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BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

Abstract

Study of Accelerated Expansion of Universe in the framework of f(R, T ) Gravity

by PARBATI SAHOO

The main purpose of the thesis is to provide a coherent description of current accelerated

expansion of the universe within f(R, T ) gravity theory, at an appropriate level of understanding.

In recent cosmic scenario, various cosmological observations have reported the accelerated

expansion of the universe. This phenomenon can be addressed by invoking the exotic source

of energy, the so called dark energy which dominates the total energy content of the universe.

On the other hand, we may need to modify the Einstein’s general relativity (GR) as possible

gravitational scenario for the early and the late time universe.

Einstein’s theory of general relativity has been accepted as the theory of gravity for nearly a

century as it passed several cosmological tests. Despite this, it cannot account for some existing

mysteries. Therefore, the investigations on accelerating models have led to modifications of

gravity theories involving a number of interesting features. These modifications can prompt

a theoretical study of accelerated universe within modified gravity theories in a large-scale

structure. It also has substantial impact on structure formation and its observable predictions.

In the context of gravitational modification in GR, a number of modified theories are presented

from time to time viz. scalar-tensor theories, f(R) gravity, f(G) gravity, f(R,G) gravity, f(G, T )

gravity, f(T ) gravity, and f(R, T ) gravity. In particular, we have focused on details of the last

one mentioned above i.e. f(R, T ) gravity theory proposed by Harko et al. in 2011 [1], while the

other modified theories are briefly discussed in chapter 1.

http://www.bits-pilani.ac.in/
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In addition, we have focused on some parametrization scheme to obtain the exact solutions of

each cosmological model within the f(R, T ) formalism. There are two cosmological parameters

known as Hubble’s parameter (H) and deceleration parameter (q). The evolution of the universe

can be defined through the parametrization of these two parameters, on the other hand scale

factor parameter has very important role in understanding the present evolution of the universe.

This scale factor determines the rate of expansion of the universe. However, in this thesis, one

can find different types of parametrizations of deceleration parameters used in order to obtain

exact solutions of the field equations. This is because from mathematical point of view, the

exact solutions of field equations and its physical behaviors are more realistic. Therefore, in this

thesis from chapter 2 to chapter 5, we have employed several types of time varying deceleration

parameters along with different matter sources. Thereafter, the first part of chapter 6 consists

the hybrid law of scale factor. The chapterization details are discussed in the following section.

In chapter 2, the formalism of first case of f(R, T ) gravity (i.e. f(R, T ) = R+ 2f(T )) where R

is the Ricci scalar and T is the trace of the stress energy momentum tensor is studied for the

Bianchi universe in the context of accelerating expansion of the universe as suggested by the

present observations. The matter considered in this model is filled with string fluid.

Chapter 3 focused on the study of spatially homogeneous anisotropic Bianchi type I universe

in the frame work of f(R, T ) gravity with two different cases viz. f(R, T ) = R + 2f(T ) and

f(R, T ) = f1(R) + f2(T ). The exact solution of the field equations embedded with bulk viscus

matter content is obtained by employing a time varying deceleration parameter, which generates

an accelerating universe in both cases. Furthermore, in this chapter we have explored the nature

of weak energy condition (WEC), dominant energy condition (DEC), strong energy condition

(SEC), null energy condition (NEC) and the compatibility of cosmic jerk parameter with three

kinematical data sets.

Cosmic parametrization has an important role in cosmological model, as it describes the behavior

of model solutions. Parametrization of deceleration parameter is one of the best approach among

them to obtain the exact solution as well as to elaborate the physical behavior of models. The

bilinear and special form of time varying deceleration parameter for Bianchi type I universe filled

with magnetized strange quark matter (MSQM) distribution have been discussed in chapter 4.

Chapter 5 serves as an introduction to the idea of the finite cosmic singularity called Big Rip

singularity within the scope of both anisotropic and isotropic cosmological models. In order to

study Big Rip cosmological model we have considered a linearly varying deceleration parameter

(LVDP) in previous MSQM f(R, T ) model. The details of transitional behavior of LVDP are

discussed in the first model of this chapter. In addition, the second model also has showed the

Big Rip singularity in the presence of perfect fluid matter content. In this model, a periodic

varying deceleration parameter plays a vital role to study the oscillating behavior as well as the

future singularity in isotropic flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe.

In chapter 6, we have explored the modification of geometry in left hand side of Einstein’s field

equation. In details, we have focused on higher order curvatures as well as different space-time
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geometries. That means the first model of this chapter deals with FLRW metric with different

forms of curvature scalar, while in the second model, we concentrate on one of the recent

development in astrophysics named as wormhole geometry. It has been studied extensively

within f(R, T ) formalism and provides ideas and tools which turned out to be useful to propose

new models. Finally, in chapter 7 we have studied more details of the wormhole geometry

through energy conditions in f(R, T ) gravity formalism. In this chapter the late time evolution

of universe has been studied extensively, which is an important step in establishing the viability

of such modified gravity theories.
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Chapter 1

Introduction

This chapter deals with an overview of modern cosmology, addressing its most important

observational phenomenon, expansion of universe. In addition, some physical aspects to provide

a theoretical prove to the expansion of universe.

Cosmology is a branch of physical science that studies the ultimate fate of the universe. It

reveals the origin, evolution, structure as well as nature and laws of the universe. It is not

only based on the theoretical facts and some fundamental principles but also confronted by

various observations. The birth of modern cosmology started with the discovery that almost

everything in the universe appears to be moving away from us. Mostly, the galaxies appears to

be receding from us at speeds proportional to their distance. These types of large scale features

are commonly interpreted as expansion of the entire universe.

1.1 Expansion of the universe

Expansion of the universe is a known fact since 1929. The first study of expansion of the universe

by Hubble through galaxy observation is considered to be one of the most important discoveries

ever made. Redshift of galaxies and distance moduli have played a vital role in the determination

of Hubble’s law. Edwin Hubble discovered a simple proportionality relation between the redshift

in the light coming from nearby galaxies and their distances. Hubble found the recession speeds

of nearby galaxies were linearly related to their radial distance with a proportionality constant

H0.

The dynamics of this expansion can be defined by universe and dimensionless expansion function

a(t), known as cosmic scale factor. So, the distance d between any two galaxies is given as

d(t) = a(t)d0 (1.1.1)

1
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where d0 = d(t0) is the present distance and a(t0) = 1 (at present time t0). The relative velocity

can be obtained as

v = ḋ = ȧd0 ⇒ ḋ = ȧ
d

a
(1.1.2)

⇒ ḋ =
ȧ

a
d. (1.1.3)

Here, the rate of expansion denoted as ȧ
a = H, known as Hubble parameter (HP) named after

the eponymous astronomer Edwin Hubble. He proposed the following relation for galaxies at

cosmological distance and it is called Hubble’s law.

v =
ȧ

a
d = Hd (1.1.4)

As per the observational evidence for large number of galaxies, the value of Hubble constant H0

(where H(t0) = H0, HP at present time t0) can be estimated as H0 ≈ 72± 5 km Sec−1 Mpc−1,

or ≈ 0.074 Gyr−1.

In the universal evolution, Big Bang theory constitutes the current cosmological paradigm. It

explains the early phase evolution of the universe, hot phase of the entire universe, which is

known as the beginning of the universe. This theory indicates that the universe starts in a

very hot, dense state from which it expands and cools. If the rate of expansion is constant

with a(0) = 0 at an initial point, then the expansion function would evolve as a(t) = ȧt which

implies H = ȧ
a = 1

t , and the current age would be the Hubble time, tH = 1
H0

. This is known as

time scale in an expanding universe. According to the observational estimation, the value of

H0 = 0.074 Gyr−1 and the present age of the universe is t0 = tH ≈ 13.5 Gyr. It is similar to the

oldest stars in our galaxy, and suggests that our galaxy formed early in the universe’s expansion.

But gravitation and dark energy will modify the expansion rate. So, such age estimates can only

be approximate estimations.

The dynamics of the expanding universe is inherited from Big Bang theory, and its matter energy

content, which is the source of gravitation. But, the evolving history of universal dynamics

is dominated by an unknown form of energy, named as dark energy (DE), which constitutes

95% of the universe’s gravitating contents. Observations of the effects of these unobserved, and

mysterious DE and dark matter (DM) on the visible universe and reasonable extrapolations from

known physics give a possibility to understand the fate of the universe. Also, one can model the

dynamics of these forms of matter/energy in order to understand them theoretically. The search

for the nature of these dark components is a major challenge of modern cosmological research.

However, these physical models that based largely on explicit form of the expansion function a(t)

are one of the best attempt to explain large-scale features of the universe. On the other hand,

the observational consequences of the models, such as the Hubble relation between distance and

recession velocity are tested against actual observations in order to assess their validity. On the
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cosmological scales Einstein’s general theory of relativity (GR) is the most accepted theory to

address the dominant force of gravitation.

1.2 General Relativity

Albert Einstein published ‘General theory of relativity’ as geometric theory of gravitation in the

year 1915 for describing the universe. It has turned out to be the underlying theory of every

cosmological model of the universe, providing a unified description of gravity as a geometric

property of space-time through matter energy distribution. The evolution of the universe is

described by the EFEs in GR.

In the first step of Einstein’s principle of special relativity; the laws of physics were the same

in all non-accelerating reference frames. Further development of his goal of relativistic physics

came with his general theory of relativity, in which the laws of physics to be identical in all

reference frames, including accelerating ones. This extension of the relativity principle leads

to the GR. Later on, it is employed as a successful theory in cosmology to describe large scale

structure and evolution of the universe. The fundamental concept of Einstein’s GR are

• General co-variance- It express the relativity principle that is, laws of physics take the

same form in all coordinate systems.

• Equivalence principle- It defines the equality of gravitational and inertial mass.

• Space-time curvature- It provides the mass by which, gravitation controls the dynamics.

This co-variance of inertial coordinate systems allowed Einstein to write the laws of mechanics

and of electrodynamics in different ways that revealed new aspects (e.g. E = mc2 ) and extended

their validity to reference frames moving at high velocity.

The main purpose of GR was to extend this principle of general co-variance that the equations

of physics were invariant to change the coordinate system to all reference frames including

accelerating one. For this purpose, some tools of mathematical physics also have developed in

ways that revealed new aspects. A coordinate-independent mathematical quantities associated

with geometry has been developed by mathematicians. So that equality in any coordinate system

led to equality in all coordinate system. These were different forms of tensors, which have since

been employed in many areas of advanced physics.

Metric tensor

In GR, geometrically related objects play a central role to represent physical quantities of interest.

In general, the incremental distance in any Riemannian curved space is given as

ds2 =
∑
µ,ν

gµνdx
µdxν (1.2.1)
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where xµ is the µth coordinate (e.g. x, y, z or r, θ, φ etc.) and gµν represents the components of

metric tensor. It express as the curvatures of space in which the path length is being measured.

The metric tensor g (where gµν = (g)µν) characterizes the space and coordinate system. It is

used in GR such that, gravitating matter and energy establish the form of this tensor through

the curvature they induce, and that in turn determines the paths of freely falling objects.

In general, the metric tensor characterizes the geometry underlying the coordinate system and is

thus a fundamental quantity in GR as well as for all cosmological model formulations.

The second fundamental principle of GR, namely, equivalence principle, constitutes the

connection between curvature and gravitation. In this principle, the observed equality of gravita-

tional and inertial mass lead all objects to experience the same acceleration in a gravitational

field. There are two types of equivalence principle; weak equivalence principle (WEP) and strong

equivalence principle (SEP). In both cases, acceleration and gravitation are equivalent, but they

assert different senses and consequences.

Weak equivalence principle

This principle states that, all objects in a gravitational field experience the same acceleration. As

a consequence, the accelerating effects of gravitation can be transformed away by going over to a

coordinate system falling freely with the gravitational field. Thus, WEP can be rewritten as “the

dynamical effects of a gravitational field can be transformed away by moving to a reference frame

that is freely falling in the gravitational field”. The effects of changing coordinate systems are

entirely expressed in the term called “affine connection Γ” (commonly known as Christoffel

symbol). It can be expressed directly in terms of the metric tensor components as

Γλµν =
1

2
gλk
(
∂gµk
∂xν

+
∂gνk
∂xµ

− ∂gµν
∂xk

)
. (1.2.2)

This affine connection incorporates metric tensor components, is a consequence of role played

by curvature in the GR formulations of gravitation. It can be noted that, when all the metric

tensor components are constant then Γλµν = 0, for all indices which lead to zero acceleration. In

this sense, the affine connection describes departures from inertial reference frames.

Strong equivalence principle

The WEP deals only with gravitational forces. The SEP includes all fundamental forces and

claims that by no means internal to a reference frames one can distinguish between acceleration

of that frame, and the presence of a gravitational field.

From a geometrical point of view, a locally inertial reference frame is the equivalent of a locally flat

space-time and the above statement of SEP is evocative of one characteristics of the Riemannian

geometries that underlie GR: any sufficiently small region in such a geometry must be locally

flat. Thus Einstein chooses Riemannnian geometry for modeling curvature of space-time.

According to Einstein’s concept of universes; the matter and energy causes space-time to be

curved and that curvature determines the path of freely falling objects. This curvature can be

reflected in terms of affine connections as well as in terms of metric tensor. It is necessary to
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define appropriate measures of curvature in terms of the metric tensor components.

Ricci tensor

As we have focused Riemannian geometry for curved space-time, it is a pre-requisite to analyse

the curvature in Riemannian space-time. Riemann has chosen to characterise curvature in terms

of measurable quantities on curved surfaces. One can find out an easiest way to visualize the

characteristic of curvatures and movement of vectors along geodesics through “parallel transport”.

Thus, Riemann has taken as a measure of curvature of any space to the amount of vector rotation

∆V upon parallel transport about an infinitesimal closed path ∆fµk, bound by coordinate, µ

and k. Then the change in vector component can be written as

∆Vν = RλµνkVλ∆fµk (1.2.3)

where Rλµνk is known as Riemannian curvature tensor and is given by

Rλµνk =
∂Γλµν
∂xk

−
∂Γλµk
∂xν

+ ΓηµνΓλkη − ΓηµkΓ
λ
νη. (1.2.4)

This tensor fully characterizes curvature. For flat space-time all components of Riemannian

curvature are zero in all coordinate system and vice verse by its rank two contraction. The

Riemannian curvature is termed as Ricci tensor

Rµk = Rλµλk =
∂Γλµλ
∂xk

−
∂Γλµk
∂xλ

+ ΓηµλΓλkη − ΓηµkΓ
λ
λη. (1.2.5)

This can be further contracted to the Ricci scalar/ curvature scalar

R = gµνRµν . (1.2.6)

These two quantities are the only useful contractions of Riemann tensor: all others are equivalent

to them, or identically zero.

Einstein field equation

Space-time curvature is established by the density of gravitating matter and energy, and is

reflected in the metric tensor components. The equation relating the resulting metric tensor to

matter/energy is known as the EFE of gravitation. It is in the form G(g) = T (ρ, ε), where T

stands for source of gravitation and G(g) termed as Einstein tensor, a curvature tensor containing

metric tensor components and their derivatives.

Source of Gravitation- Possible sources of gravitation include all forms of mass/energy,

including such things as kinetic energy, pressure (which carries dimensions of energy density),

stress, electromagnetic field energies etc.; in addition to normal matter and radiation. One of

the consequences is that the tensor describing the densities of sources of gravitation is known by

many names: mass energy tensor, energy momentum tensor, and stress energy tensor. One will

stick to the most commonly used name the energy momentum tensor and that is denoted by Tµν .
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It is a second rank tensor quantity and describes the density and flux of energy and momentum

in space-time. It contains all the essential physics of a system pertinent to gravitation and

space-time. So Tµν can be formulated as

• T 00= energy density,

• Tµ0=c× density of µth component of momentum (µ = 1, 2, 3),

• T 0ν=c−1× energy flux in the νth direction (ν = 1, 2, 3),

• Tµν= flux in the µth direction of νth component of momentum (µ, ν = 1, 2, 3).

It is normally assumed that one has local energy momentum conservation, which translates into

saying that energy momentum tensor satisfies the covariant form of the continuity equation.

Tµν;ν = 0 (1.2.7)

That means, the energy momentum tensor is divergent free, and its covariant divergence vanishes.

According to special relativity (SR), it strictly holds in flat space-time. But in curved space-time

this does not imply mass/energy conservation. As a consequence, the concept of conservation

is poorly defined in curved space-time, which is a dynamical partner to matter and energy (as

opposed to the situation in SR where space-time is a non-interacting background).

Einstein tensor

One side of EFE contains energy momentum tensor where the other side must be a second-rank,

divergent-free tensor containing space-time curvature. The simplest choice for the curvature

tensor are the metric tensor gµν and Ricci tensor Rµν . But the Ricci tensor is not divergent-free

i.e. it does not satisfy the continuity equation. Metric tensor yields a form for the EFE that

does not reduce to Newtonian gravitation in static, weak-field limit. So Einstein choose the

curvature side of the field equations, the simplest possible combination of these two that satisfies

both requirements.

Gµν = Rµν −
1

2
gµνR (1.2.8)

where R = gµνRµν , is the curvature scalar. This is known as the Einstein tensor. In order

to connect the geometry (curvature) of space-time with the matter/energy components of the

universe, the simplest way is to combine Einstein tensor and energy momentum tensor, which

formed EFE. So that, it can be reduced to Newtonian gravitation in the static, weak field limit.

Hence the EFE is given as

Gµν = Rµν −
1

2
Rgµν =

8πG

c4
Tµν (1.2.9)

where Tµν = gµkgλνT
kλ is the covariant form of the energy momentum tensor.
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1.3 Cosmological model

Relativistic cosmology is based on two basic principles:

Cosmological principle- It states that the universe is homogeneous and isotropic, the same

in all places and in all directions. In other words, isotropy means that there is no preferred

direction in the universe; it looks same from each point. Homogeneity means that there are

no preferred locations in the universe. It would be interesting to note that, homogeneity and

isotropy do not imply each other. For example, a universe with a uniform magnetic field is

homogeneous, but it fails to be isotropic due to its perpendicular directional field lines. At the

same point, a spherically-symmetric distribution, is viewed from its central point, is isotropic but

not necessarily homogeneous. The principle implies that the universe is maximally symmetric,

i.e. it has the maximum number of symmetries. Mathematically, symmetric manifolds are

spacial with constant curvature. Observations coming from radio wave, cosmic X-rays [2–5] and

specially, the cosmic microwave back ground radiation point out towards the fact that universe

is very homogeneous.

Weyl’s postulate- On cosmological scale, matter behaves as perfect fluid whose components

move along temporal geodesics. These geodesics do not intersect, except (possibly) at one

point in the past. The peculiar velocities produced by the gravitational interactions are usually

negligible with respect to the velocities generated by the evolution of the universe. It is also

possible to define a co-moving time, measured by the co-moving observer.

In the envision of the expanding universe, we can transform the expanding universe into an

inertial reference frame by adopting a freely falling coordinate system in which the spatial

coordinate of a galaxy does not change as a consequence of expansion. This is termed as

co-moving coordinate system. We can figure out the coordinates in terms of galaxy world lines.

When the geometry of the bundle of world lines correspond to a set of galaxies evolving over a

period of time, that system is defined in terms of hyper surfaces connecting the bundle of world

lines and commonly called cosmic or coordinate time.

Robertson-Walker metric

The form of space-time metric can be determined by these two aforesaid principle. Meanwhile,

Weyl’s postulate implies the space-time can be foliated in spatial hyper surfaces, while cosmolog-

ical principle implies that such spatial hyper surfaces are maximally symmetric.

By considering these two premises the resulting metric can be formed as

ds2 = −c2dt2 + a(t)2

[
1

1− kr2
dr2 + r2(dθ2 + sin2(θ)dφ2)

]
. (1.3.1)

This is commonly known as the Robertson-Walker metric of cosmology. It casts the expanding

universe of galaxies into the form of an inertial reference frame and is the basis for homogeneous

and isotropic model of the expanding universe. The parameter k in eqn. (1.3.1) is known as
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curvature parameter. It can take three values that represents the three hyper surface of constant

curvature:

• Positive curvature, k = 1, the sphere S3

• Null curvature, k = 0, the plane R3

• Negative curvature, k = −1, the hyperboloid.

The shapes of universe referred as closed, flat and open corresponding to positive, null and

negative curvature respectively.

The universal expansion function a(t) describes the spatial evolution of the universe. At current

time t = t0, it can be normalized as a(t0) = 1. All the cosmological models can be expressed

entirely as a functional form of a(t) determined by solving the EFE with metric eqn. (1.3.1) and

the curvature k.

In 1922 [6], Alexander Friedmann first proposed this metric given in eqn. (1.3.1). Later, it

was developed by Lemâitre independently as most general one in describing homogeneous and

isotropic universe. Furthermore, Friedmann has not proposed a cosmological model based on the

use of EFEs. In 1917, Einstein realized that his equations, as he wrote them in 1916, resulted in

a non-statistical universe when it was supposed to be a normal content of matter for the universe.

The idea of a non-statical universe seemed senseless to Einstein and irritated him, according to

letter addressed to the astronomer Willem de Sitter. When de Sitter deduced the equation of

an empty universe which could be expanding. This fact persuaded Einstein to modify his field

equations by introducing a new term proportional to a constant Λ, the so-called cosmological

constant. It was interpreted as the energy density of the vacuum. The new field equation took

the following form

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (1.3.2)

The positive cosmological constant Λ generates a repulsive cosmic force, while if it is negative

the new force is attractive. After several years, when Hubble had demonstrated that the universe

was expanding, Einstein declared that the introduction of the cosmological constant had been

the worst error of his scientific carrier. He quoted it as “Biggest blunder of my life”.

Nevertheless, at the end of twentieth century the cosmological constant appears again in the

scientific community for the discovery of accelerated expansion of the universe. Cosmological

solutions of EFE are equations relating the two adjustable elements of space-time metric expansion

function a(t) and curvature k to the mass/energy density of universe as expressed in the energy

momentum tensor Tµν . The energy momentum tensor for perfect fluid matter is given as

Tµν = (ε+ p)uµuν + pgµν , (1.3.3)
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where uµ = (−1, 0, 0, 0) is the four-velocity vector, ε = ρc2 is the energy/matter density and p is

the pressure. Energy momentum tensor components are read as:

T00 = (ε+ p)(−1)2 − p = ε, (1.3.4)

Tµµ = (ε+ p)(0)2 + pgµµ = pgµµ. (1.3.5)

The basic solutions to the EFE of cosmology are commonly known as Friedmann equations,

given as:

ȧ2

a2
=

8πG

3c2
ε− kc2

a2
, (1.3.6)

ä

a
=
−4πG

3c2
(ε+ 3p). (1.3.7)

Here, we have two equations and three unknowns viz. a, p and ρ. In order to get a solution for

Friedmann equation in terms of desired a(t), we require some additional information relating

these functions.

In a cosmological context, the contribution of mass/energy densities to gravitation are given as:

radiation, matter, and cosmological constant.

Radiation- The radiation of energy density represented in term of εr. It is dominated by

isotropic thermal radiation and primordial neutrinos, which are remnants of the hot, early stages

of universal evolution. Black body spectrum also referred as cosmic microwave background

radiation (a.k.a. CMB) describes the photon context of this mass/energy density radiation.

Matter - The energy density of matter content can be written as ε = ρc2. Usually, non-relativistic

baryonic and non-baryonic (dark matter) components dominate matter density while relativistic

matter is either in the form of low mass neutrinos and is included in the radiation budget or is

existed so early in the universe that it influences the expansion.

Cosmological constant- The energy density corresponding to cosmological constant (Λ) is

defined as

εΛ =
c4

8πG
Λ. (1.3.8)

With these definitions, the field equations can be rewritten as

ȧ2

a2
=

8πG

3c2
(εr + εm + εΛ)− kc2

a2
(1.3.9)

ä

a
=
−4πG

3c2
(εr + εm + εΛ + 3p). (1.3.10)

Another relation between mass/energy density evolution and expansion function is also useful to

get solutions which can be directly derived from divergent-free property of the energy momentum

tensor (i.e. conservation equation) or from two Friedmann equations themselves. From the first
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law of thermodynamics, we can obtain an energy equation,

ε̇+ 3
ȧ

a
(ε+ p) = 0. (1.3.11)

This equation is an equal footing with the two Friedmann equations and referred as the third

differential equation for a, ε and p.

Equation of State

A parameter, which defines a relation between energy density and pressure, termed as equation

of state a.k.a. EoS parameter, which is an independent variable that plays an important role in

each cosmological models. It relates the pressure and energy density in the way as

p = ωε. (1.3.12)

The values of EoS parameter ω for the known energy components of the universe are as follows:

• Radiation: pr = εr
3 , standard thermodynamics relation also applies to highly relativistic

mater.

• For non-relativistic matter: ω ≈ 0

• For DE:

The DE arising from the cosmological constant is more interesting than others. It can be

noted that εΛ is constant for constant Λ. So ˙εΛ = 0, then from the energy equation, we

obtained pΛ = −εΛ and ωΛ = −1. The pressure is obtained from the Λ is negative, that

means Λ corresponds to a force of expansion. In short, the EoS parameter for standard

energy components are

ω =


1
3 , radiation

0, non-relativistic matter

−1, Λ−DE

(1.3.13)

By using this EoS, the Friedmann equations reduce to two equations with two unknowns which

become consistent system of equations to evaluate exact solution of cosmological model. On

the other hand, evolution of the energy density by the use of EoS can be obtained from energy

equation, that means we can get some extra relation between mass energy and expansion function

which provides the necessary additional constraints that allow the Friedmann equations to be
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fully solved. So energy eqn. (1.3.11) can be rewritten in terms of EoS as

ε̇+ 3
ȧ

a
ε(1 + ω) = 0 (1.3.14)

⇒ dε

ε
= −3(1 + ω(a))

da

a
(1.3.15)

⇒ ε(a) = ε0 exp

(
−3

∫ a

1

1 + ω(α)

α
dα

)
(1.3.16)

where ε0 is the current value of energy density. If ω is a constant, it reduces to ε(a) = ε0a
−3(1+ω)

for constant ω. Then the corresponding energy densities vary with the universal expansion

function as

• radiation: εr(a) = εr,0a
−4,

• matter: εm(a) = εm,0a
−3,

• cosmological constant: εΛ(a) = εΛ,0.

Here, εr,0, εm,0 and εΛ,0 are the energy densities in the current epoch. With the help of above

energy density and EoS relations, we can rewrite the Friedmann equation in terms of the

expansion function alone,

Expansion:
ȧ2

a2
=

8πG

3c2

(
εr,0
a4

+
εm,0
a3

+ εΛ,0

)
− k0c

2

a2
, (1.3.17)

Acceleration:
ä

a
=
−4πG

3c2

(
2
εr,0
a4

+
εm,0
a3
− εΛ,0

)
. (1.3.18)

The solutions to the Friedmann equation in terms of scale factor a(t) are the models for expansion

of the universe. From the expansion equation we can constitute a four-dimensional family of

expansion function by the parametrized energy densities and curvature.

Hence, the expansion equation with the parametrization εr,0 = εm,0 = k0 = 0 is given as

ȧ =

(
8πG

3c2
εΛ,0

) 1
2

(t− t0). (1.3.19)

The aforesaid model is called de Sitter model. It is first proposed by Willem de Sitter in 1917

[7]. This model is characterized as a geometrically flat model and describes the exponential

expansion of the universe.

On the other hand, soon after discoveries of Hubble’s universal expansion in 1932 Einstein and

de Sitter jointly proposed a model with flat geometry along with only matter (i.e. εr,0 = εΛ,0 =
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k0 = 0). The corresponding expansion equation is

ȧ =

(
8πG

3c2
εm,0

) 1
2

a
−1
2 (1.3.20)

⇒ a(t) =

(
6πG

c2
εm,0

) 1
3

t
2
3 (1.3.21)

This flat, matter-only model known as Einstein-de Sitter model.

1.4 Cosmological model parameters

This part deals with the development of some tools to describe the expansion of universe in

terms of observational and cosmological parameters. Some alternative parameters are introduced

to use in Friedmann equations which are mostly related to observation. Thereafter, we need to

derive the connection between model parameters and the basic properties of expansion: time,

distance, redshift. Finally, we need to check the dynamical properties of expansion in relation to

observations.

Hubble parameter

It is defined by the relative rate ȧ
a , such as

H =
ȧ

a
(1.4.1)

The dimension of H is the inverse of time. The time and distances corresponding to HP are

given as: Hubble time-tH = 1
H and distance- dH = ctH = c

H . Roughly speaking that Hubble

time is the time required for the universe to double in size. The current value of H is called as

Hubble constant

H0 =

(
ȧ

a

)
t=t0

= ȧ(t0),

which is a fundamental observable characteristic of the expanding universe.

Deceleration parameter

A non-dimensional parameter, to relate the observable feature to the expansion function is

defined as

q = − äa
ȧ2

(1.4.2)

where a is the scale factor of the universe by which all length scale ȧ is the first time derivative

of a and ä is the second derivative of a. In this notation ȧ
a is equivalent to the HP H and its

present value is H0 i.e. the Hubble constant. Recent observations have suggested that the rate of

expansion of the universe is currently accelerating due to the effects of DE. This yields negative

values for the DP. In terms of q0 (DP at present epoch) the Taylor’s series representation of
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dL(z) (discussed in later) is

dL =
c

H0

[
z +

1

2
(1− q0)z2 + ....

]
. (1.4.3)

Higher order terms are entitled as jerk, snap, crackle, pop etc. for more details one can refer [8].

Energy density parameter

We can rewrite the expansion equation in terms of HP as

H2 =
8πG

3c2
ε− kc2

a2
, (1.4.4)

where ε = εr + εm + εΛ. If the universe is to be flat (k = 0), then the energy density takes the

form

ε→ εc =
3c2H2

8πG
, (1.4.5)

which is known as critical energy density. It is required for a flat universe expanding at

rate H. For present value of H, H0 = 72 km Sec −1 Mpc−1 = 0.074 Gpc−1, the corresponding

estimated value of εc is

εc,0 =
3c2H0

8πG
≈ 8.8× 10−10J m−3 ≈ 5500Mev m−3. (1.4.6)

Then the expansion equation can be rewritten as

ȧ2

a2
=
H2

0

εc,0

(
εr,0
a4

+
εm,0
a3

+ εΛ,0

)
− k0c

2

a2
. (1.4.7)

The dimensionless forms of energy densities are then defined as the energy density parameters

Ωx =
εx
εc
⇒ Ωx,0 =

εx,0
εc,0

=
8πG

3c2H2
0

εx,0. (1.4.8)

Here, x = (r,m,Λ), (note: for εx = εc, Ω = 1). The expansion equation can be written in terms

of these parameters as
ȧ2

a2
= H2

0

(
Ωr,0

a4
+

Ωm,0

a3
+ ΩΛ,0

)
− k0c

2

a2
. (1.4.9)

The total energy density parameter is denoted by Ω such that Ω = Ωr + Ωm + ΩΛ and the

current value is given as Ω0 = Ωr,0 + Ωm,0 + ΩΛ,0 = 1
εc,0

(εr,0 + εm,0 + εΛ,0). Present estimated

values for the energy density parameters are εr,0 ≈ 0, εm,0 ≈ 0.27,ΩΛ,0 ≈ 0.73, so that, Ω0 ≈ 1.

The cosmological curvature is closely related with energy density such as, k =
H2

0 (Ω0−1)
c2a2

. k

carries the same sign as k(<,=, >)0 resulting Ω0(<,=, >)1. That means, the curvature decreases

monotonically, but does not change sign, as the universe expands. Open universe stays open,

closed universe stays closed, and flat universe stays flat respectively. The universe is geometrically
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flat for Ω0 = 1. Moreover, the Friedmann equations can be parametrized with observable

parameters as

Expansion: ȧ2 = H2
0

[
Ωr,0

a4
+

Ωm,0

a
+ a2ΩΛ,0 − (Ω0 − 1)

]
, (1.4.10)

Acceleration: ä = H2
0

(
−Ωr,0

a3
− Ωm,0

2a2
+ aΩΛ,0

)
. (1.4.11)

Here, it can be noted that, positive cosmological constant implies ΩΛ,0 > 0. The acceleration eqn.

(1.4.11) yields the possibility of accelerating (ä > 0) expansion at sufficiently large value of a.

In case of Einstein-de Sitter model (i.e. flat, matter only model), Ωm,0 = Ω0 = 1 and Ωr,0 =

ΩΛ,0 = 0, then expansion equation takes the form

ȧ = H0a
−1
2 , (1.4.12)

which gives a solution for a(0) = 0 as

a(t) =

(
3

2
H0t

) 2
3

=

(
t

t0

) 2
3

, (1.4.13)

where t0 = 2
3H0

known as the present time of the universe.

Redshift

According to the position of spectral lines of astronomical objects, it has been noted by as-

tronomers in their analysis that the observed spectral lines are all shifted to longer (redder)

wavelengths. This phenomenon termed as cosmological redshift. However, it becomes a funda-

mental object of distance galaxies and defined in terms of wavelength as

z =
λo − λe

λe
=
λo

λe
− 1, (1.4.14)

where λe stands for emitted wavelength from a distant galaxy and λo denotes as observed

wavelength. For objects in relative radial motion in an inertial reference frame this quantity is

given simply by the usual Doppler shift formula, but in a co-moving coordinate system galaxies

are not moving with respect to each other. In Doppler shift, the wavelength of the emitted

radiation depends on the motion of the objects at the instant the photons are emitted. If the

object is traveling towards us, the wavelength is shifted towards the blue end of the spectrum,

which is known as blueshift. If the object is traveling away from us, the wavelength is shifted

towards the red end and the effect is known as redshift. This technique was first used by Vesto

Slipher around 1912 and was applied systematically by one of the most famous cosmologist

Edwin Hubble in the following decades- it turns out that almost all galaxies are receding from us.

The redshift of light from cosmological objects thus maps out history of the universe’s expansion

between emission and reception times but in an incomplete manner, only the expansion end

points are reflected in the redshift. Thus, a set of redshifts spanning the history of the universe’s
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expansion is required to fully explicate that expansion. In effect, a galaxy’s redshift serves as an

observable proxy for its unobservable expansion factor. Simply, we can write it as z + 1 = 1
a

with the understanding that z is the redshift observed at the current time and a is for the time

of emission of currently observed photons.

Cosmic time

The cosmic time associated with a value of the expansion function is given by integrating dt
da as

per expansion equation (1.4.10)

ta(a) =

∫ a

0

dt

dx
dx =

∫ a

0

dx

dx/dt
=

1

H0

∫ a

0

[
Ωr,0

x2
+

Ωm,0

x
+ x2ΩΛ,0 − (Ω0 − 1)

]−1
2

dx. (1.4.15)

The current time is given as

t0 ≡ ta(1) =
1

H0

∫ 1

0

[
Ωr,0

a2
+

Ωm,0

a
+ a2ΩΛ,0 − (Ω0 − 1)

]−1
2

da. (1.4.16)

The cosmic time of emission of photons from a galaxy of redshift z is

te(z) =
1

H0

∫ (z+1)−1

0

[
Ωr,0

a2
+

Ωm,0

a
+ a2ΩΛ,0 − (Ω0 − 1)

]−1
2

da. (1.4.17)

The corresponding look-back time (the time elapsed since currently observed photons were

emitted from a galaxy of redshift z) is

tlookback(z) = t0 − te(z) =
1

H0

∫ 1

(z+1)−1

[
Ωr,0

a2
+

Ωm,0

a
+ a2ΩΛ,0 − (Ω0 − 1)

]−1
2

da. (1.4.18)

For our flat, matter only model, t = t0a
3
2 = t0(z + 1)

−3
2 and t0 = 2

3H0
, so the time relations for

flat, matter model only are

t0 = ta(1) =
2

3H0
(1.4.19)

te(z) = t0(z + 1)−3/2 (1.4.20)

tlookback = t0[1− (z + 1)−3/2] (1.4.21)

Cosmic time dilation

In an expanding universe, enlargement of time interval is one of the fundamental phenomenon

called as time dilation. The cosmological redshift is also interpreted as time dilation due to

the expansion of the universe. In this phenomenon, both the duration and wavelength of the

emitted light from a distance object at the redshift z will be dilated by a factor of (1 + z) at

the observer i.e. the observed time intervals systematically change with redshift according to

M t0 = (1 + z) M te. Roughly, we can say an event that span a time interval multiplied by
1
a = 1 + z i.e. cosmologically distant clocks appear to run slowly by this factor. This time
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dilation applies to chronometric wave periods as well as in type Ia supernovae observation. So

that supernovae light curve decay times are observed to be systematically longer in galaxies of

larger redshift, by a factor of ‘1 + z’. In literature, Leibundut et al. [9] have claimed that the

apparent time dilation observed in the light curves of a large-redshift supernovae is uniquely

indicative of the “expansion of our Universe”. A similar analysis is made by Goldhaber et al.

[10], who describes their findings as the “first clear observation of the cosmological time dilation

for macroscopic objects”. Moreover, one can expect the observed duration to be stretched by a

factor (1 + z); exactly the same factor by which wavelength are redshifted for light observed

from the same events. This method was proposed by Wilson [11], as a test of the expanding

universe theory rather than the “gradual dissipation of photonic energy” (a.k.a tried light).

1.5 Cosmological distances

Proper distance

The cosmological distance defined in our reference frame at a specific time is known as proper

distance. This proper distance analogues to proper time, because the proper distance is defined

between two space-like separated events, while the proper time is defined between two time-like

separated events. Therefore, for a galaxy of co-moving radial coordinate rg at time t the proper

distance dp defined for FLRW metric for a purely radial path dφ = dθ = 0 is given as

dp(rg, t) =

(∫
ds

)
dt=0

= a(t)

∫ rg

0

dr√
1− kr2

. (1.5.1)

Since ds = 0 for a photon traveling from a galaxy to ours,

c

∫ t

te

dt

a(t)
=

∫ rg

0

dr√
1− kr2

. (1.5.2)

Here, te is the emission time of photon. Then the proper distance in terms of te is given as

dp(te, t) = ca(t)

∫ t

te

dτ

a(τ)
. (1.5.3)

It is more important to discuss the current proper distance (denotes as d0(z)) for present time

(t = t0) with redshift parameter. To express this as a function of redshift, dt can be replaced as

da/ȧ with a = (1 + z)−1 and also at t = t0, a(t0) = 1,

d0(z) = c

∫ 1

(1+z)−1

1

a

da

da/dt
. (1.5.4)
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Using expansion equation (1.4.10), the current proper distance to a galaxy of redshift z can be

written as

d0(z) =
c

H0

∫ 1

(1+z)−1

da√
Ωr,0 + aΩm,0 + a4ΩΛ,0 − a2(Ω0 − 1)

(1.5.5)

for a ≈ 1 and z << 1

d0(z) ≈
(
c

H0
a

)1

(1+z)−1

=
c

H0
[1− (1 + z)−1] (1.5.6)

⇒ lim
z→0

d0(z) =
c

H0
z. (1.5.7)

This holds for all cosmological model. For flat, matter only model, d0(z) = 2c
H0

[1− (1 + z)−1/2].

In all expanding models, dp is an increasing function of redshift with a negative second derivative.

Luminosity distance

A classical way of measuring distances in astronomy is to measure the flux from an object of

known luminosity (∴ the total amount of energy emitted per unit of time by a star, galaxy, or

other astronomical objects [12]). An observed flux F at a distance dL from a source of known

luminosity L is given as F = L
4πd2L

, which comes from the fact that, in flat space, the variation

with distance of brightness of an isotropic emitter is F = L/A(d), where A(d) is the surface area.

That means for a source at distance d, the flux F over the luminosity L is just the inverse of

the area of a sphere centered around the source. In an expanding universe, the flux is diluted

by two additional effects: the cosmological redshift which decreases photon energies by a factor

of 1/a = 1 + z, and the cosmological time dilation which decreases the photon arrival rate by

the same factor. Hence F → Fstatic
(1+z)2

. We can neatly incorporate all these matters into the flux

computation by defining the luminosity distance as

dL = (1 + z)R0 sin(d0(z)/R0). (1.5.8)

Here, R0 is the radius of curvature given by

R0 =
c

H0

1√
Ω0 − 1

(1.5.9)

and the surface area at present time is given as A0(z) = 4π[R0 sin(d0(z)/R0)]2. The observed

flux in an expanding curved universe is given as

F (z) =
L

4πdL(z)2
(1.5.10)

⇒ dL =

(
L

4πF

)1/2

. (1.5.11)
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Combining both equation (1.5.8) and (1.5.10), we obtained

F (z) =
1

4π

L

(1 + z)2[R0 sin(d0(z)/R0)]2
. (1.5.12)

This is known as the basic form of Hubble’s relation. Furthermore, to measure the distant of an

astronomical object, astronomers usually prefer to deal with apparent (m) and absolute (M)

magnitude rather than fluxes and luminosities. Therefore, apparent (observed) and absolute

(assumed) magnitudes are then related to distance in the form as

m(z)−M = 5 log dL(z) + µdm0, (1.5.13)

where µ0 is a calibrating distance modulus; µ0 = (25, 40) for dL in units of (Mpc, Gpc) respectively.

The quantity µdm = m−M is commonly known as the distance modulus. Then the Hubble

relations can be rewritten as

dL(z) ≡
(

l

4πF

)1/2

= (1 + z)R0 sin(d0(z)/R0), (1.5.14)

µdm(z) ≡= m(z)−M = 5 log[(1 + z)R0 sin(d0(z)/R0)] + µdm0. (1.5.15)

Here, the values of R0 and d0 can be computed for any model by using the formula given by

(1.5.9) and (1.5.5). For nearby galaxies, Hubble relations can be obtained as

lim
z→0

dL =
c

H0
z, lim

z→0
µdm = 5 log

(
c

H0
z

)
+ µdm0. (1.5.16)

1.6 Observational constraints

Type Ia Supernovae Observation

The late time cosmic acceleration observed by distance Supernovae of Type Ia (SNeIa) has been

announced separately by two teams; Supernova Cosmology Project (SCP) [13], and High-redshift

Supernova Search Team (HSST) [14]. Till 1998, in the redshift range 42 Supernovae and 16 high

redshift supernovae near by 34 supernovae have been discovered by Perlmutter et al. [13] and

Riess et al. [14] respectively. The history of supernovae is extremely bright and causes a blast of

radiations. Scientists classify different types of supernovae according to their light curves and

the absorption lines of different chemical elements (e.g. hydrogen, helium etc.) that appears

in their spectra. They are classified as type I if they have no hydrogen lines in their spectra,

otherwise it is type II Supernovae. Then each of the two types are subcategorised according to

the presence of other element’s absorption line. The subclass type Ia refers to those which have

a strong silicon line at 615 nm in their spectra, type Ib refers to the presence of strong helium

lines, and Ic categorized as if they do not have helium lines. Type Ia supernovae have become
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very important as the most reliable distance measurement at cosmological distances, useful at

distances in excess of 1000 Mpc. Astronomers believe that the origin of type Ia is from white

dwarf (the carbon-oxygen remnant of a sun-like star). When the mass of white dwarf in binary

system overtakes the Chandrasekhar limit of 1.4 solar masses [15] by absorbing gas from other

star then explosion of type Ia developed. That is why, the peak of brightness occur when the

absolute luminosity of Type Ia is almost constant. The distance to a SNeIa can be calculated by

its apparent luminosity. In this manner, the SNeIa plays major role of standard candle and we

can measure the luminosity distances practically. Since the 1990s, it has become apparent that

type Ia supernovae offer a unique opportunity for the consistent measurement of distance out to

perhaps 1000 Mpc. Measurement at these great distances have provided the first data to suggest

that the expansion rate of the universe is actually accelerating. That acceleration implies an

energy density that acts in opposition to gravity which would cause the expansion to accelerate.

This is an energy density which we have not directly detected observationally and it has been

given the name “DE”.

Cosmic Microwave Background Radiation

According to Big Bang theory, the CMB is electromagnetic radiation as a remnant of the hot,

dense early universe. It can be thought as the leftover radiation from the Big Bang, or the time

when the universe began. Also, the CMB discovery is one of the landmark evidences of the Big

Bang origin of the universe. The origin of the CMB appears to be a thermal equilibrium between

radiation and matter during the period when the universe’s contents were ionized and photons

scattered readily off free electrons, producing a nearly uniform and isotropic radiation field of the

same temperature as baryonic matter. Also, the detection of CMB by Penzias and Wilson [16]

in 1965, is one of the most important pillars of modern cosmology today providing an incredibly

rich source of information about parameters describing our Universe [17, 18]. The CMB photons

detected today originated from the last scattering surface (LSS), when the universe was roughly

380000 years old and due to its expansion had cooled down sufficiently (∼ 3000K) to allow

the formation of neutral atoms. The temperature of the universe would have fallen about ten

thousand million degrees just one second after the Big Bang. At that time, universe would have

contained particles like photons, electrons and neutrinos (the particles which are affected by

the weak force and gravity) and their antiparticles, also protons and neutrons. However, in the

standard picture of the CMB photons were born at much earlier epochs, very close to the Big

Bang, and therefore represents the oldest detectable electromagnetic relics in the universe, with

roughly 410 photons per cm3 today. In 1992, a satellite named Cosmic Background Explorer

(COBE) measured the spectrum of the CMB radiation and detected slight fluctuations of the

temperature of CMB [19]. It revealed that the energy spectrum of the CMB is extremely close

to a perfect black body of temperature T0 = 2.725 ± 0.001K, with spectral deviations of not

more than 10−4 [20–22] and fluctuations of the radiation temperature at a level of 4TT ∼ 10−5 on

angular scales smaller than 70 [23]. Also, the fluctuation results from WMAP [24] reveals that

temperature variations in CMB follow a distinctive pattern predicted by cosmological theory.
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The anisotropies in the CMB are confirmed from the recent observations and this behavior is

helpful to tell us about the present and past history of the universe. The discovery of CMB was

the strongest evidence in the favor of hot Big Bang.

Planck’s observation

Planck’s high-precision cosmic microwave background map [25] has offers scientists to select the

most clear value of the cosmos ingredients. The simple matter forms galaxies and stars is just

contribute 4.9% of the cosmos. Dark matter, which is marked indirectly by its gravitational

impact on closely contributes 26.8% of the cosmos and the remaining part of the cosmos is 68.3%

which is responsible of accelerated expansion of cosmos known as DE.

Beyond the standard cosmological scenario, PLANCK Collaboration [26] has investigated the

implications of cosmological data for models of DE and modified gravity. They have been

improved the present constraints and have found that the early estimated DE density has to

be below ≈ 2% (at 95% confidence) of the critical density. They also have consider the general

parametrizations of the DE or modified gravity perturbations that encompass both effective field

theories and the phenomenology of gravitational potentials in modified gravity models. They

have tested a range of specific models, such as k-essence, f(R) theories and coupled DE. It is an

important tool in order to test cosmological models.

1.7 Dark energy

One of the most remarkable discoveries of our time is the late time cosmic acceleration of the

universe. But what causes this phenomenon in the puzzle of modern cosmology that there is

no convincing answer to this question at present. However, the current best fit in the Hubble’s

diagram seems to imply a preference for a universe with more than 70% of the energy in the

form of DE [27], for this reason, it appears more important to investigate the scenario of DE

dominated universe. Usually, normal matter (cold dark matter/ radiation or baryonic matter)

is gravitationally attractive. We need an exotic matter with repulsive in character which can

account for late time acceleration. The hypothetical matter with the said unusual property

is known as DE [28–34]. Since it has never been detected or created in laboratory, treated as

hypothetical [35]. The recognition that DE appears to exist has completely altered the landscape

of theoretical physics and driving most of astrophysicists to launch new cosmic probes to detect

its nature.

One of the simplest form of this DE is ‘cosmological constant’ (Λ) or vacuum energy density,

with negative pressure, whose equation of state can be written as ω = p
ρ = −1. Λ is called the

vacuum energy density, since, in particle physics, it naturally arises as the energy density of

the vacuum. Originally, the cosmological constant was introduced by Einstein and included

in his field equations of GR to keep the universe static. However, it later turned out that
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the cosmological constant itself can be regarded as a form of DE that driving the late time

acceleration of the universe.

The standard model of cosmology known as ΛCDM model, is a very good model in agreement with

observational data. However, there exists several fine-tuning problems, one of which is the value

of Λ in many orders of magnitude smaller than that of the vacuum energy predicted in quantom

field theories. It is severly fine-tuned and is the order of about 10121 wrong. The observational

value of DE is expected to be about 1074 GeV while the vacuum energy is approximatly 10−47

GeV. This problem is known as the cosmological constant problem [36, 37]. It has not been

resolved satisfactorily until today.

It is belived that if DE evolves with time, the cosmological coincidence problem may be resolved.

For this solution purpose many aspects are introduced in literature. For example, quintessence

scalar field model [38, 39], phantom fields [40], k-essence [41–43], tachyons [44, 45], Chaplygin

gases [46–48], etc.

Quintessence

In order to solve the fine-tuning problem of cosmological constant Λ at present era, quintessence

scalar field model has been introduced by Wetterich [38], Caldwell [49], and Ratra and Peebles [39].

In this model, a dynamical scalar field which can explain the role of DE in an accelerating universe.

Usually the cosmological constant is attributed to the vacuum energy with constant energy

density ρ, pressure p and EoS ω = −1, whereas quintessence is a time varying inhomogeneous

field with an EoS −1 < ω < 0 [38, 39, 49]. In this case, DE dominates the cosmic acceleration of

the universe for future evolution. The dominance of quintessence field increases with the increase

in ω.

Phantom

It is another hypothetical form of DE with EoS ω < −1. The difference between the DE with

ω > −1 and ω < −1 becomes apparent if we consider expansion of the universe. Phantom

energy [40] violates NEC [50], which yields the existence of wormholes. For phantom energy the

energy density emerge and becomes unbounded in a bounded time. Phantom energy increases

the gravitational repulsion that will destroy the galaxies and then any bound system including

elementary particles [40, 51]. Expansion factor of the universe dominated by the phantom

energy diverges in a finite time to approach the future singularity [51, 52]. This situation is also

termed as cosmic doomsday when all the objects from galaxies to nucleons will be ripped apart.

According to literature [53], phantom energy is not enough to produce Big Rip because ω does

not seem to be constant throughout the evolution of the universe.

Quintom

Quintom is a unified DE model with EoS parameter getting across the cosmological constant

boundary ω = −1 from either side. Feng et al. [54] have considered the effects of cosmic age

and Supernovae Ia limits on the variation of the EoS parameter ω. They have found that age

limits can lower the variation of amplitude on the EoS parameter. Current Supernovae Ia data

favors the transition of ω from quintessence to phantom and the quintom model predicts some
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interesting features related to the evolution and fate of the universe. In quintom scenario, the

universe would avoid the singularities such as Big Bang, Big Rip [55, 56].

Since existence of DE has not yet been proved, it may be possible to find alternative theories

that can explain the observed accelerated expansion of the universe, at the same time solving

the cosmological constant problem.

1.8 Modified Gravity Theories

At the end of the previous section, we discussed about the expansion of the universe and one of

the main causes of this expansion is the presence of DE. We can explain accelerated expansion

of the universe through cosmological models without invoking DE. It yields the possibilities

of modifications/extensions of GR. It is well known that Einstein’s theory of gravitation has

great implications in describing the gravitational phenomenon through mathematical elegance

and experimental validation. But some theoretical arguments indicate that GR suffers from

shortcomings such as:

• GR fails to represent local energy momentum tensor [57]: GR theory doesn’t assign

a definite stress-energy tensor to the gravitational field. This property of GR is not

satisfactory as all the fundamental interactions in the universe follow the principle of local

conservation of energy-momentum tensor.

• GR fails to be quantized: The possibility of formulating gravity as quantum field theory

is essential for unification of all fundamental interactions. However, GR has failed all

attempts to find a consistent quantum gauge field theory.

• GR predicts space-time singularities: Space-time singularities and event horizons are a

consequence of general relativity, appearing in the solutions of the gravitational field.

Although the “Big Bang” singularity and “black holes” have been an topic of intensive

study in theoretical astrophysics, one can seriously doubt that such mathematical monsters

should really represent physical objects. In fact, in order to predict black holes, one has

to extrapolate the theory of general relativity far beyond observationally known gravity

strengths. Albert Einstein has showed that, he was being aware of this conceptual problem:

“For large densities of field and of matter, the field equations and even the field variables

which enter into them will have no real significance. One may not therefore assume the

validity of the equations for very high density of field and of matter, and one may not

conclude that the ‘beginning of the expansion’ [of the universe] must mean a singularity in

the mathematical sense. All we have to realize is that the equations may not be continued

over such regions” [58].
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Many physicists would prefer a gravity theory without mathematical anomalies in its field

solutions.

In order to resolve these issues several MGTs have been proposed as alternatives to Einstein’s

theory from time to time. There are two ways to approach this modification; firstly, modification

in matter part of EFE, treated as modified matter theories. These theories are also introduced

to solve cosmological constant problems as discussed in the previous section (1.7). In addition,

these models produce the acceleration introducing new energy components alongside matter and

radiation in matter part. Second approach contains the modification in gravitational part of

Einstein–Hilbert (EH) action.

There are several gravitational theories, that have been proposed as alternatives to GR. Now, we

will concentrate on a few of specific gravitational theories. Many interesting theories of gravity

have been proposed by deriving from EH action. So we have discussed the derivation of the

field equations through the application of a suitable variational principle and analyzed the basic

characteristic of the theory, as expressed through the field equations. Here, one can focus on the

derivation of field equation from an action by variational principle, and later by modifying the

action various MGTs can be obtained as an alternative to GR. In contrast, we will focus on the

cosmological models of expanding universe within f(R, T ) gravity formalism.

The universe is described by EFE given by eqn. (1.2.9). It is necessary to introduce the derivation

of this EFE from Lagrangian through the least action principle. Let us consider the Einstein

Lagrangian with matter Lm, and assuming speed of light c = 1, (hereafter c = 1) the EH action

is given as

S =
1

16πG

∫
d4x
√
−gR+

∫
d4x
√
−gLm, (1.8.1)

where G is Gravitational constant. We require the variation of action δS to vanish. Therefore

δS =
1

16πG

∫
d4xδ(

√
−gR) +

∫
d4x
√
−gδLm = 0. (1.8.2)

Variation of the eqn. (1.8.2) reads,

δS =
1

16πG

∫
d4x[δ

√
−ggµνRµν + sqrt−g(δgµνRµν + gµνδRµν)] +

∫
d4x
√
−gδLm = 0. (1.8.3)

It is possible to show that

δ
√
−g =

1

2

√
−ggµνδgµν , (1.8.4)

δRµν = δΓλµν;λ − δΓλµλ;ν . (1.8.5)
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Thus the variation of the action can be expressed as

δS =
1

16πG

∫
d4x

[√
−g
(
Rµν −

1

2
gµνR

)
δgµν +

√
−ggµν

(
δΓλµν;λ − δΓλµλ;ν

)]
+

∫
d4x
√
−g
(
δLm

δgµν
− 1

2
gµνLm

)
δgµν = 0. (1.8.6)

This equation can be further simplified by noticing that the term containing the Christoffel

symbols behaves like a vector divergence and they vanishes when the equations are integrated.

The term containing Lm can be expressed as

δLm

δgµν
− 1

2
gµνLm = −1

2
Tµν . (1.8.7)

Therefore, we obtain

δS =
1

16πG

∫
d4x

[√
−gδgµν

(
Rµν −

1

2
gµνR− 8πGTµν

)]
= 0. (1.8.8)

This equation must be valid for every δgµν . Thus we obtained the EFE in the form of eqn.

(1.2.9). Henceforth, one can obtain several MGTs by using arbitrary choice of functions in EH

action (1.8.1). In GR, the gravity is described by using only one tensor field as the metric gµν .

The most popular MGTs are those in which new degrees of freedom are introduced apart from

the metric. Scalar, vectors and tensors are introduced in order to produce specific features in

different theories. There are several theories in this context from which some are discussed briefly

in the next section.

1.8.1 Scalar tensor theories

Scalar tensor theories are one of the widely studied modifications of GR [59–61]. In theoretical

point of view, the earliest and most famous version of scalar tensor theory is the Brans-Dicke

(BD) theory, one of the paradigmatic alternative theory of GR. In 1961, it was introduced by R.

H. Dicke and his student Carl H. Brans, which is later termed as Brans-Dicke theory [62]. In

this theory a scalar field included in the gravitational part, apart from metric and it was based

on the earlier work of P. Jordan [63].

The action for BD theory is given as

S =
1

16πG

∫
d4x
√
−g
[
φR− ω0

φ
(δµφδ

µφ)

]
+

∫
d4x
√
−gLm, (1.8.9)

where φ is a scalar field and ω0 is known as BD parameter. Note that, it is a non-minimally

coupled gravity, but the scalar field φ is not directly coupled with matter. Hence matter responds

only to the metric. In addition, this theory is a theory with varying gravitational constant where
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one can always define an effective gravitational constant Geff = G
φ . Therefore, the theory can

indeed be thought as a manifestation of Dicke’s formulation of Mach’s principle.

Furthermore, BD theory generalized to a scalar tensor theory with the action,

S =
1

16πG

∫
d4x
√
−g
[
φR− ω

φ
(δµφδ

µφ)− V (φ)

]
+

∫
d4x
√
−gLm, (1.8.10)

where V (φ) is the scalar field potential and ω(φ) is an arbitrary function of φ. If we set ω(φω0)

and exclude the potential term V (φ), it will reduces to previous one. The simplicity of their

formulation allowed to obtain exact field equations in many interesting physical situations or

addition of single scalar field also attempts to unify gravity with other fundamental forces such

as string theory. It is worth clarifying that BD theory or its generalized scalar tensor theories

are metric theories of gravity. There are no direct connections between matter and scalar field.

1.8.2 f(R) gravity

Adding scalar to the EH action is not the only possible ways to modify GR and its field equations.

There are several ways to approach the modification of gravity instead of adding scalar field

into the EH action with a potential form of a non-minimal coupling between the scalar field

and gravitational sector. So that one can prefer a simplest way that directly modify the EH

action by replacing the Ricci scalar R to an arbitrary function of it i.e. f(R). Such kind of

modification is termed as f(R) gravity theory, and it is one of the most well studied modified

gravity in literature [64–66]. Thus, the action for f(R) gravity theory is given as

S =
1

16πG

∫
d4x
√
−gf(R) +

∫
d4x
√
−gLm. (1.8.11)

It is worth to recall that, the field equations can be obtained by varying the action. One

could vary the action with respect to the metric or alternatively with respect to the metric and

connection. The variation with respect to metric by variational principle called as metric f(R)

gravity. Similarly, variation with respect to both metric and connection yielding the palatini f(R)

gravity, where the connection is independent of metric and vice versa. These two approaches

lead the same field equation in case of usual EH action. The third and most general way is the

metric-affine f(R) gravity, in which we use the palatini formalism abandoning the assumption

that the matter action is independent of the connection. There are some theoretical difficulties

in the palatini version of f(R) gravity, for example it appears to be in conflict with the standard

model [67, 68], and suffers from the existence of singularities appearing in stars [69]. We thus

consider metric f(R) gravity. Performing the variation of action the field equation is

FRµν −
1

2
fgµν = gµν2F −∇µ∇νF = 8πGTµν , (1.8.12)
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where 2 = ∇µ∇ν and F = f ′(R). The above theory has been extensively studied in a variety of

applications. Surprisingly, such a simple replacement can account for many observed phenomena.

Since, the function f(R) can be expressed as a series expansion, and contains terms which

are of a phenomenological interest. The appealing feature of f(R) gravity action is that it

combines mathematical simplicity with a fair amount of generality. For instance if we take a

series expansion of f(R) i.e.

f(R) = ...+
a2

R2
+
a1

R
− 2Λ +R+ b2R

2 + b3R
3 + .... (1.8.13)

where ai and bj coefficients have the appropriate dimensions. We see that the action includes

a number of phenomenologically interesting terms. For example, the Starobinsky model of

f(R) gravity [70, 71], where f(R) = R+ αR2, is a strong candidate to describe inflation. The

functions of the form f(R) = Rn have been shown interesting properties in analyzing the galaxy

rotation curves [72]. They are also of great interest for applications in late time acceleration for

a dynamical system analysis of the cosmology in general f(R) gravity, see [73].

In last two decades, f(R) theories have been studied extensively with the general function f(R)

and with some particular choices like, Rn, ln(λR), eλR, R− a(R− Λ1)−1 + b(R− Λ2)n etc.

Mostly, it is considered as an interesting toy model, but some researchers find an appropriate

expression for the function f(R) which could satisfy all the constraints in order to describe

the real nature. Also, as a viable theory it should confirm to the galaxy clustering and CMB

anisotropy spectra. It allows the existence of matter dominated era and stable stars. But it

should not contain ghost or tachyons. In addition, it should agree with the small scale results of

Einstein’s gravity. To fulfil all these necessary requirements, the function f(R) has to satisfy

some important conditions as follows [64, 65]

• In order to avoid the ghost states, fR > 0 for R ≥ R0, where R0 is the present value of

Ricci scalar.

• fRR > 0 for R ≥ R0. This is necessary to avoid the existence of scalar degree of freedom

with negative mass, i.e. tachyons.

• f(R)→ R−2Λ for R ≥ R0. This needs to be true for the presence of the matter dominated

era and for agreement with the local gravity constraints.

• 0 < RfRR
fR

< 1 when RfR
f = 2. This condition is important for stability and late de Sitter

limit of the universe. Also, the matter epoch is followed by an accelerated phase where the

global EoS parameter goes asymptotically to −1.

These conditions rule out many f(R) models, as the simple f(R) = R − αR−n. This model

seems to have good properties, such as the importance of the modification at low curvatures.
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Also there is a special function designed by Starobinsky in [71] to pass all such requirements as

f(R) = R+ λR0

[(
1 +

R2

R2
0

)−n
− 1

]
(1.8.14)

where n, λ are positive constants and R0 is of the order of H2
0 . Henceforth, various exact

solutions have been found in f(R) theories. It can be shown that any vacuum solution to

Einstein’s gravity is also a solution of f(R) gravity except for some pathological choices of the

function f . This includes the usual black hole solutions, e.g. Schwarzschild space-time. However,

since the Birkhoff theorem does not hold here, other spherically symmetric solutions exist in the

f(R) gravity. Propagating scalar degree of freedom implies the existence of an additional types

of longitudinally polarized wave-like solution. Since the scalaron is massive, these waves would

travel with the speed lower than that of light.

1.8.3 Gauss-Bonnet gravity

Other modified gravity models can be built by replacing the Ricci scalar R with other quantities

coming from the Ricci tensor Rµν in the Lagrangian. We can allow any combination of the

quadratic curvature terms, namely, R2, RµνR
µν , and RµναβR

µναβ etc. in the Lagrangian to

derive the field equations of second order. One of the special case of quadratic gravity theories is

Gauss-Bonnet gravity. The action of this theory is formulated as [74]

S =

∫
d4x
√
−g
[

1

16πG

(
R− f(Φ)G

)
− 1

2
gµνδµΦδνΦ− V (Φ)

]
+

∫
d4x
√
−gLm. (1.8.15)

In this action a scalar field is non-minimally coupled with a Gauss invariant G = R2− 4RµνR
µν +

RµναβR
µναβ in 4 dimensional space-time. Here, Φ is the scalar field. The non-topological

character of the Gauss-Bonnet term in the above action is ensured by the coupling function

between the scalar field and the Gauss-Bonnet term, symbolized by f(Φ).

One of the interesting properties of this theory is it does not lead to any ghost on many

background space-time after quantization [75].

1.8.4 f(G), f(R,G), f(G, T ), f(T ) gravity

Some specific MGTs are investigated with the Gauss-Bonnet invariant, namely, f(G), f(R,G),

and f(G, T ) etc. This section introduce briefly these theories.

In EH action, the Lagrangian is modified with an addition of arbitrary function f(G) [76, 77].

The latter approach is introduced by Nojiri and Odintsov, known as f(G) gravity [78]. Like

other modified theories, this theory is an alternative to study DE and is consistent with solar
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system constraints [79]. The action of this theory is written as

S =
1

16πG

∫
d4x
√
−g(R+ f(G)) +

∫
d4x
√
−gLm. (1.8.16)

Another specific modified gravity that yields a general class of non-linear gravity model having

the action in the following form

S =
1

16πG

∫
d4x
√
−gf(R,G) +

∫
d4x
√
−gLm, (1.8.17)

where R and G are the Ricci scalar and Gauss-Bonnet scalar respectively.

Similarly, the general action for f(G, T ) gravity can be written as [80, 81]

S =
1

16πG

∫
d4x
√
−g(R+ f(G, T )) +

∫
d4x
√
−gLm, (1.8.18)

where G and T are the Gauss-Bonnet invariant and trace of stress energy momentum tensor

respectively.

We have introduced various kind of MGTs. One can consider a straightforward modification of

the teleparallel gravity action with an arbitrary function of torsion scalar T . Such a theory is

named as f(T ) gravity theory, and the action of this is given by [82]

S =
1

16πG

∫
d4xef(T ) +

∫
d4xeLm. (1.8.19)

Since the torsion scalar T only depends on the first derivative of the tetrads, this theory is a

second order theory.

1.8.5 f(R, T ) gravity

The modified f(R) theory provides several viable models, passing solar system tests, satisfying

local tests and also unifying inflation with DE era [83–85]. Therefore, it is a successful modified

theory in account of late time acceleration. Furthermore, it can be generalized into several

theories for better theoretical results of late time evolution of universe. In this context, the

gravitational Lagrangian of EH action is modified by an arbitrary function of the Ricci scalar R

and of the matter Lagrangian Lm and this maximal extended theory was proposed by Harko et

al. [86]. The gravitational field equations and equation of motion have been obtained through

metric formalism and covariant divergence of the stress energy tensor. In this way, Harko et

al. in [1] have proposed another extension of f(R) gravity, a successively alternative to GR, is

called the f(R, T ) gravity theory (where the gravitational Lagrangian is given by an arbitrary

function of Ricci scalar R and trace of the stress energy tensor T ). In the frame work of this

theory covariant of stress energy is obtained and the cosmological models depend on a source

term, which represent the variation of the matter stress energy tensor with respect to metric.
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Since, the source term is expressed as a function of the matter Lagrangian Lm, then several

set of field equations can be obtained with each choice of Lm. In addition, the non-zero value

of covariant divergence of stress energy tensor also provides a non-geodesic motion of massive

test particles due to the matter energy coupling, it always represents an extra acceleration of

expansion. In this thesis, all the cosmological models in each chapter are constructed within the

framework of f(R, T ) gravity.

The action for f(R, T ) gravity is proposed as

S =

∫ √
−g
(

1

16πG
f(R, T ) + Lm

)
d4x, (1.8.20)

where the gravitational Lagrangian consists of an arbitrary function of Ricci scalar R and the

trace T of the energy-momentum tensor Tµν of the matter source. Lm is the usual matter

Lagrangian density, and the gravitational constant is considered as G = 1 (hereafter G = 1). For

matter source, the stress energy tensor Tµν is given by

Tµν = − 2√
−g

δ(
√
−gLm)

δgµν
, (1.8.21)

and its trace is T = gµνTµν .

Here, we have assumed that the matter Lagrangian Lm depends only on the metric tensor

component gµν rather than its derivatives. Hence, we obtain

Tµν = gµνLm −
∂Lm

∂gµν
. (1.8.22)

By varying the action S in eqn. (1.8.20) with respect to gµν , the f(R, T ) gravity field equations

are obtained as

fR(R, T )Rµν −
1

2
f(R, T )gµν + (gµν2−∇µ∇ν)fR(R, T ) = 8πTµν − fT (R, T )Tµν − fT (R, T )Θµν ,

(1.8.23)

where

Θµν = −2Tµν + gµνLm − 2glη
∂2Lm

∂gµν∂glη
. (1.8.24)

Here, fR(R, T ) = ∂f(R,T )
∂R , fT (R, T ) = ∂f(R,T )

∂T , 2 ≡ ∇µ∇µ where ∇µ is the covariant derivative.

Contracting eqn. (1.8.23), we get

fR(R, T )R+ 32fR(R, T )− 2f(R, T ) = (8π − fT (R, T ))T − fT (R, T )Θ, (1.8.25)



Chapter 1. Introduction 30

where Θ = gµνΘµν .

From eqns. (1.8.23) and (1.8.25), the f(R, T ) gravity field equations take the form

fR(R, T )

(
Rµν −

1

3
Rgµν

)
+

1

6
f(R, T )gµν =

8π − fT (R, T )

(
Tµν −

1

3
Tgµν

)
− fT (R, T )

(
Θµν −

1

3
Θgµν

)
+∇µ∇νfR(R, T ). (1.8.26)

Since different cosmological models of f(R, T ) gravity are possible depending on the nature of

the matter source. Harko et al. [1] constructed three types of frames of f(R, T ) gravity and

their corresponding field equations are as follows:

• f(R, T ) = R+ 2f(T )

For an arbitrary choice of function f(T ), the field equation from general equation (1.8.23)

takes the form

Gµν = 8πTµν − 2f ′(T )Tµν − 2f ′(T )Θµν + f(T )gµν . (1.8.27)

For a perfect fluid matter source Θµν = −2Tµν − pgµν , the field equation can be written as

Gµν = 8πTµν + 2f ′(T )Tµν + (2pf ′(T ) + f(T ))gµν , (1.8.28)

where the prime stand for the derivative with respect to the argument.

• f(R, T ) = f1(R) + f2(T )

With the choice of both arbitrary function of R, f1(R), and function of T , f2(T ), the

general eqn. (1.8.23) rewritten as

f ′1(R)Rµν−
1

2
f1(R)gµν+(gµν2−∇µ∇ν)f1(R) = 8πTµν−f ′2(T )Tµν−f ′2(T )Θµν+

1

2
f2(T )gµν .

(1.8.29)

Similarly, for perfect fluid source,

f ′1(R)Rµν−
1

2
f1(R)gµν+(gµν2−∇µ∇ν)f1(R) = 8πTµν+f ′2(T )Tµν+

(
f ′2(T )p+

1

2
f2(T )

)
gµν .

(1.8.30)

• f(R, T ) = f1(R) + f2(R)f3(T )

The field equation for the third generalized f(R, T ) gravity for an arbitrary matter source

is

(f ′1(R) + f ′2(R)f3(T ))Rµν −
1

2
f1(R)gµν + (gµν2−∇µ∇ν)(f ′1(R) + f ′2(R)f3(T )) = 8πTµν

+ f2(R)f ′3(T )Tµν − f2(R)f ′3(T )Θµν +
1

2
f2(R)f3(T )gµν . (1.8.31)
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Similarly, for perfect fluid source,

(f ′1(R) + f ′2(R)f3(T ))Rµν −
1

2
f1(R)gµν + (gµν2−∇µ∇ν)(f ′1(R) + f ′2(R)f3(T )) = 8πTµν

+ f2(R)f ′3(T )Tµν + f2(R)

(
f ′3(T )p+

1

2
f3(T )

)
gµν . (1.8.32)

1.9 Bianchi universes

In recent studies, it has been proposed that present isotropic universe may have evolved from an

early anisotropic phase. This has led to the study of a wide range of cosmological scenario based

on a spatially homogeneous, but anisotropic manifold. It can be possible with a consideration of

Bianchi type space-time which is globally hyperbolic spatially homogeneous and ansotropic.

Precise measurements of the temperature anisotropies of the CMB and the Wilkinson Microwave

Anisotropy Probe (WMAP) [19, 87] provide a universe dominated by cold dark matter (CDM)

and cosmological constant (Λ) [88], which termed as a ΛCDM model. The most necessary part

of this model is the primordial metric perturbations that give rise to the galaxies and Large-scale

structure we observed around us today should be Gaussian and statistically homogeneous [89–91]

and the observed temperature fluctuations in the CMB should be Gaussian and statistically

isotropic. Some anomalous behavior of universe has been reported in [92]. Also, there is no clear

evidence of primordial non-Gaussianity, but there are several indications of statistical anisotropy

in the CMB sky. Moreover, the further possibility of the WAMP temperature fluctuation may

be affected by other systematic problems suggested in literature [93–95]. Even slight effects

of this type could seriously hamper our attempts to uncover evidence of physics beyond the

standard model. From the evidence of global asymmetry and other analyses, it can be confirmed

the possibility that we may live in universe which is described by a background cosmology that

globally anisotropic. The approach we have followed in this thesis is to study some Bianchi

cosmological model within f(R, T ) gravity theory, based on the exact solutions to modified EFE.

The Bianchi classification groups all possible spatially homogeneous but anisotropic relativistic

cosmological models into types depending on the symmetry properties of their spatial hyper

surfaces [96]. In literature, it has been known for some time that interesting localized features

in the CMB temperature pattern can occur in Bianchi models with negative spatial curvature

[97–101]. The physical origin of such features lies in the focusing effect of space on the geodesics

that squeezes the pattern of the small region of the sky. More recently, attention has shifted to

the possibility of using the additional parameters available in such models to reproduce a cold

spot such as that claimed to exist in the WMAP data. Since we know that our present universe

is close to isotropic, attention has focused on the subset of the Bianchi type that contains the

FLRW model as a limiting case.

From mathematical point of view, there must be some symmetry that relates what the universe
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Bianchi Type Class a n1 n2 n3

I A 0 0 0 0

II A 0 + 0 0

VI0 A 0 0 + -

VII0 A 0 0 + +

VIII A 0 - + +

IX A 0 + + +

IV B + 0 0 +

V B + 0 0 0

VIh B + 0 + -

VIIh B + 0 + +

Table 1.1: The Bianchi types shown in terms of whether the various parameters used to
construct the classification are zero, positive or negative. The designation of Class A or Class B
depends on whether a = 0, or not. The parameter h is defined by h = a2/(n1n2). In particular,

the spaces I, V, VII0, VIIh and IX are contain the isotropic FLRW spaces as limiting cases.

looks like as seen by observer ‘A’ to what is seen in a coordinate system centered on any other

observer ‘B’. The possible space-time consistent with this requirement possess symmetries that

can be classified into the Bianchi types. The Bianchi classification is based on the construction of

space like hyper surfaces. The set of killing vectors will have some L-dimensional group structure,

read GL, which depends on the equivalence classes of the structure constant Cγµν . This is used

to classify all spatially homogeneous cosmological models. For any particular space like hyper

surface, the killing vector basis can be chosen so that the structure constants can be decomposed

as

Cγµν = εµνln
lγ + δγνaµ − δγµaν , (1.9.1)

where εµνl is the total antisymmetric term and δνµ is the Kronecker delta. The tetrad basis can

be chosen to diagonalise the tensor, nµν = diag(n1, n2, n3) and to set the vector aµ = (a, 0, 0),

then the Jacobi identity are simply n1a = 0 (from nµνaν = 0, for tetrad basis). The possible

combination of nµ and a then fix the different Bianchi types as shown in the given table 1.1.

The isotropic spaces that feature in the Friedmann models have G6 symmetry groups with G3

subgroup. So that the zero curvature (k = 0) FLRW model can be thought of as a special case

of Bianchi type I on VII0. Like-wise the open (k < 0) FLRW model is a special case of type V

or VIIh. The closed FLRW case (k > 0) is special case of Bianchi type IX. Since, Bianchi I and

VII0 are spatially flat, Bianchi IX is positively curved and Bianchi V and VIIh have negative

spatial curvature. Thus the scalar curvature can be defined in terms of Bianchi parameters

R = −1

2

[
(n1 − n2)2 + (n1 − n3)2 + (n2 − n3)2

]
+

1

2
(n2

1 + n2
2 + n2

3)− 6a2 (1.9.2)

where n1 = n2 = n3 = 0, R = −6a2, it yields Bianchi V. For VIIIh, we have n1 = 0, n2 6= 0, and

n3 6= 0; the parameter h is defined as h = a2

n2n3
. Details are depicted in the following table (1.2)
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Bianchi Type R k

I 0 0 flat

V −6a2 < 0 open

VII0 −1
2(n2 − n3)2 0 flat

VIIh −6a2 − 1
2(n2 − n3)2 < 0 open

IX n1n2 + n1n3 + n2n3 − 1
2(n2

1 + n2
2 + n2

3) > 0 closed

Table 1.2: The Bianchi classification shown in terms of curvature scalar.

One of the special cases- Bianchi type I is Kasner solution, which demonstrates the difficulty

of finding meaningful exact solutions in situations of restricted symmetry. In 1922 Kasner has

found the following solution for the EFE in vacuum [102] as

ds2 = dt2 − t2p1dx2 + t2p2dy2 + t2p3dz2 (1.9.3)

with

p1 + p2 + p3 = 1 (1.9.4)

p2
1 + p2

2 + p2
3 = 1 (1.9.5)

where p1, p2, and p3 are Kasner indexes, that can be distributed in the following ways [103].
−1
3 ≤ p1 ≤ 0, 0 ≤ p2 ≤ 2

3 , 2
3 ≤ p3 ≤ 1.

Thus, we may conclude that the three scale factors of Bianchi type I metric referred to the

spatial axes with two of them that increase with time and one of which conversely decreases. It

is worthy to note that, for (1.9.4) and (1.9.5) the spatial volume of a Bianchi type I space-time

grows with time. Thus in the limit t→ 0 we have a Big Bang like singularity.

1.10 Past and future singularities in cosmological model

Another important physical property of cosmological models in the behavior of universe, which

we have covered in this thesis is called cosmic singularity. In this section, we have covered some

important definitions of what a singularity stands for and what it involves qualitatively. In

many space-time, points of infinite coordinate is known as ‘existence of singularity’. Coordinates

can not be extended beyond the singular point and hence for geodesics are incomplete in such

space-time that singularity. If we consider a manifold M , there can be two points which are

not connected by any causal curve. Then, it is suggested that the geodesics faces a singularity,

which can be thought of as the edge of manifold. Manifolds which have such singularities

are known as geodesically incomplete manifold. In fact the singularity theorem states that

for a reasonable matter content (positive energies), space-times are almost guaranteed to be

geodesically incomplete in GR [104]. However, the initial singularity (Big Bang) occurs when
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the scale factor of the universe a(t)→ 0 in a finite time. This particular singularity results from

a homogeneous contraction of space down to “zero size”, but does not represent an explosion

of matter concentrated at a point of pre-existing non-singular space-time. Similarly, curvature

singularity occurs, when the curvature becomes infinite. The curvature is measured by the

Riemann tensor from which it can be constructed various scalar quantities like Ricci scalar R, or

higher order scalars RabR
ab, RabcdR

abcd, etc. If any one of those scalars tend to infinity at some

point then there is a curvature singularity at that point. Any curvature singularity which is not

surrounded by an event horizon is called naked singularity. Since there is no event horizon, there

is no obstruction to an observer traveling to the singularity and returning to report on what was

observed.

Other than the initial singularities there also appears another type of singularity in future at

finite time, which is known as “future singularities”. It is a serious problem that face a large

number of gravitational theories in its way to explain the accelerated expansion. Among these

theories some models like phantom models, some quintessence models and other modified gravity

models suffer this singularity problem. Also, it has an important fact that it can produce

instabilities in black holes and in stellar physics. Nevertheless, this problem can be understood

and/or solved only from the perspective given by a quantum theory of gravity that, we do not

have yet.

In general FLRW universe, the singularities appear during cosmological evolution when the HP

is expressed as

H =
hs

(ts − t)β
, (1.10.1)

where hs, and ts are positive constants, and ts is the time when singularity appears. β is a

constant. We can seen that if β > 0, H becomes singular in the limit t→ ts. On the other hand,

if β < 0, even for non-integer values of β some derivatives of H and therefore the curvature or

some combination of curvature invariants, become singular. Moreover, for an expanding universe,

t < ts. In order to get the singularities properties β must be β 6= 0, because β = 0 corresponds

to de Sitter space, which has no singularity.

The finite-time future singularities appears in cosmological models can be classified into several

types, depending on the divergent magnitude. In [105], the authors propose the classifications

for the different types of singularities in the following way:

• Type I (Big Rip): for t→ ts and for β = 1 or > 0, a(t)→∞, ρ→∞, and |p| → ∞. A

wide range of literature are available for this singularity [51, 106–114]. p and ρ are finite

at t = ts.

• Type II (Sudden singularity): for t → ts, a(t) → as, ρ → ρs, and |p| → ∞ [115]. It

corresponds to −1 < β < 0.

• Type III: for t→ ts, a(t)→ as, ρ→∞, and |p| → ∞. It corresponds to 0 < β < 1.



Chapter 1. Introduction 35

• Type IV: for t→ ts, a(t)→ as, ρ→ ρs, |p| → ps, and higher derivatives of H diverge. It

corresponds to β < −1 but β is not any integer number.

Here ts, as, ρs, ps are constants, with as 6= 0, while a, ρ, p are the scale factor, energy density

and the pressure respectively.

1.11 Energy conditions

According to GR, matter and the energy density are always related with the geometry of the

space-time through EFE eqn. (1.2.9). In which the left side Einstein tensor Gµν describes

space-time geometry, Tµν is the energy momentum tensor, which describes the matter and the

energy in this space-time.

In principle, one can consider any metric gµν imaginable (for example, traversable wormhole

discussed below) and as long as its second derivative exists-plug that metric into the LHS of field

eqn. (1.2.9) to allow the stress energy tensor responsible to that metric. In this way, we will

obtain the exact solutions easily, but the stress energy tensor will not necessarily be physically

reasonable. In order to accept the stress energy tensor as a source of gravitational field, it is

useful to impose certain conditions, called “energy conditions” (ECs), which serves precisely

certain ideas about what is physically reasonable. In addition, one key generic feature of every

matter is that, energy densities (almost) always seem to be positive. It is only possible through

so called ECs of GR by making this notion of locally positive energy density more precise.

Moreover, these ECs are coordinate invariant restrictions on the stress-energy tensor. This

invariance is enforced by scalar quantities, which are usually considered are contractions of Tµν

with time like or null vector. There are various ways to formulate all the energy conditions.

Here, we have followed on geometric, the physical and the effective ways. One can write down

formal conditions expressed by using only the value of the stress-energy tensor itself, but it is

required to stand in relation to a fixed family of vectors or other tensors. In every case, the

physical formulation is logically equivalent to the geometric formulation if the EFE is assumed

to hold. According to a useful classification of GR [50], a stress-energy tensor (for a perfect fluid)

is given by

Tµν = (ρ+ p)uµuν + pgµν , (1.11.1)

where uµ is the fluid four velocity, gµν is the space-time metric, ρ is the energy density and p is

the pressure in the xi direction (i=1,2,3).

Several types of ECs in classical GR [116] are given as follows:

• the null energy condition (NEC):

geometric: Rµνk
µkν ≥ 0, ∀ null vector kµ, where Rµν is Ricci tensor.
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physical: Tµνk
µkν ≥ 0, ∀ null vector kµ.

effective: for each i, ρ+ pi ≥ 0.

• the weak energy condition (WEC):

It must be positive and the geometric definition refers to the EFEs. geometric: Gµνt
µtν ≥

0, ∀ timelike vector tµ, where Gµν is Einstein tensor.

physical: Tµνt
µtν ≥ 0, ∀ timelike vector tµ.

effective: for each i, ρ ≥ 0 ρ+ pi ≥ 0 .

• the strong energy condition (SEC):

geometric:Rµνk
µkν ≥ 0, ∀ null vector kµ.

physical: for any timelike vector kµ, (Tµν − 1
2Tgµν)kµkν ≥ 0.

effective: ρ+
∑

i pi ≥ 0, and for each i, ρ+ pi ≥ 0.

• the dominant energy condition (DEC):

It states that matter flows along timelike or null world lines.

geometric: Gµνt
µtν ≥ 0, ∀ timelike vector tµ, where Gµν is Einstein tensor.

for any two co-oriented timelike vectors tµ and vµ,Gµνt
µvν ≥ 0.

physical: Tµνt
µtν ≥ 0, ∀ timelike vector tµ.

for any two co-oriented timelike vectors tµ and vµ,Tµνt
µvν ≥ 0.

effective: for each i, ρ ≥ 0 ρ ≥ |pi|.

It can be noted from all the above descriptions that NEC implies WEC. NEC, WEC and the

SEC are mathematically independent assumptions. In particular, the SEC does not imply the

WEC. Violating the NEC implies violating the DEC, SEC and WEC as well. Hawking area

theorem for black hole horizon relies on the NEC, and hence evaporation of a black hole must

violate the NEC. All these considerations are related to standard matter which satisfies regular

equations of state and is minimally coupled to the geometry. They can be generalized to other

theories of gravity assuming that at least causal structure is preserved. In this thesis, we have

considered these ECs in modified gravity cosmological models in both validation and violation

aspects. In contrast, the null, weak, and dominant energy conditions are still extensively used in

the GR community. The weakest of these is the NEC, and it is in many cases also the easiest to

work with and analyse. In addition, the refinement of the ECs are applied in the development

of some powerful mathematical theorems such that the singularity theorem [50, 104], positive

energy theorem, the non-existence of traversable wormholes, and limits on the extent to which

light cones can trip over in strong gravitational fields. Hence, some form of ECs and some notion

of positivity of the stress energy tensor as an input of hypothesis, are the necessary requirements

of these theorems.

Despite this, there are some classical systems and field theories these are compatible with

experimental results, and quantum field theory. It has been cleared that the violation of all
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ECs are possible. In fact, the WEC prohibits observers from seeing negative energy densities

[50, 117]. It may seem reasonable to postulate that the WEC always holds, experiments have

shown that it is violated by certain phenomena such as the Casimir effect. However, the current

evidence suggests that there are strong limits on how severe such violations can be, globally

(e.g.[117] page 32). These classical violation of ECs can be made an huge changes and provide

some new features in wired physics. For instance, it is possible to demonstrate that Lorentzian

signature traversable wormhole arises as classical solution of field equations [118].

1.12 Wormhole geometry

Wormhole (WH) is a hypothetical connection between two widely separated regions of space-time

[119]. WH solutions were firstly considered from physics standpoint by Einstein and Rosen (ER)

in 1935, which is known today as ER bridges connecting two identical sheets [120]. Then Wheeler

added the term “wormhole” to the physics literature, however he defined it at the quantum scale.

After that, first traversable WH was proposed by Morris-Thorne in 1988 [119]. Then Morris,

Thorne, and Yurtsever investigated the requirements of the EC for WHs [121]. After that, many

research works have been done in literature to support this idea [122–125].

A WH is any compact region on the space-time that contains two mouth and a throat connecting

the two each at separate points in space-time like a tunnel and can act either as a passage in

space or in time [126, 127]. Also, it provides solutions to field equations in a reverse manner.

Firstly, one considers an interesting exotic space-time metric and solves the EFE, then finds the

exotic matter needed as a source responsible for the respective geometry. It is needed because

the exotic matter violates the NEC. It also violates the causality by allowing closed time-like

curves. Furthermore, the other interesting outcome is that time travel is possible without excess

the speed of light.

Now, lets take an example of a traversable WH solution which is characterized by the given line

element

ds2 = ea(r)dt2 − dr2

1− b(r)
r

− r2(dθ2 + sin2 θdφ2). (1.12.1)

Here, a(r) and b(r) are arbitrary functions of radial coordinate r. The function a(r) is called

redshift function as it describes about gravitational redshift. Similarly b(r) is termed as shape

function and it determines the shape of the wormhole throat. The radial coordinate r, is

non-monotonic, i.e. it decreases from +∞ to a minimum value r0 and then increases from r0 to

+∞. The point at r = r0, represents the throat of wormhole, where the shape function must

satisfy a condition, i.e. b(r0) = r0, called “throat condition”.

Although the metric coefficient grr becomes divergent at the throat, it is signaled by the coordinate
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singularity, the proper distance,

l(r) = ±
∫ r

r0

(
1

b(r)
− 1

)−1/2

dr (1.12.2)

must be finite everywhere. For an embedded surface to have an equation z = z(r), the line

element eqn. (1.12.1) can be rewritten as

ds2 =

[
1 +

(
dz

dr

)2]
dr2 + r2dφ2. (1.12.3)

From eqns. (1.12.1) and (1.12.3), it can be obtained as

dz

dr
= ±

(
1

b(r)
− 1

)−1/2

. (1.12.4)

For the surface to be vertical, i.e. dz
dr →∞, we must have a minimum radius at r = r0. Similarly,

for “asymptotic flatness” we need dz
dr → 0 as r →∞ which implies b(r)

r → 1 as r →∞.

In order to find the wormhole solution, the surface must “flare out”, that means the inverse of

the embedding function r = r(z), must satisfy d2r
dz2

> 0 near the throat r0. From eqn. (1.12.4),

we find the flare out condition as
d2r

dz2
=
b− b′r

2b2
> 0, (1.12.5)

where ′ denotes the differentiation with respect to radial coordinate r. This “flaring-out” condition

is a fundamental ingredient of wormhole physics, and plays a fundamental role in the analysis of

the violation of the ECs. At the throat we verify that the form function satisfies the condition

b′(r0) < 1. With this condition, ensuring that the two spherical volumes on each side of the

wormhole throat are smoothly joined together. One must verify the absence of horizons, in

order for the wormhole to be traversable. This traversability condition in the absence of event

horizon must imply that gtt = ea(r) 6= 0 so that a(r) must be finite everywhere. This finite

characteristic of redshift function insists the violation of NEC. In fact, it implies the violation of

all the point-wise energy condition.

A dedicated discussion on spherically symmetric traversable wormhole solutions in MGTs are

covered in chapter 6 and chapter 7 respectively.
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Bianchi type string cosmological models in

f (R, T ) gravity

This chapter contains two cosmological models (Bianchi III and V I0) with string fluid source

in the framework of f(R, T ) gravity in the context of late time accelerating expansion of the

universe as suggested by the present observations. The exact solutions of the field equations

are obtained by using a time varying DP. The obtained models are anisotropic and free from

initial singularity. The models initially show acceleration for a certain period of time and then

decelerates consequently. Several dynamical and physical behaviors of the models are discussed

in detail.

2.1 Introduction

Presently, standard models of cosmology are the most accepted models to study the origin and

evolution of the current universe. All the alternatives for the physics beyond the standard model

represented up to now are inspired by the principle of naturalness and are in the search for the

unification of forces, but they do not offer a new conceptual framework in which gravity may be

conciliated with quantum physics. To date, the foremost promising candidate as a theory of

quantum gravity is string theory. The substantial theoretical progress in string theory continues

to own variety of challenges to deal with, if it is to be made experimentally verifiable. Since the

string cosmological model plays a significant role within the description of our early universe, an

exciting opportunity is offered by modern cosmology to explore such challenges by constructing

a concrete string model in the background that is compatible with our understanding of the

early universe. In fact, string theory unites all the matter and forces in a single theoretical

framework, which provides a unified description of the fundamental structure and nature of the

The work, in this chapter, is covered by the following publication:
Bianchi type string cosmological models in f(R, T ) gravity, Eur. Phys. J. Plus, 131 (2016) 333.
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early universe. Therefore, the presence of the strings in the early universe can be explained using

grand unified theories (GUTs) [128, 129]. Moreover, it is necessary to allow the early universe

to go through an accelerated expansion phase, known as inflation, to overcome some present

conceptual and observational problems (e.g. flatness and horizon problem). This is because,

it can be associated to a phase transition of a scalar field. On the other hand, one important

consequence of such transition is to provide a mechanism for the formation of topological defects,

like domain walls, monopoles, and cosmic strings [130–133]. Therefore, cosmic strings are one

dimensional topological defect, which are formed during the transition of phase due to the broken

axial symmetry when the temperature cooled down below some critical temperature in the early

stage of the universe after the Big Bang.

Thereafter, many cosmologists have been inspired by the study of string cosmological models

in GR and alternative theories of gravitation. In GR, the importance of cosmic string and

its gravitational effects are extensively studied by Kibble and Turok in [134]. Various aspects

of cosmic strings coupled with perfect fluid and electromagnetic field are also investigated in

[135–137]. In fact, the cosmic string model constructed by Letelier [138] is used as a source for

many cosmological models such as Bianchi I and Kantowski-Sach type. In the same context,

Krori et al. [139] have studied the spatially homogeneous models of Bianchi types II, VI0, VII

and IX in the presence of strings. By introducing the stress energy tensor matter for a perfect

dust along with cosmic strings, some of the cosmological models can be generalized to null strings

and to perfect fluid strings. Equations of motion for such strings and conservation laws of dust

can be derived by eliminating divergence equation of the stress energy tensor [140]. Furthermore,

cosmic string cosmological models are widely studied in literature by several authors in various

aspects, for example: the Bianchi II magnetic string cosmological model in addition to loop

quantum cosmology are investigated in [141], and five dimensional Bianchi I cosmological models

in the framework of the Lyra manifold [142].

Our Universe is sustaining an expansion at an increasing rate which is confirmed in [13, 14, 143].

This late time cosmic acceleration is an observed phenomenon at present [14] whereas a similar

conformation for inflation is still awaited. Even if the hot Big Bang model is sandwiched

between inflation [144, 145] and late time cosmic acceleration [146, 147]. In order to address this

expansion, MGTs, which disagree with GR in the context of low or high curvature scalar are

being extensively examined in the past few years. The reconstruction of curvature scalar is very

essential for cosmological models. In the same context, at low curvature regime, the accelerating

expansion of the universe is described by f(R) theory of gravity [148] and f(R, T ) gravity [1].

In this chapter, we have focused on the modified f(R, T ) gravity (for details one can check in

previous chapter). In literature, several cosmological models are discussed within the f(R, T )

gravity formalism with various aspects [1, 149]. Then, Jamil et al. [150] have reconstructed

the minimally coupled scalar field model with the Chaplygin gas and have demonstrated them

for a specific form of f(R, T ) = R2 + f(T ), and also Sharif et al. [151] studied the energy

conditions for FLRW universe with perfect fluid in f(R, T ) gravity. For more details about
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various cosmological models within f(R, T ) gravity, one can refer to these refs.[152–156].

Despite this, many string cosmological models are investigated in different scenarios of MGTs

[157–165]. For instance, viscous string cosmic models for Bianchi type V metric have been

discussed with the help of barotropic EoS in the framework of f(R, T ) gravity [166]. Sharma

and Singh [167] have presented a Bianchi type II string cosmological model in magnetic field

epoch within the f(R, T ) gravity. Then the massive string dominated by the Bianchi type-V

universe is addressed by Yadav [168] which no longer survived in f(R, T ) gravity. In addition,

various dynamical properties of Bianchi type cosmological models in f(R, T ) gravity has been

extensively studied by Zubair and Hassan [169], Singh et al. [170]. The anisotropic behavior of

Bianchi type III cosmological model in f(R, T ) gravity have been discussed by considering a

simple power law form of the scale factor in [171]. Recently, Sahoo [172] has constructed a LRS

Bianchi type I one dimensional string cosmological model in f(R, T ) theory of gravity.

Since, the present universe is homogeneous and isotropic on a larger scale, it is generally believed

that the early universe was highly anisotropic and was isotropized later, with the cosmic expansion

[173]. In fact, the universe was not completely symmetric, that is indicated by WMAP data

[174, 175]. Thus, the homogeneous and anisotropic Bianchi type space-times are more important

in constructing models to analyze the anisotropy level of early universe. For the details about

the Bianchi type space-time, one can refer previous chapter section 1.9.

With the motivation of above discussions, we have explored two (Bianchi type III and V I0)

string cosmological models in the f(R, T ) formalism with the particular choice of f(R, T ) gravity

i.e. f(R, T ) = R+ 2f(T ). This chapter is organized in the following manner. The exact solution

of first Bianchi type III model in presence of cosmic fluid is derived in section 2.2. Then the

solution and model for Bianchi type V I0 metric are presented in section 2.3. Finally, in section

2.4, we have discussed the conclusions for both the models.

The model field equation

Here, we have considered the standard stress energy tensor for string matter Lagrangian as

Tµν = (ρ+ p)uµuν + pgµν − λxµxν (2.1.1)

where the four velocity vector uµ satisfies the relation uµuν = −xµxν = −1, uµxµ = 0, xµ is

the direction of the string and uµ∇νuµ = 0. Here, λ is the string tension density. The particle

density ρp is defined as

ρ = ρp + λ (2.1.2)

λ may be positive or negative [138].

Since, the matter Lagrangian has no unique representation. So, the source term is described

as a function of Lagrangian matter through different choices of it. Choosing the perfect fluid

matter as Lm = −p, (hereafter Lm = −p) Θµν can be written as

Θµν = −2Tµν − pgµν , (2.1.3)
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which describes the physical nature of the matter field and used for the field equations of f(R, T )

gravity. According to the nature of matter source, several cosmological models of f(R, T ) gravity

are possible. Hence, Harko et al. [1] have constructed three different frames of f(R, T ) gravity

(see section 1.8.5 in chapter 1). Here, we have chosen f(R, T ) = f1(R) + f2(T ) with f(R) = γR

and f(T ) = γT where γ is an arbitrary constant. For a perfect fluid matter source the field

equations of f(R, T ) gravity given in chapter 1 (section 1.8.5) becomes

Rµν −
1

2
Rgµν =

(
8π + γ

γ

)
Tµν +

(
p+

1

2
T

)
gµν (2.1.4)

By using this field equation, we have obtained two different cosmological models are as follows:

2.2 Bianchi type III model

In this section the spatially homogeneous Bianchi type III metric is considered as

ds2 = −dt2 + a2
1dx2 + a2

2e
−2xdy2 + a2

3dz2 (2.2.1)

where a1, a2, a3 are functions of cosmic time t only.

The field eqn. (2.1.4) with energy momentum tensor eqn. (2.1.1) for the metric in eqn. (2.2.1)

take the form

ȧ1ȧ2

a1a2
+
ȧ2ȧ3

a2a3
+
ȧ1ȧ3

a1a3
− 1

a2
1

=
(16π + 3γ)

2γ
ρ+

p

2
+
λ

2
, (2.2.2)

ä2

a2
+
ä3

a3
+
ȧ2ȧ3

a2a3
= −(16π + 3γ)

2γ
p− (16π + 3γ)

2γ
λ+

ρ

2
, (2.2.3)

ä1

a1
+
ä3

a3
+
ȧ1ȧ3

a1a3
= −(16π + 3γ)

2γ
p− λ

2
+
ρ

2
, (2.2.4)

ä1

a1
+
ä2

a2
+
ȧ1ȧ2

a1a2
− 1

a2
1

= −(16π + 3γ)

2γ
p− λ

2
+
ρ

2
, (2.2.5)

ȧ1

a1
− ȧ2

a2
= 0. (2.2.6)

Here, the overhead dot denotes derivative with respect to time t.

From eqn. (2.2.6), we obtain

a1 = c1a2, (2.2.7)

where c1 is an integration constant. By assuming c1 = 1 the above equation reduces,

a1 = a2. (2.2.8)
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Using this, the field eqns. (2.2.2 - 2.2.5) can be rewritten as

ȧ2
2

a2
2

+ 2
ȧ2ȧ3

a2a3
− 1

a2
2

=

(
16π + 3γ

2γ

)
ρ+

p

2
+
λ

2
, (2.2.9)

ä2

a2
+
ä3

a3
+
ȧ2ȧ3

a2a3
= −

(
16π + 3γ

2γ

)
p−

(
16π + 3γ

2γ

)
λ+

ρ

2
, (2.2.10)

ä2

a2
+
ä3

a3
+
ȧ2ȧ3

a2a3
= −

(
16π + 3γ

2γ

)
p− λ

2
+
ρ

2
, (2.2.11)

2
ä2

a2
+
ȧ2

2

a2
2

− 1

a2
2

= −
(

16π + 3γ

2γ

)
p− λ

2
+
ρ

2
. (2.2.12)

Here, we have five unknowns a2, a3, p, ρ, and λ in a set of four equations. Therefore, we require

a valid assumption to find a consistent solution to these equations In order to obtain exact

solutions of the above non-linear system of equations we have assumed a well-motivated ansatz

considered by Abdussattar and S. R. Prajapati [176], which puts a constraint on the functional

form of the DP q as

q = −α
t2

+ (β − 1), (2.2.13)

where α > 0 (dimension of square of time) and β > 1 (dimensionless) are constants, also known

as model parameters through which the dynamics of model can be extracted.

The use of a time dependent DP q becomes an well motivated assumption due to the fact that the

universe exhibits phase transitions from the past decelerating expansion to the recent accelerating

one as revealed by the recent observations of SNe Ia [14] and CMB anisotropies [177]. In this

context the DP describes the acceleration or deceleration behavior of the universe depending on

its negative or positive value. Hence, the choice of variable q is physically acceptable.

From eqn. (2.2.13) it can be observed that the q → ∞ at t = 0 and it reduces to zero at

t =
√

α
β−1 . The period of acceleration depends on α and β.

Usually, DP q can be defined as q = −aä
ȧ2

= d
dt

(
1
H

)
− 1. By integrating this expression the scale

factor can be written as

a(t) = eη exp

∫
dt∫

(1 + q)dt+ δ
, (2.2.14)

where δ, η are integrating constants. This can not be solved for different values of constants.

Thus, by assuming δ = η = 0 and with help of eqn. (2.2.13), we obtain

a(t) =

(
t2 +

α

β

) 1
2β

. (2.2.15)

Note: for α = 0 in the above expression, it becomes a(t) = t
1
β which yields a constant DP

q = β − 1 throughout the universe [178].
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Figure 2.2.1: The plot of q versus t
with α = 1.3 and β = 1.01.
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Figure 2.2.2: The plot of a versus t
with α = 1.3 and β = 1.01.

The behavior of DP and average scale factor with respect to cosmic time are depicted in Fig.

2.2.1 and Fig. 2.2.2 respectively. The negative DP represents that the model is accelerating and

the scale factor is a positive increasing function. By using the relation between spatial volume

and scale factor i.e. a3 = V b, where b is any constant, we obtain the values of directional scale

factors are

a1 = a2 =

(
t2 +

α

β

) 3−3b
4β

, (2.2.16)

a3 =

(
t2 +

α

β

) 3b
2β

. (2.2.17)

The values of energy density for the cloud of strings ρ, fluid pressure p and the string tension

density λ of the Bianchi type III model with respect to the above scale factors are given by

ρ =
2

1 + 4ζ2

[
t2 ×

(
6ζ(1− 3b) + 3(b− 3)

2β
+

27b2(1− 2ζ)− 9b(3− 10ζ) + 18

4β2

)
×
(
t2 +

α

β

)−2

+
6ζ(3b− 1)− 3(b− 3)

4β

(
t2 +

α

β

)−1

− 2ζ + 1

2

(
t2 +

α

β

) 3b−3
2β
]
, (2.2.18)

p =
2

1 + 4ζ2

[
t2 ×

(
6ζ(3− b)− 3(3b− 1)

2β
+

9b2(1− 6ζ) + 9b(1 + 6ζ)− 36ζ

4β2

)
×
(
t2 +

α

β

)−2

+
6ζ(2b− 3) + 3(2b− 1)

4β

(
t2 +

α

β

)−1

+
2ζ − 1

2

(
t2 +

α

β

) 3b−3
2β
]
, (2.2.19)

λ = 0, (2.2.20)

where ζ = 16π+3γ
2γ .
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Figure 2.2.3: The plot of ρ versus t
with b = 0.3, γ = −25, α = 1.3 and

β = 1.01.
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Figure 2.2.4: The plot of p versus t
with b = 0.3, γ = −25, α = 1.3 and

β = 1.01.
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Figure 2.2.5: The plot of EoS ω versus t with b = 0.3, γ = −25, α = 1.3 and β = 1.01.

In this model the string tension density vanishes. From Fig. 2.2.3, it can be observed that the

large value of ρ in the beginning indicates that the density dominates in the early time but it

is negligible later. Similarly, in Fig. 2.2.4 the pressure is negative at initial time and later it

vanishes. The relation between pressure and energy termed as EoS parameter ω(t) = p
ρ , which

specifies the evolution of the expansion rate in GR. Therefore, its measurement for DE is one

of the biggest efforts in observational cosmology today. The DE model has been described in

a conventional manner by the EoS parameter, which is not necessarily constant. The present

observational data seem to slightly favor an evolving DE with EoS ω < −1 at the present epoch

and ω > −1 in the recent past. Fig. 2.2.5 shows the behavior of the EoS parameter for the

Bianchi type III model. We can observe that the model represents a quintessence (ω > −1) in

the present epoch.

The HP, expansion scalar, shear scalar and mean anisotropic parameters are obtained as

H =
1

3

(
ȧ1

a1
+
ȧ2

a2
+
ȧ3

a3

)
=
t

β

(
t2 +

α

β

)−1

, (2.2.21)

θ = 3H =
3t

β

(
t2 +

α

β

)−1

, (2.2.22)
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σ2 =
1

2

(∑
H2
i −

1

3
θ2

)
= t2 × 27b2 − 18b+ 3

4β2
×
(
t2 +

α

β

)−2

, (2.2.23)

and

∆ =
1

3

3∑
i=1

(
Hi −H
H

)2

= 6

(
σ

θ

)2

=
9b2 − 6b+ 1

2
. (2.2.24)

Here, Hi(i = 1, 2, 3) represent the directional Hubble parameters in the directions of x, y and z

respectively.
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Figure 2.2.6: The plot of σ versus t with α = 1.3, β = 1.01 and b = 0.3

.

From the above values, we can observe that the present model is free from initial singularity.

The values of H, θ and σ are finite at t = 0. All the above parameters are decreasing function of

cosmic time and tend to zero for later time. Fig. 2.2.6 shows the behavior of the shear expansion

for the Bianchi type III model. The mean anisotropic parameter is constant. Hence, the obtained

model is anisotropic throughout the universe as σ2

θ2
6= 0.

2.3 Bianchi type V I0 model

In this model we have considered the spatially homogeneous Bianchi type V I0 line element as

ds2 = −dt2 + a2
1dx

2 + a2
2e
−2xdy2 + a2

3e
2mxdz2, (2.3.1)



Chapter 2. Bianchi type string cosmological models in f(R, T ) gravity 47

where a1, a2, a3 are functions of cosmic time t and m is a constant. Using eqns. (2.1.1) and

(2.3.1) in eqn. (2.1.4), we obtain the following set of field equations,

ȧ1ȧ2

a1a2
+
ȧ2ȧ3

a2a3
+
ȧ1ȧ3

a1a3
− 1

a2
1

=

(
16π + 3γ

2γ

)
ρ+

p

2
+
λ

2
, (2.3.2)

ä2

a2
+
ä3

a3
+
ȧ2ȧ3

a2a3
+

1

a2
1

= −
(

16π + 3γ

2γ

)
p−

(
16π + 3γ

2γ

)
λ+

ρ

2
, (2.3.3)

ä1

a1
+
ä3

a3
+
ȧ1ȧ3

a1a3
− 1

a2
1

= −
(

16π + 3γ

2γ

)
p− λ

2
+
ρ

2
, (2.3.4)

ä1

a1
+
ä2

a2
+
ȧ1ȧ2

a1a2
− 1

a2
1

= −
(

16π + 3γ

2γ

)
p− λ

2
+
ρ

2
, (2.3.5)

ȧ3

a3
− ȧ2

a2
= 0. (2.3.6)

From eqn. (2.3.6) we have

a2 = c2a3, (2.3.7)

where c2 an integration constant. Assuming c2 = 1, we obtain the following relation

a2 = a3. (2.3.8)

Using this, the field eqns. (2.3.2 - 2.3.5) are reduced to

ȧ3
2

a2
3

+ 2
ȧ1ȧ3

a1a3
− 1

a2
1

=

(
16π + 3γ

2γ

)
ρ+

p

2
+
λ

2
, (2.3.9)

2
ä3

a3
+
ȧ3

2

a2
3

+
1

a2
1

= −
(

16π + 3γ

2γ

)
p−

(
16π + 3γ

2γ

)
λ+

ρ

2
, (2.3.10)

ä1

a1
+
ä3

a3
+
ȧ1ȧ3

a1a3
− 1

a2
1

= −
(

16π + 3γ

2γ

)
p− λ

2
+
ρ

2
. (2.3.11)

By using the method as given in previous section, we obtain the scale functions as

a1 =

(
t2 +

α

β

) 3−6b
2β

(2.3.12)

a2 = a3 =

(
t2 +

α

β

) 3b
2β

(2.3.13)

The energy density, fluid pressure and string tension density for Bianchi type V I0 model are

ρ =
4ζ

1 + 4ζ2

[
t2 ×

(
18b− 6bβ − 45b2

β2
− 9b2 + 6bβ

2ζβ2

)
×
(
t2 +

α

β

)−2

+
3b(ζ + 1)

ζβ

(
t2 +

α

β

)−1

+
1− 2ζ

2ζ

(
t2 +

α

β

) 6b−3
β
]

(2.3.14)
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p = t2
ζ3[(48β + 360b)(b− 1)] + 72bζ2(3b+ β − 1) + ζ[12β(4b− 1)− 198b2 + 126b− 18] + 6bβ

ζ(1− 2ζ)(1 + 4ζ2)β2

×
(
t2+

α

β

)−2

+
24ζ3(1− b)− 36bζ2 + (6− 12b)ζ

ζ(1− 2ζ)(1 + 4ζ2)β

(
t2+

α

β

)−1

− 8ζ2 + 6

(1− 2ζ)(1 + 4ζ2)

(
t2+

α

β

) 6b−3
β

(2.3.15)

λ =
2

1− 2ζ

[
t2×
(

6− 18b

β
+

9(1− 2b)(1− 3b)

β2

)
×
(
t2+

α

β

)−2

+
9b− 3

β

(
t2+

α

β

)−1

+2

(
t2+

α

β

) 6b−3
β
]

(2.3.16)
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Figure 2.3.1: The plot of ρ versus t
with b = 0.1, γ = −18, α = 1.3 and

β = 1.01.
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Figure 2.3.2: The plot of p versus t
with b = 0.1, γ = −18, α = 1.3 and

β = 1.01.
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Figure 2.3.3: The plot of ω versus t with b = 0.1, γ = −18, α = 1.3 and β = 1.01.

In this model, the behavior of energy density ρ, pressure p and EoS parameter ω with respect to

time are depicted in Fig. 2.3.1 to Fig. 2.3.3. It can be observed that this model is free from

initial singularity like previous model. The volume of this model increases with time showing the

accelerated expansion of the universe. Moreover, the values of ρ and p are finite at the initial

epoch t = 0 and then vanishes for large time i.e. t → ∞. Fig. 2.3.3 depicts the variation of

the EoS ω versus time t as a representative case with appropriate choice of physical parameters

using reasonably well known situations. It shows the negative value ω throughout the universe

which is a good agreement with recent observational data. The string tension density λ for this
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model is presented in Fig. 2.3.4 in which it can be observed that the strings disappear from the

universe at larger times.

The HP, expansion scalar, shear scalar and mean anisotropic parameters for the model are

obtained as

H =
t

β

(
t2 +

α

β

)−1

, (2.3.17)

θ =
3t

β

(
t2 +

α

β

)−1

, (2.3.18)

σ2 = t2 × 27b2 − 18b+ 3

β2
×
(
t2 +

α

β

)−2

, (2.3.19)

and

∆ = 18b2 − 12b+ 2. (2.3.20)
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Figure 2.3.4: The plot of λ versus
t with b = 0.1, γ = −18, α = 1.3 and

β = 1.01.
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Figure 2.3.5: The plot of σ versus t
with α = 1.3, β = 1.01 and b = 0.1.

In this model, the values of H, θ and σ are also finite at initial time t = 0 and they vanish

when t→∞. The behavior of the shear scalar is depicted in Fig. 2.3.5. The mean anisotropy

parameter is constant for this model. Since σ2

θ2
6= 0, the present model indicates that it is not

approaching isotropy at later time.

2.4 Conclusion

In this chapter, it is shown that in f(R, T ) gravity the two Bianchi models representing string fluid

as source of matter are free from initial singularity and start expanding with finite acceleration.

That means at t = 0, it shows that a(0) 6= 0, ȧ(0) = 0 but ä(0) = constant. In addition, the

assumed DP q approaches to −∞ at t = 0 and reduces to zero at t =
√
α/(β − 1). Since the

period of accelerated expansion depends on the values of α and β, the model shows deceleration

when DP q approaching to β − 1 for large values of t. Therefore it puts a restriction on β as

1 ≤ β ≤ 2. The string tension density vanishes for Bianchi III and exists for Bianchi V I0 model.
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In both the cases, the energy density is positive and decreasing function of time and pressure is

an increasing function of time. In the Bianchi type III model the pressure p starts from a large

negative value in starting and later approaches to zero, whereas, in Bianchi type V I0 model

it starts with a small positive value at t = 0 and it becomes negative at later time. Since the

causes of accelerated expansion of the universe assume that some kind of unknown energy that

is DE reveals, pressure must be negative, the nature of pressure in the model is also in a good

agreement with the current observation about accelerated expansion. The physical parameters

H, θ, σ2 are decreasing function of time and tends to zero at t→ −∞ for both the models. Since
σ2

θ2
6= 0, both the models are anisotropic throughout the evolution of the universe.



Chapter 3

Anisotropic cosmological models in f (R, T )

gravity with variable deceleration parameter

According to the models reported in the previous chapter, Bianchi models in f(R, T ) gravity

theory provide a comprehensive and coherent description of space-time, gravity, and matter at a

macroscopic level. In understanding the large scale structures and realizing the picture of early

stages of universe, these cosmological models studied in f(R, T ) gravity are very essential. After

inspired by the outcomes of Bianchi models, we have explored in this chapter a new feature of

spatially homogeneous anisotropic Bianchi type I model with bulk viscous matter content. The

model is constructed in f(R, T ) gravity with two different cases viz. f(R, T ) = R+ 2f(T ) and

f(R, T ) = f1(R) + f2(T ). Also, a time varying DP is employed to obtain the exact solution of

the field equations. Moreover, we have developed some tools like the nature of WEC, DEC, SEC,

by which the physical and kinematical properties of the model can be discussed to understand

the future evolution of the universe.

3.1 Introduction

In the last two decades, modern cosmology has reached a new vision to establish considerable

advancements in the account of expanding universe. The relevant observational evidence for the

same are provided by these cosmic observations in ref. [13, 14, 179–189]. In this context, some

MGTs become most attractive aspirant to observe the accelerated expansion of the universe as

well as the effective causes related to DE. One of the MGTs, f(R) gravity (see details in 1.8.2)

in which the matter Lagrangian is replaced by an arbitrary function of R. This f(R) gravity

becomes an adequate theory to provide the gravitational alternative for DE and about the early

The work, in this chapter, is covered by the following publication:
Anisotropic cosmological models in f(R, T ) gravity with variable deceleration parameter, Int. J. Geom. Methods
Mod. Phys., 14 (2017) 1750097.
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inflation and the late-time cosmic acceleration of the universe [190–197]. After that Harko et al.

[1] have extended that f(R) theory to a new modified theory named as f(R, T ) theory, where

the gravitational part of the action still depends on the Ricci scalar R and trace of stress energy

momentum tensor T . It is suggested that due to the matter-energy coupling, the leading model

of this theory depends on source term representing the variation of energy-momentum tensor.

For this purpose, the matter content of the model in this chapter is considered as Bulk viscous

fluid.

Several models are investigated with perfect fluid matter to analyze the accelerated expansion of

the universe. As per the recent observations an unknown form of energy (DE) having negative

pressure is treated as the main candidate for accelerated expansion of the universe. On this

account, we need to construct a cosmological model for expanding universe without invoking

DE, while choosing most reliable matter component. In this context, one can approach the

cosmic viscosity which may act as the DE candidate and can play an important role in causing

accelerated expansion of the universe by consuming negative effective pressure [198]. At present,

the cosmological model with dissipative fluid matter becomes more acceptable than with dust

(a pressure-less distribution) or with a perfect fluid matter. It gives more realistic model than

others and is most effective in paying attention to the dynamical background of homogeneous

and isotropic universe. If we focus on the background origin of viscous fluid, it is commonly

accepted that, during the neutrino decoupling in radiation era, the early phase matter content

of the universe behaved like a viscous fluid [199–201]. The dissipative mechanism of viscous

fluid helps to modify the nature of singularity occurred for perfect fluid matter. On the basis

of GUTs, it can be suggested that the phase transition and string creation are also involved in

viscous effects. Moreover, such kind of viscous fluid cosmological model helps to explain the

matter distribution on the large entropy per baryon in the present universe. In fact, the mixture

of minimally coupled self-interacting scalar field with viscous fluid can successfully derive an

accelerated expansion of the universe, while the same mixture with perfect fluid is unable to do

so [202]. Hence, the models with viscous fluid are widely investigated in literature [150, 203–206].

In the present chapter, we take in account a Bianchi type I space-time, which is known as the

immediate generalization of the FLRW flat metric with different directional scale factors. In

some special cases, the simplest spatially homogeneous and anisotropic Bianchi type I model

include Kasner metric, which helps to govern the dynamics near the singularity (see details in

section 1.9). The nature of Bianchi type I cosmological model in the context of a viscous fluid

can cause a qualitative behavior of solutions near the singularity without removing the total

initial Big Bang singularity [207]. Thereafter, the bulk viscous fluid matter within Bianchi type

I universe was studied with the assumption of constant DP in f(R, T ) gravity theory [208–213].

The chapter is organized in the following ways, section 3.1 deals with the basic idea about

the whole concept. Then the details of exact solutions in both the cases of f(R, T ) gravity

(f(R, T ) = R+ 2f(T ) and f(R, T ) = f1(R) + f2(T )) for the Bianchi type I space-time with the
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help of time varying DP are obtained in the section 3.2. The detail discussion of the figures and

the physical properties of both models are presented in the section 3.3, which is followed by the

concluding remarks in section 3.4.

3.2 Field equations and solutions

The spatially homogeneous LRS Bianchi type I metric reads,

ds2 = dt2 −A2dx2 −B2(dy2 + dz2), (3.2.1)

where A and B are functions of cosmic time t only.

The energy momentum tensor for bulk viscous fluid is considered in the following form

Tµν = (ρ+ p)uµuν − pgµν , (3.2.2)

where the four velocity vector uµ satisfying uµu
ν = 1. The bulk viscous pressure which satisfies

the linear equation of state p = ωρ, 0 ≤ ω ≤ 1 can be expressed as

p = p− 3ξH. (3.2.3)

where ξ is the bulk viscous coefficient. The trace of energy momentum tensor is given as

T = ρ− 3p.

3.2.1 Case I: f(R, T ) = R + 2f(T )

The f(R, T ) gravity field equations of the section (1.8.5) for linear case with f(T ) = αT , where

α is an arbitrary constant for the metric (3.2.1) are obtained as

2
ȦḂ

AB
+
Ḃ2

B2
= (8 + 3α)ρ− αp, (3.2.4)

−2
B̈

B
− Ḃ2

B2
= (8π + 3α)p− αρ, (3.2.5)

−Ä
A
− B̈

B
− ȦḂ

AB
= (8π + 3α)p− αρ. (3.2.6)

Here, we have three eqns. (3.2.4 - 3.2.6) including four parameters as A,B, p & ρ. In order to

get an exact solution, we consider a time varying DP as

q = −1 +
β

1 + aβ
, (3.2.7)
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where, β > 0 is a constant.

The HP we have obtained from the given DP

H =
ȧ

a
= 1 + a−β. (3.2.8)

By assuming the integrating constant as unity and integrating the above one, we have found

a = (eβt − 1)
1
β . (3.2.9)

Setting a(t) = 1
1+z , where z is the redshift, leads to relation

t =

log

[(
1
z+1

)β
+ 1

]
β

. (3.2.10)

The corresponding q(z) is obtained as

q =
β(

1
z+1

)β
+ 1

− 1. (3.2.11)

The evolution of the present universe is described by the cosmic DP, and the cosmological models

are classified on the basis of the time dependence of DP. Therefore, it is more adequate to focus

on the behavior of this parameter in the present model. The recent observations like SNe Ia [14]

and CMB anisotropy [177] have confirmed the present accelerated phase of expansion and the

DP specifies its range value in between −1 ≤ q ≤ 0 for describing the expansion phase. Moreover,

the behavior of DP with respect to redshift lies in the specified range of accelerating phase,

which can be observed from Fig. 3.2.1. The transition from deceleration to acceleration occurs at

some transition redshift ztr is completely dependent upon the choice of β values. In this model,

we have considered three representative values of β i.e. 1.4772, 1.5 and 1.55 corresponding to

ztr = 0.65, 0.5874 and 0.4706 respectively. The values of transition redshift ztr for the model are

agreeing with the observational data [214–216].

β = 1.4772

β = 1.5

β = 1.55

-1 0 1 2 3 4

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

z

q

Figure 3.2.1: q vs. z with different β.
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From the definition of volume in terms scale factor (i.e. V = a3 = AB2) and by using (3.2.9)

the values of the metric potentials A,B are obtained as

A = (eβt − 1)
2
β , (3.2.12)

B = (eβt − 1)
1
2β . (3.2.13)

Solving the field eqns. (3.2.4 - 3.2.6), the values of ρ and p are obtained as

ρ =
1

(8π + 3α)2 − α2

[(
18π +

3α

2
+

5αβ

2

)
e2βt(eβt − 1)−2 − 5αβ

2
eβt(eβt − 1)−1

]
, (3.2.14)

p =
−1

(8π + 3α)2 − α2

[(
42π +

27α

2
− 5(8π + 3α)β

2

)
e2βt(eβt − 1)−2

+
5(8π + 3α)β

2
eβt(eβt − 1)−1

]
. (3.2.15)

From eqn. (3.2.14) and Fig. 3.2.2, it can be observed that the energy density ρ is a decreasing

function of time (e.g. it starts with a positive value and later approaches to zero when t→∞)

and remains positive throughout the evolution of the universe. At the same time, the bulk

viscous pressure p given in eqn. (3.2.15) and represented graphically in Fig. 3.2.3 is also an

increasing function of time. Since it begins from a large negative value and tends to zero at

present epoch, which shows observational compatibility that the pressure is negative due to DE

in the context of accelerated expansion of the universe. Hence, the behavior of bulk viscous

pressure in the model is agreed with the current observation.

In this way the coefficient of bulk viscosity ξ and the pressure are also expressed as

ξ =
1

(8π + 3α)2 − α2

[(
2π(3ω + 7) +

α(ω + 9)

2
− 5β(αω − 8π − 3α)

6

)
eβt(eβt − 1)−1

− 5β(αω − 8π − 3α)

6

]
, (3.2.16)

p = ωρ =
ω

(8π + 3α)2 − α2

[(
18π+

3α

2
+

5αβ

2

)
e2βt(eβt− 1)−2− 5αβ

2
eβt(eβt− 1)−1

]
. (3.2.17)
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Figure 3.2.2: ρ vs. t with α = 1 and
different β.
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Figure 3.2.3: p vs. t with α = 1 and
different β.
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Figure 3.2.4: ξ vs. t with α = 1, ω = 0.5 and different β.

Now the behavior of bulk viscous coefficient ξ in this case can be observed from Fig. 3.2.5. The

bulk viscous coefficient is positive through out the universe and becomes finite when t→∞ for

the model.

Energy Conditions

In addition, the alternative conditions for matter content of any theory can be studied by

adopting the ECs. In GR, the role of these ECs are widely accepted to prove the existence of

space-time singularity theorem and black holes [104]. The ECs are used in many approaches

to understand the evolution of the universe as we have already mentioned in previous chapter

(1.11). Here, we have discussed those ECs for this model and their importance in various aspects.

For example, the stability of matter source in a model can be studied by invoking the DEC and

also it imposes the DE along with EoS parameter ω for lower bound ω ≥ −1, which is considered

as one of the cause for Big Rip singularity [217]. Similarly, the violation of SEC provides an

idea about late time acceleration and also it considered as a typical trait of a positive Λ [218].

Finally, WEC shows that the matter-energy is always non-negative. In literature, the nature of

solution for FLRW model with perfect fluid matter is studied through ECs [151, 219]. According

to the predefined literature, one can consider the ECs to be useful to analyze the behavior of

cosmological solutions throughout the universe. Therefore, we have dealt with some well-known

ECs like WEC, DEC and SEC to observe the solutions in both the cases of this chapter. The
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behavior of WEC, DEC, and SEC with the proper choice of constants are depicted in Fig. 3.2.5

to Fig. 3.2.7 respectively. Also, it is observed that all the ECs are respected for this model.

Figure 3.2.5: Behavior of WEC versus
t and β with α = 1, ω = 0.5.

Figure 3.2.6: Behavior of DEC versus t
and β with α = 1, ω = 0.5.

Figure 3.2.7: Behavior of SEC versus t and β with α = 1, ω = 0.5.

The values of Ricci scalar R and the trace of matter source T are obtained as

R =

(
6β − 27

2

)
e2βt(eβt − 1)−2 − 6βeβt(eβt − 1)−1, (3.2.18)

T =
1

(8π + 3α)2 − α2

[
(144π + 42α− (60π + 20α)β)e2βt(eβt − 1)−2

+ (60π + 20α)βeβt(eβt − 1)−1

]
. (3.2.19)



Chapter 3. Anisotropic cosmological models in f(R, T ) gravity with variable deceleration
parameter 58

Using the above equations, the function f(R, T ) is obtained as

f(R, T ) =

(
6β − 27

2
+

(288− 120β)απ + 48α2 − 40α2β

(8π + 3α)2 − α2

)
e2βt(eβt − 1)−2

+

(
120πα+ 40α2β

(8π + 3α)2 − α2
− 6β

)
eβt(eβt − 1)−1. (3.2.20)

Figure 3.2.8: Behavior of f(R, T ) versus t and β with α = 1.

Fig. 3.2.8 shows the behavior of the function f(R, T ) for this first model of this chapter.

3.2.2 Case II: f(R, T ) = f1(R) + f2(T )

In this case we have assumed f1(R) = γR and f2(T ) = γT , where γ is an arbitrary constant.

The corresponding field equations from section 1.8.5 take the form as

Rµν −
1

2
Rgµν =

(
8π + γ

γ

)
Tµν +

(
p+

1

2
T

)
gµν = χTµν +

(
p+

1

2
T

)
gµν , (3.2.21)

where χ =

(
8π+γ
γ

)
. The set of field equations for the metric in eqn. (3.2.1) are

2
ȦḂ

AB
+
Ḃ2

B2
=

(
χ+

1

2

)
ρ− 1

2
p, (3.2.22)

−2
B̈

B
− Ḃ2

B2
=

(
χ+

1

2

)
p− 1

2
ρ, (3.2.23)

−Ä
A
− B̈

B
− ȦḂ

AB
=

(
χ+

1

2

)
p− 1

2
ρ. (3.2.24)

In this case, we have obtained the same metric potential eqn. (3.2.12) and eqn. (3.2.13) from

the above set of field eqns. (3.2.22 - 3.2.24) as obtained in the previous case. By using these
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metric potentials eqn. (3.2.12) and eqn. (3.2.13), the values of energy density ρ and bulk viscous

pressure p are expressed as

ρ =
1(

χ+ 1
2

)2

− 1
4

[(
9χ− 6

4
+

5β

4

)
e2βt(eβt − 1)−2 − 5β

4
eβt(eβt − 1)−1

]
, (3.2.25)

p =
−1(

χ+ 1
2

)2

− 1
4

[(
21χ+ 6

4
− 5β

2

(
χ+

1

2

))
e2βt(eβt − 1)−2

+
5β

2

(
χ+

1

2

)
eβt(eβt − 1)−1

]
. (3.2.26)

Here, the energy density ρ is a positive decreasing function of time and it converges to zero as

t→∞ (see Fig. 3.2.9). Also the Fig. 3.2.10 specify the similar behavior of p versus cosmic time

t as obtained in previous case.

For this case, the values of bulk viscosity coefficient ξ and pressure p are also given as

ξ =
ωρ− p

3H
=

1(
χ+ 1

2

)2

− 1
4

[(
9ω + 21− 10β

12
χ+

(5β − 6)(ω − 1)

12

)
eβt(eβt − 1)−1

− 5ωβ

12
+

5β

6

(
χ+

1

2

)]
, (3.2.27)

p = ωρ =
ω(

χ+ 1
2

)2

− 1
4

[(
9χ− 6

4
+

5β

4

)
e2βt(eβt − 1)−2 − 5β

4
eβt(eβt − 1)−1

]
. (3.2.28)
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Figure 3.2.9: ρ vs. time with γ = 5 and
different β.
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Figure 3.2.10: p vs. time with γ = 5 and
different β.
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Figure 3.2.11: ξ vs. time with γ = 5 and different β

The bulk viscosity coefficient is constant throughout the universe as required and presented in

Fig. 3.2.11.

The various ECs for this model are plotted below.

Figure 3.2.12: Behavior of WEC versus
t and β with γ = 5.

Figure 3.2.13: Behavior of DEC versus
t and β with γ = 5.

Figure 3.2.14: Behavior of SEC versus t and β with γ = 5.
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Fig. 3.2.12 to Fig. 3.2.14, show that the ECs are completely agreed with GR.

We can obtain the trace of matter T for this model as

T = ρ− 3p =
1

(χ+ 1
2)2 − 1

4

[((
36− 15β

2

)
χ− 12− 10β

4

)
eβt(eβt − 1)−2

+

(
15βχ

2
− 10β

4

)
βeβt(eβt − 1)−1

]
. (3.2.29)

The relation f(R, T ) for the above case is obtained in the form

f(R, T ) =

(
6β − 13.5 +

(18− 7.5β)χ− 2.5β + 3

(χ+ 1
2)2 − 1

4

)
µe2βt(eβt − 1)−2

+

(
7.5βχ− 2.5β

(χ+ 1
2)2 − 1

4

− 6β

)
µeβt(eβt − 1)−1. (3.2.30)

Figure 3.2.15: Behavior of f(R, T ) versus t and β with γ = 5.

Fig. 3.2.15 shows the behavior of f(R, T ) for f(R, T ) = f1(R) + f2(T ) model.

3.3 Physical properties of the models

It is well known fact that HP as well as DP describe the rate expansion of the universe with

respect to time. But for detail kinematical descriptions of the cosmological expansions, one has

to consider some extended set of parameters having higher order time derivatives of the scale

factor.

The spatial volume for both the models of this chapter turns out to be

V = AB2 = (eβt − 1)
3
β , (3.3.1)



Chapter 3. Anisotropic cosmological models in f(R, T ) gravity with variable deceleration
parameter 62

which indicates that in both the models, it is zero at initial time t = 0 and then increases with

time. That means the evolution of our Universe starts with Big Bang scenario for these models.

It is further noted that from eqn. (3.2.9), the average scale factor becomes zero at the initial

epoch. Hence, both the models have a point type singularity [220].

The HP H, expansion scalar θ, shear scalar σ2, and anisotropy parameter become

H = eβt(eβt − 1)−1, (3.3.2)

θ = 3eβt(eβt − 1)−1, (3.3.3)

σ2 =
3

4
e2βt(eβt − 1)−2. (3.3.4)

∆ =
1

2
. (3.3.5)

All above parameters are diverge at t = 0 and they become finite as t→∞ for both the models

of this chapter. It is noted here that the isotropic condition σ2

θ2
becomes constant (from early to

late time), which shows that the model does not approach isotropy throughout the evolution

of the universe. Therefore, the aniostropic parameter becomes constant for the models. Hence,

from the above mentioned equations it can be observed that the models represents an expanding

and accelerating universe which starts at a Big Bang singularity.

Jerk parameter

The third derivative of the scale factor with respect to time and the third-order term in the

Taylor series expansion of the Hubble’s law is termed as the cosmological jerk parameter. This

dimensionless parameter is one of the most important quantities for describing the dynamics of

the universe. It plays an important role to describe models close to ΛCDM through a convenient

method [221, 222]. Cosmic transition from decelerating phase to accelerating phase occurs for

models with a positive value of j and negative q. For flat ΛCDM model the value of jerk is

constant j = 1 [223]. The jerk parameter in terms of scale factor and DP is

j =
a2

ȧ3

d3a

dt3
, j = q + 2q2 − q̇

H
.

Thus, the jerk parameter for the models is

j = 1− 3βe−βt + 2β2e−2βt + β2e−2βt(eβt − 1). (3.3.6)
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Figure 3.3.1: Behavior of Jerk parameter versus t with different β.

From the Fig. 3.3.1, it is clear that our value does not overlap with the value j = 2.16+0.81
−0.75

obtained from combination of three kinematical data sets: the gold sample data of type Ia

supernovae [224], the SNIa data obtained from the SNLS project [225], and the X-ray galaxy

cluster distance measurements [223]. In Fig. 3.3.1, it can be observed that the jerk parameter

remains positive through out the universe and is equal to the ΛCDM model at t ≥ 5.5 for the

considered values of β. It is interesting to note that the model is close to ΛCDM model for the

following set of values as represented in table 3.1.

r − s parameter:

The state-finder pair {r, s} is defined as [226]

r =

...
a

aH3
, s =

r − 1

3(q − 1
2)

(3.3.7)

The state-finder pair is a geometrical diagnostic parameter, that can be constructed from a

space-time metric directly. It is more general compared to physical variables, that depends on

the properties of physical fields describing DE. This is because the physical variables are model

dependent. For the flat ΛCDM model the state-finder pair obtained as {r, s} = {1, 0} [227]. The

values of the state-finder parameter for the models are

r = 1− 3βe−βt + 2β2e−2βt + β2e−2βt(eβt − 1) (3.3.8)

s =
1

6β − 9eβt

[
2β2e−βt(eβt − 1) + 4β2e−βt − 6β

]
(3.3.9)

From the expressions of r and s parameters, we found that {r, s} = {1, 0} only when t = 1
β ln
( β

3−β
)
.

The variation of β and t for {r, s} = {1, 0} is presented in Table- 3.1. For the set of values of

(β, t) the models represents ΛCDM models, which are presented in table 3.1. The r−s trajectory

of the models is presented in the Fig. 3.3.2.
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β t = 1
β ln
( β

3−β
)

r s

1.5 0 1 ∞
1.6 0.08345 1 −1.458333324× 10−9 ≈ 0

1.7 0.15780 1 0

1.8 0.22525 1 0

1.9 0.28765 1.000000002 ≈ 1 0

2 0.5ln(2) 1 0

Table 3.1: Variation of β and t for {r, s}

From the above table 3.1, it is observed that at initial epoch t = 0 the parameter r becomes

unity and s becomes finite and diverges for β = 1.5.

ΛCDM
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Figure 3.3.2: r vs. s.

3.4 Conclusion

It is well known that the currently available observational data are verified by considering the

standard ΛCDM ( Λ+Cold Dark Matter) as it is treated as the best model. In fact, the matter

density parameter Ωm = 0.3089 in the ΛCDM model, is being confirmed by the most recent

data from Planck+BAO+JLA+H0 [179]. In this sense, the model provides the transition of

ΛCDM universe from deceleration to acceleration at the redshift ztr = 0.65, which corresponds

to β = 1.4772 as seen in Fig. 3.2.1. Similar behavior is given in the variation of DP vs redshift at

β = 1.4772. Therefore, we can conclude that the present models of this chapter have a transition

from deceleration to acceleration with transition redshift ztr satisfying the observational data

in both the ways. Moreover, the energy density for both cases is positive valued, decreasing

function of time and approaching zero with the evolution of time (see Fig. 3.2.2 and Fig. 3.2.9).

Similarly, the variation of bulk viscous pressure and coefficient of bulk viscosity are presented

in the Fig. 3.2.3 and Fig. 3.2.10 for case I and in the Fig. 3.2.4 and Fig. 3.2.11 for case

II respectively. From the figures, we notice that bulk viscous pressure and coefficient of bulk
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viscosity are negative and positive valued function of time respectively. Also, the coefficient of

bulk viscosity decreases with the evolution of time and maintains a constant rate after t > 4. In

this way, the evolution of ECs against time is satisfied in both the cases, which are presented in

Fig. 3.2.5 to Fig. 3.2.7 and Fig. 3.2.12 to Fig. 3.2.14 respectively. All the physical parameters

presented in both the cases follow the same quantitative behavior as that of observational data.

Hence, we conclude this chapter by summarizing the obtained results for both the cases as

• The models of the universe obtained here are accelerating and expanding with an exponential

expansion.

• Energy density and coefficient of bulk viscosity are positively valued and decreasing function

of time in both the cases and also ρ→ 0 when t→∞.

• Bulk viscosity pressure (p̄) is negatively valued in both the cases.

• Energy conditions (SEC, WEC, DEC) are satisfied for both cases.

• Jerk parameter and state-finder trajectory in the r − s plane are close to ΛCDM model.



Chapter 4

MSQM model in f (R, T ) gravity with time

varying deceleration parameters

This chapter provides more details about the different parametrization of geometric DP in

such a way that it can produce an accelerated cosmological model in f(R, T ) gravity. We have

already established the vital role of DP in the context of obtaining exact solutions of cosmological

model embedded with different matter fluid in our previous chapter. Based on the importance

of DP, we have explored here some cosmological models with MSQM distribution and Λ in

f(R, T ) gravity. We have concentrated on various aspects of bilinear and special form of time

varying DP in order to achieve exact solution of the field equations. Further we have verified the

observational compatibility of the model for the MSQM source of matter. The models presented

in this chapter, with the SQM along with magnetic epoch gives an idea of accelerated expansion

of the universe as per the observations indicated by type Ia Supernovae.

4.1 Introduction

A geometric dimensionless DP is one of the most accountable candidate to describe and understand

the evolution of the universe in present scenario. For that reason, the present modern cosmology

is defined by the search for two numbers: the present universe expansion rate H0 and DP q0,

which allows testing the coincidence between the cosmological model with cosmological principle

[228]. From the previous chapter, it has been derived that ΛCDM model is the best fit and most

suitable model to specify the accelerated expansion of the universe. This model predicts the

value of DP q0 ∼ 1
2 , while the other CDM models predict q0 = 0. However, the value of q0 is

determined to a precision of ±0.2 by the group of Supernovae cosmology project and the high z

The work, in this chapter, is covered by the following publication:
Magnetized strange quark matter in f(R, T ) gravity with bilinear and special form of time varying deceleration
parameter, New Astronomy, 60 (2018) 80.
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supernovae team in which the distant type Ia Supernovae (z ∼ 0.3− 0.7) is used as standard

candles. In order to predict the fate of the evolving universe we need not require only the current

numeric values of these parameters but also need their time dependence. Thus, the Taylor series

expansion of scale factor at the present time t0 is given as

a(t) = a(t0) + ȧ(t0)(t− t0) +
1

2
ä(t0)(t− t0)2 + ...... (4.1.1)

or
a(t)

a(t0)
= 1 +H0(t− t0) +

q0

2
H2

0 (t− t0)2 + ..... (4.1.2)

It is well known that the difference between the actual age of the universe and Hubble time,

deceleration or acceleration are all determined by the sign of DP. Such as

• Constant DP: q > 0, the age of the universe will be less than the Hubble time and

decelerating.

• For q = 0, expansion occurs at constant rate and the age equals to Hubble time.

• For −1 < q < 0, the acceleration of the universe exhibits power-law expansion.

• For q = −1, the acceleration of the universe is exponential and super-exponential if q < −1.

The constant DP is commonly used by cosmologist in literature with various aspects (see for

details [178, 229]). But for detailed description of the kinematics of cosmological expansion, it is

necessary to consider various parametrized forms of time dependence DP. For instance, Akarsu

et al. [230] have described the fate of the universe through parametrization q = q0 + q1

(
1− t

t0

)
,

which is linear in cosmic time t, along with two well-known additional parametrization of the

DP q = q0 + q1z and q = q0 + q1

(
1− a

a0

)
, where z and a are the redshift parameter and scale

factor respectively. Furthermore, they have studied the dynamics of the universe in comparison

with the standard ΛCDM model.

Moreover, in this chapter we have considered the MSQM distribution for LRS Bianchi type I

universe in the framework of f(R, T ) gravity with (Λ). This SQM is one of the most relevant

matter, containing a large quantity of deconfined quark in β-equilibrium, with electric charge

neutrality [231–233]. It is composed of an equal number of deconfined u, d, and s quarks, and

treated as the ground state of matter as well as a strongly interacting matter, well described in

[234–236]. The creation of this SQM is approaching in two ways; firstly, during phase transition

of early universe, another transition also occurred called quark-hadron phase transition in

which Quark Gluon Plasma (QGP) got transformed into hadron gas at temp T ∼ 200 MeV.

It is considered as one of the first proof of origin for SQM, while the second approach is the

strange matter made from the neutron star at ultra-high density [234, 237]. In the medium-

dependent quark mass scale, the components of quark mass function are its chemical potential
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and temperature. These finite chemical potentials presently encounter serious problems. To

resolve this, some effective phenomenological models are commonly used like: MIT Bag model

[238] and the Nambu-Jona-Lasinio (NJL) model [239, 240]. In bag model, ad-hoc bag function

is introduced to make all corrections of pressure and energy functions of SQM. This model has

been used in literature by Farhi and Jaffe [236], in which they have studied the SQM with its

EoS. Usually, in this bag model the broken physical vacuum take place inside the hadrons on the

basis of strong interaction theories. It gives essentially different vacuum energy densities inside

and outside of hadron, and on the bag wall, the pressure of quarks are equilibrated through

vacuum pressure and stabilizes the system. Thus, the EoS of the SQM depends upon the system

pressure, various chemical potential components and the degenerate Fermi gasses. Later on these

Fermi gases are referred to as the replacement of quarks, which can survive only in a region with

a vacuum energy density Bc (Bag constant). The unit of bag constant is MeV (fm)−3 and it lies

in the range of 60-80 MeV (fm)−3 [241]. In the present chapter, we have considered the value of

Bc to be 60 MeV (fm)−3. In a simplified bag model, the quarks are considered as massless and

non-interacting, and pressure can be defined as Pq =
ρq
3 , where ρq is the quark energy density.

The total energy density and pressure given as

ρm = ρq +Bc, (4.1.3)

Pm = Pq −Bc. (4.1.4)

Hence the EoS for SQM reads, [242]

Pm =
ρ− 4Bc

3
. (4.1.5)

Recently, the effects of the magnetic field on the stability and on interacting properties of SQM

have attracted much attention [243]. This widespread component of the universe is possessed by

Milky way galaxy and many other spiral galaxies along with some common properties of galaxy

clusters [244–250]. In the present cosmic scenario, the main focus of research is on the impact of

strong magnetic field on the special properties of dense quark matter, neutron star matter [251]

and on the stability of SQM [252–254]. The quark matter has been studied in strong magnetic

field with phenomenological bag model, in which the stability of SQM gets stronger when the

order of the strength of the magnetic field is greater than some critical value [254]. Thus, it is

commonly accepted that the presence of magnetic field causes an anisotropy in pressure and the

bag model can be considered as the best satisfactory approach for studying MSQM [255, 256].

The theoretical arguments for the late-time cosmic acceleration are being confirmed by obser-

vations through type Ia Supernovae [13, 14, 138, 182, 183], CMB [184, 185], baryon acoustic

oscillation (BAO) in galaxy clustering [257–259] and WMAP [260] etc. In order to investigate

the accelerated expansion of the universe, the f(R, T ) gravity theory proposed by Harko et al.

[1] triggers as one of the best ways to examine the current accelerated behavior of the universe.
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The magnetized models have also started to be studied frequently. In particular, Agrawal and

Pawar [261] have studied Bianchi type V universe model with magnetized domain walls in

f(R, T ) theory. Thereafter, Aygün et al. [262] have studied SQM distribution for Marder type

anisotropic universe model in f(R, T ) theory with Λ. Later Aktaş and Aygün investigated the

dynamics of MSQM distribution in FLRW universe with reconstructed f(R, T ) gravity [263].

In the context of anisotropic properties of space-time, Sahoo and Sivakumar [155] have studied

f(R, T ) theory in LRS Bianchi type I universe where they have presented the Big Rip singularity

in this theory (NB Later discussed in the chapter5 about Big Rip). Also, homogeneous and

anisotropic Bianchi type II universe model for dark energy with/without a magnetic field in

f(R, T ) gravitation theory are studied by Mishra et al. [264]. Moreover, Çaglar and Aygün

[265] have obtained homogeneous and anisotropic Bianchi type I universe solutions in f(R, T )

gravity with quark matter and Λ. This chapter is organized in the following manner; the basic

formalism of f(R, T ) gravity field equations and its solutions are narrated in section 4.2 and

section 4.3 respectively. In section 4.3, the solutions of the models with graphical representations

are described in detail whereas the conclusion with observational behaviors are discussed in

section 4.4.

4.2 Field equations in f(R, T ) gravity

In this chapter, we have considered the spatially homogeneous and anisotropic LRS Bianchi type

I metric given in eqn. (3.2.1), and the energy-momentum tensor for SQM with magnetic field as

[266, 267]

Tµν = (ρ+ p+ h2)uµuν +

(
h2

2
− p
)
gµν − hµhν , (4.2.1)

where the magnetic flux h2 is considered in the x-direction with hµu
ν = 0.

The field equations of f(R, T ) gravity with a choice of f(R, T ) = R + 2f(T ) in presence of Λ

and f(T ) = λT (λ =constant) can be written as

Gµν = [8π + 2λ]Tµν + [λρ− λp+ 2λh2 + Λ]gµν . (4.2.2)

The field eqn. (4.2.2) in presence of Λ and f(T ) = λT (λ =constant) can be written as

Gµν = [8π + 2λ]Tµν + [λρ− λp+ 2λh2 + Λ]gµν . (4.2.3)

The set of field equations for the metric in eqn. (3.2.1) with HP are obtained as

2HxHy +H2
y = −(12π + 5λ)h2 − (8π + 3λ)ρ− Λ + λp, (4.2.4)

2Ḣy + 3H2
y = (4π − λ)h2 + (8π + 3λ)p− Λ− λρ, (4.2.5)

Ḣx + Ḣy +H2
x +H2

y +HxHy = −(4π + 3λ)h2 + (8π + 3λ)p− Λ− λρ. (4.2.6)
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Here, the mean HP, H =
Hx+2Hy

3 where Hx = Ȧ
A , Hy = Hz = Ḃ

B are the directional HPs. The

expansion scalar θ and shear scalar σ for the metric in eqn. (3.2.1) are obtained as

θ = Hx + 2Hy, (4.2.7)

σ2 =
1

3
(Hx −Hy)2. (4.2.8)

4.3 Solutions of field equations

Field eqns. (4.2.4 - 4.2.6) contains six unknowns A,B, ρ, p, h2 and Λ with three equations. To

get a physically viable model of the universe with observational consistency, we assumed the

following physically feasible relation.

1. First we have considered the linear relationship between the directional HPs Hx and Hy as

Hx = nHy, (4.3.1)

where n ≥ 0 is an arbitrary constant controls the anisotropy nature of the model. This

yields a relation between shear scalar σ and scalar expansion θ as θ ∝ σ.

2. Secondly, we have employed the EoS for the SQM as

p =
ρ− 4Bc

3
, (4.3.2)

where Bc is the bag constant [242].

3. Finally, we have assumed different type of time varying DP q.

Using eqn. (4.3.1) in the field eqns. (4.2.4-4.2.6), we have

9(2n+ 1)

(n+ 2)2
H2 = −(12π + 5λ)h2 − (8π + 3λ)ρ− Λ + λp, (4.3.3)[

27

(n+ 2)2
− 6(1 + q)

n+ 2

]
H2 = (4π − λ)h2 + (8π + 3λ)p− Λ− λρ, (4.3.4)[

9(n2 + n+ 1)

(n+ 2)2
− 3(n+ 1)(1 + q)

n+ 2

]
H2 = −(4π + 3λ)h2 + (8π + 3λ)p− Λ− λρ. (4.3.5)

Use of the EoS from eqn. (4.3.2) yields

h2 =
3(n− 1)(q − 2)

2(4π + λ)(n+ 2)
H2, (4.3.6)

ρ =
−3

4(4π + λ)

[
9(n− 1)

(n+ 2)2
+

3(3 + qn− 2n)

(n+ 2)

]
H2 +Bc, (4.3.7)
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p =
−1

4(4π + λ)

[
9(n− 1)

(n+ 2)2
+

3(3 + qn− 2n)

(n+ 2)

]
H2 −Bc, (4.3.8)

Λ =

[
3[(12nπ + 3nλ− n2λ+ 24π + 10λ)q]

2(4π + λ)(n+ 2)2
+

(−26λ+ 18nλ+ 6n2λ− 76π)

2(4π + λ)(n+ 2)2

]
H2 − (8π + 4λ)Bc.

(4.3.9)

Here, we have considered a bilinear DP [268] in two forms i.e. (i) q = α(1−t)
1+t , (ii) q = −αt

1+t and

(iii) q = −1 + β
1+aβ

[269].

4.3.1 Model I: q(t) = α(1−t)
1+t

Here, we have considered the first form of the bilinear DP as [268]

q =
α(1− t)

1 + t
, (4.3.10)

where α > 0 is a constant. For 0 < t < 1, q > 0 and for t ≥ 1, q ≤ 0 respectively.

The HP can be obtained from eqn. (4.3.10) as

H =
1

(1− α)t+ 2αlog(1 + t)
. (4.3.11)

After integrating eqn. (4.3.11) we have

a = a0t
1

1+α eG(t), (4.3.12)

where

G(t) =
α

(1 + α)2
t+
−2α+ α2

6(1 + α)3
t2 +

3α− 2α2 + α3

18(1 + α)4
t3 +

−18α+ 11α2 − 14α3 + 2α4

180(1 + α)5
t4 +O(t5),

and a0 is the constant of integration. The values of h2, ρ, p & Λ are obtained as

h2 =
3(n− 1)[(α− 2)− (α+ 2)t]

2(1 + t)(4π + λ)(n+ 2)
H2 (4.3.13)

ρ =
−3

4(4π + λ)

[
9(n− 1)

(n+ 2)2
+

3[3 + (α− 2)n+ (3− 3n)t]

(1 + t)(n+ 2)

]
H2 +Bc (4.3.14)

p =
−1

4(4π + λ)

[
9(n− 1)

(n+ 2)2
+

3[3 + (α− 2)n+ (3− 3n)t]

(1 + t)(n+ 2)

]
H2 −Bc (4.3.15)

Λ =

[
3[(12nπ + 3nλ− n2λ+ 24π + 10λ)α(1− t)]

2(1 + t)(4π + λ)(n+ 2)2
+

(−26λ+ 18nλ+ 6n2λ− 76π)

2(4π + λ)(n+ 2)2

]
H2

− (8π + 4λ)Bc (4.3.16)
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The expressions of other physical parameters; spatial volume, expansion scalar, shear scalar and

anisotropy parameter of this model are given as

V = a3
0t

3
1+α e3G(t), (4.3.17)

θ =
3

(1− α)t+ 2αlog(1 + t)
, (4.3.18)

σ2 =
3(n− 1)2

(n+ 2)2
[(1− α)t+ 2αlog(1 + t)]−2, (4.3.19)

∆ =
2(n− 1)2

(n+ 2)2
. (4.3.20)

The quantitative behaviors of q,H, ρ, p,Λ, and h2 of this model are depicted in the first set of

figures, Fig. 4.3.1 to Fig. 4.3.6. In Fig. 4.3.1, phase transition takes place as q is evolving with

positive to negative valued for different α against time. Similarly, evolution of HP against time

with set of α values is presented in Fig. 4.3.2. The HP posses an initial singularity at t = 0, later

it tends to zero as t tends to infinity. Fig. 4.3.3 and Fig. 4.3.4 represent the profile of energy

density and pressure against time for different α respectively. From eqns. (4.3.14) and (4.3.15),

one can observe that, ρ→ Bc and p→ −Bc when t→∞. Here, we would like to point out that,

for different n the approach of ρ toward Bc is different. That means for n ∈ (0.9, 3.5), ρ→ Bc

from the left of Bc and for n ≥ 3.5, ρ→ Bc from the right of Bc. As a representative case, we

have chosen n = 3.5 and different α for energy density profile, which is presented in Fig. 4.3.3.

Now coming to the pressure profile in Fig. 4.3.4, it is purely negative valued function of time

for n ∈ (0, 16]. In the interval (0, 2] and [3.5, 16] of n, p → −Bc from the left and right of Bc

respectively. Then the variation of Λ against time is presented in Fig. 4.3.5. From eqn. (4.3.16),

it is clear that Λ → −(8π + 4λ)Bc when t → ∞. The approach of Λ toward −(8π + 4λ)Bc is

differs according to the values of n and α respectively. That means Λ → −(8π + 4λ)Bc from

either side of the value of −(8π + 4λ)Bc. Here, we have noticed that, Λ is a negative quantity.

As a representative case we have chosen n = 0.2 and different α for the profile of Λ. In this way

the magnetic flux h2 is represented in Fig. 4.3.6. It can be observed that h2 is a positive value

for n ∈ (0, 1) and negative value for n > 1 for given values of α. Further, at initial time t = 0,

the spatial volume V is zero and it gradually increases exponentially with time. It is interesting

to note that, for n 6= 1, the model is anisotropic for late time and not free from shear, whereas

for n = 1, it is isotropic and shear free.
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Figure 4.3.1: Variation of DP against
time for different α

Figure 4.3.2: Variation of HP against
time for different α

Figure 4.3.3: Variation of ρ against t
for λ = 0.1, n = 3.5, Bc = 60 and diff. α

Figure 4.3.4: Variation of p against t
for λ = 0.1, n = 3.5, Bc = 60 and diff. α

Figure 4.3.5: Variation of Λ against t
for λ = 0.1, n = 0.2, Bc = 60 and diff. α

Figure 4.3.6: Variation of h2 against t
for λ = 0.1, n = 0.2 and diff. α

4.3.2 Model II: q(t) = − αt
1+t

In this case we have considered the second form of the bilinear DP [268]

q(t) = − αt

1 + t
, (4.3.21)

and it yields the HP as

H =
1

(1− α)t+ αlog(1 + t)
. (4.3.22)
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Integrating the above eqn. (4.3.22), we have

a = a0te
F (t), (4.3.23)

where

F (t) =
α

2
t+
−4α+ 3α2

24
t2 +

6α− 8α2 + 3α3

72
t3 +

−144α+ 260α2 − 180α3 + 45α4

2880
t4 +O(t5).

The values of h2, ρ, p, and Λ are obtained as

h2 =
3(n− 1)[−(α+ 2)t− 2]

2(1 + t)(4π + λ)(n+ 2)
H2, (4.3.24)

ρ =
−3

4(4π + λ)

[
9(n− 1)

(n+ 2)2
+

3[3− 2n+ (3− 2n− αn)t]

(1 + t)(n+ 2)

]
H2 +Bc, (4.3.25)

p =
−1

4(4π + λ)

[
9(n− 1)

(n+ 2)2
+

3[3− 2n+ (3− 2n− αn)t]

(1 + t)(n+ 2)

]
H2 −Bc, (4.3.26)

Λ =

[
3[(12nπ + 3nλ− n2λ+ 24π + 10λ)(−αt)]

2(1 + t)(4π + λ)(n+ 2)2

+
(−26λ+ 18nλ+ 6n2λ− 76π)

2(4π + λ)(n+ 2)2

]
H2 − (8π + 4λ)Bc. (4.3.27)

The other physical parameters of this model are given as

V = a3
0t

3e3F (t) (4.3.28)

θ =
3

(1− α)t+ αlog(1 + t)
, (4.3.29)

σ2 =
3(n− 1)2

(n+ 2)2
[(1− α)t+ αlog(1 + t)]−2, (4.3.30)

∆ =
2(n− 1)2

(n+ 2)2
. (4.3.31)

Fig. 4.3.7 and Fig. 4.3.8 represent the variation of DP and HP with respect to time for different

α, where q < 0 for α > 0 and yield an accelerating universe in this model. Moreover, specifically

for 0 < α ≤ 1 & t > 0 implies q ∈ (−1, 0) and α > 1 & t > 0 implies q ∈ (0,−2), which

indicates that our Universe is accelerating with exponential expansion (see Fig. 4.3.7) and super

exponential expansion respectively. Also, HP is decreasing with the time and approaching to

zero for t → ∞. The positivity of energy density ∀α ∈ (0, 1) restricts n ≥ 1.75. From Fig.

4.3.9, it can be observed that the energy density ρ → Bc from the left of Bc in the interval

n ∈ [1.75, 1.82] and from the right of Bc for n > 1.82. At the same time in case of pressure

p→ −Bc from the left of Bc for n ∈ [1.75, 1.82] and p→ −Bc from the right of Bc for n > 1.82

(see Fig. 4.3.10). Here, pressure is a negative valued function of time. The profile of Λ is depicted
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in Fig. 4.3.11. Here, we have seen that, for provided value of α and ∀n > 0, the Λ is negative

and Λ→ −(8π + 4λ)Bc (see Fig. 4.3.11 and eqn. (4.3.27)). The other physical quantities like

volume, shear scalar, expansion scalar, magnetic flux have the similar qualitative behavior as

that of first model 4.3.1.

Figure 4.3.7: Variation of DP against t
for diff. α

Figure 4.3.8: Variation of H against t
for diff. α

Figure 4.3.9: Variation of ρ against t
for λ = 0.1, n = 1.83, Bc = 60 and diff.

α

Figure 4.3.10: Variation of p against t
for λ = 0.1, n = 1.83, Bc = 60 and diff.

α

Figure 4.3.11: Variation of Λ against t
for λ = 0.1, n = 1.83, Bc = 60 and diff.α

Figure 4.3.12: Variation of h2 against t
for λ = 0.1, n = 0.2, Bc = 60 and diff. α
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4.3.3 Model III: q(t) = −1 + β
1+aβ

In this case, we need to notice the difference between the physical behaviors of model with

special form of time varying DP [269], which we already implemented in chapter 3

q(t) = −1 +
β

1 + aβ
, (4.3.32)

where β > 0 is a constant. Consequently, the HP is

H = A1(1 + a−β), (4.3.33)

where A1 is an integrating constant. Again integrating the above equation, we have

a = (eA1βt − 1)
1
β . (4.3.34)

The values of ρ, h2 and Λ are obtained as

h2 =
3(n− 1)[−3 + βe−A1βt]

2(4π + λ)(n+ 2)
H2, (4.3.35)

ρ =
−3

4(4π + λ)

[
9(n− 1)

(n+ 2)2
+

3[3 + nβe−A1βt − 3n]

(n+ 2)

]
H2 +Bc, (4.3.36)

p =
−1

4(4π + λ)

[
9(n− 1)

(n+ 2)2
+

3[3 + nβe−A1βt − 3n]

(n+ 2)

]
H2 −Bc, (4.3.37)

Λ =

[
3[(12nπ + 3nλ− n2λ+ 24π + 10λ)(−1 + βe−A1βt)]

2(4π + λ)(n+ 2)2

+
(−26λ+ 18nλ+ 6n2λ− 76π)

2(4π + λ)(n+ 2)2

]
H2 − (8π + 4λ)Bc. (4.3.38)

The remaining physical parameters are as follows:

V = (eA1βt − 1)
1
β , (4.3.39)

θ = 3A1e
A1βt(eA1βt − 1)−1, (4.3.40)

σ2 =
3(n− 1)2

(n+ 2)2
[A2

1e
2A1βt(eA1βt − 1)−2], (4.3.41)

∆ =
2(n− 1)2

(n+ 2)2
. (4.3.42)

The variation of DP q, H and h2 with respect to time are presented in Fig. 4.3.13, Fig. 4.3.14

and Fig. 4.3.15 respectively. Here, we have noticed that, q ∈ (0,−1) for β ∈ (0, 1] and q ∈ (−1, 1)

for β ∈ (1, 2). The DP has negative value within the interval of β ∈ (0, 1], whereas for β ∈ (1, 2)

a phase transition takes place from positive to negative. We have found that the HP is a positive,
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decreasing valued function of time and approaches to zero with the increment of time. The

magnetic flux h2 is also a positive and decreasing function of time for n ∈ (0, 1) and the given β.

As we are interested in the case of phase transition, all the physical parameters are presented

graphically with β ∈ [1, 2]. The variation of ρ with respect to time is depicted in the Fig. 4.3.16.

One can observe in eqn. (4.3.36) that ρ→ Bc. Here, it is worth mentioning that, the approach

of ρ towards Bc is different for different interval of n and β ∈ [1, 2]. That means for n ∈ (0, 2]

and n ≥ 3.6, ρ approaches to Bc from left and right of Bc respectively. Then ρ → Bc from

either side of Bc for β ∈ [1, 2] and n ∈ [2, 3.6]. As a representative case, we have chosen three

different values of n i.e. n = 0.5, 2.5, 3.6 and β ∈ [1, 2] (see Fig. 4.3.16). Pressure profile also

has similar qualitative behavior as that of energy density but it approaches toward negative Bc

i.e. p → −Bc (see Fig. 4.3.17). The Λ is also negative value function of time. Here, we have

observed that, for n ∈ (0, 2), n ∈ [2, 235] and n > 235, Λ→ −(8π + 4λ)Bc from left, either side

and right of −(8π + 4λ)Bc respectively. As a representative case, we have chosen three different

values of n i.e. n = 0.5, 10, 240 and β ∈ [1, 2] (see Fig. 4.3.18). The other physical quantities like

volume, shear scalar, expansion scalar have the similar qualitative behavior as that of model

4.3.1.

Figure 4.3.13: Varia-
tion of q against t for diff.

β

Figure 4.3.14: Varia-
tion of H against t for

diff. β

Figure 4.3.15: Varia-
tion of h2 against t for
λ = 0.1, n = 0.5, Bc =

60 and diff. β

Figure 4.3.16: Variation of ρ against t for λ = 0.1, Bc = 60 and diff. β with n = 0.5, n = 2.5
and n = 3.6 respectively
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Figure 4.3.17: Variation of p against t for λ = 0.1, Bc = 60 and diff. β with n = 0.5, n = 2.5
and n = 3.6 respectively

Figure 4.3.18: Variation of Λ against t for λ = 0.1, Bc = 60 and diff. β with n = 0.5, n = 10
and n = 240 respectively

4.4 Conclusion

In this chapter we have investigated three cosmological models in the linear frame of f(R, T )

gravity (i.e f(R, T ) = R+ 2f(T )) with Λ, where MSQM is considered as matter source. In this

study, the exact solution of field equations. is obtained by using three different DPs.

The findings of this chapter are quite convincing, and thus the following conclusions can be

drawn:

• The DP shows a phase transition for a universe which was decelerating in the past and is

accelerating at present epoch. Furthermore, the first model of this chapter with a bilinear

DP represents a transition of universe from early decelerating phase to a recent accelerating

phase. In the second model, the universe lies at an accelerating phase. At last, the third

model shows a transition of universe for β > 1 and again lies at an accelerating phase for

β ≤ 1 (see Fig. 4.3.13). The transitional behavior of this DP also can be observed from

chapter 3, which means that the given specific form of DP posses a phase transition of

universe in the cosmological models. Summing up the results of this chapter, it can be

concluded that, the DP plays a vital role in account of accelerated expansion of the universe

that means the model with each time varying DP represents an expanding universe in

accelerated phase.
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• Each model represents an accelerated expansion of the universe with V →∞ at t→∞.

In case of magnetic flux, it has more effect in the early universe and gradually reducing its

effect in later.

• The pressure and energy density of each model approaches to bag constant in negative

and positive way at t→∞ i.e. p→ −Bc and ρ→ Bc at t→∞. The presence of negative

pressure yields the existence of DE in the context of accelerated expansion of the universe.

So the SQM within magnetic field epoch gives the same idea of existence of DE in the

universe and supports the observations of the type Ia Supernovae [14]. Also these results

agree with the study of Aktaş and Aygün [263]. They researched MSQM distribution in

f(R, T ) gravity and found p = −ρ DE model for t→∞.

• The rate of expansion observed by scalar expansion is faster at the beginning then it slows

down later.

• In each case, the shear scalar σ2 6= 0 and average anisotropy parameter gives a constant

value i.e. ∆ = 2(n−1)2

(n+2)2
6= 0. Henceforth, the obtained models with three different DP

represent expanding, shearing and an anisotropic universe.

We have studied till here that the models show some initial singularity at t = 0. But what would

be the nature of the model in future time evolution of universe, whether it is accelerating forever

or posses some certain jerks in future at some finite time? This would be a most interesting

phenomena about the model behavior in the context of future evolution. Thus it is essential

to develop a cosmological model in account of finite time future singularity, called Big Rip

singularity, which is discussed in next chapter.



Chapter 5

Big Rip cosmological models in f (R, T )

gravity

This chapter is devoted to describe a phenomenon of accelerated expansion of the present as

well as future universe and a cosmic transit aspect in the framework of f(R, T ) gravity. The

first model of this chapter deals with the cosmic future singularity, which appeared due to the

presence of linearly time varying DP (LVDP) in the process of obtaining the exact solution. In

the second model, a periodic varying DP (PVDP) is discussed which yields a cosmic transit

phenomenon of signature flipping behavior from early deceleration to late time acceleration. The

dynamical features of both the models are discussed in detail. Moreover, in second model the

oscillatory behavior of the EoS parameter are studied and the violation of energy momentum

conservation is also explored in f(R, T ) gravity theory. The stability of the model is investigated

under linear homogeneous perturbation.

5.1 Introduction

A billion years ago, the universe was created through an inconceivable Big Bang as per the

theorization of cosmological science. But what would be the ultimate fate of the universe after

that? Whether it faces a Big crunch, a Big freeze or a Big bounce? In order to address these

future possibilities of our Universe, there are several scientific literatures emerged in the 21st

century [270, 271]. Till 20th century, the possible fates of the universe were considered only

through Big Bang models. Of which only two possible cases are apprehended, they are either

an eternal expansion in an open/flat universe or an eventual recollapse known as Big crunch

The work presented in this chapter is covered by the following two publications:
Magnetized strange quark model with Big Rip singularity in f(R, T ) gravity, Modern Physics Letters A, 32, (2017)
1750105.
A periodic varying deceleration parameter in f(R, T ) gravity, Modern Physics Letters A, 33, (2018) 1850193.
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in a closed model. In other words, the universe would start from Big Bang, but would end in

one the possible fates depending on the curvature of the universe. Moreover, the universe is

accelerating as per the type Ia Supernovae, which is later supported by other observations such as

the anisotropies in the CMB and BAO. In this case the destiny of the universe is not determined

by geometry. This discovery insists the inclusion of extra component in the mass-energy content

of the universe. It causes the speeding up of the expansion of the universe, a closed universe

could expand indefinitely and an open universe could recollapse [272].

More specifically, the EoS parameter of DE will determine its ultimate fate in a fascinating

way as we discussed in chapter 1. In a standard concordance cosmology the DE responsible for

this behavior is the cosmological constant (Λ) with an EoS parameter ω = −1. The universe

will continue to expand exponentially into an empty de Sitter type universe, if it is dominated

by Λ. Another leading candidate with −1 < ω < −1
3 , which varies in time and space is known

as quintessence. A special case of quintessence with ω < −1 whose energy density increases

with time is called phantom energy [40, 49]. Universe dominated by this phantom energy will

expand towards Big Rip singularity [51], where all the matter in the universe will also take part

in the expansion and will hence be torn apart. Also, the Big Rip singularity violates all ECs,

whereas the current cosmological data are consistent with a DE in terms of Λ. They are not

yet able to rule out other more exotic candidates, including most intriguingly phantom energy

which causes Big Rip singularity. This has encouraged us to the study the possibility of the

occurrence of other non-standard events in the future evolution of the universe. At the same

time the inclusion of a negative pressure DE would be a solution to the acceleration problem.

These cosmic singularities are classified into several categories as discussed in chapter 1. Here, we

have explored this ultimate fate (Big Rip) of the universe through a cosmological model within

f(R, T ) gravity formalism. In the case of Big Rip, the very negative EoS parameter results in a

super negative pressure of the dominating DE component, which together with its ever increasing

energy density dissociate everything in the universe. In which the matter energy starts from

the largest structures of super clusters of galaxies and continuing to the smallest constituents

of matter. This drastic end to the universe has not been ruled out by observations of type Ia

supernovae, the CMB and large scale structure. This discovery has been a great encouragement

for searching other exotic possible fates for the universe.

In order to approach such type of fate of the universe, we have studied the first model of this

chapter with a LVDP. While, the second model with a PVDP showing a new feature in the

behavior of the universe, called as oscillatory behavior along with Big Rip singularity in matter

content. The chapter is organized as follows: section 5.1 contains the brief introduction and

motivation regarding the present work. Here, two cosmological models are derived in f(R, T )

gravity in account of accelerated expansion and future singularity of the universe. In section

5.2, we have discussed a MSQM model in f(R, T ) gravity. The solution of field equations are

determined by using LVDP. The discussion and graphical resolution of parameters for this model

are presented in section 5.2. In section 5.3, a cosmological model with perfect fluid matter source
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is derived in details. The solution of field equations of this model are obtained by using PVDP.

Finally, in section 5.4, the conclusion and perspective of both the models are outlined.

5.2 Model I

This model is an extension of previous chapter that is adding a LVDP in the context of future

evolution of universe. We can say it is the fourth cosmological model on basis of different DP for

MSQM matter source in f(R, T ) gravity (see chapter 4 including past three models). Therefore,

the background details of this present model can be sourced from previous chapter. In particular,

section 4.1 consists of the basic idea about MSQM matter source and the importance of time

varying DP, while the field equations within the linear frame of f(R, T ) gravity are seen in

section 4.2. The next section contains the solution models of the field equations in several

aspects. Hence, by admitting a LVDP in the explicit expressions for h2, ρ, p, and Λ in eqns.

(4.3.6 - 4.3.9) available in section 4.3, we have obtained the model as bellow.

Here, we have considered the LVDP in the form [273]

q(t) = −aä
ȧ2

= −kt+m− 1, (5.2.1)

where k ≥ 0,m ≥ 0 are constants. The above DP leads to the following three different cases as:

• q = −1, for k = 0,m = 0,

• q = m− 1, for k = 0,m > 0,

• q = −kt+m− 1, for k > 0,m ≥ 0.

Here, the first two cases i.e. for k = 0 correspond to constant DP. Therefore, only the last case

for k > 0 renders a LVDP, which is compatible with the observational data of modern cosmology.

m= 1.4

m= 1.6

m= 1.8

0 5 10 15 20 25 30

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

t

q

Figure 5.2.1: Variation of DP against time with k = 0.097 and different m
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Fig. 5.2.1 shows a transitional behavior of universe from early deceleration to present acceleration.

In which the universe starts with decelerating expansion for q = m − 1 > 0 and enters to

accelerating phase at t = m−1
k . In particular, the universe enters to the acceleration phase

at t ≈ 4.1, 6.2, 8.2 and present values of DP q = −0.938,−0.738,−0.538 at t = 13.798 for

m = 1.4, 1.6, 1.8 respectively. Hence, these values are consistent with respect to the observational

data. Since the universe experiences super exponential expansion for q = −1 at t = m
k and ends

with q = −m− 1 at t = 2m
k . One can get isotropic model at t = 2m

k .

Considering the last case of eqn. (5.2.1) with k > 0 and m ≥ 0 the scale factor a is obtained as

a = c exp

[
2√

m2 − 2lk
arctanh

(
kt−m√
m2 − 2lk

)]
, (5.2.2)

where c, l are integrating constants. Assuming the integrating constant l = 0, the scale factor and

corresponding mean HP, scalar expansion θ, and the mean anisotropic parameter are obtained as

a = c exp

[
2

m
arctanh

(
kt

m
− 1

)]
, (5.2.3)

H = − 2

kt(t− tBR)
, (5.2.4)

θ = − 6

kt(t− tBR)
, (5.2.5)

∆ =
1

3

(
6n2 − 16n+ 4

(n+ 2)2

)
. (5.2.6)

where tBR = 2m
k .
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Figure 5.2.2: Variation of H against time with k = 0.097 and m = 1.6

The evolution of HP with respect to time t is presented in Fig. 5.2.2. In which H approaches

towards zero for large value of t i.e. H → 0 when t → ∞. It can be noticed that the HP has

singularities at t = 0 and t = tBR. Hence, the HP and directional HPs both diverge at the

beginning and at a finite time in future called the Big Rip. The evolution of HP lies in the

intermediate phase between initial (the Big Bang) and end of the universe (Big Rip). Hence,

we can say that the model of the universe starts with Big Bang and ends with Big Rip and at
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transition phase the HP becomes H = 2k
m2−1

[274]. Further we need the positive value of scalar

expansion θ for an expanding universe. So, the model of the universe is expanding for t < tBR

from eqn. (5.2.5).

The magnetic flux for the model becomes

h2 =
3(n− 1)(−kt+m− 3)

2(4π + λ)(n+ 2)

(
−2

kt(t− tBR)

)2

. (5.2.7)
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Figure 5.2.3: Variation of h2 against time with k = 0.097, m = 1.6, λ = 0.1 and different n

The variation of magnetic flux h2 with respect to time is described in Fig. 5.2.3. Here, we have

focused on the positivity of h2 which appears for n ∈ (0, 1) with k = 0.097, m = 1.6 and λ = 0.1.

Thus, we have neglected the case h2 < 0, for n > 1. Also we found that h2 → 0 when t→∞.

Moreover, it shows the the same singularity as that of HP.

Using the above values we obtain the energy density ρ and pressure p for the model as

ρ =
−3

4(4π + λ)

[
9(n− 1)

(n+ 2)2
+

3[3− 3n+ (−kt+m)n]

(n+ 2)

]
H2 +Bc, (5.2.8)

p =
−1

4(4π + λ)

[
9(n− 1)

(n+ 2)2
+

3[3− 3n+ (−kt+m)n]

(n+ 2)

]
H2 −Bc. (5.2.9)
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Figure 5.2.4: Variation of ρ against time with k = 0.097, m = 1.6, λ = 0.1, Bc = 60 and
different n i.e. n ∈ (0, 0.5], n ∈ [0.6, 3) and n ∈ [3,∞)
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Fig. 5.2.4 describes the the evolution of energy density against time with suitable parameter

values. In which one can observed that ρ → Bc when t → ∞. The way of approach to Bc

are different for different interval of n (see eqn. (5.2.8)). Here, the energy density of the fluid

diverges very fast as time increases and then leads a Big Rip singularity at finite time tBR = 2m
k .
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Figure 5.2.5: Variation of p against time with k = 0.097, m = 1.6, λ = 0.1, Bc = 60 and
different n i.e. n ∈ (0, 0.5], n ∈ [0.6, 3) and n ∈ [3,∞)

Consequently, our EoS ω and cosmological constant Λ are obtained as

ω =
−Bc −

3(n(m−kt)−3n+3)
n+2

+
9(n−1)

(n+2)2

k2(λ+4π)t2(t−tBR)2

Bc −
3
(

3(n(m−kt)−3n+3)
n+2

+
9(n−1)

(n+2)2

)
k2(λ+4π)t2(t−tBR)2

, (5.2.10)

Λ =

[
3[(12nπ + 3nλ− n2λ+ 24π + 10λ)(−kt+m− 1)]

2(4π + λ)(n+ 2)2

+
(−26λ+ 18nλ+ 6n2λ− 76π)

2(4π + λ)(n+ 2)2

]
H2 − (8π + 4λ)Bc (5.2.11)
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Figure 5.2.6: Variation of ω against time with k = 0.097, m = 1.6, λ = 0.1, Bc = 60 and
different n i.e. n ∈ (0, 0.5], n ∈ [0.6, 3) and n ∈ [3,∞)
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Figure 5.2.7: Variation of Λ against time with k = 0.097, m = 1.6, λ = 0.1, Bc = 60 and
different n i.e. n ∈ (0, 3], n ∈ (3, 160] and n ∈ [160,∞)

It can be seen from Fig. 5.2.5 that the pressure profile shows the same singularity as that of HP.

Then from eqn. (5.2.9) one can observe that, p→ −Bc when t→∞. Pressure is negative here

and it approaches to −Bc in different way for different interval of n (see Fig. 5.2.5).

The cosmological constant given in eqn. (5.2.11) is negative, which follow the observational data.

Fig. 5.2.6 represents the variation of EoS parameter against time and it can be observed in eqn.

(5.2.10) that, ω → −1 when t→∞. This approach towards −1 is different for different interval

of n (see Fig. 5.2.6). It follows the recent observational data and shows the same singularity as

that of HP i.e. at the initial time and at the Big Rip tBR.

The profile of cosmological constant (see eqn. (5.2.11)) against time is presented in Fig. 5.2.7.

Here, Λ → −(8π + 4λ)Bc, when t → ∞. Also, for different interval of n, Λ approaches to

−(8π+ 4λ)Bc in different ways, which can be noticed from Fig. 5.2.7. The parameter Λ has also

the same singularity as that of HP.

The Ricci scalar R and the trace of energy momentum tensor T are obtained as

R = −
[

3n(2n+ 4)

n+ 2
(−1− q) +

9(2n2 + 4n+ 6)

(n+ 2)2

]
H2, (5.2.12)

and

T = ρ− 3p+ 2h2 = 4Bc +
6(n− 1)(q − 2)

2(4π + λ)(n+ 2)
H2. (5.2.13)

Using eqns. (5.2.12) and (5.2.13), the function f(R, T ) can be obtained as

f(R, T ) = 8λBc +
[(4π + λ)(6n2 + 12n) + 6λ(n− 1)](−kt+m− 1)

(n+ 2)(4π + λ)

+
6n3 + 6n2 − 12n− 54

(n+ 2)2
− 12λ(n− 1)

(n+ 2)(4π + λ)
. (5.2.14)
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Figure 5.2.8: Behaviour of f(R, T ) versus t and n with λ = 0.1, BC = 60, m = 1.6 and
k = 0.097 respectively.

Fig. 5.2.8 represents the behavior of f(R, T ) for this model.

If we take λ = 0, we get f(R, T ) = R which agrees with GR results for LRS Bianchi type I

universe with MSQM. Thus from eqn. (5.2.7), we can obtain the magnetic flux as follows

h2 =
3(n− 1)(−kt+m− 3)

(8π)(n+ 2)

(
−2

kt(t− tBR)

)2

. (5.2.15)

Using eqns. (5.2.8) and (5.2.9), we get energy density and pressure for this model as

ρ = − 3

(8π)

[
9(n− 1)

(n+ 2)2
+

3[3− 3n+ (−kt+m)n]

(n+ 2)

]
H2 +Bc, (5.2.16)

p = − 1

(8π)

[
9(n− 1)

(n+ 2)2
+

3[3− 3n+ (−kt+m)n]

(n+ 2)

]
H2 −Bc, (5.2.17)

and from eqn. (5.2.11), we found cosmological constant value in GR as

Λ =

[
3[(12nπ + 24π)(−kt+m− 1)]

8π(n+ 2)2
+

−19

2(n+ 2)2

]
H2 − 8πBc. (5.2.18)

Here, we get same results with f(R, T ) gravitation theory for t → ∞. In brief, we obtain

magnetic flux value as h2 → 0, from eqn. (5.2.15), the cosmic density ρ → Bc and from eqn.

(5.2.16), the cosmic pressure value as p→ −Bc, from eqn. (5.2.17), and also we obtain different

results for cosmological constant Λ = −(8π)Bc from eqn. (5.2.18) in GR.
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5.2.1 The dynamics of the model

The scale factor a and the HP in terms of redshift parameter z are written as

a =
a0

1 + z
, (5.2.19)

H = H0(1 + z)m
(
t0
t

)2

, (5.2.20)

where, a0 is the present scale factor and H0 is the value of present HP.

The distance modulus µdm(z) is defined as

µdm(z) = 5 log dL + 25 (5.2.21)

where dL is the luminosity distance and defined as

dL = r1(1 + z)a0 (5.2.22)

and

r1 =

∫ t0

t

dt

a
=

∫ t0

t

dt

e
2
m

arctanh( ktm−1)

=
1

c1(9m− 1)

{
mt

(
2m

kt

) 1
m

×2 F1

[
1− 1

m
,− 1

m
, 2− 1

m
,
kt

2m

]}t0
t

(5.2.23)

here, r1 is a function of time t at which the light we see at present time t0 is emitted by the

object. The DP q in terms of z is

q = 2m− 1−m tanh

[
m

2
ln(z + 1)− arctanh

(
1 + q0

m
− 2

)]
. (5.2.24)

where, q0 = qz=0 is the present DP.

m= 1.4

m= 1.6

m= 1.8

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

z

q

Figure 5.2.9: Variation of q versus z
with q0 = −0.73 and different m.
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Figure 5.2.10: Variation of q versus
z with q0 = −0.65 and different m.
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Here, we have considered two different values of qz=0, qz=0 = −0.73 and qz=0 = −0.65 as

per the kinematic data analysis of Cuhna [275] and Li et al. [276] in the Fig. 5.2.9 and Fig.

5.2.10 respectively. Again, for qz=0 = −0.73 the transition from deceleration to acceleration

occurs at redshift ztr = 0.82, 0.48, 0.327 corresponding to m = 1.4, m = 1.6, m = 1.8

respectively. Similarly, in the right figure for qz=0 = −0.65 the transition redshift values are

ztr = 0.75, 0.44, 0.29 corresponding to m = 1.4, m = 1.6, m = 1.8 respectively. Our ztr

values of transition redshift fit with the observational data [214–216].

In addition, we intend to compare the model with ΛCDM model by plotting the evolution

trajectories of the {q, j} and {j, s}. The jerk parameter j has the value

j =
3k2t2

2
− 3m(kt+ 1) + 3kt+ 2m2 + 1 (5.2.25)

The s parameter is defined as [230]

s =
−6m(kt+ 1) + 3kt(kt+ 2) + 4m2

6(−kt+m− 2)
(5.2.26)
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Figure 5.2.11: Variation of q versus
j with m = 1.6 and k = 0.097.
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Figure 5.2.12: Variation of s versus
j with m = 1.6 and k = 0.097.

In Fig. 5.2.11 the vertical line is the de Sitter state at q = −1. The LVDP q − j curve as shown

in the Fig. 5.2.11 crosses the de Sitter line and going up due to Big Rip. Similarly, Fig. 5.2.12

shows the LVDP s − j curve crosses the ΛCDM statefinder pair (0, 1) two times. Hence, we

observe from both the figures that the LVDP model evolves and crosses the de Sitter line and

reaches to the super-exponential expansion.
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5.3 Model II

In this model, we have considered the energy-momentum tensor for a perfect fluid distribution

of the universe,

Tµν = (ρ+ p)uµuν − pgµν . (5.3.1)

Here, by considering f(R, T ) = R+ 2f(T ), the corresponding field equations become

Rµν −
1

2
Rgµν = κTµν + 2fTTµν + [f(T ) + 2pfT ] gµν , (5.3.2)

where fT denotes the partial derivative of f with respect to T . Assuming f(T ) = λT , λ being

a constant, the field equations for a flat FLRW metric (5.3.3) with perfect fluid matter source

(5.3.1)

ds2 = dt2 − a2(t)
(
dx2 + dy2 + dz2

)
, (5.3.3)

are obtained as

3H2 = (1 + 3λ)ρ− λp, (5.3.4)

2Ḣ + 3H2 = λρ− (1 + 3λ)p. (5.3.5)

In the above equations, we have chosen the unit system such that κ = 1. It contains two

equations with three unknowns, ρ, p, and a. In order to get an exact solution, we have employed

a PVDP as below.

Periodically varying deceleration parameter

In the context of the late time cosmic acceleration phenomena with a cosmic transit from a

phase of deceleration to acceleration at some redshift ztr ∼ 1, one can speculate a signature

flipping of the DP. Obviously, at a decelerated phase, q is positive and at the accelerating phase,

it becomes negative. Geometrical parameters such as the DP and jerk parameter are usually

extracted from observations of high redshift Supernova. However, the exact time dependence of

these parameters are not known to a satisfactory extent. In the absence of any explicit form

of these parameters, many authors have used parametrized forms especially that of the DP to

address different cosmological issues. One of them is linear parametrization of the DP, which

shows quite natural phenomena towards the future evolution of the universe, either it expands

forever or ends up with Big Rip in finite future (see model 5.2). Such a parametrization has

been used frequently in literature [155, 273]. It is worth noting that the general dynamical

behavior can be assessed through the values of the DP in the negative domain. While de Sitter

expansion occurs for q = −1, for −1 < q < 0, power-law expansion is achieved, and for q < −1,

a super-exponential expansion of the universe occurs. Even though, there is uncertainty in the

determination of the DP from observational data, most of the studies in recent times constrain

this parameter in the range −0.8 ≤ q ≤ −0.4. Keeping in view the signature flipping nature of q,



Chapter 5. Big Rip Cosmological models in f(R, T ) gravity 91

in the present model, we assume a periodic time varying DP [277]

q = m cos kt− 1, (5.3.6)

where m and k are positive constants. Here, k decides the periodicity of the PVDP and can be

considered as a cosmic frequency parameter. m is an enhancement factor that enhances the peak

of the PVDP. This model simulates a positive DP q = m − 1 (for m > 1) at an initial epoch

and evolves into a negative peak of q = −m− 1. After the negative peak, it again increases and

comes back to the initial states. The evolutionary behavior of q is periodically repeated. In

other words, the universe in the model, starts with a decelerating phase and evolves into a phase

of super-exponential expansion in a cyclic history.

Integration of eqn. (5.3.6) yields

H =
k

m sin kt+ k1
, (5.3.7)

where k1 is a constant of integration. Using the definitions q = −1− Ḣ
H2 and ȧ = aH we found

Ḣ = −mH2 cos kt. Without loss of generality, we may consider k1 = 0 and then Hubble function

becomes

H =
k

m sin kt
. (5.3.8)

The scale factor a is obtained by integrating the Hubble function in eqn. (5.3.8) as

a = a0

[
tan

(
1

2
kt

)] 1
m

, (5.3.9)

where a0 is the scale factor at the present epoch and can be taken as 1. Inverting eqn. (5.3.9),

we obtain

t =
2 tan−1

[
1

(z+1)m

]
k

. (5.3.10)

m= 0.5, k = 0.1

m= 1, k = 0.1

m= 1.55 , k = 0.1
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Figure 5.3.1: Evolution of DP for
three representative values of m and

k = 0.1.
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Figure 5.3.2: Evolution of DP as a
function of redshift. The cosmic tran-

sit behavior is obtained for m > 1.
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Here, the redshift parameter z is defined through the relation z = 1
a −1. Hence for present epoch,

we can derive from eqn. (5.3.10) as t =
(

8n+1
k

)
π
2 corresponding to a0 = 1, where n = 0, 1, 2, 3, · · ·

is a positive integer including zero. Then the evolutionary aspect of the DP as a function

of cosmic time is shown in Fig. 5.3.1 for three different domain of the parameter m namely

m < 1,m = 1 and m > 1. In which the periodic nature of the PVDP is clearly visible in the

figure. Similarly the evolutionary aspect of the DP as a function of redshift is shown in Fig.

5.3.2. It can be observed that the total evolutionary behavior of the PVDP is greatly affected by

the choice of the parameter m. In particular, the DP oscillates in between m− 1 and −m− 1,

and for m = 0, it becomes a constant quantity with a value of −1 which leads to a de-Sitter

kind of expansion. It varies periodically in the negative domain and provides accelerated models

for 0 < m ≤ 1. However, for m > 1, q evolves from a positive region to a negative region

showing a signature flipping at some redshift ztr. Hence, it is worth mentioning here that, the

parameter m describes the transition redshift as per it’s choice, and can be constrained from

the cosmic transit behavior and transit redshift ztr. We have adjusted the values of m so as

to get a ztr compatible with that extracted from observations [214–216, 278]. After that the

signature flipping of DP is shown in Fig. 5.3.2 for m = 1.55 at ztr = 0.64. In the event of non

availability of any observational data regarding cosmic oscillation and corresponding frequency,

we consider k as a free parameter. In the present model, we are interested for a time varying DP

that oscillates in between the decelerating and accelerating phase to simulate the cosmic transit

phenomenon. In order to assess the dynamical features of the model through numerical plots,

we assume a small value for k, say k = 0.1.
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Figure 5.3.3: Scale factor as a func-
tion of cosmic time for k = 0.1 and

three representative values of m.
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Figure 5.3.4: HP as a function of
cosmic time for k = 0.1 and three rep-

resentative values of m.

In Fig. 5.3.3 and Fig. 5.3.4, the scale factor and the HP are represented in some specific time

frame. Within the specified time frame, the scale factor increases with cosmic time whereas the

HP decreases with time. However, the evolutionary behavior of the scale factor is governed by a

tan function and that of the HP is governed by a sine function and therefore both can either be

positive or negative at some epoch.
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5.3.1 Dynamical properties of the model

The energy density and pressure are obtained from eqns. (5.3.4)- (5.3.5) as

ρ =
(3 + 6λ)H2 − 2λḢ

(1 + 3λ)2 − λ2
, (5.3.11)

p =
−(3 + 6λ)H2 − 2(1 + 3λ)Ḣ

(1 + 3λ)2 − λ2
. (5.3.12)

For a PVDP as defined eqn. (5.3.6), the above expressions reduce to

ρ =

[
2λm cos kt+ 3(2λ+ 1)

(3λ+ 1)2 − λ2

]
k2

m2 sin2 kt
, (5.3.13)

p =

[
2(3λ+ 1)m cos kt− 3(2λ+ 1)

(3λ+ 1)2 − λ2

]
k2

m2 sin2 kt
. (5.3.14)
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Figure 5.3.5: Time variation of en-
ergy density.
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Figure 5.3.6: Time variation of pres-
sure.

In order to get a positive energy density, eqn. (5.3.13) sets up a condition for the parameters λ

and m as

6λ+ 3 > 2λm. (5.3.15)

For a signature flipping behavior of DP, we need to fix m to be greater than 1 (refer Fig. 5.3.2).

So we have constrained m from the cosmic transit redshift ztr to be 1.55. From eqn. (5.3.15), it

is certain that, this value of m allows any positive values for λ. In view of this, one may take λ

as a free parameter with positive values only. For this purpose we have considered here three

moderate values, λ = 0.1, 0.5 and 0.9 for numerical calculation of the dynamical parameters. The

periodic evolution of energy density with respect to time is shown in Fig. 5.3.5 for the considered

values of λ. Here, it can be observed that the energy density has periodic singularities at the

cosmic times t = nπ
k , n = 0, 1, 2, 3, · · · is an integer, and this periodic variation clearly depends

on the choice of k. Since we have taken k = 0.1, the cosmic singularity occurs corresponding

to the time period, t = 0, 31.4, 62.8, · · · . The interesting feature here is that, in a given cosmic
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cycle, it starts from a very large value at an initial time (t→ 0) and decreases to a minimum,

ρmin, and again increases with the growth of time. The minimum in energy density occurs at

a time given by t = (n+1)π
2k . The evolutionary trend of the energy density is not changed by a

variation of λ, rather an increase in λ simply decreases the value of ρ at a given time. In other

words, with an increase in λ, there occurs a decrements in ρmin.

At the same time, the evolutionary behavior of pressure is depicted in Fig. 5.3.6 and shows same

periodic variation with singularities at t = nπ
k or at t = 0, 31.4, 62.8, · · · . Within a given cycle,

pressure decreases from large positive values at the beginning to large negative values and then

reverses the trend. However, pressure is a negative quantity at the present epoch in a given cycle.

The choice of the parameter λ has some effects on the evolutionary trend. In a given cycle, in

general, lower value of λ results in a pressure curve that lies to the left side in the figure. The

crossing over time from positive domain to negative domain is decided by the value of λ.

The EoS parameter, ω = p
ρ can be obtained from eqns. (5.3.13) and (5.3.14) as

ω =
2(3λ+ 1)m cos kt− 3(2λ+ 1)

2λm cos kt+ 3(2λ+ 1)
. (5.3.16)
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Figure 5.3.7: EoS parameter as func-
tion of cosmic time.
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Figure 5.3.8: EoS parameter as func-
tion of redshift.

In Fig. 5.3.7, the plot of EoS parameter ω with respect to time, exhibits an oscillatory behavior.

In the first half of the cosmic cycle, ω decreases from a positive value close to 1
3 to negative values

after crossing the phantom divide at ω = −1. After attending a minimum it again increases

to positive value at the end of the cycle. One interesting feature of the EoS parameter is that,

unlike the energy density and pressure, it does not acquire any singular values during the cosmic

cycle. This fact is due to the cancellation of the 1
sin2 kt

factor from the pressure by the same

factor of energy density and depends only the value of the PVDP. Since the PVDP does not have

singularity, the same thing occurs in the EoS parameter. The oscillatory behavior comes only

from the cos kt factor appearing both in the numerator and denominator of ω. The evolutionary
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trend is affected by the choice of λ. Curves of ω with low values of λ remain on top before the

phantom divide whereas after the phantom divide, they remain in the bottom of all the curves.

At an equivalent present epoch
(
t = 8n+1

k
π
2

)
in any given cycle, the EoS parameter remains

within the quintessence region with a value close to −1. One can decipher the detail evolution

of the EoS parameter from chapter 1. At the present epoch, the model predicts an EoS that

behaves more like a cosmological constant and the model is somewhat close to that of ΛCDM

model. This aspect of the EoS parameter is clearly visible in Fig. 5.3.8. It is clear from Fig.

5.3.8 that, at z = 0, ω = −1. It is interesting to note that, the overlapping of the present model

with ΛCDM at equivalent present epochs is independent of the choice of the parameter λ. In this

model from Fig. 5.3.8, it can be observed that the transitional evolution of ω against redshift

from ω < −1 at low redshift to ω > −1 at higher redshift. This transitional behavior of ω in

this model fits with SNL3 data [54]. In particular, the use of SNL3 data suggests that BAO

data is also partly responsible for this. Some recent reconstruction of the EoS from different

observational data sets including the high redshift Lyman-α forest (LyαFB) measurement favor

a non-constant dynamical DE. In these reconstructed models, the EoS evolves with time and

crosses the phantom divide [279, 280]. The behavior of EoS ω in this model is consistent with

quintom model which allows ω to cross −1. As inferred in ref. [280], the departure from ω = −1

is more evident in the reconstruction history of the dynamical DE with more recent data sets

including the LyαFB measurement.

For the present model with a PVDP, we obtain, the density parameter Ω = ρ
3H2 as

Ω =
1

3

[
2λm cos kt+ 3(2λ+ 1)

(3λ+ 1)2 − λ2

]
, (5.3.17)

which can be expressed in terms of redshift as

Ω =
1

3

2λm cos
(

2 tan−1 1
(z+1)m

)
+ 3(2λ+ 1)

(3λ+ 1)2 − λ2

 . (5.3.18)

In Fig. 5.3.9, we have plotted the density parameter as a function of redshift for three represen-

tative values of λ. Ω remains almost unaltered in the range of redshift greater than 1 for all

the three values of λ considered in this model. However, with the cosmic evolution, Ω decreases

with cosmic time after z = 1. The density parameter, at a given redshift, is observed to have

lower value for higher values of λ.
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Figure 5.3.9: Evolution of Density parameter.

5.3.2 Violation of energy-momentum conservation

Friedman models in GR ensure the energy conservation through the continuity equation

ρ̇+ 3H(ρ+ p) = 0, (5.3.19)

which implies d(ρV ) = −pdV . Here, V = a3, the volume scale factor of universe and the

quantity ρV give an account of the total energy. As the universe expands the amount of DE

in an expanding volume increases in proportion to the volume. If that space-time is standing

completely still, the total energy is constant; if it is evolving, the energy changes in a completely

unambiguous way. It either decreases or increases in time. However, in modified gravity theories,

one may get a different picture. Taking a covariant derivative of eqn. (1.8.23) (see chapter 1),

one can obtain [281–284]

∇µTµν =
FT (R, T )

κ− FT (R, T )

(
(Tµν + Θµν)∇µlnFT (R, T ) +∇µΘµν −

1

2
gµν∇µT

)
. (5.3.20)

With the substitution of f(R, T ) = R+ 2λT and κ = 1, eqn. (5.3.20) reduces to

∇µTµν = − 2λ

1 + 2λ

(
∇µ(pgµν) +

1

2
gµν∇µT

)
. (5.3.21)

It is worth noting here, for λ = 0, one would get ∇µTµν = 0. However for λ 6= 0, the conservation

of energy-momentum is violated. Recently some researchers have investigated the consequence

of the violation of energy-momentum conservation (i.e. ρ̇+ 3H(ρ+ p) 6= 0) in modified gravity

theories. The non-conservation of energy-momentum may arise due to non unitary modifications

of quantum mechanics and in phenomenological models motivated by quantum gravity theories

with space-time discreteness at the Planck scale [285]. In the context of unimodular gravity,

Josset et al. [285] have shown that a non-conservation of energy-momentum leads to an effective

cosmological constant which increases or decreases with the creation or annihilation of energy
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during the cosmic expansion and can be reduced to a constant when matter density diminishes.

Shabani and Ziaie [286] have studied the same in some classes of f(R, T ) gravity with pressure-less

cosmic fluid and showed a violation of energy-momentum conservation in modified theories of

gravity can provide accelerated expansion. Also, the non-conservation of the energy-momentum

tensor implies in non-geodesic motions for test particles in gravitational fields as it is deeply

investigated in [287]. In [288, 289] the authors have constructed a formalism in which an

effective fluid is conserved in f(R, T ) gravity, rather than the usual energy-momentum tensor

non-conservation. We have investigated the non-conservation of energy-momentum for the

class of models in f(R, T ) gravity with the suggested PVDP. We quantify the violation of

energy-momentum conservation through a deviation factor S, defined as

S = ρ̇+ 3H(ρ+ p). (5.3.22)

λ = 0.1, m= 1.15

λ = 0.5, m= 1.35

λ = 0.9, m= 1.55

0 10 20 30 40 50

-0.005

0.000

0.005

0.010

t

S

Figure 5.3.10: Energy-momentum non conservation.

In case of the model, satisfying energy-momentum conservation, we have S = 0, otherwise, we

get a non zero value for this quantity. S can be positive or negative depending on whether

the energy flows away from or into the matter field. In Fig. 5.3.10, the non-conservation of

energy-momentum is plotted for a periodic cosmic cycle. It is clear that, except for a very limited

period, the conservation is violated along with the cosmic evolution. However, the nature of

energy flow changes periodically. This behavior is obtained for all the values of λ taken in the

model. At an equivalent present epoch in a given cosmic cycle, at least within the purview of

the present model, there is a signal of non-conservation.

5.3.3 Energy conditions

The ECs of GR are a variety of different ways to show positive energy density more precisely.

The ECs take the form of various linear combinations of the stress-energy tensor components (at

any specified point in space-time) should be positive, or at least non-negative (see section 1.11

for details expressions). The ECs are the fundamental tools for the study of wormholes (WHs)
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and black holes in different physical scenario. The study of singularities in the space-time is

based on ECs.

In fact, Alvarenga et al. [290] and Sharif et al. [151] have analyzed the ECs in f(R, T ) gravity.

The ECs for this model are plotted in Fig. 5.3.11 to Fig. 5.3.14 with m = 1.55, k = 0.1 and

varying λ.

Figure 5.3.11: Violation of NEC (ρ+
p ≥ 0) versus λ and t. Figure 5.3.12: ρ ≥ 0 versus λ and t.

Figure 5.3.13: Violation of SEC (ρ+
3p ≥ 0) versus λ and t.

Figure 5.3.14: DEC, ρ ≥ |p| versus
λ and t.

It can be observed from the above Fig. 5.3.11 to Fig. 5.3.14 that all the ECs are behaving

periodically for fixed values of m and k with accepted range of λ in this model. The free

parameters are considered, based on the positivity of energy density as shown in Fig. 5.3.12. In

the present model DEC is satisfied and all other ECs are violated.
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5.3.4 Stability analysis

In this section we wish to analyze the stability of the model under linear homogeneous perturba-

tions in the FLRW background. We consider linear perturbations for the HP and the energy

density as [212]

H(t) = Hb(t) (1 + δ(t)) , (5.3.23)

ρ(t) = ρb (1 + δm(t)) , (5.3.24)

where δ(t) and δm(t) are the perturbation parameters. Here, we have assumed a general solution

H(t) = Hb(t) which satisfies the background FLRW equations. The matter energy density can

be expressed in terms of Hb as

ρb =
(3 + 6λ)H2

b − 2λḢb

(1 + 3λ)2 − λ2
. (5.3.25)

The Friedman equation and the trace equation for the modified gravity model with a functional

f(R, T ) = R+ 2λT can be obtained as

θ2 = 3[ρ+ 2λ(ρ+ p) + f(R, T )], (5.3.26)

R = −(ρ− 3p)− 2λ(ρ+ p)− 4f(R, T ). (5.3.27)

Here, θ = 3H is the expansion scalar. For a standard matter field, we can have the first order

perturbation equation

δ̇m(t) + 3Hb(t)δ(t) = 0. (5.3.28)

Using eqns. (5.3.23)- (5.3.26), one can obtain

(1 + 3λ)Tδm(t) = 6H2
bδ(t). (5.3.29)

The first order matter perturbation equation can be obtained by the elimination of δ(t) from

eqns. (5.3.28) and (5.3.29) as

δ̇m(t) +
T

2Hb
(1 + 3λ) δm(t) = 0. (5.3.30)

Integration of eqn. 5.3.30 leads to

δm(t) = C exp

[
−
(

1 + 3λ

2

)∫
T

Hb
dt

]
, (5.3.31)
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where C is a non zero positive constant. Consequently, the evolution of the perturbation δ(t)

becomes

δ(t) =
(1 + 3λ)CT

6H2
b

exp

[
−
(

1 + 3λ

2

)∫
T

Hb
dt

]
. (5.3.32)

Since
T

Hb
=

−k
[(1 + 3λ)2 − λ2]

[
(16λ+ 6) cos kt

sin kt
+

6(2λ+ 1)

m sin kt

]
, (5.3.33)

the factor
∫

T
Hb

dt is evaluated as

∫
T

Hb
dt = −

(6λ+ (8λ+ 3)m+ 3) log(1− cos(kt))
+ (−6λ+ (8λ+ 3)m− 3) log(cos(kt) + 1)

(8λ2 + 6λ+ 1)m
. (5.3.34)

The growth and decay of the perturbation depend on the factors k and λ periodically. We

have found that the considered values for k and λ in the physical parameters ρ, p and ω are

compatible with the decay of perturbation.

5.4 Conclusion

The conclusion of this chapter is based on two cosmological models in the linear frame of f(R, T )

gravity. In the first model, we have investigated LRS Bianchi type I model with MSQM. While

the second model consists of the background cosmology of an isotropic flat universe with a perfect

fluid matter source. The exact solution of the first model is obtained by using HP, EoS for SQM

and a LVDP. Similarly, in the second model we have employed a PVDP to obtain the exact

solution. Since the present universe undergoes an accelerated expansion, the universe might have

transitioned from an early decelerated phase to an accelerated phase. This behavior clearly hints

towards a time varying DP which should evolve from a positive value in past to negative values

at present time. That means, evolving DP displays a signature flipping behavior. Therefore,

keeping in view the signature flipping nature of the DP, model II deals with a periodically

varying DP to reconstruct the cosmic history. The model I shows the transitional behavior of

universe with future singularity at finite time. The results of model I are summarized in the

following paragraph.

In Fig. 5.2.3, it is clearly seen that magnetic flux is effective and non-vanish for LRS Bianchi type

I universe model and changes with cosmic time as h2 → 0 when t→∞. It can be interpreted that

at the end of the universe the magnetic field may lose its effect. In addition, the Bag constant Bc

is effective on pressure, density and cosmological constant. The Bag constant Bc increases the

energy density value towards positive, it decreases towards negative for cosmic pressure value.

Also, we get constant density for t→ 0, and when t increases, we obtain ρ→ Bc. In this model,

we obtain small, constant and negative cosmological constant value as Λ = −(8π+ 4λ)Bc. When

t increases we get negative pressure value, i.e., p→ −Bc.
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On the basis of these results, we can claim that SQM may be a source of DE also we may agree

with strange quark stars because of the obtained constant pressure and density in this model.

However, these results are compatible with the previous study of [291] in f(R, T ) gravitation

theory.

In the second model assumed in this chapter, of the two adjustable parameters of PVDP, one of

them can be constrained by the cosmic transit behavior. The assumed DP oscillates in between

two limits usually set by the transit redshift. Consequently, the universe in this model, starts

with a decelerating phase and evolves into a phase of super-exponential expansion with a periodic

repetition of the phenomenon. Further, the energy density and pressure vary cyclically within a

given cosmic period decided by the cosmic frequency parameter of the model. At some finite

time, the magnitude of these physical parameters become infinitely large. This behavior leads to

a future type I singularity as classified by Nojiri et. al. [105]. There appears to be a Big Rip at

certain finite time during the cosmic repetition of the phenomenon, because a→∞, ρ→∞ and

|p| → ∞. Since the parameters repeats their behavior after a time period t = nπ
k , the Big Rip

also occurs periodically after a time gap of t = nπ
k .

The EoS parameter for the PVDP has a cyclic behavior that repeat with time. It may cross the

phantom divide ω = −1 for some cosmic time range. How far the well of the EoS parameter will

go beyond the phantom divide is decided by the coupling constant λ. At present, the model

predicts an EoS that behaves more like a cosmological constant.

In addition, the violation of energy-momentum conservation is also investigated in this chapter,

which is an important aspect of f(R, T ) gravity theory. As pointed out by Josset and Perez [285],

modified gravity models can explain the accelerated expansion at the cost of energy-momentum

non conservation. We have shown that, a PVDP leads to a kind of universe model, within a

given cycle, the energy momentum conservation is continuously violated except for a small period

of cosmic time. Also, we have shown the violation/validity of the ECs both analytically as well

as graphically in section 5.3.3. Finally, we have discussed the stability of the solutions under

linear homogeneous perturbations. The stability depends on the values of the parameters k and

λ as they behaves periodically. Hence, we can say that the model is appropriate to investigate

some ultimate fate of the universe.



Chapter 6

f (R, T ) gravity models with higher order

curvature scalar

This chapter presents cosmological models that arise in a subclass of f(R, T ) = f(R) + f(T )

gravity models, with different f(R) functions and fixed T -dependence. That is, the gravitational

Lagrangian is considered as f(R, T ) = f(R) + λT , with constant λ. The modified gravitational

field equations are obtained through the metric formalism for the FLRW metric and WH

metric with signature (+,−,−,−). We work with f(R) = R+ αR2 − ε4

R , f(R) = R+ k ln(γR),

f(R) = R + me(−nR) and f(R) = R + αR2 with α, ε, k, γ,m and n as free parameters, which

lead to three different cosmological models for FLRW universe and one for WH solution. For

the choice of λ = 0, this reduces to widely discussed f(R) gravity models. This chapter clearly

describes the effects of adding the trace of the energy-momentum tensor in the f(R) Lagrangian.

The exact solution of the modified field equations are obtained under the hybrid expansion law

for first three models. In fourth model, a specific form of shape function is used to obtain exact

solutions. Also the quadratic form of geometry and linear material corrections of this model

make the matter content of WH to obey the ECs. Moreover, this model concerns about a new

approach of WH analysis in such functional form within f(R, T ) gravity theory.

6.1 Introduction

One of the first and simplest modifications to EH actions is called f(R) gravity, with f(R)

being a function of the Ricci scalar. The unification of early-time inflation and late-time

acceleration can be studied through f(R) gravity models [292, 293]. In the literature, it has been

The work, in this chapter, is covered by the following two publications:
f(R, T ) = f(R) + λT gravity models as alternatives to cosmic acceleration, European Physical Journal C, 78
(2018) 736.
Wormholes in R2-gravity within the f(R, T ) formalism, European Physical Journal C, 78 (2018) 46.
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found that the higher order curvature terms in f(R) gravity model play a vital role to avoid

cosmological singularities [197, 294, 295]. The f(R) = R(1+δ) and f(R) = R− β
Rn type models

suffer in passing the solar system tests [296] and from gravitational instabilities [192]. Also,

these theories are incapable of producing standard matter dominated era followed by accelerated

expansion [73, 297]. The f(R) = R + α
Rm −

β
Rn type models have difficulties in satisfying the

set of constraints coming from early and late-time acceleration, Big Bang nucleosynthesis and

fifth-force experiments [298]. In order to resolve all these issues corresponding to most of the

f(R) models, we will consider here some f(R, T ) models. The f(R, T ) gravity is the recent

generalization of f(R) gravity, with addition of trace of stress energy tensor T . Thereafter, a

wide literature was developed in the context of f(R, T ) gravity (refer previous chapters). There

are still so many cosmological questions to investigate in f(R, T ) gravity. In this chapter we

have chosen the following form for the f(R, T ) gravity function: f(R, T ) = f(R) + λT , with

constant λ, i.e. , we fix the T -dependence of the theory on its simplest case while investigating

different cases for the R-dependence. We shall investigate if the T -term is capable of evading

the shortcomings one faced in f(R) cosmological models. The accelerated expansion of the

universe can indeed be described through modified gravity, but sometimes it faces a number

of instabilities [192, 296] which yields further modifications in cosmological models. Nojiri and

Odintsov [299] have discussed a modified gravity with terms proportional to ln(R) or R−n(lnR)m,

which grow at small curvature. The presence of ln(R) or R−n(lnR)m terms in f(R) gravity

may be responsible for the acceleration of the universe. Again, Nojiri and Odinstov [300] have

discussed the f(R) gravity cosmology by considering f(R) = R+ γR−n
(

ln R
µ2

)m
. These forms

for the f(R) function are also used in [299–301] to study different aspects of the theory. In [302],

the authors have shown that all these models exhibit current accelerating phase of the universe

and the duration of the accelerating phase depends on the coupling constants of the gravitational

action. In this chapter, we have considered three different choices for the f(R) function as

given in Ref.[302] for first three models. In these models, the mixed form for f(R) is considered,

namely a positive and a negative power of the curvature R, which is normally assumed to study

the inflationary scenario of the early universe and the accelerating phase of the present universe.

Such a functional form reads (A) f(R, T ) = R+ αR2 − ε4

R + λT , where the constants α and ε

have dimension of R−1 (i.e., (time)2) and R
1
2 (i.e., (time)−1) [303, 304]. The other two models

will be followed as (B) f(R, T ) = R+k ln(γR) +λT and (C) f(R, T ) = R+me(−nR) +λT where

k, γ,m and n are constants. In fourth model the choice of f(R) is considered as given by the

Starobinsky model (f(R) = R + αR2) [70] (check also [71]). This Starobinsky model has gained

importance in recent years for its role in the analysis of matter density perturbations, inflation

and many other applications [305]-[307]. Here, we have focused on the analysis of WH solutions

from the Starobinsky model within the f(R, T ) gravity.

In the last few years, there has been a growing interest in developing some exact WH models

that account for the minimization of the violation or even the validation of NEC, which in fact

can be attained in MGTs (check, for instance, [308, 309]). WH solutions can be seen in the
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literature in the framework of f(R, T ) gravity in different aspects. In ref. [310], WHs are firstly

analysed within the linear frame of f(R, T ) gravity, i.e., f(R, T ) = R + 2λT , with the matter

Lagrangian Lm = −ρ. This concept is also analysed in the next chapter 7, but with the matter

Lagrangian Lm = −P, where P is the total pressure. In the same context, Moraes et al. [311]

have investigated some theoretical predictions for static WHs obtained from f(R, T ) gravity.

Static numerical solutions have been obtained for different WH matter contents and stable

solutions were attained in [219, 312]. In ref. [313], a static WH model has been constructed

from various shape functions. In ref. [314], the authors have studied spherical WH models with

different fluid configurations. Motivated by the above references, we are going to check here if

it is possible to obtain stable WH solutions in R2-gravity within the f(R, T ) formalism. It is

worth remarking that the functional form to be used here, named f(R, T ) = R+ αR2 + λT , has

already been applied to the analysis of compact astrophysical objects in references [315–317],

but no WH analysis has been made so far for such a functional form. In these references, it is

shown that such a model is well motivated since it is consistent with stable stellar configurations

because the second order derivative with respect to R remains positive for the assumed choice

of the parameters and this prior choice agrees with the validation of ECs in the present model.

Moreover, Starobinsky has shown that his model (free from the T -dependence) predicts an

overproduction of scalarons in the very early universe [71]. This issue was also addressed, for

instance, in [318, 319]. On the other hand, it has been shown that the presence of the trace

of the energy-momentum tensor of a scalar field in a gravity formalism can well address the

inflationary era [320]. So, the T -dependence inserted in the Starobinsky formalism indeed raises

as a promising model of gravity to be deeply and widely investigated. The chapter is organized

as follows: section 6.1 contains the brief introduction and motivation regarding the present work

and the general field equations. Here, we have discussed four cosmological models in f(R, T )

gravity with different aspects in the following ways; In section 6.2, we have discussed the details

of first model i.e. f(R, T ) = R+ αR2 − ε4

R + λT model. The details of other three models are

presented in section 6.3, section 6.4 and section 6.5 respectively. Finally, the conclusion and

perspective of all the models are outlined in section 6.6.

Field equations and Solutions

From chapter 1, eqn. (1.8.23) can be rewritten as:

Gµν = T effµν , (6.1.1)

where

T effµν =
1

fR(R, T )

[
(8π + fT (R, T ))Tµν + pfT (R, T )gµν +

f(R, T )−RfR(R, T )

2
gµν

− (gµν2−∇µ∇ν)fR(R, T )

]
. (6.1.2)
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Here, we will concentrate for first three models on a spatially flat FLRW metric with a time-

dependent scale factor a(t) such that the metric reads,

ds2 = dt2 − a2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
. (6.1.3)

The energy-momentum tensor for a perfect fluid is considered as:

Tµν = (ρ+ p)uµuν − pgµν . (6.1.4)

The general f(R, T ) gravity field equations for f(R, T ) = f(R) +λT and the above metric (6.1.3)

is given as:

3H2 =
1

fR

[(
8π +

3λ

2

)
ρ− λ

2
p

]
+

1

fR

(
f(R)−RfR

2
− 3HṘfRR

)
, (6.1.5)

2Ḣ + 3H2 =
1

fR

[
−
(

8π +
3λ

2

)
p+

λ

2
ρ

]
− 1

fR

(
−f(R)−RfR

2

+ Ṙ2fRRR + 2HṘfRR + R̈fRR

)
. (6.1.6)

The Ricci scalar R for metric (6.1.3) is obtained as:

R = −6(Ḣ + 2H2). (6.1.7)

From eqns. (6.1.5) and (6.1.6), the pressure p, the energy density ρ and the EoS parameter

ω = p/ρ can be explicitly expressed as

ρ =
fR
2

(
−2Ḣ

8π + λ
+

2Ḣ + 6H2

8π + 2λ

)
+

(
HṘ− R̈
8π + λ

+
5HṘ+ R̈

8π + 2λ

)
fRR

2

+

(
Ṙ2

8π + 2λ
− Ṙ2

8π + λ

)
fRRR

2
− f(R)−RfR

2(8π + 2λ)
, (6.1.8)

p =
fR
2

(
−2Ḣ

8π + λ
− 2Ḣ + 6H2

8π + 2λ

)
+

(
HṘ− R̈
8π + λ

− 5HṘ+ R̈

8π + 2λ

)
fRR

2

+

(
−Ṙ2

8π + 2λ
− Ṙ2

8π + λ

)
fRRR

2
+
f(R)−RfR
2(8π + 2λ)

, (6.1.9)

ω =

fR
2

(
−2Ḣ
8π+λ −

2Ḣ+6H2

8π+2λ

)
+
(
HṘ−R̈
8π+λ −

5HṘ+R̈
8π+2λ

)
fRR

2 +
(
−Ṙ2

8π+2λ −
Ṙ2

8π+λ

)
fRRR

2 + f(R)−RfR
2(8π+2λ)

fR
2

(
−2Ḣ
8π+λ + 2Ḣ+6H2

8π+2λ

)
+
(
HṘ−R̈
8π+λ + 5HṘ+R̈

8π+2λ

)
fRR

2 +
(

Ṙ2

8π+2λ −
Ṙ2

8π+λ

)
fRRR

2 − f(R)−RfR
2(8π+2λ)

.

(6.1.10)
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Here, the exact solutions are derived by using the hybrid expansion law for the scale factor as

following [321]

a = tηeβt, (6.1.11)

where η and β are positive constants. Such a scale factor yields the DP and HP as

q = −1 +
η

(βt+ η)2
, (6.1.12)

H =
η + βt

t
. (6.1.13)

The time-redshift relation is obtained from the relation a(t) = 1
1+z , where z and a0 = 1 are the

redshift and the present scale factor respectively, such that

t =
η

β
W

β
(

1
z+1

)1/η

η

 , (6.1.14)

where W denotes the Lambert function (also known as “product logarithm”).

β=0.5, η=0.6

β=0.55, η=0.6

β=0.6, η=0.6

β=0, η=0.6

Power Law

de Sitter (β=0, η=0.5)
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Figure 6.1.1: Variation of DP q against redshift z.

In order to check the reliability of the model, the plot of DP with respect to redshift is required,

which provides a transition from the deceleration stage to the present acceleration era of the

universe. It can be observed from Fig. 6.1.1 that the transition occurs at transition redshift

ztr = 0.5662, 0.6691, 0.7574, corresponding to a fixed value for η = 0.6, and various values for β,

as β = 0.5, 0.55, 0.6. The transition values for this model are in accordance with the observational

data, as one can check in [214–216].
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6.2 The f(R, T ) = R + αR2 − ε4

R + λT model

In this case, by using eqn. (6.1.11) for f(R, T ) = R+ αR2 − ε4

R + λT , in eqns. (6.1.8 - 6.1.10),

the analytical forms for ρ p, and ω are expressed as follows

ρ =
1

2t2

[
2η

λ+ 8π
+

3(η + βt)2 − η
λ+ 4π

]{
ε4t4

36 [η − 2(η + βt)2]2
−

12α
[
2(η + βt)2 − η

]
t2

+ 1

}

+
3αG11(t)

t4
+

ε4t2G21(t)

36 [η − 2(η + βt)2]4
, (6.2.1)

p =
1

2t2

[
2η

λ+ 8π
− 3(η + βt)2 − η

λ+ 4π

]{
ε4t4

36 [η − 2(η + βt)2]2
−

12α
[
2(η + βt)2 − η

]
t2

+ 1

}

− 36αF11(t)

(λ+ 4π)(λ+ 8π)t4
+

ε4t2F21(t)

36 [η − 2(η + βt)2]2
, (6.2.2)

ω =

1
2t2

[
2η

λ+8π −
3(η+βt)2−η

λ+4π

]{
ε4t4

36[η−2(η+βt)2]2
− 12α(2(η+βt)2−η)

t2
+ 1

}
− 36αF11(t)

(λ+4π)(λ+8π)t4

+ ε4t2F21(t)

36[η−2(η+βt)2]2

1
2t2

[
2η

λ+8π + 3(η+βt)2−η
λ+4π

]{
ε4t4

36[η−2(η+βt)2]2
− 12α[2(η+βt)2−η]

t2
+ 1

}
+ 3αG11(t)

t4

+ ε4t2G21(t)

36[η−2(η+βt)2]4

,

(6.2.3)

where

G11(t) =
4η
[
2η2 + 5η + 4βηt+ βt(2βt+ 3)− 3

]
λ+ 8π

+

3
[
η − 2(η + βt)2

]2 − 2η(6η + 4βt− 3)
+ 10η(η + βt)(2η + 2βt− 1)

λ+ 4π
,

(6.2.4)

G21(t) =

2η[η(η − 3)(1− 2η)2 + 4β4t4 + 2β3(8η + 3)t3 + 2β2[2η(6η − 1)− 3]t2

+ βη(2η − 1)(8η − 9)t]

λ+ 8π

+

6η2(2η + 2βt− 1)2 − 3
[
2(η + βt)2 − η

]3
+ ηt(2η + 2βt− 1)

[
2(η + βt)2 − η

]
+ 5η(η + βt)(2η + 2βt− 1)

[
2(η + βt)2 − η

]
λ+ 4π

, (6.2.5)

F11(t) = η
[
η4(λ+ 25.1327) + 8.37758η3 + η2(−3.25λ− 60.7375) + η(1.5λ+ 25.1327)

]
+ β4(1.λ+ 25.1327)t4 + β3η(4λ+ 100.531)t3 + β2ηt2[η(6λ+ 150.796) + 8.37758]+

βηt
[
η2(4λ+ 100.531) + 16.7552η − 2.5λ− 50.2655

]
, (6.2.6)
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F21(t) =

8ηβ4t4 + 4ηβ3(8η + 3)t3 + 4ηβ2
(
12η2 − 2η − 3

)
t2 + 2η2β

(
16η2 − 26η + 9

)
t

+ 2η(η2 − 3η)(1− 2η)2

(λ+ 8π) [η(2η − 1) + 2β2t2 + 4βηt]2

−

6η2(2η + 2βt− 1)2 − 3
[
2(η + βt)2 − η

]3
+ ηt(2η + 2βt− 1)

[
2(η + βt)2 − η

]
+ 5η(η + βt)(2η + 2βt− 1)

[
2(η + βt)2 − η

]
(λ+ 4π) [η − 2(η + βt)2]2

. (6.2.7)

The plot for the above obtained physical parameters with respect to time t and redshift z are

presented in Fig. 6.2.1 to Fig. 6.2.6 respectively.
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Figure 6.2.1: Plot of ρ against time
with α = 0.2, ε = −1, λ = −8.
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Figure 6.2.2: Plot of ρ against z with
α = 0.2, ε = −1, λ = −8.
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Figure 6.2.3: Plot of p against time
with α = 0.2, ε = −1, λ = −8.
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Figure 6.2.4: Plot of p against z with
α = 0.2, ε = −1, λ = −8.
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Figure 6.2.5: Plot of EoS Parameter
against time with α = 0.2, ε = −1, λ =

−8.
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Figure 6.2.6: Plot of EoS Parameter
against z with α = 0.2, ε = −1, λ = −8.

6.3 The f(R, T ) = R + k ln(γR) + λT model

By using f(R, T ) = R+ k ln(γR) + λT with eqn. (6.1.11) in eqns. (6.1.8-6.1.10), the analytical

forms for p, ρ and ω are written as

ρ =
−0.0833333

2(η + βt)2 − η

[
k − 12(η + βt)2 − 6η

t2

] [
2η

λ+ 8π
+

3(η + βt)2 − η
λ+ 4π

]
+

ηkG12(t)

12(λ+ 4π)(λ+ 8π) [2(η + βt)2 − η]3
− k

4λ+ 16π

{
log

(
−

6γ
[
2(η + βt)2 − η

]
t2

)
− 1

}
, (6.3.1)

p =
−0.0833333t2

2(η + βt)2 − η

[
k −

6
[
2(η + βt)2 − η

]
t2

] [
2η

(λ+ 8π)t2
− 6(η + βt)2 − 2η

(2λ+ 8π)t2

]

+
ηkF12(t)

12(λ+ 4π)(λ+ 8π) [2(η + βt)2 − η]3
+

k

4λ+ 16π

{
log

(
−

6γ
[
2(η + βt)2 − η

]
t2

)
− 1

}
,

(6.3.2)

ω =

−0.0833333t2

2(η+βt)2−η

[
k − 6[2(η+βt)2−η]

t2

] [
2η

(λ+8π)t2
− 6(η+βt)2−2η

(2λ+8π)t2

]
+ ηkF12(t)

12(λ+4π)(λ+8π)[2(η+βt)2−η]3

+ k
4λ+16π

{
log

(
−6γ[2(η+βt)2−η]

t2

)
− 1

}
−0.0833333
2(η+βt)2−η

[
k − 12(η+βt)2−6η

t2

] [
2η

λ+8π + 3(η+βt)2−η
λ+4π

]
+ ηkG12(t)

12(λ+4π)(λ+8π)[2(η+βt)2−η]3

− k
4λ+16π

{
log

(
−6γ[2(η+βt)2−η]

t2

)
− 1

}
,

(6.3.3)
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where

G12(t) = λ[−η(7η − 1)(1− 2η)2 − 28β4t4 + 2β3(3− 56η)t3 + 2β2
(
−84η2 + 22η + 3

)
t2

− 7βη(2η − 1)(8η − 1)t]− 48π(η + βt)(2η + 2βt− 1)
[
2(η + βt)2 − η

]
, (6.3.4)

F12(t) = 4β4t4(3λ+ 32π) + 2β3t3[3λ(8η − 5) + 32π(8η − 3)] + 2β2t2{6ηλ(6η − 5) + 9λ

+16π[2η(12η−7)+3]}+βη(2η−1)(8η−1)(3λ+32π)t+(1−2η)2[3ηλ(η+1)+16ηπ(2η+1)].

(6.3.5)

In Fig. 6.3.1 to Fig. 6.3.6, we have plotted the above values with respect to time t and redshift

z as follows.
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Figure 6.3.1: Plot of ρ against time
with k = 1, γ = −2, λ = 35.
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Figure 6.3.2: Plot of ρ against z with
k = 1, γ = −2, λ = 35.
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Figure 6.3.3: Plot of p against time
with k = 1, γ = −2, λ = 35.
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Figure 6.3.4: Plot of p against z with
k = 1, γ = −2, λ = 35.
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Figure 6.3.5: Plot of EoS Parameter
against time with k = 1, γ = −2, λ = 35.
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Figure 6.3.6: Plot of EoS Parameter
against z with k = 1, γ = −2, λ = 35.

6.4 The f(R, T ) = R +me(−nR) + λT model

By taking f(R, T ) = R +me(−nR) + λT and eqn. (6.1.11) in eqns. (6.1.8-6.1.10), the analytical

forms for p, ρ and ω are expressed as

ρ =

{
1−mne

6n[2(η+βt)2−η]
t2

}[
η

t2(λ+ 8π)
− 3(η + βt)2 − η

(2λ+ 8π)t2

]
+

3ηmn2e
6n[2(η+βt)2−η]

t2 G13(t)

t6

− me
6n[2(η+βt)2−η]

t2

4(λ+ 4π)

{
1−

6n
[
2(η + βt)2 − η

]
t2

}
, (6.4.1)

p =

{
1−mne

6n[2(η+βt)2−η]
t2

}[
η

(λ+ 8π)t2
− 3(η + βt)2 − η

(2λ+ 8π)t2

]
+

3ηmn2e
6n[2(η+βt)2−η]

t2 F13(t)

t6

+
me

6n[2(η+βt)2−η]
t2

4(λ+ 4π)

{
1−

6n
[
2(η + βt)2 − η

]
t2

}
, (6.4.2)

ω =

{
1−mne

6n[2(η+βt)2−η]
t2

}[
η

(λ+8π)t2
− 3(η+βt)2−η

(2λ+8π)t2

]
+ 3ηmn2e

6n[2(η+βt)2−η]
t2 F13(t)
t6

+ me

6n[2(η+βt)2−η]
t2

4(λ+4π)

{
1− 6n[2(η+βt)2−η]

t2

}
{

1−mne
6n[2(η+βt)2−η]

t2

}[
η

t2(λ+8π)
− 3(η+βt)2−η

(2λ+8π)t2

]
+ 3ηmn2e

6n[2(η+βt)2−η]
t2 G13(t)
t6

− me

6n[2(η+βt)2−η]
t2

4(λ+4π)

{
1− 6n[2(η+βt)2−η]

t2

}
, (6.4.3)
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where

G13(t) =
12ηn(2η + 2βt− 1)2 − 5t2(η + βt)(2η + 2βt− 1) + t2(6η + 4βt− 3)

λ+ 4π

+
2
[
12ηn(2η + 2βt− 1)2 + t2(η + βt)(2η + 2βt− 1) + t2(6η + 4βt− 3)

]
λ+ 8π

, (6.4.4)

F13(t) =
12ηn(2η + 2βt− 1)2 − 5t2(η + βt)(2η + 2βt− 1) + t2(6η + 4βt− 3)

λ+ 4π

+
2
[
12ηn(2η + 2βt− 1)2 + t2(η + βt)(2η + 2βt− 1) + t2(6η + 4βt− 3)

]
λ+ 8π

. (6.4.5)

The plot of this model values with respect to time t and redshift z are represented in Fig. 6.4.1

to Fig. 6.4.6 as follows.
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Figure 6.4.1: Plot of ρ against time
with m = 0.2, n = 0.05, λ = 0.5.
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Figure 6.4.2: Plot of ρ against z with
m = 0.2, n = 0.05, λ = 0.5.
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Figure 6.4.3: Plot of p against time
with m = 0.2, n = 0.05, λ = 0.5.
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Figure 6.4.4: Plot of p against z with
m = 0.2, n = 0.05, λ = 0.5.
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Figure 6.4.5: Plot of EoS Parameter
against time with m = 0.2, n = 0.05,

λ = 0.5.
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Figure 6.4.6: Plot of EoS Parameter
against z with m = 0.2, n = 0.05, λ = 0.5.

Om Diagnostic Analysis

In order to differentiate DE models, the state finder parameters and Om diagnostic analysis are

widely used in the literature [322]. In cosmological model understanding, the HP, DP and EoS

parameters play an important role. It is known from the literature that DE models produce a

positive HP and a negative DP. So H and q cannot be used to differentiate effectively between

different DE models. Thus Om diagnostic analysis plays a crucial role in such analysis. The

Om diagnosis has also been applied to Galileon models [323, 324]. The Om(z) parameter for

spatially flat universe is given by [322, 325]

Om(z) =

(
H(z)
H0

)2
− 1

(1 + z)3 − 1
. (6.4.6)

Here, H0 is the present value of the HP. One can observe that the Om(z) parameter involves

first derivatives of the scale factor, so Om diagnosis is a simpler diagnostic than the state finder

diagnosis. The positive, negative and zero values of Om(z) represent the phantom (ω < −1),

quintessence (ω > −1) and ΛCDM DE models, respectively [326].

In the discussed models, the Om(z) parameter takes the form

Om(z) =

(β2 −H2
0 )W 2

[
β( 1

z+1)
1/η

η

]
+ 2β2W

[
β( 1

z+1)
1/η

η

]
+ β2

W 2

[
β( 1

z+1)
1/η

η

]
H2

0z(3 + 3z + z2)

, (6.4.7)

and its behavior can be observed in the Fig. 6.4.7. Here, we have plotted Om(z) for the redshift

range 0 ≤ z ≤ 2. We observe that when the redshift z is increasing within the interval 0 ≤ z ≤ 2,

the Om(z) is monotonically increasing, which also indicates the accelerated expansion of the

universe.
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Figure 6.4.7: Variation of Om(z) against z with H0 = 67.77 km s−1M pc−1.

6.5 The f(R, T ) = R + αR2 + λT model

In this model, we consider the energy-momentum tensor for the relativistic source of anisotropic

fluid as

Tµν = (ρ+ pt)uµuν − ptgµν + (pr − pt)XµXν , (6.5.1)

where ρ, pr, and pt are the energy density, radial pressure and tangential pressure, respectively.

Moreover uµ and Xµ are the four-velocity vector and radial unit four-vector, respectively, which

satisfy the relations uµuµ = 1 and XµXν = −1.

By considering the matter Lagrangian of this model as Lm = −P, θµν can be rewritten as

θµν = −2Tµν − Pgµν , (6.5.2)

where P = pr+2pt
3 is the total pressure, Hence, the f(R, T ) gravity field eqns. (6.1.1) with (6.5.2)

take the form

Rµν −
1

2
Rgµν = T effµν , (6.5.3)

where T effµν redefined as

T effµν =
1

fR(R, T )
{[8π + fT (R, T )]Tµν + PgµνfR(R, T )}

+
1

fR(R, T )

{
1

2
[f(R, T )−RfR(R, T )]gµν

}
− 1

fR(R, T )
[(gµν�−∇µ∇ν)fR(R, T )] . (6.5.4)
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6.5.1 WH solution in R2-gravity model

The static spherically symmetric WH metric is considered here in Schwarzschild coordinates

(t, r, θ, φ) as described in eqn. (1.12.1) of WH section 1.12 in chapter 1. The effective field

eqns. (6.5.3) for the metric in eqn. (1.12.1) with constant redshift function a(r) and the specific

functional form of f(R, T ) gravity, i.e. f(R, T ) = R+ αR2 + λT , read as

b′

r2
=

[(
8π + 3λ

2

)
ρ− λ(pr+2pt)

6 − 2αb′2

r4

]
2αR+ 1

, (6.5.5)

b

r3
=

[
−
(
8π + 7λ

6

)
pr + λ

2

(
ρ− 2pt

3

)
− 2αb′2

r4

]
2αR+ 1

, (6.5.6)

b′r − b
2r3

=

[
−
(
8π + 4λ

3

)
pt + λ

2

(
ρ− pr

3

)
− 2αb′2

r4

]
2αR+ 1

. (6.5.7)

From the above eqns. (6.5.5-6.5.7), the explicit form of ρ, pr and pt, can be written as

ρ =
b′
[
λ
(
2r2 − 5αb′

)
+ 12π

(
r2 − 2αb′

)]
3(λ+ 4π)(λ+ 8π)r4

, (6.5.8)

pr = −−12αbλb′ − 48παbb′ − λr3b′ + 7αλrb′2 + 24παrb′2 + 3bλr2 + 12πbr2

3(λ+ 4π)(λ+ 8π)r5
, (6.5.9)

pt = −12αbλb′ + 48παbb′ + λr3b′ + 12πr3b′ + 2αλrb′2 − 3bλr2 − 12πbr2

6(λ+ 4π)(λ+ 8π)r5
. (6.5.10)

In order to get an exact solution of this model, a specific form of shape function is considered as:

[327]

b(r) = r0 + β1r0

[(
r

r0

)β2
− 1

]
, 0 < β2 < 1, (6.5.11)

where β1 is an arbitrary constant only for this model. The flaring out condition b−b′r
b2

> 0 implies

that 1− β1 + β1

(
r
r0

)β2
(1− β2) > 0.

Similarly, at the throat, for b′(r0) < 1, we have β1β2 < 1. Also, b(r)r = (1−β1) r0r +β1

(
r0
r

)1−β2 → 0

when r →∞ for β2 < 1.

In order to clarify the metric conditions mentioned in section 1.12, we have plotted here the

graph of b(r), b(r)/r and b(r)− r, for β1 = −0.5, β2 = 0.84 and r0 = 0.995, as shown in the Fig.

6.5.1.
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Figure 6.5.1: b(r), b(r)/r and b(r)−r as functions of r for β1 = −0.5, β2 = 0.84 and r0 = 0.995.

Using the shape function given by eqn. (6.5.11) in eqns. (6.5.8 - 6.5.10), we obtain the values of

ρ, pr and pt as

ρ = −
β1β2r0

(
r
r0

)β2 {
−12π

[
r3 − 2β1αβ2r0

(
r
r0

)β2]
+ 5β1αβ2λr0

(
r
r0

)β2
− 2λr3

}
3(λ+ 4π)(λ+ 8π)r6

, (6.5.12)

pr =

r0

[
−β2

1αβ2r0[(7β2 − 12)λ+ 24π(β2 − 2)]
(
r
r0

)2β2
− β1

(
r
r0

)β2
{λ(12(β1 − 1)αβ2r0−

(β2 − 3)r3) + 12π
(
(4β1 − 4)αβ2r0 + r3

)
}
]

3(λ+ 4π)(λ+ 8π)r6

+
r0

[
3(β1 − 1)(λ+ 4π)r3

]
3(λ+ 4π)(λ+ 8π)r6

, (6.5.13)

pt =

r0

[
−2β2

1αβ2r0[(β2 + 6)λ+ 24π]
(
r
r0

)2β2
+ β1

(
r
r0

)β2
{λ
(
12(β1 − 1)αβ2r0 − (β2 − 3)r3

)
+ 12π

(
4(β1 − 1)αβ2r0 − (β2 − 1)r3

)
}
]

6(λ+ 4π)(λ+ 8π)r6

−
r0

[
3(β1 − 1)(λ+ 4π)r3

]
6(λ+ 4π)(λ+ 8π)r6

. (6.5.14)

From the quantities above, we have plotted the energy density for β1 = −0.5, β2 = 0.84, and

r0 = 0.995 as shown in Fig. 6.5.2 and Fig. 6.5.3.
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Figure 6.5.2: Variation of energy den-
sity for λ = −35 and different α.

Figure 6.5.3: Variation of energy density
for α = 5 and different λ.

6.5.2 Energy conditions

In possession of eqns. (6.5.12 - 6.5.14) we plotted the WH ECs, namely NEC, DEC and SEC in

Fig. 6.5.4 to Fig. 6.5.13. We mention that the WEC ρ ≥ 0 obedience can also be appreciated in

Fig. 6.5.2 and Fig. 6.5.3.

Fig. 6.5.4 and Fig. 6.5.5 shows the validity of NEC for radial pressure, ρ+ pr ≥ 0, for different

α and different λ, respectively. While Fig. 6.5.6 and Fig. 6.5.7 also represents NEC in terms of

pt showing the violation of NEC only for small values of r. For DEC, Fig. 6.5.8 and Fig. 6.5.9,

in terms of pr, shows its violation for most values of r and Fig. 6.5.10 and Fig. 6.5.11, in terms

of pt, indicate its respectability for all r. Similarly, Fig. 6.5.12 and Fig. 6.5.13 show that SEC is

respected for the present WH matter content, for different values of α and λ, respectively.

Figure 6.5.4: Validity of NEC, ρ+ pr ≥
0, for λ = −35 and different α.

Figure 6.5.5: Validity of NEC, ρ+ pr ≥ 0,
for α = 5 and different λ.
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Figure 6.5.6: NEC, ρ + pt ≥ 0, for
λ = −35 and different α.

Figure 6.5.7: NEC, ρ+ pt ≥ 0, for α = 5
and different λ.

The respectability of the ECs in a wide region or even in the whole WH, which yields non-exotic

matter to fill in this object, is attained as a consequence of the extra (or correction) terms of

the theory, namely αR2 and λT . As remarked above, non-exotic matter WHs are non-trivial to

be attained and we believe that once the material correction terms, predicted by the f(R, T )

theory, are related with the possible existence of imperfect fluids in the universe. This results

may provide a breakthrough for the understanding of WHs in this modified gravity.

Particularly, the physical reasons for the validity of the ECs as a consequence of the extra terms

of the theory are worth a deeper discussion. Apparently, the cosmological and astrophysical

observational issues we face nowadays may be overcome by either an alternative gravity theory or

a non-standard EoS to describe the matter content concerned. Let us take the DE problem, for

example. It is well known that the present universe undergoes an accelerated phase of expansion

[13, 14]. The counter-intuitive effect of acceleration may be described either by an exotic EoS

for the matter filling the universe, namely P ∼ −ρ [328], or by alternative gravity models, as it

can be checked in [71]. The recently detected massive pulsars [329, 330] can also be attained by

particular EoS [331, 332] or alternative gravity [333].

The same picture can be visualized for the WH case, i.e., the extra degrees of freedom of an

extended theory of gravity may also allow WHs to be filled by non-exotic EoS matter, departing

from the GR case. The T -dependence of the f(R, T ) theory may characterize the first steps in

describing quantum effects in a gravity theory [1, 334] and such a description, which is missing

in GR, can explain the ECs obedience.
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Figure 6.5.8: Violation of DEC, ρ ≥
|pr|, for λ = −35 and different α.

Figure 6.5.9: Violation of DEC, ρ ≥ |pr|,
for α = 5 and different λ.

Figure 6.5.10: Validation of DEC, ρ ≥
|pt|, for λ = −35 and different α.

Figure 6.5.11: Validation of DEC, ρ ≥
|pt|, for α = 5 and different λ.

Figure 6.5.12: Validation of SEC, ρ +
pr + 2pt ≥ 0, for λ = −35 and different α.

Figure 6.5.13: Validation of SEC, ρ+pr +
2pt ≥ 0, for α = 5 and different λ.
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6.6 Conclusion

This section deals with the concluding remarks derived from the described models. The given

cosmological solutions admit the observations and theoretical prospective of the present scenario.

Particularly, in case of the EoS parameter evolution Fig. 6.2.5, Fig. 6.3.5 and Fig. 6.4.5 show a

remarkable feature. The present scenario of evolution of EoS parameter is consistent with three

different stages of the universe evolution, namely radiation, matter and DE eras, as we described

below. One can see that for small values of time, ω ∼ 1/3, which is the EoS parameter value for

the primordial stage of the universe in its dynamics was dominated by radiation [335], whose

high temperature did not allow, for a period of time, the formation of the first atoms. As the

universe cooled down, it allowed the formation of the atoms and a posteriori the formation of

stars, galaxies, clusters of galaxies etc. These objects, namely matter or pressure less matter,

dominate the dynamics of the universe as a fluid with EoS ω = 0 [335]. From Fig. 6.2.5, Fig.

6.3.5 and Fig. 6.4.5, one can see that after describing a radiation-dominated period, ω indeed

passes through 0, indicating the matter-dominated phase of the universe expansion. Finally,

for high values of time, ω → −1, in accordance with recent observational data on fluctuations

of temperature in the cosmic microwave radiation [328]. In standard model, the cosmological

constant is the “mechanism” responsible for taking the universe to a DE-dominated phase, in

which a negative pressure fluid accelerates its expansion. In the present approach, rather, the

extra terms in f(R) and f(T ) are responsible for such an important feature, which remarkably

evades the cosmological constant problem [37, 336, 337]. It is important to highlight that the

description of three different stages of the evolution of the universe in a continuous and analytical

form is not only a novelty in f(R, T ) gravity but also in the broad literature.

Moreover, we have obtained fourth model for the first time in the literature, WH solutions in

the f(R, T ) = R + αR2 + λT gravity. Such a gravity theory can be seen as the simplest and

more natural theory which presents corrections in both the geometrical and material sectors.

Although it has already been applied to the study of compact astrophysical objects, yielding

valuable results [315]-[317], this is the first time WHs are analysed from such a functional form

for f(R, T ). The R2-correction only is well motivated by its applications in cosmology and

astrophysics [70], [338]-[343]. The T -correction only is inserted with the purpose of considering

quantum effects in a gravity theory, or even the existence of imperfect fluids in the universe [1].

WHs material content is described by an anisotropic imperfect fluid thus the WH analysis in

theories with material corrections is well motivated.

In the present model, the WH analysis is made by considering eqn. (6.5.11) as the shape function.

Such an assumption is also taken in other references, such as [327, 344]. From eqn. (6.5.11),

we are able to obtain the material solutions of the WH, i.e., ρ, pr and pt, as eqns. (6.5.12 -

6.5.14), respectively. The considered matter content of the WHs is different as given in literature

[310]-[314]. Since the WH EoS is still poorly known, this is a considerable advantage of the
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present solutions.

By comparing these results with present literature we are inspired to conclude that the particular

forms of f(R) together with the linear term on T are responsible for the remarkable features of

the present model.



Chapter 7

Phantom fluid supporting traversable WHs

in f (R, T ) gravity with extra material terms

This chapter contains the modelling of WHs within an alternative gravity theory (namely f(R, T )

gravity) that proposes an extra material (rather than geometrical) term in its gravitational

action. The solutions of this chapter are obtained from well-known particular cases of the WH

metric potentials, named redshift and shape functions, and yield the WHs to be filled by a

phantom fluid, i.e., a fluid with EoS parameter ω < −1. WHs are obtained originally as a

solution for Einstein’s GR. According to GR they are needed to be filled by an exotic kind of

anisotropic matter, which leads to violation of the ECs. In possession of the solutions for the

WH material content, one can study all the features of the model by admitting ECs to them.

7.1 Introduction

A traversable WH can be visualized as a tunnel in space-time with two ends (or mouths), through

which observers may safely traverse. The whole concept of traversable WHs is quite exciting

because they admit the superluminal travel as a global effect of space-time topology. This was

demonstrated by Morris and Thorne in a metric representing a static traversable WH [119].

According to GR, traversable WHs are only possible if exotic matter exists at their throat, which

involves an energy-momentum tensor violating the NEC [119], which is in turn a part of the

WEC, whose physical meaning is that the energy density is non-negative in any reference frame.

On the other hand, modified f(R, T ) gravity has been deeply analysed due to some GR apparent

incompleteness in some regimes [345, 346]. Also, the same can be observed from previous

The work, in this chapter, is covered by the following publication:
Phantom fluid supporting traversable wormholes in alternative gravity with extra material terms, International
Journal of Modern Physics D, 27 (2018) 1950004.
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chapters. The concept in these theories is basically to use an arbitrary but appropriate function

in the gravitational action which generates extra terms in the field equations of GR. We have

focused here mainly on the importance of the redshift and shape functions in different cases,

analysing the possibility of generating a traversable WH. It is important to quote that f(R, T )

gravity has been applied to different areas of astrophysics and cosmology, yielding interesting and

observationally testable results. One can check the recent f(R, T ) gravity applications as: some

analysis about compact stellar structures in f(R, T ) gravity are made in [347, 348]. Particularly,

the hydrostatic equilibrium configurations of strange stars are obtained [349, 350], with the

latter reference regarding an anisotropic distribution of matter inside such stars. Anisotropic

stellar filaments evolving under expansion-free condition are analysed [351] and the dynamical

stability of shearing viscous anisotropic fluid with cylindrical symmetry is investigated [352].

From some particular well addressed cases for the WHs redshift and shape functions, in this

chapter we have obtained the material content solutions for WHs. In possession of those we

applied the ECs to them. Those disfavour a constant redshift function, which is broadly assumed

in the literature. We also have derived the anisotropic dimensionless parameter (recall that

WHs material content is described by an anisotropic energy-momentum tensor) and have showed

that these WHs are filled and supported by a phantom fluid. The latter conclusion may yield

some new thoughts on a cosmological perspective and those are presented and discussed. The

chapter is organized in such way that, section 7.1 contains the brief introduction and motivation

regarding the present work and the general field equations for WH metric are derived in section

7.2. In section 7.3 we have discussed WH models in f(R, T ) gravity with two type of redshift

functions. Finally, the model conclusions are covered in section 7.4.

7.2 WH metric and field equations of an alternative gravity

with extra material terms

Nowadays the most popular alternative gravity theory is the f(R) gravity (refer section 1.8.2),

which takes general terms of R in its gravitational action. Instead of taking general terms of

geometrical aspect in the action, one can also take material extra terms. Let us consider a gravity

theory that takes terms proportional to the trace of the energy-momentum T in its action, which

yields f(R, T ) gravity [1] (For more details refer section 1.8.5). The f(R, T ) gravity field eqns.

(1.8.27) for f(R, T ) = R+ 2f(T ) and with stress energy-momentum tensor given in eqn. (6.5.1)

take the form

Rµν −
1

2
Rgµν = (8π + 2λ)Tµν + λgµν(ρ− P), (7.2.1)

where f(T ) = λT and λ is an arbitrary constant.
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An interesting and intriguing property of the f(R, T ) theory of gravity, that can be extracted

from eqn. (7.2.1), is the non-conservation of the energy-momentum tensor. From eqn. (7.2.1),

∇µTµν =

(
λ

8π + λ

)
∇µgµν(P − ρ). (7.2.2)

The particular consequences of the non-conservation of the energy-momentum tensor in f(R, T )

gravity have been explored in chapter- 5. Also, inspired by [285], the cosmological consequences

of the energy-momentum tensor non-conservation of f(R, T ) gravity are deeply investigated in

[286]. These non-conservation of the energy-momentum tensor implies in non-geodesic motions

for test particles in gravitational fields as it is studied in [287]. In [288, 289] a different approach

is considered. The authors have independently constructed a formalism in which an effective fluid

is conserved in f(R, T ) gravity, rather than the usual energy-momentum tensor non-conservation.

The static spherically symmetric WH metric is considered here in Schwarzschild coordinates

(t, r, θ, φ) as described in eqn. (1.12.1). Further, the main conditions of shape function b(r) are

related to the shape of the WH, which is determined by the mathematics of embedding in eqn.

(1.12.5) at or near the throat. The function z = z(r) determines the profile of the embedding

diagram of the WH,

z(r) = ±
∫ r

r0

dr√
r
b(r) − 1

, (7.2.3)

which is obtained by rotating the graph of the function z(r) around the vertical z-axis.

The general field eqns. (7.2.1) for the metric (1.12.1) are given as

b(r) + a′r − a′r2

r3
= −(8π + 2λ)pr + λ

(
ρ− pr + 2pt

3

)
, (7.2.4)

(2r2a′′ + r2a′2)(b− r) + ra′ (rb′ + b− 2r) + 2 (rb′ − b)
4r3

= −(8π + 2λ)pt + λ

(
ρ− pr + 2pt

3

)
,

(7.2.5)
b′(r)

r2
= (8π + 2λ)ρ+ λ

(
ρ− pr + 2pt

3

)
. (7.2.6)

Also, by developing eqn. (7.2.2), we obtain

(8π + 3λ)ρ′ +

(
8π +

5

3
λ

)
(p′r + 2p′t) = 0. (7.2.7)

From the above eqns. (7.2.4 - 7.2.6), the explicit form of the WH matter content, namely ρ, pr

and pt, are obtained as

ρ = rF1(r)
(
48πb′ − λ

(
F2(r)(b− r) + a′(F3(r) + 2)− 16b′

))
, (7.2.8)

pr = F1(r)
(
48(r − 1)ra′ + λr

(
−rF2(r) + a′F4(r) + 8b′

)
+ bλ(r(F2(r) + a′)− 24)− 48πb

)
,

(7.2.9)
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pt =
F1(r)(λ(2ra′ + r(r(5F2(r) + 8a′)− F6(r)) + b(12− 5r(F2(r) + a′))

− 12π (r(F5(r)− F2(r)− 2a′) + b(r(F2(r) + a′′)− 2)))
. (7.2.10)

Here, for mathematical simplifications, the functions Fi(r), where i runs from 1 to 6, are written

as

F1(r) ≡
(
48(λ+ 2π)(λ+ 4π)r3

)−1
, (7.2.11)

F2(r) ≡ 2ra′′ + ra′2, (7.2.12)

F3(r) ≡ r(b′ − 4) + b, (7.2.13)

F4(r) ≡ r(b′ + 20)− 22, (7.2.14)

F5(r) ≡ b(ra′ + 2), (7.2.15)

F6(r) ≡ b′(5ra′ + 4). (7.2.16)

Furthermore, the dimensionless anisotropy parameter for anisotropic pressures, as the present

case, is defined as [353]

∆ =
pt − pr
ρ

. (7.2.17)

Since ρ > 0, the relation ρ∆
r represents a force due to the anisotropic nature of the WH model.

Geometry is attractive if pt < pr, i.e. ∆ < 0, and repulsive if pt > pr, i.e. ∆ > 0. The fluid is

isotropic for ∆ = 0, i.e. pr = pt.

7.3 WH models with hyperbolic shape function

We have considered the following specific form for the shape function [354]

b(r) = m tanh(nr), (7.3.1)

where m and n > 0 are constants. As we have quoted above, to admit the necessary metric

conditions of WHs we have b(r0) = r0 and the flaring out condition b′(r0) − 1 < 0 as it is

represented in the Fig. 7.3.1.
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Figure 7.3.1: Variation of shape function with m = 2 and n = 3.

From such a figure, we have b(r) < r for r > r0 and b(r)
r → 0 as r →∞ showing an asymptotically

flat behavior. In the present chapter we have considered the WH throat where b(r) − r cuts

r−axis, i.e. r0 = 2 as b(2) ≈ 1.99998 with m = 2 and n = 3.

7.3.1 Logarithmic redshift function

In order to obtain traversable WHs, we consider a logarithmic form for the redshift function as

[306]

a(r) = ln
(r0

r
+ 1
)
, (7.3.2)

By substituting eqns. (7.3.1) and (7.3.2) in eqns. (7.2.8-7.2.10), we obtain ρ, pr, pt and the

radial EoS parameter ωr = pr
ρ as

ρ =
F1(r)

(r + r0)2

[
G1(r)G4(r) sech2(nr)− λr0(m tanh(nr)(3r + 2r0) +G7(r))

]
, (7.3.3)

pr =
F1(r)

(r + r0)2

[
−m tanh(nr)G3(r) + λG1(r)(8r + 7r0) sech2(nr)

+ λG2(r)− 48πr0(r − 1)(r + r0)

]
, (7.3.4)

pt =
F1(r)

(r + r0)2

[
m tanh(nr)G5(r)−G1(r) sech2(nr)(λ(4r − r0) + 12π(2r + r0)) +G6(r)

]
,

(7.3.5)

ωr(r) =
−m tanh(nr)G3(r) + λ(G1(r)(8r + 7r0) sech2(nr) +G2(r))− 48πr0(r − 1)(r + r0)

G1(r)G4(r) sech2(nr)− λr0(m tanh(nr)(3r + 2r0) +G7(r))
,

(7.3.6)
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where Gj(r), with j running from 1 to 7, are expressed by the following equations

G1(r) = mnr(r + r0), (7.3.7)

G2(r) = r0(r(−24r − 23r0 + 22) + 22r0), (7.3.8)

G3(r) = λ(24r2 + 4rr0 + 22r2
0) + 48(r + r0)2, (7.3.9)

G4(r) = 48π(r + r0) + λ(16r + 17r0), (7.3.10)

G5(r) = λ(12r2 + 9rr0 + r2
0) + 12πr(2r + r0), (7.3.11)

G6(r) = λr0(r(12r + 7r0 − 2)− 2r0) + 12πrr0(2r + r0), (7.3.12)

G7(r) = r0(r − 2)− 2r. (7.3.13)

7.3.1.1 Energy conditions

The main ECss, such as the NEC, WEC, SEC and DEC can be expressed directly in terms of

ρ, pr, pt as represented in section 1.11. The role of these ECs are defined as; NEC represents the

attractive nature of gravity; DEC states that the velocity of energy transfer cannot be higher

than the speed of light and SEC stems from the attractive nature of gravity and its form is the

direct result of considering a spherically symmetric metric in the GR framework. Hence, one can

find that the ECs may be obtained to traversable WHs in modified gravity.

From the above quantities, we have plotted here the energy density as well as the ECs in Fig.

7.3.2 to Fig. 7.3.5 below. In all figures, we consider the free parameters m = 2 and n = 3.

Figure 7.3.2: Energy density as a func-
tion of r for different λ.

Figure 7.3.3: NEC, ρ+ pr ≥ 0.

From Fig. 7.3.3 one can observe that NEC for ρ + pr validates for small r. It is to be noted

here that the violation of NEC implies that WEC will be also violated; while WEC is valid, it

does not imply that the NEC is satisfied. Fig. 7.3.4 shows the validation of DEC for radial case.
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Moreover, in Fig. 7.3.5 to Fig. 7.3.7 we have plotted the SEC, radial EoS parameter and the

dimensionless anisotropic parameter.

Figure 7.3.4: DEC, ρ ≥ |pr|. Figure 7.3.5: SEC, ρ+ pr + 2pt ≥ 0.

Figure 7.3.6: Radial EoS parameter ωr

as a function of r and λ.
Figure 7.3.7: Dimensionless anisotropic

parameter ∆ as a function of r and λ.

7.3.2 Constant redshift function

In this case, we set the redshift function a(r) = 1, and by using this redshift function in eqns.

(7.2.8) - (7.2.10), the explicit form of matter quantities reduces to

ρ =
rF1(r)

16
(3π + λ) b′, (7.3.14)

pr = −F1(r)

8

[
−λrb′ + (6π + 3λ)b

]
, (7.3.15)

pt = −F1(r)

4

[
(6π + λ)rb′ − (6π + 3λ)b

]
. (7.3.16)
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The explicit expressions for the matter quantities and radial EoS parameter are obtained by

substituting eqn. (7.3.1) in the above equations, leading to

ρ =
rF1(r)

16
mn(λ+ 3π)sech2(nr), (7.3.17)

pr =
F1(r)

8
m
[
nλrsech2(nr)− 3(λ+ 2π) tanh(nr)

]
, (7.3.18)

pt =
F1(r)

2
msech2(nr) [3(λ+ 2π) sinh(2nr)− 2n(λ+ 6π)r] , (7.3.19)

ωr(r) =
2λnr − 3(λ+ 2π) sinh(2nr)

4(λ+ 3π)nr
. (7.3.20)

7.3.2.1 Energy conditions

From the above quantities, the plot of the energy density as well as the ECs are shown in Fig.

7.3.8 to Fig. 7.3.11. In all figures we consider m = 2 and n = 3.

Figure 7.3.8: Variation of the energy
density.

Figure 7.3.9: NEC, ρ+ pr ≥ 0.

Figure 7.3.10: DEC, ρ ≥ |pr|.
Figure 7.3.11: SEC, ρ+ pr + 2pt ≥ 0.
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From Fig. 7.3.9 it is observed that NEC for radial pressure is violated. DEC for radial pressure

is valid for r > 0 as shown in Fig. 7.3.10. One can observe from Fig. 7.3.11 that SEC violates

everywhere and tends to zero for large values of r. The radial EoS parameter ωr(r) is always

< −1 in support of the violation of NEC for modified gravity as shown in Fig. 7.3.12.

Figure 7.3.12: Radial EoS parameter
ωr as a function of r and λ.

Figure 7.3.13: Dimensionless anisotropic
parameter ∆ as a function of r and λ.

The dimensionless anisotropic parameter is depicted in Fig. 7.3.13 for this case.

7.4 Conclusion

In this chapter the WH solutions are deeply analyzed within the f(R, T ) gravity as the background

theory. The analysis of WHs in modified gravity theories are mainly originated by the possibility

of obtaining material sector solutions that obey the energy conditions, so that they do not have

to be referred to as “exotic”. According to the f(R, T ) gravity authors, the T -dependence of the

theory is motivated by the (possible) existence of imperfect fluids in the universe [1]. In this

way, the study of WHs, whose matter content is anisotropically distributed, is well motivated in

this theory. We have substituted the Morris-Thorne WH metric (1.12.1) in the field eqns. (7.2.1)

obtained for the choice of f(R, T ) = R+ 2λT in the model. The material solutions are obtained

from a hyperbolic shape function, such as in ref. [354], for logarithmic [306] and constant redshift

functions [355, 356]. Moreover, it is important to mark that departing from many references

in the present literature, we have not assumed any EoS parameter rather, we have obtained it

from the model. It is shown in two cases in Fig. 7.3.6 and Fig. 7.3.12 respectively. There is a

remarkable feature about ωr that can be appreciated in those figures and is discussed below.

In both figures, representing non-constant and constant redshift functions, the radial EoS

parameter is < −1 for approximately the entire space. This indicates that the concerned WHs

are filled by a phantom fluid. Recall that a phantom fluid permeating the whole universe is an
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important alternative to explain the cosmic acceleration. Furthermore, eqn. (7.3.20) can be

rewritten as a power series as follows

ωr = −1− 9(λ+ 2π)r2

λ+ 3π
− 81(λ+ 2π)r4

5(λ+ 3π)
+O

(
r5
)
, (7.4.1)

so that ωr → −1 as r → 0. The above equation explicitly shows the phantom aspect of the EoS

obtained for the WH. As mentioned above, r → 0, ωr → −1. If that was the case for the whole

WH, we would have a sort of “dark energy wormhole”. However, as one gets away from r = 0,

the “phantom contributions” start to dominate and ωr decreases its values, characterizing a

phantom WH. WHs filled by phantom fluids have been analysed in the literature [353]. In this

chapter, a phantom fluid has shown to be responsible for supporting WHs with the geometrical

features proposed in section 7.3 within f(R, T ) theory.

The results obtained from the ECs applications are quite interesting. One can observe that

it is indeed possible to respect the ECs in the present theory. Apart from SEC, all the ECs

presented in section 7.3.1.1, from a non-constant redshift function, are respected, at least for a

range of values of the radial coordinate. On the other hand, the ECs shown in section 7.3.2.1,

for a constant redshift function, have the NEC ρ + pr ≥ 0 and SEC disobeyed. This may be

an important clue that constant redshift functions yield unsatisfactory results regarding ECs

applications, so that this particular case could be discarded from further WH modelling.

The dimensionless anisotropic parameter given in eqn. (7.2.17) is depicted in Fig. 7.3.7 and

Fig. 7.3.13. This quantity is deeply approached in ref. [357]. In ref. [353], an EoS is given

in terms of ∆. From Fig. 7.3.7 and Fig. 7.3.13 it is clear that ∆ > 0, which implies that the

geometry is repulsive in both models due to the anisotropy of the system. One can conclude

that, in principle, the repulsive character of the anisotropy compensates the attractive nature of

gravity for a range of the parameters of the WH models.

At the end, it is important to remark that in order to get the WH solutions we need not use eqn.

(7.2.7). The system of eqns. ((7.2.8) - (7.2.10)) has shown to be soluble from the assumptions

in section 7.3. In this way, in the present approach, the equation for the non-conservation of

the energy-momentum tensor in f(R, T ) gravity merely puts a stricter bound in the values of

the free parameter λ. The solutions for ρ, pr and pt satisfy eqn. (7.2.7) for −4 ≤ λ ≤ −3 in the

logarithmic redshift function case (section 7.3.1) and for λ ∼ −6.275 in the constant redshift

case (section 7.3.2). It is to be noted that these values for λ are in agreement with the ECs.



Chapter 8

Final remarks and future perspectives

The results obtained in the whole study are summarized briefly in this chapter. It is essential to

know the origin, shape, structure formation, evolution and ultimate fate of our Universe. This

can be effectively achieved by constructing mathematical models within different gravitational

theories. Hence, the cosmological models obtained in this thesis in f(R, T ) gravity theory will

expectedly, help in knowing our Universe in better way. The objective of this work has been to

develop the framework of f(R, T ) gravity, and to investigate the present accelerated expansion

of the universe through different cosmological model in it. This framework has been used to

study the ways in which f(R, T ) gravity can be considered to be special or unique.

The first chapter of this thesis is completely introductory and motivational, as it is needed to

prepare the ground to address the subsequent chapters. In all the chapters, we have focused

on modified f(R, T ) gravity cosmological models in account of accelerated expansion of the

universe. Chapter 6 and chapter 7 deal with few aspects of higher order curvature scalars in

f(R, T ) gravity along with the phenomenology of astrophysical objects (e.g. WH solutions) and

its cosmological viability.

Furthermore, the parametrization of a DP in terms of cosmic time and redshift, is considered

as an important tool to obtain the exact solution of field equations. In fact, the evolution of

DP with respect to time and redshift of each models are consistence with its observational

aspects, which provides the observational viability of each theoretical models in this thesis.

It is worth noting here that some particular parametric forms of DP like, time-varying DP,

LVDP, and PVDP are used in obtaining the exact solutions. Moreover, some other aspects

like, ECs, state-finder diagnosis parameter and more specifically evolution of EoS parameter

are also made to get the models consistent with observational results. This evolution of EoS

parameter is always consistent with the current observations in all the models of each chapters.

In particular, the transitional behavior of the universe from radiation era to DE era are smoothly

depicted through this parameter, which are described in each chapter subsequently. In order to

understand the homogeneous and anisotripic nature of the universe, we have considered Bianchi
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type III, VI0 in chapter 2, and type I space-time in chapter 3, chapter 4, and first model in the

chapter 5. The Bianchi type I space-time is considered as the most generalization of the FLRW

space-time, which is flat and homogeneous, and chosen in second model of chapter 5. In order to

explain both the early and the late-time acceleration in a geometrical way, without invoking

huge amount of DE, several combinations of curvature invariants, like, RµνR
µν , RµνσγR

µνσγ ...,

can be considered into the gravitational action. For this purpose, in chapter 6, we have obtained

some cosmological models with higher order curvature scalar and its mixed form (both positive

and negative) within f(R, T ) formalism. In case of viability of cosmological model through ECs,

it provides a strong evidence towards the positiveness of matter content. Hence, most of the

cosmological models are constructed on the basis of validation of ECs. It would be interesting to

investigate the other part of ECs, i.e. violation of ECs, which indicates the presence of some

“exotic matter” in space-time. One of the best examples of violation of ECs is the existence of

WH solutions. In this sense, we have obtained a WH solution model within f(R, T ) formalism

in the second model of chapter 6. Furthermore, these exotic matters support phantom fluid

distribution which can be depicted through the EoS parameter with ω < −1. This phenomenons

are covered in chapter 7 along with the WH solution in two representative cases.

In future, more work within this theory is required to fully understand how these solutions should

be interpreted and what their physical effects could be. There are several directions in which

future research on these subjects can proceed. For example, one can extend the f(R, T ) into

more nonlinear cases to understand the details of matter energy coupling behavior. Also, one

can focus on the generalization of model with several matter contents as a gravitational matter

source, or, modify the gravitational actions by adding extra functional on the perturbation basis.

Furthermore, it would be possible to obtain the observational consistency of cosmological model

within this theory through other constraints or free parameters. Then, we may focus on the

generalization of the modified f(R, T ) gravity in several aspects, and extract reliable physical

effects from these models which will be one of the most useful ways to study the evolution of

universe in future generations.
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