
 

 

Chapter 6 

Proposed Improvement in Image 

Registration for Augmented Reality 

6.1 Introduction 

Summary of the enhancements/improvements done for Image Registration methods till 2017: 

In last three decades, many approaches have been proposed for extracting invariant regions of interest in 

an image and these approaches are usually classified according to their efficiency to handle affine 

transformations. For example, the Harris point detector [Harris and Stephens 1988] is considered to be 

rotation invariant. The Harris-Laplace and Hessian-Laplace feature detectors [Mikolajczyk and Schmid 

2001, Mikolajczyk and Schmid 2004] are invariant to rotations and scale change. Certain moment-based 

detectors [Lindeberg and Garding 1997, Baumberg 2000], Harris-Affine and Hessian-Affine feature 

detectors [Mikolajczyk and Schmid 2002, Mikolajczyk and Schmid 2004], Edge-based region detector 

(EBR) [Tuytelaars and Gool 2004], Intensity-based region detector (IBR) [Tuytelaars and Gool 2004], 

Maximally Stable Extremal Regions (MSER) [Matas et al. 2004] etc. are designed to be invariant to affine 

transformations. However, a comparative study conducted by [Mikolajczyk et al. 2005] between Harris-

Affine, Hessian-Affine, EBR, IBR and MSER detectors demonstrated that performance of all the five 

detectors moderately declines as the viewpoint change increases, however, in many scenarios MSER 

performed better than the other detectors followed by Hessian-Affine.  

In an attempt to design an affine invariant feature detection algorithm, Alvarez and Morales [Alvarez 

and Morales 1997] introduced an affine morphological multi-scale analysis to extract corners in an image. 

Tuytelaars and Gool [Tuytelaars and Gool 1999, Tuytelaars and Gool 2000] proposed two approaches for 

detecting image features in an affine invariant way. The former approach extracted Harris points and used 

the nearby edge for defining a parallelogram region. The latter approach initiated by extracting local 

intensity extrema and an ellipse was defined for the region determined by significant changes in the 

intensity profiles. Laptev and Lindeberg [Laptev and Lindeberg 2003] developed a method for finding 

elliptical blobs in an image for hand tracking. One of the most prominent and widely used feature detector 

is the Scale Invariant Feature Transform (SIFT) feature detector [Lowe 2004]. SIFT first performs 
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keypoint detection in an image at multiple resolutions in linear scale space and then assigns a descriptor 

vector with each keypoint by defining a local histogram of image gradient orientations around it. SIFT 

Detector-Descriptor combination results in keypoints that are scale, translation and rotation invariant. 

However, SIFT is not fully affine invariant and it works well only up to a 30° change in viewpoint angle 

between two images being matched [Yu and Morel 2011]. 

Another well-known Detector-Descriptor combination is Speeded Up Robust Features (SURF) 

feature detector [Bay et al. 2008]. SURF, is considered as an improved version of SIFT in terms of runtime 

efficiency. In a comparison study carried out by Gauglitz et al. [Gauglitz et al. 2011] between SIFT and 

SURF in different conditions of scale, viewpoint and illumination changes, it has been shown that SURF 

performs better than SIFT in all scenarios with fewer but sufficient number of detected keypoints. In an 

attempt to design a fully affine invariant feature detector, Yu and Morel [Yu and Morel 2011] proposed 

another enhancement in SIFT where image views obtained by changing two camera axis orientation 

parameters i.e. latitude and longitude angles were simulated. These image parameters were then clubbed 

with SIFT evaluated parameters involving simulated scale and normalized rotation and translation 

parameters, to make the detector work well under different affine conditions.  

A number of detectors have been used in the past for performing image registration in a markerless 

Augmented Reality (AR) system. For example: Yuan et al. [Yuan et al. 2006] used Harris-Affine and 

Hessian-Affine feature extraction approach for designing a projective reconstruction technique using 

natural features. Gomez and Karatas [Gomez and Karatas 2014] made use of MSER features for detecting 

and tracking text in natural scenes. Chen et al. [Chen et al. 2007] proposed a system initialization 

algorithm for markerless AR using SIFT keypoints. SIFT features are also used by Li and Chen [Li and 

Chen 2010] for developing a markerless AR system for E-commerce applications. Similarly, ASIFT and 

SURF features are also used in literature [Ham and Golparvar-Fard 2013, Paz et al. 2012] for defining 

stable features of interests in an image, which are further used for providing reliable estimations in 

designing a markerless AR system.   

Need of the proposed improvement: As revealed from the studies proposed till date, there still seems 

a need for developing a fully affine invariant feature detection procedure for performing image registration 

in an AR system. Drawbacks that still need to be resolved includes, high computation complexity and the 

ability of the detector to provide robust results in extreme changing imaging conditions like viewpoint 

change, illumination change etc. In this chapter, we propose a way to handle some of these limitations by 

providing an improved implementation of MSER for detecting stable regions of interest in an image. 

Selection of MSER detector for this can be reasoned on the results of the comparative study between the 
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six feature detectors (Harris-Affine. Hessian-Affine, MSER, SIFT, ASIFT and SURF) that seem suitable 

for performing image registration in an AR system [Gupta and Rohil 2017a, also reproduced in thesis 

chapter 4].  

6.2 Proposed Improvement to Maximally Stable Extremal Regions 

6.2.1 Feature Detection  

Standard MSER: MSERs are the connected components in an image having extremal regions either 

with higher (bright) or lower (dark) intensity properties than all the pixels on its outer boundary. The 

regions are defined solely by an extremal property of the intensity function in the region and on its outer 

boundary. The ordering of pixels intensities is done under monotonic transformations, due to which 

MSERs are considered to be stable features [Matas et al. 2004]. Standard MSER algorithm follows a four 

step procedure for extracting stable regions of interest in an image [Chapter 3, Section 3.1.1]. The concept 

can be explained informally as follows: Imagine a gray-level image I that could be thresholded to a 

maximum number of k levels. Pixels with intensity value below a threshold are treated as ‘black’ and 

those above or equal are considered as ‘white’. Now, if all the thresholded images are seen as an image 

sequence represented as  𝐼𝑖𝑡, with frame i corresponding to threshold t, white image appears as first in the 

image sequence. Iteratively as the images are thresholded, black spots corresponding to local intensity 

minima appears to grow and regions corresponding to two local minima tends to merge at some point, 

subsequently forming a whole black image as the final output. The set of all connected components of all 

frames in the image sequence is the set of all maximal regions. Minimal regions could be obtained by 

inverting the intensity of I and running the same process.  

Linear-MSER: The version of MSER chosen for experiments is the one proposed by Nister and 

Stewenius [Nister and Stewenius 2008], where a different analogy is chosen for maintaining the connected 

components of pixels, resulting in lower computational complexity. Figure 6.1 shows the difference 

between the two analogies where Figure 6.1(a) and Figure 6.1(b) describes the Standard MSER and 

Linear-MSER analogies respectively. The analogy chosen by Linear-MSER is a true flood fill approach 

(Figure 6.1(b)) where the water fills all the basins not at once but spills over to other parts as they become 

accessible to the current body of water i.e. the next pixel looked upon from the current pixel shouldn’t 

have a lower grey level value, if it does, then the pixel with lower grey value is accessed first and the 

current pixel is stored for later processing. The reason behind this can be explained by considering the 

case of a ridge pixel having access to several edges with lower grey level pixels. In such a case the order 

of processing of pixels proposed by Nister and Stewenius [Nister and Stewenius 2008] goes wrong and 

the algorithm works in standard way of finding MSER’s in an image. 
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(a) (b) 

Fig. 6.1. Immersion Analogy used by (a) Standard MSER [Matas et al. 2004] and (b) Linear-MSER [Nister 

and Stewenius 2008] 

In Linear-MSER [Nister and Stewenius 2008], worst case execution time is 𝑂((𝑛 + 𝑒𝑑)log (𝑔)), 

where  𝑛  and  𝑔  symbolizes  the  number  of  pixels  and  grey  levels  in  the  image  respectively and 𝑒𝑑 

represents the number of edges in the image graph, where the value of 𝑒𝑑 ≈ 2𝑛 for four connected pixel 

images. Considering the grey level and connectivity as constant, MSERs are extracted in 𝑂(𝑛) time from 

an image. The comparative evaluation between standard and Linear MSER in terms of number of detected 

features and time taken for three random image-sets from Mikolajczyk dataset [Mikolajczyk 2007, 

Appendix 1] is shown in figure 6.1. Graphical representation of results clearly depicts the much lower 

computational complexity of Linear-MSER with very less difference in the number of detected keypoints. 

Though, the number of keypoints detected by Linear-MSER are less than those detected by standard 

MSER, the keypoint count in case of Linear-MSER remains stable even under changing imaging 

conditions. 

Difference between Linear-MSER & Standard MSER: The main difference between the standard 

MSER algorithm [Matas et al. 2004] and Linear-MSER [Nister and Stewenius 2008] is the analogy they 

follow for building and maintaining the component tree. Figure 6.1 shows different analogies adopted by 

the two methods. For better understanding of the adopted analogies, the image in the figure is represented 

as a topographic map where peaks and valleys determine the image local maxima and minima in terms of 

intensity values respectively. In standard MSER [Matas et al. 2004], the level of water is lifted uniformly 

at all places i.e., make an assumption that the landscape is constructed as a porous field so that the water 

level is proportionate everywhere, or equivalently,  assume that each local minima of the landscape has a 

small opening, allowing the water to enter everywhere. Therefore, following this analogy, standard MSER 

algorithm accesses complete pixels of an image at once and track of the connected components is kept 

Standard analogy used (MSER) 

 

Analogy proposed by Nister and Stewenius (Linear-

MSER) 
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using union find algorithm. However, in Linear-MSER [Nister and Stewenius 2008], a single connected 

component of pixels is maintained i.e. water first fills up the basin where it was initially poured and then 

spills over to other parts as they become accessible to the current body of water (Figure 6.2). 

MSLinear-MSER: In the proposed detector, Multi-scale Linear-MSER (MSLinear-MSER), regions 

of interest are extracted from the image at multiple resolutions of an image. This is done by forming a 

scale pyramid from the original image as shown in Figure 6.3 (Figure shows an example of scale pyramid 

formation for four octaves with four level stack of scaled images). Image is divided into octaves (a given 

image is incrementally convolved with Gaussians to produce images separated by a constant factor k in 

scale space. The set of these separated images is called an octave) and each octave is divided into multiple 

number of level stack of scaled images. Within an octave, the size of the image remains same but at each 

level the image is scaled down by a factor of k (k = √2, [Lowe 2004]) and stable regions of interest are 

extracted at all levels using the Linear-MSER algorithm. The same process is followed for multiple 

octaves where at each octave the image size is resampled by removing every alternate pixel in each row  

 

   

   

(a) Graffiti (b) Boat (c) Leuven 

  Standard MSER   

                                                              Linear-MSER 

Fig. 6.2. Comparative Results of performance of Standard MSER and Linear-MSER in terms of number of 

features detected (above) and time taken (below) for Graffiti, Boat and Leuven Image-Set 
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Fig. 6.3. Scale Pyramid formation 

and column. The image that is chosen for resampling at each octave is the one with twice the value of 

scale (σ) from the bottom image. Refinement of detected regions of interest is done once all the octaves 

are processed in order to remove duplicate regions with same size and location. The location requirement 

that is used for elimination is that the centroid distance should be smaller than four pixels in the finer grid. 

Complexity Analysis for Linear-MSER given by the authors [Nister and Stewenius 2008] for the 

algorithm is linear in terms of number of pixels. Maximum time taken by the algorithm is in terms of 

𝑙𝑜𝑔 𝑔 time (where 𝑔 is the number of grey-levels) to access the available pixels and to save the accessed 

pixels. Therefore, the worst case execution time is confined by 𝑂((𝑛𝑝 + 𝑛𝑒)𝑙𝑜𝑔(𝑔)) , where 𝑛𝑝 is the 

number of pixels and 𝑛𝑒 is the number of edges in the image graph (such as e ≈ 2n for four-connected 

images). Now if, 𝑔, the number of grey-levels and 𝑛𝑒, the number of edges in the image graph are 

considered as constants, the overall complexity of the algorithm evaluates to 𝑂(𝑛𝑝), linear time. On 

similar steps, complexity analysis for MSLinear-MSER is evaluated as: 

𝑂((𝑛𝑝) + (
𝑛𝑝

4
) + (

𝑛𝑝

16
) + (

𝑛𝑝

64
) + (

𝑛𝑝

256
) + (

𝑛𝑝

1024
)), 

as for scale pyramid formation containing 6 octaves, where for each octave subsampling is done by 

removing every alternate pixel in each row and column and 𝑛𝑝 represents the total number of pixels. 

Therefore, the overall complexity of the algorithm evaluates to 𝑂(𝑛𝑝), linear time (Pseudocode for 

MSLinear-MSER is given in Appendix D.1).  

Advantages of MSLinear-MSER: MSLinear-MSER detector results in interest points which are 

invariant to both scale and affine transformations. The detector uses characteristic scale selection in order 

to achieve scale invariance and output regions of the detector are normalised using affine shape adaption 

algorithm [Lowe 2004] to make them affine invariant.  

Parameters of the detector are summarized as: 

Octave 1 to Octave 2 (4 levels each) 

Image at scale σ 

Image at scale k4σ 
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 MSLinear-MSER is implemented with 6 octaves with 5 levels each (Results for various combinations 

of  octaves  and  levels  per  octave  are  shown  in  Table 6.2. In correlation, the reason for choosing 6  

octaves with 5 levels each is also specified). 

 Orientation computation is done for each detected keypoint. 

Proposed improvement in the terms of feature description: MSLinear-MSER is combined with 

two widely used feature descriptors, SIFT and SURF, for describing the extracted region of interest 

uniquely among the others. The performance and comparative analysis of MSLinear-MSER detector with 

the two descriptors is explained in the next subsections. 

6.2.2 Descriptor Evaluation  

SIFT Descriptor:  For every detected keypoint in an image, SIFT descriptor initially computes 

gradient magnitude and orientation for the neighboring pixels surrounding the keypoint. In order to avoid 

sudden changes in feature description, the gradient magnitude is weighted using a gradient window to 

give more priority to gradients located near the center of descriptor. All boundary affects such as sample 

shifts from one histogram to another or from one orientation bin to another is avoided by using trilinear 

interpolation to distribute the selected neighboring pixel’s gradient value into appropriate histogram bins. 

This is done by multiplying each bin entry by a weight of 1 − 𝑞 for each dimension, where 𝑞 is the 

distance of the neighboring pixel from the bin central as computed in units of the histogram bin spacing. 

SIFT descriptor is a 128 dimensional vector [Lowe 2004] where a 16×16 sample array computed from 

the neighboring pixels is summarized to give a 4×4 descriptor where orientation histogram for each sub-

region is associated with 8 orientation bins [Chapter 3, Section 3.1.2].  

SURF Descriptor:  Orientation is assigned for every neighboring pixel of the extracted keypoint by 

considering a circular region around it. A square region is constructed for descriptor extraction after 

computing all orientations and is centered on the extracted keypoint. The square region is oriented along 

the dominant orientation selected by computing Haar wavelet responses in both horizontal (𝑑𝑥) and 

vertical (𝑑𝑦) directions and then calculating the sum of all responses within a sliding orientation window 

covering an angle of π/3 [Bay et al. 2008]. SURF descriptor is a 64 dimensional vector [Chapter 3, Section 

3.1.2] and takes less time for feature computation and matching as compared to SIFT descriptor. 

Intension for performance comparison of Detector+Descriptor combinations: Once a set of 

interest points are detected using MSLinear-MSER detector from an image, there is a need to define their 

surrounding neighborhood by using a suitable descriptor for discriminative matching which is insensitive 

to local image deformations. Therefore to run a comparative performance evaluation between Linear-
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MSER and the proposed detector, MSLinear-MSER, both the detectors are combined with SIFT and 

SURF detectors. The results for the comparative study are analyzed with respect to the number of correct 

matches and time taken by each Detector + Descriptor combination, i.e. four combinations, Linear-MSER 

combined with SIFT and SURF descriptor, represented as Linear-MSER+SIFT and Linear-MSER+SURF 

respectively, and similarly, MSLinear-MSER combined with SIFT and SURF descriptor, represented as 

MSLinear-MSER+SIFT and MSLinear-MSER+SURF respectively. 

Discussion on expected performance for the combinations: As SIFT and SURF descriptors are 

proven to work well under affine deformations, the performance enhancement of Linear-MSER and 

MSLinear-MSER detectors is expected to improve as SIFT and SURF descriptors tend to distinctively 

define the neighborhood of the extracted keypoint and makes it possible to tracks the same feature in 

subsequent image frames under affine transformations. These descriptors also add illumination invariance 

property to the extracted keypoint. This improves the efficiency of image matching tasks and thereby, 

would definitely increase the efficiency of image registration procedure. 

6.3 Augmented Reality System Building Mechanism 

In order to check the accuracy of the proposed feature detector for analyzing and estimating the 

position of a virtual object that is to be placed in the real scene, an offline process is carried out in order 

to build a markerless AR System. The workflow of the system is described as a three stage process. 

6.3.1 Feature Detection 

Feature detection deals with finding regions of interest in an image and then describing descriptor 

vectors for each extracted feature.  Descriptor vector defines some distinguished properties of an interest 

point that allows it to be correctly matched in follow subsequent images.  Here in this research, MSLinear-

MSER+SIFT is used for identifying regions of interest in an image while developing the AR system. 

Choice of this detector-descriptor combination is supported by the comparative evaluation discussed in 

Section 6.5. 

6.3.2 Descriptor Matching 

Once keypoint detection is done for an image, it is matched with an offline constructed feature map 

[Wientapper et al. 2011]. Here, dot product of two descriptor vectors is used as the comparison criteria. 

Dot product calculation is done between two set of descriptors where first set describes the keypoints 

detected in the camera image arranged as a an N×128 matrix, where N is the number of keypoints 
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extracted from the image and 128 values defines the descriptor vector associated with each keypoint. 

Second matrix represents the keypoints from the map file arranged as a transposed matrix and hence forms 

a 128×M matrix, where M represents the count of map file keypoints. Output of this multiplication is an 

N×M matrix from each of the keypoint combinations. Rows of the resulting matrix represents camera 

image keypoints, whereas columns indices to a point in the map file [Tam and Fiala 2012]. 

Best matches are picked among correspondences between each keypoint in camera image and map 

file. Two thresholds (relative and absolute) values are considered before dismissing or accepting the 

match. Also, multiple matches to a same point in map file are removed and only one match is retained. 

6.3.3 Pose recovery 

After performing descriptor matching between camera image and map file, every detected keypoint 

in the camera image corresponds to a point in the map file, allowing the position estimation of virtual 

object in the real world. Pose recovery is performed by Perspective-n-Point (PnP) algorithm [Gao et al. 

2003] and Random Sample Consensus (RANSAC) algorithm [Fischler and Bolles 1981] is used to reduce 

the effects of outliers resulted from faulty correspondences between camera image points and map file 

points. 

6.4 Methodology & Experimental Setup 

6.4.1 Methodology 

Which statistics/metrics to use and how: Table 6.1 describes the corresponding tables and figures 

listing in the chapter with respect to comparative evaluation of standard MSER with Linear-MSER, 

MSLinear-MSER execution for different octaves and Levels per octave combination and Linear-MSER 

with MSLinear-MSER. 

6.4.2 Experimental Setup 

Language, Software and Tools used for implementation and system specification: The 

experiments are carried out using single threaded code on a computer with 16GB RAM and Intel® Core 

™ i5-3470 CPU@3.20ghz × 4 processor with cache size of 6144 KB. 

Implementation details: Basic considerations of MSER are reanalyzed and some enhancements in 

the standard version are incorporated to make it more stable and affine invariant for feature detection 

procedures  in  real  time  applications. The  main  contribution  of  the  work  is  the  development  of  an  
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Table 6.1. Tables & Figures Representing Respective Performance Evaluation 

 Table / Figure Comments 

Standard MSER and Linear-

MSER 

Figure 6.2 Figure 6.2 presents the results of comparative performance 

of Standard and Linear-MSER in terms of number of 

features detected and time taken. 

MSLinear-MSER for different 

octaves and Levels per octave 

combination 

Table 6.2 Results are displayed for octave and level combination of 

Octave:5 Level:4, Octave:6 Level:5 and Octave:7 Level:5 

Linear-MSER and MSLinear-

MSER 

Figure 6.4 Figure 6.4 presents the results of comparative performance 

of Linear-MSER and MSLinear-MSER combined with 

SIFT and SURF descriptor, in terms of number fo correct 

matches between image pair and time taken.  

appropriate   detector-descriptor   combination   using   MSER  for  AR  applications.  MSER detector is 

implemented in two forms, Linear-MSER and MSLinear-MSER, for extracting stable regions of interest 

in an image. SIFT and SURF descriptors are used in combination with the two detectors for analyzing the 

performance of the methods in terms of time complexity, affine invariant property and accurate 

correspondences between image pairs. The outcome shows that MSLinear-MSER+SIFT detector-

descriptor combination works efficiently under various imaging conditions. To demonstrate the efficiency 

of MSLinear-MSER+SIFT detector, an AR system prototype is developed using the same approach. 

Please refer to Appendix D for more implementation details. 

6.5 Data Reporting 

Dataset used for experiments: The experiments are performed on Mikolajczyk dataset [Mikolajczyk 

2007, Appendix A.1] as described in Chapter 4 [Section 4.6, Figure 4.2], containing eight image-sets with 

six images in each set (total 48 images). These images are varying under five imaging conditions i.e. 

viewpoint change, scale change, image blur, illumination change and JPEG compression. Among these 

five imaging conditions, three (viewpoint change, scale change and image blur) have two image-sets each. 

One image-set contains a set of structured images and the other contains a set of natural images. 

For MSLinear-MSER, experiments are carried out at varied number of both octaves and levels per 

octave for all image-sets. Outcome for all image-sets is tabulated in Table 6.2, where comparisons 

between different variations of octaves and levels per octave is done using MSLinear-MSER+SIFT in 

terms of number of correct matches and time complexity. Tabulated results can be used to specify the 

reason behind choosing the number of octaves as six and level of stacked images within each octave as 

five (values  in  bold style font in Table 6.2). For  seven  octaves  and  five  scales  per  octave,  the  time  
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Table 6.2. Performance of MSLinear-MSER+SIFT with respect to number of octaves and level of stacked 

images per octave 
Im
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e
-S

e
t 

Im
ag

e 
P

ai
r 

MSLinear-

MSER+SIFT 

5 Octave  

4 level 

MSLinear-

MSER+SIFT 

6 Octave  

5 level 

MSLinear-

MSER+SIFT 

7 Octave  

5 level 

 

Im
a
g

e
-S

e
t 

Im
ag

e 
P

ai
r 

MSLinear-

MSER+SIFT 

5 Octave  

4 level 

MSLinear-

MSER+SIFT 

6 Octave  

5 level 

MSLinear-

MSER+SIFT 

7 Octave  

5 level 

cm* T# cm* T# cm* T# cm* T# cm* T# cm* T# 

G
ra

ff
it

i 

1&2 32 7.95 32 8.76 37 22.44 

B
ik

es
 

1&2 49 10.71 52 11.33 56 30.99 

1&3 4 7.96 4 8.8 6 22.46 1&3 47 10.67 49 11.36 48 30.94 

1&4 1 7.94 1 8.75 2 22.51 1&4 29 10.72 30 11.38 30 30.93 

1&5 0 7.92 2 8.73 2 22.44 1&5 34 10.74 38 11.28 38 30.91 

1&6 0 7.92 0 8.77 3 22.53 1&6 28 10.75 31 11.32 31 30.37 

W
a

ll
 

1&2 122 10.36 123 11.34 139 29.6 

T
re

es
 

1&2 65 11.60 67 12.43 69 33.8 

1&3 73 10.36 73 11.29 83 29.62 1&3 44 11.71 47 12.45 48 33.67 

1&4 23 10.29 23 11.23 21 29.62 1&4 19 11.59 24 12.38 23 33.63 

1&5 1 10.36 2 11.42 2 31.41 1&5 19 11.56 21 12.29 20 33.34 

1&6 0 10.42 0 11.39 0 30.2 1&6 14 11.63 18 12.26 19 32.75 

B
o
a

t 

1&2 51 9.17 56 9.69 59 26.28 
L

eu
v

en
 

1&2 34 8.29 60 8.76 43 23.98 

1&3 38 9.27 39 9.62 43 27.24 1&3 20 8.29 33 8.72 24 23.96 

1&4 31 9.22 33 9.68 37 26.51 1&4 25 8.27 37 8.74 30 23.87 

1&5 17 9.21 19 9.62 19 26.31  1&5 16 8.26 25 8.72 23 23.78 

1&6 4 9.17 5 9.69 5 26.32 1&6 17 8.26 20 8.72 21 23.8 

B
a
r
k

 

1&2 60 6.83 59 7.31 62 18.68 

U
b

c 

1&2 110 8.07 113 8.62 132 23.32 

1&3 35 6.80 38 7.27 40 18.62 1&3 88 8.07 91 8.6 102 23.26 

1&4 30 6.83 31 7.31 37 18.72 1&4 42 8.08 46 8.57 50 23.19 

1&5 19 6.76 19 7.31 26 18.76 1&5 34 8.05 38 8.57 38 23.15 

1&6 2 6.79 11 7.29 15 18.76  1&6 19 7.99 21 8.54 19 22.9 

cm* = Correct number of Matches 

T# = Time Taken (in seconds) 

complexity of the process increases with a great value, however, there is not much difference in the 

number of correct matches that are extracted between image pairs. Similarly, for five octaves and four 

scales per octave, the time complexity remains comparable but the number of correct matches between 

images suffers in few cases. 

For the four detector-descriptor combinations (Linear-MSER+SIFT, Linear-MSER+SURF, 

MSLinear-MSER+SIFT and MSLinear-MSR+SURF), comparative study for performance evaluation is 

done in terms of number of correct matches and time taken. For this, MSLinear-MSER detector is 

executed with 6 octaves and 5 levels per each octave.  Figure 6.4 shows a graphical representation of 

results for all eight image-sets. The  linear  representation  shows  that for all cases MSLinear-MSER 

detector when combined with SIFT descriptor generates a recognizable high number of correct matches 
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between image pairs as compared to the rest three techniques. Also, the time taken by MSLinear-

MSER+SIFT process is not much high as compared to Linear-MSER+SIFT and Linear-MSER+SURF 

feature detectors. Likewise, when MSLinear-MSER+SIFT outcome is compared to MSLinear- 

MSER+SURF process, the number of correct correspondences between image pair is considerably low 

and the time taken for processing is almost equal. 

   

   

(a) Graffiti (b) Wall (c) Boat 

   

   

(d) Bark (e) Bikes (f) Trees 
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 Linear-MSER +SIFT 

 Linear-MSER +SURF 

 MSLinear-MSER +SIFT 

 MSLinear-MSER +SURF 

Legends for # Correct Matches 

  

 Linear-MSER +SIFT 

 Linear-MSER +SURF 

 MSLinear-MSER +SIFT 

 MSLinear-MSER +SURF 

 Linear-MSER +SIFT 

 Legends for Time Taken 

(g) Leuven (h)Ubc  

Fig. 6.4. Comparative Results in terms of number of correct matches and time taken for image pairs by 

Linear-MSER and MSLinear-MSER for the Mikolajczyk Dataset [Mikolajczyk 2007, Appendix A.1] 

Figure 6.5 displays the results of MSLinear-MSER+SIFT procedure for identifying correspondences 

between two image pairs in Leuven and Ubc image-set respectively. Here, in extreme changing conditions 

of illumination and JPEG image quality, the method is significantly efficient in terms of correspondences 

that  are  exhibited  between  two  images.  The  main drawback of MSLinear-MSER+SIFT method is the 

  

                    (a)                             (b) 

Fig. 6.5. MSLinear-MSER+SIFT (6 Octave 5 level): Correspondences obtained between two images (a) 

Leuven Image-Set (Image 1&6) (b) Ubc Image-Set (Image 1&6) are 20 and 21 respectively 
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(a) Graffiti (b) Wall (c) Boat 

   

(d) Bark (e ) Bikes (f) Trees 

  

  
  
  

  

  

  

  

  Serial Implementation 

 Parallel Implementation 

Legends for Time Taken 

(g) Leuven (h) Ubc  

Fig. 6.6. Time Taken (in seconds) by Serial and Parallel implementation of MSLinear-MSER+ SIFT 

time complexity that makes it incapable for real time applications. To overcome this disadvantage, the 

method is implemented using parallel implementation with Open MP resulting in almost 50% of time 

reduction in time. Figure 6.6 shows the comparative results for serial and parallel implementation of the 

method. The method could be made faster by incorporating more degree of parallelism. 

MSLinear-MSER+SIFT detector is further used for building an offline AR system prototype for 

analyzing the accuracy of the method in identifying correct position of virtual object in a real scene. The 

scenario taken into consideration is given in Figure 6.7, where the images are displayed as (a) map file 

corresponding to the position of the virtual object, (b) Real Scene camera capture, (c) evaluation of 

correspondences between (a) and (b), and finally (d) displays the augmented image where a yellow circle 

appears on the tower. The experiment is carried out on two videos with duration of eight and six seconds 

respectively. Both videos contained frames at varying rotation angles up to 90°. The evaluation of rotation 
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angle is done by choosing first video frame as the reference image (say at angle 0°) and rotation angle for 

rest of the images is evaluated with respect to it. Figure 6.8 represents the rotation angle evaluation result 

for two images from Figure 6.9, where Figure 6.8(a) represents rotation angle evaluation for Figure 6.9(a) 

and Figure 6.9(b) and Figure 6.8(b) represents rotation angle evaluation for Figure 6.9(a) and Figure 6.9(i) 

  

(a) Map File (Reference Image) (b) Camera Input 

 

 

(c) Keypoint matching output between the map 

file and the camera image. 
 

Fig. 6.7. AR System prototype 

(d) Augmented Image (yellow circle appears 

on the tower) 
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(a) (b) 

Fig. 6.8. Angle of Rotation Estimation (a) Between the images shown in Figure 6.9 (a) and 6.9 (b). (b) 

Between the images shown in Figure 6.9 (a) and 6.9 (i) 

   

(a) Initial Image (b) Rotation Angle 𝟐𝟎° (c) Rotation Angle 𝟑𝟎° 

   

(d) Rotation Angle 𝟓𝟎° (e) Rotation Angle 𝟕𝟎° (f) Rotation Angle 𝟖𝟎° 

   

(g) Rotation Angle 𝟖𝟓° (h) Rotation Angle 𝟗𝟎° (i) Rotation Angle 𝟗𝟎° 

Fig. 6.9. Augmented Views of the scene where a yellow circle appears on the tower in different frames of a 

video 
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Table 6.3. Precision values for correct augmentation 

 Video1  Video 2 

Total number of frames: 244 185 

Number of frames with correct augmentation: 225 180 

Number of frames with incorrect augmentation: 19 05 

Precision: 0.92213 0.9729 

and are equated at a variation of 20°and 90° angle respectively from the reference frame. In Figure 6.9, 

augmented view for different frames of video is displayed. The rotation angle of displayed images vary 

from a range of  20° to 90°and it can be seen that even at a rotation angle of 90°, virtual object (yellow 

circle) is placed at the right position in the real scene i.e. on the tower (as mapped from the map file which 

is serving as the reference image for evaluating the position of virtual object). Precision values calculated 

for correct augmentation in all video frames for the two videos is given in Table 6.3 and the evaluated 

results exhibits good accuracy of the method. 

6.6 Result Analysis and Interpretation 

AR for all practical purposes requires extensive computation, accurate view alignment and real-time 

performance. To address some of these limitations, an improved method of feature detection is proposed 

and discussed in this chapter using MSER. For extracting the regions of interest in an image, a faster 

variation of MSER is chosen as the method uses a true flood fill approach for building and maintaining 

the component tree and hence sustain true worst-case linear time complexity.  The performance evaluation 

of this detector, referred as Linear-MSER, is done with the standard MSER algorithm in terms of number 

of keypoints detected in an image and time taken for image-sets containing images with varied imaging 

conditions like viewpoint, scale and  illumination change (Figure 6.2). The results show stable 

performance of Linear-MSER in terms of keypoint detection with much less processing time.  

Therefore, for the proposed feature detection procedure, MSLinear-MSER, Linear-MSER is 

implemented at multiple scales of an image using scale pyramid formation of multiple octaves and level 

of scaled images per octave in order to increase the affine invariance properties of the detector. MSLinear-

MSER is tested at various combinations of octaves and level of scaled images per octave to analyze its 

best performance at a particular combination (Table 6.2). The two detectors, Linear-MSER and 

MSLinear-MSER, are then combined separately with SIFT and SURF feature descriptors for image 

matching performance comparison (Figure 6.4). Performance evaluation is done under varying imaging 

conditions like changes in viewpoint, scale, blur, illumination and JPEG compression.  

Results  show  that,  MSLinear-MSER+SIFT  performs  best  over  the  other  three  detector-descriptor  
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combinations when executed at 6 octaves and 5 levels per each octave in terms of number of 

correspondences found between an image pair and does reasonably well when compared in terms of time 

complexity (Figure 6.4). Moreover, individual time complexity of the detector serve as a main drawback 

for it to be used in any AR application, thereby, the detector is implemented using parallel implementation 

to further lower its time complexity. The comparative results of serial and parallel implementation of the 

detector represents almost 50% time reduction, i.e. twice speedup (Figure 6.6) and could be made faster 

by adding more degree of parallelism. This observation is true for all image-sets taken into consideration, 

containing images that are affine transformed in one way or other. Moreover, MSLinear-MSER+SIFT 

promising performance can be summarized with respect to the following parameters:  

1. Execution time:  Since the SIFT descriptor is a 128 dimensional vector and the method is processing at 

multiple resolutions, so to achieve better performance along the subsequent two parameters (i.e. number 

of correct correspondences between image pairs and affine invariance), the time taken in serial 

implementation is reasonably justified and is comparable to MSLinear-MSER+SURF and 

LinearMSER+SIFT approach but the time taken by the parallel implementation is less than or at least 

comparable to the time taken by the serial implementation of MSLinear-MSER+SIFT when it is executed 

with 6 octaves and 5 levels per each octave.  

2. Number of correct correspondences between image pairs: Since the number of correspondences 

detected are accurate and stable, hence more the detected correspondences the better is the performance 

of the algorithm. So in all cases the number of correspondences detected between image pairs by 

MSLinear-MSER+SIFT are more than the other three detectors when it is executed with 6 octaves and 5 

levels per each octave.   

The number of correspondences also depends upon the quality of images. On visual inspection of the 

image-sets we observe that the quality of Graffiti and Wall image-sets ranges from fair to good. Same is 

the case for bark and boat image-sets. However for blur imaging condition, the Bikes image-set is of low 

quality and only first three images of Trees image-set are of good quality. For Leuven image-set quality 

of images is good and for Ubc, only first image among the six images is of good quality. This visual 

quality is also reflected in the number of correspondences detected. For example, in Figure 6.4(e), number 

of correspondences detected doesn’t vary much for four methods. This is due to the poor quality of images. 

However these images are visually similar and are distorted only by high degree of blur change.  

3. Affine invariance: Among the eight image-sets, five image-sets i.e. Graffiti, Wall, Boat, Bark and 

Leuven can be considered as if they are variants of an image after applying some affine transformation. 

For all these image-sets and even for other three image-sets MSLinear-MSER+SIFT outperforms in terms 
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of number of correct matches between image pairs. Hence we could state MSLinear-MSER+SIFT method 

is more affine invariant when it is executed with 6 octaves and 5 levels per each octave. 

To exhibit the efficiency of MSLinear-MSER+SIFT in AR, a prototype of an AR system is also 

developed using this approach and is discussed in this chapter. The procedure and setup to develop the 

system is given in Section 6.3 and Section 6.5 respectively. The results are validated by using precision 

metric for interpreting the accuracy of the approach (Table 6.3). 

6.7 Summary 

In this chapter, an improved implementation of MSER feature detector is discussed to overcome few 

shortcomings of existing feature detectors that deals with extensive computation, flawed image matching 

and are unsuitable for designing real time applications. Also, this chapter discusses the procedure for 

designing an AR system using the proposed detector. Next chapter presents the proposed novel feature 

descriptor based on local elliptical sampling of keypoint neighboring pixels.   

 

 

 

 

 

 

 

 

 

 

 

 

 


