa-

histidine tag was recombinantly purified using Ni-NTA column chromatography as described 

earlier [167]. RdRp assay was performed similarly as described previously in a final volume of 20 

µl [168]. In brief, the assay containing 20 mM Tris–HCl (pH 7.0), 100 mM NaCl, 100 mM 

sodium glutamate, 0.5 mM DTT, 0.01% BSA, 0.01% Tween-20, 5% glycerol, 0.5 μM of pre-

annealed template/primer (poly rA/U12), 25 μM UTP, 1–2 μCi [α-
32

P]UTP and ~300 ng of NS5B 

was incubated with compounds or DMSO (control) on ice for 5 minute and reactions were started 

by adding 0.5 mM MnCl2. The reactions were incubated at 30
°
C for 1h and reactions were 
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terminated by adding ice cold 5% TCA solution. The precipitated acid insoluble materials were 

filtered on glass fiber filter and washed successively with 5% TCA, water and ethanol. The filters 

were air dried and placed in a vial containing EcoLite scintillation cocktail and the amount of 

incorporated radioactive nucleotides were counted using scintillation counter. NS5B activity in 

the presence of DMSO was set at 100% and that in the presence of the compounds was 

determined relative to this control.  

4.7.2. Biological assay for HIV protease:  

In first step, assay buffer (2X) 5ml, 1M DTT (1000X) 10μL and deionized water 5mL made the 

total volume 10mL. HIV-1 protease substrate (50X) of volume 100μL and assay buffer 4.9mL 

were mixed these reagents and every time prepared as fresh substrate solution. Protease was 

diluted as necessary step. The recommended volume for HIV-1 protease diluent was 40μL/well 

(96-well late). Test compounds were diluted with deionized water with the volume of 10μL/assay 

(96-well plate). 20μL of DMSO was added into one vial of saquinavir to get 2mM concentration 

by vortexing to dissolve completely and added this to 2μM assay buffer. 10μL (96-well plate) per 

well of 2μM saquinavir was prepared. Saquinavir solution was highly unstable either it should 

store in -20ᵒC or freshly prepared [169].  

4.7.2.1.  HIV protease enzymatic reaction 

The positive control contained HIV-1 protease diluent without the test compound. Inhibitor 

control contained of protease diluent and known inhibitor Saquinavir. In vehicle control we use 

DMSO as vehicle which was used to dissolve test compound. Pre-incubation of the plate at 37ᵒC 

for 10-15 min was done and HIV-1 protease substrate was also incubated for 37ᵒC. To initiate the 

enzymatic reaction 50 μL per well of HIV-1 protease substrate solution was added and the 

reagents were mixed well by shaking the plate gently for 30-60 sec. Then the fluorescence 
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intensity was measured immediately at Ex/Em= 340±30 nm and recorded continuously for every 

5 min for 30-60 min. To get end point reading, the reaction mixture was incubated at room 

temperature for 30-60 min and the plate was kept way from direct light. The intensity was 

measured at Ex/Em= 340±30 nm [170, 171]. 

4.7.3.  GlmU acetyltransferase assay 

Acetyltransferase activity assays were carried out in a 8 μl reaction volume containing 25 mM 

HEPES buffer (pH 7.6), 10 mM MgCl2, 1 mM DTT, 0.1 mM GlcN-1-P, 0.2 mM acetyl-CoA, 

0.002 μCi of [14C] acetyl-CoA, and GlmU. Reactions were terminated by the addition of 2 μl of 2 

M formic acid, and the samples were resolved on polyethylenimine cellulose TLC plates. 

Radioactive spots corresponding to [14C] GlcNAc-1-P and unincorporated [14C] acetyl-CoA was 

visualized by phosphorimaging. 

4.7.3.1. Expression and purification of MTB GlmU 

M.tuberculosis GlmU has 495 amino acids long. The gene encoding GlmU from E.coli (DH10B) 

and M. tuberculosis (H37Rv) was amplified using respective genomic DNA as a template. 

Amplicon obtained was digested with NdeI and HindIII cloned into corresponding sites in pQE2 

(Qiagen) expression vector. Expression plasmids were freshly transformed into E. coli BL21 

(DE3) CODON PLUS cells. Fresh transformants were grown in LB broth at 37ºC with constant 

aeration, in the presence of 100 μg/ml ampicillin. Exponentially growing cultures (A600 of ~0.6) 

were induced with 0.2 mM IPTG and further grown for 12-16 h at 18ºC. Cells were harvested and 

lysed by sonication in lysis buffer. The cell lysate containing His6-fusion proteins were mixed 

with equilibrated Ni-NTA agarose affinity resins. His tagged proteins were eluted with buffer 

containing 25 mM Tris-HCl (pH 8.0), 140 mM NaCl, 5% glycerol, 1 mM DTT, 100 mM PMSF 
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and 250 mM imidazole. Purified dialyzed protein was estimated by Bradford protein estimation 

method [172, 173]. 
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CHAPTER 5 

             DESIGN OF HCV NS5B INHIBITORS: RESULTS & DISCUSSIONS 

 

5.1. Background 

Nonstructural protein 5B (NS5B) is the RNA-dependent RNA-polymerase from Hepatitis C Virus 

which is responsible for HCV replication. This NS5B RNA dependent RNA polymerase 

synthesizes RNA using a RNA template, which is absent in mammalian cells and hence becomes 

an important and attractive target to develop drugs for the treatment of this lethal disease. The 

current HCV therapy suffers from inadequate sustained viral response rate, rapid emergence of 

drug resistance, in particular for patients infected with genotype 1 HCV, along with significant 

side effects, resulting in discontinuation of therapy [174, 175]. Given the absolute requirement of 

NS5B to synthesize nascent HCV RNA, NS5B represents an attractive target for the development 

of anti-HCV inhibitors.
 
Therefore, an inhibitor that blocks NS5B RdRp activity should, in theory, 

have minimal or no effect on host biological processes. HCV NS5B is a 66 kDa protein with a 

hydrophobic C-terminal membrane anchorage domain, which poses a challenge for full-length 

NS5B purification. Consequently, structure function investigations on NS5B have been achieved 

employing recombinant NS5B with 21 to 55 amino acid C-terminal truncations, which does not 

compromise its enzymatic activity. Crystal structures of NS5B have revealed a classical “right-

hand” topology of the polymerase family, with discernable fingers, palm and thumb subdomains. 

An unusual feature of NS5B is the extensive interactions between its finger and thumb 

subdomains, resulting in an encircled active site [66]. Several crystal structures of NS5B either 

alone or in complex with diverse ligands ranging from ions and small molecules to nucleotides 

and non-nucleoside analogue inhibitors (NNI), have been elucidated [176-179]. The NNIs are 
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reported to bind to five distinct allosteric pockets on NS5B located on its thumb or palm domain 

[180, 181]. These structures offer an excellent platform for the identification and development of 

new NS5B inhibitors. 

5.2.  Structure (e-pharmacophore) based drug design (Work flow is presented in Figure 38) 

The HCV NS5B polymerase crystal structures with low resolution and with high active bound 

inhibitors were retrieved from PDB. Here, we used a total of five crystal structures with a 

resolution between 1.65 Ǻ - 2.31 Ǻ and activity of inhibitors (IC50) ranging from ≤10 nM to 291 

nM to enhance the chances of retrieving similarly active and diverse hits from the database 

screening. The crystal ligand structure with resolution and the affinities are presented in Figure 

35. Three of the crystal structures (3CVK [177], 3CO9 [178], and 2GIQ [182] represented in 

complex with inhibitors in the palm region and the other two (2GIR [182] and 2D3Z [179]) 

represented inhibitors bound to the thumb region. The bound crystal ligand of 3CVK was 

pyridazinone derivative and showed H-bond intaractions with Asn291, Asp318 and Tyr448. The 

bound crystal ligand of 3CO9 was also pyridazinone derivative and showed similar H-bond 

interaction like 3CVK. 2GIQ crystal ligand was quinolone derivative having H-bond with 

Tyr448. The bound inhibitor of 2D3Z and 2GIR of thumb region was non-nucleosidic thiophene 

derivative with H-bond interactions with Ser476 and Tyr477. This showed that Asn291, Asp318 

and Tyr448 were the important H-bond interactions for palm region and for thumb region Ser476 

and Tyr477. When we shortlisted our hits we would prefer the compounds which were showing 

these interactions as prior condition. 

We prepared these proteins using protein preparation wizard by adding hydrogens, and energy 

minimization by converging the heavy atoms to RMSD 0.30 Aͦ using OPLS2005 as force field, 

removed water molecules and finally refined the protein structure shown in Figures 36 & 37. All 
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the crystal ligands were redocked onto the prepared protein to generate e-pharmacophore. The 

root mean square deviation (rmsd) was less than 1Å for all the 5 crystal ligands. Ligand 

interaction analysis showed that the important residues in palm region were Asp318, Asn291 and 

Tyr448 and for thumb region Ser476 and Tyr477.  

Figure 35: Structures of bound inhibitors listed with their respective PDB IDs, IC50 values and 

resolutions for HCV NS5B target 
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Figure 36: The five selected PDB structures with their respective IDs and their bound crystal 

ligand for HCV NS5B polymerase 
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Figure 37: The binding site pocket of the five indicated crystal structures, demonstrated in white 

and magenta color created using ‘Create binding site surfaces’ module of Schrodinger suite for 

HCV NS5B polymerase 

 

Receptor Grid Generation tool in Maestro software package was used to generate energy grids for 

all prepared protein structures. The Grid table is given in Table 7.   
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Table 7: Grid information along with their PDB IDs employed for docking studies 

 

 

 

 

The pharmacophores were generated, validated and used for further studies like virtual screening 

and multiple steps docking studies as given in the work flow for structure based drug design in the 

Figure 38. 

 

S.No PDB code X-Centre Y-Centre Z-Centre 

1. 3CVK 96.2294 9.309 54.8521 

2. 3CO9 33.5356 44.5081 53.9472 

3. 2D3Z 9.325 33.7615 74.9164 

4. 2GIQ 9.177 -8.3279 -12.7974 

5. 2GIR -33.8597 -18.8336 33.3814 
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Figure 38: Work flow for structure based approach 

5.2.1.  Energy-based Pharmacophore Generation and its validation 

We docked the crystal ligand using XP None refine option in Glide module. Using this XP 

descriptor information pharmacophore hypotheses were generated. Each feature of 
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pharmacophore hypotheses was assigned with energy values; lower the energy value higher the 

stablility of the feature as shown in Table 8. We kept 10 as maximum number of features. The e-

pharmacophore method combined the aspects of structure based and ligand based techniques and 

was explored for 5 crystal structures of HCV NS5B polymerase employed in this study.  

Table 8: The possible features and their energy score for each PDB IDs 

 

 

 

 

 

 

 

 

 

 

 

*A-Acceptor, D-Donar, R-Ring aromatic, N-Negative ionic and H-Hydrophobic 

The pharmacophore hypotheses were developed by mapping Glide XP energetic terms onto 

pharmacophore sites which were calculated based on the structural and energy information 

between the protein and the ligand Table 8. The optimized sites for hypothesis generation for the 

5 crystal structures of NS5B are represented in Figure 39. 

PDB Features* Score 

              3CVK  

A7 -0.66 

D10 -0.33 

R15 -0.59 

            3CO9 

A7 -0.66 

D9 -0.45 

R14 -0.62 

            2GIQ 

A5 -0.23 

R11 -0.82 

R13 -0.59 

            2D3Z 

R9 -1.27 

N6 -0.69 

R8 -1.07 

R7 -0.60 

            2GIR 

N5 -0.70 

H2 -0.22 

R7 -0.96 
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Figure 39: Finally selected five e-pharmacophores. Pink sphere with arrow-hydrogen bond 

acceptor (A), yellow open circle-aromatic ring (R), blue sphere with arrow-hydrogen bond donor 

(D), green sphere-hydrophobic (H), pink sphere- negatively ionizable (N) for HCV NS5B 

polymerase 

 

Maximum number of features available for each crystal structures and the selected features are 

given in Table 9.  
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Table 9: The possible number of available pharmacophore sites from each PDB structure, the 

final selected sites and with their final selected hypotheses 

 

 

 

 

 

*A-Acceptor, D-Donar, R-Ring aromatic, N-Negative ionic and H-Hydrophobic. 

 

The pharmacophoric features for the palm region were ADR (3CVK and 3CO9) and ARR 

(2GIQ), for thumb region NRR (2D3Z) and NHR (2GIR). One Ring (R) feature was common in 

all the hypotheses. All the crystal structures yielded three feature pharmacophore. The maximum 

distance between the features was 8.489 Ǻ and the minimum distance was 2.341 Ǻ. The distance 

mapping among the features is presented in Table 10. Acceptor (A) and Ring (R) features were 

common among the pharmacophoric sites derived from palm domain crystal structures (3CVK, 

3CO9 and 2D3Z), where in thumb domain crystal structures (2GIQand 2GIR) Ring (R) and 

negatively ionizable (N) feature were common. 

Table 10: Distance between the features of e-pharmacophores 

Distance shown in Ǻ, A-Acceptor, D-Donar, R-Ring aromatic, N-Negatively ionizable and H-

Hydrophobic. NA-not applicable. 

 

The distance between A and R when compared among the palm region structures, the ligands of 

3CVK and 3CO9 were similar (3.73 Å) while 2GIQ (Table 10) generated two R features and the 

S.No PDB 

code 

No of possible 

sites 

No of selected 

sites 

Hypothesis* 

1. 3CVK 3 3 ADR 

2. 3CO9 3 3 ADR 

3. 2D3Z 4 3 ARR 

4. 2GIQ 3 3 NRR 

5. 2GIR 3 3 NHR 

S.NO PDB CODE 
A-R 

( Ǻ) 
R-D 

( Ǻ) 
D-A 

( Ǻ) 
N-R 

( Ǻ) 
H-R  

( Ǻ) 
R-R 

( Ǻ) 
R-A 

( Ǻ) 
N-H 

( Ǻ) 
R-N 

( Ǻ) 

1. 3CVK 3.751 4.754 8.489
 

NA NA NA 3.751 NA NA 

2. 3CO9 3.73 4.727 7.924 NA NA NA 3.73 NA NA 

3. 2GIQ 5.31 NA NA NA NA 6.757 2.341
 

NA NA  

4. 2D3Z NA NA NA 5.033 NA 6.683 NA NA 5.313 

5. 2GIR NA NA NA 5.324 5.447 NA NA 4.184 5.324 
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distances with A feature were 5.31 Å and 2.34 respectively. This depicted that the e-

pharmacophore derived from 2GIQ was very much different from other e-pharmacophores of the 

palm region and hence had the possibility of yielding diverse structure libraries. We also 

compared the 1% EF, RIE, ROC, BEDROC (=20) and (=160). Enrichment factor indicated the 

fraction of actives retrieved from a database with both actives and inactives (Decoys) [144] after 

screening. High EF 1% meant top 1%  of actives retrieved in the top 1% decoys which gave hope 

that pharmacophore model could screen good number of active molecule from the database we 

used. One more enrichment metrics we used was the Boltzmann-enhanced discrimination of 

receiver operating characteristic (BEDROC). BEDROC was a generalization of the receiver 

operating characteristic (ROC) that gave the knowledge of the “early scoring problem” by 

Boltzmann weighing the hits based on how early they were retrieved. We had estimated both 

=20.0 and =160.9 for comparisons. To evaluate virtual screening results, =20.0 was the best 

choice because it accounted the 80% results in top 1% of the database. The enrichment results for 

all 5 crystal ligands using the e–pharmacophore method were compared for the enrichment factor 

(EF1%), BEDROC (α=160.9 and α=20.4) [183], based on recovery rate of actives against the 

ranked decoy database that consisted of 1090 compounds in which 90 were known inhibitors. The 

results are as shown in Table 11 where 3CO9 and 2GIR pharmacophores showed the highest 

enrichment at 1% (EF1%) and BEDROC values. And the overall enrichment factor (EF) and 

goodness of fit (GH) was better for 2GIR and 2D3Z. Finally 5 potential e- pharmacophore 

hypotheses were selected for virtual screening of compound databases. 
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Table 11:  Validation of e-pharmacophore hypotheses 

 

EF- Enrichment factor at 1% of the decoy dataset 

RIE- Robust initial enhancement 

ROC-Receiver operating characteristic curve value 

BEDROC- Boltzmann-enhanced discrimination of receiver operating characteristic 

EF- Overall enrichment factor 

GH- Goodness of fit 

 

5.3. Ligand based drug design  

The workflow for ligand based design is indicated in Figure 40.  

We retrieved 1568 NS5B inhibitors from various literatures [176-179, 184-229] with known IC50 

values. These inhibitors showed a wide range of activity (0.04 nM – 500 μM) and structural 

diversity. All ligands were prepared, energetically minimized and optimized. Finally 132 

compounds were selected from 151 clusters as representative molecules [176-179, 184-229]. The 

compounds with their observed activity, predicted activity, residual error and their QSAR set are 

given in Table 12. The threshold range of the active and inactive pIC50 was 9.398 and 3.301 

respectively. Selected 132 promising compounds were used to develop our 3D QSAR model. The 

work flow for ligand based drug design is shown in the Figure 40. The structures of the 

compounds employed for the study are given in Figure 41. 

 

PDB 

code 

e-

Pharmacophore 

features 

EF 

1% 
RIE ROC 

BEDROC 

(-20) 
EF GH 

3CVK ADR 2.2 1.01 2.33 0.274 0.501 0.045 

3CO9 ADR 7.7 1.02 1.55 0.668 0.513 0.047 

2GIQ ARR 6.6 0.96 2.46 0.507 0.760 0.060 

2D3Z NRR 3.3 1.04 1.97 0.190 1.568 0.129 

2GIR NHR 7.7 1.02 4.4 0.591 2.663 0.240 
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Figure 40: Work flow for 3D QSAR (ligand) based approach 

  



91 
 

Figure 41: Compounds utilized for ligand based pharmacophore and 3D QSAR model for HCV 

NS5B polymerase 
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Table 12: 3D QSAR data set of 132 compounds with their fitness score, experimental activity, 

predicted activity and the difference between their predicted and actual activity 

ID Fitness Experimental 

activity 

phase 

predicted 

activity 

Error Phase qsar 

set 

1.  2.967 8.796 8.170  0.626 Test 

2.  1.485 8.699 6.890  1.809 Test 

3.  2.924 8.155 8.160 -0.005 Test 

4.  2.213 8.00 7.230  0.770 Test 

5.  2.371 7.854 6.550  1.304 Test 

6.  1.307 7.796 7.120  0.676 Test 

7.  1.366 7.398 6.020  1.378 Test 

8.  1.053 7.398 7.010  0.388 Test 

9.  2.342 7.387 6.400  0.987 Test 

10.  2.784 7.357 8.360 -1.003 Test 

11.  1.398 7.149 7.050  0.099 Test 

12.  2.745 7.137 7.070  0.067 Test 

13.  1.299 7.018 6.270  0.748 Test 

14.  1.282 7.000 6.140  0.860 Test 

15.  1.564 6.921 6.490  0.431 Test 

16.  1.044 6.886 6.060  0.826 Test 

17.  1.481 6.824 7.470 -0.646 Test 

18.  2.363 6.699 6.300  0.399 Test 

19.  1.525 6.699 5.380  1.319 Test 

20.  1.237 6.553 6.290  0.263 Test 

21.  1.972 6.469 5.510  0.959 Test 

22.  1.619 6.409 6.200  0.209 Test 

23.  1.339 6.387 6.940 -0.553 Test 

24.  1.404 6.319 6.000  0.319 Test 

25.  1.558 6.244 5.190  1.054 Test 

26.  1.220 6.222 5.950  0.272 Test 

27.  1.513 6.167 4.650  1.517 Test 

28.  1.457 6.119 5.330  0.789 Test 

29.  1.490 6.097 5.960  0.137 Test 

30.  2.252 6.071 5.430  0.641 Test 

31.  1.107 6.000 4.410  1.590 Test 

32.  1.446 5.854 5.150  0.704 Test 

33.  1.612 5.678 5.240  0.438 Test 

34.  1.327 5.658 4.940  0.718 Test 

35.  1.611 5.569 5.340  0.229 Test 

36.  1.744 5.347 6.290 -0.943 Test 

37.  0.984 5.260 4.680  0.580 Test 

38.  1.445 5.244 4.590  0.654 Test 

Contd.. 
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39.  1.281 5.174 6.280 -1.106 Test 

40.  1.653 5.131 5.360 -0.229 Test 

41.  1.546 4.959 5.020 -0.061 Test 

42.  1.599 4.886 5.380 -0.494 Test 

43.  1.534 4.854 4.140  0.714 Test 

44.  1.581 4.839 5.110 -0.271 Test 

45.  1.598 4.796 5.790 -0.994 Test 

46.  1.467 4.699 5.220 -0.521 Test 

47.  1.296 4.699 5.800 -1.101 Test 

48.  1.434 4.638 4.370  0.268 Test 

49.  1.578 4.569 5.600 -1.031 Test 

50.  1.582 4.538 5.440 -0.902 Test 

51.  1.556 4.523 5.330 -0.807 Test 

52.  1.099 4.523 4.490  0.033 Test 

53.  1.585 4.509 5.700 -1.191 Test 

54.  0.926 4.495 4.670 -0.175 Test 

55.  1.621 4.357 4.970 -0.613 Test 

56.  0.832 4.357 5.320 -0.963 Test 

57.  1.459 4.31 4.670 -0.360 Test 

58.  1.664 4.301 4.570 -0.269 Test 

59.  1.631 4.301 5.370 -1.069 Test 

60.  1.265 4.301 5.780 -1.479 Test 

61.  1.574 4.167 5.200 -1.033 Test 

62.  1.255 4.102 4.500 -0.398 Test 

63.  3.000 9.398 8.850  0.548 Training 

64.  2.739 9.222 8.150 1.072 Training 

65.  2.899 8.523 8.490 0.033 Training 

66.  1.524 8.398 8.280 0.118 Training 

67.  0.658 8.222 8.110 0.112 Training 

68.  2.664 8.155 7.870 0.285 Training 

69.  1.325 8.155 8.590 -0.435 Training 

70.  1.587 8.143 8.170 -0.027 Training 

71.  2.359 8.000 7.770 0.230 Training 

72.  2.197 8.000 7.720 0.280 Training 

73.  1.743 8.000 8.350 -0.350 Training 

74.  1.643 8.000 8.150 -0.150 Training 

75.  1.439 8.000 7.840 0.160 Training 

76.  1.228 7.886 7.820 0.066 Training 

77.  1.464 7.854 7.900 -0.046 Training 

78.  1.485 7.824 7.490 0.334 Training 

79.  1.368 7.824 7.740 0.084 Training 

80.  1.476 7.721 7.550 0.171 Training 

81.  1.403 7.638 7.750 -0.112 Training 

82.  2.099 7.509 7.600 -0.091 Training 

83.    0.979         7.420      7.710    -0.290     Training 

Contd.. 
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84.  1.044 7.301 7.270  0.031 Training 

85.  1.351 7.046 6.950  0.096 Training 

86.  1.513 6.699 6.730 -0.031 Training 

87.  2.658 6.553 6.830 -0.277 Training 

88.  1.336 6.456 6.490 -0.034 Training 

89.  1.311 6.398 6.440 -0.042 Training 

90.  2.364 6.377 6.300  0.077 Training 

91.  1.818 6.229 6.500 -0.271 Training 

92.  1.320 6.208 6.340 -0.132 Training 

93.  1.806 6.194 6.360 -0.166 Training 

94.  1.637 6.155 6.180 -0.025 Training 

95.  1.579 6.119 6.400 -0.281 Training 

96.  2.442 6.097 6.250 -0.153 Training 

97.  1.595 5.824 6.040 -0.216 Training 

98.  1.445 5.796 5.860 -0.064 Training 

99.  1.161 5.721 5.840 -0.119 Training 

100.  1.604 5.699 5.710 -0.011 Training 

101.  1.385 5.648 5.710 -0.062 Training 

102.  1.666 5.62 5.590  0.030 Training 

103.  0.851 5.569 5.400  0.169 Training 

104.  2.328 5.409 5.650 -0.241 Training 

105.  1.173 5.26 5.440 -0.180 Training 

106.  1.066 5.26 4.930  0.330 Training 

107.  2.820 5.203 6.530 -1.327 Training 

108.  2.409 5.167 5.690 -0.523 Training 

109.  1.405 5.046 5.150 -0.104 Training 

110.  1.354 5.022 5.020  0.002 Training 

111.  1.440 4.959 4.880  0.079 Training 

112.  1.326 4.951 5.040 -0.089 Training 

113.  1.720 4.86 4.950 -0.090 Training 

114.  1.425 4.824 4.440  0.384 Training 

115.  1.602 4.777 4.820 -0.043 Training 

116.  1.370 4.699 4.810 -0.111 Training 

117.  1.295 4.699 4.760 -0.061 Training 

118.  1.568 4.678 4.480  0.198 Training 

119.  1.288 4.538 4.500  0.038 Training 

120.  1.103 4.523 4.470  0.053 Training 

121.  0.848 4.495 4.270  0.225 Training 

122.  1.363 4.357 4.290  0.067 Training 

123.  1.509 4.313 4.640 -0.327 Training 

124.  1.624 4.301 4.110  0.191 Training 

125.  1.466 4.301 4.430 -0.129 Training 

126.  1.708 4.000 3.750  0.250 Training 

127.  1.546 4.000 4.070 -0.070 Training 

128.  1.531 4.000 4.030 -0.030 Training 

Contd.. 
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5.3.1. Ligand based pharmacophore modeling and its validation  

PHASE QSAR models may be either atom-based or pharmacophore-based, the difference being 

whether all atoms were taken into account, or merely the pharmacophore sites that can be 

matched to the hypothesis. To build the QSAR model for HCV NS5B inhibitors, the compounds 

with pIC50 values more than 8.5 were labelled as actives and less than 4.0 were labelled as 

inactives. We divided our data set into actives, inactives and moderately actives. In our pharmaset 

we had three actives which had pIC50 more than 8.5, seven inactives and remaining were 

moderately actives. We used this pharmaset to bulid our 3D QSAR model. We kept 5 maximum 

number of sites to be generated for common pharmacophore and 4 for minimum number of sites 

and the common pharmacophore generated was constrained to match with all the three actives. 

There were 34 different combinations of common pharmacophores generated. These were 

AAADP with 347 maximum hypotheses, AADDR 415, DDHPR 6, ADDHP 19, AAPRR 98, 

AHPRR 70, AAADH 479, AADDP 140, AADRR 320, AAAPR 260, AAAAP 125, ADHPR 288, 

ADDHR 39, AADHP 339, AAADR 885, DDHRR 5, AADPR 527, AAAAH 332, ADDRR 145, 

AAAHR 705, DHPRR 26, AADHR 838, ADDPR 168, DDPRR 26, AAAHP 359, AAAAD 377, 

ADHRR 168, AAHPR 462, AAAAR 384, AAARR 189, AAHRR 223, AADDH 44, ADPRR 109 

and AAADD 145. There were 498 clusters of seven hundred and twenty one hypotheses were 

produced after all scoring functions were calculated (survival active, survival inactive, post-hoc). 

We then selected top three pharmacophore hypotheses based on good survival activity, vector, 

volume, energy scores, best active alignment and number of matches (Table 13 & Figure 42).  

129.  0.659 4.000 3.830  0.170 Training 

130.  1.442 3.699 3.640  0.059 Training 

131.  1.261 3.444 3.310  0.134 Training 

132.  1.337 3.301 3.160  0.141 Training 
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In ligand based approach, clustering the scored hypotheses, we got few numbers of clusters out of 

these we selected top three hypotheses based on their survival actives, inactives, vector, volume 

scores and their energy values. 

Table 13: Ligand based pharmacophore hypotheses with their scores  

 

*A-Acceptor, D-Donar, R-Ring aromatic, N-Negative ionic and H-Hydrophobic. 

The hypothesis 1 (AADRR) showed 2 hydrogen bond acceptors, 1 hydrogen bond donor and two 

aromatic rings, hypothesis 2 (AAADP) showed 3 hydrogen bond acceptors, 1 hydrogen bond 

donar and 1 positively ionizable, and the hypothesis 3 (AADPR) showed 2 hydrogen bond 

acceptors, 1 hydrogen bond donor, 1 positively ionizable and 1 aromatic ring as features as shown 

in Figure 42. Among these hypotheses, model 1 (AADRR) showed the highest survival score 

(Table 13). The distance between the pharmacophoric features are given in the Table 14. 

 
                        AADRR                                AAADP                                      AADPR 

 

Figure 42: Top three pharmacophores selected from ligand based approach for HCV NS5B 

polymerase  

S.NO Hypothesis* 
Survival

 

Score 

Survival-

inactive 

Score
 

Vector 

Score
 

Volume 

Score
 

Site 

Score
 

 

Energy 

1. AADRR 4.029 2.936 0.998 0.837 0.98 0.000 

2. AAADP 3.959 3.108 0.999 0.810 0.94 0.087 

3. AADPR 3.986 3.072 1.000 0.801 0.98 0.933 
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Table 14: Distance between the features of 3D QSAR based pharmacophores 

Distance shown in Ǻ, *A-Acceptor, D-Donar, R-Ring aromatic, N-Negatively ionizable, H- 

Hydrophobic and P-Positively ionizable. NA- not applicable 

 

To further validate these pharmacophore models for virtual screening, we evaluated the 

enrichment factor similar to that performed for e-pharmacophores. The decoy set consisted of 

1082 compounds in which 82 compounds were known inhibitors which were not utilized in the 

pharmacophore hypotheses building. Enrichment factor (EF1%), BEDROC (α=160.9 and 

α=20.4), RIE, ROC and also using the formulae 1 and 2 we calculated the overall enrichment 

factor (EF), goodness of fit (GH) values we selected the best pharmacophore hypothesis. Using 

the Find matches in Phase module of Schrödinger suite, with the total number of molecules in the 

database (D), 68 compounds were obtained as hits (Ht) for the hypothesis 1, in which 8.5% were 

active yields (%Y), 82.93% ratio of actives were retrieved in the hit lists (%A), and the values of 

EF 1% 11, RIE 2.63, ROC 2.33, high BEDROC [183] values, EF (1.122) and GH (0.048) 

indicated a good sign of the high efficiency of hypothesis 1. Though the hypothesis 3 AADPR 

had high RIE value of 2.7 compared to hypothesis 1 but other parameters were lesser than 

hypothesis 1(Table 15).  

Table 15: Validation of ligand based pharmacophore hypotheses 

*Hypothesis A-R1 

(Ǻ) 
A-D  

(Ǻ) 
A-A1 

(Ǻ) 
A-P  

(Ǻ) 
A-R2 

(Ǻ) 
D-R1 

(Ǻ) 
A-A2 

(Ǻ) 
A2-P 

(Ǻ) 
A1-P 

(Ǻ) 

AADRR 7.325 5.545 4.624
 

NA 3.252 11.646
  max 

NA NA NA 

AAADP NA 5.497 4.922 2.568  NA NA 7.201 4.231 8.703 

AADPR 3.225 6.404 5.759 2.566
 min 

NA 3.228 NA
 

NA 7.229 

Pharmacophore 

features 

EF 

1% 
RIE ROC 

BEDROC 

(-160.9) 

BEDROC 

(-20) 
EF GH 

AADRR 11 2.63 2.33 0.737 0.256 1.122 0.048 

AAADP 8.4 1.81 1.55 0.647 0.176 0.766 0.037 

AADPR 9.6 2.70 1.97 0.678 0.263 0.882 0.023 
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EF- Enrichment Factor at 1% of the decoy dataset 

RIE- Robust Initial Enhancement 

ROC-Receiver Operating Characteristic curve value 

BEDROC- Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic 

EF- Overall Enrichment Factor 

GH- Goodness of Fit 

 

The results as shown in Table 15 rated the hypothesis 1 (AADRR) as the best one as indicated by 

the highest EF1%, BEDROC and GH values is given in Figure 43. 

 

Figure 43: Finally selected ligand based pharmacophore for HCV NS5B polymerase. Pink sphere 

with arrow-hydrogen bond acceptor (A), yellow open circle-aromatic ring (R), blue sphere with 

arrow-hydrogen bond donor (D) 

 

 

5.3.2. 3D QSAR and PLS Analysis 

3D QSAR models were then developed for the pharmacophore hypothesis using the training set 

structures that match the pharmacophore on three sites. However, we utilized the three models for 

the 3D QSAR studies by generating pharmaophore based 3D QSAR models and PLS analysis.  
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Figure 44: All 132 compounds were aligned with the best pharmacophore selected (AADRR) for 

3D QSAR study for HCV NS5B polymerase 

 

Hypotheses 1 (AADRR) showed the highest survival score, all selected 132 molecules for 3D 

QSAR study were aligned with that selected pharmacophore as shown in Figure 44. To develop 

superlative 3D QSAR models which were meant to exhibit reliable predictions it necessitated 

internal and external statistical validation. Models which were capable of fulfilling statistical 

validation parameter boundaries were expected to display more reliable predictions. Randomly we 

chose compounds in the training set and in the test to develop 3D QSAR model. Important 

parameters obtained based on LOO method, favored the internal statistical validation by PLS 

analysis. Among the models, the best hypothesis should show good external predictive ability for 

each combination as compared to others. Randomly we chose 70 compounds in the training set 

and 62 compounds in the test to develop 3D QSAR model (Table 12), by using the method 

“Automated Random Selection” option present in the PHASE module. Important parameters 

obtained based on LOO method, (Table 16) favored the internal statistical validation by PLS 

analysis. A model with PLS factor five was considered as the best statistical model [154]. This 

model was validated by predicting activities of test set, training set and overall molecules. The 
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best pharmacophore selected was used to screen the database compounds and the hits were further 

used for the docking studies. Among the three models, hypothesis 1 (AADRR) showed good 

external predictive ability for each combination as compared to others. Hypothesis 1 showed a 

good R
2
 value for the training set of 0.9666, good predictive power with Q

2
 of 0.5810 for the test 

sets, with SD of 0.2936, and F value of 381.8. Further the integrity of the model was predicted by 

rpred
2  for test set which yielded a value of 0.5955 [156] (Table 16) 

Table 16. PHASE 3D QSAR and PLS statistics for the internal validation of the dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

SD             -   Standard deviation of the regression 

R
2       

          -   for the regression. 

F                -   variance ratio. 

rpred
2           -     predictive correlation coefficient value. 

RMSE       -    root mean square error. 

Q               -    squared (Q
2
)value of Q

2
 for the predicted activities. 

Pearson R  -   correlation between the predicted and observed activity for the test set. 

 

In the present study the best predictive ability of the model was characterized by correlation 

coefficient R = 0.7679 (r2 = 0.5895) [158]. High slope of regression lines through the origin k 

value of 1.018 and k′ value of 0.9651 gave the substantial values for  R0
2  value 0.9883 and the R′0

2 

value 0.9722, which were obtained by calculating correlation coefficient of regression lines of the 

scatter plot obtained by means of actual activity versus predicted activity (Figure 45). The 

Statistical parameters AADRR AAADP AADPR 

Number of molecules in Training set 70 70 70 

Number of molecules in Test set 62 62 62 

R² 0.9666 0.9766 0.9841 

Q² 0.5810 0.3381 0.3238 

SD 0.2936 0.2459 0.2045 

F-value 381.8 451.3 781.3 

Pearson-R 0.7673 0.5847 0.6161 

RMSE 0.8086 1.0513 1.0216 

rpred
2  0.5920 0.5097 0.1156 
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relation between r
2
, R0

2  and R′0
2  gave (r2 −R0

2  /r2) values of -0.6765 and second relation (r2 –R′0
2 

/r2) value -0.6492 showed optimum values within the statistical limits (Table 17).  

Table 17: External statistical validation results of quantitative structure activity relationship 

(QSAR) result for the hypothesis 1 AADRR 

 

 

 

 

 

 

 

 

 

 

 

 

rcv
2                   -  cross validated coefficient 

R (or r
2
)          - correlation coefficient between the actual and predicted activities 

k and k′          - slope values of regression lines 

R0
2  and R′0

2     - correlation coefficients for the regression lines through the origin 

[(r
2 

−R0
2) /r

2
] and  

[(r
2 

–R′0
2) /r2

] - to calculate relation between r
2
, R0

2  and R′0
2 

rm
2  (LOO)        - modified squared correlation coefficient for Leave One Out method. 

 

Yet, our established QSAR model from hypothesis 1 (finalized after PLS analysis), gave rcv
2  value 

of 0.592. A parameter of modified r
2
 [rm

2   (LOO)] [65] was considered as a better external 

predictive potential for the whole set of compounds which was of 0.8242 (>0.5) defined through 

scatter plot best fit line values (Figure 45).  

 

External validation Parameter calculated Limitations 

 rcv
2  0.5920 rcv

2 > 0.5 

R 0.7679 Must close to 1 

 r2       0.5895 r2> 0.5 

k value 1.018 0.85 ≤ k ≤ 1.15 

k′value 0.9651 0.85 ≤ k′≤ 1.15 

 R0
2  0.9883 R0

2  or R′0
2close to r

2
 

R′0
2 0.9722 R0

2  or R′0
2close to r

2
 

[(r
2 

−R0
2) /r

2
] -0.6765 [(r

2 
−R0

2  /r
2
] <0.1 

[(r
2 

–R′0
2) /r2

] -0.6492 [(r
2 

–R′0
2 /r

2
] <0.1 

rm
2  (LOO) 0.8242 rm

2 (LOO)> 0.5 
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Figure 45: Scatter plot of the experimental vs. predicted activity of NS5B inhibitors generated by 

the best model for HCV NS5B polymerase 

This appeared to be truly predictive by fulfilling the requirements of every parameter in the 

external validation (Table 17). Truly, we considered this model as statistically significant model. 

Besides, we resumed further steps to predict the activities of new leads from the compound 

libraries by using hypothesis 1. 

5.3.3. Contour maps 

The final validated hypothesis 1 obtained from 3D QSAR was used to generate contour maps. 

These contour maps were important to identify the positions of the substitutions or replacements 

of atoms to enhance bioactivity. Inhibitory activity can be gained by visualizing and 

understanding the maps against most active (1) and least active (131) compounds. This could help 
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in discovering novel scaffolds with good biological activity. The most and least active ligand 

contour maps were generated and are shown in Figure 46. Contour maps indicated H-bond donor 

effect on the most active ligand (1) and least active ligand (131) (Figures 46 A and 46B), the 

hydrophobic effect of the ligands (Figures 46C and 46D) and the electron withdrawing nature 

(Figures 46E and 46F) of both ligands represented in the figure were discussed further.  

The hydrogen bond donor nature for the most active compound 1 and the least active compound 

131 when compared showed their most favorable region blue color and unfavorable regions red 

color. Hydrogen bond donor mapping revealed that favorable regions lied near the nitrogens of 

naphthyridine and in benzothiadiazine indicating their importance for activity compared to the 

least active compound 131. Therefore the presence of cyclic rings with hydrogen donor group in 

the scaffold backbone was very much needed for the activity.  

Figure 46C and 46D when compared for their hydrophobic nature for the most active compound 

1 and least active compound 131 revealed that favored green color region around the 

naphthyridin, cyclobutyl and benzothiadiazine rings that revealed that the terminal hydrophobic 

rings were very much needed for the activity of the compound and unfavorable region (yellow 

color) on aromatic ring hydrogen moiety revealed that increase in the carbon chain could increase 

the activity. 

In Figure 46E, the favored red color regions were observed near hydrogen bond acceptors along 

with respective acceptor hypothesis features of most active compound which indicated that these 

features were crucial for  the activity and these groups should be unsubstituted when further lead 

modifications indicated. In the least active compound as in Figure 46F the unfavorable region 

(blue color) surrounded the napthyridin ring moiety which indicated that a decrease in the ring 

size could increase the biological activity of the compound.  
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Figure 46: Contour map for HCV NS5B polymerase: 

A- H-bond donor effect: Most active; B- Least active (Blue- favorable, Red unfavorable); C- 

Hydrophobic effect: Most active; D- Least active (Green- favorable, Yellow-unfavorable); E- 

Electon with-drawing effect: Most active; F- Least active (Red-favorable, Blue -unfavorable) 
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5.4. Multiple pharmacophore models based virtual screening and docking 

Virtual screening studies of the commercial database were fruitful resource for initial lead 

identification. Fit value indicated a measure of how well the ligand fit the pharmacophore. 

Therefore, the hits with a high fit value were probably very active. In the present study, we 

employed the best e-pharmacophores and in second method, pharmacophore based on the 3D 

QSAR were utilized to find important features for the inhibition of NS5B, to help in designing of 

lead molecules. The best validated five e-pharmacophore model and the pharmacophore from 3D 

QSAR (hypothesis 1) were used to screen against the databases of 500000 compounds (Asinex) 

as presented in the flow chart (Figure 47). The numbers of hits derived from pharmacophore 

filtering are shown in the Table 18 and in Figure 48A. 

For the e-pharmacophore obtained from ADR of 3CVK, fitness more than 1.5 was taken as cut-

off for the HTVS (High throughput virtual screening), which yielded 13226 compounds and we 

clustered these compounds. We obtained 1812 clusters and the 13226 ligands were docked to 

palm region of 3CVK, and the docking score of the crystal ligand was -7.289 kcal/mole. During 

shortlisting the hits we kept the docking score of the crysta ligand as one of the criterion. 7257 

ligand molecules as hits from HTVS with docking score above -6 kcal/mole, fitness above 1.6 and 

the number of H-bonds above 2 which belonged to 1026 clusters were selected. These hits were 

further docked using Glide SP (standard precision) docking module and 1549 ligand molecules 

were selected based on the docking score above -7 kcal/mole, fitness above 1.7, above 2 H-bond 

and visual inspection of occupancy of ligand into the pocket. Finally, we subjected the Glide SP 

1549 filtered ligands to Glide XP (extra precision) docking simulation. 
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Structure Based Drug Design:                                         Ligand Based Drug Design: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47: Work flow for combined virtual screening workflow for both structure based and 

ligand based Approaches 
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Top 58 ligand molecules more than a docking score of -7.00 kcal/mole were visually inspected 

for the pose and important binding residues. Top 58 ligands were found to belong to 18 diverged 

structural scaffolds and those matching all the three e-pharmacophoric features were selected. 

For the e-pharmacophore ADR for 3CO9, fitness above 1.5 (7576 ligands of 541 clusters) were 

selected for HTVS docking. The docking score of the crystal ligand was -5.171 kcal/mole. For SP 

docking we shortlisted 2092 (356 clusters), with docking score above -5 kcal/mole, fitness above 

1.6 and more than 2 H-bonds. For XP docking we shortlisted 1513 (306 clusters), with docking 

score above -6 kcal/mole, fitness above 1.7 and 2 H-bonds. Top 391 ligands were found clustered 

into 98 diverged structural scaffolds and those ligands with docking score above -7 kcal/mole, 

fitness above 1.8 and 2 H-bond and fit with all the three e-pharmacophoric features were selected. 

For the e-pharmacophore NRR of 2D3Z, fitness above 1.35 (28687 ligands of 1923 clusters) were 

selected for HTVS docking. The docking score of the crystal ligand was -4.948 kcal/mole. For SP 

docking we shortlisted 2035 (364 clusters), with docking score above -4 kcal/mole, fitness above 

1.4 and 2 H-bond. For XP docking we shortlisted 961 (183 clusters), with docking score above -6 

kcal/mole, fitness above 1.5 and 2 H-bonds. Top 482 ligands resulted into 98 diverse structural 

scaffolds and those with docking score above -6 kcal/mole, fitness above 1.8 and 2 H-bond and 

matching with all the three e-pharmacophoric features were selected 

For the e-pharmacophore ARR of 2GIQ, fitness above 1.5 (13367 ligands of 1646 clusters) were 

selected for HTVS docking. The docking score of the crystal ligand was -5.771 kcal/mole. For SP 

docking we shortlisted 10000 (1345 clusters), with docking score above -4 kcal/mole, fitness 

above 1.5 and 2 H-bond. For XP docking we shortlisted 2110 (430 clusters), with docking score 

above -6 kcal/mole, fitness above 1.6 and 2 H-bonds. Top 78 ligands were found to belong to 8 
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diverged structural scaffolds those with docking score above -7 kcal/mole, fitness above 1.7 and 2 

H-bonds and matching all the three e-pharmacophoric features were selected. 

For the e-pharmacophore NHR from 2GIR, fitness above 1.4 (11256 ligands of 978 clusters) were 

selected for HTVS docking. The docking score of the crystal ligand was -6.419 kcal/mole. For SP 

docking we shortlisted 6334 (478 clusters), with docking score above -5 kcal/mole, fitness above 

1.5 and 2 H-bonds. For XP docking we shortlisted 3843 (334 clusters), with docking score above 

-6 kcal/mole, fitness above 1.6 and 2 H-bonds. Top 205 ligands were found to belong to 28 

diverse structural scaffolds and those with docking score above -7 kcal/mole, fitness above 1.8 

and 2 H-bond and matching all the three e-pharmacophoric features were selected. 

Similarly, the best pharmacophore based on the ligand approach (ADDRR) was also employed in 

database screening using phase findmatches. There were 50000 ligands above fitness score 1.4 

which were selected for docking studies. We chose 2GIQ crystal structure and default grid 

because of its very low resolution and docked our top 50000 compounds in the palm active site 

pocket. Fitness above 1.4 (50000 ligands of 3458 clusters) were selected for HTVS docking. For 

SP docking we shortlisted 4231 compounds (352 clusters), with docking score above -5 

kcal/mole, fitness above 1.5 and 2 H-bonds. For XP docking we shortlisted 1552 (269 clusters), 

with docking score above -6 kcal/mole, fitness above 1.7 and 2 H-bonds.  

Top 108 ligands belonging to 19 diverse structural scaffolds were further selected based on 

docking score above -6.5 kcal/mole, fitness above 2.0 and 2 H-bond and while matching at least 

all the three e-pharmacophoric features. At each stage of screening we found common hits 

between two pharmacophore models and the overall overlap of number of retrieved compounds 

were analyzed with pie graph which is presented as Figure 48.  
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GOLD docking programe was employed to cross check our finally selected XP hits. There were 

two simultaneous runs performed and compounds with high GOLD score were selected. 

Figures 48A-48D depicts similar analyses at every stage of the design cycle from pharmacophore 

filtering, HTVS, Glide SP and XP steps and there were little overlap in later stages indicating that 

possibility of more diverse ligand generation. Analyses of the hits based on peptidic vs non-

petidic leads revealed that most of the leads generated were peptidic ligands (Table 18). 

Shortlisting was performed by comparing among non-peptidic leads ranked in more than one 

pharmacophore models.  
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Figure 48: Pie graph showing the extent of overlapping of compounds at each stage of screening 

for all six pharmacophore models. A- Phase find match hits, B- HTVS docking hits, C- SP 

docking hits, D-XP docking hits. Red and blue colored regions represent the number of screened 

hit compounds from any two pharmacophore models and the black color region represents the 

overall overlap of the screened compounds for HCV NS5B polymerase  

 

Structural diversity is an important index for the quality of the hits by an in-silico approach. 

Accordingly, we compared the structural diversity of the hits retrieved from the Asinex database.  
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The compounds retrieved from each of the 5 crystal structure and 3D QSAR model after docking results were clustered using Canvas 

[151] clustering algorithm from Schrodinger. The total number of clusters from each structure as represented in Table 18 was 

analyzed for structural diversity among the compounds generated. 

Table 18: Number of compounds (Hits) retrieved at each stage of screening 

a
Total number of  hits from Phase findmatches. 

b
Total number of  hits from HTVS docking.

              

c
Total number of  hits from SP docking.

                        

d
Total number of  hits from XP docking 

 

 

  

PDB 

CODE 

Phase find 

matches 

hits
a 

Clusters 
HTVS 

Hits
b
 

Clusters 
SP 

Hits
c
 

Clusters 
XP 

Hits
d
 

Clusters 
Non-

peptidic  
Peptidic 

3CVK 13226 1812 7257 1026 1549 168 58 18 11 47 

3CO9 7576 541 2092 356 1513 306 391 98 59 332 

2D3Z 28687 1923 2035 364 961 183 482 126 32 450 

2GIQ 13367 1646 9987 1345 2110 430 78 8 24 54 

2GIR 11256 978 6334 478 3843 334 205 28 61 144 

3D QSAR 

(2GIQ) 
50000 3458 4231 352 1552 269 108 19 22 86 
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The hits retrieved from 3CO9 were found to be very restrictive and retrieved very limited hits 

from Asinex with only 7576 hits demonstrating that different pharmacophore models may have 

quite different performance in screening a chemical database. Therefore, multiple 

pharmacophore models can be used to improve the overall screening efficacy. Similar 

evaluations were performed for each pharmacophoric hypotheses as explained in pie graph.  All 

the final hits were analysed for their ranking and the final hit list were prepared based on their 

ranking in more than one pharmacophore models. Predicted activities, Glide scores, fitness, H-

bond data and Gold Scores are presented in the Table 19.   

When compared among the similar pharmacophore models of 3CVK, 3CO9 and 2GIQ (Figure 

49) based on the similar features of A and R, there were more common hits as compared to other 

pharmacophores which were diverse. The distance between common features in the e-

pharmacophores were further mapped along with ligand based models and were found to show 

rmsd values within 2 A ͦ as shown in Figure 49. 
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Figure 49: Comparison of the distance between the common features in the pharmacophores 

obtained from structure based (ADR, ARR) and ligand (3D QSAR) based (AADRR). The e-

pharmacophores were mapped with the best ligand based pharmacophore and given very less 

rmsd values 
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The top 1% hits retrieved by each pharmacophore hypothesis were aligned with their respective 

pharmacophore shown in Figure 50. 

 

Figure 50: Top 1% of the selected compounds aligned with their pharmacophore with their 

respective PDB codes for HCV NS5B polymerase 

The structures of all top 10 hits with their docking score, fitness, number of H-bonds, important 

amino acid interaction and gold score are presented in Table 19 and Figure 51. 
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Table 19: Lead compounds with their fitness, docking score, number of H-bond, interaction with important amino acids and their two 

respective gold scores 

 

 

 

 

 

 

 

 

S.No. Fitness 
Docking 

Score 

H-

bond 

Predicted 

Activity 
Ligand Interactions 

Gold 

Score1 

Gold 

Score2 

H-1 1.105 -9.959 5 5.077 Tyr477, Ser476 (2), Arg501, Lys533 68 63 

H-2 1.707 -8.665 4 6.181 Asp318 (2),Tyr415, Ser556 75 70 

H-3 1.569 -8.221 2 5.199 Ser407, Tyr448 49 45 

H-4 1.579 -8.134 5 5.917 Asn291, Asp318, Gln446, Tyr448, Ser556 63 62 

H-5    2.058 -6.561 2 5.075 Asp318 (2) 61 62 

H-6 2.018 -7.471 4 6.215 Asp318, Met414, Tyr448, Ser556 72 71 

H-7 1.476 -7.818 4 6.051 Ser476, Trp528, Lys533, Arg422 58 59 

H-8 1.804 -7.746 3 5.008 Asn291, Tyr448, Ser556 67 61 

H-9 1.413 -7.120 2 5.689 Tyr448, Gln446 42 43 

H-10 1.863 -6.518 2 5.917 Asp318, Ser288 67 74 
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Figure 51: Top 1% of the selected compounds for HCV NS5B polymerase 

 

5.5. ADME predictions 

We finally evaluated the 10 lead compounds for the pharmaceutically relevant properties to 

check drug-likeness and predictions for drug’s pharmacokinetics in the human body including its 

ADME. QikProp module of Schrödinger suite [164] was used for evaluation of drug-like 

behavior through analysis of pharmacokinetic parameters required for absorption, distribution, 
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metabolism and excretion (ADME). All the ten lead compounds showed good partition 

coefficient (QPlogPo/w) values which were critical for understanding of absorption and 

distribution of drugs, to range from -1.535 to 4.448. Factor QPPCaco indicating permeability of 

the 10 lead compounds ranged from 2.966 to 777.368, where QPPCaco was a predicted apparent 

Caco-2 cell permeability in nm/sec value a key factor for estimation of cell permeability in 

biological membranes and its metabolism. All the lead compounds passed the entire 

pharmacokinetic requirement for a drug-like compound and were within the acceptable range 

defined for human use. Additional parameters such as molecular weight, H-bond donors, H-bond 

acceptors, and human oral absorption according to Lipinski’s rule of 5 etc. were also evaluated 

for their drug-like behavior and are represented in Table 20.  

Table 20: Lead compounds with their Qikprop properties 

  a  
Molecular weight (acceptable range < 500) 

  b
 Predicted octanol/water partition co-efficient log p (acceptable range from −2.0 to 6.5). 

  c 
Predicted Caco-2 cell permeability in nm/s (acceptable range: <25 is poor and >500 is great).

 

 
d 

Predicted  value for blockage of HERG K+ channels (concern below −6.5). 

 
e 
Percentage of human oral absorption (<25% is poor and >80% is high). 

 
f
  Rule of five  ( no. of violations of Lipinski’s rule of five: 0 is good and 4 is bad) 

S.NO MW
a
 QPlogP 

o/w
b
 

QPPCaco
c
 QPlogHERG

d
 Percent Human 

oral absorption
e
 

Rule of 

five
f
 

H-1 421.449 3.515 16.562 -4.263 69.346 0 

H-2 420.482 3.427 139.168 -5.640 85.378 0 

H-3 357.408 4.429 777.368 -6.348 100.000 0 

H-4 400.428 -1.535 52.237 -4.873 35.750 1 

H-5 291.309 2.010 130.085 -5.733 76.554 0 

H-6 418.426 0.586 2.966 -6.000 38.826 0 

H-7 478.525 3.025 27.360 -6.945 70.381 0 

H-8 382.329 1.884 205.604 -4.951 79.376 0 

H-9 381.341 2.498 112.270 -5.971 78.267 0 

H-10 357.383 1.781 91.850 -4.881 72.509 0 
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Thus, compounds with predicted interaction and good predicted pharmacokinetic properties were 

finalized. The shortlisted hits belonged to diverse scaffolds like, pyridine, pyrrole, indole pyrano, 

benzimidazole, pyrazole, quinoline, pyrimidinotrione, pyrimidopyridine, etc. The hits H1-10 

when analyzed for their binding interactions in the active site pockets of palm and thumb 

regions, was found to be (H-1, H-2, H-4-6, H-8-10) retrieved from palm region docking while 

hits H-3 and H-7 were retrieved from thumb region binding. Among these hits, H-2, H-6 and H-

7 showed higher predicted bioactivity based on 3D QSAR model (Table 19). The binding pose 

of all these hit compounds is presented in Figures 52 & 53.  It is clear that important amino acid 

residues reported for palm or thumb region has been involved in the interaction. 
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Figures 52: Ligand interaction diagram of hits (H-1- H-6) with their important amino acid 

residues for HCV NS5B polymerase 
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Figures 53: Ligand interaction diagram of hits (H-7- H-10) with their important amino acid 

residues for HCV NS5B polymerase 

 

5.6. Anti-HCV activities and cellular cytotoxicity 

Having shortlisted the lead compounds from the design protocol, we hypothesized that the 

compounds may possess the ability to bind with HCV NS5B and as a result could inactivate the 

RdRp activity of NS5B. To test this hypothesis, the compounds were preliminarily screened at 

50 µM concentrations in standard in vitro RdRp assays and the potency of anti-NS5B RdRp 

activity was evaluated. Among the tested compounds, H-5 and H-6 were able to demonstrate 

more than 50% inhibition of HCV NS5B RdRp activity as nearly 67% and 50% inhibition, 
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respectively were noted in the preliminary screening. Furthermore, compounds H-5 and H-6 

were evaluated in a dose-dependent manner to estimate the potency against NS5B polymerase 

and their IC50 values were found to be 28.8 µM and 47.3 µM, respectively. Among the other 

compounds, H-10 showed moderately poor inhibition in RdRp assay as nearly 27% inhibition 

was noted in preliminary screening. On other hand, no other compounds showed significant 

inhibition in preliminary screening against RdRp activity (Table 21).  

To further evaluate the anti-HCV activity and cellular cytotoxicity of hit compounds, we 

measured the ability of these compounds to inhibit HCV replication in cells carrying HCV 

subgenomic replicons in Huh7/Rep-Feo1b cells. Simultaneously, the effect of these compounds 

on cellular cytotoxicity was also measured. As expected, approximately 96% and 86% inhibition 

in HCV replication was demonstrated by compounds H-5 and H-6 at 50 µM, respectively. 

Compounds H-5 and H-6 also did not show any cytotoxicity as nearly 114% and 90% cells were 

found to be viable after the treatment of both of these compounds at 50 µM, respectively. To our 

surprise, compound H-2, H-7, H-9 and H-10 showed <80% inhibition of HCV replication at 50 

µM concentration with cell viability of 64%, 68%, 77% and 113%, respectively. The inhibition 

obtained by these compounds could be due to either the inhibition of viral proteins other than 

HCV NS5B or due to inhibition of cellular factors facilitating HCV replication. Compound H-3 

showed approximately 50% inhibition of HCV replication at 50 µM concentration whereas 

compounds H-4 and H-8 did not show considerable inhibition but were found to have no cellular 

cytotoxicity at the tested concentration. 
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Table 21: Anti-HCV potency and cytotoxicity of hit compounds 

a
The anti-HCV activity of the compounds in Feo1b cells replicating HCV subgenomic replicons 

reporters at 50 µM concentration. Cells incubated in the presence of equal amounts of DMSO 

served as control. The data represents an average of three independent experiments. 
b
Cell 

viability was determined at 50 µM concentrations using CellTiter 96® AQueous One Solution 

Cell Proliferation kit (Promega) in Feo1b cells. Cells treated with equal amounts of DMSO was 

considered at 100% viable and served as control. 
c
Inhibition of

 
NS5B RdRp activity at 50 µM 

concentrations of indicated compounds on homopolymeric template-primer (polyrA-U12) and 

MnCl2 as divalent metal ion as described in Materials and Methods. The inhibition of RdRp 

activity in the present of DMSO was considered as control. The results shown are an average of 

three independent set of experiments in triplicate. 
d
 Ten quarter log dilutions of compounds were 

employed in RdRp assay. NI, no inhibition. ND, not determined 

 

 

 

No. 
Feo1b replicon 

Inhibition
a
 (%) 

Viability
b
 (%) 

NS5B RdRp 

inhibition
c
 (%) 

IC50
d
 (µM) 

H-1 NI 88 ± 1 5 ± 2 ND 

 H-2 97 ± 1 64 ± 2 9 ± 1 ND 

H-3 51 ± 5 88 ± 1 1 ± 1 ND 

H-4 16 ± 4 109 ±  3 NI ND 

H-5 97 ± 1 114  ±  11 67 ± 4 28.8 ± 2.0 

H-6 86  ± 1 90 ± 4 50 ± 3 47.3 ± 5.0 

H-7 91 ± 2 68 ± 9 8 ± 3 ND 

H-8 25 ± 8 106 ± 5 NI ND 

H-9 80 ± 4 77 ± 6 13 ± 5 ND 

H-10 81 ± 1 113 ± 12 27 ± 1 ND 
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Figure 54: Interaction picture of the most potent leads H-5 and H-6  
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The interaction picture (Figure 54) of the two most active compounds were shown that the same 

interactions of crystal ligands of palm region. The compound H-5 showed two H-bonds with 

Asp318 which was an important interaction responsible for the activity shown by all bound 

inhibitors and showed that the binding site of H-5 was similar to that of the crystal ligands 

belong to 3CVK and 3CO9. The compound H-6 showed three H-bond interaction with Asp318, 

Tyr448 and Ser556. All these three were important interactions shown by all three crystal 

ligands. These interactions showed that the compound H-6 was binding to the same binding site 

of the crystal ligands of 3CVK, 3CO9 and 2GIQ. This was the evidence that H-bond interaction 

pattern was an important criterion to finalise the hit compounds. 

5.7. CONCLUSION 

The available information on HCV NS5B crystal structures bound with inhibitors in the two sites 

namely palm and thumb regions along with the ligand with known inhibitory potential were 

explored for a comparative pharmacophore analyses followed by a high-throughput virtual 

screening and docking to identify diverse non-peptidic leads. It was evident from this study that 

the hits retrieved by combining multiple pharmacophore hypothesis and 3D QSAR predictions 

yielded 10 hit compounds which were diverse. The most promising hits identified in the 

biological screening were H-5 and H-6 which showed IC50s of 28.8 µM and 47.3 µM 

respectively against NS5B polymerase and anti-HCV inhibition of 96% and 86% respectively. 

The lead compounds identified were benzimidazole (H-5) and pyridine (H-6) scaffolds which 

could be considered as protypical leads for further drug development. 
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CHAPTER 6 

DESIGN OF HIV PROTEASE INHIBITORS: RESULTS & DISCUSSIONS 

 

6.1. Background 

The protease of the HIV-1 is an attractive drug target because of its crucial role in the replication 

process of HIV. The crystal structure of HIV protease was first reported by Navia and colleagues 

from Merck Laboratories in 1989 [97]. It is a noncovalent homodimer, with each subunit 

possessing 99 amino acids. The active site pocket lies between the two identical subunits. It 

resembles aspartic proteases by having the sequence Asp25-Thr26-Gly27. The active site triad 

Asp25-Thr26-Gly27
 
is stabilized by a group of hydrogen bond network between the amino acid 

residues in the active site known as ‘Fireman’s grip’ shown in Figure 55. The roof of the active 

site is covered by the two double stranded beta sheets from each subunit also called as flaps 

which contains glycine residues and are highly flexible in nature [98].  

 

Figure 55: Fireman’s grip: The H-bond networks in the active site pocket [98] 
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HIV protease inhibitors play a very crucial role in retarding the viral replication and the 

formation of infectious virions. These drugs were found to be very useful in reducing the viral 

load and improving the CD4 cell counts in AIDS patients. However, rapid emergence of drug 

resistance has been reported for almost all protease inhibitors currently in clinical use due to site-

specific mutations in the enzyme [230]. The bioavailability and toxicity profiles of protease 

inhibitors are also of importance; thus, there exists an urgent need to discover a new generation 

of protease inhibitors that are more potent against these mutant forms of the virus and, at the 

same time, that exhibit low toxicity and high bioavailability [231, 232]. 

6.2. Structure (e-Pharmacophore) based design (Work flow as given in Figure 38) 

There were more than 180 crystal structures available in PDB. We selected 8 crystal structures 

based on low resolution and high inhibitory activity of the bound crystal ligand as shown in 

Figure 56. They were 3OXC, 2Q5K, 3DJK, 3H5B, 3I6O, 3NDX, 2AID and 3T11 [233-238]. 

The bound crystal ligand of 3OXC was isoquinoline derivative (drug name-Saquinavir) with H-

bond interaction with Asp25, Asp30, Gly48 and Asp125. The bound inhibitor of 2Q5K was 

pyrimidine derivative (drug name–Lopinavir) with H-bond interaction with Asp25, Gly27, 

Asp29 and Asp125. 3DJK had dioxepan derivative as its bound inhibitor and its H-bond 

interaction with Asp25, Asp125 and Gly127. 3H5B had furan derivative as its inhibitor and H-

bonds with Asp25, Asp29 and Asp130. 3I6O had furan derivative and H-bonds with Asp25, 

Asp29, Asp30, Asp125, Asp130 and Gly27. 3NDX had a thiazole derivative (drug name-

Ritonavir) as its inhibitor and H-bonds with Asp25, Asp29 and Gly27, Gly48. 2AID had a non-

peptidic inhibitor of piperidine derivative and H-bonds with Asp25. 3T11 had a diazepin 

derivative as its bound inhibitor and its interactions were not yet revealed.  
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Figure 56: Structures of bound inhibitors from indicated co-crystals for HIV protease 
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Figure 57: The eight PDB structures with their respective IDs and their active site region and the 

binding site pocket of the eight indicated crystal structures, demonstrated in purple color 

createdusing ‘Create binding site surfaces’ module of Schrodinger suite for HIV protease target 
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From the interaction patterns of these crystal ligands, the H-bond interactions found to be 

important were with Asp25, Asp29, Asp30, Asp125, Gly27, Gly48, Gly127 and Asp130.These 

crystal structures showed good resolution (1.00A ͦ - 2.40Aͦ) and their ligand activity ranged from 

0.2 nM to 270 nM. 3OXC, 2Q5K, 3DJK, 3H5B, 3I6O and 3NDX were bound to peptidic 

inhibitors and 2AID and 3T11 were to bound non-peptidic inhibitors (Figure 57). The PDB 

structure resolutions and their activity values are given in the Table 22. 

Table 22: Selected Crystal structures with their PDB IDs, resolution and their bound inhibitor’s 

IC50 values for HIV protease target 

 

We downloaded all these protein structures from PDB. We prepared all structures using protein 

preparation wizard tool in Maestro. We prepare energetically optimized and minimized protein 

structures for further use. Receptor Grid Generation tool in Maestro software package was used 

to generate energy grids for all prepared protein structures. The Grid table is given in Table 23.   

 

 

 

 

 

 

S.No. PDB-ID Resolution A
ͦ
 IC50 nM 

1.  3OXC 1.16 0.2- 270 

2.  2Q5K 1.95 35 

3.  3NDX 1.03 67 

4.  3DJK 1 4.9 

5.  3H5B 1.29 26 

6.  3I6O 1.17 7 

7.  2AID 1.90 Ki=15000nM 

8.  3T11 2.4 NA 
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Table 23: Grid information along with their PDB IDs employed for docking studies for HIV 

protease target 

 

The protocol followed was similar to that of HCV NS5B Figure 38. Each feature 

pharmacophore hypotheses was assigned with energy values; lower the energy value higher the 

stablility of the feature as shown in Table 24. We kept 10 as maximum number of features. We 

used all possible feature combination and got 28 different combinations.  

6.2.1. Energy-based pharmacophore generation and their validation 

The e–pharmacophore method that of structure based and ligand based techniques was explored 

for 8 crystal structures of HIV proteases. Using the defalut grids (Table 23) the crystal ligands 

were docked and based on the XP descriptor information, the e-paharmacophores were 

generated. The pharmacophore hypotheses were developed by mapping Glide XP energetic 

terms onto pharmacophore sites which were calculated based on the structural and energy 

information between the protein and the ligand. The initial number of pharmacophore sites was 

set up to ten for all the crystal structures [233-238]. Generated e-pharmacophores with their all 

possible features and their energy values are given in Table 24. 

 

 

S.No PDB code X-Centre Y-Centre Z-Centre 

1.  30XC 5.1111          -2.6919 14.8325 

2.  2Q5K 20.3871 29.8650 12.8521 

3.  3NDX 31.1662 0.1820 12.2442 

4.  3DJK 16.2781  22.8492 17.2581 

5.  3H5B 16.0505 22.7720 17.0518 

6.  3I6O 16.9537 -20.3752 -5.6856 

7.  3T11 1.5613 1.2062 19.4417 

8.  2AID 5.4462 -0.0196 13.045 
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Table 24: Possible e-pharmacophoric features with their score for each crystal structure for HIV 

protease target 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PDB Features Score Features 

 

 

3OXC 

 

 

A5 -0.70 H-bond Acceptor 

A2 -0.64 H-bond Acceptor 

D7 -0.43 H-bond Donor 

A3 -0.37 H-bond Acceptor 

D9 -0.35 H-bond Donor 

D8 -0.21 H-bond Donor 

R19 -0.84 Aromatic Ring 

2Q5K 

A3 -0.53 H-bond Acceptor 

D6 -0.33 H-bond Donor 

D8 -0.32 H-bond Donor 

A2 -0.31 H-bond Acceptor 

D7 -0.26 H-bond Donor 

R15 -0.93 Aromatic Ring 

R16 -1.02 Aromatic Ring 

R17 -1.27 Aromatic Ring 

3NDX 

A7 -0.63 H-bond Acceptor 

A4 -0.57 H-bond Acceptor 

D9 -0.32 H-bond Donor 

R19 -0.70 Aromatic Ring 

R20 -0.89 Aromatic Ring 

 

3DJK 

D9 -0.47 H-bond Donor 

D10 -0.65 H-bond Donor 

R14 -0.99 Aromatic Ring 

R15 -0.98 Aromatic Ring 

3H5B 

A6 -0.63 H-bond Acceptor 

D9 -0.41 H-bond Donor 

A4 -0.28 H-bond Acceptor 

A3 -0.09 H-bond Acceptor 

R16 -1.00 Aromatic Ring 

R17 -0.89 Aromatic Ring 

3I6O 

A6 -0.63 H-bond Acceptor 

D10 -0.39 H-bond Donor 

A3 -0.28 H-bond Acceptor 

A7 -0.13 H-bond Acceptor 

R16 -1.07 Aromatic Ring 

R17 -1.17 Aromatic Ring 

3T11 

D6 -0.47 H-bond Donor 

R11 -0.58 Aromatic Ring 

R12 -1.62 Aromatic Ring 

2AID 

A1 -0.63 H-bond Acceptor 

D4 -0.33 H-bond Donor 

R13 -0.59 Aromatic Ring 
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We preferred the pharmacophoric features with high negative values that were lower energy and 

were more stable. There were 28 e-pharmacophores with all possible combinations of features. 

The crystal structure from 3OXC gave an e-pharmacophore with seven features which was the 

maximum number of features compared to all other crystal structures. The crystal structures 

3DJK, 3H5B, 3I6O and 2Q5K gave six maximum number of features; 3NDX gave 5 as 

maximum whereas 3T11 and 2AID gave only three features as maximum number of features. 

Using the decoy sets we validated all these possible e-pharmacophores. Using phase findmatches 

in Schrödinger suite we did pharmacophore screening for all these 28 e-pharmacophores with the 

data set collection of 1000 decoys and 64 known reported HIV inhibitors to validate the 

pharmacophores. Though few e-pharmacophores like 3NDX (AADRR) showed very good EF 

and 3OXC (AAADDDR), 3DJK (ADRR), 3H5B (ADRR) had EF values as shown in Table 25, 

we couldn’t select them because they had very less number of actives in the pharmacophore 

screening output. The available number of pharmacophore sites and selected sites for each 

crystal structures are given in Table 26. 
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S.N0 PDB No of 

Features 

Features Total 

Hits
a
 

Actives
b
 EF

c
 

1% 

Active
d 

1% 

%Ya
e
 % A

f
 F(-ve)

g
 F(+ve)

h
 

1.  3OXC 7 AAADDDR 20 10 11 9.4 50 16.6 54 10 

2.  3OXC 6 AAADDR 125 20 4.5 4.7 16 31.3 44 105 

3.  3OXC 5 AAADR 373 40 7.6 7.8 10.7 62.5 24 333 

4.  3OXC 4 AADR 681 51 9.1 9.4 7.5 80 13 630 

5.  3OXC 3 AAR 703 54 6 6.2 7.7 84 10 649 

6.  3DJK 6 AADDRR 7 5 7.6 7.8 71.4 7.8 59 2 

7.  3DJK 5 AADRR 25 7 7.6 7.8 28 10.9 57 18 

8.  3DJK 4 ADRR 168 26 11 10.9 15.5 40.6 38 104 

9.  3DJK 3 DRR 652 46 6 4.7 7.1 71.9 18 606 

10.  3H5B 6 AAADRR 18 7 9.1 7.8 38.9 10.9 57 11 

11.  3H5B 5 AADDR 28 7 7.6 7.8 25 10.9 57 21 

12.  3H5B 4 ADRR 196 26 11 9.4 13.3 40.6 38 170 

13.  3H5B 3 ARR 568 40 4.5 4.7 7.1 62.5 24 528 

14.  3NDX 5 AADRR 155 24 14 14.1 15.5 37.5 40 131 

15.  3NDX 4 AARR 325 36 7.6 7.8 11.1 56.3 28 289 

16.  3NDX 3 ARR 645 45 9.1 9.4 7 70.3 19 600 

17.  3I6O 6 AAADRRR 8 3 4.5 4.7 37.5 37.5 61 5 

18.  3I6O 5 AAARR 28 5 3 3.1 17.9 7.8 59 23 

19.  3I6O 4 AARR 112 11 4.5 4.7 9.8 17.2 53 101 

20.  3I6O 3 ARR 530 41 3 3.1 7.7 64.1 23 489 

21.  2Q5K 6 ADDRRR 8 4 6 6.2 50 6.3 60 4 

22.  2Q5K 5 ADRRR 8 4 6 6.2 50 6.3 60 4 

23.  2Q5K 4 ARRRR 59 13 11 9.4 22 20 51 46 

24.  2Q5K 3 ARR 727 48 9.1 9.4 6.6 75 16 679 

Table 25: Enrichment calculations for HIV protease target 

 

 

Contd.. 
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a 
Total number of hit molecules from the database 

b 
Total number of active molecules in hit list 

 c 
Enrichment factor using formula 

d 
Top 1% Actives in the hit. 

e 
Yield of actives = [ (Ha/Ht) × 100] 

f 
Ratio of actives  = [(Ha/A) × 100] 

g 
False negatives = [A - Ha] 

h 
False Positives = [Ht - Ha] 

 

 

25.  2Q5K 3 ARR 246 29 11 9.4 11.8 45 35 217 

26.  2Q5K 3 ARR 474 40 11 9.4 8.5 62.5 24 434 

27.  3T11 3 DRR 784 47 0 0 6 73 17 737 

28.  2AID 3 ADR 711 52 1.5 1.6 7.3 81.3 12 659 
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Table 26: The possible number of available pharmacophore sites from each PDB structure, the 

final selected sites and their final selected hypotheses for HIV protease target  

*A-Acceptor, D-Donor, R-Ring aromatic, N-Negatively ionizable and H-Hydrophobic  

Among these 28 e-pharmacophores we selected 12 e-pharmacophores (Table 26) based on their 

good EF 1%, % of actives, BEDROC, RIE. The selected e-pharmacophores are shown in Figure 

58 and their respective EF values are given in Tables 27 & 28.  

The e-pharmacophores 3OXC (AAADR) and 3NDX (AARR) showed high calculated EF and 

GH values. The e-pharmacophores 3OXC (AADR), 3OXC (AAR) and 2AID (ADR) retrieved 

more than 80% of the actives and other selected e-pharmacophores retrieved more than 60% and 

70% actives except the e-pharmacophore 3NDX (AARR) which retrieved only 56.3% but 

showed very good calculated EF and GH values. This indicated that these e-pharmacophores 

were eligible to retrieve more number of actives during pharmacophore screening. 

 

 

 

S.No PDB code Maximum no of 

possible sites 

No of selected 

sites 
Hypothesis* 

1. 3OXC 7 
5 AAADR 

4 AADR 

3 AAR 

2. 2Q5K 8 3 ARR 

3 ARR 

3. 3NDX 5 4 AARR 

3 ARR 

4. 3DJK 6 3 DRR 

5. 3H5B 6 3 ARR 

6. 3I6O 7 3 ARR 

7. 3T11 3 3 DRR 

8. 2AID 3 3 ADR 



142 
 

 

 

 

 



143 
 

 

Figure 58: The finally selected 12 e-pharmacophores for HIV protease target
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Table 27: Selected 12 e-pharmacophores with their calculated overall EF, goodness of fit (GH), % of actives, yield of actives, false 

negative and false positive values for HIV protease target 

         
a 

Total number of hit molecules from the database
 

              b 
Total number of active molecules in hit list 

              c 
Enrichment factor using formula 

             d 
Goodness of Fit using formula 

             e 
Yield of actives = [ (Ha/Ht) × 100] 

             f 
Ratio of actives  = [(Ha/A) × 100] 

             g 
False Negatives = [A - Ha] 

             h 
False Positives = [Ht - Ha] 

S.NO PDB 
No of 

Features 
Features T.Hitsa 

Actives b 
EFc 

GHd %Yae 
%Af F(-ve)g 

F(+ve)h 

1.  

3OXC 

5 AAADR 373 40 1.68 0.153 10.7 62.5 24 333 

2.  4 AADR 681 51 1.17 0.083 7.5 80 13 630 

3.  3 AAR 703 54 1.20 0.082 7.7 84 10 649 

4.  
2Q5K 

3 ARR 727 48 1.03 0.065 6.6 75 16 679 

5.  3 ARR 474 40 1.32 0.118 8.5 62.5 24 434 

6.  
3NDX 

4 AARR 325 36 1.73 0.155 11.1 56.3 28 289 

7.  3 ARR 645 45 1.09 0.082 7 70.3 19 600 

8.  3DJK 3 DRR 652 46 1.10 0.082 7.1 71.9 18 606 

9.  3H5B 3 ARR 568 40 1.10 0.091 7.1 62.5 24 528 

10.  3I6O 3 ARR 530 41 1.21 0.104 7.7 64.1 23 489 

11.  3T11 3 DRR 784 47 0.94 0.049 6 73 17 737 

12.  2AID 3 ADR 711 52 1.14 0.076 7.3 81.3 12 659 
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Table 28: The selected 12 e-pharmacophores with their number of features, their various 

combinations of features, enrichment factor at top 1%, RIE, ROC, BEDROC (-20) and  

 (-160.9) for HIV protease target 

EF- Enrichment Factor at 1% of the decoy dataset 

RIE- Robust Initial Enhancement 

ROC-Receiver Operating Characteristic curve value 

BEDROC- Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic 

 

The distance mapping among the features is presented in Table 29. Ring (R) feature was 

common among all the pharmacophoric sites. Acceptor (A) feature was common among many 

pharmacophores except in 3DJK (DRR) and 3T11 (DRR). There were only one e-

pharmacophore with five features that was 3OXC (AAADR) and two with four features 3OXC 

(AADR) and 3NDX (AARR) while remaining pharmacophores had only 3 features. Among the 

crystal structure 3OXC e-pharmacophores there were three e-pharmacophores selected 

(AADRR, AADR and AAR).  

S.NO PDB 
No of 

Features 
features 

EF 

1% 
RIE ROC 

BEDROC 

(α =20) 

BEDROC 

(α  =160) 

1.   

3OXC 

 

5 AAADR 7.6 5.14 0.99 0.442 0.522 

2.  4 AADR 9.1 5.19 0.94 0.446 0.557 

3.  3 AAR 6 4.84 0.90 0.416 0.431 

4.  
2Q5K 

3 ARR 9.1 4.66 0.94 0.401 0.442 

5.  3 ARR 11 5.21 0.99 0.448 0.535 

6.  
3NDX 

4 AARR 7.6 5.12 1.00 0.440 0.478 

7.  3 ARR 9.1 3.90 0.94 0.335 0.440 

8.  3DJK 3 DRR 6 3.11 0.91 0.267 0.346 

9.  3H5B 3 ARR 4.5 3.87 0.97 0.333 0.313 

10.  3I6O 3 ARR 3 3.04 0.96 0.261 0.263 

11.  3T11 3 DRR 0 0.42 0.82 0.036 0.000 

12.  2AID 3 ADR 1.5 3.38 0.86 0.290 0.068 
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Table 29: Distance between the features of e-pharmacophores for HIV protease target 

 

PDB Features* A1-R1 

(Aͦ) 

R1-D 

(Aͦ) 

D-A1 

(Aͦ) 

D-R2 

(Aͦ) 

R1-R2 

(Aͦ) 

R2-A1 

(Aͦ) 

R1-A2 

(Aͦ) 

A1-A2 

(Aͦ) 

A2-D1 

(Aͦ) 

A3-R1 

(Aͦ) 

A2-A3 

(Aͦ) 

 

3OXC 

AAADR 4.167 5.101 0.953 NA NA NA 7.336 6.845 6.880 7.336 3.584 

AADR 4.167 5.101 0.953 NA NA NA 7.336 6.845 6.880 7.336 3.584 

AAR 4.167 NA NA NA NA NA 7.336 6.845 NA NA NA 

2Q5K ARR 9.199 NA NA NA 8.203 4.765 NA NA NA NA NA 
ARR 4.765 NA NA NA 8.942 12.070

max 
NA NA NA NA NA 

3NDX AARR 5.799 NA NA NA 8.102 9.386 4.311 7.828 NA NA NA 
ARR 5.799 NA NA NA 8.102 9.386 4.311 NA NA NA NA 

3DJK DRR NA 4.309 NA 6.185 6.530 NA NA NA NA NA NA 
3H5B ARR 11.140 NA NA NA 6.312 6.302 NA NA NA NA NA 

3I6O ARR 6.524 NA NA NA 6.419 11.760 NA NA NA NA NA 
3T11 DRR NA 2.419 NA 5.925 7.020 NA NA NA NA NA NA 
2AID ADR 3.538 3.831 0.951

min 
NA NA NA NA NA NA NA NA 

Distance shown in Ǻ, *A-Acceptor, D-Donor, R-Ring aromatic, N-Negatively ionizable and H-Hydrophobic. NA-not applicable
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While screening the database, we kept the option of must match five sites, four sites and three 

sites respectively to get diverse compounds though all these three were derived from the same 

crystal structure. In four feature e-pharmacophore models there were two acceptor (A) features 

and one ring (R) were found to be common. But when we compared the distance between these 

common features like A1-A2 in 3OXC (AADR) which was 11.503 Ǻ and in 3NDX (AARR) was 

7.828 Ǻ and A-R distances were 4.167 Ǻ and 7.336 Ǻ 3OXC and 3NDX 4.311 Ǻ and 5.799 Ǻ. 

Though they had similar features, the distances were different and hence utilized further to 

retrieve more diversed compounds. There were nine pharmacophores with three features, all of 

them had atleast one ring (R) feature as common, and this showed that the new inhibitor which 

we would design could possess atleast one ring feature. Among these nine 3 feature 

pharmacophores, two had DRR, one AAR, one ADR and five ARR. When we compared the 

distance between the features of DRR, the R1-R2 distance was little closer (6.530 Ǻ and 6.296 

Ǻ), but the distance between D-R was quite different from each other 4.309Ǻ and 6.185Ǻ in 

3DJK (DRR) and 3.340 Ǻ and 7.481 Ǻ in 3T11 (DRR). There were five e-pharmacophore with 

ARR features and when we compared the distance between the R1-R2 features, three showed 

little close values like 8.203 Ǻ in 2Q5K (A3R15R16), 8.942 Ǻ in 2Q5K (A3R16R17) and 8.102 

Ǻ in 3NDX (ARR) and also two showed 6.312Ǻ in 3H5B (ARR) and 6.419Ǻ in 3I6O (ARR). 

But for these e-pharmacophores A-R distances were different. The pharmacophore 2Q5K 

(A3R16R17) showed the maximum distance of 12.07 Ǻ and the e-pharmacophore 2AID (ADR) 

had the minimum distance of 0.951Ǻ. This showed that all twelve e-pharmacophores were 

unique and they must have the ability to screen more number of diverse ligands. 
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6.3. Ligand based design  

We chose 1535 HIV protease inhibitors from various literatures with known IC50 values [234-

269]. These inhibitors showed a wide range of activity from 0.026 nM to 316 µM with structural 

diversity. 134 compounds were selected from 168 clusters as representative molecules as shown 

in Figure 59. Clustered molecules with structural diversity were utilized for 3D QSAR 

development. Set of sixty four already reported inhibitors were used as actives to validate the 

pharmacophores and were also prepared using LigPrep 2.5 [150]. The threshold range of the 

active and inactive pIC50 was 10.585 and 3.500 respectively.  
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Figure 59: Compounds used for 3D QSAR (ligand) based pharmacophore development and 3D 

QSAR model for HIV protease target 
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The 134 ligands were aligned with the pharmacophore template of compound with high active 

score compound. We selected 134 promising compounds to develop our 3D QSAR model. We 

were randomly as 103 for training set and 31 for test set (Table 30), by using the method 

“Automated Random Selection” option present in the PHASE module. A model with PLS factor 

five was considered as the best statistical model. This model was validated by predicting 

activities of test set, training set and overall molecules Table 30. 
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Table 30: Compounds for 3D QSAR study with their experimental, predicted activity and fitness 

score for HIV protease target.  

S. No. 

Fitness 

Experimental 

activity 

Predicted 

activity Error 

Phase 

QSAR set 

1.  1.502 9.800 9.080 0.720 test 

2.  2.051 9.600 9.130 0.470 test 

3.  0.698 9.600 8.420 1.180 test 

4.  2.053 9.319 8.800 0.519 test 

5.  2.311 9.301 9.380 -0.079 test 

6.  1.565 9.252 9.010 0.242 test 

7.  1.539 9.222 9.010 0.212 test 

8.  1.587 9.097 8.430 0.667 test 

9.  1.582 8.921 9.010 -0.089 test 

10.  1.409 8.886 8.280 0.606 test 

11.  1.434 8.770 8.540 0.230 test 

12.  1.036 8.770 8.750 0.020 test 

13.  1.456 8.569 8.370 0.199 test 

14.  1.589 8.260 8.150 0.110 test 

15.  0.956 8.086 8.280 -0.194 test 

16.  0.712 7.738 8.050 -0.312 test 

17.  1.424 7.538 7.510 0.028 test 

18.  1.378 7.409 7.440 -0.031 test 

19.  1.593 7.328 7.140 0.188 test 

20.  1.739 7.208 6.970 0.238 test 

21.  1.453 6.886 6.700 0.186 test 

22.  1.713 6.804 6.660 0.144 test 

23.  1.045 6.770 6.670 0.100 test 

24.  1.347 6.398 7.450 -1.052 test 

25.  1.438 6.102 6.780 -0.678 test 

26.  1.012 6.000 5.740 0.260 test 

27.  1.415 5.745 6.750 -1.005 test 

28.  1.186 5.553 6.130 -0.577 test 

29.  1.362 5.000 6.050 -1.050 test 

30.  1.385 4.790 5.250 -0.460 test 

31.  1.029 4.542 5.940 -1.398 test 

32.  3.000 10.585 10.690 -0.105 training 

33.  1.528 10.523 10.150 0.373 training 

34.  1.237 10.523 10.410 0.113 training 
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35.  1.484 10.270 10.240 0.030 training 

36.  2.106 10.220 10.340 -0.120 training 

37.  1.536 10.220 10.190 0.030 training 

38.  1.647 10.081 9.940 0.141 training 

39.  1.809 10.000 10.030 -0.030 training 

40.  1.663 9.959 9.970 -0.011 training 

41.  1.061 9.854 9.920 -0.066 training 

42.  1.064 9.770 9.910 -0.140 training 

43.  1.272 9.699 9.660 0.039 training 

44.  0.949 9.553 9.610 -0.057 training 

45.  1.214 9.523 9.540 -0.017 training 

46.  1.277 9.409 9.350 0.059 training 

47.  0.986 9.310 9.340 -0.030 training 

48.  1.162 9.301 9.140 0.161 training 

49.  1.326 9.229 9.240 -0.011 training 

50.  1.345 9.097 9.120 -0.023 training 

51.  0.826 9.081 9.050 0.031 training 

52.  1.269 8.959 8.900 0.059 training 

53.  1.169 8.921 8.870 0.051 training 

54.  1.550 8.890 8.930 -0.040 training 

55.  1.483 8.886 8.880 0.006 training 

56.  0.797 8.854 8.830 0.024 training 

57.  2.279 8.745 8.640 0.105 training 

58.  1.931 8.538 8.440 0.098 training 

59.  1.116 8.523 8.600 -0.077 training 

60.  1.425 8.469 8.640 -0.171 training 

61.  0.596 8.319 8.300 0.019 training 

62.  1.510 8.180 8.190 -0.010 training 

63.  1.160 8.155 8.220 -0.065 training 

64.  1.084 8.086 8.120 -0.034 training 

65.  1.448 8.051 8.260 -0.209 training 

66.  1.437 8.000 8.110 -0.110 training 

67.  1.293 7.886 7.820 0.066 training 

68.  1.038 7.854 7.900 -0.046 training 

69.  1.738 7.796 7.790 0.006 training 

70.  0.907 7.796 7.660 0.136 training 

71.  1.925 7.721 7.740 -0.019 training 

72.  1.182 7.721 7.740 -0.019 training 

73.  1.198 7.706 7.760 -0.054 training 
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74.  1.551 7.678 7.610 0.068 training 

75.  1.229 7.620 7.780 -0.160 training 

76.  1.241 7.602 7.510 0.092 training 

77.  1.632 7.560 7.510 0.050 training 

78.  1.568 7.523 7.570 -0.047 training 

79.  0.595 7.523 7.550 -0.027 training 

80.  0.813 7.470 7.430 0.040 training 

81.  1.412 7.465 7.470 -0.005 training 

82.  1.593 7.409 7.360 0.049 training 

83.  1.897 7.387 7.340 0.047 training 

84.  0.958 7.347 7.360 -0.013 training 

85.  1.255 7.302 7.490 -0.188 training 

86.  1.148 7.208 7.220 -0.012 training 

87.  1.721 7.155 7.330 -0.175 training 

88.  1.484 7.076 7.130 -0.054 training 

89.  1.702 7.071 6.940 0.131 training 

90.  1.422 7.071 7.010 0.061 training 

91.  1.448 6.959 6.860 0.099 training 

92.  1.479 6.921 6.960 -0.039 training 

93.  1.245 6.879 6.870 0.009 training 

94.  1.406 6.870 6.920 -0.050 training 

95.  1.033 6.824 6.760 0.064 training 

96.  1.664 6.752 6.690 0.062 training 

97.  1.620 6.752 6.730 0.022 training 

98.  1.818 6.616 6.580 0.036 training 

99.  1.402 6.569 6.770 -0.201 training 

100.  0.700 6.301 6.260 0.041 training 

101.  1.518 6.159 6.170 -0.011 training 

102.  1.659 6.108 5.910 0.198 training 

103.  0.969 6.097 5.930 0.167 training 

104.  1.430 6.038 6.060 -0.022 training 

105.  2.075 6.000 6.280 -0.280 training 

106.  1.477 6.000 6.110 -0.110 training 

107.  1.415 6.000 6.050 -0.050 training 

108.  1.125 6.000 6.040 -0.040 training 

109.  1.227 5.921 5.880 0.041 training 

110.  1.029 5.921 5.840 0.081 training 

111.  1.381 5.900 5.870 0.030 training 

112.  0.975 5.854 5.910 -0.056 training 
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113.  0.701 5.796 5.770 0.026 training 

114.  1.306 5.642 5.590 0.052 training 

115.  1.549 5.638 5.610 0.028 training 

116.  1.508 5.530 5.440 0.090 training 

117.  1.468 5.523 5.680 -0.157 training 

118.  1.445 5.523 5.390 0.133 training 

119.  1.409 5.523 5.520 0.003 training 

120.  1.057 5.398 5.340 0.058 training 

121.  1.315 5.377 5.380 -0.003 training 

122.  1.663 5.314 5.300 0.014 training 

123.  1.468 5.000 5.040 -0.040 training 

124.  1.172 4.959 4.980 -0.021 training 

125.  1.327 4.699 4.570 0.129 training 

126.  1.227 4.523 4.850 -0.327 training 

127.  1.167 4.520 4.570 -0.050 training 

128.  1.365 4.456 4.560 -0.104 training 

129.  1.302 4.246 4.310 -0.064 training 

130.  1.135 4.241 4.170 0.071 training 

131.  1.408 4.000 3.890 0.110 training 

132.  1.598 3.812 3.750 0.062 training 

133.  1.162 3.664 3.560 0.104 training 

134.  1.231 3.500 3.550 -0.050 training 
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6.3.1. Ligand based pharmacophore generation and its validation 

 

Pharmacophore dataset comprising of 134 molecules were divided randomly as 103 for training 

set and 31 for test set as described earlier. PHASE provided the means to build QSAR models 

using the activities of the ligands that match a given hypothesis. To bulid the QSAR model, the 

compounds with pIC50 values more than 10.00 were labelled as actives and less than 4.50 were 

labelled as inactives. The molecules present in the Pharmaset were utilized for the generation of 

the hypothesis. The Pharmaset consisted of 8 actives, 7 inactives and remaining 119 were 

moderately actives. There were 8 active molecules in the Pharmaset, which was utilized to 

develop the pharmacophore and the 7 inactives were used in the scoring function to identify the 

best common pharmacophore. The Find common hypotheses step was run with option to 

generate maximum five pharmacophoric sites and minimum four pharmacophore sites led to 

generation of total of 16 pharmacophore models with different combinations of features. 2131 

pharmacophore hypotheses were generated with AAADH combination, AAAAH 2465, AAAHR 

6465, AADRR 1121, AADHR 3687, AAARR 1490, AAADD 7, ADDHR 301, ADHRR 232, 

AADDH 239, AAADR 5754, ADDRR 27, AAHRR 268, AAAAR 8882, AADDR 458 and the 

combination AAAAD, with which 226 pharmacophore hypotheses were generated. These 

pharmacophores were scored according to their fitness to the inhibitors. Clustering the scored 

hypothesis resulted in 57 groups, out of these we selected top four hypotheses based on their 

survival actives, inactives, vector, volume scores and their energy values as shown in Table 31 

and Figure 60. 
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Table 31: 3D QSAR Hypotheses with their scores 

*A-Acceptor, D-Donor, R-Ring aromatic, N-Negatively ionizable and H-Hydrophobic  

 

 

 

 

 
 

Figure 60: The finally selected top four pharmacophores from ligand based approach for HIV 

protease target 
 

We did enrichment calculations for these pharmacophores, the hypothesis1 had EF 1% as 12, 

RIE 5.08, ROC 0.83 and EF 1.21 as shown in Table 32. The hypothesis 1 was selected as best 

hypothesis based on the survival active score of 2.583, survival inactive score of 1.560, vector 

score of 0.787, site score of 0.42 and volume score of 0.377 (Table 31) and it had good overall 

S.NO Hypothesis 
Survival

 

Score 

Survival-

inactive Score
 Vector 

Score 

Volume 

Score
 

Site 

Score 
Energy 

1. AAAHR 2.583 1.560 0.787 0.377 0.42 1.232 

2. AAHRR 2.460 1.266 0.744 0.372 0.34 9.069 

3. AAAAR 2.567 1.543 0.775 0.312 0.48 9.815 

4. AAADH 2.555 1.386 0.858 0.311 0.37 8.885 
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calculated EF, GH, EF 1%, RIE, ROC and BEDROC [145] values compared to other three 

ligand based pharmacophores shown in Table 33. Though the hypothesis 1 (AAAHR) retrieved 

less number (750) of overall hits compared to other three hypotheses (1381, 1290, 1354) but the 

number actives retrieved was higher than other three hypotheses. Therefore the hypothesis 1 was 

selected as the best one as shown in Figure 61. The distance between the features were also 

shown in Table 34. Then we aligned all 134 compounds with the best pharmacophore hypothesis 

to build the QSAR model shown in Figure 62. 
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 Table 32: Enrichment calculations for HIV protease target 

 

 

 

 

 

 

 

a 
Total number of hit molecules from the database

 

b 
Total number of active molecules in hit list 

c 
Enrichment factor using formula 

d 
Goodness of Fit using formula 

e 
Yield of actives = [ (Ha/Ht) × 100] 

f 
Ratio of actives  = [(Ha/A) × 100] 

g 
False Negatives = [A - Ha] 

h 
False Positives = [Ht - Ha] 

 

 
 

S.No. No. of 

Features 

Features Total 

Hits
a
 

Actives
b
 EF

c
 

1% 

Active
d 

1% 

%Ya
e
 % A

f
 F(-ve)

g
 F(+ve)

h
 

1.  5 AAAHR 750 58 12 10.9 7.7 90.6 6 692 

2.  5 AAHRR 1381 53 4.5 4.7 3.84 82.8 11 1328 

3.  5 AAAAR 1290 48 11 10.9 3.72 75 16 1242 

4.  5 AAADH 1354 53 11 10.9 3.91 82.8 11 1301 
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Table 33: Selected pharmacophore with its calculated overall EF, goodness of fit (GH), % of 

actives, yield of actives, false negative and false positive values for HIV protease target  

a 
EF- Enrichment Factor at 1% of the decoy dataset 

b 
Enrichment factor using formula 

c 
Goodness of Fit using formula 

d 
RIE- Robust Initial Enhancement 

e
 ROC-Receiver Operating Characteristic curve value

 

 f 
BEDROC- Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic 

                                     

 

3D QSAR- AAAHR 

Figure 61: The finally selected ligand based pharmacophore 

                   

                        

No of 

Features 
Features 

EF
a 

1% 
EFb 

GHc RIE
d 

ROC
e BEDROC

f 

α =20 

BEDROC
f 

α  =160 

5 AAAHR 12 1.21 0.074 5.08 0.83 0.437 0.629 
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Table 34: Distance between the features of 3D QSAR based pharmacophores for HIV protease target 

Distance shown in Ǻ, *A-Acceptor, D-Donor, R-Ring aromatic and H-Hydrophobic. NA- non applicable 

 

 

 

 

 

 

 

Features* A1-H 

 (Ǻ) 

H-A2 

(Ǻ) 

A2-A3 

(Ǻ) 

A3-R1 

(Ǻ) 

R1-A1 

(Ǻ) 

A3-D 

(Ǻ) 

D-A1 

(Ǻ) 

A2-R2 

(Ǻ) 

A1-A2 

(Ǻ) 

A3-A4 

(Ǻ) 

A4-R1 

(Ǻ) 

R2-R1 

(Ǻ) 

AAAHR 8.123 6.548 5.359 4.632 3.425 NA NA NA 7.121 NA NA NA 

AAHRR 3.540 5.240 NA NA 3.764 NA NA 2.617 3.125 NA NA 8.176 

AAAAR NA NA 4.162 6.725 8.107 NA NA NA 7.630 2.283 5.224 NA 

AAADH 3.428 6.218 6.592 NA NA 4.617 3.193 NA 3.011 NA NA NA 
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Figure 62: 134 selected compounds to build 3D QSAR were aligned with the best 

pharmacophore AAAHR for HIV protease target 

 

6.3.2. 3D QSAR modelling and PLS analysis 

The ligands used were of diverse structures and hence pharmacophore-based QSAR models were 

generated for AAAHR hypothesis using the 103-member training set and a grid spacing of 1.00 

Ǻ. For each run we kept on changing the training set and test set compounds to get good Q
2
 and 

R
2
 values.  At 553 run we had 103 compounds in training set and 31 compounds in test set, 

QSAR models containing one to five PLS factors were generated. A model with PLS factor five 

was considered as the best statistical model and thorough analysis was done and their results are 

shown in Table 35.  This model was validated by predicting activities of test set, training set and 

over all molecules. The best 3D QSAR model should possess good internal and external 

statistical validation, which can display more reliable predictions. Important parameters obtained 

based on LOO method, (Table 35) favored the internal statistical validation by PLS analysis. 
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Table 35: The PLS analysis results for all three selected 3D QSAR based pharmacophores for 

HIV protease target 

PLS statistic parameters: 

SD            -    Standard deviation of the regression. 

R
2       

        -     for the regression. 

F              -       variance ratio. 

rpred
2          -    predictive correlation coefficient value. 

RMSE      - root mean square error. 

Q              - squared (Q
2
)value of Q

2
 for the predicted activities. 

Pearson R -correlation between the predicted and observed activity for the test set. 

 

 

Statistical parameters  AAAHR AAHRR AAAAR AAADH 

Number of molecules 

in Training set  

103 103 103 103 

Number of molecules 

in Test set 

31 31 31 31 

R²  0.997  0.995  0.993 0.99 

Q²  0.865  0.008 -0.199 0.271 

SD  0.103  0.129  0.154 0.186 

F-value  6044 4159 

 

2692 2002 

RMSE  0.568  1.471  1.715 1.319 

rpred
2           0.8651  0.1005  0.0091 0.1156 
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Among these four models, hypothesis 1 (AAAHR) showed good external predictive ability as 

compared to others. Hypothesis 1 showed a good R
2
 value for the training set of 0.997, good 

predictive power with Q
2
 of 0.865 for the test sets, with SD of 0.103, and F value of 6044. 

Further the external validation of the model was predicted by rpred
2  for test set with the value of 

0.865 (Table 35). The accepted LOO-cross validated value of training set (R
2
) should be greater 

than 0.5 and Table 36 LOO cross validated value for test set (Q
2
) should show a value greater 

than 0.5 to attain good predictive capacity, and standard deviation (SD) below 0.3, with 

minimum root mean square error (RMSE), and high value of variance ratio (F) to provide 

conventional QSAR validation limits. And the predictive correlation coefficient (rpred
2 ) value 

generated based on HIV-PR molecules of test set demonstrated real predictive capacity and 

robustness of the QSAR model. For a QSAR model, internal validation of LOO cross validated 

Q
2
 was commonly used to assess predictive ability, where a high value of Q

2
 is necessary and 

important but Q
2 

alone is not sufficient condition for a model to have a high predictive power 

[159, 160]. A reliable model should also be characterized by a high correlation coefficient R (or 

r
2
) between the predicted and observed activities of compounds from an external test set. In the 

present study the best predictive ability of the model was characterized by correlation coefficient 

R = 0.952 (r
2
 = 0.907).  
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Table 36: External statistical validation results of quantitative structure activity relationship 

(QSAR) result for the hypothesis 1 (AAAHR) pharmacophore hypotheses for HIV protease 

target 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rcv
2                   -  cross validated coefficient 

R (or r
2
)          - correlation coefficient between the actual and predicted activities 

k and k′          - slope values of regression lines 

R0
2  and R′0

2      - correlation coefficients for the regression lines through the origin 

[(r
2 

−R0
2) /r

2
] and  

[(r
2 

–R′0
2) /r2

]  - to calculate relation between r
2
, R0

2  and R′0
2 

rm
2  (LOO)      - modified squared correlation coefficient for Leave One Out method. 

rm
2 (all)          - modified squared correlation coefficient for all test set and training set           

rm
2 (test)        - modified squared correlation coefficient for all test set

External validation Parameters calculated Limitations 

rcv
2  0.865 rcv

2 > 0.5 

R 0.952 Must close to 1 

r2 0.907 r2> 0.5 

k value 1.001 0.85 ≤ k ≤ 1.15 

k′value 0.991 0.85 ≤ k′≤ 1.15 

R0
2  0.999 R0

2  or R′0
2close to r

2
 

R′0
2 0.998 R0

2  or R′0
2close to r

2
 

[(r
2 

−R0
2) /r

2
] -0.101 [(r

2 
−R0

2  /r
2
] <0.1 

[(r
2 

–R′0
2) /r2

] -0.100 [(r
2 

–R′0
2 /r

2
] <0.1 

rm 
2 (LOO) 0.905 rm

2 (LOO)> 0.5 

rm
2 (all) 0.953 rm

2 (𝑎𝑙𝑙)> 0.5 

rm
2 (test) 0.823 rm

2 (𝑡𝑒𝑠𝑡)> 0.5 



170 
 

High slope of regression lines through the origin k value of 1.003 and k′ value of 0.991 (either k 

or k′  should be close to 1) gave substantial values of  R0
2  value 0.999 and the R′0

2 value 0.998, 

which were obtained by calculating correlation coefficient of regression lines of the scatter plot 

obtained by means of actual activity versus predicted activity and predicted activity versus actual 

activity plots respectively (Figure 63). The relation between r
2
, R0

2  and R′0
2  gave (r2 −R0

2  /r2) 

values of -0.101 and second relation (r2 –R′0
2 /r2) value -0.100 showed optimum values within 

the statistical limits (Table 36). Yet, our established QSAR model from hypothesis 1 (finalized 

after PLS analysis), gave rcv
2  value of 0.865. A parameter of modified r

2
 [rm

2   (𝐿𝑂𝑂)] [65] was 

considered as a better external predictive potential for the whole set of compounds which was of 

0.8242 (>0.5) defined through scatter plot best fit line values.                          

 

Figure 63: Best fit line for HIV Protease target 
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This showed to be truly predictive by fulfilling the requirements of every parameter in the 

external validation. We considered this model as statistically significant model. Besides, we 

resumed further steps to predict the activities of new leads from the compound libraries by using 

hypothesis 1. 

6.3.3. Contour maps 

The best pharmacophore hypothesis 1 selected from 3D QSAR was employed to generate the 

contour maps. These were useful to identify the important sites for substitutions or replacements 

of groups to increase the biological activity of the compound. The counter maps generated from 

the most active compound (1) and the least active compound (134) were used to analyze the 

important positions which enhanced the inhibitory activity and could be useful in designing 

novel scaffolds. The contour maps are given in Figure 64. In Figure 64A and B, the H-bond 

donor effect was seen with the most active (1) and least active (134) compounds, In Figure 64C 

and D, the hydrophobic effect and in Figure 64E and F, the electron withdrawing effect was 

displayed. 

The hydrogen bond donor nature for the most active compound 1 and the least active compound 

134 when compared showed their most favorable region blue color and unfavorable regions red 

color. In the pharmacophore model, the H-bond donor feature was absent. We discovered from 

the contour maps the H-bond donor effect in Figures 64A and B, the presence H-bond donor 

positive region present (blue colour) in most active compound 1 between the two H-bond 

acceptor features (A-A) and between H-bond acceptor and hydrophobic feature (A-H) enhance 

the activity and this was because of the presence of the nitrogen group which was absent in these 

region in the least active compound 134. Pyrrolidinyl, benzamide substituted valinamide had 

more than two nitrogen atom in between the acceptor-acceptor and acceptor- hydrophobic 
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features and showed high inhibitory activity against HIV protease. Therefore it can be inferred 

that the presence of H-bond donor group was very much needed for the activity. 

In Figure 64C and D, the hydrophobic nature of the most active compound 1 and the least active 

compound 134 revealed that the favored green colored regions were more around the aromatic 

rings of pyrrolidinyl, benzamide, furanyl, pyrrolinone, benzocycloalkyl amine, pyranone, 

substituted valinamide, pyranyl derivatives showed that terminal aromatic rings were very much 

needed for the activity of the compounds. But the least active compound 134 had the unfavored 

yellow region on the extended aliphatic chain which hindered the activity. 

In Figure 64E and F, the favored red color regions were exactly on the acceptor features of the 

pharmacophore. This enhances the activity. When we compared the position of the acceptor 

features in both most active compound 1 and the least active compound 134 , the most active 

compound 1 had acceptor features in the main core of the compound but in the case of the least 

active compound 134 were in terminal position. This showed that the presence of electron with 

drawing group in the core of the compound enhances the activity. 
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Figure 64:  Contour maps for HIV protease target 

A- H-bond donor effect: Most active; B- Least active (Blue- favorable, Red unfavorable); C- 

Hydrophobic effect: Most active; D- Least active (Green- favorable, Yellow-unfavorable); E- 

Electon with-drawing effect: Most active; F- Least active (Red-favorable, Blue -unfavorable). 
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6.4. Multiple pharmacophore models based Virtual screening and docking 

Virtual screening of commercial data bases was the preliminary step in lead identification. We 

employed both approaches like structure based and ligand based to design new lead compounds 

for this target to identify small molecule inhibitors against HIV protease. In this study, we had 13 

pharmacophores (12 e-pharmacophores and 1 3D QSAR pharmacophore). We followed similar 

protocol as that employed for HCV NS5B inhibitors wherein first we did pharmacophore 

screening of commercial database (Asinex Database). We had 5, 4 and 3 featured 

pharmacophores, so we kept the must match on at least 5, 4 and 3 site points and for ligand based 

pharmacophore we kept must match for at least 3 site points because the structure based 

approach had many possible combinations of features but in case of ligand based we had only 

one five featured pharmacophore. If we employed only the must match five sites, we would have 

missed few potent leads for any of three site points. The hits derived at each stage were validated 

based on their fitness score which indicated how well they fitted with the pharmacophore 

features. The compounds with high fitnesss scores were shortlisted as phase find matches hits 

and are shown in Table 37. 

From the phase findmatches module output of the e-pharmacophore AAADR for 3OXC, we 

selected fitness more than 1.00 as limit for the HTVS and got 45630 compounds and with 2672 

clusters. The bound crystal ligand was isoquinoline derivative and its docking score was -11.980 

kcal/mole. These ligands were docked to the HIV protease active site of 3OXC using the grid 

which was already generated, and finally we selected 4536 ligand molecules as hits from HTVS  

with the criteria of  docking score above -5 kcal/mole, fitness above 1.10 and the number of H-

bond above 2. We got 443 diversed clusters. These hits were further docked using Glide SP 

docking module and 4006 ligand molecules were selected based on the docking score above -6 
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kcal/mole, fitness above 1.20, 2 H-bond and visual occupancy of ligand into the pocket. Finally, 

we subjected the Glide SP 4006 filtered ligands to Glide XP (extra precision) docking 

simulation. Top 1991 ligand molecules more than a docking score of -7.00 kcal/mole were 

visually inspected for the pose and important binding residues. These belonged to 175 diverse 

structural scaffolds, matching all the five e-pharmacophoric features and were selected. Though 

the docking score of the crystal ligand was very high but we selected compounds with docking 

score above -7.00 kcal/mole compounds because of their good fitness and number of H-bonds.  
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Table 37: The number of compounds (Hits) retrieved from each stage of screening results 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
Total number of  hits from Phase findmatches. 

b
Total number of  hits from HTVS docking.

              

c
Total number of  hits from SP docking.

                        

d
Total number of  hits from XP docking 

PDB Phase Find a
 

clusters HTVSb 
clusters SPc 

clusters XPd 
cluster Peptidic Non-peptidic 

3OXC-5 45630 2672 4536 443 4006 401 1991 175 1864 127 

3OXC-4 85000 6521 4688 515 2752 269 2306 258 2119 187 

3OXC-3 166818 8135 4560 445 2900 423 2874 129 2676 198 

2Q5K-3 186900 9045 8900 904 3870 625 793 217 649 144 

2Q5K-3 126900 11586 4841 616 2143 349 847 187 693 154 

3NDX-4 9900 952 1625 344 1271 129 774 109 693 81 

3NDX-3 12035 1452 3605 597 2214 182 1246 163 1108 138 

3H5B-3 147800 7870 4509 675 3834 577 1279 279 1111 168 

3I6O-3 127800 8352 8500 1352 1927 171 1611 53 1572 39 

3DJK-3 157800 8542 4502 466 1475 271 971 197 807 164 

3T11-3 52421 1356 4836 360 3019 249 1541 181 1400 141 

2AID-3 125569 9014 8932 510 3998 389 1998 287 1829 169 

3DQSAR-5 

(3DJK) 
132545 3542 4921 569 1171 297 727 103 659 68 
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For the e-pharmacophore AADR from 3OXC, we got 85000 compounds as phase find matches 

output with fitness score above 1.5 and belonged to 6521 clusters. These hits were docked into 

the active site pocket of HIV protease of 3OXC by HTVS that yielded 4688 molecules of 515 

clusters with docking score more than -5.00 kcal/mole, 2 H-bond and fitness above 1.6. We 

selected 2752 leads with 269 clusters with SP docking score above -5.00 kcal/mole, 2 H-bond  

and fitness above 1.6. Finally in XP docking we got 2306 with 258 clusters with XP docking 

score above -6.00 kcal/mole and above 1.7 fitness score. When we further grouped them into 

peptidic and non-peptidic we got 2119 peptidics and 187 non-peptidic leads. 

Similar protocol for AAR from 3OXC resulted in 2874 (129 clusters) as hits with docking sore 

above -6.00 kcal/mole, 2 H-bonds and fitness above 2. From these XP hits, we got 2676 peptidic 

and 198 non-peptidic.  

There were two e-pharmacophores obtained from 2Q5K and for the e-pharmacophore 

A3R15R16 186900 (9045 clusters) compounds were retrieved from phase find matches 

screening having fitness score above 1.6. The bound crystal ligand was pyrimidine derivative 

and its score was -6.25 kcal/mole kept the docking score of the crystal ligand as the cut-off value 

to select the hits. When we performed HTVS for these compounds in the active site of 2Q5K, we 

got 8900 leads (904 clusters) with docking score above -5.00 kcal/mole, 2 H-bonds and above 

1.73 fitness. These were then subjected to SP docking  and further XP docking to yield 793 leads 

of 217 clusters with docking score above -6.00 kcal/mole, 2 H-bond and fitness above 1.73 

which belonged to 649 peptidic and 144 nonpeptidic. 

Similarly for A3R16R17 e-pharmacophore from 2Q5K, it resulted in 154 non-peptidic and 649 

peptidic from the XP hit file of 793 compounds of 217 clusters.  
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Utilizing 3NDX crystal ligand, two e-pharmacophore were obtained and for the e-

pharmacophore AARR for, we got 9900 leads with pharmacophore filter  and when subjected to 

The bound inhibitor was a thiazole derivative with docking score -5.334 kcal/mole. HTVS in the 

active site of 3NDX, we got 1625 leads (344 clusters) with docking score above -5.00 kcal/mol, 

2 H-bonds and above 1.4 fitness score. We got 1271 compounds (129 clusters) from SP docking 

with score above -5.00 kcal/mol, 2 H-bonds and above 1.4 fitness. Finally 81 non-peptidic and 

693 peptidic compounds were obtained from XP docking. 

For the e-pharmacophore ARR from 3NDX, we finally obtained 1108 peptidic compounds and 

138 non-peptidic compounds from XP docking output which about of 1246 hits (163 clusters). 

For the e-pharmacophore DRR for 3H5B, the crystal protein had pyyrolidine derivative as its 

bound crystal ligand and its docking score was -6.140 kcal/mole. we got 147800 leads (7870 

clusters) from pharmacophore screening with above 1.5 and were subjected to HTVS resulted in 

4509 leads (675 clusters) of docking score above -5.00 kcal/mol, 2 H-bonds and above 1.5 

fitness. 3834 (577 clusters) leads yielded from SP docking with docking score above -6.00 

kcal/mol, 2 H-bonds and above 1.5 fitness. 168 non-peptidic and 1111 peptidic compounds from 

the final XP docking of 1279 compounds (279 clusters). 

For the e-pharmacophore ARR from 3I6O, we obtained 127800 compounds of 8352 clusters 

having fitness above 1.8. 8500 compounds (1352 clusters) were obtained from HTVS output 

having docking score above -5.00 kcal/mol, 2 H-bonds and above 1.8 fitness. It had a furan 

derivative as bound ligand with the docking score of -6.557 kcal/mole. Then we performed SP 

docking, which yielded 1927 (171 clusters) leads with docking score above -7.00 kcal/mol, 2 H-

bonds and above 1.8 fitness. From this e-pharmacophore we got only 39 non-peptidic and 1572 

peptidic from XP docking of 1611 (53 clusters). 
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Similarly for the e-pharmacophore ARR from 3DJK, we obtained 157800 leads of 8542 clusters 

having fitness above 1.96. . The crystal protein had dioxepan derivative as its bound crystal 

ligand and its docking score was -6.854 kcal/mole. 4502 compounds emerged (466 clusters) 

from HTVS output having docking score above -5.00 kcal/mol, 2 H-bonds and above 1.99 

fitnessThen in SP docking, we obtained 1475 (271 clusters) leads with docking score above -6.00 

kcal/mol, 2 H-bonds and above 1.99 fitness. Finally only 164 non-peptidic and 807 peptidic from 

XP hits of 971 (197 clusters). 

E-pharmacophore DRR from 3T11, the crystal protein had diazepin derivative as its bound 

crystal ligand and its docking score was -6.430 kcal/mole .yielded 52421 compounds (1356 

clusters) from pharmacophore screening with fitness above 1.4 and then HTVS docking retrieved 

4836 (360 clusters) compounds having docking score above -5.00 kcal/mol, 2 H-bonds and 

above 1.4 fitness SP hits obtained with docking score above -6.00 kcal/mol, 2 H-bond and above 

1.4 fitness were 3019.  Finally we retrieved 141 non-peptidic and 1400 peptidic compounds from 

the XP docking of 1541 (181 clusters) compounds. 

For the e-pharmacophore ADR from 2AID, we retreived  125569 compounds (9014 clusters) 

pharmacophore filtering with fitness above 1.96 and then HTVS docking yielded 8932 (510 

clusters) compounds having docking score above -5.00 kcal/mol, 2 H-bonds and above 1.99 

fitness. The crystal ligand was simple piperidine derivative and its docking score was -5.130. 

Therefore there were more possibility of retrieving non-peptidic compounds and kept the 

docking score of the crystal ligand as the cut-off value. There were 3998 (389 clusters) SP hits 

with docking score above -6.00 kcal/mol, 2 H-bond and above 1.99 fitness. Finally we retrieved 

169 non-peptidic and 1829 peptidic compounds from the XP docking of 1998 (287 clusters) 

compounds. 
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The ligand based pharmacophore AAAHR, when subjected to pharmacophore filtering and 

virtual screening with 3DJK with low resolution. We retrieved 4921 (569 clusters) compounds as 

HTVS hits with docking score above -5.00 kcal/mol, 2 H-bonds and above 1.4 fitness. Further 

SP docking yielded  1171 (297 clusters) compounds as SP hits with docking score above -6.00 

kcal/mol, 2 H-bonds and above 1.4 fitness. Finally we retrieved 68 non-peptidic and 659 peptidic 

compounds from the final XP docking hits of 727 compounds (103 clusters). 

Out of three e-pharmacophores AAADR, AADR and AAR from 3OXC, the three feature 

pharmacophore AAR retrieved more number of non-peptidic leads. When we compared two e-

pharmacophores A3R15R16 and A3R16R17 from 2Q5K, the e-pharmacophore A3R15R16 was 

able to retrieve more number of diverse compounds in each stage of screening than A3R16R17 

and the distance between the ring (R) features R15 and R16 could have played very crucial role. 

But e-pharmacophore A3R16R17 retrieved more number of non-peptidic hits than A3R15R16. 

Though the features A3 and R15 were found to aligne when mapped R16 and R17 were in 

opposite direction. This shows that these 2 pharmacophores were completely different from each 

other as shown in Figure 65.  
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Figure 65: Comparison of pharmacophores with similar features for HIV protease target 

Similar mapping of other pharmacophores like 3H5B to 3I6O, 3NDX to 3I6O and 3NDX to 

3H5B with common features ARR were found not exactly aligning with each other but showed 

rmsd deviation from 0 A ͦ to 5.2 Aͦ. This shows that these pharmacophore though they have the 

same features but they were unique in nature because of their distance between the features and 

their deviation as shown in Figure 65. When we compared the compounds retrieved by both 

AARR and ARR from 3NDX, the three feature e-pharmacophore ARR (3NDX) retrieved more 

number of diverse compounds in each stage of screening process compared to AARR (3NDX) 

and also retrieved the most number of non-peptidic leads. When we compared all the three 

feature pharmacophores, AAR (3OXC), A3R15R16 (2Q5K), A3R16R17 (2Q5K), ARR (3NDX), 

DRR (3H5B), ARR (3I6O), ARR (3DJK), DRR (3T11) and ADR (2AID), the e-pharmacophore 

AAR (3OXC) retrieved the highest number (198) of non-peptidic compounds among all the 13 

pharmacophores. E-pharmacophore ARR (3I6O) was the one which retrieved very less number 
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(36) of non-peptidic among all the 13 pharmacophores. The e-pharmacophores A3R15R16 

(2Q5K) had 144, A3R16R17 (2Q5K) had 154, ARR (3NDX) had 138, DRR (3H5B) had 168, 

ARR (3DJK) had 164, DRR (3T11) had 141 and ADR (2AID) had 169 non-peptidic compounds. 

When we compared the five feature pharmacophores from structure based AAADR (3OXC) and 

ligand based AAAHR (3D QSAR), the e-pharmacophore AAADR (3OXC) retrieved more 

number of non-peptidic compounds. Among the four feature pharmacophores AADR (3OXC) 

and AARR (3NDX), the e-pharmacophore AADR (3OXC) retrieved more number (187) of non-

peptidic compounds. When we compared all the 13 pharmacophores, the pharmacophore from 

3NDX retrieved very less number of compounds from each stage of screening (Table 37).  3T11 

and 2AID were bound to non-peptidic inhibitors and other had bound peptidic inhibitors and 

when compared with the screening data, surprisingly 3T11 and 2AID retrieved comparably good 

number of non-peptidic inhibitors. 

We cross checked all our final XP hits with GOLD docking program [270]. We performed 

simultaneously two runs. We selected the compounds which had good scores. Finally we 

selected 13 compounds based on their docking score, fitness score, predicted activity, gold score, 

visual inspection and their interaction patterns. Most of the compounds were found to have more 

than two H-bonds and all were with reported H-bonds interactions which the crystal ligands 

showed. Predicted activities, Glide scores, fitness, H-bond data are presented in the Table 38 and 

Figure 66.  
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Table 38: Lead compounds with their respective number of H-bonds, fitness score and docking score, predicted activity, 

interaction with important amino acids and their respective gold scores for HIV protease target 
 

Title Fitness Docking 

score 

H 

Bond 

Predicted 

Activity 

Ligand Interaction Gold 

score 1 

Gold 

score 2 

L-1 1.95 -10.53 5 6.38 Asp29, Asp30, Asp125, Ile50, Ile150 52 53 

L-2 1.49 -10.20 4 6.84 Asp25, Gly27, Asp125 (2) 49 50 

L-3 1.51 -9.42 3 6.29 Asp25, Asp125 (2) 43 47 

L-4 1.41 -9.28 3 6.55 Asp25, Asp30, Pro79 51 52 

L-5 1.96 -9.15 2 7.33 Asp30, Gly48 44 47 

L-6 1.38 -8.86 5 6.23 Asp25, Gly27, Asp129, Asp130 (2) 49 53 

L-7 1.90 -8.79 5 6.27 Arg8 (2), Ile50, Asp129, Ile150 57 58 

L-8 2.05 -7.93 6 6.52 Arg8 (2), Asp25 (4) 46 49 

L-9 1.56 -7.93 4 5.95 Asp25, Asp30, Ile50 (2) 48 48 

L-10 1.58 -7.49 2 7.50 Asp30 (2) 46 47 

L-11 2.13 -7.44 3 5.73 Asp125, Asp129, Ile150 54 56 

L-12 1.52 -7.37 4 6.64 Asp29, Asp30, Ile50, Ile150 50 53 

L-13 1.45 -6.81 4 6.35 Arg8, Asp25, Asp125, Gly127 49 52 
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Figure 66: The final 13 hit compounds selected from the multiple pharmacophores screening 

and different stages of docking studies for HIV protease target 
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In each stage of screening we were interested in diverse structure search and analyzed the 

compound retrieved at each stage using pie graph as shown in Figure 67. In each stage of 

screening like pharmacophore screening, HTVS, SP and XP we compared the hits with any two 

pharmacophores and tried to identify the common hits. The peptidic and non-peptidic 

identification was also carried out for comparison. Top 1% hits obtained from each 

pharmacophore were aligned with their respective pharmacophores as shown in Figure 68.  

The shortlisted final scaffolds as hits contained diverse scaffolds like quinolone dicarboxylate, 

piperidine, triazine morpholine, indole, benzimidazole, phthalate, thiazole, benzofuran 

derivatives. There were 11 hits having predicted pIC50 values more than 6 and remaining L-9 and 

L-11 having 5.95 and 5.73 respectively. Most of the hits having interaction with the imported 

aminoacids which are responsible for the activity of the crystal ligands. Interaction patterns 

revealed that all 13 hits showed more than two important H-bond interactions which included 

Asp25, Asp29, Asp30, Asp125, Gly27, Gly48 and Gly127. Out of the 13 top selected hits seven 

were having H-bond interaction with Asp25 which was shown by the non-peptidic crystal ligand 

2AID. This showed that the non-peptidic compounds would be potent inhibitor for HIV protease. 

The interaction patterns of all the top 13 hits are presented in Figure 69. 
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Figure 67: Pie graph shows the extent of overlapping of compounds at each stage of screening 

for all thirteen pharmacophore models. A- Phase find match hits, B- HTVS docking hits, C- SP 

docking hits, D-XP docking hits. Red and yellow colored regions represent the number of 

screened hit compounds from any two pharmacophore models and the black color region 

represents the overall overlap of the screened compounds for HIV protease 
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Figure 68: Top 1% hits aligned with their pharmacophore with their respective PDB codes for 

HIV protease target 
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Figure 69: The interaction pictures of the finally selected 13 leads for HIV protease target 

 

 

 

 



190 
 

6.5. ADME predictions 

We finally evaluated the 13 lead compounds for the pharmaceutically relevant properties to 

check drug-likeness and including its ADME. QikProp module [164] was used for evaluation of 

drug-like behavior through analysis of pharmacokinetic parameters required for absorption, 

distribution, metabolism and excretion. The 13 lead compounds showed good partition 

coefficient (QPlogPo/w) values which were critical for understanding of absorption and 

distribution of drugs. Factor QPPCaco for 13 lead compounds was predicted for apparent Caco-2 

cell permeability in nm/sec value (Caco-2 cells are model for gut-blood barrier) a key factor for 

estimation of cell permeability in biological membranes and its metabolism.  

Table 39: Lead compounds with their Qikprop properties for HIV protease target 

 

a
 Molecular weight 

b 
Predicted octanol/water partition co-efficient log p (acceptable range from −2.0 to 6.5). 

c 
Predicted Caco-2 cell permeability in nm/s (acceptable range: <25 is poor and >500 is great).

 

d 
Predicted  value for blockage of HERG K+ channels (concern below −6.5). 

e
Percentage of human oral absorption (<25% is poor and >80% is high). 

f
 Rule of five  ( no. of violations of Lipinski’s rule of five: 0 is good and 4 is bad) 

Title 

mol 

MW
a 

QPlogPo/w
b 

QPPCaco
c 

QPlogHERG
d 

% Human Oral 

Absorption
e 

Rule Of 

Five
f 

L-1 611.24 4.57 135.89 -7.59 78.93 1 

L-2 433.51 3.75 1454.96 -6.25 100.00 0 

L-3 399.93 4.44 2250.15 -5.47 100.00 0 

L-4 512.58 5.01 234.16 -7.08 72.75 2 

L-5 425.51 5.51 844.29 -7.50 100.00 1 

L-6 376.41 4.86 999.66 -7.07 100.00 0 

L-7 471.29 4.08 378.18 -6.56 96.97 0 

L-8 479.49 2.60 57.31 -4.42 60.69 1 

L-9 605.19 3.89 116.71 -6.56 73.75 1 

L-10 421.90 5.26 734.00 -7.04 96.06 1 

L-11 492.40 1.56 12.19 -5.94 42.54 1 

L-12 419.49 4.32 1067.31 -5.98 100.00 0 

L-13 361.41 1.01 135.30 -4.90 70.98 0 
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All the 13 lead compounds passed all the pharmacokinetic parameters and are within the 

acceptable range defined for human use (Table 39) with additional parameters such as molecular 

weight, H-bond donors, H-bond acceptors, and humoral absorption according to Lipinski’s rule 

of 5. Thus, compounds with binding and pharmacokinetic properties were finalized as valuable 

leads for further biologic assays. 

6.6. Anti HIV activity 

The SensoLyte 490 HIV-1 protease assay kit provides a well convenient assay for high 

throughput screening of HIV-1 protease inhibitors and continuous quatification of HIV-1 

protease activity using a fluorescence resonance energy transfer (FRET) peptide. Basically the 

sequence of FRET peptide is derived from the native p17/p24 cleavage site on Pr
gag

 for HIV-1 

protease. In the FRET peptide, the fluorescence of EDANS is quenched by DABCYL until this 

peptide is cleaved at Tyr-Pro bond into two separate fragments by HIV-1 protease. While 

cleavage the fluorescence of EDANS is recovered and monitored at excitation/emission = 340 

nm/490 nm and can be performed in a convenient 96 or 384-well microplate format. 

The designed lead compounds for HIV protease as target, were procured and screened at single 

concentration of 25 μM and saquinavir (10 μM) was used as standard drug using the assay 

protocol as described in materials & method. Lead L-8 showed the highest inhibition of 92% and 

L-7 showed 82% inhibition. This showed that they were more potent compared to all other 11 

leads. Among the other 11 leads, 10 of them showed more than 60% inhibition and L-4 showed 

only 58% inhibition as shown in Table 40. 
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Table 40: Anti HIV activity of the selected hit compounds at 25 μM concentration 

 

 

 

 

 

             

 

 

 

*At 10 μM cocentration 

The  interaction pictures (Figure 70) of these two most active compounds were shown that they 

had H-bond interactions with the amino acid moieties which were crucial for the activity of the 

crystal ligands. The most active compound L-8 had six H-bonds, they were two with Arg8 and 

four with Asp25. The H-bond interaction with Asp25 was shown by six crystal ligands out of 

eight selected for these study. Therefore it showed that these interactions were responsible for 

the activity of this compound L-8. The compound L-9 was shown four H-bonds interactions, one 

with Asp25, one with Asp30 and two with Ile50. Among these three, Asp25 and Asp30 were 

important amino acid interactions shown by selected six crystal ligands for these study. 

Therefore, these two interactions were responsible for the activity of L-9. 

 

 

 

 

Compound code % Inhibition 

at 25 μM 

L-1 66 

L-2 70 

L-3 60 

L-4 58 

L-5 64 

L-6 71 

L-7 82 

L-8 92 

L-9 69 

L-10 64 

L-11 63 

L-12 69 

L-13 70 

Saquinavir* 93  
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Figure 70: The interaction pictures of two most potent leads L-8 & L-9 
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6.7. Conclusion 

To find new inhibitors for HIV protease enzyme present work extended multiple pharmacophore 

and 3D QSAR studies using 9 crystal structures and 134 diverse HIV protease inhibitors. We 

used these reported inhibitors for our studies to generate pharmacophore modeling and 3D 

QSAR techniquies in PHASE. 3D QSAR model was developed using these 134 selected 

compounds and validated by both LOO and external validation methods. Using 3D QSAR 

counter map visualization, SAR studies were done that could help to give insights for further 

design of newer leads. Virtual screening of Asinex database using the best pharmacophores to 

yield hits which were filtered by three consecutive docking runs (HTVS, Glide SP, Glide XP and 

Gold) to finally identify top ranked hits. Furthermore, refinement based on the ADME 

predictions resulted in 13 valuable hits with good binding scores and pharmacokinetic properties. 

We performed biological screening for these 13 leads and found, phthalate scaffold L-7 and 

morpholine scaffold L-8 to show very good inhibition of 82% and 92% respectively. Thus the 

present work revealed two new diverse, benzene dicarboxylate and triazine morpholine 

derivatives as HIV protease inhibitors valuable leads for further drug development. 

Cl

O

O

O O

Cl

O

O

NN
+

N

O

OH

O

N
NH

O

N

N

O

H

 

                            L-7    82%                                                             L-8    92% 
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CHAPTER 7 

DESIGN OF MTB GlmU INHIBITORS: RESULTS & DISCUSSION 

 

7.1. Background 

Drug resistance has become a major stumbling block to overcome diseases and thus there is 

always a need to find new drugs and new pathways. Now there are very few drugs for the 

treatment of M. tuberculosis disease due to drug resistant strains that resulted in reduced 

efficacy.  It is necessary to find new drugs and new targets to kill the pathogen. There are some 

new targets and pathways discovered recently for tuberculosis due to resistance [271] or for 

dormat survival of the bacteria which were not much explored. GlmU is one such target which is 

essential for the survival of the pathogen [272]. Recent studies on the mycobacterial proteome 

using in-silico analysis suggested GlmU to be a potential drug target [273].  

GlmU plays its bifunctional role to two functionally autonomous active sites: the 

acetyltransferase active site and the uridyltransferase active site. Kinetic and structural studies 

demonstrated that these two active sites were present on two different protein domains. Within 

the C-terminal (acetyl transferase) domain acetyltransferase reaction occured but the rate-

limiting uridyl transferase reaction is in the N-terminal (uridyl transferase) domain. It has been 

previously shown that the uridyltransferase activity follows a sequential substrate-binding order 

with UTP binding first noncovalently to the GlmU enzyme [129, 130]. Till GlcNAc-1-P binds, 

the uridyltransferase active site will be in an open apo conformation which gives lots of 

conformational change. After GlcNAc-1-P binding, the phosphate oxygen of GlcNAc-1-P 

undergoes nucleophilic attack on phosphate of UTP. 
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The identification of inhibitors using wet lab techniques is an expensive and time consuming 

task. Thus, there is need to develop theoretical models for predicting inhibitors against a 

potential target. Ligand based approaches have been used to provide insights into the structural 

and binding environment based on the key interactions shown by reported PubChem inhibitors. 

Several other computational approaches have also been employed for the design and 

development of the GlmU inhibitors like 3D QSAR studies, pharmacophore map generation, 

docking studies and so on as discussed earlier. 

7.2. Drug design based on ligand based strategy 

The flow of work accomplished for the design was as similar to that of Figure 40. We chose 27 

GlmU inhibitors from PubChem Bioassay AID-1376 with known IC50 values against MTB 

GlmU [274, 275]. These inhibitors showed a wide range of activity (1.79 μM-1073 μM) and 

structural diversity. The IC50 values were converted to pIC50 where IC50 was the concentration of 

the compounds producing 50% inhibition of GlmU. The dataset consisted of some highly active 

and inactive molecules with few molecules moderatly active. A total of 27 (Table 41) molecules 

were randomly selected with pIC50 values, of which 22 molecules were selected for training set 

and 5 molecules were chosen as test set. All structures were drawn using 2D sketcher tab on 

Maestro graphical user interface.  
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Table 41: Compounds used for 3D QSAR study with their observed and predicted activity for 

MTB GlmU target  

 

S.No. Compounds IC50 

(μM)  

Observed 

pIC50 

Predicted 

pIC50 

Residual  

error 

Data set 

1. 

N

N
H

O

O

O

O

CH3

O

 

1.79 5.747 5.210 -0.537 Training 

2. 

S

N
NH

O

S

OH

OH

O

 

7.79 5.108 4.850 -0.258 Training 

3. 

O

O

O

OH

NH
N

NH2

NH
N

+

O
-

O

 

28.41 4.547 4.390 -0.157 Training 

4. 
O

S
O N

N

N

S

NH

O

S

O

O
CH3 

49.4 4.306 4.390 0.084 Training 

5. 

OCH3

N

NH

O

O

OH

Cl

 

53.6 4.271 4.010 -0.261 Training 

6. 
N

+
O

-

O

O

O Br

OH

O
CH3

 

60.9 4.215 4.340 0.125 Training 

7. 

NH

NH NH

S

S

O

O

N

CH3

CH3

O

OHOH

 

68.4 4.165 4.310 0.145 Training 

Contd.. 
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8. 
SN

N

S

N
O

N

NH

N
+

O
-

O

CH3 OH

 

77.98 4.108 3.990 -0.118 Training 

9. 
S

N NH

O

OH

S

O

O

 

80.62 4.094 4.150 0.056 Training 

10. 

N

NH NH
NH

S
O

OH

OH

 

82.97 4.081 4.280 0.199 Training 

11. 

O

O

O

OH

OH

OH

OH

OH

 

84.94 4.071 4.390 0.319 Training 

12. 
O S

N

NH

O

OH

O

O

S

 

86.02 4.065 3.920 -0.145 Training 

13. 
NH

N
H

CH3

N
+

O
-

O

N
O

O
CH3  

94.27 4.026 3.990 -0.036 Training 

14. 

O
S

NH

OO

OH

S  

111.69 3.952 4.200 0.248 Training 

15. 

O

O

O

OH
O

O

OH

 

117.18 3.931 4.020 0.089 Training 

Contd.. 
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16. 

NH

CH3

CH2

O

N

O

N

O

NH2

O
O

Cl

 

118.06 3.928 4.010 0.082 Training 

17. 

N

NH

NH NH

N
+

O
-

O

O

OH

 

124.94 3.903 3.970 0.067 Training 

18. 

O

OH

S

N
N

NH O

O

OH

Cl  

134.17 3.872 3.910 0.038 Training 

19. 

NH

CH3
CH2

O

N

O

N

ONH2
O

 

166.77 3.778 3.550 -0.228 Training 

20. 

O
N

N

NH
N O

O

O

OH

NH2

 

188.13 3.726 3.930 0.204 Training 

21. 
O

N

NH

S

N

N
HO

O

O

F

 

219.12 3.659 4.060 0.401 Training 

22. 
N

NS

S

O OH

F

O
CH3

O

O

CH3

OOH  

1073.41 2.969 2.640 -0.329 Training 

23. 

O

S O

S
NH

O

S

 

17.74 4.751 4.400 -0.351 Test 

Contd.. 
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7.3. Determination of the best pharmacophore model and its validation 

The training set molecules were sufficiently rigid and congeneric, and hence our 3D QSAR 

approach involved the generation of a common pharmacophore hypothesis built on the principle 

of identification and alignment of pharmacophoric features of the chemical structures. We 

divided our data set into 2 actives, 2 inactives and remaining 23 were found to be moderately 

actives. We kept the three maximum and minimum number of sites to be matched and the 

common pharmacophore generated should match with the two actives. Three different 

combinations of common pharmacophore were produced after all scoring functions were 

employed. They were AAH with maximum 3 hypotheses, AAD 23 hypotheses and AAA 17 

hypotheses. We clustered these available hypotheses and we obtained 13 clusters. Based on the 

calculated survival active, survival inactive, post-hoc, vector score, energy and volume score we 

24. 

O
S

N
NH

S

O

O

S

O

 

49.58 4.305 4.100 -0.205 Test 

25. 

O

O
CH3

OH

O

OH OH

CH3O

O
CH3

 

82.7 4.082 4.190 0.108 Test 

26. 
N

N
H

S

N

O

N

NH

N
+

O
-

O

O CH3

O  

116.16 3.935 4.170 0.235 Test 

27. 

N

S N

S

O

O

CH3

NH2

O
O

OH

 

159.09 3.798 3.860 0.062 Test 
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selected three hypotheses (Table 42). The hypothesis 1 (AAD) showed 2 hydrogen bond 

acceptors and 1 hydrogen bond donor, hypothesis 2 (AAA) showed 3 hydrogen bond acceptors 

and hypothesis 3 (AAH) showed 2 hydrogen bond acceptors and 1 hydrophobic as features 

(Figure 71). 

Table 42: Top three hypotheses selected based on their scores for MTB GlmU 

 

 

 

Figure 71: Pharmacophores selected from 3D QSAR based approach. Out of these three 

pharmacophore, AAD pharmacophore was the best pharmacophore based on the EF and GH 

calculations for MTB GlmU target 
 

These top three hypotheses were validated using decoys set of 1027 compounds in which 27 

were known actives. Using the Find matches in Phase module of Schrödinger suite, with the total 

number of molecules in the database (D) 1027, 45 compounds were obtained as hits (Ht) for the 

hypothesis 1, in which 46.67% were active yields (%Y), 77.78% ratio of actives were retrieved 

in the hit lists (%A), and the values of EF (8.64) and GH (0.52) indicated a good sign of the high 

S.NO Hypothesis Survival
 

Score 

Survival-

inactive 

Score
 

Vector 

Score 

Volume 

Score
 

Site 

Score 

Energy 

1. AAD 3.254 2.616 0.826 0.462 0.87 0.001 

2. AAA 3.031 2.211 0.815 0.442 0.63 0.042 

3. AAH 2.720 1.756 0.513 0.442 0.67 0.031 
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efficiency of hypothesis 1. The values of EF 1%, RIE, ROC and BEDROC values were also high 

for the hypothesis 1(Table 43). 

Table 43: Pharmacophore validation parameters for the best three hypotheses for MTB GlmU 

target 

Top 3 Hypotheses AAD AAA AAH 
a

 H
t
 45 55 60 

b

 H
a
 21 19 13 

c 

%Y 46.67 34.55 21.67 
d 

% A 77.78 70.37 48.15 
e 

EF 8.64
◊

 6.39 4.01 
f

Fn 6 8 14 
g

 Fp 24 36 47 
h

 GH 0.52
◊

 0.40 0.26 

 
i

EF 1% 12 7 8 
j

RIE 1.45 0.98 1.02 
k

ROC 2.41 1.20 1.11 
l

BEDROC (-20) 0.54 0.11 0.24 
a Total number of hit molecules from the database 
b 

Total number of active molecules in hit list 
c 
Yield of actives =[ (Ha/Ht) × 100] 

d  
Ratio of actives  =[(Ha/A) × 100] 

e 
Enrichment factor using formula 

f 
False negatives =[A - Ha] 

g 
False Positives = [Ht - Ha] 

h 
Goodness of fit score using the formula 

◊
best EF and GH scores  

i
EF- Enrichment Factor at 1% of the decoy dataset 

j
RIE- Robust Initial Enhancement 

k
ROC-Receiver Operating Characteristic curve value 

l
BEDROC- Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic 

 

When we compared the distance between the pharmacophoric features (Table 44), it was found 

to be 10.227 Ǻ between the two H-bond acceptors as the maximum distance and the minimum 

distance was 2.4 Ǻ between A2 and D. Though the pharmacophore hypothesis AAA showed 
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better EF and GH values, it was not utilized for further screening our compound library because 

of three non-diversity of pharmacophore features as there were only 3 acceptors in this model.  

Table 44: The distance between the pharmacophoric features for the top three selected 

pharmacophores for MTB GlmU target 

 

 

 

 

 

 

 

Distance shown in Ǻ, *A-Acceptor, D-Donor and H-Hydrophobic 

We selected the pharmacophore hypothesis based on high EF and GH values and also they 

should possess different combinations of features. The hypothesis AAH had different 

combination, but the EF and GH values are very low. From the overall validations, we were 

assured that hypothesis 1(AAD) can predict most of the experimentally active molecules in the 

same scale compared to the remaining 2 hypotheses. Hence hypothesis 1, a three point model  

AAD, had two hydrogen bond acceptors (A) and one hydrogen bond donor (D) with good scores 

of EF, GH, % of actives and other parameters was selected for further studies (Table 43).  

All 27 compounds were aligned to the best pharmacophore hypothesis 1 AAD as shown in the 

Figure 72. However, we utilized all the three models for the 3D QSAR studies and PLS analysis. 

 

Figure 72: Selected pharmacophre AAD. All selected 27 compounds were aligned to the best 

selected ligand based pharmacophore AAD for MTB GlmU target 

Features A1-A2 

(Ǻ) 

A2-D 

(Ǻ) 

D-A1 

(Ǻ) 

A2-A3 

(Ǻ) 

A3-A1 

(Ǻ) 

A2-H 

(Ǻ) 

H-AI 

(Ǻ) 

AAD 10.227 2.400 9.969 NA NA NA NA 

AAA 10.227 NA NA 4.436 8.488 NA NA 

AAH 4.746 NA NA NA NA 8.488 5.821 
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7.4.  3D QSAR models generation, PLS analysis and its external statistical validation. 

To develop superlative 3D QSAR models which were meant to exhibit reliable predictions it 

necessitates internal and external statistical validation. Models with high statistical validation 

parameter could offer more reliable predictions which could get good optimized leads. 

Randomly chosen 22 compounds in the training set and 5 compounds in the test were utilized to 

develop 3D QSAR. Important parameters obtained based on LOO method, favored the internal 

statistical validation by PLS analysis. Among the best three pharmacophore models, hypothesis 

1 showed good external predictive ability for each combination as compared to others. 

Hypothesis 1 showed a good R
2
 value for the training set with 0.8101, good predictive power 

with Q
2
 of 0.5701 for the test sets, with SD of 0.2369, and F value of 85.3. Further the integrity 

of the model was predicted by rpred
2  for test set with the value of 0.5893 (Table 45).  

Table 45: PLS statistics results for 3D QSAR studies for MTB GlmU target 

 

 

 

 

 

 

 

 

 

 

 

 

PLS statistic parameters: 

SD            -    Standard deviation of the regression. 

R
2       

        -     for the regression. 

F              -       variance ratio. 

rpred
2          -    predictive correlation coefficient value. 

RMSE      - root mean square error. 

Q              - squared (Q
2
)value of Q

2
 for the predicted activities. 

Pearson R -correlation between the predicted and observed activity for the test set. 

 

Statistical parameters  AAD AAA AAH 

Number ofmolecules in Training set  22 22 22 

Number of molecules in Test set 5  5 5 

R²  0.8101 0.7384 0.7543 

Q² 0.5701 - 1.143 -0.0095 

SD 0.2369  0.2383  0.205 

F-value 85.3 79 150.4 

Pearson-R 0.8155 -0.7726 0.2232 

RMSE 0.2189 0.5857 0.2941 

rpred
2   0.5893 0.5097 0.1156 
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The accepted LOO-cross validated value of training set (R
2
) should be greater than 0.6, LOO 

cross validated value for test set (Q
2
) should show a value greater than 0.55 to attain good 

predictive capacity, and standard deviation (SD) below 0.3, with minimum root mean square 

error (RMSE), and high value of variance ratio (F) to provide conventional QSAR validation 

limits. The predictive correlation coefficient (rpred
2 ) value generated based on the molecules of 

test set demonstrated real predictive capacity and robustness of the QSAR model [158]. In the 

present study the best predictive ability of the model was characterized by correlation coefficient 

R = 0.8219 (r
2
 = 0.6755). High slope of regression lines through the origin k value of 1.008 and 

k′ value of 0.9892 gave substantial values of  R0
2  value 0.9607 and the R′0

2 value 0.9816. The 

calculated relation between r
2
, R0

2  and R′0
2  gave (r2 −R0

2  /r2) values of -0.4222 and second 

relation (r2 –R′0
2 /r2) of value -0.4532 showed optimum values within the statistical limits. 

QSAR model from hypothesis 1 gave rcv
2  value of 0.5893. A parameter of modified r

2
 [rm

2 ] [65] 

was considered as a better external predictive potential for the whole set of compounds which 

was found to be 0.5100. This showed to be truly predictive by fulfilling the requirements of 

every parameter in the external validation (Table 46). From these statistically significant values 

this model was found to be efficient for predicting efficient leads using Hypothesis 1. Plot of 

predicted vs. actual pIC50 for training and test set is given in Figure 73. 
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Table 46: External statistical validation results of quantitative structure activity relationship 

(QSAR) result for the Hypothesis 1 (AAD. 1) common pharmacophore hypotheses for MTB 

GlmU target 

 

 

 

 

 

 

 

 

 

 

 

rcv
2             -  cross validated coefficient 

R (or r
2
)    - correlation coefficient between the actual and predicted activities 

k and k′     - slope values of regression lines 

R0
2  and R′0

2 - correlation coefficients for the regression lines through the origin 

[(r
2 

−R0
2) /r

2
] and  

[(r
2 

–R′0
2) /r2

] - to calculate relation between r
2
, R0

2  and R′0
2 

rm
2                 - modified squared correlation coefficient 

 

 

 

 

 

 

 

 

External 

validation 

Parameter 

calculated 
Limitations 

rcv
2  0.5893 rcv

2 > 0.5 

R 0.8219 Must close to 1 

r2 0.6755 r2> 0.6 

k value  1.0083 0.85 ≤ k ≤ 1.15 

k′value  0.9892 0.85 ≤ k′≤ 1.15 

R0
2  0.9607 R0

2  or R′0
2close to r

2
 

R′0
2 0.9816 R0

2  or R′0
2close to r

2
 

[(r
2 

−R0
2) /r

2
] -0.4222 [(r

2 
−R0

2  /r
2
] <0.1 

[(r
2 

–R′0
2) /r2

] -0.4532 [(r
2 

–R′0
2 /r

2
] <0.1 

rm
2  0.5100 rm

2 > 0.5 
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Observed vs predicted activity 

 

                                                               Observed activity 

Figure 73: Scatter plot plotted between observed vs predicted activity of GlmU inhibition by the 

best model obtained using compounds 22 as the training set and validated using compounds 5 as 

the test set for MTB GlmU target 

 

7.5.  Contour maps 

The final validated hypothesis 1 obtained from 3D QSAR was used to generate contour maps. 

These contour maps were important to identify the positions of the substitutions or replacements 

of atoms to enhance bioactivity. Inhibitory activity can be gained by visualizing and 

understanding the maps against most active (1) and least active (22) compounds. This could help 

in discovering novel scaffolds with good biological activity. The most and least active ligand 

contour maps were generated and are shown in Figure 74. Contour maps indicated H-bond 

donor effect on the most active ligand (1) and least active ligand (22) (Figures 74A and 74B), 
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the hydrophobic effect of the ligands (Figures 74C and 74D) and the electron withdrawing 

nature (Figures 74E and 74F) of both ligands represented in the figure are discussed further.  

The hydrogen bond donor nature for the most active compound 1 and the least active compound 

22 when compared showed their most favorable region blue color and unfavorable regions red 

color (Figures 74A and 74B). Hydrogen bond donor mapping revealed that favorable regions 

lied near the nitrogens and oxygen of pyrimidinetrione indicating their importance for activity 

compared to the least active compound 22. Therefore the presence of pyrimidinetrione in the 

scaffold backbone is very much needed for the activity.  

Figures 74C and 74D when compared for their hydrophobic nature for the most active 

compound 1 and least active compound 22 revealed that favored green color region around the 

furyl, benzyl rings showed that the terminal hydrophobic rings were very much needed for the 

activity of the compound and unfavorable region yellow color on methoxy moiety revealed that 

increase in the carbon chain could increase the activity. In Figure 74E, the favored red color 

regions were observed near hydrogen bond acceptors along with respective acceptor hypothesis 

features of most active compound which indicated that these features were crucial for  the 

activity and these groups should be unsubstituted when further lead modifications indicated. In 

the least active compound as in Figure 74F the unfavorable region blue color surrounded the 

napthyl ring moiety which indicated that a decrease in the ring size could increase the biological 

activity of the compound. 
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Figure 74: Contour map for MTB GlmU target: 

 

Figure A: H-bond donor effect: Most active; Figure B: Least active  (Blue- favorable,  Red-

unfavorable);  Figure C: Hydrophobic effect: Most active; Figure D: Least active (Green- 

favorable,Yellow- unfavorable); Figure E:  Electron with-drawing effect: Most active; Figure F: 

Least active (Red-favorable, Blue –unfavorable) 

 

A  

 

B  

 

C 

 

D 

 

E 

 

F 
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7.6. Lead modification and SAR 

Based on the knowledge of 3D QSAR studies and contour maps, we optimized compound 1 

(Figure 75) for our further studies.  

 

Compound 1 

IC50 =1.79 (μM) 

Figure 75: Structure of the highest active compound for MTB GlmU target 

Based on 3D QSAR and its corresponding pharmacophore we utilized to find important features 

for the inhibition of GlmU, to help in designing of lead molecules. Based on contour map 

(Figure 74A & 74B) the presence of pyrimidinetrione in the scaffold backbone was found to be 

needed for the activity. Therefore we did not modify the central backbone i.e A ring. The contour 

maps on hydrophobicity (Figures 74C & 74D) revealed that the extreme hydrophobic moiety 

was very much needed for the activity of the compound, so we keep the furan ring (B ring) as 

such. The contour map on electron withdrawing group (Figure 74E & 74F) revealed that the 

presence of hydrogen bond acceptor groups in the benzene ring system would increase the 

activity. Based on these ideas we tried to modify the lead based on substitution in the ring C 

(Figure 75). The derivatised compounds were screened with the pharmacophore hypothesis 

AAD and showed good fitness and predicted activity values as shown in the Table 47. 
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Table 47: The possible leads with their fitness and predicted activity values for MTB GlmU 

target 

Compound 

ID 
Structure Fitness  

Predicted 

activity 

A N

N
H

O

OO

O

OH

 

1.55 4.10 

B N

N
H

O

OO

O

F

HO
 

2.84 5.01 

C N

N
H

O

OO

O

OH3C
 

2.93 5.06 

D N

N
H

O

OO

O

O
H3C

OH

 

2.92 5.06 

E 
N

N
H

O

OO

OO

O

H3C

H3C  

2.43 4.52 

F N

N
H

O

OO

O

HO
 

2.90 5.01 

G N

HN

O

O

O

O

O

 

1.84 4.72 

H N

N
H

O

OO

OO

O

H3C

H3C

 

2.89 5.06 

Contd.. 
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I 
N

HN

O

O

O

O

S

N

CH3

 

1.82 4.82 

J 
N

HN

O

O

O

O

O

OH3C

F

H3C

 

2.81 5.04 

K 
N

HN

O

O

O

O

O

O

 

2.82 4.99 

L 
N

HN

O

O

O

O

Cl

HO

 

2.85 4.98 

M 
N

HN

O

O

O

O

H3C

O

CH3

H3C

 

2.77 4.99 

N 
N

HN

O

O

O

OO

CH3

H3C

H3C

 

2.63 2.80 

O 
N

HN

O

O

O

O

HO

H3C

H3C

 

2.82 4.99 

P 
N

HN

O

O

O

O

HO

O

CH3

 

2.81 4.98 

Contd.. 
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Q 
N

HN

O

O

O

O

O

F

H3C

 

2.88 5.07 

R N

HN

O

O

O

O

N

N

 

2.27 4.69 

S 
N

HN

O

O

O

O

OH3C

 

2.14 4.53 

T 
N

HN

O

O

O

O

O

F

F

 

2.87 5.04 

U 
N

HN

O

O

O

O

N

O

H3C

 

2.21 4.44 

V 
N

HN

O

O

O

O

N

F

 

1.92 4.84 

W 
N

HN

O

O

O

O

OHH3C

 

1.53 4.06 
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7.7.  Virtual screening and docking studies 

We used 3SPT [276] protein with resolution 2.33 A ͦ from Protein Databank (PDB) for our 

docking studies. We prepared our protein 3SPT using protein preparation wizard by adding 

hydrogens, optimization and impref minimization by converging the heavy atoms to RMSD 

0.30Aͦ using OPLS2005 as forcefield, and finally refined the protein structure. As this protein 

does not have any bound inhibitors, we used the substrate acetyl CoA binding pocket. The 

substrate binding pocket of acetyl transferase site was used to generate the grid. The grid center 

values were as 5.983, -11.513 and 85.085. The docking score of the substrate acetyl CoA was -

3.389 kcal/mol. The important H-bond interactions shown by the substrate acetyl CoA were 

Ser416 and Ala434. To validate our docking protocol, RMSD between crystal structure and 

docked structure was calculated which was found to be 0.3229 Å (<2 Å) and was in an accepted 

range. The derivatised compounds were docked into the acetyl transferase substrate binding 

pocket. All 23 compounds showed good docking score and many showed interactions with 

important amino acid residues like Ser416 and Ala434. 

All 23 leads with their docking score, the number of H-bond and the important amino acids with 

which they are interacting are given in the Table 48. The fitness of the leads was above 1.5 

which indicated that all lead compounds were well aligned with the pharmacophore hypothesis 

AAD and also showed very good predicted activity which was above 4.0 except compound N 

which showed 2.8. 

 

 

 



215 

 

Table 48: Lead compounds with their docking score, number of H-bonds and important 

interacting amino acid residues for MTB GlmU target 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Most of the leads showed interactions with the important amino acid residues like Ser416 and 

Ala434 except the leads G, N, and V. 

7.8.  ADME predictions 

All 23 designed compounds showed good partition coefficient (QPlogPo/w) values which were 

critical for understanding of absorption and distribution of drugs, to range from 1.8 to 3.2. Factor 

QPPCaco indicated that permeability of the lead compounds ranged from 196 to 862, where 

QPPCaco was a predicted apparent Caco-2 cell permeability in nm/sec value. All the lead 

Leads Docking 

score 

H-bond Important interaction 

A -4.589 4 Asn388, Ser416 (2), Thr432 

B -4.044 4 Asn388, Ser416 (2), Thr414 

C -3.467 3 Asn388 (2), Ser416 

D -4.301 3 Thr414, Ser416 , Ala434 

E -4.289 2 Asn388, Ala434 

F -3.426 2 Thr418, Ala434 

G -3.107 3 Asn388 (2), Thr414 

H -3.758 2 Asn388, Ala434 

I -3.526 2 Ser416 (2) 

J -4.118 3 Asn388 (2), Ala434 

K -4.418 4 Asn388,Ser 416 (2), Ala434 

L -3.582 2 Ser416 , Ala434 

M -3.743 3 Asn388, Ser416, Ala434 

N -3.373 2 Asn388 (2) 

O -3.467 2 Asn388, Ser416 

P -3.671 2 Ser416 

Q -3.674 3 Ser416 (2), Ala434 

R -3.640 2 Ser416, Ala434 

S -4.047 3 Asn388 (2), Ala434 

T -3.476 2 Ser416, Ala434 

U -2.962 2 Ser416 (2) 

V -3.464 2 Asn388 (2) 

W -3.980 2 Ser416 (2) 
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compounds passed the entire pharmacokinetic requirements for drug-like compounds and were 

within the acceptable range defined for human use. Additional parameters such as molecular 

weight, H-bond donors, H-bond acceptors, and human oral absorption according to Lipinski’s 

rule of 5 were also evaluated for their drug-like behavior and are represented in Table 49. 

Table 49: Lead compounds with their Qikprop properties for MTB GlmU target 

  a
 Molecular weight (acceptable range < 500) 

  b 
Predicted octanol/water partition co-efficient log p (acceptable range from −2.0 to 6.5). 

  c 
Predicted  value for blockage of HERG K+ channels (concern below −6.5). 

  d 
Predicted Caco-2 cell permeability in nm/s (acceptable range: <25 is poor and >500 is great). 

 e 
Percentage of human oral absorption (<25% is poor and >80% is high). 

 
f
  Rule of five  ( no. of violations of Lipinski’s rule of five: 0 is good and 4 is bad) 

                     

Title mol MW
a

 QPlogPo/w
 b

 QPlogHERG
 c

 QPPCaco
 d

 
Human Oral 

Absorption
 e

 

Rule Of 

Five 
f

 

A 312.281 2.058 -5.235 371.623 3 0 

B 330.272 2.126 -5.212 215.757 3 0 

C 340.335 2.976 -5.396    683.470 3 0 

D 342.307 2.053 -4.948 304.608 3 0 

E 356.334 2.725 -5.143 693.043 3 0 

F 312.281 1.924 -5.383 196.984 3 0 

G 286.243 1.827 -4.639 654.473 3 0 

H 358.35 2.097 -4.895 862.327 3 0 

I 317.319 1.919 -4.756 417.168 3 0 

J 374.325 2.931 -5.048 705.537 3 0 

K 340.292 2.112 -4.511 747.769 3 0 

L 346.726 2.405 -5.281 247.711 3 0 

M 354.362 3.000 -4.641 820.511 3 0 

N 354.362 3.248 -5.252 727.093 3 0 

O 340.335 2.539 -4.993 331.144 3 0 

P 342.307 2.005 -4.962 262.538 3 0 

Q 344.298 2.815 -5.006    765.250 3 0 

R 374.355 2.237 -5.94 220.853 3 0 

S 326.308 2.639 -5.252 672.259 3 0 

T 362.289 3.475 -5.274 757.674 3 0 

U 327.296 2.579 -5.209 741.575 3 0 

V 315.26 2.036 -4.964 384.853 3 0 

W 326.308 2.308 -4.956 405.873 3 0 
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Thus, all lead compounds showed good binding interaction and good predicted pharmacokinetic 

properties. Substituted 1-((furan-2-yl)methyl)pyrimidine-2,4,6(1H,3H,5H)-trione derivatives 

were procured from commercial outsourcing the synthesis and screened for biological assay. 

7.9. GlmU acetyltransferase activity 

In order to screen for compounds that could inhibit the GlmU acetyltransferase activity, it was 

necessary to determine the concentration of GlmU where the activity was ~30%. Therefore, we 

performed acetyltransferase reactions in 8 μl containing 0.1mM of GlcNAc-1-P and 0.2 mM 

Acetyl CoA and 0.002 μCi [14C]acetyl-CoA and various concentration of enzyme. Based on the 

results obtained, we decided to use 0.4 pmoles of MTB GlmU and 0.06 pmoles of E. coli GlmU 

per reaction. Since, we were not sure of the inhibitory potential of synthesized compounds, the 

first set of experiments were performed with 100 μM inhibitor. Each time we repeated the assay 

with the change in inhibitor concentration and DMSO concentration.  

Acetyltransferase titration assay (image obtained using Phosphoimager) with a range of enzyme 

concentration (pmole) along with negative control without enzyme. Spots corresponded to the 

product [14C] GlcNAc-1-P and unused substrate ([14C]acetyl-CoA) were indicated at 5μM 

inhibitor concentration, 0.02% DMSO, 1.5pmole of MTB GlmU and 100μM concentration of 

AcCoA and GlcN-1-P. The compounds R, S, T, V and W (Figure 76) showed good inhibition in 

the TLC of the assay when the concentration of the inhibitor was 20μM, 0.1% DMSO, 1.5pmole 

of MTB GlmU and 100μM concentration of AcCoA and GlcN-1-P as shown in the Figure 77. 

Acetyltransferase titration assay (image obtained using Phosphoimager) with a range of enzyme 

concentration (pmole). C-ve is negative control without enzyme. Spots corresponds to the 

product [14C] GlcNAc-1-P and unused substrate ([14C]acetyl-CoA) are indicated at 5μM 

inhibitor concentration, 0.02% DMSO, 1.5 pmole of MTB GlmU and 100μM concentration of 
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AcCoA and GlcN-1-P. The compounds R, S, T, V and W showed good inhibition shows in the 

TLC of 5μM inhibitor concentration, 0.02% DMSO, 1.5pmole of MTB GlmU and 100μM 

concentration of AcCoA and GlcN-1-P as shown in the Figure 78.  

Acetyltransferase titration assay (image obtained using Phosphoimager) with a range of enzyme 

concentration (pmole). C-ve is negative control without enzyme. Spots corresponds to the 

product [14C] GlcNAc-1-P and unused substrate ([14C] acetyl-CoA) are indicated at 1μM 

inhibitor concentration, 0.1% DMSO, 1.5pmole of MTB GlmU and 100μM concentration of 

AcCoA and GlcN-1-P shows in the TLC of 1μM inhibitor concentration, 0.1% DMSO, 1.5pmole 

of MTB GlmU and 100μM concentration of AcCoA and GlcN-1-P as shown in the Figure 79.  

 

Figure 76: Inhibitors working at various concentrations for acetyltransferase titration assay for 

MTB GlmU target 
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Figure 77: Acetyltransferase titration assay (image obtained using Phosphoimager) with a range 

of enzyme concentration (pmole). C-ve is negative control without enzyme. C+ve is positive 

control without DMSO. Spots corresponds to the product [14C] GlcNAc-1-P and unused 

substrate ([14C] acetyl-CoA) are indicated at 20μM inhibitor concentration, 0.1% DMSO, 1.5pM 

of MTB GlmU and 100μM concentration of AcCoA and GlcN-1-P. The compounds R, S, T, U, 

V and W showed good inhibition 
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Figure 78: Acetyltransferase titration assay (image obtained using Phosphoimager) with a range 

of enzyme concentration (pmole). C-ve is negative control without enzyme. C+ve is positive 

control without DMSO. Spots corresponds to the product [14C] GlcNAc-1-P and unused 

substrate ([14C]acetyl-CoA) are indicated at 5μM inhibitor concentration, 0.02% DMSO, 1.5pM 

of MTB GlmU and 100μM concentration of AcCoA and GlcN-1-P. The compounds R, S, T, V 

and W showed good inhibition 
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Figure 79: Acetyltransferase titration assay (image obtained using Phosphoimager) with a range 

of enzyme concentration (pmole). C-ve is negative control without enzyme. . C+ve is positive 

control without DMSO. Spots corresponds to the product [14C] GlcNAc-1-P and unused 

substrate ([14C] acetyl-CoA) are indicated at 1μM inhibitor concentration, 0.025% DMSO, 

1.5pM of MTB GlmU and 100μM concentration of AcCoA and GlcN-1-P 

 

Based on the above experiments, we concluded that reference compound used for the design was 

not much potent. However, number of compounds derived from the reference compound such as 

R, S, T, V and W were good inhibitors even at 1 μM concentration.  
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Figure 80: The docked pose of the most potent lead compounds and their ligand interaction 

diagram for MTB GlmU target 

7.10. Conclusion 

New inhibitors were designed for GlmU as one of the potential new antimicrobial targets for 

combatting MTB. Pharmacophore and 3D QSAR studies using 27 diverse GlmU inhibitors were 

explored. 3D QSAR model was developed using these 27 selected compounds and validated by 

both LOO and external validation methods. A three point pharmacophore model with two 

hydrogen bond acceptors and one hydrogen bond donor was developed. Hypothesis 1 was 

selected as the best one based on its R
2 

= 0.8101 and Q
2 

= 0.5701. Using 3D QSAR counter map 

visualization, SAR studies were derived that could help to yield an insight for further design of 

newer leads. We employed SAR studies on the reported compound 1 as lead with high pIC50 

(5.747) value. 23 designed leads were screened using the best pharmacophore AAD and docking 

studies were done using the PDB 3STP. All leads showed good docking score, fitness, predicted 

activity and interaction with important amino acid residues. ADME predictions results showed 

that all leads having good binding scores and pharmacokinetic properties. Thus the present work 
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revealed new diverse GlmU inhibitors as valuable leads for further biological assays. Based on 

these 23 compounds were procured and performed acetyltransferase activity studies. These 

studies revealed that the derivatised leads R, S, T, V, and W were more potent than the parent 

compounds. These results showed that using computer-aided drug design tools like 3D QSAR, 

docking studies, SAR studies, etc. we could get more potent leads.  
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CHAPTER 8 

 SUMMARY AND CONCLUSION 

 

With the aim of developing new antimicrobial agents, we tried to explore three different 

enzymatic targets like HCV NS5B polymerase, HIV protease and MTB GlmU to find potential 

leads. We applied both structure based drug design and ligand based drug design methods to 

identify efficient hit molecules. 

8.1. HCV NS5B Polymerase 

 The HCV NS5B polymerase crystal structures with low resolution and high active bound 

inhibitors were retrieved from PDB.  

 For ligand based approach, we chose 1568 reported compounds from available literatures 

and clustered them to 132 promising compounds from 151 clusters and divided them into 

actives, inactives and moderately actives to develop common pharmacophore hypothesis. 

We selected top three pharmacophores based on their survival active score, survival 

inactive score, vector score and volume score.  

 Further we developed a 3D QSAR model by dividing our compounds into 70 training set 

and 62 test set compounds.  

 We used these six pharmacophores 3CVK (ADR), 3CO9 (ADR), 2GIQ (ARR), 2D3Z 

(NRR), 2GIR (NHR) and 3D QSAR (AADRR) (5 e-pharmacophore and one ligand based 

pharmacophore) for virtual screening and docked. 

 Based on the pharmacophore screening, 10 hit compounds were selected for biological 

assays. 
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 We performed anti HCV activity and cytotoxicity studies for our 10 leads. The leads H-5 

and H-6, IC50 values were found to be 28.8 µM and 47.3 µM with inhibition of HCV 

NS5B RdRp activity as nearly 67% and 50%. 

8.2. HIV Protease 

 8 crystal structuresof HIV protease 3OXC, 2Q5K, 3DJK, 3H5B, 3I6O, 3NDX, 2AID and 

3T11 with their crystal ligands from PDB based on their good resolution (1.00Aͦ - 2.40A ͦ) 

and their activity ranges from 0.2 nM to 270 nM were selected for the study. 

 For the ligand based approach we selected 1535 compunds of range activity 0.026 nM to 

316 µM and structural diversity from available literature. Out of which 134 compounds 

with 168 clusters were divided into actives, inactives and moderately actives to develop 

common pharmacophore.  

 We developed a 3D QSAR model by dividing our 134 compounds into 103 training set 

and 31 test set.  

 We employed all 13 pharmacophore for screening the Asinex database through HTVS, 

SP and XP dockings.  

 Based on docking score, fitness, number of H-bonds, ADME properties, interaction 

diagram and visual inspection we selected top 13 promising leads for HIV PR. 

 We performed anti HIV enzyme inhibition studies for all our 13 leads. All compounds 

showed more than 60% inhibition at 25 μM concentration except the compound L-4. 

8.3. MTB GlmU 

 We chose 27 GlmU inhibitors from PubChem Bioassay AID-1376 with known IC50 

values against MTB GlmU (1.79 μM-1073 μM) and were divided them into actives, 

inactives and moderately active. Three pharmacophores were obtained and validated. 
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 We developed a 3D QSAR model by dividing our compounds into 22 training set and 5 

test set and we validated our QSAR model for its external predictivity.  

 The highest active reported compound 1 used for 3D QSAR study was optimized using 

contour maps and designed 23 compounds. 

 Using the best pharmacophore AAD pharmacophore screening was done and showed 

good fitness score and predicted activity. The hits were then docked in the acetyl 

transferase domain’s substrate binding pocket of the protein 3SPT. 

 Designed leads showed good docking score, interaction with the important amino acid 

residues and allowed range of pharmacokinetic properties. 

 The designed compounds were procured and were tested for GlmU acetyltransferase 

activity. Inhibitors showed % inhibition even at 1 μM. 
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CHAPTER 9 

FUTURE PERSPECTIVES 

 

In the present work we had attempted to design novel diverse inhibitors for three infectious 

diseases, HCV, HIV and TB. Initial hits identified had shown some potential to be further 

developed as candidate drugs. 

For HCV polymerase target, we designed drugs by using palm and thumb region of the active 

site pocket and demonstrated that compounds H-5 and H-6 as potential lead compounds. Further 

optimization and synthesis could be evolved to optimize the lead structures. Also further 

consideration of other active sites like the finger region of HCV for drug design studies could 

give more insights on potential leads. 

Although HIV protease has been the most studied target with regard to computer-based design, 

development of small molecules as non-peptidic ligands has been slow. The protypical 

molecules which are from diverse structural class need to further optimized based on the 

quantification of bioactivity and selectivity towards HIV. The lead optimization through 

medicinal chemistry approach could itself be a major development that takes some time to study.   

With regard to MTB GlmU as target as there are no drugs available, this work could be a major 

leap in the discovery step. Wherein the compounds identified as inhibitors in this study could be 

further developed after considering their cytotoxicity.  
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