
 

 

Chapter 7 

A Novel Feature Descriptor based on 

Elliptical Sampling 

7.1 Introduction  

Summary of the enhancements/improvements done for feature description methods till 2017: 

Computer Vision defines image matching as a fundamental task to establish correspondences between 

similar objects of the same scene in different images that undergo certain geometric or photometric 

deformations.  Many applications such as, Simultaneous Localization and Mapping (SLAM) system [Zou 

et al. 2013, Bresson et al. 2015], image retrieval [Jain at al. 2015, He 2010], camera calibration [Wang et 

al. 2015, Liu et al. 2014], 3-D reconstruction [Michailidis et al. 2014, Xue et al. 2014], object recognition 

and tracking [Liu et al. 2012, Belongie et al. 2002] etc. rely on adequate image matching algorithms. 

These image matching algorithms follow a two-stage procedure for defining a list of stable and useful 

features in images. The two-stage procedure starts with extracting features of interest using a suitable 

detector, for example: Scale Invariant Feature Transform (SIFT) [Lowe 2004], Harris-Laplace 

[Mikolajczyk and Schmid 2002, Mikolajczyk and Schmid 2004], Hessian Laplace [Mikolajczyk and 

Schmid 2002, Mikolajczyk and Schmid 2004], Maximally Stable Extremal Regions (MSER) [Matas et 

al. 2004] etc. In the second stage, each of these detected features are uniquely defined using their 

respective local neighborhood in the form of a distinctive descriptor vector. The descriptor evaluation for 

an extracted feature makes it easy to identify the same feature in a different image that captures the same 

scene under certain transformations. Therefore, the task of establishing a discriminating and efficient local 

descriptor that performs well even for affine transformations becomes difficult. 

In recent decades, many studies have proposed new techniques for describing affine invariant 

descriptors for local features. For example: SIFT, proposed by Lowe [Lowe 2004], describes each interest 

point with its local neighborhood by a gradient orientation histogram of 128 dimension vector. As an 

extension to SIFT, PCA-SIFT descriptor decrease the high dimensionality of original SIFT descriptor by 

applying the standard Principal Components Analysis (PCA) technique to a 41 × 41 image patch extracted 

around the keypoint [Ke and Sukthankar 2004]. PCA-SIFT, using the image patch, computes image 
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gradients in the vertical and horizontal directions to formulate a feature vector. Therefore, the feature 

vector of length 2 × 39 × 39 = 3042 dimensions is computed and is normalized to unit magnitude to lessen 

the repercussions of illumination variations in a scene. Yu and Morel [Yu and Morel 2011], in their study 

proved that SIFT is only invariant to zoom, rotation and translation parameters, among the six parameters 

of affine transformations. Therefore, Yu and Morel proposed an affine invariant method (Affine-SIFT 

(ASIFT)), and based their theory on the fact that camera captured images of a physical object with a 

smooth boundary in changing positions undergo smooth apparent deformations and affine transforms of 

the image plane can very well approximate these local deformations. Therefore, normalization methods 

are used by the authors to extract affine invariant features for performing tasks like solid object recognition 

and the performance of affine recognition is evaluated using two parameters: absolute tilt: degree of tilt 

between the frontal view (𝑓1) and slanted view (𝑓2) of the image scene, and transition tilt: real time 

captured images are usually slanted views, therefore, transition tilt is used to measure the degree of tilt 

between two such slanted views (𝑓2) and (𝑓3). The authors simulated all image views by varying three 

parameters: the latitude angle, the longitude angle and scale. However, since all viewpoints and scales are 

simulated, ASIFT’s computational complexity is inefficient to match local descriptors. Gradient Location 

and Orientation Histogram (GLOH) descriptor [Mikolajczyk and Schmid 2004], proposed by 

Mikolajczyk and Schmid, enhances the robustness of SIFT descriptor by adopting a log-polar location 

grid and uses PCA to reduce the dimensionality of the descriptor. The GLOH descriptor is more distinctive 

than SIFT but is computationally more expensive [Mikolajczyk and Schmid 2004]. Speeded-Up Robust 

Features Descriptor (SURF) descriptor, proposed by Bay et al. [Bay et al. 2008] is designed as an efficient 

alternative to SIFT. The main advantage of the SURF descriptor over SIFT is the processing speed as 

SURF only uses a 64 dimensional feature vector to describe a local feature. Although SURF is proven to 

be efficient for a wide range of computer vision applications, it also has some shortcomings like: SURF 

descriptor is not fully affine invariant [Pang et al. 2012] and it fails under extreme changing imaging 

conditions. 

Few more efficient descriptors have been proposed till date. For instance, Local Binary Pattern (LBP) 

descriptor [Heikkiläa et al. 2009], analyzes the spatial structure of a texture by computing the order based 

feature for each pixel by comparing each pixel’s intensity value with that of its neighboring pixels. In 

recent times, several variations of LBP have been proposed, example, Center-Symmetric Local Binary 

Pattern (CS-LBP) [Hong et al. 2014], Local Ternary Pattern (LTP), Center-Symmetric Local Ternary 

Pattern (CS-LTP) and Orthogonal-Symmetric Local Ternary Pattern (OS-LTP) [Huang et al. 2015]. 

Unfortunately, despite many advantages of these texture based binary descriptors, they produce higher 

dimensional features and are insensitive to Gaussian noise on flat regions. Another widely used binary 
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descriptor is the Binary Robust Independent Elementary Features (BRIEF) [Calonder et al. 2010] which 

operates on simple binary comparison test and uses Hamming distance instead of Euclidean or 

Mahalanobis distance. However, BRIEF descriptor is not rotation invariant and fails to operate for rotation 

transformation for more than 35° (approx.) angle. Features from Accelerated Segment Test (FAST) 

[Roster et al. 2010], Binary Robust Invariant Scalable Keypoints (BRISK) [Leutenegger et al. 2011] and 

Oriented FAST and rotated BRIEF (ORB) [Rublee et al. 2011]) adds to the list of other widely used binary 

feature detectors. However, a comparative study of binary detectors and descriptors against conventional 

feature detection methods such as SIFT and SURF conducted by Heinly et al. [Heinly et al. 2012] shows 

that, except for non-geometric transformations, SIFT outperforms all binary feature detectors and 

descriptors. 

Need of the proposed improvement: In spite of many advancements made till date to develop a fully 

affine invariant feature descriptor that satisfies characteristics like low computational complexity and 

robustness, there still exists much scope of improvement. Proposed feature descriptor focuses on 

improving feature description efficiency in terms of execution time while finding sufficient number of 

correct matches between an image pair that describes a scene under varied imaging conditions. 

7.2 Proposed Improvement in Feature Description 

A novel feature descriptor based on local elliptical sampling for image matching is proposed. The 

design of the proposed feature descriptor is based on the fact that if a plane is transformed using affine 

transformation of linear form using homogeneous coordinates, and a circle in that plane is perfectly 

confined by a square, then after transformation, the square transforms to a parallelogram and the circle 

transforms to an ellipse [Foley et al. 2015]. Therefore in present work, circular sampling is done in the 

reference image and elliptical sampling is done in the matched image respectively as the scene described 

in the matched image is expected to be transformed in some way from the one described in the reference 

image. Finally, orientation histograms over the gradient magnitudes of these sampling points are used to 

generate the feature descriptor vector. Also, circular and elliptical sampling is done in two ways: 1) using 

parametric equations and 2) using elliptical curve tracking (i.e. scan conversion at subpixel levels). The 

purpose of the later is to further reduce the computational complexity of the descriptor while maintaining 

efficiency in terms of correct number of matches. 

7.3 Local Sampling 

This section provide details of the sampling procedure for the proposed feature descriptor. Let 𝑘𝑖 = 



120 

 

(𝑥𝑛, 𝑦𝑛, 𝜎𝑛) denotes the extracted keypoint from the input image Ɨ, where n describes the index of the 

keypoint 𝑘𝑖 located at (𝑥𝑛, 𝑦𝑛) position in the input image Ɨ and is extracted at scale 𝜎𝑛 . 

For computing the local descriptor for the extracted keypoint 𝑘𝑖, neighboring pixels of 𝑘𝑖 are sampled 

from the local image patches. Thereby, two types of sampling evaluations are considered: elliptical 

sampling and circular sampling which are implemented using two approaches as detailed below (Figure 

7.1, Subsection 7.3.1 and Figure 7.4, Subsection 7.3.2 gives the illustration for elliptical and circular 

sampling respectively). 

7.3.1 Elliptical Sampling 

In elliptical sampling, three parameters are used: the major axis 𝑗𝑘, minor axis 𝑛𝑘  (where k is the order 

of elliptical sampling as shown in Figure 7.1(a)) and the rotation angle 𝜃0 (Figure 7.1 (a)). The major and 

minor axes of the ellipse at the order k are defined as: 

𝑗𝑘 = 𝑘𝑤/𝑚, 𝑘 = 1, … . , 𝑚 and   𝑛𝑘 = 𝑗𝑘/𝑞                                                                                                            (7.1) 

where, 𝑚 = 10 , 𝑞 = 2 and w is the window size of local region defined as follows [Vedaldi and 

Fulkerson 2008]: 

𝑤 = (3𝜎𝑛 × √2 × 5 + 1)/2                                                                                                                          (7.2) 

where, 𝜎𝑛 represents the scale of the extracted keypoint. In equation (7.1), 𝑛𝑘 = 𝑗𝑘/𝑞, 𝑞 defines the 

relation between major and minor axis and for 𝑞 = 1, circular sampling is processed on similar 

configurations as the elliptical sampling. Also, equations (7.1) and (7.2) defines the relationship between 

the scale of the extracted keypoint 𝜎𝑛  and major axis 𝑗𝑘.  

The two approaches adopted for elliptical sampling implementation are as follows: 

1. Using Parametric Equations 

The elliptical sampling is done as follows: 

𝑥𝑛
𝑘𝑝

= 𝑗𝑘 cos(𝜃𝑝) cos(𝜃0) − 𝑛𝑘 sin(𝜃𝑝) sin(𝜃0) + 𝑥𝑛 

𝑦𝑛
𝑘𝑝

= 𝑛𝑘 sin(𝜃𝑝) cos(𝜃0) + 𝑗𝑘 cos(𝜃𝑝) sin(𝜃0) + 𝑦𝑛 ,                                                                                         (7.3) 

where, (𝑥𝑛, 𝑦𝑛) represents the center of ellipse, (𝑥𝑛
𝑘𝜌

, 𝑦𝑛
𝑘𝜌

) denotes nth pixel coordinate obtained at kth 

concentric ellipse at delta p which corresponds to 𝜃𝑝 in equation (7.3) and is the angular step size chosen 

for generating a more continuous ellipse boundary. For kth concentric ellipse, 𝜃𝑝 = 1/𝑗𝑘. The rotational 
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angle 𝜃0 ϵ [0°, 90°], as for an ellipse with rotational angle 𝜃0, the major axis  𝑗𝑘 = 𝑗 and minor axis  𝑛𝑘 =

𝑛 (major and minor axes equivalence to some 𝑗 and 𝑛 value is just taken as an assumption to explain the 

concept). Now, if the rotation angle of the ellipse is changed to 𝜃0 + 90° with respect to positive x axis, 

the major and minor axes of the ellipse remains same, i.e.,  𝑗𝑘 = 𝑗 and  𝑛𝑘 = 𝑛. 
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Fig. 7.1. Elliptical Sampling 
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2. Using Elliptical Curve Tracking 

Sampling is done by scan converting the ellipse (i.e. calculating the points (𝑥𝑛
𝑘𝜌

, 𝑦𝑛
𝑘𝜌

) ) using a variant 

of the algorithm described in [Foley et al. 2005]. The algorithm is based on Pitteway curve tracking 

algorithm [Pitteway 1967] and is designed for general conics like ellipses with tilted axes, hyperbolas, 

circles and parabolas. The algorithm works by first defining the conic using the six coefficients 

𝐺, 𝐻, 𝐼, 𝐽, 𝐾 and 𝐿 of the equation: 

𝐶(𝑥, 𝑦) = 𝐺𝑥2 + 𝐻𝑥𝑦 + 𝐼𝑦2 + 𝐽𝑥 + 𝐾𝑦 + 𝐿 = 0                                                                                          (7.4) 

and then performing scan conversion.  

Considering a circle on a plane confined by a unit square that undergoes linear transformation, the 

square tends to transform to a parallelogram and the circle transforms to an ellipse. So, the midpoints of 

the sides of the parallelogram (𝑆 and 𝑃 transformed from S’ and P’ (midpoints of the sides of the square) 

as shown in Figure 7.2) are points on the ellipse and hence, determining these points along with the center 

of the parallelogram (𝑂(𝑥𝑐 , 𝑦𝑐)) would also determine the points of the ellipse. Therefore, for points 

𝑆(𝑆𝑥 , 𝑆𝑦) and 𝑃(𝑃𝑥 , 𝑃𝑦), the six coefficients from equation (7.4) are given as: 

𝐺 = (𝑆𝑦
2 + 𝑃𝑦

2);  𝐻 = −2(𝑆𝑥𝑆𝑦 + 𝑃𝑥𝑃𝑦);   𝐼 = (𝑆𝑥
2 + 𝑃𝑦

2);   𝐽 = 0;   𝐾 = 0;  𝐿 = −(𝑆𝑥𝑃𝑦 − 𝑆𝑦𝑃𝑥)
2

   (7.5) 

Now if the resulting ellipse is translated to a new coordinate system centered −𝑆(𝑆𝑥 , 𝑆𝑦) , the equation of 

the ellipse becomes: 

𝐶(𝑥, 𝑦) = 𝐺(𝑥 + 𝑆𝑥)2 + 𝐻(𝑥 + 𝑆𝑥)(𝑦 + 𝑆𝑦) + 𝐼(𝑦 + 𝑆𝑦)
2

+ 𝐽(𝑥 + 𝑆𝑥) + 𝐾(𝑦 + 𝑆𝑦) + 𝐿 = 𝐺′𝑥2 +

𝐻′𝑥𝑦 + 𝐼′𝑦2 + 𝐽′𝑥 + 𝐾′𝑦 + 𝐿′ = 0                                                                                                                                       (7.6) 

  

(a) Circle in a plane perfectly confined by a 

square 

(b) Transformed Square and Circle to a parallelogram 

and an ellipse respectively  

Fig. 7.2. Circle to Ellipse Transformation 

𝑆(𝑆𝑥 , 𝑆𝑦) 

𝑃(𝑃𝑥 , 𝑃𝑦) 𝑃′(𝑃𝑥
′, 𝑃𝑦

′) 

𝑆′(𝑆𝑥
′ , 𝑆𝑦

′ ) 
𝑂(𝑥𝑐 , 𝑦𝑐) 



Chapter 7 

123 

 

and comparing the coefficients of similar terms and solving resulting algebraic equations, the six 

coefficients for the new coordinate system centered −𝑆(𝑆𝑥, 𝑆𝑦) are given as: 

 𝐺′ = 𝐺; 𝐻′ = 𝐻;  𝐼′ = 𝐼;  𝐽′ = 2𝑃𝑦(𝑆𝑥𝑃𝑦 − 𝑆𝑦𝑃𝑥);  𝐾′ = −2𝑃𝑥(𝑆𝑥𝑃𝑦 − 𝑆𝑦𝑃𝑥);  𝐿 = 0                          (7.7) 

Scan converting this conic would yield its points and origin would lie on this particular conic. But if 

point (𝑆𝑥, 𝑆𝑦) is added to each point of this conic, then points of the original conic which is centered at 

the origin could be obtained. So, for efficient scan conversion and to take the advantage of symmetry of 

ellipse curve, the process is divided into eight octants. The current octant indicates the tracking direction 

of the algorithm i.e. to go to the next octant from the current octant, the choice is made between making 

a square move or a diagonal move depending on whether one coordinate changes or both does. Depending 

on the current octant, from the current pixel, square move is defined as: just above, just below, just right 

or just left. Similarly, diagonal move is defined as: move right then above, move right then below, move 

left then above or move left then below (Figure 7.3, where C indicates current pixel and, S and D indicates 

pixels after making square and diagonal move respectively). Also, the algorithm keeps a track of the odd 

and even numbered octants which are terminated by reaching diagonal and square octant boundary 

respectively. To determine the starting octant, it is noted that at any point of conic that satisfies 𝐶(𝑥, 𝑦) =

0 , the gradient of 𝐶 i.e., (2𝐺𝑥 + 𝐻𝑦 + 𝐽, 𝐻𝑥 + 2𝐼𝑦 + 𝐾) , points perpendicular to the conic. The gradient 

coordinates are used for determining the direction of motion and hence drawing the octant. Also, for each 

diagonal and square move, the decision variable 𝐷𝑣 is updated by adding increments 𝐼𝑑 and 

𝐼𝑠 respectively. If 𝐶(𝑥, 𝑦) = 0 is the equation of the ellipse, then 𝐷𝑣 is defined by evaluating 𝐶 at the 

midpoint of the segment between the next two pixel choices. As it is known that 𝐶(𝑥, 𝑦) <

0 and 𝐶(𝑥, 𝑦) > 0 if the point (𝑥, 𝑦) is inside and outside the ellipse respectively, therefore, 

(−𝐷𝑣) indicates that the ellipse passes outside the midpoint and outer pixel should be selected. Similarly, 

(+𝐷𝑣) indicates the inner pixel selection. In case when 𝐷𝑣 = 0 , for odd numbered octants: square move 

is taken for (−𝐷𝑣) and for even numbered octants: diagonal move is taken for (−𝐷𝑣). Taking an example: 

In octant 1, if (𝑥𝑐 , 𝑦𝑐) represents the current drawn pixel, 𝐷𝑣 is the decision variable to decide the selection 

of next pixel between (𝑥𝑐 + 1, 𝑦𝑐) and (𝑥𝑐 , 𝑦𝑐 + 1) and the representations 𝐼𝑑+1 and 𝐼𝑠+1 are used for the  

 

D S D 

C: Current Pixel 

S: Pixel accessed after making Square move 

D: Pixel accessed after making Diagonal move 

S C S 

D S D 

 

Fig. 7.3. Square and Diagonal move in an octant 
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added increment to 𝐷𝑣 for evaluating 𝐷𝑣+1 , then at each pixel following tasks are performed: 1) Current 

pixel is stored 2) next pixel is selected based on the value of  𝐷𝑣 . 3)  𝐼𝑑  and 𝐼𝑠 are updated to 𝐼𝑑+1 and 𝐼𝑠+1 

based on the choice made. 4) 𝐷𝑣 is updated to 𝐷𝑣+1 by adding either 𝐼𝑑+1 and 𝐼𝑠+1 . 5) Checking for octant 

change.  

The 𝐷𝑣+1 value is evaluated from 𝐷𝑣 by a differencing technique, i.e., if in the current octant (Octant 

1), pixel to be chosen beyond (𝑥𝑐 , 𝑦𝑐) is decided using 𝐷𝑣 = 𝐶 (𝑥𝑐 + 1, 𝑦𝑐 +
1

2
) , then for a square move 

𝑥𝑐+1 = 𝑥𝑐 + 1 and 𝑦𝑐+1 = 𝑦𝑐  , new decision variable  𝐷𝑣+1 = 𝐶(𝑥𝑐 + 2, 𝑦𝑐 +
1

2
) and  𝐼𝑠+1 is given as: 

𝐼𝑠+1 = 𝐷𝑣+1 − 𝐷𝑣 = 𝐺(2𝑥𝑐 + 1) + 𝐻 (𝑦𝑐 +
1

2
) + 𝐽 + 2𝐺                                                                                   (7.8) 

And for a diagonal move  𝐷𝑣+1 = 𝐶(𝑥𝑐 + 2, 𝑦𝑐 +
3

2
) and  𝐼𝑑+1 is given as:           

𝐼𝑑+1 = 𝐷𝑣+1 − 𝐷𝑣 = (2𝐺 + 𝐻)𝑥𝑐 + (𝐻 + 2𝐼)𝑦𝑐 + 𝐺 +
𝐻

2
+ 𝐽 + 𝐾 + (2𝐺 + 2𝐻 + 2𝐼)                            (7.9) 

Now if 𝐼𝑠 = 𝐺(2𝑥𝑐 + 1) + 𝐻 (𝑦𝑐 +
1

2
) + 𝐽, then 𝐼𝑠+1 = 𝐼𝑠 + 2𝐺. Similarly, if 𝐼𝑑 = (2𝐺 + 𝐻)𝑥𝑐 + (𝐻 +

2𝐼)𝑦𝑐 + 𝐺 +
𝐻

2
+ 𝐽 + 𝐾 , then 𝐼𝑑+1 = 𝐼𝑑 + (2𝐺 + 2𝐻 + 2𝐼).  Also, even if not used, both values of 

𝐼𝑑+1 and 𝐼𝑠+1 are calculated for square and diagonal moves and are given as: 

Square move: 𝐼𝑠+1 = 𝐼𝑠 + 2𝐺 and  𝐼𝑑+1 = 𝐼𝑑 + (2𝐺 + 𝐻)                                                                            (7.10) 

Diagonal move: 𝐼𝑠+1 = 𝐼𝑠 + (2𝐺 + 𝐻) and  𝐼𝑑+1 = 𝐼𝑑 + (2𝐺 + 2𝐻 + 2𝐼)                                                   (7.11) 

Transition from Octant 1  to  next  octant  is  done  when  the  two  components of the gradient vector 

(
𝜕𝐶

𝑥
,

𝜕𝐶

𝑦
 ) goes from being negative to being zero. As (

𝜕𝐶

𝑥
,

𝜕𝐶

𝑦
 ) = (2𝐺𝑥 + 𝐻𝑦 + 𝐽, 𝐻𝑥 + 2𝐼𝑦 + 𝐾), so in 

terms of  𝐼𝑑  and 𝐼𝑠 , (
𝜕𝐶

𝑥
 ) = 𝐼𝑠 −

2𝐺+𝐻

2
 and (

𝜕𝐶

𝑥
+

𝜕𝐶

𝑦
 ) = 𝐼𝑑 −

2𝐺+𝐻

2
. Therefore, sign of (

𝜕𝐶

𝑥
+

𝜕𝐶

𝑦
 ) determines the transition from 1st octant to next octant and the sign of (

𝜕𝐶

𝑥
 ) serves as the 

corresponding check for transition of 2nd octant to next octant. Also, when transition is made from octant 

1 to octant 2, the square moves become vertical rather than horizontal and the decision variable being 

updated becomes 𝐷𝑣
′ = 𝐶 (𝑥𝑐 +

1

2
, 𝑦𝑐 + 1) and values for 𝐷𝑣

′  , 𝐼𝑠
′ and 𝐼𝑑

′  in terms of 𝐷𝑣 , 𝐼𝑠 and 𝐼𝑑 is given 

as: 

𝐷𝑣
′ − 𝐷𝑣 = 𝐶 (𝑥𝑐 +

1

2
, 𝑦𝑐 + 1) − 𝐶 (𝑥𝑐 + 1, 𝑦𝑐 +

1

2
) =

𝐼𝑑

2
− 𝐼𝑠 +

3

8
(2𝐺 + 2𝐻 + 2𝐼) −

1

2
(2𝐺 + 𝐻)  (7.12) 

𝐼𝑠
′ − 𝐼𝑠 = 𝐼𝑑 − 𝐼𝑠 −

2𝐺+𝐻

2
+

2𝐺+2𝐻+2𝐼

2
                                                                                                               (7.13) 
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𝐼𝑑
′ − 𝐼𝑑 = −𝐺 + 𝐼                                                                                                                                                 (7.14) 

It is also observed that sometimes a diagonal move may result in incorrect evaluation of the ellipse’s 

points and several octant changes are made in a single move, resulting in the breakdown of the ellipse. A 

solution to this problem is proposed was by Pratt [Pratt 1985] where while tracking pixels in octant 1, a 

radical direction change is observed in the gradient vector of  𝐶(𝑥, 𝑦) if an unusual jump across the ellipse 

is made. For example, in octant1, x and y component of the gradient vector is always positive and negative 

respectively, therefore if a jump is made across the ellipse, next ellipse point may lie in octant 3, 4, 5 or 

6. So, a division line is determined between these and the opposite octants, i.e., octant 1, 2, 7 and 8, by 

setting the x component of the gradient vector, i.e., 2𝐺𝑥 + 𝐻𝑦 + 𝐽 = 0. Also, as 𝐼𝑠 = 𝐺(2𝑥𝑐 + 1) +

𝐻 (𝑦𝑐 +
1

2
) + 𝐽 = 2𝐺𝑥𝑐 + 𝐻𝑦𝑐 + 𝐽 + 𝐺 + 𝐻/2, therefore, 𝐼𝑠 can also be used to detect such crossings and 

similar monitoring can be done for each octant. 

7.3.2 Circular Sampling 

The circular sampling is done by treating the radius 𝑟𝑘(𝑘 = 1 … . 𝑚) as a single supervised parameter, 

where k is the order of circular sampling as shown in Figure 7.4(a), and is defined as: 

𝑟𝑘 = 𝑘𝑤/𝑚, 𝑘 = 1, … . , 𝑚                                                                                                                                    (7.15) 

where, 𝑚 = 10 and w is evaluated using equation (7.2). The above equations (7.2) and (7.15) defines the 

relationship between the scale of the extracted keypoint 𝜎𝑛 and radius 𝑟𝑘. The two approaches adopted for 

circular sampling implementations are as follows: 

1. Using Parametric Equations 

The circular sampling is done as follows: 

𝑥𝑛
𝑘𝑝

= 𝑟𝑘 cos(𝜃𝑝) + 𝑥𝑛 

𝑦𝑛
𝑘𝑝

= 𝑟𝑘 sin(𝜃𝑝) + 𝑦𝑛 , where 𝑘 = 1, … . , 𝑚                                                                                                          (7.16) 

In the above equation (7.16), 𝑥𝑛
𝑘𝑝

 and 𝑦𝑛
𝑘𝑝

 denotes the horizontal and vertical coordinates of nth sampling 

point obtained at kth concentric ellipse at delta p which corresponds to 𝜃𝑝 in equation (7.16) and for kth 

concentric circle, 𝜃𝑝 = 1/𝑟𝑘  . Also, equation (7.16) and (7.3) computes floating point values for cos(𝜃𝑝) 

and sin(𝜃𝑝) functions and thereby, for evaluating accurate image intensity at point (𝑥𝑛
𝑘𝜌

, 𝑦𝑛
𝑘𝜌

), bilinear 

interpolation is used. For notation clarity, Ɨ(𝑥𝑛
𝑘𝜌

, 𝑦𝑛
𝑘𝜌

) is used to denote image intensity at point (𝑥𝑛
𝑘𝜌

, 𝑦𝑛
𝑘𝜌

) 

after bilinear interpolation. 
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(a) Sampling points (black dots) generation using 

circular sampling. 
 

 

 
 
 
 
 

 

 

 

(b) Descriptor Presentation 
 

Fig. 7.4. Circular Sampling 

2. Using Circular (Elliptical) Curve Tracking 

Sampling is done by scan converting the circle (i.e. calculating the points (𝑥𝑛
𝑘𝜌

, 𝑦𝑛
𝑘𝜌

) ) using the same 

procedure followed for scan converting the ellipse [Section 7.3.1]. However, as circle is treated as a 

special case of ellipse where the major and minor axes ( 𝑗𝑘 and 𝑛𝑘 respectively) are equal, i.e., 𝑗𝑘 = 𝑛𝑘 =
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𝑟𝑘  , therefore while performing scan conversion for circle, the two axes are kept same. The rest of the 

implementation for curve tracking is done by following similar steps as detailed for ellipse scan 

conversion. 

7.4 Feature Descriptor 

The local descriptor is formulated using the sampling points generated using circular and elliptical 

sampling. The descriptor formulation is done by first computing the gradients of the sampling points, 

followed by orientation computation of local gradients. So, the formulation involved is as follows: 

𝐷𝑝(𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

) = Ɨ (𝑥𝑛
𝑘(𝑝+1)

, 𝑦𝑛
𝑘(𝑝+1)

) −  Ɨ (𝑥𝑛
𝑘(𝑝−1)

, 𝑦𝑛
𝑘(𝑝−1)

)                                                                          (7.17) 

𝐷𝑘(𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

) = Ɨ (𝑥𝑛
(𝑘+1)𝑝

, 𝑦𝑛
(𝑘+1)𝑝

) −  Ɨ (𝑥𝑛
(𝑘−1)𝑝

, 𝑦𝑛
(𝑘−1)𝑝

)                                                                           (7.18) 

𝑚(𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

) = √(𝐷𝑝(𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

))^2 + (𝐷𝑘(𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

))^2                                                                              (7.19) 

𝑎𝑛𝑔𝑙𝑒(𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

) = 𝑎𝑡𝑎𝑛2(𝐷𝑝(𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

), 𝐷𝑘(𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

))                                                                                   (7.20) 

In the above equations, 𝐷𝑝(𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

) and 𝐷𝑘(𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

) represents the gradient of image pixels that 

differ by delta p and kth concentric circle or ellipse respectively, 𝑚(𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

) denotes the gradients 

magnitude and 𝑎𝑛𝑔𝑙𝑒(𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

) denotes the local gradient orientation.  

Illustrating the difference between gradient computation in the proposed method from the original 

SIFT descriptor which uses nearby pixels for gradient computation such as (𝑥𝑛
𝑘𝑝

− 1, 𝑦𝑛
𝑘𝑝

), (𝑥𝑛
𝑘𝑝

+

1, 𝑦𝑛
𝑘𝑝

), (𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

− 1) and (𝑥𝑛
𝑘𝑝

, 𝑦𝑛
𝑘𝑝

+ 1),  equation (7.17) and (7.18) determines the image pixel 

selection for evaluating the gradient magnitude and the local gradient orientation in equation (7.19) and 

equation (7.20) respectively. The main idea of following this strategy to perform optimal pixel selection 

to correctly reflect the variation in viewpoint between the two images that are being matched.  

For final descriptor value, an orientation histogram is evaluated using the gradient orientation of 

sampling points computed using equation (7.20). The histogram is divided into 8 bins which covers the 

360°range of orientations, i.e. 0° − 45°is labelled as Bin1, 46° − 90° as Bin2 and so on. Also, following 

the similar convention as in [Lowe 2004], each sample added to the histogram is weighted by its gradient 

magnitude and a Gaussian weighting function with scale equal to half the radius of the outermost circle 

or ellipse of the descriptor window. Figure 7.4 illustrates the keypoint descriptor computation based on 

circular sampling, where Figure 7.4(a) gives a pictorial representation of sampling point selection and 
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Figure 7.4(b) represents the descriptor formulation where all the sampling points are summarized over 4 

× 4 subdivisions with 8 orientation bins in each subdivision. Similarly, for elliptical sampling, Figure 

7.1(a) and 7.1(b) shows sampling point selection and descriptor formulation respectively. Hence, as a 

result of both circular and elliptical sampling, a 4 × 4 × 8 = 128 element feature vector is produced for 

each detected keypoint. Also, the effects of illumination changes are reduced by normalizing the feature 

vector to unit length. Moreover, the non-linear illumination changes that could potentially effect gradient 

magnitudes are handled by thresholding the values in the unit feature vector to be no larger than 0.4 and 

then again normalizing the feature vector to unit length. As in notation, the final descriptor is denoted 

by 𝐹𝐷𝑖 for the 𝑖𝑡ℎ keypoint.  

7.5 Image Matching 

In an attempt to match two images with diverse viewpoint variations, circular and elliptical sampling 

is done in the reference and the matched image respectively, where the circles in the reference image 𝐼𝑜 are 

transformed into ellipses in the matched image  𝐼𝑚 to pertain viewpoint and scale variations in the two 

images.  

So, initially given the reference image 𝐼𝑜 and the matched image 𝐼𝑚, SIFT detector is used for 

extracting keypoints from 𝐼𝑜 and 𝐼𝑚. Each detected keypoint  𝑖  is specified by its (𝑥𝑖 , 𝑦𝑖) coordinates, 

scale 𝜎𝑖 and orientation 𝑜𝑖.  For M keypoints in the reference image 𝐼𝑜 , feature descriptor obtained using 

circular sampling is denoted by 𝐹𝐷 = {𝐹𝐷𝑖}𝑖=1 
𝑀 and for N keypoints in the matched image 𝐼𝑚 , feature 

descriptor obtained using elliptical sampling is denoted by 𝐹𝐷′ = {𝐹𝐷′𝑖}𝑖=1 
𝑁 . The best match for each 

keypoint in the reference image is found by identifying its nearest neighbor from the collection of 

keypoints in the matched image. The nearest neighbor is defined as the keypoint with minimum Euclidean 

distance for the invariant descriptor vector. However, many factors like noise, object occlusion etc. may 

cause mismatching of keypoints in the matched image keypoint collection. Therefore, for discarding false 

matches, keypoint matching specifications from SIFT [Lowe 2004] are used where an efficient measure 

is applied to identify the closest and the second-closest neighbor to a particular keypoint in the matched 

image. The distance of these two neighbors from the keypoint is evaluated and compared as the correct 

match needs to have the closest neighbor significantly closer than the closest incorrect match to achieve 

reliable matching. Also, there is a possibility of finding a number of incorrect matches within similar 

distances due to the high dimensionality of the feature space. Therefore, second-closest match is treated 

as a measure to determine the density of incorrect matches within a particular portion of the feature space.  

The Probability Density Function (PDF) for correct and incorrect matches are thereby computed as the 

ratio of closest to second-closest neighbors of each keypoint. The PDF value for the nearest neighbor 



Chapter 7 

129 

 

correct match is justified at a much lower ratio than that for incorrect matches i.e., matches with distance 

ratio greater than 0.8 are rejected eliminating 90% of the incorrect matches while discarding less than 5% 

of the correct matches [Lowe 2004]. 

7.6 Methodology & Experimental Setup 

7.6.1 Methodology 

Methodology and how to compare performance: The proposed feature descriptor is implemented 

using two variations in circular and elliptical sampling: 1) using parametric equations and 2) using curve 

tracking algorithm. Circular and elliptical sampling in both cases is done in the reference image and the 

matched image respectively. The two implementations are thereby compared in terms of correct number 

of correspondences between an image pair and time taken. Performance comparison of the proposed 

descriptor is done with one of the most conventional and widely used SIFT feature descriptor for 

determining and proving the efficiency of the proposed method.  

Which statistics/metrics to use and how:  Table 7.1 describes the corresponding tables and figures 

listing in the chapter with respect to comparative evaluation of the proposed descriptor (implemented by 

performing circular and elliptical sampling using parametric equations and curve tracking algorithm). 

Table 7.1. Tables & Figures Representing Respective Performance Evaluation 

 Table / Figure Comments 

Elliptical Sampling Figure 7.2 Represents the sampling points selection and descriptor 

formation for elliptical sampling 

Circular Sampling Figure 7.4 Represents the sampling points selection and descriptor 

formation for circular sampling 

Results for the proposed feature 

descriptor implemeted using 

parametric equations 

Table 7.2 Graphs representing number of matches and time taken 

(in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset. 

Results for the proposed feature 

descriptor implemeted using 

curve tracking algorithm 

Table 7.3 Graphs representing number of matches and time taken 

(in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset. 

Performance comparison of 

SIFT and the proposed 

descriptor 

Table 7.4 The table also represents the speed-up obtained by the 

proposed feature descriptor for every pair of image in 

each image-set. 
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 Table / Figure Comments 

Average Speed-Up Table 7.5 Represents the average speed-up for every image-set 

and the overall speed-up obtained by the proposed 

method. 

7.6.2 Experimental Setup 

Language, Software and Tools used for implementation and system specification: The 

experiments are carried out using single threaded code on a computer with 32GB RAM and Intel® Core 

™ i7-6700 CPU@3.40ghz × 8 processor. 

Implementation details:  The proposed feature descriptor is implemented using two variations in 

circular and elliptical sampling, i.e., using parametric equations and using curve tracking. Implementation 

details for both the methods is given in Appendix E.1. For the case where circular and elliptical sampling 

is done using curve tracking, partial implementation from [Foley et al. 2005] is used. The code is 

completed and revised before using it in the work. Moreover, the elliptical sampling in both the cases is 

done at five different orientations of the ellipse, i.e., 0°,  30°,  45°,  60° and 90°, as rotational 

angle 𝜃0 ϵ [0°, 90°] for an ellipse (Reason briefed in Section 7.3.1). The results for the two cases for all 

five orientations are listed in Appendix E.2.  

7.7 Data Reporting 

Dataset: The experiments are performed on Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 

as described in Chapter 4 [Section 4.6, Figure 4.2], containing eight image-sets with six images in each 

set (total 48 images). The images in the dataset defines image scene for five different imaging conditions: 

1) viewpoint change, 2) scale change, 3) image blur, 4) illumination change and 5) JPEG compression. 

The detailed results are depicted in Table 7.2 and Table 7.3 where corresponding graphs are 

represented for number of correct matches between every pair of image in each image-set and time taken 

(in seconds) by the two approaches used for performing elliptical and circular sampling for 

0°,  30°,  45°,  60° and 90° ellipse rotation with respect to positive x axis (Please refer to Appendix E.2 for 

the numeric observations). From Table 7.2 and Table 7.3 it is clear that number of matches between image 

pairs and time taken for descriptor processing does not vary much in all image-sets for all five ellipse 

orientations. Table 7.4 represents the results for correct number of correspondences between an image 

pair and time taken (in seconds) for SIFT and the proposed descriptor. For the proposed descriptor, the 
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values for correct number of matches and time taken for a particular image pair is the average of the output 

for that particular image pair for 0°,  30°,  45°,  60° and 90° ellipse rotation in both implementations.  

From the graphs in Table 7.4 it is observed that the number of matches in case of SIFT are higher 

than the proposed method only in the case when two images describe an image scene that differs with 

very low degree of change in imaging condition and whenever the imaging condition is differing much, 

the proposed method always exhibits more number of matches in an image pair as compared to SIFT. For 

example, in case of Trees image-set, where degree of blur is sequentially increased in images from Image1 

to Image6, the number of matches between an image pair by SIFT decreases drastically when Image1 is 

matched with Image6, but the proposed descriptor is able to exhibit a significant higher number of matches 

between the image pair. Figure 7.5 shows the results for number of matches by SIFT and the proposed 

method for six pairs of image of Trees image-set i.e. 1&1, 1&2, 1&3, 1&4, 1&5 and 1&6, where white 

lines represent the correspondences between an image pair. Similarly for other image-sets identical results 

are achieved that depicts stable performance of the proposed descriptor and its invariance to various 

parameters like viewpoint change, scale change, variations in image blur and illumination etc. 

Table 7.2. Detailed Observations for 𝟎°,  𝟑𝟎°,  𝟒𝟓°,  𝟔𝟎° 𝐚nd 𝟗𝟎° Ellipse Rotations for Circular and 

Elliptical Sampling using Parametric Equations 

Image-set Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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Image-set 
Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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Image-set 
Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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Image-set 
Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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Image-set 
Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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Elliptical Sampling using Curve Tracking 
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Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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Image-set 
Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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Image-set 
Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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Image-set 
Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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Image-set 
Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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Table 7.4. Feature Matching Comparative Performance 
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Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 

Graffiti 

 

 

0

200

400

600

800

1000

1 & 2 1 & 3 1 & 4 1 & 5 1 & 6 2 & 3 2 & 4 2 & 5 2 & 6 3 & 4 3 & 5 3 & 6 4 & 5 4 & 6 5 & 6

N
u

m
b

er
 o

f 
M

at
ch

es

Image Pair

0° Match 30° Match 45° Match 60° Match 90° Match

0

5

10

15

1 & 2 1 & 3 1 & 4 1 & 5 1 & 6 2 & 3 2 & 4 2 & 5 2 & 6 3 & 4 3 & 5 3 & 6 4 & 5 4 & 6 5 & 6

T
im

e 
T

ak
en

Image Pair

0° Time 30° Time 45° Time 60° Time 90° Time

0

200

400

600

800

1000

1200

1 & 2 1 & 3 1 & 4 1 & 5 1 & 6 2 & 3 2 & 4 2 & 5 2 & 6 3 & 4 3 & 5 3 & 6 4 & 5 4 & 6 5 & 6

N
u

m
b

er
 o

f 
M

at
ch

es

Image Pair

SIFT Match Polar Match Scan Match

0

5

10

15

1 & 2 1 & 3 1 & 4 1 & 5 1 & 6 2 & 3 2 & 4 2 & 5 2 & 6 3 & 4 3 & 5 3 & 6 4 & 5 4 & 6 5 & 6

T
im

e 
T

ak
en

Image Pair

SIFT Time Polar Time Scan Time



140 

 

Image-set 
Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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Image-set 
Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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Image-set 
Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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Image-set 
Graphs representing number of matches and time taken (in seconds) for all image pairs in each image-set of the 

Mikolajczyk dataset [Mikolajczyk 2007, Appendix A.1] 
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(b) Number of matches obtained for six image pairs in Trees Image-Set using the proposed method 

(using curve tracking)  
 

Fig. 7.5. Number of matches obtained for six image pairs in Trees Image-Set using SIFT and the 

proposed method 
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Table 7.5. Average Speed-Up 

Image-Set Graffiti Wall Boat Bark Bikes Trees Leuven Ubc 

Average Speed-up Using 

Parametric Equations 
1.3330 1.4435 1.4545 1.5069 1.3373 1.5299 1.2554 1.4437 

Average Speed-up Using 

Curve Tracking 
1.7764 1.5437 1.5286 1.7212 1.5817 1.5751 1.7106 1.5469 

Average Speed-up Using Parametric Equations =1.4129 

Average Speed-up Using Curve Tracking =1.6230  

 

Table 7.5 presents the average speed-up for the image-sets and subsequently also lists the overall 

speed-up value achieved by the proposed descriptor over the SIFT descriptor. As observed from the table, 

the proposed descriptor using curve tracking is faster than SIFT by a factor of 1.6 on an average basis 

while producing sufficient number of matches between an image pair to perform image registration (Table 

7.4).  

7.8 Result Analysis and Interpretation 

 This chapter details a novel proposed feature descriptor based on circular and elliptical local sampling 

of pixels that determines the neighborhood of the extracted feature using circular and elliptical sampling. 

From the results it is observed that: 

 1. The number of matches in case of SIFT is higher than the proposed method only in the case when two 

images describe an image scene that differs with very low degree of change in imaging condition or are 

of similar quality (quality of the respective image or similarity index between every pair of image in each 

image-set can be referred from Chapter 4, Section 4.6) Moreover, whenever the quality of images are 

differing much, the proposed method always exhibits more number of matches in an image pair as 

compared to SIFT. Therefore, the proposed method is invariant to various parameters like viewpoint 

change, scale change, variations in image blur and illumination etc.  

2. Presenting an argument for low number of correct matches between an image pair by the proposed 

method, MSLinear-MSER+SIFT feature detector proposed in Chapter 6 is tested on the same image-set 

[Mikolajczyk 2007, Appendix A.1] and is observed to perform well. In the same chapter, a prototype of 

an Augmented Reality (AR) system is developed and demonstrated using the same approach and even 

with approx. twenty matches, the image registration is done correctly (Figure 10 (d) [Gupta and Rohil 

2018], also reproduced in Chapter 6, Section 6.5, Figure 6.7(d)). Therefore, it is always not necessary to 

obtain the number of matches between an image pair in thousands or hundreds to image registration in an 

AR system correctly. Also, the time taken for image registration in an AR system serve as a main factor 
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as long as we are able to perform image registration correctly with less or more number of matches 

between an image pair. 

 3. The main advantage of the proposed descriptor is fast and robust matching results under varied imaging 

conditions. It is faster than SIFT by a factor of 1.6 on an average basis while producing sufficient number 

of matches between an image pair to perform image registration in an AR system.  

7.9 Summary 

In this chapter a novel feature descriptor based on circular and elliptical sampling of extracted 

keypoint neighboring pixels is proposed and discussed in detail. The proposed descriptor is based on the 

fact that local features of an image tend to provide a robust way of image matching if the local descriptor 

describing the neighborhood of the feature is designed in such a way that it is invariant to large variations 

in scale, viewpoints, illumination, rotation and affine transformations. 

 

 

 

 


