Leber Congenital Amaurosis: Clinical Profiling and Genetic Analysis Using High Throughput Resequencing in an Indian Cohort

THESIS

Submitted in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY

by

SRIKRUPA. N. N

2011PHXF0100H

Under the Supervision of

Dr. N. SOUMITTRA

&

Under the Co-Supervision of

Prof. SUMAN KAPUR

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, HYDERABAD

2017

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, HYDERABAD

CERTIFICATE

This is to certify that the thesis entitled "Leber Congenital Amaurosis: Clinical **Profiling and Genetic Analysis Using High Throughput Resequencing in an Indian Cohort**" submitted by **Ms. Srikrupa. N. N** ID No 2011PHXF0100H for the award of Ph.D. of the Institute embodies original work done by her under my supervision.

Signature in full of the Supervisor: Signature in full of the Co-Supervisor:

Dr. N. Soumittra

Principal Scientist & Associate Professor SNONGC Department of and Molecular Biology Vision Research Foundation Chennai- 600006

Date:

Prof. Suman Kapur

Dean, International Programmes and Collaborations Senior Professor Department of Biological Sciences, BITS-Pilani, Hyderabad campus Hyderabad -500078

Date:

.....Dedicated to my Family

(For their strong support, encouragement and understanding)

ACKNOWLEDGEMENTS

"Being a graduate student is like becoming all the Seven Dwarves of the fairy tale "Snow white and the Seven Dwarves". In the beginning you're Dopey (mute) and Bashful (shy). In the middle, you are usually sick (Sneezy), tired (Sleepy), and irritable (Grumpy). But at the end, they call you Doc, and then you're Happy." - Ronald T. Azuma

It is a delight to acknowledge those who have supported me throughout my PhD. Firstly, my mentor, **Dr. N. Soumittra**, who has been there throughout - motivating and inspiring me with constant guidance, cooperation and support which kept me going ahead. Her tremendous support during NGS analysis, where she taught and learned alongside, encouraging several thought provoking discussions and her guidance in comprehensive understanding of informatics pipelines helped me sail through the initial fumbling to reach this pinnacle. Her friendly nature, constant advises and elderly supports have shaped me both in my career and personal front. I owe a lot of gratitude to her and feel privileged to be mentored by her.

My sincere thanks for the support and guidance provided by my co-supervisor **Prof. Suman kapur,** Department of Biological sciences, BITS-Pilani Hyderabad campus. A caring, inspirational teacher and an enthusiastic researcher, her continuous support and suggestions during assessments, teaching practices, paper and thesis corrections were tremendous. It was because of her and her team of students, my BITS travels were convenient and a good learning experience.

My heartfelt gratitude also goes to **Dr. S. Sripriya**, Associate professor, for always being motivating, helpful and kind. Her observations of the data, correlating ideas and converting them to new possibilities have always inspired me. Her scientific inputs, personal suggestions have always made me feel at ease with her and I believe I can always count on her support during my course of PhD and even later.

I extend my sense of gratitude to **Dr. S. Mathavan**, Head of the department, SNONGC department of Genetics and Molecular biology and former Heads **Dr. A.J Pandian** and **Dr. J. Madhavan** for their support and encouragement. I am very grateful that my doctoral programme is affiliated to two esteemed institutions, Vision research foundation (VRF), Sankara Nethralaya and BITS-Pilani. I sincerely thank and seek the blessings of Padmabhushan **Dr. S.S. Badrinath**, Chairman Emeritus, Sankara Nethralaya for my doctoral thesis in such a well established research and academic platform. I thank **Prof. Souvik Bhattacharyya**, Vice chancellor, BITS Pilani for providing me an opportunity to be a part of their revered institute.

I extend my gratitude to **Dr. Lingam Gopal**, President, VRF, **Dr. S. Bhaskaran**, Honorary secretary, VRF, **Dr. Ronnie George**, Director - Research, VRF, **Dr. Rama Rajaram**, Ex-Advisor, VRF, **Mr. S. Narayanan**, Manager, VRF, **Dr. H.N. Madhavan**, Director of Microbiology, VRF, **Dr. S. Meenakshi**, Director of Academics, Medical Research Foundation (MRF) for their support.

Also, I sincerely acknowledge **Prof. S.K. Verma**, Dean, research and consultancy Division, Pilani, **Prof. G. Sundar**, Director, BITS Pilani, Hyderabad campus, Hyderabad. My heartfelt thanks to **Dr. P.R. Deepa**, BITS co-ordinator for being the bridge between us and BITS, extending her support, ideas and co-ordinating between the institutes.

My sincere thanks to my Doctoral committee members (DAC) Dr. Sridev Mohapatra, Prof. P. Sankar Ganesh and other faculties of biological sciences department, BITS Pilani, Hyderabad campus, Prof. Vidya Rajesh, Prof. Ramakrishna Vadrevu, Prof. Kumar Pranav Narayan, Prof. Naga Mohan Kommu, Dr. Jayati Ray dutta, Prof. S. Swaminathan and Dr. Debashree Bandyopadhyay for their continuous evaluations and constructive criticisms to improve my thesis.

I thank **Dr. Parveen Sen, Dr. S. Meenakshi and Dr. Muna Bhende** for their clinical support, phenotype documentation and correlation. My extended gratitude to **Vidyasagar Institute of Biomedical Sciences (VIBS)**, **Dr. K. Lily Therese**, **Dr. K.N. Sulochana**, **Dr. N. Angayarkanni**, **Dr. Dorien Gracious**, **Dr. S. Krishnakumar**, **Dr. J. Malathi**, **Dr. B. Mahalakshmi**, **Dr. K. Coral**, **Dr. Bharathi devi**, **Dr. J. Subbulakshmi**, **Dr. Ananth Badrinath**, **Dr. V. Umashankar**, **Dr. Nivedita Chatterjee** for evaluating my practice lectures.

My heartfelt thanks to my friends or I would rather say my stress busters K. Sudha, Malaichamy, Bhavna S Rao, D. Sudha, Divya Rao, Sathyapriya, Ferdina Marie Sharmila, and Kavitha who were always there as a moral support, making me feel so important, bearing with me during all the good and stressful days, extending their helping hands without fail. My heartfelt thanks to my PG mates Shylaja, Dharanija, Revathi, Aarthi and Prathibha who helped shape up my focus towards this goal. My special thanks to Shabna and Srilekha ma'm who shared this journey with me through all hurdles. Our travel to BITS Hyderabad every semester, our stay, evaluations and assignments will be an unerasable memory in this journey of mine.

I also owe my thanks to Jeevajothi mam, Karthiyayini mam, Sumathi mam, Sacikala mam, Ms. Porkodi, Ms. Suganya, Ms. Jothi, Mr. Jayaprakash, Mr.Venkatesan, Mr. Manoharan, Mr. Babu for being friendly, cooperative and supportive. I would also like to acknowledge my school and college friends Saraniya.S, Saranya. D, Sunitha ma'm, Anbarasan, my cousins and my friends across my department Mr. Naresh, Ms. Vimalin Jayalatha, Mr. Bhuvanasundar, Ms. Janani, Ms. Dhanurekha, Ms. Foujana Jenofer, Ms. Abirami who extended timely suggestions and help throughout this journey. A special mention to Mr. T. Arokiasamy, social worker, for helping in patient recruitment. A wonderful person, elderly figure, who would go to all extent to help the patients, be it for their academics, rehabilitation or financial support expecting nothing in return. I feel blessed to be associated with him during this venture. I extend my acknowledgement to all patients and their family for their co-operation.

I acknowledge the support extended by my friends in Genomics lab, BITS Pilani, Hyderabad campus, **Ms. SaiChinmayi, Ms. Yenmandra Padma, Ms. Sruthi Varier, Ms. Shivani Guptha, Ms. Anuradha pal, Mr. Pavan, Mr. Rupak, Ms. Minal, Dr. Blesson, Ms. Kriti** and **Pooja mam**. The journey wouldn't have been so comfortable without their warm attitude and friendliness. A special thanks to **Chinmayi**, who have gone out of way to help me with several official matters at critical times.

I would like to acknowledge the people, who mean the world to me. My parents **Natarajan (Appa), Sampoornam (Amma),** my brother **Srivatsan** and sister in law **Sandyasree** for giving me the liberty to choose what I desired, showing faith in me, and standing behind me with their unconditional love and support forever. Special mention to **Srivatsan** for his unconditional trust and timely encouragement!! I was lucky to have the best parents in law **Raghu (appa)** and **Rajeshwari (amma)** who continued to carry the torch of faith in me and supported me throughout to achieve this dream of mine. I extend my love and respect to **Kanthan peripa** and **Nagi perima** for being so proud of me on my zeal which encouraged me to achieve it.

I appreciate the love and support extended by my husband **Mr. Chandrasekar**. He had been a great companion, nurtured my learning, and supported my dreams encouraging, entertaining and boosting me up during the stressful days helping me get through this period in the most positive way. Thanks to the little ones **Maanav** and **Thejhas**, their smiles always cheers me up in all situations and their love makes me feel out of the world.

Above all, I owe it all to **Almighty** for giving me the strength, patience, wisdom and health to undertake this research and enabling me take to its completion.

Srikrupa.N.N

ABSTRACT

BACKGROUND

Retinal blinding disorders together have a prevalence of 1 in 2000 worldwide. Mutations in genes that are expressed either in retinal pigment epithelium (RPE) cells, photoreceptors or bipolar cells can cause varying forms of degenerative or stationary retinal disorders, as the encoded proteins are crucial for normal function, maintenance and synaptic interaction. Depending on the type of photoreceptor affected, the retinal degenerative diseases (RDDs) are categorised as rod dominated, cone dominated, and generalised retinal degenerations involving both rods and cones. Leber congenital amaurosis (LCA) is an inherited blindness, caused due to degenerations of rods and cones, occurring within the age of one year, characterized by an extinguished electroretinogram (ERG) and manifesting nystagmus, photophobia, hyperopia. Genetically it is heterogeneous, with twentynine candidate genes identified so far (AIPL1, ALMS, CABP4, CCT2, CEP290, GDF6, CNGA3, CLUAP1, CRB1, CRX, DTHD1, GUCY2D, IQCB1, IMPDH1, IFT140, KCNJ13, LCA5, LRAT, MERTK, MYO7A, NMNAT1, OTX2, PRPH2, RD3, RDH12, RPE65, RPGRIP1, SPATA7 and TULP1) and most of them are inherited in an autosomal recessive manner except CRX, IMPDH1 and OTX2 which are associated with autosomal dominant inheritance pattern. The conventional method of disease gene discovery in Mendelian disorders includes those based on linkage analysis as well as homozygosity mapping. Recent developments in high-throughput sequence capture methods have made nextgeneration sequencing technologies more feasible and cost effective. In LCA, the prevalence of mutation in the candidate genes varies in different populations and comprehensive mutation study focused on individual ethnicities in large cohorts are few. The mutation studies conducted on Indian LCA cohorts either had a very small sample size with fewer genes screened or included Indians as a part of multicentre studies or case report. A comprehensive candidate gene study or data on the prevalence of mutations in LCA candidate genes from a larger Indian cohort is still unavailable. This report, for the first time, presents a comprehensive data on the

prevalence of mutations from an Indian cohort of 92 LCA cases using targeted resequencing on NGS platform for 20 candidate genes.

AIM

To perform a comprehensive candidate genes screening for LCA from a larger Indian cohort by targeted next generation sequencing technology (NGS) and study genotype-phenotype correlation.

OBJECTIVES

- Clinical examination, complete phenotype documentation and recruitment of around 100 patients with Leber Congenital Amaurosis (LCA).
- Perform high throughput re-sequencing for the candidate genes on NGS platform
- To validate the results obtained by targeted re-sequencing using Sanger sequencing, perform segregation analysis in the families and control screening for the identified mutations to confirm the pathogenicity.
- Analyse the pathogenicity of the identified mutations using various bioinformatics tools.
- To perform genotype-phenotype correlation.

METHODOLOGY:

Subjects were recruited after complete ophthalmic examination and written informed consent was obtained. Apart from ERG, they were examined for finer fundus details with posterior pole fundus photograph, fundus autoflourescence (FAF), retinal optical coherence tomography (OCT) measurements (if possible) for performing Genotype-phenotype correlation. DNA was extracted from the Acid Citrate Dextrose (ACD) anticoagulated blood samples using NucleoSpin® Blood XL kit. Targeted resequencing was performed using custom target enrichment probes designed by Agilent Sure Design software. Target enrichment was done using Agilent HaloPlex target enrichment assay and subjected to NGS in IlluminaMiSeq platform. The filtered reads were aligned to the reference genome (hg19) using Burrow-Wheeler Aligner (BWA) program and further called and annotated using Samtools and Genome Analysis Toolkit (GATK), respectively. The identified pathogenic and likely pathogenic variants were validated by Sanger sequencing, segregation analysis

within the family and control screening too was performed. Online bioinformatics tools were used to predict the pathogenicity of the identified mutations.

RESULTS:

The NGS assay generated 75 million paired end reads, 9.7 GB of data with 83% of the data having >Q30 quality. An average of 99.03% sequence coverage across the 20 candidate genes with an average depth of 134X was obtained. The coding regions of all the twenty genes alone had 126 single nucleotide variations (SNVs) and 13 Indels. Data analysis using the standard bioinformatics pipeline and further Sanger validation identified pathogenic or likely pathogenic mutation in 61% (56/92) of the cohort, with 39% (21/53) mutation being novel. These mutations are distributed among 14/20 candidate genes. We also observed digenic and triallelic variantsthat may contribute to the phenotype of the disease.

Two cases of syndromic LCA were also observed in the study. Senior-Loken Syndrome in LRS 92 characterized by combination of LCA and kidney disease was found to be caused due to *IQCB1* mutation and, thiamine responsive megaloblastic anaemia (TRMA) in LRS 73 characterized by triad of megaloblastic anemia, diabetes mellitus (non-type 1) and sensorineural deafness along with LCA was found to be due to *SLC19A2* mutation.

CONCLUSION:

To our knowledge, this study presents the first comprehensive mutation spectrum of LCA in a large Indian cohort of 92 unrelated index cases diagnosed with LCA. Also, this study for the first time reported association of TRMA with LCA as the retinal disease component. Distinct fundus phenotype to genotype was also observed which might aid the clinicians to prognosticate the progression of the disease. This study has aided in patient care through genetic counselling by offering carrier testing, prenatal testing and disease management. In this cohort 38% have no mutation in the twenty known candidate genes thus providing a scope for finding novel candidate gene(s). Molecular diagnosis may also help to offer potential gene therapy trials to patients in future and thus treatment of the disease.

TABLE OF CONTENTS

S. No.	Title	Page
5. NO.		number
	List of Tables	1
	List of Figures	2-5
	List of Abbreviations/ Symbols	6-9
1.0	CHAPTER 1 : INTRODUCTION	10-35
1.1	Broad classification of RDDs	13
1.1.1	Rod dominated diseases	14
1.1.2	Cone dominated diseases	14
1.1.3	Generalized RDs	15
1.2	Identification of Candidate Genes in RDD	15
1.3	Next Generation Sequencing Technologies	16
1.4	Leber congenital amaurosis	18
1.4.1	Associated ocular clinical features of LCA	18
1.4.2	Other systemic clinical features of LCA	18
1.4.3	Phenotype documentation in LCA	19
1.4.4	Genetics of LCA	21
1.4.4.1	Gene mapping in LCA	21
1.4.4.2	LCA genes and their functions	22
1.4.5	Syndromic LCA.	29
1.4.5.1	Alstrom syndrome	29
1.4.5.2	Batten disease	30
1.4.5.3	Cerebello-oculo-renal syndromes	30
1.4.5.4	Peroxisome biogenesis disorders	31
1.4.5.5	Thiamine responsive megaloblastic anaemia	31
1.4.6	Gene therapy in LCA	31
1.4.7	Targeted genotyping in Leber congenital amaurosis – Need for	32
	the study	
1.5	Objectives of the study	35

2.0	CHAPTER 2 – METHODOLOGY	36-57
	Overview of the methodology	36
2.1	Patients recruitment	37
2.1.1	Clinical documentation	37
2.1.2	Sample collection	39
2.2	DNA extraction	40
2.3	DNA Quantification and Quality check	40
2.4	Targeted re-sequencing using Illumina MiSeq platform	41
2.4.1	Designing target enrichment probes:	41
2.4.2	Target enrichment and Sequencing	43
2.4.3	Analysis pipeline	46
2.5	Validation of the identified pathogenic and likely pathogenic mutations	48
2.6	Insilico Predictions	55
2.7	Screening of <i>SLC19A2</i> in a patient diagnosed with Thiamine	55
	Responsive Megaloblastic Anaemia (TRMA) with LCA as	
	ocular feature.	
3.0	CHAPTER 3 – RESULT	58-106
3.1	Targeted re-sequencing	58
3.1 3.1.1	Targeted re-sequencing Data analysis	58 58
_		
3.1.1	Data analysis	58
3.1.1	Data analysis Validation of the identified pathogenic and likely pathogenic	58
3.1.1 3.1.2	Data analysis Validation of the identified pathogenic and likely pathogenic mutations	58 61
3.1.1 3.1.2	Data analysis Validation of the identified pathogenic and likely pathogenic mutations Other reported or novel variations and SNPs in coding and	58 61
3.1.1 3.1.2 3.1.3	Data analysis Validation of the identified pathogenic and likely pathogenic mutations Other reported or novel variations and SNPs in coding and non–coding regions	58 61 75
3.1.1 3.1.2 3.1.3 3.2	Data analysis Validation of the identified pathogenic and likely pathogenic mutations Other reported or novel variations and SNPs in coding and non–coding regions cDNA analysis	58 61 75 79
3.1.1 3.1.2 3.1.3 3.2 3.3	Data analysis Validation of the identified pathogenic and likely pathogenic mutations Other reported or novel variations and SNPs in coding and non–coding regions cDNA analysis Bioinformatics Analyses	58 61 75 79 81
3.1.1 3.1.2 3.1.3 3.2 3.3 3.4	Data analysis Validation of the identified pathogenic and likely pathogenic mutations Other reported or novel variations and SNPs in coding and non-coding regions cDNA analysis Bioinformatics Analyses Genotype- Phenotype Correlation	58 61 75 79 81 84
3.1.1 3.1.2 3.1.3 3.2 3.3 3.4	Data analysis Validation of the identified pathogenic and likely pathogenic mutations Other reported or novel variations and SNPs in coding and non-coding regions cDNA analysis Bioinformatics Analyses Genotype- Phenotype Correlation Screening of SLC19A2 in a patient diagnosed with Thiamine	58 61 75 79 81 84
3.1.1 3.1.2 3.1.3 3.2 3.3 3.4	Data analysis Validation of the identified pathogenic and likely pathogenic mutations Other reported or novel variations and SNPs in coding and non-coding regions cDNA analysis Bioinformatics Analyses Genotype- Phenotype Correlation Screening of <i>SLC19A2</i> in a patient diagnosed with Thiamine Responsive Megaloblastic Anaemia (TRMA) with LCA as	58 61 75 79 81 84
3.1.1 3.1.2 3.1.3 3.2 3.3 3.4 3.5	Data analysis Validation of the identified pathogenic and likely pathogenic mutations Other reported or novel variations and SNPs in coding and non–coding regions cDNA analysis Bioinformatics Analyses Genotype- Phenotype Correlation Screening of <i>SLC19A2</i> in a patient diagnosed with Thiamine Responsive Megaloblastic Anaemia (TRMA) with LCA as ocular phenotype.	58 61 75 79 81 84 106

4.2	Observed syndromic LCA	115
4.2.1	Senior-Loken syndrome (SLSN)	115
4.2.2	Thiamine responsive megaloblastic anaemia	116
	CONCLUSION	119
	SPECIFIC CONTRIBUTIONS	120-121
	LIMITATIONS	122
	FUTURE SCOPE OF THE STUDY	122
	References	123-147
	Appendices	148-171
	List of Publications and Presentations	172-174
	Brief Biography of the Candidate	175
	Brief Biography of the Supervisor	176
	Brief Biography of the Co- Supervisor	177-178

LIST OF TABLES

Table number	Title	Page number
1.	A partial list of syndromic and non-syndromic retinal	11
	degenerative disease with monogenic inheritance	
2.	List of novel genes identified in retinal and macular	17
	degeneration using next-generation sequencing approaches	
3.	Reaction protocol for polymerase chain reaction.	48
4.	List of regions analysed by PCR based direct sequencing	49
	with annealing temperature and product size	
5.	ExoSAP protocol	51
6.	Reaction protocol for cycle sequencing.	52
7.	Reaction protocol for cDNA Synthesis.	53
8.	cDNA region analysed by PCR based direct sequencing with	54
	annealing temperature and product size	
9.	List of regions in SLC19A2 analysed by PCR based direct	57
	sequencing with annealing temperature and product size.	
	ASPCR- Allele specific PCR for the identified mutation in	
	exon 2.	
10.	Raw read summary	58
11.	Average coverage and depth for each of 20 genes	59
12.	Shows the list of positive control samples and the variants	60
13.	Lists of the pathogenic variants identified in fifty-six cases.	62
14.	Lists the heterozygous variants observed in mutation positive	76
	cases possibly contributing to triallelism	
15.	Bioinformatic analyses of missense variants	82
16.	Shows the clinical features of mutation positive index cases	89
	affected by LCA	

LIST OF FIGURES

Fig	ure	Title	Page
Nur	mber	The	number
1.		Genes expressed in different layers of retina and RPE, and	10
		the spectrum of diseases they cause when mutated	
2.		Overlapping genotypes in non-syndromic monogenic retinal	13
		and vitreoretinal degenerative diseases.	
3.		Diagrammatic representation of retinal layers and the retinal	19
		cells associated with specific ERG wave pattern	
4. /	A-D	OCT image of normal subject and CEP290 mutation positive	20
		patient with defined photoreceptor inner/ outer segment	
		junction.	
5.		Representative picture of retinal colour fundus photograph	21
		with known genotypes.	
6. /	Α.	Pie chart showing distribution of LCA candidate genes	34
		mutations in North American cohort from 30 published studies	
	В.	Distribution of LCA candidate genes mutations in Indian	
		patients from 8 published studies.	
7.		Diagrammatic representation of methodology followed.	36
8. /	Α.	Shows the ERG of LCA patient showing extinguished rod and	37-38
		cone response as a flat wave pattern	
	В.	OCT of patient having mutation in RDH12 gene showing	
		foveal thinning with RPE atrophy	
	C.	Fundus photo	
	D.	Fundus autoflourescence of a patient with mutation in AIPL1	
		gene showing macular changes	
9. /		Representative pedigrees of cases recruited.	39
10.		Shows distribution of consanguinity among the north and	40
		south Indian cases in the cohort of 92 LCA families.	
11.		Agarose gel image of DNA samples to check their quality.	41

12.	Target enrichment probe design using Agilent SureDesign	42
	HaloPlex standard wizard. Snapshot of the output by	
	HaloPlex Design Wizard providing information on the	
	coverage for each gene by the designed custom enrichment	
	probes.	
13.	Snapshot of list of analysable regions for which custom	42
	enrichment probes were designed	
14.	Snapshot of list of non-analysable regions for which custom	43
	enrichment probes could not be designed.	
15.	The gel picture of the ECD as run on DNA chip in Agilent	44
	2100 bioanalyzer.	
16.	The gel picture of amplified purified samples in the size range	45
	between 175-625bp indicating enriched target library of target	
	insert sizes 50-500bp	
17.	Schematic representation of the steps involved in target	46
	enrichment using Agilent HaloPlex target enrichment kit	
	followed by cluster generation by bridge amplification and	
	sequence by synthesis on Illumina MiSeq platform.	
18.	Reaction protocol for PCR amplification in thermal cycler.	49
19.	Reaction protocol for ExoSap digestion in thermal cycler.	51
20.	Thermal cycle reaction protocol for cycle sequencing	52
21.	Thermal cycler reaction protocol for cDNA synthesis.	54
22.	Pedigree of the proband showing typical autosomal recessive	56
	pattern of inheritance	
23.	Average read coverage graph for all 20 genes	58
24.	Average read depth graph for all 20 genes	59
25.	Average number of variants detected for all 20 genes	60
26.	IGV view of c.1109T>A (p.L370H) variation identified in	61
	RPE65 gene of LRS 12	
27. A.	Pie chart showing the percentage of the cohort where	68
	mutations were identified (including the positive controls) and	
	not identified in the twenty known LCA genes screened.	

		1
B.	5 1 5	
	types of mutations among the mutation positive cases.	
C.	Bar diagram showing the distribution of reported and novel	
	mutations among the different types of identified mutations.	
28.	Pie chart showing frequency of mutations in the twenty LCA	69
	candidate genes in the Indian cohort studied.	
29.	Electrophoretogram of the identified mutations (marked by	70-71
	arrows) in the LCA probands.	
30.	Representative pedigree of the family LCARS-81, segregating	72
	a homozygous nonsense mutation, c.910G>T p. (E340X) in	
	AIPL1 gene.	
31.	Putative protein structure showing domains and mutations	73
	(marked by arrows) in proteins of LCA candidate genes	
	identified by targeted resequencing	
32.	Pedigree of LRS 90 showing digenic inheritance segregating	74
	in the family. Proband and affected sib are heterozygous for	
	both AIPL1 c.834G>A; p.(W278X) and KCNJ13 c.485G>A;	
	p.(R162Q) mutations. The father and the mother are	
	heterozygous for KCNJ13 and AIPL1 mutations, respectively.	
33.	In family LRS 67	79
A	. 0.7% agarose gel picture showing RNA	
В	2% agarose gel picture showing cDNA amplified products of	
	525bp size targeting SPATA7- c.913-2A>G optimized at 63-	
	56 (-0.5°C) touchdown protocol.	
34.	In family LRS 29	80
A	. 0.7% agarose gel picture showing RNA	
В	2% agarose gel picture showing GAPDH amplification of the	
	corresponding cDNA	
C	cDNA amplified products of 596bp size targeting SPATA7-	
	c.1215+5C>A optimized at 65-58 (-0.5°C) touchdown	
	protocol.	
35.	Electrophoretogram of cDNA analysis for splice variations in	80
	SPATA7 gene.	
L		<u> </u>

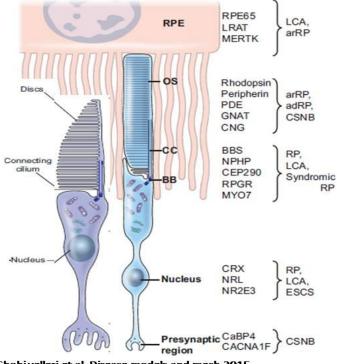
Α.	Wild type cDNA sequence (forward) in control showing exon 7	
	and exon 8	
В.	Homozygous indel (insertion of GT and first 7 bases deletion	
	in exon 8) in LRS 67 due to splice mutation c. 913-2A>G	
C.	Heterozygous indel in parent of LRS 67.	
36.	SPATA7- c.1215+5C>A electrophoretogram showing	81
	representative reverse primer sequence of	
Α.	Wild type control cDNA	
В.	Homozygous deletion of exon 10 in proband	
C.	Heterozygous deletion of exon 10 in parent.	
37.	Fundus photograph showing Genotype- phenotype	87
	correlation in LCA patients with mutation in genes	
38.	2% Agarose gel picture of the amplified products of the six	106
	exons of SLC19A2 gene	
39. A-D	Sequence showing a novel point mutation in exon 2, a	107
	c.314G>A transition resulting in a missense mutation	
	p.(G105E).	
40	Pie charts of cohort studies showing frequency of LCA	109
	candidate gene mutation in the population. A. Italy B. Japan	
	C. China D. Australia E. Brazil F. Western cohort G. Current	
	study	

LIST OF ABBREVIATIONS/ SYMBOLS

ABCA4	ATP-Binding Cassette, Subfamily A, Member 4
ABHD12	Abhydrolase Domain-Containing Protein 12
ACD	Acid Citrate Dextrose
AIPL1	Aryl hydrocarbon-Interacting Receptor Protein-Like 1
ALMS1	Alstrom syndrome protein 1
AMD	Age related Macular Degeneration
APEX	Arrayed primer extension
BBS	Bardet Biedl Syndrome
bp	Base pair
CACNA1F 1	Calcium Channel, Voltage-Dependent, Alpha-1F1 Subunit
CCDS	consensus coding sequence
CD	Cone Dystrophy
CNGA3	Cyclic nucleotide gated channel alpha 3
CNGB3	Cyclic nucleotide gated channel beta 3
CRB1	Crumbs, Drosophila, Homolog Of, 1
CRD	Cone Rod Dystrophy
CSNB	Congenital Stationary Night Blindness
DHDDS 1	Dehydrodolichyl Diphosphate Synthase
DNA	Deoxyribonucleic acid

EDTA	Ethylenediaminetetraacetic acid
ELOVL4	Elongation of Very Long Chain Fatty Acids-Like 4
ERG	Electroretinography
ExAC	The Exome Aggregation Consortium
ExoSap	Exonuclease and Shrimp alkaline phosphatase
GA	Genome Analyzer
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
GATK	Genome Analysis Toolkit
Gb	Giga base
GNAT2	Guanine Nucleotide-Binding Protein, Alpha-Transducing 2
GTPase	Guanosine triphosphate hydrolase
GUCY2D	Guanylate Cyclase 2D
HK1	Hexokinase 1
hRPE65v2	Recombinant adeno-associated virus retinal pigment epithelium gene vector
hTERT	Human Telomerase reverse transcriptase
IGV	Integrated genome viewer
Indel	Insertion deletion
LCA	Leber Congenital Amaurosis
LRIT3	Leucine-Rich Repeat, Immunoglobulin-like and Transmembrane Domains-Containing Protein 3
LRS	LCA resequencing
MAF	Minimum Allele Frequency
MYO7A	Myosin VIIA

NAD	Nicotinamide adenine dinucleotide
NaOH	Sodium hydroxide
NC	Negative control
NGS	Next Generation Sequencing
NMNAT1	Nicotinamide Nucleotide Adenylyltransferase 1
ОСТ	Optical coherence tomography
OD	(Latin oculus dexter) indicates the right eye.
OMIM	Online Mendelian Inheritance in Man
ONL	Outer nuclear layer
OS	(Latin oculus sinister) indicates the left eye.
PCR	Polymerase Chain Reaction
PDE6C	Phosphodiesterase 6C
PDE6H	Phosphodiesterase 6H
Q30	Quality score 30
RAB28	RAS-Associated Protein 28
RD	Retinal Degeneration
RDH12	Retinol Dehydrogenase 12
RNA	Ribonucleic acid
RP	Retinitis Pigmentosa
RPE	Retinal Pigment Epithelium
RPE65	Retinal Pigment Epithelium-Specific Protein, 65- Kilo Dalton
RPGR	Retinitis Pigmentosa GTPase Regulator
RPGRIP1	Retinitis Pigmentosa GTPase Regulator-Interacting Protein


- SLC19A2 Solute Carrier Family 19 (Thiamine Transporter), Member 2
- SNP Single Nucleotide Polymorphism
- TCP T-complex polypeptide 1
- UTR untranslated region
- VUS Variant of unknown significance
- WES Whole Exome Sequencing

CHAPTER 1

INTRODUCTION

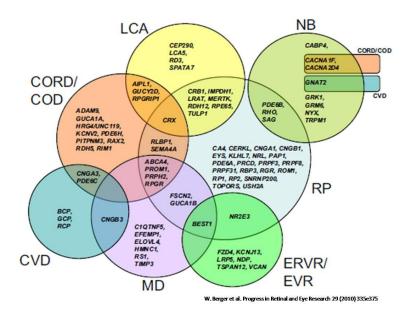
The completion of the human genome project has paved way in providing new avenues and advances in medicine. The knowledge of human genome and significant development in genomic research has substantially improved the understanding of genetic basis of many diseases including Mendelian, mitochondrial and complex disorders, their classification and management.

Retinal degeneration are heterogeneous group of inherited diseases which are currently untreatable and share common pathological features affecting the photoreceptor and retinal pigment epithelial cells of retina causing varying degrees of irreversible vision loss¹. Retinal degenerative diseases (RDD) together have a worldwide prevalence of 1 in 2000. Photoreceptors, retinal ganglion cells and other second order neurons encode proteins that are vital for normal function, maintenance, synaptic interaction, and signalling (**Figure 1**).

Shobi velleri et al, Disease models and mech.2015

Figure 1: Genes expressed in different layers of retina and RPE, and the spectrum of diseases they cause when mutated

Mutations in these genes cause various types of either degenerative or nonprogressive retinal diseases².


Most RDDs follow Mendelian (monogenic) pattern of inheritance and may be nonsyndromic or syndromic forms (**Table 1**) with clinically distinguishable findings. These affect photoreceptor and/or RPE development and function³ as seen in retinitis pigmentosa, Leber congenital amaurosis etc. Retinal degenerative diseases can also follow multifactorial inheritance like in age related macular degeneration (ARMD) and glaucoma. Visual image is formed by the interaction of many proteins synthesised by different cells of the retina. So far more than 200 different genes have been identified to cause monogenic retinal degenerative diseases⁴. The severity of the disease/s depends on the type of mutation within the gene, degree of damage caused by different mutations that may result in either total absence or presence of a non-functional or potentially toxic protein.

<u>Table 1</u>: A partial list of syndromic and non-syndromic retinal degenerative disease with monogenic inheritance.^{4, 5}

Diseases	Affected cell type	Mode of inheritance	Genes associated
<u>Non -</u> <u>syndromic</u> <u>monogenic</u>			
CSNB	Rods more than cones	Dominant	GNAT1, PDE6B, RHO
		Recessive	CABP4, GNAT1, GNB3, GPR179, GRK1,GRM6, LRIT3 , RDH5, SAG, SLC24A1, TRPM1
		X-linked	CACNA1F, NYX
LCA	Rods and cones	Dominant	CRX, IMPDH1, OTX2
		Recessive	AIPL1, ALMS1, CABP4, CCT2, CEP290, CNGA3, CRB1, CRX, CLUAP1, DTHD1, GUCY2D, GDF6, IQCB1, IMPDH1, IFT140, KCNJ13, LCA5, LRAT,MERTK, MYO7A, NMNAT1, OTX2, PRPH2, RD3, RDH12, RPE65, RPGRIP1, SPATA7, TULP1

r	1	1	1	
RP	Rods, Cones and RPE	Dominant	ARL3, BEST1, CA4, CRX, FSCN2, GUCA1B,HK1, IMP DH1, KLHL7, NR2E3, NRL, PRPF3,PRPF4, PRPF6, P RPF8, PRPF31, PRPH2,RDH12, RH0, ROM1, RP1, R P9, RPE65,SEMA4A, SNRNP200, SPP2, TOPORS	
		Recessive	ABCA4, AGBL5, ARL6, ARL2BP, BBS1,BBS2, BEST1, C2orf71, C8orf37, CERKL,CLRN1, CNGA1, CNGB1, C RB1, CYP4V2,DHDDS, DHX38, EMC1, EYS, FAM161 A,GPR125, HGSNAT, IDH3B, IFT140, IFT172,IMPG2, KIAA1549, KIZ, LRAT, MAK,MERTK, MVK, NEK2, NEU ROD1, NR2E3,NRL, PDE6A, PDE6B, PDE6G, POMG NT1,PRCD, PROM1, RBP3, RGR, RH0, RLBP1,RP1, RP1L1, RPE65, SAG, SLC7A14, SPATA7,TRNT1, TTC 8, TULP1, USH2A, ZNF408,ZNF513	
		X-linked	OFD1, RP2, RPGR	
CD or CRD	Cones more than rods	Dominant	AIPL1, CRX, GUCA1A, GUCY2D, PITPNM3,PROM1, P RPH2, RIMS1, SEMA4A, UNC119	
		Recessive	ABCA4, ADAM9, ATF6, C21orf2, C8orf37,CACNA2D4, CDHR1, CERKL, CNGA3,CNGB3, CNNM4, GNAT2, K CNV2, PDE6C,PDE6H, POC1B, RAB28, RAX2, RDH5, RPGRIP1, TTLL5	
		X-linked	CACNA1F, RPGR	
Macular degeneration	Rods and cones	Dominant	BEST1, C1QTNF5, CTNNA1, EFEMP1,ELOVL4, FSCN 2, GUCA1B, HMCN1, IMPG1,OTX2, PRDM13, PROM1 , PRPH2, RP1L1,TIMP3	
		Recessive	ABCA4, CFH, DRAM2, IMPG1, MFSD8	
		X-linked	RPGR	
Syndromic				
BBS	Rods and cones	Recessive	ADIPOR1, ARL6, BBIP1, BBS1, BBS2, BBS4,BBS5, B BS7, BBS9, BBS10, BBS12, C8orf37,CEP290, IFT172, IFT27, INPP5E, KCNJ13,LZTFL1, MKKS, MKS1, NPH P1, SDCCAG8,TRIM32, TTC8	
Joubert syndrome	Rods and cones	Recessive	INPP5E, TMEM216, AHI1, NPHP1, CEP290 (NPHP6), TMEM67 (MKS3), RPGRIP1L, ARL13B, CC2D2A, TTC21B, KIF7, TCTN1, TCTN2, TMEM237, CEP41, TMEM138, C5orf42, TCTN3, TMEM231, CSPP1, PDE6D	
		Dominant	ZNF423	
		X-linked	OFD1	
Senior- loken syndrome	Rods and cones	Recessive	CEP164, CEP290, INVS, IQCB1, NPHP1, NPHP3, NPHP4, SDCCAG8, TRAF3IP1, WDR19	
Usher syndrome	Rods and cones	Recessive	ABHD12, ADGRV1, CDH23, CEP250, CIB2,CLRN1, D FNB31, HARS, MYO7A, PCDH15,USH1C, USH1G, US H2A	

Mutations in the same gene cause a range of clinical phenotypes defined as allelic heterogeneity, a common feature of monogenic RDD. For example, mutation in transcription factor, *CRX* (cone-rod homeobox), that plays a vital role in photoreceptor development and homeostasis⁶ (**Figure 2**) can cause either Leber congenital amaurosis (LCA) where there is congenital blindness or progressive cone-rod dystrophy (CRD)/ retinitis pigmentosa (RP), where the disease progresses over time. Hereditary retinal degenerations are probably the most genetically heterogeneous group of diseases in humans i.e. they demonstrate locus heterogeneity where a single disease phenotype can be caused by mutations in different genes. Therefore, providing a molecular diagnosis in RDD becomes challenging along with variable expressivity, incomplete penetrance, and frequent clinical and genetic overlap⁷.

Figure 2: Overlapping genotypes in non-syndromic monogenic retinal and vitreoretinal degenerative diseases.

1.1. Broad classification of RDDs:

Depending on the type of photoreceptor affected, the RDDs are categorised as rod dominated diseases, cone dominated diseases, and generalised retinal degenerations involving both rods and cones⁷.

1.1.1. Rod dominated diseases

In these diseases, the rod photoreceptors are primarily affected followed by cones, like in retinitis pigmentosa (RP). Retinitis pigmentosa is considered the most common form of RD with a frequency of 1 in 3000-7000 individuals⁸. It is a progressive disease and has been associated with many syndromic RDs like Bardet- Biedl syndrome (BBS), Usher syndrome etc. The disease presents with progressive deterioration in the ability to see in dim light causing night blindness, followed by loss of peripheral vision that slowly moves towards the centre resulting in tunnel vision. So far 82 genes and 7 loci have been associated with autosomal dominant, autosomal recessive, and X-linked RP.

1.1.2. Cone dominated diseases

Cone dystrophies have a prevalence of 1/40,000and are caused due to degeneration of the cone cells of the retina. Cone cells are present throughout retina with maximum concentration clustered in the macula. Degeneration of cones leads to reduced visual acuity, central vision loss, reduced ability to see colours and photophobia. Cone dystrophy (CD) can be autosomal dominant, recessive or X-linked and can be stationary or progressive. Till now, 33 genes have been associated with the disease. Achromatopsia is a stationary, congenital, autosomal recessive inherited disorder characterized by reduced visual acuity, pendular nystagmus, increased sensitivity to light (photophobia) and reduced or complete loss of colour discrimination. Mutations in *CNGA3*, *CNGB3*, *GNAT2*, *PDE6C* or *PDE6H* are shown to cause achromatopsia⁹.

In the progressive forms, complete blindness may occur in the later stages because the rod photoreceptors also undergo degeneration. Stargardt disease is a juvenile macular degeneration characterised by central vision loss where cone cells are more concentrated. It is associated with mutation in *ABCA4* (autosomal recessive) and *ELOVL4* (autosomal dominant) gene. X-linked cone dystrophy (XLCOD) is a progressive disorder where the affected males have decreased visual acuity, myopia, cone ERG disturbance and colour vision defects. Mutation in *CACNA1F* and *RPGR* genes are shown to cause XLCOD¹⁰.

1.1.3. Generalized RDs

This involves the simultaneous degeneration of both rod and cone photoreceptor functions and is present with progressive, often severe, deterioration of vision. Leber congenital amaurosis is a generalised RD, which is congenital and is considered the most severe. LCA accounts for 5% of inherited retinal degenerative disorders. The reported worldwide prevalence of LCA is 1 in 30,000 to 1 in 81,000 ¹¹.

The only X-linked form of non-syndromic generalised RD is choroideremia (CHM). Affected males develop night blindness in their second decade, followed by progressive loss of peripheral vision and blindness. The incidence of CHM is estimated as 1 in 100,000¹².

Congenital stationary night blindness (CSNB) is a non-progressive retinal disorder characterized by impaired night vision, decreased visual acuity, nystagmus, myopia, and strabismus. Thirteen genes have been associated with the disease so far and are inherited either as autosomal dominant or recessive or X- linked. Based on the ERG wave form CSNB is classified as Riggs and Schubert-Bornschein. The later is further classified as complete form (type 1 CSNB), characterized by the complete absence of rod pathway function, whereas the incomplete form (type 2 CSNB) is due to impaired rod and cone pathway function. Oguchi disease and fundus albipunctatus are forms of CSNB with abnormal fundi. In Oguchi disease, the fundus displays a yellow sheen after exposure to light; this sheen disappears following dark adaptation. In fundus albipunctatus, the retina develops yellow-white dots. The mutated genes code for proteins that are involved either in phototransduction cascade or signalling from photoreceptors to second order neurons^{13, 14}.

1.2. Identification of Candidate Genes in RDD

Identification of candidate genes and the causal mutation/ variant for monogenic diseases has been mainly through linkage analysis. The segregation of the genetic markers in affected individuals indicate the plausible genomic region of the candidate gene¹⁵. The distance between the genetic markers (θ =frequency of recombination) helps identify the disease loci. There are two types of linkage

mapping – parametric, where the exact mode of inheritance is a pre requisite and often performed for Mendelian disorders and non-parametric that is independent of inheritance patterns and analysed based on: identical by descent (IBD) or identical by state (IBS). Linkage mapping requires large multigenerational families with many affected and unaffected and it is used to identify candidate genes for all modes of inheritance i.e. autosomal dominant or recessive and X-linked recessive. Homozygosity mapping is a very efficient approach to study recessive disorders in both consanguineous and non-consanguineous families where the information of IBD is used. Here the markers (alleles) are homozygous by descent and are shared between the affected individuals thus indicating possible disease loci^{16, 17}. Animal studies and knowledge of allelic heterogeneity have also lead to identification of candidate genes in various forms of RDD.

Over the years, numerous candidate genes have been identified. Sanger sequencing is considered 'gold standard' in terms of both read length and sequencing accuracy. But screening all the genes by Sanger sequencing is both time consuming and expensive. In order to simplify molecular diagnostics in diseases that are genetically heterogeneous, APEX genotyping microarrays (ASPER Ophthalmics, Estonia)¹⁸ were developed in which the PCR products of each amplimer targeting the mutation regions are combined and hybridized to oligonucleotide primers arrayed on the chip. A template-dependent single-nucleotide extension reaction with fluorescently labelled dye terminator nucleotides helps in the detection of variants for both sense and antisense strand. The limitation of this technology is that it allows the detection of only known mutations and novel mutations are missed. These limitations have been overcome by advancement in genotyping technology, i.e. the advent of massively parallel sequencing using NGS.

1.3. Next Generation Sequencing Technologies

Several next generation sequencing (NGS) technology platforms have emerged which includes Roche 454, Illumina GA, Ion torrent, and ABI SOLiD that are based on massive parallel sequencing and generate large data. They are considerably less expensive especially in screening genetically heterogeneous diseases.

NGS and its wide range of applications include chromatin immunoprecipitation coupled to sequencing (ChIP-seq), Bisulphite sequencing, RNA sequencing (RNA-

seq), whole genome sequencing, whole exome sequencing, targeted re-sequencing denovo assembling, and re-assembling of genome¹⁹. The broadest application of NGS is the re-sequencing of human genomes to understand the genetic differences in health and disease²⁰.

NGS has helped in comprehensive understanding of the genetic architecture of RDDs. NGS was first employed in retinal disease to study an Ashkenazi Jewish family, where whole exome sequencing of three affected siblings revealed a mutation in a novel gene, *DHDDS*, as a cause of RP ²¹. Linkage analysis followed by whole exome sequencing (WES) or targeted sequencing has identified *HK1* as a novel causative gene for adRP, *RAB28* gene in a German family with arCRD²², *ABHD12* gene in a family clinically diagnosed with Usher syndrome type 3²³, *LRIT3* gene in CSNB²⁴, *NMNAT1* in Leber congenital amaurosis²⁵.

Method	Diseases	Gene(s) identified
		DHDDS, MAK, GNPTG,
Whole -exome		EMC1, GPR125,
sequencing	Retinitis pigmentosa (RP)	KIAA1549, ARL2BP
		NMNAT1, KCNJ13,
		DTHD1, CCT2,
	Leber congenital amaurosis	CLUAP1, ALMS1,
	(LCA)	CNGA3 and MYO7A
	Congenital stationary night blindness	LRIT3, GPR179,
	Ciliopathy with skeleton abnormality	WDR19
	High myopia	ZNF644
	Bardet- Biedl syndrome (BBS)	LZTFL1
	Nephronophthisis with retinal	
	degeneration	ZNF423, CEP164
	Usher syndrome	HARS
		RAB28, ACBDS,
	Cone-rod dystrophy	C21orf2
Targeted		
sequencing	RP, Cone -rod dystrophy	C8orf37
	AMD	CFH, CF1
	LCA	IFT140, PRPH2,
	Usher syndrome	ABHD12
	CSNB	GPR179
	X-Linked RP	OFD1
	Joubert syndrome	TMEM237
	Familial exudative vitreoretinopathy	TSPAN12

<u>**Table 2**</u>: List of novel genes identified in retinal and macular degeneration using next-generation sequencing approaches²⁶.

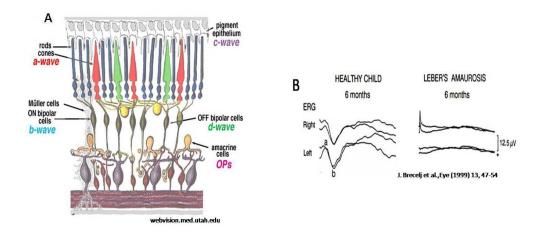
Targeted NGS or WES has identified the genetic cause in 50-80% of the RDD in various cohorts studied. It has proven to be a robust and cost effective technology for identifying both novel and known mutations in candidate genes by targeted capture ²⁷ or involvement of known or novel genes by exome or whole genome capture ²⁵ (**Table 2**).

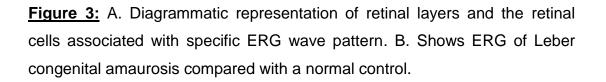
1.4. Leber congenital amaurosis

Leber congenital amaurosis is a severe form of retinal degenerative disease diagnosed in children earlier than one year of age. This disease was described initially by Theodore Leber in 1869 as a congenital form of retinitis pigmentosa²⁸. The clinically distinguishing features of LCA include severe visual impairment present at birth or shortly thereafter; extinguished or non-recordable ERG, pendular or searching nystagmus, photophobia, and digito-ocular sign (Franceschetti- Leber phenomenon), with progressive retinal degeneration²⁹.

1.4.1. Associated ocular clinical features of LCA:

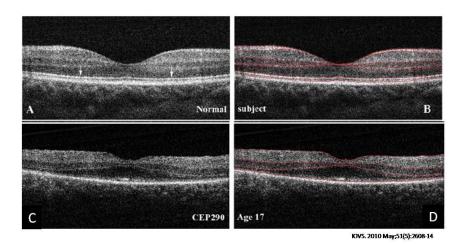
Visual acuity (VA) in LCA range widely from 20/200 to little or no light perception. LCA patients often have high refractive errors (from hyperopia to myopia) but most patients are high hyperopes³⁰. The oculo- digital sign of Franceschetti is an important feature of LCA. The sign consists of a repetitive, deep pushing of the knuckle or finger into the eye and socket. The oculo- digital phenomenon due to persistent pushing, causes orbital fat atrophy, deep set eyes (enophthalmos) and keratoconus, (the thinning of the cornea)³⁰. Cataracts and keratoconus are often associated with LCA³¹ as is nyctalopia (night blindness)³². Certain features are specific to genotypes such as patients with *RPE65* mutations show mild improvements in their visual function in their second decade, but it is then shown to decline after aperiod of stability³³. Patients with *CRX* and *GUCY2D* mutations appear to have a very significant loss of vision, but the loss remains stable³⁴.


1.4.2. Other systemic clinical features of LCA


Apart from these, about 19.8% LCA patients are shown to suffer from mental retardation or seizures or autism^{30, 35}.

1.4.3. Phenotype documentation in LCA:

Electroretinogram (ERG)


ERG documentation is the primary diagnostic tool used to confirm LCA. It evaluates the visual function by measuring the electrical response of the entire retina i.e. first order neuron function (a-wave from photoreceptors), and second-order neuron function (b-wave from ON- bipolar and Muller cells). ERG helps in differential diagnosis among retinal dystrophies. In LCA, ERG responses are non-detectable or extinguished within one year of life indicating the severity of the rod and cone degeneration (**Figure 3**)³⁶.

Optical coherence tomography

Optical coherence tomography (OCT), is a non-invasive imaging technique used to obtain high resolution cross-sectional images of the retinal architecture. OCT imaging is considered an important phenotypic documentation as it helps in staging the severity of retinal degenerative diseases by calculating the average photoreceptor layer thickness across a wide retinal area (**Figure 4**). Measurable photoreceptor thickness in patients increases the prospect for clinical trials where retrospective or prospective staging could be related to treatment efficacy³⁷.

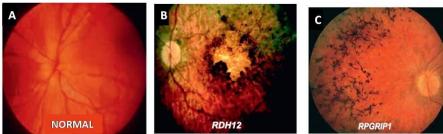


Figure 4: A. OCT image of normal subject with defined photoreceptor inner/ outer segment junction. B. Six lamellar layers – retinal nerve fibre layer, ganglion cell + inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer + photoreceptor inner segment and photoreceptor outer segment (top to bottom) C. and D. OCT image of 17 yr old *CEP290* mutation positive patient showing only three lamellar layers with preservation of ONL centrally.

Fundus photo and Fundus autoflourescence

Fundus imaging such as colour photographs, fluorescein angiography, and fundus autoflourescence records changes in central and peripheral retina, optic disc and macula. It helps in defining the severity and monitoring the progression of disease. In LCA, the retinal appearances differ considerably from the normal, mild retinal vessel attenuation, pseudopapilledema of the optic disc, maculopathy, macular coloboma, bone spicule pigmentation, nummular pigmentation, salt and pepper pigmentation, yellow confluent peripheral spots, white retinal spots, marbleized retinal changes and preserved para-arteriolar RPE (PPRPE)³⁰. Gene specific changes are also reported (**Figure 5**) like peripheral retinal bone spicule - like pigmentation (*RPE65*), Bull's eye maculopathy (*AIPL1*), mild RPE atrophy, mid peripheral

hyperpigmentation (*RDH12*), nummular pigmentation (*CRB1*), tapetal reflex (*CEP290*) and mild foveal atrophy to macular coloboma (*NMNAT1*) 38 .

Progress in Retinal and Eye Research 27 (2008) 391–41

Figure 5: Representative picture of retinal colour fundus photograph with known genotypes. Fundus of A. normal individual B. LCA patient with *RDH12* mutation C. LCA patient with *RPGRIP1* mutation.

1.4.4. Genetics of LCA:

LCA is both clinically and genetically heterogeneous. So far, twenty-nine candidate genes (*AIPL1* (MIM*604392), *ALMS1* (MIM*606844), *CABP4* (MIM *608965), *CCT2* (MIM*605139), *CEP290* (MIM *610142), *CNGA3* (MIM* 600053), *CLUAP1* (MIM* 616787), *CRB1* (MIM *604210), *CRX* (MIM *602225), *DTHD1* (MIM* 616979), *GDF6* (MIM* 601147), *GUCY2D* (MIM *600179), *IQCB1* (MIM *609237), *IMPDH1* (MIM *146690), *IFT140* (MIM* 614620), *KCNJ13* (MIM *603208), *LCA5* (MIM *611408), *LRAT* (MIM *604863), *MERTK* (MIM *604705), *MYO7A* (MIM* 276903), *NMNAT1* (MIM *608700), *OTX2* (MIM* 600037), *PRPH2* (MIM* 179605), *RD3* (MIM *180040), *RDH12* (MIM *609868) and *TULP1* (MIM 602280)) have been identified and most of them are inherited in an autosomal recessive manner except *CRX*, *IMPDH1* and *OTX2* which are associated with autosomal dominant inheritance pattern^{4, 11}.

1.4.4.1. Gene mapping in LCA

Various methods like classical linkage analysis, homozygosity mapping, candidate gene approach based on tissue specific expression or animal models, next generation sequencing and/ or combinations of one or more approaches have been used to identify candidate genes for LCA. Genes such as *RDH12, TULP1, CRB1, CRX, GDF6, IMPDH1, OTX2, RD3, RPE65* and *RPGRIP1* were reported to be

associated with retinal functions or other retinal diseases. These were screened and identified to be associated with LCA too^{39,40,41,42,43,44,45,46,47,48}. Using whole genome linkage analysis *CEP290*⁴⁹ was identified. *AIPL1* was identified as candidate gene using linkage analysis coupled with *insitu* hybridization⁵⁰. Homozygosity mapping identified *CABP4*⁵¹, *GUCY2D*⁵², *IQCB1*⁵³, *LCA5*⁵⁴ and *SPATA7*⁵⁵. *LRAT* and *MERTK* were recognized as candidate genes for LCA while screening many retinal genes in oligonucleotides SNP arrays⁵⁶. With the advent of next generation sequencing technology, targeted re-sequencing of retinal and ciliopathy genes identified *IFT140*⁵⁷ and *PRPH2*⁵⁸ while whole exome sequencing alone or with homozygosity mapping identified *CCT2*, *CLUAP1*, *ALMS1*, *CNGA3*, *MYO7A*, *DTHD1*, *KCNJ13*, and *NMNAT1*^{29, 59-62}.

1.4.4.2. LCA genes and their functions

The candidate genes code for proteins that belong to different families and perform varied functions. Some of these genes code for ciliary proteins – as photoreceptors are modified cilia, they are involved in photoreceptor morphogenesis and stabilization, those that code for signalling molecules and ion channels- as ions are required for synapses, those that are essential in phototransduction pathways and visual cycle and those that perform other functions like phagocytosis, protein trafficking, as molecular chaperones and signalling peptides.

Ciliary genes:

ALMS1

ALMS1, located on chromosome 2p13 codes for a centrosome and basal body associated protein. The protein localizes to centrosomes and basal bodies of ciliated cells. ALMS1 protein is involved in microtubule organization, cell cycle regulation, intraciliary transport⁶³, cell migration and extracellular matrix production⁶⁴. As ciliary bodies are present in multiple systems, defect in the protein results in syndromic disease like Alstrom syndrome involving cone-rod retinal dystrophy, hearing loss, childhood obesity, type 2 diabetes mellitus, cardiomyopathy, fibrosis and multiple organ failure⁶⁵. *ALMS1* is also shown to be associated with non-syndromic LCA²⁹.

CEP290

Centrosomal protein, 290-KD (also known as *NPHP6*) is involved in ciliary assembly and trafficking. *CEP290* is located on 12q21.32 and mutation in this gene is shown to be associated with many diseases, ranging from isolated blindness to various syndromes like Senior-Loken syndrome (SLS), nephronophthisis (NPHP), Joubert syndrome (related disorders) (JS[RD]), Bardet-Biedl syndrome (BBS), to the lethal Meckel-Gruber syndrome (MKS). Knockdown experiments in zebra fish using morpholinos revealed Cep290 deficiency caused defects involving retinal, cerebellar, and optic cavity developmental abnormalities as well as pronephric cyst formation, ectopic brain tissue in the fourth ventricle and an abnormal mid to-hindbrain region associated with hydrocephalus⁶⁶.

CLUAP1

Clusterin-associated protein 1 (*CLUAP1*) appears to be involved in assembly and turnaround of intraflagellar transport (IFT) particles at the base and tip of the cilium. Located at 16p13.3 *CLUAP1* transcript is expressed abundantly in testis, thyroid, trachea, eye (connecting cilium of photoreceptor cells), and moderately in spinal cord and adrenal gland ⁶⁷. *CLUAP1* has been shown to be a tumor associated antigen⁶⁸ and recently is identified as a candidate gene for non-syndromic LCA⁶⁰

IQCB1

Located on 3q13.33, it encodes an IQ motif-containing protein B1 (also known as NPHP5), these proteins localize to connecting cilia of photoreceptors. Present in almost all tissues, *NPHP5* and *CEP290* plays important role in controlling integrity and ciliary trafficking of the BBSome. As a transition zone protein NPHP5 contains two separate BBS-binding sites and interacts with the BBSome to mediate its integrity⁶⁹. Mutations in *IQCB1* are reported in Senior-Loken syndrome, Bardet-Biedl syndrome and non-syndromic LCA⁵³.

IFT140

Intraflagellar transport 140 (*IFT140*) located on 16p13.3, encodes a subunit of intraflagellar transport complex A (IFTA), which is involved in retrograde ciliary transport. It is shown to be highly expressed in kidney, moderately in ovary, testis, prostate, and lung, and low expression in thymus, brain, heart, placenta, and skeletal muscle. In the eye, IFT proteins are expressed during all stages of

ciliogenesis in photoreceptor cells and are found within the differentiating photoreceptor ciliary shaft during early stages of development⁷⁰. Mutations in *IFT140* were previously reported in skeletal ciliopathies and recently in non-syndromic LCA⁷¹.

LCA5

Located in 6q14.1, encodes Lebercilin (*LCA5*) protein that localizes to the ciliary axoneme, with increased amounts at the base of the primary cilia. It is a ubiquitously expressed protein and in the eye it is found to be present in the connecting cilium and the basal bodies of photoreceptor cells and involved in ciliary microtubule dynamics⁵⁴.

MYO7A

Located in 11q13.5 encodes a protein belonging to myosin family. These are motor molecules with structurally conserved heads that move along actin filaments thus enabling them to transport cargo⁷², *MYO7A* expression is seen in human liver, kidney, retinal pigment epithelium, and photoreceptor cells of the retina as well as in cochlear and vestibular neuroepithelia. Mutations in *MYO7A* were previously found to be associated with deafness and Usher syndrome type 1B⁷³.

RPGRIP1

Located on 14q11.2, encodes Retinitis pigmentosa GTPase regulator-interacting protein which is expressed in retina and testis. It localizes specifically in the photoreceptor connecting cilium. RPGRIP anchors RPGR in the connecting cilium and regulates protein transport.⁷⁴. Mutations in *RPGRIP1* also cause cone-rod dystrophy⁷⁵.

SPATA7

Spermatogenesis-associated protein 7, a ciliary protein, is expressed only in testis and retina. The gene is located on 14q31.3. In P21 mice, Spata7 protein is observed in multiple layers of the retina, including the ganglion cell, inner nuclear layers, and inner segments of photoreceptors. SPATA7 localizes at the primary cilium and connecting cilium (CC) of photoreceptor cells in hTERT RPE-1 cells.SPATA7 directly interacts with the retinitis pigmentosa GTPase regulator interacting protein 1 (*RPGRIP1*), a key connecting cilium protein that has also known to cause LCA. This complex plays an important role in protein trafficking across the CC to the outer segments and a malfunction of this result in rhodopsin accumulation in the inner segments and around the nucleus of photoreceptors. This accumulation then likely triggers the apoptosis of rod photoreceptors ⁷⁶. Apart from LCA, mutation in *SPATA7* is also associated with autosomal recessive retinitis pigmentosa (RP).

> Photoreceptor morphogenesis and maintenance genes:

CRB1

Crumbs, drosophila, homolog of, 1 (*CRB1*) localize to subdomains of the photoreceptor apical plasma membrane i.e. the inner segment of mammalian photoreceptors. The subdomains support the morphogenesis and orientation of the photosensitive membrane organelles. Located on 1q31.3, it is expressed exclusively in eye and the central nervous system⁷⁷. Mutations in *CRB1* is also associated with pigmented paravenous chorioretinal atrophy and autosomal recessive retinitis pigmentosa⁷⁸.

CRX

Cone-rod homeobox-containing gene is located on 19q13.33 and is also associated with cone-rod dystrophy⁷⁹. *CRX* is expressed specifically in the photoreceptor cells of developing and adult retina. It is a photoreceptor-specific transcription factor which plays a role in the differentiation of these cells⁸⁰.

CABP4

Located in 11q13.2 encodes a calcium-binding protein 4 (CABP4) that localizes to the synaptic terminals of photoreceptors. It belongs to a subfamily of at least eight calmodulin (CaM)-like neuronal Ca²⁺ binding proteins. It co-localizes and interacts with Cav1.4 voltage-dependent Ca²⁺ channels (VDCCs) and plays an important role in the development and/ or maintenance of the photoreceptor output synapse, probably through modulation of photoreceptor VDCCs and transmitter release⁸¹. *CABP4* is also a candidate gene for congenital stationary night blindness⁸².

GDF6

Growth/ differentiation factor 6 is a member of the transforming growth factor-beta superfamily. Located on 8q22.1, it is expressed in ganglion cell layer, inner plexiform layer, and retinal pigment epithelia in the eye. It has been hypothesised

that *GDF6* may regulate ectoderm patterning and control eye morphogenesis by regulating neural and vascular development. *GDF6* mutations have been associated with eye phenotypes such as microphthalmia, anophthalmia⁸³ and Klippel–Feil syndrome⁸⁴.

KCNJ13

Potassium channel, inwardly rectifying, subfamily J, member 13, is expressed in wide variety of cells with the common role of maintaining resting membrane potential near the potassium equilibrium potential. Located in 2q37.1, *KCNJ13* is expressed in apical RPE and help to maintain potassium homeostasis around the photoreceptor outer segments⁸⁵. *KCNJ13* mutations were first reported in Snowflake vitreoretinal degeneration⁸⁶

OTX2

Located on 14q22.3, Orthodenticle, drosophila homolog of 2, is a transcription factor and plays a role in brain, craniofacial and sensory organ development. OTX2 is also required for the development and maintenance of the neural retina. It is found in bipolar and in ganglion cells, while in the outer nuclear layer it regulates the expression of the closely related *CRX* gene that controls the expression of a suite of photoreceptor function genes, including opsins⁸⁷. Mutations in this *OTX2* also cause syndromic microphthalmia 5 (MCOPS5) and combined pituitary hormone deficiency 6 (CPHD6)⁸⁸.

PRPH2

Peripherin-2 is tetra spanning membrane proteins localized along the rim of rod and cone photoreceptor outer segment discs. Peripherin-2 is critical to the formation and stabilization of photoreceptor outer segments. It is located in 6p21.1 and mutations in this gene is reported in retinitis pigmentosa and macular dystrophy^{89, 90}.

RD3

Located on 1q32.3, retinal degeneration 3 (*RD3*) is expressed only in retina. The protein is localised in outer nuclear layer, inner nuclear layer, and the ganglion cell layer. RD3 mediates the export of GC1 (Guanylatecyclase 1) from the endoplasmic reticulum to endosomal vesicles. RD3 co localizes, binds to GC1 and GC2 to play a

crucial role in their stable expression and membrane trafficking in rod and cone photoreceptors⁹¹.

Molecular chaperones:

AIPL1

Located in 17p13.1, *AIPL1* encodes human aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) and is similar to (49% identity, 69% positive) human aryl hydrocarbon receptor-interacting protein (AIP), a member of the FK506-binding protein (FKBP) family. This protein contains three tetratricopeptide (TPR) motifs, consistent with nuclear transport or chaperone activity. It is expressed in photoreceptor and pineal-gland⁵⁰. Mutation in *AIPL1* is also reported in cone-rod dystrophy and retinitis pigmentosa⁹².

CCT2

Chaperonin containing TCP1, subunit 2, located on 12q15, encodes the molecular chaperone protein, CCT β . Although expressed ubiquitously, in retina it is expressed in retinal ganglion cell layer and near the connecting cilium in the photoreceptor cells. CCT β interacts with chaperonin type BBSs, including BBSs 6, 10, and 12 which are ciliary proteins. CCT2 is also shown to bind to G protein subunit G β 1 which is involved in transducin- associated phototransduction⁵⁹

NMNAT1

Nicotinamide nucleotide adenylyltransferase 1, located on 1p36.22, is a central enzyme in NAD biosynthesis, catalysing the condensation of nicotinamide mononucleotide (NMN) or nicotinic acid mononucleotide (NaMN) with the AMP moiety of ATP to form NAD or NaAD. It is expressed in skeletal muscle, heart, liver, and kidney. In the eye, NMNAT act as a stress-response protein that works as a chaperone for neuronal maintenance and protection⁹³.

Phototransduction:

CNGA3

Cyclic nucleotide-gated channel, alpha-3 (*CNGA3*), an achromatopsia-2 gene, is located on 2q11.2. It is found to be expressed in cone photoreceptors, testis, kidney, and heart⁹⁴. The *CNGA3* encodes one of a family of alpha subunits that form CNG ion channels required for sensory transduction in rod photoreceptors and

in olfactory neurons. Localized to the photoreceptor plasma membrane, is essential for the generation of light- evoked electrical responses in the red, green, and bluesensitive cones.

GUCY2D

Guanylatecyclase 2D, in 17p13.1 region encodes a retina-specific Guanylate cyclase (RetGC), which is a member of the membrane guanylylcyclase family. RetGC mediates Ca²⁺ feedback on cGMP metabolism during photoreceptor light adaptation and/ or recovery following photo excitation⁹⁵. Mutations in this gene are also reported in dominant cone-rod dystrophy⁹⁶.

LRAT

Lecithin retinol acyltransferase catalyses the esterification of all-trans-retinol into all-trans-retinyl ester. This reaction is an important step in vitamin A metabolism in the visual system. Located in 4q32.1, it is expressed in several fetal and adult human tissues, including the retinal pigment epithelium (RPE) and liver. Mutation in *LRAT* was also observed in early-onset severe retinal dystrophy⁹⁷.

RDH12

Located on 14q24.1, retinol dehydrogenase 12 belongs to a family of dualspecificity retinol dehydrogenases that metabolize both all-trans- and cis-retinols. *RDH12* is expressed predominantly in eye and also in kidney, brain, skeletal muscle and stomach. In eye, it is expressed at the base of photoreceptor inner segments and during visual cycle catalyses the reduction of all-trans-retinal and its 9-cis-, 11-cis-, and 13-cis-retinal isomers in the presence of NADPH⁹⁸.

RPE65

Located on 1p31.3 encodes the retinal pigment epithelium- specific protein 65KD, , which catalyses the conversion of all-trans retinyl ester to 11-cis retinol in the RPE⁹⁹. This RPE specific protein acts as the receptor for retinol-binding protein on the surface of the retinal pigment epithelium. Other than LCA, mutations in *RPE65* are also implicated in retinitis pigmentosa.

IMPDH1

Inosine-5-prime-monophosphate dehydrogenase, type I is an enzyme that catalyses the synthesis of xanthine monophosphate (XMP) from inosine-5'-mono-

phosphate (IMP). This is the rate-limiting step in the de novo synthesis of guanine nucleotides. Located on 7q32.1, it is also a candidate gene for autosomal dominant retinitis pigmentosa and is ubiquitously expressed but has a retina specific isoform derived from alternative splicing. In the retina, it is localized to the inner segment and synaptic terminals of photoreceptors¹⁰⁰ and is found to be associated with polyribosomes containing rhodopsin mRNA. Mutations in *IMPDH1* are reported in autosomal dominant LCA as well.

Signalling pathway, Phagocytosis and protein trafficking DTHD1

Death domain-containing protein 1 in 4p14 is predicted to function in signalling pathways, formation of signalling complexes, as well as in apoptosis pathway. Localization of these signalling proteins in the eye are yet unknown.

MERTK

Mer tyrosine kinase protooncogene located on 2q13 is expressed in normal peripheral blood monocytes, bone marrow, in tissues of epithelial and reproductive origin. Mer receptor tyrosine kinase is critical for the engulfment and efficient clearance of apoptotic cells. In retina, *MERTK* plays an important role in phagocytosis of outer segments by RPE cells¹⁰¹. Mutations in *MERTK* were first implicated in RP¹⁰¹.

TULP1

Located on 6p21.31, Tubby-like protein 1 is expressed exclusively in retina. TULP1 is localized to the photoreceptor inner segment and synapse. TULP1 is shown to be involved in protein trafficking from inner segment to outer segment where they bind to several cytoskeletal scaffold proteins, as well as members of the phototransduction cascade and in vesicle cycling at the synaptic terminal¹⁰². Mutations in *TULP1* are also implicated in RP¹⁰³.

1.4.5. Syndromic LCA

'LCA like ocular phenotype' is observed as one of the characteristic features in few syndromes. These syndromes initially present as LCA, as it is diagnosed earlier to one year of age and later presents systemic features, which involve various other organs.

1.4.5.1. Alstrom syndrome

Alstrom syndrome is an autosomal recessive disorder characterised by LCA appearing first in infancy and then progressive development of multi-organ pathology which include hearing loss, childhood truncal obesity, insulin resistance and hyperinsulinemia, type 2 diabetes, hypertriglyceridemia, short stature in adulthood, cardiomyopathy, and progressive pulmonary, hepatic, and renal dysfunction. Alstrom syndrome is caused by mutations in *ALMS* gene. ALMS1 protein is found in centrosomes, basal bodies, and cytosol of all tissues affected by the disease¹⁰⁴.

1.4.5.2. Batten disease

Also known as the neuronal ceroid lipofuscinoses (NCL; CLN), is clinically and genetically heterogeneous group of neurodegenerative disorders caused due to intracellular accumulation of autofluorescent lipopigment storage material. Clinically, the phenotypes are categorized according to the age of onset and order of appearance of clinical features; as infantile, late-infantile, juvenile, adult, Northern epilepsy. The genes associated among these phenotypes are also different. The disease is characterized by progressive intellectual and motor deterioration, seizures, and early death. Visual loss is a feature of most form and LCA is reported in the infantile form¹⁰⁵.

1.4.5.3. Cerebello-oculo-renal syndromes

Syndromes involving brain, eye and kidney abnormalities come under Cerebellooculo-renal syndromes.

✓ Senior-Loken syndrome

Senior-Loken syndrome is a ciliopathic autosomal recessive disease with main features being nephronophthisis (an autosomal recessive cystic kidney disease) and progressive eye disease¹⁰⁶. Both Leber congenital amaurosis and retinitis pigmentosa are reported as ocular components. Six genes and one locus have so far been identified and *IQCB1* (SLSN5) is reported as a candidate gene in non-syndromic LCA as well. Some of the LCA patients with *IQCB1* mutation develop renal abnormality and are thus re-diagnosed as SLSN⁵³.

✓ Joubert syndrome

Joubert syndrome is an autosomal recessive disease involving defects in cerebellum and common features include developmental delays, ataxia (lack of muscle control), hyperpnoea (abnormal breathing patterns), sleep apnea, abnormal eye and tongue movements, and hypotonia in early childhood. Features of retinal dystrophy like RP or LCA are also reported. Twenty-six genes have been reported so far in Joubert syndrome including *CEP290* which is one of the candidate genes for LCA¹⁰⁷.

1.4.5.4. Peroxisome biogenesis disorders

Peroxisomal disorders are a group of genetically heterogeneous metabolic diseases that share dysfunction of peroxisomes, an organelle important for specific metabolic pathways, such as beta-oxidation of very-long-chain fatty acids (VLCFA), detoxification of hydrogen peroxide and production of cholesterol, bile acids, and plasmalogens. Some common clinical characteristic of Zellweger spectrum of peroxisomal biogenesis defects include neurologic, eye abnormalities (Leber congenital amaurosis, retinitis pigmentosa, optic atrophy, cataracts), hepatorenal defects, rhizomelic limb shortening, and calcific stippling of the patella¹⁰⁸.

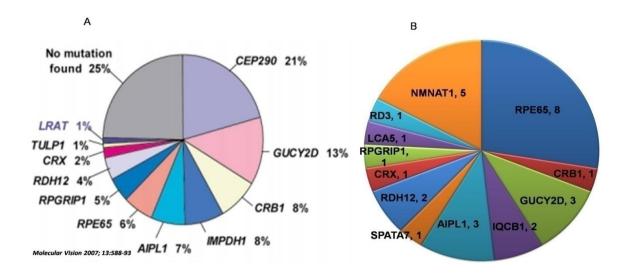
1.4.5.5. Thiamine responsive megaloblastic anaemia

Thiamine responsive megaloblastic anaemia (TRMA) is an autosomal recessive disease caused by mutations in *SLC19A2* and is characterized by a triad of megaloblastic anaemia, non-type 1 diabetes mellitus and sensorineural deafness. Ocular abnormalities which include cone rod dystrophy, retinitis pigmentosa and optic atrophy are also reported in few cases. Thiamine transporter protein THTR1, localized in red blood cells, inner hair cells of the cochlea, pancreas, and small intestine is encoded by *SLC19A2* gene. This protein helps in the absorption of thiamine inside the cells.¹⁰⁹.

1.4.6. Gene therapy in LCA

Gene identification, proof-of-concept and safety studies of gene therapy in animals, and detailed human studies on photoreceptor layer integrity have led to treatment trials in the molecular form of LCA caused by mutations in *RPE65*, the gene encoding retinal pigment epithelium-specific protein, 65 kDa¹¹⁰. In this gene therapy trial, the researchers packaged a normal version of *RPE65* gene inside a

genetically engineered vector, the adeno-associated virus (AAV). This was injected subretinally to *RPE65* mutated LCA patients. The vector delivers the gene to cells in the retina, where the gene produces the functional enzyme and completes the visual cycle which otherwise is not functional due to mutated *RPE65*.


The results of the phase 1 gene replacement therapy trial conducted at Moorefield's eye hospital, University College London eye gene therapy study group showed sustained improvement in three young adults who received gene therapy and remained healthy maintaining the visual gains one year after treatment with AAV2hRPE65v2^{111, 112}. Early intervention was associated with better results. The immunological effect of antibodies after administration of AAV2-hRPE65v2 viral vector in both eyes in canine and non-human primate animal models suggested that simultaneous treatment of both eyes does not induce an immune response complicating the treatment¹¹³. Jacobson et al in 2012 reported the safety and efficacy in 15 children and adults followed up to 3 years where visual function improved in all patients to different degrees and improvements were localized to treated areas. Cone and rod sensitivities increased significantly in the study eyes but not in the control eyes. Minor acuity improvements were recorded in many study and control eyes¹¹⁴. Issues such as pseudo fovea formation, continued degeneration of photoreceptors, increase in dosage level are now being addressed^{115, 116}. Other than the *RPE65* human gene therapy trials, animal models for gene therapy for LCA genes, AIPL1¹¹⁷, SPATA7¹¹⁸, GUCY2D¹¹⁹ and CEP290¹²⁰ are being conducted and they also show promising results.

Another strategy that is being developed to treat RD is by targeting mutated gene using antisense oligonucleotides (AONs). AONs are small stretch of oligonucleotides that binds complementarily to the target sequence thereby hindering either transcription or translation. By binding to the target sequence, they can mask pre-mRNA splicing or trigger mRNA degradation as a DNA oligo can activate RNAse H. In *CEP290* associated LCA, AONs are used for splice correction where the intronic *CEP290* mutation c.2991+1655A>G creates cryptic splice-site leading to pseudoexon formation and thereby aberrant protein product. By AONbased therapy, the cryptic site is masked and the pseudoexon is skipped leading to normal *CEP290* splicing and wild-type CEP290 protein levels. *Invitro* and *invivo* studies on mice models are promising ¹²¹. Thus, the AON treatment addressing altered splicing has a therapeutic potential for many genetic diseases.

1.4.7. Targeted genotyping in Leber congenital amaurosis - Need for the study

LCA accounts for 3-5% of childhood blindness and has a prevalence of 1/50,000 - 1/33,000 live births (http://www.orpha.net -last updated July 2015). The genes associated with LCA have so far accounted for approximately 75% of all LCA cases. The frequency of mutations in LCA genes varies in different populations and comprehensive mutation study focused on individual ethnicities in large cohorts are few. Also, the gene that contributes to the highest mutation rate differs among the populations.

The clinical and genetic heterogeneity of LCA hampers its routine molecular diagnosis. Mutation- specific assays that are designed based on data available from LCA patients from one ethnic population are not the most efficient approach for studying patients from different populations and ethnic backgrounds. The mutation studies conducted on Indian LCA cohorts either had a very small sample size with fewer genes screened or included Indians as a part of multicentre studies or case report. Screening *RPE65* in 60 unrelated cases from Asian Indian cohort contributed to only 1.7%¹²² whereas it contributes to 6% of LCA among various other populations. Thirty-eight LCA patients from Southern India were tested for the presence of 104 previously reported mutations in eight LCA genes from a Northern American cohort data. Only one proband was found to carry one of these 104 mutations¹²³.

Figure 6: A. Pie chart showing distribution of LCA candidate genes mutations in North American cohort from 30 published studies ¹²⁴ **B.** Distribution of LCA candidate genes mutations in Indian patients from 8 published studies ^{122, 123, 125-130}. The numbers in the pie diagram show the number of mutations identified in the specific gene in Indian patients.

Considering all the previous publications on gene screening for LCA from Indian cohorts, only 25 mutations in 33 cases are reported^{122, 123, 125-131} (**Figure 6**). There is yet no comprehensive study on LCA candidate genes from a larger Indian cohort and the current study addresses this lacuna.

Sanger sequencing approach has been the gold standard for DNA sequencing for the past 35 years¹³². In 2005, the commercial launch of massively parallel pyrosequencing platforms piloted a new era of high throughput genome analysis, the next generation sequencing (NGS). The major advantage of this 'secondgeneration' or 'massively parallel' sequencing technologies, compared to Sanger sequencing, is their remarkably higher throughput, lower cost per sequenced base and less time consuming¹³³. Using NGS technology in genetically heterogeneous diseases helps generate molecular data for a larger cohort at a reasonable time and cost.

1.5. Objectives of the study

Objective 1:

• Clinical examination, complete phenotype documentation and recruitment of 100 patients with Leber congenital amaurosis (LCA).

Objective 2:

- To design a customized probe to capture all exons and 20bp flanking sequences (exon intron boundary) of the LCA candidate genes.
- Perform high throughput re-sequencing for the candidate genes on NGS platform.

.Objective 3:

- To validate the results obtained by targeted re-sequencing using Sanger sequencing, to perform segregation analysis in the families and control screening for the identified mutations to confirm the pathogenicity.
- To perform appropriate bioinformatics analyses for the identified mutations.

Objective 4:

• To perform genotype-phenotype correlation.

CHAPTER 2: MATERIALS AND METHODS

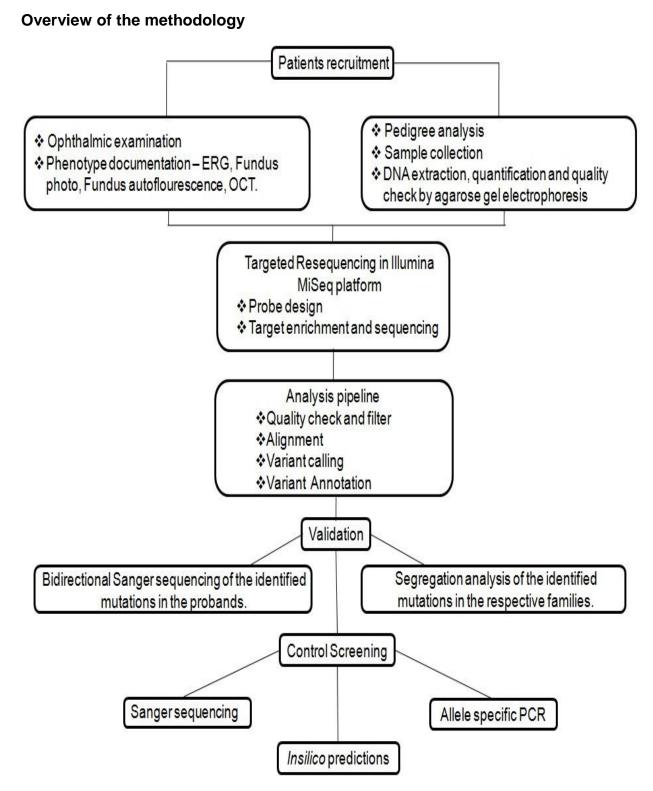
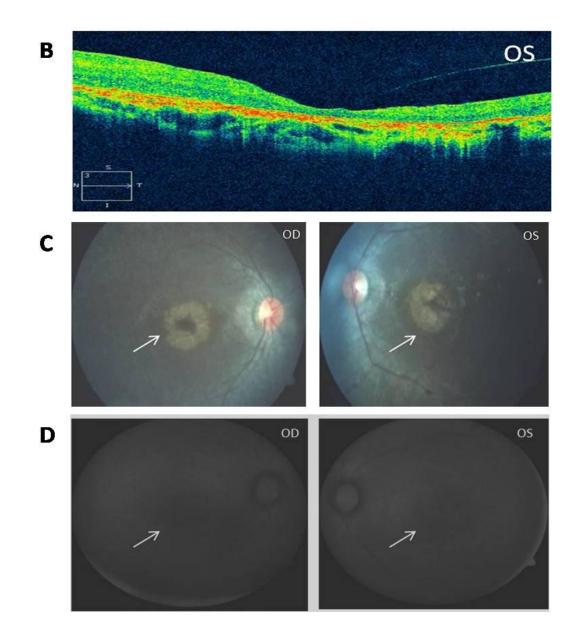
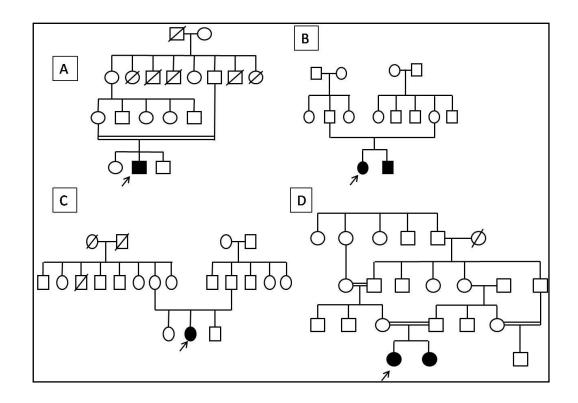


Figure 7: Diagrammatic representation of methodology.


2.1 Patients recruitment

Patients were recruited through the departments of paediatrics ophthalmology, vitreoretina and genetics clinic of Medical Research Foundation, Sankara Nethralaya, Chennai. The work was approved by the Institutional review board and ethical committee and was in accordance with declaration of Helenski. Written Informed consent was obtained from the patients or parents in case the subjects were below 18 years of age.

2.1.1. Clinical documentation:


The patients underwent complete ophthalmic examination and characteristic features of LCA – diagnosed earlier to one year of age, diminished/ absent ERG, nystagmus, hyperopia, photophobia, sluggish pupil and oculo- digital signs were evaluated. They were examined for finer fundus details with posterior pole fundus photograph, fundus autofluorescence (FAF), retinal optical coherence tomography (OCT) measurements if possible (**Figure 8**). In infants or very young children under 5 years of age, fundus photography, FAF and OCT could not be done and ERG alone was documented under general anaesthesia.

	Ganzfeld summary
A	Right eye Rod response Left eye
	·
	100 JW
	0 20 40 60 80 100 120 140 ms
	Maximal response
	I and the second
	100 JV 001j
	0 20 40 60 80 100 120 140 ms 0 20 40 60 80 100 120 140 ms
	Oscillatory potential
	1
	20 JV 0 10 20 30 40 50 60 ms 0 10 20 50 40 50 60 ms
	Cone response
	imment imment
	20W 20W
	20,47 0 10 20 30 40 50 60 70 80 ms 0 10 20 50 40 50 60 70 80 ms
	Red View Ends View
	30Hz Flicker
	1
	20 aV
	0 20 40 60 80 100 120 140 ms 0 20 40 60 80 100 120 140 ms

Figure 8: Shows the [A] ERG of LCA patient showing extinguished rod and cone response as a flat wave pattern [B] OCT of patient having mutation in *RDH12* gene showing foveal thinning with RPE atrophy [C] Fundus photo and [D] Fundus autofluorescence of a patient with mutation in *AIPL1* gene showing macular changes (indicated by arrow).

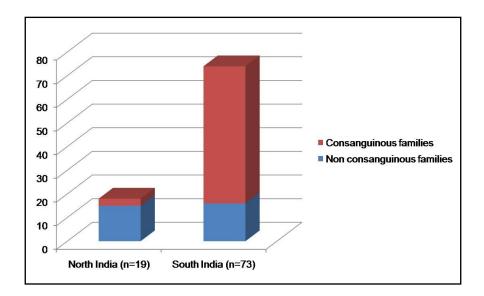

The patients were either simplex cases (78/92) or affected sibs (14/92) from consanguineous or non-consanguineous families (**Figure 9**) representing typically autosomal recessive inheritance. Sixty seven percent of (62/92) families reported consanguinity of which 84% (52/62) were simplex cases.

Figure 9: Representative pedigrees of cases recruited. Pedigrees of [A] isolated proband from a consanguineous family [B] affected sibs from non-consanguineous family [C] isolated proband from non-consanguineous family [D] affected sibs from consanguineous family.

2.1.2. Sample collection

Ninety-two LCA patients were recruited in the study from across India. Seventythree patients are from south India while 19 were from north India. Of these 79% (58/73) and 16% (3/19) are from consanguineous south and north Indian families, respectively (**Figure 10**). Venous blood (8-10 ml) was collected with ACD anticoagulant (BD Vacutainer, BD, New Jersey, USA) from the probands, affected or unaffected sibs (if any) and parents after obtaining their consent.

Figure 10: Shows distribution of consanguinity among the north and south Indian cases in the cohort of 92 LCA families.

Control samples were taken from previous epidemiological studies conducted by Medical Research Foundation and they were ruled out for any inherited retinal dystrophies^{134, 135}

2.2. DNA extraction

Genomic DNA was extracted from ACD blood samples using NucleoSpin[®] Blood XL kit (Macherey-Nagel, GmbH, Duren, Germany). [Procedure as in appendix 1]

2.3. DNA Quantification and Quality check

The DNA was quantified using Nano drop Spectrophotometer ND1000 (Thermo Fisher Scientific, Wilmington, USA). The integrity of the DNA was checked by running on 1% agarose gel (Figure 11). [Procedure as in appendix 2]

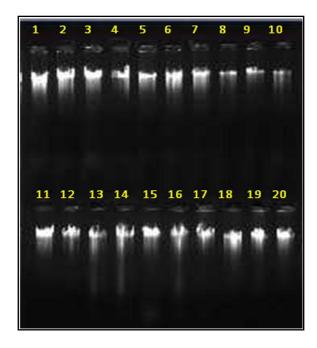


Figure 11: Agarose gel image of DNA samples to check their quality (Lane 1-20).

2.4. Targeted re-sequencing using Illumina MiSeq platform

2.4.1. Designing target enrichment probes:

- Target enrichment probes were designed using Agilent SureDesign HaloPlex standard wizard covering 20 LCA candidate genes AIPL1, CABP4, CEP290, CRB1, CRX, GUCY2D, IQCB1, IMPDH1, KCNJ13, LCA5, LRAT, MERTK, NMNAT1, OTX2, RD3, RDH12, RPE65, RPGRIP1, SPATA7 and TULP1 including the exon-intron boundaries, padding each exon with 20 bp sequences upstream and downstream.
- For the probe design the CCDS reference sequence databases were selected for the coding transcripts of all the genes except *CEP290* for which the RefSeq database was used. UTR regions were not included in the designing.
- Two-hundred thirty-nine regions of 50062 bp covering all the coding regions with splice junctions were targeted and probe design was automatically generated by HaloPlex Design Wizard software with 99.8% coverage i.e. 49,958 bp of region of interest (Figure 12).

DESIGN INFORM	MATION	Gene/Transcript/Coordinate group	Coverage	Source
Product type:	HaloPlex Illumina 150	AIPL1	100.0 %	CCDS32540.1, CCDS32539.1, CCDS11075.1
Library type:	HaloFast	CEP290 CRB1	97.9 % 100.0 %	NM_025114 CCDS1390.1
Number of target regions:	239	CRX	100.0 %	CCDS12706.1
		GUCY2D	100.0 %	CCDS11127.1
		IMPDH1	100.0 %	CCDS47700.1, CCDS47699.1, CCDS34749.1 CCDS43643.1, CCDS34748.1
Total target region size:	50062 bp	IQCB1	100.0 %	CCDS33837.1, CCDS33836.1
		KCNJ13	100.0 %	CCDS2498.1
Coverage:	99.8 %	LCA5	100.0 %	CCDS4990.1
	(49958 bp)	LRAT	100.0 %	CCDS3789.1

Figure 12: Target enrichment probe design using Agilent SureDesign HaloPlex standard wizard. Snapshot of the output by HaloPlex Design Wizard providing information on the coverage for each gene by the designed custom enrichment probes.

The region of interest, list of analysable (Figure 13) and unanalysable amplicons that were generated by the software was checked manually with the reference sequences to confirm whether all exonic regions of candidate genes were covered or not.

	A	B	С	D	E	F	G	н	1	J	К	L
1	##GFF-ve	ersion 2										
2	##source	e-version se	edd2gff 0.1									
3	##Type D	DNA										
4	##date 2	012-03-21										
5												
6	track nar	ne=Analyza	able									
7	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08	2		0	"NC_0000	02.11:112	656173-112	656502"
8	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	686609-112	687323"
9	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	702192-112	702336"
10	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	702384-112	702777"
11	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	704775-112	705336"
12	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	725549-112	726007"
13	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	722629-112	723068"
14	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	732712-112	733212"
15	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	740105-112	740715"
16	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	754648-112	754792"
17	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08	2		0	"NC_0000	02.11:112	754804-112	755305"
18	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	751555-112	752312"
19	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	761190-112	761334"
20	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	760539-112	760853"
21	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	761348-112	761795"
22	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08	-		0	"NC_0000	02.11:112	758545-112	759046"
23	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	767419-112	767863"
24	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	767252-112	767415"
25	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	765687-112	766215"
26	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	776765-112	777280"
27	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08			0	"NC_0000	02.11:112	779595-112	780217"
28	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08		2.01	0	"NC_0000	02.11:112	778685-112	779372"
29	chr2	SEDD	Analyzabl	1.13E+08	1.13E+08	× 1		0	"NC_0000	02.11:112	785609-112	786614"
30	chr2	SEDD	Analyzabl	2.34E+08	2.34E+08			0	"NC_0000	02.11:233	536253-233	636397"
31	chr2	SEDD	Analyzabl	2.34E+08	2.34E+08			0	"NC_0000	02.11:233	535289-233	636242"
32	chr2	SEDD	Analyzabl	2.34E+08	2.34E+08	20		0	"NC_0000	02.11:233	532814-233	633646"

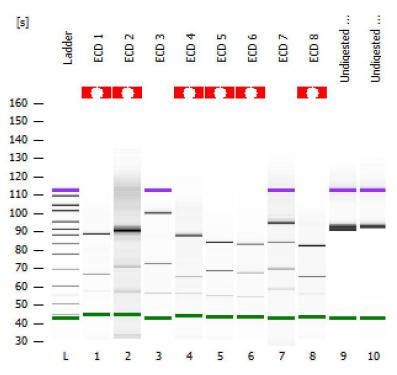
Figure 13: Above is the snapshot of list of analysable regions for which custom enrichment probes were designed.

Of the 239 targets, 9 were not covered completely. These include few bases in some exons of genes CEP290, LCA5, RPE65 and SPATA7 (Figure 14). Bases that were not covered by the custom enrichment probes were genotyped by direct sequencing.

	А	В	С	D	E	F	G	Н	1	J	K	L
1	##GFF-ve	ersion 2										
2	##source	-version se	edd2gff 0.1									
3	##Type D	NA										
4	##date 2	012-03-21										
5												
6	track nar	me=Not_Co	vered									
7	chr1	SEDD	Not_Cove	68896954	68896962			0	"NC_0000	001.10:688	96954-6889	6962"
8	chr6	SEDD	Not_Cove	80197453	80197455			0	"NC_0000	06.11:801	97453-8019	7455"
9	chr6	SEDD	Not_Cove	80197603	80197603			0	"NC_0000	006.11:801	97603-8019	7603"
10	chr12	SEDD	Not_Cove	88454587	88454600			0	"NC_0000	012.11:884	54587-8845	4600"
11	chr12	SEDD	Not_Cove	88471659	88471662			0	"NC_0000	012.11:884	71659-8847	1662"
12	chr12	SEDD	Not_Cove	88510790	88510834			0	"NC_0000	012.11:885	10790-8851	0834"
13	chr14	SEDD	Not_Cove	88862498	88862505			0	"NC_0000	014.8:8886	2498-88862	505"
14	chr14	SEDD	Not_Cove	88893957	88893971			0	"NC_0000	014.8:8889	3957-88893	971"
15	chr14	SEDD	Not_Cove	88904732	88904736			0	"NC_0000	014.8:88904	4732-88904	736"
16												
17												

Figure 14: Above is the snapshot of list of non-analysable regions for which custom enrichment probes could not be designed.

The custom enrichment probes were submitted to the manufacturer for the synthesis of target enrichment kit.


2.4.2. Target enrichment and Sequencing

Target enriched and indexed library was prepared for each sample to be sequenced using **HaloPlex PCR target enrichment and library preparation kit.** This was performed in Scigenom labs Pvt Ltd, Kochi, India

Restriction digestion:

- The gDNA was digested with 16 restriction enzymes (RE) in eight different reactions each containing 2 RE. This resulted in fragment library which include both target and non-target gDNA regions.
- During each batch of library preparation, an Enrichment Control DNA (ECD) was included to validate the restriction digestion reaction.

The digested ECD was run on Agilent 2100 Bioanalyzer (Figure 15).

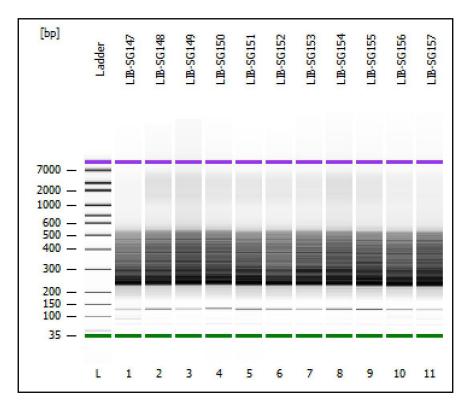


Figure 15: The gel picture of the ECD as run on DNA chip in Agilent 2100 bioanalyzer. 'L' represents 50bp ladder, lane 1-8 represents ECD digested with specific pair of RE and the pattern of digested fragments, lane 9 and 10 represents undigested DNA.

Enrichment:

- The gDNA restricted fragments were then hybridized to HaloPlex probe capture library that were designed to the target regions.
- Each of the eight restriction digested reactions of a sample were pooled and added to the probe capture library.
 - The biotinylated probes are designed along with unique indexes and Illumina paired end sequencing motifs in the centre, thus facilitating indexing of the enriched sequences. The unique indexes help tag the samples during multiplexing for bridge amplification and sequencing on the NGS platform. The presence of target sequence on ends of the probe directs circularization of the target regions during hybridization.
- The circularized target DNA-HaloPlex probe hybrids, containing biotin, were captured on streptavidin beads and the non-target regions were removed.

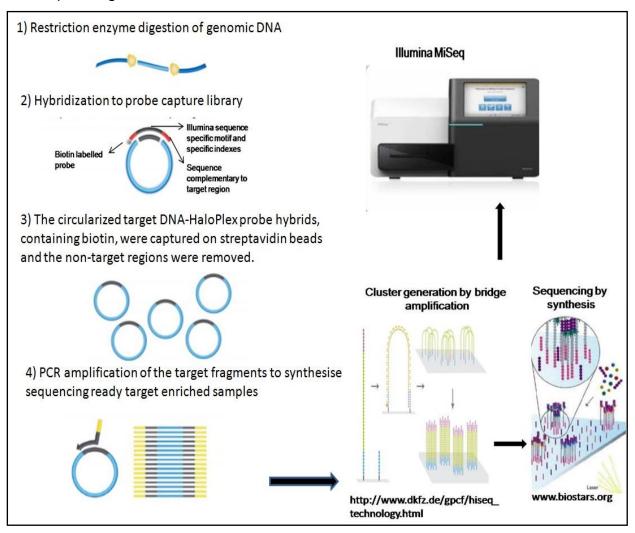

- This was followed by ligation of the nicks in the circularized target DNA in the HaloPlex probe-target DNA hybrids using DNA ligase.
- The captured, fully circularized targets were eluted from the bead using 50mM NaOH and were PCR amplified.
 - Universal primers complementary to Illumina paired end sequencing motifs were used during PCR amplification.
- Bead based purification of the amplified product was performed which was followed by validating and quantifying the enriched target samples by Agilent 2100 Bioanalyzer prior to sample pooling and sequencing preparation (Figure 16).

Figure 16: The gel picture of amplified purified samples in the size range between 175-625bp indicating enriched target libraries of target insert sizes 50-500bp. Green line- lower marker; purple line – upper marker.

Sequencing:

Equimolar amount of each sample was pooled prior to cluster generation by bridge amplification and sequencing on Illumina MiSeq (Figure 17). 10nmoles/ 10ul of each sample were pooled and 7 pmoles of this pool was loaded in the Illumina MiSeq flow cell for cluster generation followed by paired end parallel sequencing.

Figure 17: Schematic representation of the steps involved in target enrichment using Agilent HaloPlex target enrichment kit followed by cluster generation by bridge amplification and sequence by synthesis on Illumina MiSeq platform.

2.4.3. Analysis pipeline:

The steps followed to analyse the datasets obtained from next-generation sequencing are briefly described below.

 Quality Check and Filter: First the low quality bases from the reads were removed. Average Q30 score was used as a cut-off to remove low quality bases. Then the adapter sequences were trimmed from both 5' and 3' end of the read sequence. The base quality score distributions, average base content per read and GC distribution in the reads were considered for quality checking.

- II. Alignment: The filtered reads were aligned to the reference genome (hg19) using BWA program. After alignment only reads with mapping quality ≥20 were used for further analysis. The coding region of each gene was identified for taking into consideration all protein-coding transcripts of the gene in Ensembl 68 database.
- III. Variant Calling: The variants in the samples were predicted using Samtools toolkit. The variants with quality score ≥ 50 and read depth of at least 5 were taken further for annotation.
- IV. Annotation: The variants were annotated using GATK and compared with various databases including OMIM, ClinVar, SNPedia, Ensemble (GRCh37) variation table, 1000 genome project data, Exomeserver (ESP5400), ExAC databasev.0.3.1, dbSNP (build 150) and Human genome mutation database for identifying clinically relevant variants.

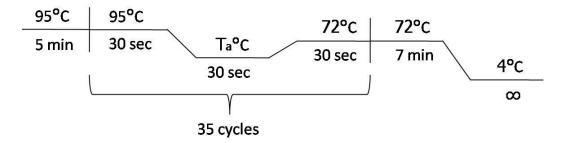
The initial analysis using the above pipeline was done in Scigenom labs Pvt. Ltd, Kochi, India. The same pipeline was constructed in CLC Cancer Genomics workbench (v.8.0.1) and the samples were re-analysed.

The single nucleotide variations (SNVs) and indels were further analysed manually as defined below

- i. As LCA is an autosomal recessive disease, we short listed all the homozygous variants first.
- ii. Scrutinized all variants and indels in the coding regions
- iii. The canonical splice-sites, regions 10bp upstream and downstream of splice sites (-10 to +10) and variants in the last codon of the exons were identified for further validation and bioinformatics analyses.
- iv. The heterozygous variants (MAF< 0.01) were shortlisted to identify possible compound heterozygous mutations.
- v. The homozygous and heterozygous SNVs and indels were checked if they are novel or reported in the databases like OMIM ¹³⁶, ClinVar¹³⁷, SNPedia¹³⁸, Ensemble variation table ¹³⁹, Exome server ¹⁴⁰, 1000 genome project data ¹⁴¹, ExAC database ¹⁴², dbSNP¹⁴³ and Human genome mutation database ¹⁴⁴.
- vi. All other reported and novel, synonymous and intronic variants were noted.

2.5. Validation of the identified pathogenic and likely pathogenic mutations:

The pathogenic or likely pathogenic mutations shortlisted using the above criteria was validated by PCR and bidirectional direct Sanger sequencing of the respective regions. The segregation analysis was performed in parents and available family members. Variants that were validated and segregating within the families were screened in an average of 120 unrelated controls either by custom designed allele specific PCR (ASPCR) or Sanger sequencing.


I. Polymerase Chain Reaction (PCR):

Primers were designed using Primer3 (Version 0.4.0). The primers were designed to amplify the exons in which the pathogenic or likely pathogenic mutations were identified. The primer sequences used for the PCR are provided in appendix 3.

Table 3: Reaction protocol for Polymerase chain reaction.

Reagents	Stock concentration	Volume in µl
Genomic DNA	50 ng	1
Forward Primer (10pmol/ µl) (Xcelris	5 pmol	
Genomics, Ahmadabad, India)/ Sigma-		0.5
Aldrich, Missouri, USA/IDT, Iowa, USA)		
Reverse Primer (10pmol/ µl) (Xcelris	5 pmol	
Genomics, Ahmadabad, India)/ Sigma-		0.5
Aldrich, Missouri, USA/ IDT, Iowa, USA)		
Deoxyribo nucleotide phosphates	250uM	
[dNTPs] (Applied Biosystems, Foster		0.125
City, USA)		
Taq DNA polymerase (3U/µl) (Thermo	0.3U	0.1
Fisher Scientific, Massachusetts, USA)		0.1
Taq Buffer (Thermo Fisher Scientific,	1X	1.25
Massachusetts, USA)		1.25
Betaine (Sigma-Aldrich, Missouri, USA)	5M	1
Sterile water		8.025
Total		12.5

The thermal cycler profile is as given below.

The standardized annealing temperature and the product size of the exons that were PCR amplified for validation of identified pathogenic and likely pathogenic mutations from the targeted re-sequencing data and for exons that were incompletely covered by target enrichment probes are given below in the **table 4.** The regions covered by the primers are shown in appendix 6.

<u>Table 4:</u> List of regions analysed by PCR based direct sequencing with annealing temperature and product size

S.No	Gene	Exon	Tm (c°)	Product size (bp)
1	AIPL1	6	63	500
2	AIPL1	5	60	279
3	AIPL1	2	60	316
4	CRB1	5	60	317
5	CRB1	11	60	283
6	CRB1	12A	62	482
7	CRX	2	67.8-60.8(-0.5)	314
8	CRX	3b	63	294
9	GUCY2D	14	69-62(-0.5)	306
10	GUCY2D	15	69-62(-0.5)	260
11	GUCY2D	17	69-62(-0.5)	168
12	GUCY2D	10	69-62(-0.5)	235
13	GUCY2D	2b	59	551
14	GUCY2D	9	69-62(-0.5)	295
15	GUCY2D	3	69-62(-0.5)	381
16	GUCY2D	16	69-62(-0.5)	200

17	GUCY2D	11	69-62(-0.5)	220
18	GUCY2D	2a	64	472
19	IQCB1	14	60	351
20	IQCB1	11	60	383
21	IQCB1	13	60	400
22	KCNJ13	3A	56	471
23	LCA5	7a	57	340
24	LCA5	3	65-58(-0.5)	365
25	LCA5	5	56	353
26	LCA5	6	56	237
27	NMNAT1	2	62	425
28	RD3	1	60	480
29	RDH12	2	60	359
30	RDH12	6	60	492
31	RPE65	4	54	501
32	RPE65	2	60	360
33	RPE65	14	53	453
34	RPE65	9	56	292
35	RPE65	13	42	199
36	RPE65	10	56	226
37	RPGRIP1	21	58	287
38	RPGRIP1	14	52	554
39	RPGRIP1	6	52	282
40	RPGRIP1	24	56	205
41	SLC19A2	2	63-56(-0.5)	700
42	SPATA7	10	60	243
43	SPATA7	1	60	144
44	SPATA7	7	60	477
45	TULP1	11	59	247
		Unanaly	sable regions	
46	CEP290	Intronic	63	294
47	CEP290	40	58	592
48	CEP290	18	62	495
49	RPE65	12	60	214
50	SPATA7	3	65	312
51	SPATA7	6	60	250
52	SPATA7	11c	63	396

II. ExoSap digestion of PCR product.

The amplified products were digested by ExoSap prior to cycle sequencing. This is an enzymatic procedure for purifying the PCR product where the unused primers and dNTPs are hydrolysed.

Table 5: ExoSAP protocol

Reagents	Stock	Volume
Reagento	concentration	(µl)
Exonuclease I (Thermoscientific, Massachusetts,	20U/µl	1
USA)		
Exonuclease buffer (Thermoscientific,	10X	4
Massachusetts, USA)		
FastAP thermosensitive alkaline phosphatase	1U/µl	2
(Thermoscientific, Massachusetts, USA)		
FastAP buffer (Thermoscientific, Massachusetts,	10X	3
USA)		

Procedure

1.5 µl of the above cocktail and 5 µl of amplified PCR product were mixed well, microfuged and reaction proceeded.

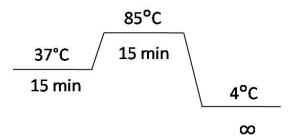


Figure 19: Reaction protocol for ExoSap digestion in thermal cycler.

III. Cycle Sequencing:

Cycle sequencing was done using big dye terminator v3.1 kit (Applied Biosystems, Foster City, USA). Sequencing of all amplified products was carried out using the either forward primer/ reverse primer. A 10 μ l reaction was prepared as given in the protocol below, mixed and microfuged.

Table 6: Reaction protocol for cycle sequencing.

Reagents	Volume in µl
5X sequencing Buffer (Applied Biosystems, Foster	1.5
City, USA)	1.0
Primer (100pmol/ µl)	1
RR mix (Applied Biosystems, Foster City, USA)	0.5
Exo Sap product	1
Sterile water	6
Total	10

> The reaction was set in a thermal cycler as given in the conditions below.

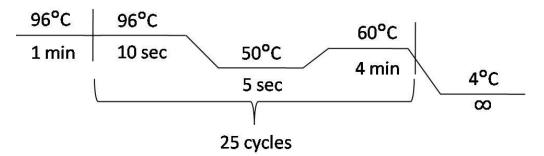


Figure 20: Thermal cycle reaction protocol for cycle sequencing

The samples were purified by ethanol/ EDTA/ Sodium Acetate precipitation method. The precipitated product was resuspended in Hi-DiTM Formamide (Applied Biosystems, Foster City, USA) and was loaded on to ABI 3100 *Avant* or 3730 Genetic analyzer (Applied Biosystems, Foster City, USA). [Procedure as in appendices 4 & 5]

IV. Reverse transcriptase PCR

1. RNA extraction

RNA extraction was performed from whole blood (two families) of the probands, parents and affected/ unaffected sib using Trizol method.

Procedure

2 ml Trizol (TRI Reagent[®] (Sigma Aldrich, Missouri, USA)) was added to 1ml whole ACD/ EDTA blood, mixed, incubated for 10 minutes at room temperature

- > It was centrifuged at 12000 rpm for 15 minutes at 4°C.
- To the supernatant 2ml Trizol and 400µl chloroform (Merck, New Jersey, USA) was added, mixed, incubated for 10 minutes at room temperature and centrifuged at 12000 rpm for 20 minutes at 4°C.
- The aqueous phase was separated and equal volume of isopropanol (Merck, New Jersey, USA) was added, mixed well, incubated for 10 minutes at room temperature and centrifuged at 12000 rpm for 10 minutes at 4°C.
- To the pellet, 2ml of 75% ethanol (Hayman Limited, Witham, England) was added and washed twice by centrifuging at 8400 rpm for 5 minutes at 4°C.
- > The pellet was air dried and dissolved in RNAse free water.
- The RNA was quantitated using Nano drop Spectrophotometer ND1000 and electrophoresed in 1% agarose gel to check the quality.

2. cDNA conversion:

cDNA conversion was performed using Verso cDNA Synthesis Kit, (Thermo Scientific, Massachusetts, USA).

Procedure

A 20 µl reaction was prepared as given in the protocol below, mixed and microfuged.

Table 7: Reaction protocol for cDNA Synthesis.

Reagents	Volume in µl
Template RNA (~1µg)	1
Verso enzyme mix	1
RT enhancer	1
RNA primer mix	1
(Random hexamer: oligodt = 3:1)	·
dNTP mix	2
5X cDNA synthesis buffer	4
Nuclease free Water	10
Total	20

> The reaction was set in a thermal cycler as given in the condition below.

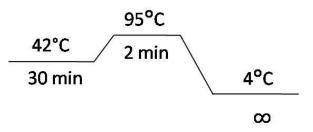


Figure 21: Thermal cycler reaction protocol for cDNA synthesis.

3. Reverse transcriptase PCR:

Reverse transcriptase PCR was performed on cDNA using primers encompassing exons 7-10 and 9-11 covering the mutations c.913-2A>G and c.1215+5C>A of the *SPATA7* gene to identify the altered splicing. PCR was performed using the reaction protocol as in **table 3** and thermal profile as in **figure 18.** The standardized annealing temperature and product size is provided in **table 8**. The regions covered by the primers are shown in appendix 6.

<u>Table 8</u>: cDNA region analysed by PCR based direct sequencing with annealing temperature and product size

S.No	Region	Target exon	Tm (c°)	Product size (bp)
1	SPATA7RT1	7-10	63-56(-0.5)	575
2	SPATA7RT2	9-11	61	418

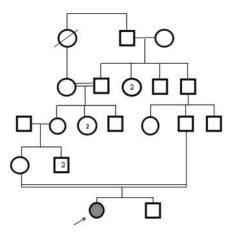
V. Gel extraction

As there were two different transcripts of *SPATA7* gene expressed in blood, gel extraction followed by sequencing was performed to identify them. Gel extraction was done using QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany)

Procedure

- The specific amplified band was excised from agarose gel with a clean scalpel and weighed.
- Buffer QG (provided in kit) was added to the gel slice such that for 100mg gel slice 100µl buffer QG was added.

- The tube was incubated at 50°C until the gel slice dissolved completely. It was also vortexed intermittently.
- > Equal volume of isopropanol was added to the sample and mixed.
- The sample was added to QIAquick column (provided in kit) and centrifuged at 13000 rpm for 1 min.
- The flow through was discarded and 500 µl of buffer QG was added to the column and centrifuged at 13000 rpm for 1 min.
- To the column, 750 µl of wash buffer PE (provided in kit) was added, incubated for 5 minutes and centrifuged at 13000 rpm for 1 minute. This step was repeated twice.
- The flow through was discarded and the column was centrifuged at 13000 rpm for 1 minute to remove residual buffer PE.
- The column was transferred to 1.5 ml microfuge tube and 15 µl elution buffer EB (provided in kit) was added, incubated for 4 minutes and centrifuged at 13000 rpm for 1 minute.
- The eluted products (2.0 ul each) were directly used for bidirectional Sanger sequencing.


2.6. Insilico Predictions:

Online bioinformatics prediction tools like SIFT¹⁴⁵, PolyPhen¹⁴⁶, PMut¹⁴⁷, Mutationaccessor (http://mutationassessor.org/v1), Mutpred¹⁴⁸ and Variant effect predictor¹⁴⁹ were used to predict the effect of the missense mutations. Mutation taster¹⁵⁰, Netgene2¹⁵¹, NNsplice¹⁵², Fsplice (http://www.softberry.com/berry.phtml?topic=fsplice&group=programs&subgr oup=gfind) and Splice finder¹⁵³ predicted the effect of splice-site mutations. CADD analysis was performed for all identified variants.

2.7. Screening of *SLC19A2* in a patient diagnosed with Thiamine Responsive Megaloblastic Anaemia (TRMA) with LCA as ocular feature.

A patient, reported to our hospital at 5 months of age and showed typical characteristics of LCA, later developed megaloblastic anaemia, non-type 2 diabetes mellitus and sensory neural deafness. The proband (Figure 22) underwent complete clinical, hematological, ophthalmic and auditory examination and presented the triad features - anaemia, diabetes and

deafness which are typical characteristics of syndrome called 'Thiamine responsive megaloblastic anaemia, an autosomal recessive disorder¹⁵⁴. The only known causative gene for the syndrome *SLC19A2*, encodes for thiamine transporter protein, THTR1¹⁵⁵. Blood samples were collected from the patient and her family members after an informed consent.

Figure 22: Pedigree of the proband showing typical autosomal recessive pattern of inheritance

The PCR primers for all 6 exons of the *SLC19A2* gene were designed using Primer3 software (Version 0.4.0). PCR was standardized as in **table 3**. Standardization of PCR for all six exons of *SLC19A2* gene was done (**Table 9**). The regions covered by the primers are shown in appendix 12.

The Exo-SAP treated PCR products were genotyped by direct sequencing using 3100-Avant genetic analyzer. SIFT and PolyPhen analyses were performed to predict the possible impact of amino acid substitution on the structure and function of protein. **<u>Table 9</u>**: List of regions in *SLC19A2* analysed by PCR based direct sequencing with annealing temperature and product size. ASPCR- Allele specific PCR for the identified mutation in exon 2.

S.No	Region	Tm (c°)	Product size (bp)
1	SLC19A2-Exon 1	61	589
2	SLC19A2-Exon 2	63-56	700
		(-1ºC)	700
3	SLC19A2- Exon 3	61	391
4	SLC19A2-Exon 4	61	429
5	SLC19A2- Exon 5	61	300
6	SLC19A2-Exon 6	61	295
7	SLC19A2-Exon 2-	56	186
	ASPCR		

CHAPTER 3 – RESULTS

3.1. Targeted resequencing

3.1.1. Data analysis

I. Quality Check and Filter:

a. Raw read summary

The reads/ data obtained after sequencing was analysed using specific analysis pipeline. This involves trimming of reads depending on their quality, removal of the adapter sequence, and then aligning to the reference sequences before the variants are called and annotated. Below (**Table 10**) is the summary of raw fastq files obtained from NGS for the processed 92 samples.

Table 10: Raw read summary

	All samples
# of paired-end reads	75,006,077
# of bases (Gb)	9.74
% of data >= Q30	83.2
Raw read length (bp)	151 x 2

II. Alignment:

a. Coverage:

The reads covering the coding region of all genes is represented as coverage. For all 20 genes that were studied we obtained an average coverage of 99.03%. The coverage of each gene is provided in **figure 23** and **table 11**

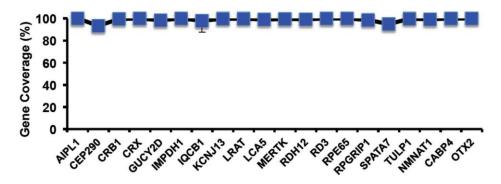


Figure 23: Average read coverage graph for all 20 genes

	Average coverage	Average depth
Gene	(%)	(X)
AIPL1	100	224.783653
CEP290	93.45964192	37.08527504
CRB1	99.69204983	93.72696533
CRX	100	103.4220974
GUCY2D	98.51097797	147.0135295
IMPDH1	99.97926786	269.9190111
IQCB1	98.09025253	69.26971055
KCNJ13	99.87620773	80.8880666
LRAT	99.85664776	98.76046058
LCA5	99.11889464	39.42222961
MERTK	99.60507028	173.1452721
RDH12	99.43473675	208.0075136
RD3	99.93682646	173.8373646
RPE65	99.99320227	156.7695652
RPGRIP1	98.63304982	100.09021
SPATA7	95.10451291	78.28896321
TULP1	99.91919031	233.9596462
NMNAT1	99.43671388	96.9768017
CABP4	100	167.9272444
OTX2	99.97560142	139.8586469

Table 11: Average coverage and depth for each 20 genes studied.

b. Depth:

The average number of reads covering the coding region is represented as depth. An average depth of 134X was obtained for all 20 genes. The depth for each gene is provided in **table 11** and **figure 24**.

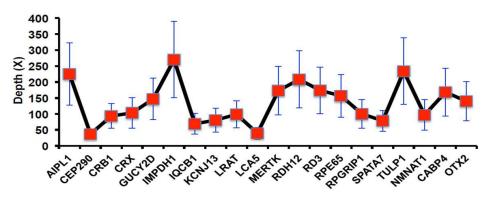
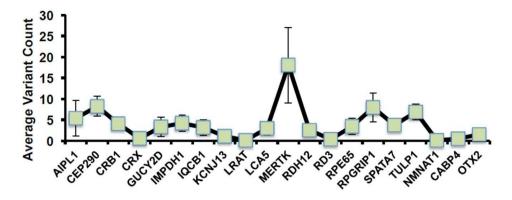
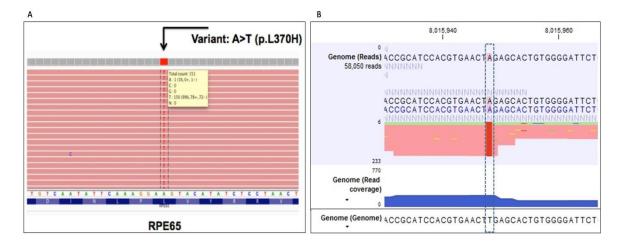



Figure 24: Average read depth graph for all 20 genes

III. Variant calling

The variants were predicted using Samtools program. An average of 78variants was identified in each sample for the 20 selected genes. The average number of total variants identified for each gene over all samples is shown in **figure 25**. Highest number of variants was observed for *MERTK* gene. Overall, 508 (378 SNPs, 130 Indels) different variants were identified for 20 genes in 92 samples.



IV. Variant Annotation:

The variants were annotated and compared with various databases including OMIM, ClinVar and SNPedia, Ensemble variation table, Exome server, 1000 genome project data and Human genome mutation database for identifying clinically relevant variants. In total, we identified 126 SNVs and 13 Indels present in coding region of the selected 20 genes in the 92 samples screened. Four out of all 92 samples were positive controls with known mutations (**Table 12**).

Sample ID	Gene	Variants
Sample 2	RPE65	c.1409C>T (p.Pro470Leu)
Sample 12	RPE65	c.1109T>A (p.Leu370His)
Sample 58	RPE65	c.362insT (p.Ser121Phefs1290)
Sample 60	LCA5	c.955G>A (activates cryptic splice-site)

Table 12: Shows the	e list of positive	control sample	and variants

Figure 26: [A] IGV view of c.1109T>A (p.L370H) variation identified in *RPE65* gene of LRS 12 in IGV viewer¹⁵⁶ [B] IGV view of c.3065T>A (p.L1022X) variation identified in *GUCY2D* gene of LRS 1 from CLC genomics workbench (v.8.0.1).

3.1.2. Validation of the identified pathogenic and likely pathogenic mutations:

The single nucleotide variations (SNVs) and indels were further analysed manually as defined in materials and methods (C.IV). The analysis by the mentioned criteria identified fifty-four cases with homozygous pathogenic / likely pathogenic variants including double mutations (2 homozygous mutations in same gene) in two cases. Compound heterozygous pathogenic variants in one case and digenic likely pathogenic variants in another were also identified. (**Table 13**).

Table 13: Lists of the pathogenic variants identified in fifty-six cases. The details of sample ID, gene and its ensemble transcript ID, genomic, cDNA and protein positions of the variants, variant type and reported or novel, CADD scoring, dbSNP ID and LOVD ID are given

			TRANSCRIPT	MUTATIONS	DENTIFIED	PREDICTED		REPORT		70 ID	
S.NO	LRS ID	GENE	TRANSCRIPT ID	GENOMIC	cDNA	CHANGE IN PROTEIN	MUTATIO N TYPE	ED/ NOVEL	PHRED LIKE SCORE [¢]	rs ID (dbSNP147)	DB-ID
1	LRS 37	GUCY2D	NM_000180.3/ NP_000171.1	g.7906889 T>G	c.524T>G	p.(Leu175Arg)	Missense	Novel	23.8	rs867412298	GUCY2D_ 000013
2	LRS 31	GUCY2D	NM_000180.3/ NP_000171.1	g.7907287 C>G	c.839C>G	p.(Thr280Arg)	Missense	Novel	29	rs868557040	<i>GUCY2D_</i> 000016
3	LRS 43	GUCY2D	NM_000180.3/ NP_000171.1	g.7915502 G>A	c.1790 G>A	p.(Gly597Glu)	Missense	Novel	27.7	rs867266072	<i>GUCY2D_</i> 000014
4	LRS 32	GUCY2D	NM_000180.3/ NP_000171.1	g.7915789 C>T	c.1978 C>T	p.(Arg660*)	Nonsense	Reported	42	rs61750161	***
5	LRS 83	GUCY2D	NM_000180.3/ NP_000171.1	g.7915789 C>T	c.1978 C>T	p.(Arg660*)	Nonsense	Reported	42	rs61750161	***
6	LRS 55	GUCY2D	NM_000180.3/ NP_000171.1	g.7915873 G>A	c.2062 G>A	p.(Gly688Arg)	Missense	Reported	18.42	rs144291605	***
				g.7915474 C>T	c.1762 C>T	p.(Arg588Trp)	Missense	Reported	35	CM078223 (HGMD)	***
7	LRS 74	GUCY2D	NM_000180.3/ NP_000171.1	g.7916489 G>A	c.2182 G>A	p.(Asp728Asn)	Missense	Reported	29.8	rs766646217	GUCY2D_ 000017
8	LRS 54	GUCY2D	NM_000180.3/ NP_000171.1	g.7918263 delG	c.2663 delG	p.(Gly888Alafs*8)	Frameshift	Novel	27.2	rs868328481	<i>GUCY2D_</i> 000020
9	LRS 39	GUCY2D	NM_000180.3/ NP_000171.1	g.7918761 delC	c.2885 delC	p.(Thr962Ilefs*16)	Frameshift	Novel	32	rs867821640	<i>GUCY2D_</i> 000011
10	LRS 51	GUCY2D	NM_000180.3/ NP_000171.1	g.7919153 G>A	c.3037 G>A	p.(Gly1013Arg)	Missense	Reported	34	rs868612148	<i>GUCY2D_</i> 000015

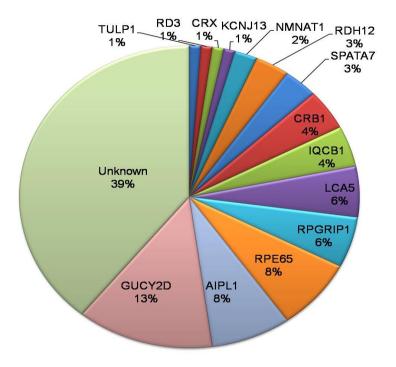
11	LRS 1	GUCY2D	NM_000180.3/ NP_000171.1	g.7919266 T>A	c.3065 T>A	p.(Leu1022*)	Nonsense	Novel	36	rs866511152	<i>GUCY2D_</i> 000012
10	LRS	GUCY2D	NM_000180.3/	g.7919319 C>G	c.3118 C>G	p.(Arg1040Gly)	Missense	Reported	29.9	rs61750194	***
12	14#	GUCYZD	NP_000171.1	g.7906524 delG	c.159delG	p.(Phe54Ser fs*31)	Frameshift	Novel	26.1	rs868091683	<i>GUCY2D_</i> 000018
13	LRS 48	AIPL1	NM_014336.4/ NP_055151.3	g.6337268 G>A	c.247G>A	p.(Glu83Lys)	Missense	Reported	31	rs267605009	<i>AIPL1_</i> 000014
14	LRS 4	AIPL1	NM_014336.4/ NP_055151.3	g.6330030 A>G	c.689A>G	p.(Asn230Ser)	Missense	Novel	12.96	rs866980715	AIPL1_ 000008
15	LRS 9	AIPL1	NM_014336.4/ NP_055151.3	g.6329101 G>A	c.834G>A	p.(Trp278*)	Nonsense	Reported	38	rs62637014	<i>AIPL1_</i> 000010
16	LRS 71	AIPL1	NM_014336.4/ NP_055151.3	g.6329101 G>A	c.834G>A	p.(Trp278*)	Nonsense	Reported	38	rs62637014	<i>AIPL1_</i> 000010
17	LRS 13	AIPL1	NM_014336.4/ NP_055151.3	g.6329091 G>T	c.844G>T	p.(Glu282*)	Nonsense	Novel	39	rs779454542	<i>AIPL1_</i> 000009
18	LRS 22	AIPL1	NM_014336.4/ NP_055151.3	g.6329091 G>T	c.844G>T	p.(Glu282*)	Nonsense	Novel	39	rs779454542	<i>AIPL1_</i> 000009
19	LRS 81	AIPL1	NM_014336.4/ NP_055151.3	g.6329025 G>T	c.910G>T	p.(Glu304*)	Nonsense	Reported	42	rs746116735	<i>AIPL1_</i> 000006
20	LRS 25	RPE65	NM_000329.2/ NP_000320.1	g.68914352_ 68914355 delTTTG	c.46_49 delTTTG	p.(Phe16Lys fs*14)	Frameshift	Novel	35	rs866809120	<i>RPE65</i> 000009
21	LRS 28	RPE65	NM_000329.2/ NP_000320.1	g.68910458 G>T	c.353+1 G>T	r.spl?	Splice-site	Reported	26.4	rs61752876	***
22	LRS 23	RPE65	NM_000329.2/ NP_000320.1	g.68910347 insA	c.361dupT	p.(Ser121Phe fs*10)	Frameshift	Reported	35	rs121918844	<i>RPE65_</i> 000073
23	LRS 58	RPE65	NM_000329.2/ NP_000320.1	g.68910347 insA	c.361dupT	p.(Ser121Phe fs*10)	Frameshift	Reported	35	rs121918844	<i>RPE65_</i> 000073

24	LRS 12	RPE65	NM_000329.2/ NP 000320.1	g.68903889 T>A	c.1109 T>A	p.(Leu370His)	Missense	Reported	29.6	rs776250699	***
25	LRS 2	RPE65	 NM_000329.2/ NP_000320.1	g.68896789 C>T	c.1409 C>T	p.(Pro470Leu)	Missense	Reported	26.2	***	<i>RPE65_</i> 000128
00		DDECE	NM_000329.2/	g.68895547 T>G	c.1514 T>G	p.(Leu505Arg)	Missense	Novel	29.8	rs868473289	<i>RPE65_</i> 000012
26	LRS 86	RPE65	NP_000320.1	g.68904660 T>G	c.963T>G	p.(Asn321Lys)	Missense	Reported	4.096	rs149916178	<i>RPE65_</i> 000013
27	LRS 47	RPGRIP1	NM_020366.3/ NP_065099.3	g.21775984 G>T	c.895G>T	p.(Glu299*)	Nonsense	Novel	39	***	***
28	LRS 65	RPGRIP1	NM_020366.3/ NP_065099.3	g.21793055 C>T	c.2041 C>T	p.(Gln681*)	Nonsense	Novel	37	rs868548381	<i>RPGRIP1</i> 000010
29	LRS 45	RPGRIP1	NM_020366.3/ NP_065099.3	g.21793055 C>T	c.2041 C>T	p.(Gln681*)	Nonsense	Novel	37	rs868548381	<i>RPGRIP1</i> 000010
30	LRS 15	RPGRIP1	NM_020366.3/ NP_065099.3	g.21811289 delA	c.3434 delA	p.(Glu1145Gly fs*18)	Frameshift	Novel	34	rs866944524	<i>RPGRIP1</i> 000009
31	LRS 26	RPGRIP1	NM_020366.3/ NP_065099.3	g.21819302 T>C	c.3788 T>C	p.(Leu1263Pro)	Missense	Novel	25.7	rs866154508	<i>RPGRIP1</i> 000011
32	LRS 87	LCA5	NM_181714.3/ NP_859065.2	g.80203350 C>T	c.838C>T	p.(Arg280*)	Nonsense	Reported	35	rs866395428	<i>LCA5_</i> 000041
33	LRS 60	LCA5	NM_181714.3/ NP_859065.2	g.80202268 G>A	c.955G>A	p.(Ala319Thr)	Missense	Reported	23.3	CS081931	<i>LCA5_</i> 000008
34	LRS 20	LCA5	NM_181714.3/ NP_859065.2	g.80201335_ 80201341 delGTTTTCG	c.1062_ 1068 delCGAA AAC	p.(Tyr354*)	Frameshift	Novel	35	***	***

35	LRS 30	LCA5	NM_181714.3/ NP_859065.2	g.80201335_ 80201341 delGTTTTCG	c.1062_ 1068 delCGAA AAC	p.(Tyr354*)	Frameshift	Novel	35	***	***
36	LRS 21	LCA5	NM_181714.3/ NP_859065.2	g.80197393 delT	c.1422 delT	p.(Ile474Met fs*11)	Frameshift	Novel	23.2	rs866833585	<i>LCA5_</i> 000040
37	LRS 10	IQCB1	NM_00102357 0.3/ NP_00101886 4.2	g.121509055 G>A	c.994C>T	p.(Arg332*)	Nonsense	Reported	36	CM050645 (HGMD)	***
38	LRS 92	IQCB1	NM_00102357 0.3/ NP_00101886 4.2	g.121500667 G>A	c.1333 C>T	p.(Arg445*)	Nonsense	Novel	38	rs867772426	<i>IQCB1_</i> 000004
39	LRS 77	IQCB1	NM_00102357 0.3/ NP_00101886 4.2	g.121500637 G>A	c.1363 C>T	p.(Arg455*)	Nonsense	Reported	37	rs866982675	***
40	LRS 79	IQCB1	NM_00102357 0.3/ NP_00101886 4.2	g.121491413 G>A	c.1558 C>T	p.(Gln520*)	Nonsense	Reported	40	rs779858591	<i>IQCB1_</i> 000006
41	LRS 88	CRB1	NM_201253.2/ NP_957705.1	g.197326045 _1973260 insTGAG	c.1073ins TGAG	p.(Ser359Glu fs*20)	Frameshift	Novel	26.6	rs867681420	<i>CRB1_</i> 000040
42	LRS 56	CRB1	NM_201253.2/ NP_957705.1	g.197411423 G>A	c.4005+1 G>A	r.spl?	Splice site	Reported	28.6	***	CRB1_ 000092
43	LRS 7	CRB1	NM_201253.2/ NP_957705.1	g.197446956 C>T	c.4168 C>T	p.(Arg1390*)	Nonsense	Reported	42	rs763324776	CRB1_ 000045
44	LRS 78	CRB1	NM_201253.2/ NP_957705.1	g.197446956 C>T	c.4168 C>T	p.(Arg1390*)	Nonsense	Reported	42	rs763324776	<i>CRB1_</i> 000045

45	LRS 17	RDH12	NM_152443.2/ NP_689656.2	g.68191267 C>T	c.146C>T	p.(Thr49Met)	Missense	Reported	34	rs28940314	<i>RDH12_</i> 000003
46	LRS 49	RDH12	NM_152443.2/ NP_689656.2	g.68191305 C>T	c.184C>T	p.(Arg62*)	Nonsense	Reported	36	rs104894471	IKBKG_ 000009
47	LRS 93	RDH12	NM_152443.2/ NP_689656.2	g.68195995 G>T	c.746G>T	p.(Arg249Leu)	Missense	Novel	19.61	rs868385141	<i>RDH12_</i> 000010
48	LRS 11	SPATA7	NM_018418.4/ NP_060888.2	g.88852180 A>G	c.18A>G	r.(spl?)/p.(Arg6=)	Splice- site/ Silent	Novel	18.54	***	***
49	LRS 67	SPATA7	NM_018418.4/ NP_060888.2	g.88895690 A>G	c.913-2 A>G	r.913_919del insac/ p.(Ala305Thrfs*6)	Splice-site	Reported	23.2	***	SPATA7_ 000003
50	LRS 29	SPATA7	NM_018418.4/ NP_060888.2	g.88903946 G>A	c.1215+5 C>A	r.1161_1215del/ p.(Phe388Lysfs*1 0)	Splice-site	Novel	13.55	***	***
51	LRS 8	NMNAT1	NM_022787.3/ NP_073624.2	g.10032184 A>G	c.53A>G	p.(Asn18Ser)	Missense	Reported	15.16	rs748902766	NMNAT1_ 000003
52	LRS 62	NMNAT1	NM_022787.3/ NP_073624.2	g.10032240 G>A	c.109G>A	p.(Gly37Arg)	Missense	Novel	23.5	rs865992941	<i>NMNAT1_</i> 000012
53	LRS 68	CRX	NM_000554.5/ NP_000545.1	g.48339521 G>A	c.122G>A	p.(Arg41Gln)	Missense	Reported	29.9	rs61748436	***
54	LRS 80	RD3	NM_00116468 8.1/ NP_00115816 0.1	g.211654461 G>A	c.296+1 G>A	r.spl?	Splice site	Reported	26.4	rs386834260	***
55	LRS 40	TULP1	NM_003322.5/ NP_003313.3	g.35473583 T>G	c.1047 T>G	p.(Asn349Lys)	Missense	Reported	26	rs763272975	<i>TULP1_</i> 000043
56	LRS	AIPL1	NM_014336.4 / NP_055151.3	g.6329101 G>A	c.834G>A	p.(Trp278*)	Nonsense	Reported	38	rs62637014	<i>AIPL1_</i> 000010
00	90†	KCNJ13	NM_002242.4/ NP_002233.2	g.233633499 C>T	c.485G>A	p.(Arg162Gln)	Missense	Reported	34	rs757304681	KCNJ13_ 000006

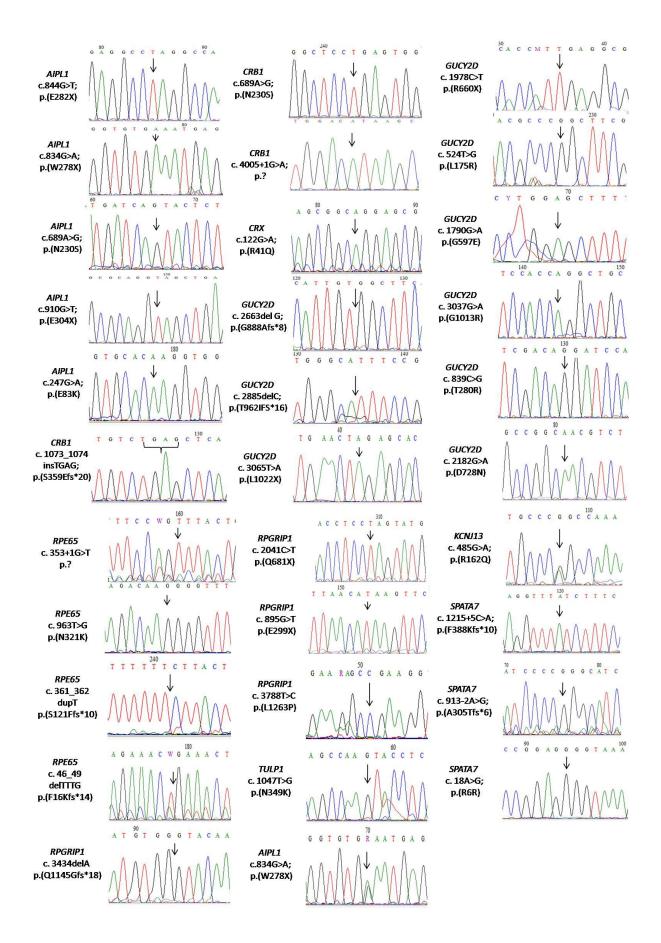
[†]Indicates digenic inheritance involving *AIPL1* and *KCNJ13 gene* [#]Indicates compound heterozygous mutation in *GUCY2D* gene. All variations were observed in homozygous state except *AIPL1* c.834G>A, *KCNJ13* c.485G>A in LRS 90, *GUCY2D* c.3118C>G and *GUCY2D* c.159delG in LRS 14.

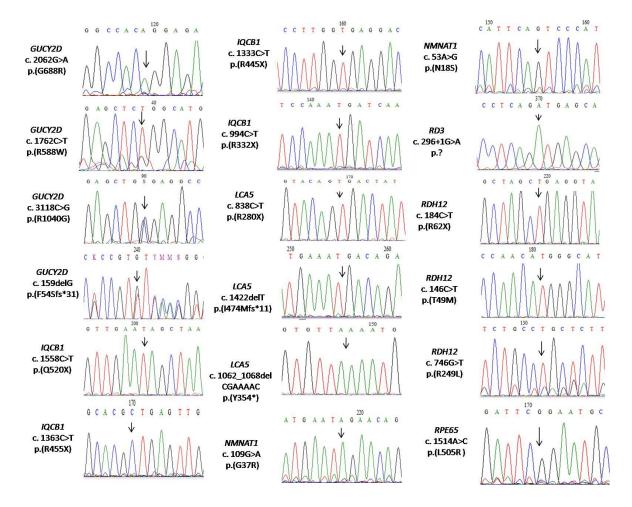

***Indicates ID not available.

^{ϕ} Indicates Phred like CADD scoring – Score \geq 10 is considered deleterious. The higher the CADD score, the more likely that the variant has deleterious effects.

The 53 pathogenic/ likely pathogenic variants include 9 frameshift, 14 nonsense, 24 missense and 6 splice-site mutations (**Figure 27b**). Further 21 of these were novel (8 frameshift, 4 nonsense, 7 missense and 2 splice-site mutations) (**Figure 27c**). These disease-causing variants were observed in fourteen of the twenty candidate genes screened (**Figure 28**).

Figure 27: A: Pie chart showing the percentage of the cohort where mutations were identified (including the positive controls) and not identified in the twenty known LCA genes screened. B: Pie chart showing the percentage distribution of different types of mutations among the mutation positive cases. C: Bar diagram showing the distribution of reported and novel mutations among the different types of identified mutations.




Figure 28: Pie chart showing frequency of mutations in the twenty LCA candidate genes in the Indian cohort studied.

Screening of the unanalysable regions (regions not covered by probes in target enrichment) and *CEP290* intronic variant, c.2991+1655A>G by PCR direct sequencing in the negative cases revealed no disease-causing variants in these regions.

• Validation of the identified mutations:

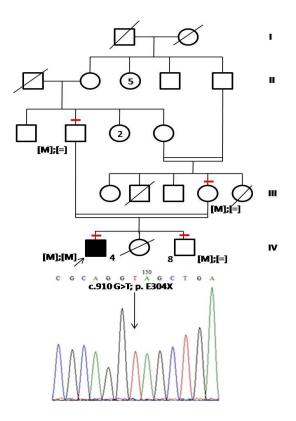

All identified pathogenic and likely pathogenic variants were validated (**Figure 29**) and segregated in the families.



Figure 29: Electrophoretogram of the identified mutations (marked by arrows) in the LCA probands.

The parents were heterozygous carriers and the unaffected sibs were either heterozygous carriers or homozygous wild type (Figure 30). Of the 92 samples, ten probands; LRS 7, LRS 12, LRS 20, LRS 28, LRS 29, LRS 30, LRS 31, LRS 32, LRS 40 and LRS 90 had affected sibs segregating the same homozygous pathogenic variant. Control screening of 240 chromosomes by either direct sequencing or ASPCR for the identified pathogenic and likely pathogenicvariants revealed wild type sequence for all. The identified novel variants were submitted to LOVD (http://www.lovd.nl/3.0/home) and dbSNP147.

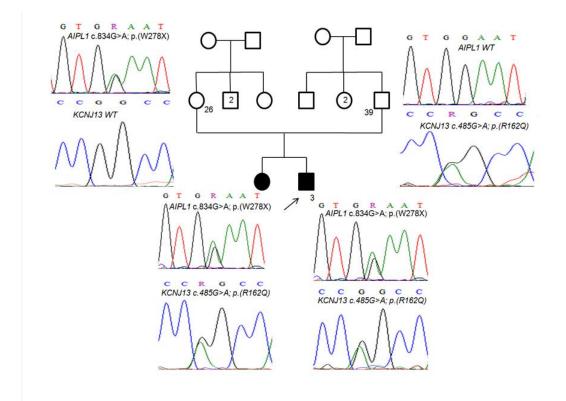

Figure 30: Representative pedigree of the family LCARS-81, segregating a homozygous nonsense mutation, c.910G>T p. (E340X) in *AIPL1* gene.

Figure 31: Putative protein structure showing domains and mutations (marked by arrows) in proteins of LCA candidate genes identified by targeted resequencing.

• Possible Digenic Inheritance

We observed heterozygous mutations in two different genes in one of our case, LRS 90. The proband had heterozygous variant in *AIPL1*, c.834G>A; p.(Trp278*) and *KCNJ13*, c.485G>A; p.(Arg162GIn). The affected sib also inherited the same variants. On segregation, the mother was found to be heterozygous for *AIPL1* c.834G>A; p. (Trp278*) and the father for *KCNJ13* c.485G>A; p.(Arg162GIn). The parents were found to be wild type for the other alternate allele thus confirming the digenic status (**Figure 32**). Both variants were absent in the controls screened. The *AIPL1* c.834G>A; p.(Trp278*) (rs62637014) variant has been shown to be pathogenic in many study population¹⁵⁷.

Figure 32: Pedigree of LRS 90 showing digenic inheritance segregating in the family. Proband and affected sib are heterozygous for both *AIPL1* c.834G>A; p.(Trp278*) and *KCNJ13* c.485G>A; p.(Arg162GIn) mutations. The father and the mother are heterozygous for *KCNJ13* and *AIPL1* mutations, respectively.

3.1.3. Other reported or novel variants and SNPs in coding and non-coding regions

Triallelic variants

Among mutation positive cases, 12 cases with identified pathogenic mutations in the coding regions also had a reported heterozygous variant in another gene with MAF \leq 0.005. Seven different variants were observed and three of these heterozygous variants are reported as mutations either in homozygous or compound heterozygous state. Segregation of above variants showed heterozygosity in either or both parents. These could contribute to triallelism, modifying the disease severity (**Table 14**).

Novel heterozygous variants:

Novel heterozygous variants with no other mutation/ variant were observed in three cases in this study. The variants are *MERTK*- c.1627T>C, p. (Ser543Pro) in LRS51; *RPE65*- c.814C>T, p. (Gly272Arg) in LRS24; *RPGRIP1*- c.1480delA, p. (Asn495Thrfs*11) in LRS89. The possibility of these novel variants being pathogenic and hence representing a carrier state in respective individuals or being a novel SNP can be defined only when the population frequency of these variants are known. The frequency of these variants in Indian cohort is unavailable. However, the regulatory regions of the genes have not been screened and possibility of any variant in these regions cannot be ruled out.

We have also observed one novel homozygous and thirteen novel heterozygous synonymous variants; thirty-five novel homozygous and ninety novel heterozygous intronic variants in this cohort.

S.NO	LRS ID		FIED PATHOGENIC VARIANTS		OBSE	RVED HETEROZY	GOUS VARIANTS	
		GENE	PATHOGENIC VARIANTS	GENE	VARIANTS	NOVEL / REPORTED	CADD	MAF (ExAc)
1	LRS 21	LCA5	g.80197392delT c.1422delA p.(lle474Metfs*11) (rs866833585)	AIPL1	g.6331702 A>T c.401A>T p.(Tyr134Phe)	Reported (rs16955851)	24.4	0.004
2	LRS 58	RPE65	g.68910347insT c.362dupT p.(Ser121Phefs*10) (rs121918844)	CABP4	g.67223001 C>T c.107C>T p.(Pro36Leu)	Reported (rs766418692)	8.996	0.00003808
3	LRS 28	RPE65	g.68910458G>T c.353+1G>T <i>r.(spl?)</i> (rs61752876)	MERTK	g.112786031 G>T c.2590G>T p.(Val864Phe)	Reported (rs557004700)	10.59	0.0004366
4	LRS 15	RPGRIP1	g.21811289delA c.3434delA p.(Glu1145Glyfs*18) (rs866944524)	MERTK	g.112786031 G>T c.2590G>T p.(Val864Phe)	Reported (rs557004700)	10.59	0.0004366

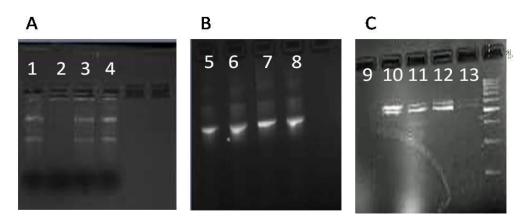

Table 14: Lists the heterozygous variants observed in mutation positive cases possibly contributing to triallelism

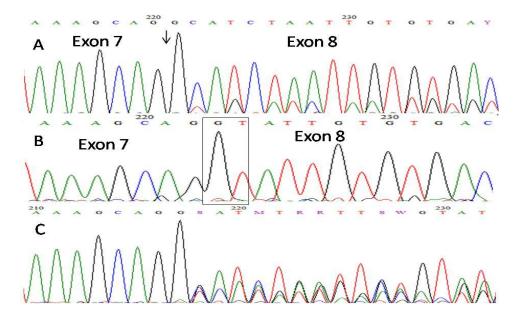
5	LRS 68	CRX	g.48339521G>A c.122G>A p.(Arg41GIn) (rs61748436)	MERTK	g.112786031 G>T c.2590G>T p.(Val864Phe)	Reported (rs557004700)	10.59	0.0004366
6	LRS 40	TULP1	g.35473583T>G c.1047T>G p.(Asn349Lys) (rs763272975)	MERTK	g.112777002 C>A c.2092C>A p.(Gln698Lys)	Reported (rs761295704)	28.1	0.00006589
7	LRS 78	CRB1	g.197446956C>T c.4168C>T p.(Arg1390*) (rs763324776)	RPE65	g.68904660 T>G c.963T>G p.(Asn321Lys)	Reported (rs149916178)	4.096	0.005362
8	LRS 80	RD3	g.211654461G>A c.296+1G>A <i>r.(spl?)</i> (rs386834260)	RPE65	g.68904660 T>G c.963T>G p.(Asn321Lys)	Reported (rs149916178)	4.096	0.005362
9	LRS 88	CRB1	g.197326045insTGAG c.1073_1074insTGAG p.(Ser359Glufs*20) (rs867681420)	RPE65	g.68904660 T>G c.963T>G p.(Asn321Lys)	Reported (rs149916178)	4.096	0.005362

10	LRS 53	AIPL1	g.6337268G>A c.247C>T p.(Glu83Lys) (rs267605009)	MERTK	g.112732891 A>G c.986A>G p.(Asn329Ser)	Reported (rs34943572)	22.2	0.0002553
11	LRS 8	NMNAT1	g.10032184A>G c.53A>G p.(Asn18Ser) (rs748902766)	RPE65	g.68904660 T>G c.963T>G p.(Asn321Lys)	Reported (rs149916178)	4.096	0.005362
12	LRS 14	GUCY2D	g.7919319C>G c.3118C>G p.(Arg1040Gly) (rs61750194) g.7906524delG c.159delG p.(Phe54Serfs*31) (rs868091683)	CRB1	g.197326047 T>G c.1075T>G p.(Ser359Ala)	Reported (rs533227950)	3.021	0.000832

3.2. cDNA analysis

RT-PCR using cDNA was standardized using ARPE-19 cell lines as positive control for *SPATA7* gene expression. The same RT-PCR reactions were performed using cDNA obtained from peripheral blood of probands and their families, LRS67 (**Figure 33**) and LRS29 (**Figure 34**) to check the effect on splicing for the mutations, c.1215+5C>A and c.913-2A>G, respectively. cDNA primers targeting *GAPDH* was used as an internal control. Two transcripts of *SPATA7* gene were observed on 3% agarose gel electrophoresis. Gel extraction was performed followed by sequencing of the extracted product.


В


Figure 33: In family LRS 67 [A] 0.7% agarose gel picture showing RNA in Lane 1-<u>4:</u> 1. Proband 2.Sib. 3.Father 4.Mother [B] 2% agarose gel picture showing cDNA amplified products of 525bp size targeting *SPATA7*- c.913-2A>G optimized at 63-56(-0.5°C) touchdown protocol Lane 5-8: 5.Proband 6.Father 7.Sib 8. NC. Lane 9-<u>11</u>: GAPDH amplification of the corresponding cDNA 9. Proband 10. Father 11. Sib.

The bidirectional Sanger sequencing in family LRS 67 revealed an indel, where the first 7 bases of exon 8 were deleted and 2 bases inserted resulting in predicted truncated protein p.(Ala305Thrfs*6) (**Figure 35**). The parents were heterozygous for the deletions. This confirms the c.913-2A>G mutation in the canonical splice-site in intron 7 affects splicing. In family LRS 29, the presence of variant c.1215+5C>A in the intron 10 resulted in the deletion of exon 10, leading

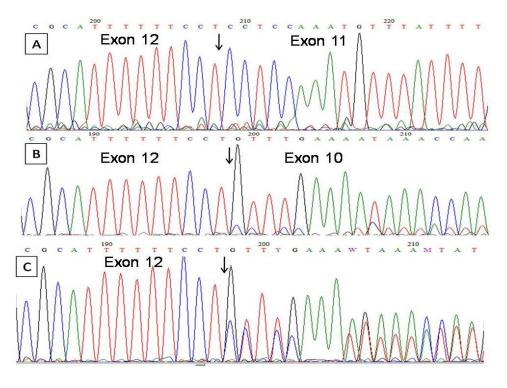

to predicted truncated protein p. (Phe388Lysfs*10) (**Figure 36**). The parents were heterozygous for the deletion.

Figure 34: In family LRS 29 [A] 0.7% agarose gel picture showing RNA in Lane 1-<u>4</u>: 1. Proband 2.Father 3.Mother 4.Sib [B] 2% agarose gel picture showing *GAPDH* amplification of the corresponding cDNA Lane 5-8: 5. Proband 6.Father 7.Mother 8.Sib [C] cDNA amplified products of 596bp size targeting *SPATA7*-c.1215+5C>A optimized at 65-58(-0.5°C) touchdown protocol. Lane 9-13: 9.NC 10.Proband 11.Father 12.Mother 13.Sib

Figure 35: Electrophoretogram of cDNA analysis for splice variants in *SPATA7* gene. [A] Wild type cDNA sequence (forward) in control showing exon 7 and exon 8 [B] homozygous indel (insertion of GT and first 7 bases deletion in exon 8) in LRS 67 due to splice mutation c. 913-2A>G [C] heterozygous indel in parent of LRS 67.

Figure 36: SPATA7- c.1215+5C>A electrophoretogram showing representative reverse primer sequence of [A] Wild type control cDNA [B] Homozygous deletion of exon 10 in proband [C] Heterozygous deletion of exon 10 in parent.

The cDNA analyses for the synonymous variantc.18A>G; p.(Arg6Arg), in the penultimate base of exon 1 in *SPATA7*, predicted to alter splicing, identified in family LRS 11, couldn't be performed as the family was unavailable for recollection and analysis.

3.3. Bioinformatics Analyses

Apart from CADD scoring, six online bioinformatics tools were used for predicting the effect of the identified missense variants. Of the 24 missense variants, 12 were predicted to be damaging by 5/6 tools and 9 by more than 3/6 tools **(Table 15)**. **Table 13** and **table 14** include Phred-like CADD scores for all the identified variants.

S.NO	SAMPLE ID	GENE	cDNA	PREDICTED CHANGE IN PROTEIN	SIFT	POLYPHEN	Mutation taster	Pmut	Variant effect predictor	Mutation accessor
1	Sample 4	AIPL1	c.689A>G	Asn230Ser	Damaging	Benign	Disease causing	Neutral	moderate	low
2	Sample 53	AIPL1	c.247G>A	Glu83Lys	Damaging	Probably damaging	Disease causing	Pathological	moderate	medium
3	Sample 29	CEP290	c.5237G>A	Arg1746GIn	Tolerated	Benign	Disease causing	Neutral	moderate	neutral
4	Sample 68	CRX	c.122G>A	Arg41Gln	Damaging	Probably damaging	Disease causing	Pathological	moderate	medium
5	Sample 11	CRX	c.551C>T	Pro184Leu	Tolerated	Benign	Polymorphism	Pathological	moderate	neutral
6	Sample 37	GUCY2D	c.524T>G	Leu175Arg	Damaging	Possibly damaging	Polymorphism	Neutral	moderate	Low
7	Sample 43	GUCY2D	c.1790G>A	Gly597Glu	Damaging	Probably damaging	Disease causing	Neutral	moderate	medium
8	Sample 46	GUCY2D	c.3037G>A	Gly1013Arg	Damaging	Probably damaging	Disease causing	Pathological	moderate	high
9	Sample 31	GUCY2D	c.839C>G	Thr280Arg	Damaging	Probably damaging	Disease causing	Pathological	moderate	medium
10	Sample 74	GUCY2D	c.2182G>A	Asp728Asn	Damaging	Probably damaging	Disease causing	Neutral	moderate	high
11	Sample 55	GUCY2D	c.2062G>A	Gly688Arg	Tolerated	Benign	Disease causing	Pathological	moderate	neutral
12	Sample 55	GUCY2D	c.1762C>T	Arg588Trp	Damaging	Probably damaging	Disease causing	Pathological	moderate	high
13	Sample 14	GUCY2D	c.3118C>G	Arg1040Gly	Damaging	Probably damaging	Disease causing	Pathological	moderate	high
14	Sample 60	LCA5	c.955G>A	Ala319Thr	Damaging	Benign	Polymorphism	Neutral	moderate	Low
15	Sample 62	NMNAT1	c.109G>A	Gly37Arg	Tolerated	Possibly damaging	Polymorphism	Pathological	moderate	neutral
16	Sample 8	NMNAT1	c.53A>G	Asn18Ser	Tolerated	Probably damaging	Disease causing	Neutral	moderate	Low

Table 15: Bioinformatic analyses of missense variants

S.NO	SAMPLE ID	GENE	CDNA	MUTATION	SIFT	POLYPHEN	Mutation taster	Pmut	Variant effect predictor	Mutation accessor
17	Sample 17	RDH12	c.146C>T	Thr49Met	Damaging	Probably damaging	Disease causing	Neutral	moderate	medium
18	Sample 93	RDH12	c.746G>T	Arg249Leu	Tolerated	Benign	Polymorphism	Neutral	moderate	neutral
19	Sample 86	RPE65	c.1514T>G	Leu505Arg	Damaging	Probably damaging	Disease causing	Pathological	moderate	medium
20	Sample 86	RPE65	c.963T>G	Asn321Lys	Tolerated	Benign	Polymorphism	Neutral	moderate	low
21	Sample 2	RPE65	c.1409C>T	Pro470Leu	Damaging	Probably damaging	Disease causing	Pathological	moderate	medium
22	Sample 12	RPE65	c.1109T>A	Leu370His	Damaging	Probably damaging	Disease causing	Neutral	moderate	medium
23	Sample 26	RPGRIP1	c.3788T>C	Leu1263Pro	Damaging	Probably damaging	Disease causing	Pathological	moderate	medium
24	Sample 40	TULP1	c.1047T>G	Asn349Lys	Damaging	Probably damaging	Disease causing	Neutral	moderate	medium

All the identified splice-site variants, canonical and in region within 10bp of exonintron junction were predicted to alter donor or acceptor sites probably affecting splicing. In LRS 11, a variant in the penultimate base of exon 1 of *SPATA7* gene translates to a synonymous change, p.(Arg6Arg). However, the splice prediction tools predicted this variant to cause alteration of the donor splice-site affecting splicing.

3.4. Genotype- phenotype Correlation

Genotype and clinical phenotype correlation (**Figure 37**) was performed for subjects with identified pathogenic and likely pathogenic variants. All these cases had profound loss of vision with only 3/56 patients having a best corrected visual acuity better than 6/60. Five patients (LRS 12, LRS 15, LRS 17, LRS 39, and LRS 40) were myopic and the rest were hyperopic. Extinguished rod and cone response in ERG within first year of life and pendular nystagmus were observed in all cases. Among the mutation positive cases, keratoconus in 7% (4/56), delayed milestone in ~4% (2/56), astigmatism in 16% (9/56), cleft palate, mental retardation, autism, hearing deficit and cataract in ~2% each (1/56) were observed. The clinical data of the mutations positive cases are detailed (**Table 16**)

AIPL1:

Patients with *AIPL1* mutations had optic disc pallor with attenuated vessels. Macular atrophy and yellowish spots in the macular region which corresponded to dark spots in FAF were noted. RPE granularity, metallic sheen and coarse roundish pigments were seen in the periphery.

CRB1:

Patients with *CRB1* mutations presented with mild optic disc pallor, attenuated vessels with para arteriolar sparing of the retinal pigment epithelium (PPRPE) typical of *CRB1* mutation. Macula shows atrophy with surrounding pigmentation. Nummular (roundish coin shaped) pigmentation was observed more in posterior pole than in the periphery.

CRX:

Posterior pole of the patient with *CRX* mutation had pale disc with attenuated vessels. Macular atrophy and pinhead size round shaped pigments at the posterior pole were observed.

GUCY2D:

Phenotype of patients with *GUCY2D* mutations showed mild to nil disc pallor and arterial attenuation. The predominant feature observed was a greyish tapetal reflex and minimal peripheral RPE granularity.

IQCB1:

Patients with *IQCB1* mutations presented with minimal to nil disc pallor and arteriolar attenuation. Mild peripheral granularity and metallic sheen in the fundus was observed.

LCA5:

All patients with *LCA5* mutation showed mild optic disc pallor and mild arteriolar attenuation. The typical changes observed in phenotype were macular atrophy, pinhead sized round pigments and peripheral white spots beyond the arcade which were seen as dark spots on FAF.

NMNAT1:

Patients with *NMNAT1* mutation showed mild optic disc pallor, arteriolar attenuation, macular atrophy with coarse pigment more in the posterior pole and few bony spicules in the periphery.

RD3:

Patient had mild optic disc pallor, arteriolar attenuation and macular atrophy with yellowish pigment. Pinhead sized round pigments more evident as dark spots in FAF were observed with widespread RPE damage.

RDH12:

The fundus phenotype of *RDH12* patients showed optic disc pallor and arteriolar attenuation, macular coloboma and bony spicules like pigmentation seen in both posterior pole and periphery.

RPE65:

These patients showed disc pallor and arterial attenuation. Varied presentations were seen among the patients, with white spots in posterior pole in three patients, metallic sheen in three and macular atrophy in two. LRS 12 (13 yrs) showed yellow macular scaring and coarse pigmentation.

RPGRIP1:


All patients showed mild disc pallor with attenuated vessels. Macular atrophy with coarse coin shaped early bony spicules and RPE mottling was observed in all the patients.

SPATA7:

Patients with mutation in *SPATA7* showed minimal to nil disc pallor and attenuated vessels. Tapetal reflex was observed wide spread on peripheral fundus. One patient also showed presence of peripheral pigment.

TULP1:

Fundus showed optic disc pallor with marked attenuated arterioles. Perifoveal yellow annular ring with macular atrophy and mild peripheral bone spicules pigments were observed.

Figure 37: Fundus photograph showing Genotype- phenotype correlation in LCA patients with mutation in genes [A,B] *AIPL1* having macular atrophy and yellow pigment in the macula [C,D] *GUCY2D* showing greyish tapetal reflex and arteriolar attenuation [E,F] *CRB1* presenting macular atrophy and nummular pigmentation [G,H] *LCA5* with pinhead sized round pigments and peripheral white spots [I,J] *CRX* showing macular atrophy and pinhead size round pigments [K,L] *NMNAT1* projecting central island of pigmented atrophy [M,N] *RD3* having pinhead sized round pigments seen as dark spots in autofluorescence [O,P] *RPE65* showing metallic sheen and macular atrophy [Q,R] *TULP1* with perifoveal yellow annular ring[S, T] *RDH12* showing macular coloboma like phenotype [U] *RPGRIP1* with coarse coin shaped early bony spicules [V] *SPATA7* presenting tapetal reflex.

<u>Table 16</u>: Shows the clinical features of mutation positive index cases affected by LCA.

S.N	Patient ID	Se x	Age (year)	Affected Gene	Nysta gmus	Visual Acuity Refractive Error						ERG	Fundus	ост	Others		
0			() • • • •)		9	OD	OS		OD			OS					
								Sphl	Cyl	axis	Sphl	Cyl	axis				
1	LRS 13	F	5	<i>AIPL1</i> c.844G>T	Jerk	PLPR	PLPR	+3.50	-1.75	180	+3.50	-1.50	180	Extingui shed	Pale disc, attenuated vessels, Yellowish spots in the macula. Metallic sheen and RPE granules visible	No OCT	**
2	LRS 22	М	5	<i>AIPL1</i> c.844G>T	Jerk	follows and fixates light	follows and fixates light	+8.50	+2.00	40	+8.50	+2.50	130	Extingui shed	Arteriolar attenuation with disc pallor present, few yellow spots in macula and RPE granules visible	No OCT	**
3	LRS 9	F	11	<i>AIPL1</i> c.834G>A	Wande ring	HM+1; less than N36	HM+; less than N36	+3.50	**	**	+3.50	**	**	Extingui shed	Pale disc, attenuated vessels, yellowish spots in macula, RPE granules and coarse roundish pigments observed	RPE atrophic changes seen in maଔa	**

4	LRS 71	М	3	<i>AIPL1</i> c.834G>A	Pendul ar	follows and fixates light	follows and fixates light	+5.50	**	**	+5.00	**	**	Extingui shed	Disc pallor, mild arteriolar attenuation, Yellowish spots in the macular region and metallic sheen in macula seen	OD- Foveal thinning with thinning of IS-OS junction noted at macula	**
5	LRS 4	М	5	<i>AIPL1</i> c.689A>G	Jerk	PLPR; less than N36	PLPR; less than N36	+9.00	-0.50	180	+9.00	-0.50	180	Extingui shed	Pale disc, attenuated vessels, yellow spots, and coarse roundish pigments observed in periphery	No OCT	Delaye d milesto ne
6	LRS 81	М	17	<i>AIPL1</i> c.910G>T	Jerk	PLPR; less than N36	PLPR; less than N36	+0.75	-2.75	40	+1.00	-2.00	160	Extingui shed	Pale disc, attenuated vessels, atrophic yellowish disc shaped macula with coarse pigment granules and metallic sheen	No OCT	OS- keratoc onus

7	LRS 48	F	5	AIPL1 c.247G>A	Wande ring	follows and fixates light	follows and fixates light	+5.50	-1.00	180	+6.00	-1.25	180	Extingui shed	Mild arteriolar attenuation, disc pallor, yellowish spots, RPE granules and metallic sheen observed.	No OCT	Astigma tism, cleft palate
8	LRS 88	Μ	3	<i>CRB1</i> c.1073_ 1074 insTGAG	Jerk	Eccentric fixation, follows light	Eccent ric fixation , follows light	+6.00	**	**	+2.00	-0.75	180	Extingui shed	Pale disc, minimal attenuation of vessels, greyish reflex in the macula, para arteriolar sparing and RPE loss in the periphery	No OCT	Astigma tism
9	LRS 78	F	10	<i>CRB1</i> c.4168 C>T	Jerk	PLPR; less than N36	PLPR; less than N36	+12.50	-1.00	180	+13.00	-1.00	180	Extingui shed	and roundish coin shaped pigmentary	Foveal thinning (OD>OS) with RPE atrophy noted. Thin ERM seen	Astigma tism

10	LRS 56	М	13	<i>CRB1</i> c.4005+1 G>A	Jerk	PLPR; less than N36	PLPR; less than N36	+8.00	-1.5	180	+8.50	-1.50	180	Extingui shed	Pale disc, attenuated vessels, minimal para arteriolar sparing, coarser pigment and atrophic patches in the macula and calcareous yellowish deposits observed	No OCT	**
11	LRS 7	F	2	<i>CRB1</i> c.4168 C>T	Jerk	follows and fixates light	follows and fixates light	+6.50	-2.25	155	+7.00	-3.00	180	Extingui shed	Pale disc, minimal attenuation of vessels, para arteriolar sparing greyish reflex in the macula and roundish coin shaped pigmentary clumps are seen	Altered foveal contour seen Thinning of IS-OS junction noted, RPE alteratio ns seen	Kerato conus

12	LRS 68	М	9	CRX c.122G>A	Jerk	PLPR accurate	PLPR accura te	+2.25	-1.00	180	+2.25	-1.00	180	Extingui shed	Pale disc, minimal attenuation of vessels, macular atrophy and pinhead sized pigmentary clumps are seen	Foveal thinning noted with loss of photore ceptor layer and RPE atrophy	Mental retardat ion, Astigma tism
13	LRS 54	M	5	<i>GUCY2D</i> c.2663 delG	Wande ring	Does not follow light	Does not follow light	+5.00	-1.00	180	+5.50	-1.25	180	Extingui shed	Minimal attenuated vessels with tapetal reflex in macula.	Normal foveal dip seen with RPE alteratio ns	**
14	LRS 39	F	7	<i>GUCY2D</i> c.2885 delC	Jerk	CFCF/ less than N36	CFCF/ Less than N36	-1.00	-1.00	10	-1.25	-1.00	170	Extingui shed	Mild disc pallor with tapetal reflex and peripheral RPE granules seen	No OCT	Kerato conus
15	LRS 1	F	5	<i>GUCY2D</i> c.3065 T>A	Jerk	follows and fixates light	follows and fixates light	+7.00	-2.00	10	+7.00	-2.00	170	Extingui shed	Normal disc and vessels, tapetal reflex and pigmentary granules observed in the background	Foveal contour seen with thinned IS-OS junction at the fovea	**

16	LRS 83	F	6	<i>GUCY2D</i> c.1978 C>T	Rotato ry	PLPR	PLPR	+6.50	**	**	+7.00	**	**	Extingui shed	Minimal attenuation of vessels, tapetal reflex in the macula.	No OCT	**
17	LRS 32	M	14	<i>GUCY2D</i> c.1978 C>T	Jerk	2/60	3/60	+6.50	**	**	+6.00	**	**	Reduced	Tapetal reflex observed with peripheral RPE granules.	No OCT	**
18	LRS 37	F	11	<i>GUCY2D</i> c.524T>G	Wande ring	CFCF/ Less than N36	CFCF/ Less than N36	+3.50	**	**	+3.75	**	**	Reduced	Tapetal reflex and peripheral RPE granules observed	No OCT	**
19	LRS 43	М	3	<i>GUCY2D</i> c.1790 G>A	Wande ring	follows light	follows light	+5.50	**	**	+5.50	**	**	Extingui shed	peripheral granularity observed	No OCT	Autism
20	LRS 51	F	7	<i>GUCY2D</i> c.3037 G>A	Jerk	6/60; N36	6/60;N 36	+3.50	-1.25	180	+3.50	-1.25	180	Extingui shed	Tapetal reflex observed in both eyes	No OCT	**
21	LRS 31	F	13	<i>GUCY2D</i> c.839C>G	Pendul ar	1/60 less than N36	1/60 close to N36	+5.00	-0.75	180	+5.50	-1.00	180	Extingui shed	Yellowish spots in macula and coarse RPE granules in periphery observed	No OCT	**

22	LRS 74	F	3	GUCY2D c.2182 G>A	Wande ring	follows and fixates light	follows and fixates light	+3.50	-1.00	180	+3.50	-1.00	180	Extingui shed	Minimal attenuation of vessels, tapetal reflex in the macula.	No OCT	**
23	LRS 55	М	6	GUCY2D c.2062 G>A c.1762 C>T	Rotato ry	follows and fixates light	follows and fixates light	+5.00	-1.5	90	+5.00	-1.50	90	Extingui shed	Tapetal reflex observed in both eyes	No OCT	**
24	LRS 14	M	10	<i>GUCY2D</i> c.3118 C>G c.159delG	Wande ring	occasiona Ily follows light	occasi onally follows light	+0.00	**	**	+3.50	**	**	Extingui shed	Mild disc pallor and arteriolar attenuation present, tapetal reflex and RPE granules visible	No OCT	**
25	LRS 79	F	9	<i>IQCB1</i> c.1558 C>T	Jerk	HM+1; less than N36	HM+1; less than N36	+7.50	**	**	+8.50	-1.00	100	Extingui shed	Minimal attenuation of vessels and metallic sheet in the fundus seen	Normal foveal dip seen. Thinning of IS-OS junction noted	**
26	LRS 77	М	4	<i>IQCB1</i> c.1363 C>T	Jerk	PLPR inaccurat e; less than N36	PLPR inaccu rate; less than N36	+6.50	**	**	+6.50	-0.50	180	Extingui shed	Minimal attenuation of vessels and metallic sheet in the fundus seen	No OCT	**

27	LRS 92	М	5	<i>IQCB1</i> c.1333 C>T	Wande ring	Does not follow light	Does not follow light	+0.00	**	**	+1.00	**	**	Extingui shed	Metallic sheet in the fundus and RPE granules visible.	No OCT	Enlarged kidney or scan at 5 months
28	LRS 10	F	11	<i>IQCB1</i> c.994C>T	Pendul ar	HM+1; less than N36	HM+1; less than N36	+7.50	-1.50	180	+7.50	-1.50	180	Extingui shed	Mild disc pallor, Minimal attenuation of vessels and metallic sheet in the fundus seen	No OCT	Myopic, Astigma tism
29	LRS 87	М	3	<i>LCA5</i> c.838C>T	Wande ring	follows and fixates light	follows and fixates light	+6.50	-1.50	180	+6.00	-1.50	180	Extingui shed	Mild disc pallor, Arteriolar attenuation present, shiny reflex and pinhead sized round shaped pigment observed.	No OCT	Hearing problem , delayed milesto ne
30	LRS 21	F	8	<i>LCA5</i> c.1422 delT	Jerk	follows and fixates light	follows and fixates light	+4.00	-1.50	180	+4.00	-1.50	180	Extingui shed	Pale disc, mild attenuated vessels, macular atrophy observed	No OCT	**

3	31	LRS 60	F	6	<i>LCA5</i> c.955G>A	Wande ring	Does not fix light	Does not fix light	+6.50	**	**	+5.50	**	**	Extingui shed	Pale disc, mild attenuated vessels, macular atrophy and white spots observed in fundus	No OCT	Astigma tism
· · ·	32	LRS 20	F	11	LCA5 c.1062_ 1068 delCGAA AAC	Jerk	follows and fixates light	follows and fixates light	+4.50	-1.25	150	+5.00	-1.25	150	Extingui shed	Pale disc, mild attenuated vessels, macular atrophy and peripheral white spots observed	No OCT	**
		Affected sib of LRS 20	F	3	LCA5 c.1062_ 1068 delCGAA AAC	Jerk	follows and fixates light	follows and fixates light	+3.00	-1.00	180	+3.00	-1.00	180	Extingui shed	Pale disc, mild attenuated vessels, macular atrophy seen	No OCT	**
3	33	LRS 30	М	14	LCA5 c.1062_ 1068 delCGAA AAC	Wande ring	follows and fixates light	follows and fixates light	+1.00	-1.75	10	+1.00	-1.00	10	Extingui shed	Pale disc, mild attenuated vessels, macular atrophy, shiny reflex seen and white dots in RPE observed.	No OCT	**

34	LRS 62	F	9 months	<i>NMNAT1</i> c.109G>A	Pendul ar	follows and fixates light	follows and fixates light	+6.00	-0.75	180	+5.50	-0.75	180	Extingui shed	Pale disc, mild attenuated vessels, coarse pigment with macular atrophy observed	No OCT	**
35	LRS 8	М	5	<i>NMNAT1</i> c.53A>G	Jerk	PLPR accurate	PLPR accura te	+6.00	**	**	+6.50	-1.00	70	Extingui shed	Pale disc, mild attenuated vessels, coarse pigment with macular atrophy observed, typical bony spicules in the periphery	Foveal thinning with RPE atrophy noted at fovea. Pigment ation causing shadowi ng noted.	**
36	LRS 80	М	8	<i>RD3</i> c.296+1 G>A	Jerk	HM+;1 less than N36	CFCF/ Less than N36	+3.50	-2.50	20	+3.00	-1.75	160	Extingui shed	Pale disc, mild attenuated vessels and early macular scarring seen. Pinhead sized round pigment observed	No OCT	**

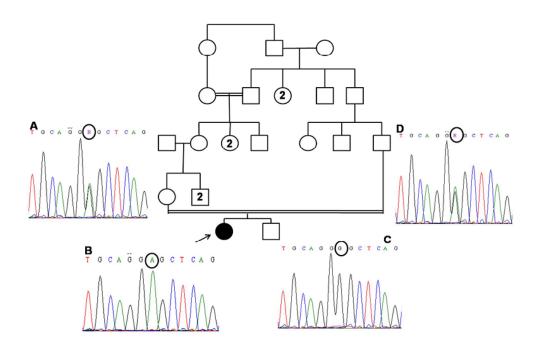
37	LRS 49	F	3	<i>RDH12</i> c.184C>T	Jerk	6/24	6/24	+8.00	-0.75	180	+8.00	-0.75	180	Extingui shed	Pale disc, attenuated vessels and macular coloboma with bony spicules and pigmentary clumps observed	No OCT	**
38	LRS 17	М	29	<i>RDH12</i> c.146C>T	Nil	CF at 50;N36	CF at 50;N3 6	-6.00	**	**	-5.00	**	**	Extingui shed	Pale disc, marked attenuated vessels and large area of macular coloboma with bony spicules observed	No OCT	**
39	LRS 93	F	17	<i>RDH12</i> c.746G>T	Jerk	3/60	1/60	+3.00	**	**	+3.50	-1.00	180	Reduce d	Pale disc, marked attenuated vessels and macular coloboma with bony spicules observed	Foveal thinning with RPE atrophy and pigment ation causing shadowi ng noted.E RM noted with IPVD.O S: IPVD	**

																noted causing slight traction just tempora I to fovea	
40	LRS 86	F	7	<i>RPE65</i> c.1514 T>G c.963T>G	Jerk	6/36;N6	CFCF/ Less than N36	+2.50	-0.50	180	+3.50	**	**	Extingui shed	Minimal optic disc pallor with attenuated vessels, metallic sheen and macular atrophies observed	Foveal contour seen with IS- OS junction thinning at the fovea. RPE atrophy noted.	Astigma tism
41	LRS 28	М	5	<i>RPE65</i> c.353+1 G>T	Jerk	6/36;N12	6/36;N 12	+2.50	-0.75	180	+2.25	-0.75	180	Extingui shed	Mild optic disc pallor with attenuated vessels and metallic sheen observed	No OCT	**
42	LRS 23	F	11	<i>RPE65</i> c.362 dupT	Jerk	6/24;N18	2/60;N 36	+0.75	-1.50	170	-2.25	-1.50	10	Extingui shed	Pale tilted disc with attenuated vessels, white spots in posterior pole observed	No OCT	Муоріс

43	LRS 25	F	7	<i>RPE65</i> c.46_49 del TTTG	Jerk	6/18;N6	6/18;N 6	+1.75	**	**	+1.75	**	**	Extingui shed	Optic disc pallor with attenuated vessels, white spots in posterior pole and metallic sheen observed	Foveal thinning noted. RPE alteratio n noted	**
44	LRS 2	F	9	<i>RPE65</i> c.1409 C>T	Jerk	6/18;N6	6/60;N 18	+2.50	-1.00	20	+4.00	-1.50	160	Extingui shed	Optic disc pallor with attenuated vessels, with white spots observed	Minimal foveal thinning noted with thinning of IS-OS junction.	**
45	LRS 12	М	12	<i>RPE65</i> c.1109 T>A	Pendul ar	HM+;1les s than N36	CF at 50;less than N36	-4.00	-2.00	180	-16.00	-4.00	170	Extingui shed	Pale disc, attenuated vessels, yellowish scarring seen in macula. coarse pigmentary clumps more in posterior pole observed	No OCT	Myopic, astigma tism, keratoc onus
46	LRS 58	М	36	<i>RPE65</i> c.362 dupT	Jerk	CF at 50;less than N36	CF at 1m;les s than N36	+3.50	**	**	+4.00	**	**	Extingui shed	Optic disc pallor with attenuated vessels and peripheral spicule pigmentation observed	No OCT	**

47	LRS 15	М	34	<i>RPGRIP1</i> c.3434 delA	Jerk	PLPR accurate; less than N36	PLPR inaccu rate; less than N36	-3.00	**	**	-5.50	**	**	Extingui shed	Pale disc, attenuated vessels, macular atrophy with coarse coin shaped early bony spicules.	No OCT	Муоріс
48	LRS 65	Μ	4	<i>RPGRIP1</i> c.2041 C>T	Rotato ry	Does not follow light	Does not follow light	+10.50	-2.00	180	+9.50	-1.00	180	Extingui shed	Minimal attenuation of vessels with RPE mottling seen.	No OCT	Astigma tism
49	LRS 45	М	6	<i>RPGRIP1</i> c.2041 C>T	Wande ring	CFCF	HM+	**	**	**	**	**	**	Extingui shed	Mild optic disc pallor, attenuation of vessels with RPE mottling seen.	OU: Foveal contour seen with thinning of IS-OS junction noted. FT- OD- 170 micron, OS- 180 micron	**
50	LRS 26	М	22	<i>RPGRIP1</i> c.3788 T>C	Jerk	PLPR accurate	PLPR accura te	+6.50	-3.00	180	+6.50	-3.00	180	Extingui shed	Mild optic disc pallor, attenuation of vessels, extensive	No OCT	**

																RPE mottling with early bony spicule pigmentation seen. Calcified deposits observed		
5	51	LRS 47	F	27	<i>RPGRIP1</i> c.895G>T	Wande ring	PLPR accurate	PLPR accura te	+5.50	-1.00	30	+5.00	-1.00	130	Extingui shed	Mild optic disc pallor, attenuation of vessels, with bony spicule pigmentation seen.	Foveal thinning noted with RPE atrophy at the fovea, thinning of IS-OS layer seen.FT -OD-45 microns, OS-63 microns	**
52	2	LRS 40	Σ	22	<i>TULP1</i> c.1047 T>G	Jerk	1/60	1/60	-5.00	-0.75	90	-3.50	-0.75	60	Extingui shed	Pale disc, marked attenuated vessels, Peri foveal yellow annular ring with macular atrophy and mild peripheral bone spicules like pigmentation seen	Foveal thinning noted with RPE atrophy seen sparring fovea. Thin ERM noted with ILM wrinklin g seen.	Myopic, cataract


53	LRS 29	F	22	<i>SPATA7</i> c.1215+5 C>A	wande ring	PLPR accurate; less than N36	PLPR accura te; less than N36	+7.50	**	**	+8.00	**	**	Extingui shed	Pale disc, attenuated vessels, tapetal reflex seen in periphery	NO OCT	**
	Affected sib of LRS 29	М	14	<i>SPATA7</i> c.1215+5 C>A	wande ring	PLPR accurate; less than N36	PLPR accura te; less thanN 36	+6.00	-0.5	180	+6.00	**	**	Extingui shed	Pale disc, attenuated vessels, RPE atrophy	NO OCT	**
54	LRS 67	М	15	<i>SPATA7</i> c.913- 2A>G	Jerk	PLPR accurate	PLPR accura te	+1.00	-1.00	170	+1.00	-2.25	170	Extingui shed	Pale disc, attenuated vessels with RPE atrophy seen.	Normal foveal dip seen with thinning of IS-OS junction noted. RPE alteratio ns seen	**
55	LRS 11	F	11	<i>SPATA7</i> c.18A>G	Jerk	3/60	HM+	+2.00	-1.50	20	+2.00	-3.00	120	Extingui shed	Pale disc, attenuated vessels with tapetal reflex and peripheral pigmentary changes seen.	NO OCT	**

<u>**Table 11:**</u> Shows the clinical features of mutation positive index cases affected by LCA. IS-OS = Inner segment-outer segment; ERM = Epiretinal membrane; RPE = Retinal pigment epithelium; ILM = Internal limiting membrane; PLPR= Perception and projection of light; HM = Hand movements; CFCF = Counting finger close to face. 3.5. Screening of *SLC19A2* in a patient diagnosed with Thiamine Responsive Megaloblastic Anaemia (TRMA) with LCA as ocular phenotype.

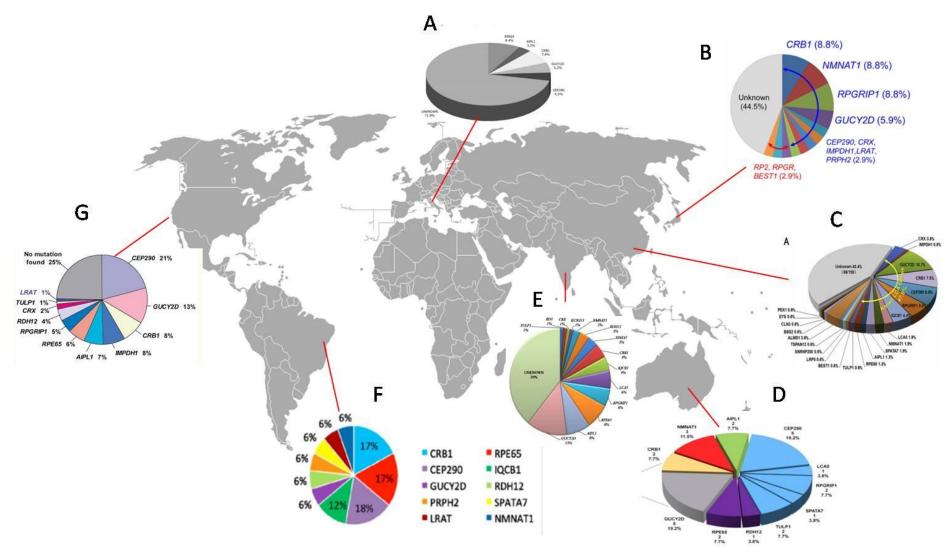
Figure 38: 2% Agarose gel picture of the amplified products of the six exons of *SLC19A2* gene. Lane 1: Exon 1- 589 bp, Lane 2: Exon 2- 700 bp, Lane 3: Exon 3- 391 bp, Lane 4: Exon 4- 429 bp, Lane 5: Exon 5- 300 bp, Lane 6: Exon 6 - 295 bp.

Screening identified a novel point mutation in exon 2, a c.314G>A transition resulting in a missense mutation p.(Gly105Glu) (**Figure 39**). SIFT and PolyPhen analysis predicted the mutation to be "damaging" (score-0.02) and "probably damaging" (score-0.994), with glycine residue conserved across vertebrates and human SLC19 family. Parents were also screened and were found to be heterozygous for the mutation and the unaffected sib homozygous for wild type.

Figure 39: Sequence showing a novel point mutation in exon 2, a c.314G>A transition resulting in a missense mutation p.(Gly105Glu). [A] Heterozygous mutation in mother [B] Homozygous mutation in proband [C] Homozygous wild type in sib [D] Heterozygous mutation in father.

CHAPTER-4

DISCUSSION


Next generation sequencing has transformed genomic research from a technically laborious, time consuming and an expensive experimentation to a fast, cost effective and efficient tool in investigating genetic basis of many diseases. Clinical implementations of NGS are still evolving; however, it has increased the understanding of genetics in everyday medicine. The massively parallel sequencing on NGS platforms has made possible the simultaneous sequencing of multiple genes in a single reaction thus increasing the knowledge on genetic basis of various Mendelian diseases especially those that are genetically heterogeneous.

Leber congenital amaurosis is characterised by both clinical variability and genetic heterogeneity. The autosomal dominant and recessive LCA are shown to be caused by 29 different genes. Therefore, next generation sequencing technologies is currently the most promising approach to identify mutations in candidate genes of LCA.

4.1. Targeted resequencing in Indian LCA cohort:

In this study, after complete ophthalmic examination, phenotype documentation and pre-test genetic counselling, genotyping by NGS based targeted re-sequencing of twenty LCA candidate genes was performed to identify the disease-causing variant in ninety-two LCA families from an Indian cohort. Except the four positive controls^{122, 127} (LRS 2, LRS 12, LRS 58, LRS 60) the index cases were not screened for mutations by any other methodologies.

The frequency of mutations in LCA genes varies in different populations. In a Chinese cohort of 145 patients screening 163 genes by retinal gene panel, 76.6% were mutation positive with *GUCY2D* mutations being more common ²⁷ while in an Italian cohort of 95 patients, screening 8 LCA genes identified mutations in 28% with *RPE65* being most frequent¹⁵⁸. Screening 13 genes in 37 Saudi Arabian families showed 24% mutation positivity with *TULP1* being common¹⁵⁹. In a Belgium cohort of 91 cases, 69% were positive with *CEP290* mutations being frequent ¹⁶⁰. In a Spanish cohort eight genes screened in 84 patients revealed 23.8% mutation identification with highest mutation rate in *CRB1¹⁶¹*. Screening of nine genes in 64

Figure 40: Pie charts of cohort studies showing frequency of LCA candidate gene mutation in the population. A. Italy¹⁵⁸ B. Japan¹⁶² C. China²⁷ D. Australia¹⁶³ E. India (Current study) F. Brazil¹⁶⁴ G. Western cohort¹²⁴

Danish patients identified 49% mutation positivity with high contribution of *RPE6*5 gene mutations¹⁶⁵.

In the current study, after the analysis, validation and segregation of the annotated data, we found 61% (56/92) of recruited LCA cases to be mutation positive in the twenty known candidate genes. The mutation spectrum was found to be as follows - *GUCY2D* gene contributing the highest (13%) followed by *AIPL1* and *RPE65* (8%), *RPGRIP1* and *LCA5* (6%), *IQCB1* and *CRB1* (4%), *SPATA7* and *RDH12* (3%), *NMNAT1* (2%), *KCNJ13, CRX, RD3* and *TULP1* contributing to 1%. We also observed same mutation in two or more unrelated individuals in our cohort.

No mutations were observed in *CABP4, CEP290, LRAT, MERTK, OTX2* and *IMPDH1* in this cohort. According to world-wide reports, *CEP290* is the most frequently mutated gene¹¹ followed by *GUCY2D*. However, we did not observe any mutations in *CEP290* gene in the cohort studied.

In LRS 11 (with consanguineous parentage), we observed a homozygous silent variant, c.18A>G; p.(Arg6Arg) in the penultimate base of exon 1 in *SPATA7*. The mother was heterozygous for the variant but the father was unavailable for analysis. This variant was not seen in controls screened. Although a synonymous change, computational predictions showed that it affects the wild type donor splice-site probably affecting splicing. This could either lead to a truncated protein or result in non-sense mediated decay¹⁶⁶. The patient and the family were unavailable for cDNA analysis to confirm the exact splicing defect. However, reports on silent variants in the last codon of exon leading to disease phenotype suggest this variant to be likely pathogenic¹⁶⁷. The same patient had a heterozygous missense variant c.551C>T in *CRX*. Bioinformatics tools predicted the variant to be damaging. The mother was wild type and the father was unavailable for gene testing. Hence, this *CRX* variant is defined as variant of unknown significance.

We observed specific bilateral changes in fundus features of our patients. Distinct phenotypes as found in earlier reports were observed in our study too; macular atrophy and yellowish spots in the macular region in *AIPL1* mutation ¹⁶⁸, paraarteriolar sparing of RPE and nummular pigmentation in *CRB1*¹⁶⁹. Greyish tapetal reflex was significantly observed in many patients with *GUCY2D* mutation in our cohort. *LCA5* mutation positive patients had hypopigmented whitish spots ¹²⁷,

while a typical macular colobomatous atrophy and bony spicules were evident in *RDH12* ¹⁷⁰ and *RPGRIP1* mutation, respectively. Typical fundus features of these various mutations are almost like the footprints of the disease that can be easily evaluated on retinal examination. These allow clinicians to consider few possible underlying mutated gene(s) and to some extent prognosticate the progression of the disease without subjecting all patients to a detailed genetic evaluation.

Among the 8 *AIPL1* mutation positive individuals, we observed the most frequent mutation p.(Trp278*) in three patients however the characteristic occurrence of keratoconus associated with *AIPL1* mutation was observed in only one. In *RPE65* affected individuals, we observed deterioration of vision with increase in age which correlates with the absence of macular involvement in early years and development of atrophy in later ages.

As reported, the visual acuities in our subjects varied from no light perception to 20/100 in many¹⁷¹ and cycloplegic refractions revealed predominantly hyperopic and few myopic LCA patients¹⁷². Other ocular phenotypes like astigmatism, keratoconus and cataract that were reported in other studies were also observed in this cohort, astigmatism in a *SPATA7* mutated patient¹⁷³, keratoconus in *AIPL1*, *CRB1*, *RPGRIP1*, *LCA5*, *RPE65* and *TULP1* mutated LCA patients^{172, 174}. Cataract was seen in some patients with *AIPL1*, *TULP1*, *RPGRIP1*, *LCA5* and *CRB1* mutated patients¹⁷⁴. Other anomalies that are reported to be associated with LCA, like cleft palate¹⁷¹, mental retardation, autism, delayed milestone¹⁷⁵ and hearing deficit were observed in few of our patients which signifies the importance of a thorough systemic evaluation in these subjects.

Double mutations i.e. two homozygous pathogenic variants in same gene were observed in two of our patients. LRS 86, with homozygous *RPE65* mutations, (p.(Asn321Lys) and p.(Leu505Arg)), had a severe macular phenotype with multiple small atrophic patches which is different from other *RPE65* cases. While LRS 55 with *GUCY2D* mutations (p.(Gly688Arg) and p.(Arg588Trp)), showed no significant difference compared to other *GUCY2D* mutation positive cases.

In LRS 90 family, the proband (3 yrs) and the affected sib (6 yrs) with digenic variants in *KCNJ13* and *AIPL1* showed diffused RPE mottling. The characteristic fundus phenotypes may be observed at a later age.

Among the mutation positive cases, there were twelve possible triallelic cases, where a heterozygous variant was observed along with disease causing pathogenic homozygous variant. The role of the third heterozygous allele remains unclear as we did not observe any significant difference in the fundus phenotype due to this allele. Although all the third heterozygous allele segregated in the families, the low CADD scores of *CABP4* and *CRB1* variants excludes the possibility of triallelism in LRS 58 and LRS 14 respectively. The pathogenicity of heterozygous *RPE65*, p.(Asn321Lys) variant in LRS 8, LRS 78, LRS 80 and LRS 88 as a disease allele remains unclear because of relatively high MAF and low CADD scoring, though the variant has been defined as disease causing in many studies^{176, 177}. Further molecular characterization of the variants might clarify the functional consequences, if any.

4.1.2. Possible functional impact of mutations on their protein:

Mutations in specific domains of protein are shown to have a major impact on their structure and functions. In our study, about 80% of mutations are in the functional domain and 44% of the mutations are either nonsense or frameshift which are present on or before the functional domain and predicted to result in truncated protein (**Figure 31**).

AIPL1:

The PPIase domain binds to farnesylated PDE6 protein¹⁷⁸ and mutation in this domain disrupts its binding. Glu83Lys mutation identified in this study is present in this domain and was predicted to alter the structure as the amino acid change is from acidic to a basic residue. The tetratricopeptide repeat (TPR) domain in *AIPL1 is* essential for the protein to function as chaperone heterocomplex for assisting in retinal protein maturation. Mutations in TPR domain or deletion of the domain are shown to disrupt this interaction between *AIPL1* and its co-chaperone *Hsp70¹⁷⁹*. Three of the identified mutations p.(Asn230Ser), p.(Trp278*) and p.(Glu282*) are present in this domain. The p.(Trp278*) mutation is shown to result incomplete loss of protein¹⁸⁰.

CRB1:

The CRB1 protein has a signal peptide, EGF-like domains, laminin AG-like domains and cytoplasmic domains. We identified frameshift mutation p.(Ser359Glufs*20) in

the 5th epidermal growth factor-like (EGF) domain and p.(R1390X) in the 3rd laminin aglobular like domain leading to premature truncation. Mutations in EGF domain are said to affect interdomain packing¹⁸¹. The laminin G-like domains are conserved and are predicted to affect calcium binding, protein folding and interactions¹⁸². The functional impact of the identified canonical splice variant c.4005+1G>A is unknown but is predicted to be damaging by *insilico* analysis.

CRX

The CRX protein contains an otd/ Otx-like paired homeodomain (HD) in the Nterminus that are required for DNA-binding and nuclear localization and a transcription activation domain at the C-terminal¹⁸³. The mutation identified in this study p.(Arg41Gln) is present in HD domain while p.(Pro184Leu) is present in transcription activation domain. p.(Arg41Gln) has already been characterized by cotransfection assays and was shown to significantly reduce DNA-binding activity¹⁸⁴.

GUCY2D

GUCY2D protein has N-terminal extracellular domain (ECD), a single membranespanning domain, an intracellular kinase homology domain (KHD), and a catalytic domain (CD). In our study, p.(Phe54Serfs*31) in ECD, p.(Arg660*) in KHD, p.(Gly888Alafs*8), p.(Thr962llefs*16), p.(Leu1022*) in CD all lead to premature protein truncation causing the disruption in protein activity. Studies have shown that the protein activity is compromised even with point mutations in KHD and CD domains ¹⁸⁵. All other missense variants in our study are distributed in all three domains and are predicted to be disease causing by bioinformatics tools.

RDH12

RDH12 has a NAD(P) binding domain that is essential for its catalytic activity possessing cofactor or substrate binding sites¹⁸⁶. The nonsense variant p.(Arg62*) leads to protein truncation while one of the missense mutations identified, p.(Thr49Met), was well characterized and had shown to be rapidly degraded leading to decreased cellular availability, thus causing the disease¹⁸⁷

LCA5

LCA5 has 4 coiled coil domains that aid in the interaction with its other partners like *OFD1* ¹⁸⁸, *Nlp*^{isoB} etc. All mutations identified in *LCA5* in this study are frameshift p.(Ile474Metfs*11), and nonsense p.(Tyr354*), p.(Arg280*) leading to truncation of

the protein. The c.955G>A lead to change in the last base of exon 6 leads to amino acid change from alanine to threonine. This mutation has been characterized by cDNA analysis leading to a 5 bp insertion of intronic sequence, causing a frameshift and premature truncation of protein¹⁸⁹.

RPE65

RPE65 has a catalytic domain that is responsible for its isomerohydrolase activities¹⁹⁰. The 2 frameshift mutants observed in the study, p.(Phe16Lysfs*14) and p.(Ser121Phefs*10) are before and in the beginning of the catalytic domain, respectively. Hence there would be disruption of whole domain resulting possibly in a non-functional protein and causing disease. Although studies on the functional consequence of the other mutants p.(Leu505Arg), p.(Asn321Lys), p.(Pro470Leu) and p.(Leu370His) are unavailable, we find that all these mutants lie on the catalytic domain and are predicted to have change in amino acid charge and polarity except for p.(Asn321Lys).

NMNAT1

NMNAT1 has substrate binding domain, isoform-specific targeting and interaction domains that are essential for neuroprotective function of the protein¹⁹¹. We identified 2 missense variants that are not characterized before. By *Insilico* analysis¹⁹², the p.(Asn18Ser) mutant is predicted to affect correct protein folding as the hydrophobicity of the wild-type and mutant residue differs. In p.(Gly37Arg) mutant, the glycine to arginine change introduces a charge (neutral to positive) in this position which might result in a repulsion between the altered residue and the adjacent amino acid residues. Also, glycine with its neutral charge is flexible for any change in protein conformation thereby helping in protein function. Its alteration to arginine might decrease the flexibility thus affecting protein function.

IQCB1

IQCB1 possess IQ calmodulin-binding and coiled coil domains ^{193, 194}. The functional domain is essential for its interaction with RPGR and calmodulin during ciliogenesis²⁹. All *IQCB1* mutants identified in the study are nonsense mutants (GIn520*, Arg455*, Arg445*, Arg332*), and might have a functional impact on protein.

RPGRIP1

RPGRIP1 contains a C-terminal *RPGR* interacting domain (RID) and a coiled-coil (CC) domain. These domains are homologous among the proteins that are involved in vesicular trafficking¹⁹⁵. The mutants identified in our study- p.(Glu1145Glyfs*18), p.(Gln681*) and p.(Glu299*) result in proteins that lack *RPGR* interacting domain causing disease.

TULP1

TULP1 has carboxy-terminal tubby domain which acts as DNA binding domain and the N-terminal regions helps in transcription activation¹⁹⁶. The p.(Asn349Lys) mutation is found to be in the tubby domain. The mutation segregated with the disease phenotype in the family with the affected sib harbouring the same mutation and is predicted to be damaging by insilico tools. The functional impact of this possibly pathogenic variant is yet to be studied.

SPATA7

The N-terminal domain of SPATA7 functions as binding region for other ciliary proteins to perform ciliary trafficking ⁷⁶. The mutants from this study c.913-2A>G, c.1215+5C>A and c.18A>G are splice mutants. The two splice variants c.913-2A>G and c.1215+5C>A were characterized by RT-PCR and cDNA sequencing that confirm the altered splicing which would lead to premature truncation of protein. The cDNA mutant is predicted by bioinformatic analysis to alter splicing as well.

4.2. Observed syndromic LCA

4.2.1. Senior-Loken syndrome (SLSN)

SLSN is an autosomal recessive syndrome. It is a nephronophthisis-associated disorder, where the patient presents cystic kidney disease and retinal dystrophy. Retinal abnormalities like retinitis pigmentosa or Leber congenital amaurosis is reported so far. Prognosis with respect to vision is usually poor and treatment is still unavailable. But for the kidney, renal transplantation is recommended for the end stage renal failure¹⁹⁷. Mutations in *IQCB1* have been shown to cause Senior-Loken syndrome (SLSN). In the study by Estrada Cuzcano et. *al*, LCA patients with *IQCB1* mutations were recalled and assessed for renal abnormalities and those positive were subsequently re-diagnosed as SLSN¹⁹⁸. Patients with *IQCB1* mutations are

shown to be at a high risk of renal failure during or after second decade of life.In our study, we observed pathogenic variants in *IQCB1* gene in four patients – LRS 10, LRS 77, LRS 79 and LRS 92. Following the results obtained from our targeted resequencing assay, we re-called the *IQCB1* mutation positive patients, re-counselled and advised for comprehensive renal evaluation at regular intervals. The case LRS 92 first reported to us at seven months of age and was diagnosed with LCA. Following gene testing and re-counselling at 5 years of age, the patient's family revealed history of bilateral marginal nephromegaly diagnosed at 9 months. At 7yrs, he developed chronic kidney disease stage II and presented with behavioural issues both characteristic of *IQCB1* mutation and thus re-diagnosed as Senior-Loken syndrome. The age ranges of other *IQCB1* mutation positive patients are between 4 and 11 years and no renal abnormality has been observed yet.

4.2.2. Thiamine responsive megaloblastic anaemia:

TRMA Syndrome was first reported in 1969 by Rogers et al. ¹⁹⁹. It is autosomal recessive and the onset of the syndrome is in infancy or in early childhood with main features being megaloblastic anemia, diabetes mellitus (non-type 1) and sensorineural deafness, responding in varying degrees to thiamine treatment^{200, 201}. Other associated findings described are congenital cardiac malformations, cardiomyopathy andretinal abnormalities.

In a case of cone-rod dystrophy with TRMA syndrome, deafness was the first feature to be noticed at 1 year of age followed by diabetes mellitus. At 7 years of age, the patient developed pancytopenia, cardiomyopathy and vision loss, where the ERG was consistent with cone-rod dystrophy. By 15 years of age, vision in both eyes deteriorated and fundi showed bull's eye maculopathy with peripheral pigmentary changes²⁰². Contrarily, in the current study, the patient complained severe vision loss with photophobia, nystagmus and hyperopia consistent with LCA manifesting within one year of age. ERG was extinguished. This was followed by sensorineural deafness at one year and diabetes mellitus later at three and half years. The manifestation of all features of TRMA was much early in our patient. Homozygosity mapping and subsequent gene screening identified on chromosome 1 (1q23.2-23.3), *SLC19A2*, a member of solute carrier family 19, encoding a thiamine transporter, THTR1 as the candidate gene, for TRMA^{155, 203}. Many mutations in *SLC19A2* gene in TRMA patients have been reported²⁰⁴⁻²⁰⁶. Gene

screening aids in the differential diagnosis of neonatal diabetes as *SLC19A2* is not mutated in patients with permanent neonatal diabetes mellitus (PNDM) in which diabetes is presented in the first 6 months of life²⁰⁷.

A higher expression of hTHTR-1 and moderate expression of hTHTR-2 were found to be present in ARPE-19 cells as well as in native human retinal tissue. By confocal imaging, ARPE-19 cells expressing TRMA associated hTHTR-1 mutants (Gly172Asp, Ser143Phe and Asp93His) have shown impaired cell surface expression or function of the transporter in this cell. However, it is still not known as to why only some TRMA patients present with retinal degeneration and why there is a difference in the clinical presentation of the same²⁰⁸.

In our patient, we report a novel missense mutation in exon 2, a c.314G>A transition resulting in p.(Gly105Glu), converting nonpolar hydrophobic glycine to negatively charged hydrophilic glutamic acid. The retinal degenerative (RD) phenotypes so far described as part of TRMA are cone rod dystrophy²⁰², retinitis pigmentosa²⁰⁹ and optic atrophy²¹⁰. Here for first time, we report Leber's congenital amaurosis (LCA) as a component of RD in our patient.

In the last decade, tremendous advances in genotyping and genomic research have improved molecular diagnosis aiding in genetic counselling and development of therapeutic strategies for the treatment of various diseases like cancer, genetic defects, infectious diseases or autoimmune disorders. Even when significant progress has been made in recent years in gene therapy, most genetic diseases do not have therapies, and it will be important to continue developing treatment strategies for individual genetic diseases even if they occur only rarely²¹¹. Advancements in understanding the genetic and molecular basis of a variety of retinal diseases has led to the development of gene therapy for these and the original hope that gene therapy could cure otherwise untreatable, inherited genetic diseases has been rekindled by gene therapy clinical trial for LCA. The difficulties in designing gene therapy are due to the choice of suitable gene transfer vehicle, the efficiency of gene transfer and problems related to immune reactions of the treated patient against the vector carrying the therapeutic gene. AAV2-mediated gene transfer to the human retina does not elicit the cytotoxic T-lymphocyte responses to AAV capsids unlike that were observed in muscle and central nervous system, thus supporting the use of AAV-mediated gene augmentation therapy for treatment of few inherited retinal diseases. Molecular testing aids in the diagnosis of LCA and knowledge of the disease gene in LCA patients are important in counselling patient's family and in determining their suitability for gene-specific therapies for very few now and for many subjects in future.

In conclusion, this study provides an insight on the genetic profile and mutation spectrum of candidate genes of LCA from a larger Indian cohort. The molecular findings have also helped in re-diagnosis, medical management, carrier testing, prenatal testing and genetic counseling.

4

CONCLUSION

In conclusion, this is the first comprehensive study on the genetic profile and mutation spectrum of candidate genes of LCA from a larger Indian cohort. Also, this study for the first time reported association of TRMA with LCA as the retinal disease component. In this cohort, mutation was found in 62% (57/92 - 56 by targeted resequencing and 1 TRMA) of patients recruited. Among the mutations found 39% (21/53) were novel. The mutation spectrum and the presence of large number of novel mutations suggests that using custom made chips designed for targeting specific mutations for genetic testing would not be an efficient method of genetic diagnosis, especially in genetically heterogeneous diseases.

The current study also reports a possible digenic inheritance which proves the advantage of using NGS over other screening methodologies, as a large set of genes are screened and analysed for possible disease pathogenicity. The triallelic inheritance reported in the current study provides an insight on the modifier alleles that could probably make a difference in the disease severity among. However, we did not observe any alteration in the disease severity in our cohort with triallelic variants. Mutation was not identified in 35/92 cases (38%) where screening of mutations in unscreened deep intronic and regulatory regions might contribute to a small percentage of disease etiology in these patients. These negative cases also represent cohort where other retinal genes or novel genes could be involved. Also, large structural rearrangements such as duplications are not identified by targeted re-sequencing. Whole exome or genome sequencing would identify all these including novel genes.

SPECIFIC CONTRIBUTIONS

- First report on mutation spectrum in LCA from a large Indian cohort
- > First report on association of TRMA with LCA as an ocular disease phenotype.
- > Distinct phenotype to genotype correlation in a large number of LCA patients.
- > 21 novel pathogenic variants submitted to public databases.
- Genetic testing data of 57 patients positive for mutation in candidate genes screened aided in

Genetic counselling

Genetic diagnostics has strengthened genetic counselling and management of genetic diseases. Although gene therapies for ocular genetic diseases are still underway, gene testing confirms the clinical diagnosis and has helped the patient and their families in rehabilitation and disease management.

Carrier testing

In the current study, after identifying the mutation in the probands we extended carrier testing to other members of the families. As a part of segregation analysis and carrier testing the siblings were checked for carrier status. This had aided in genetic counselling for the carrier sibling by providing the risk of disease for the next generation, especially if they decide on consanguineous marriages.

Prenatal testing

Molecular genetic test, prenatally, are usually carried out in the fetal DNA from chorionic villi sample. In two of our patients, LRS 43 with p.(Gly597Glu) and LRS 74 with p.(Asp728Asn) mutations in *GUCY2D*, following the genetic test in proband, the results were discussed with the family and the proband's parents opted for prenatal testing for the successive pregnancy. Both the foetuses were found to be heterozygous carriers and had normal vision after birth.

Management of genetic disease

The patients with *IQCB1* mutations are shown to be at a high risk of renal failure during or after second decade of life. We identified *IQCB1* pathogenic variants in four patients and all were re-called, re-counselled and advised for comprehensive renal evaluation at regular intervals. LRS92 with *IQCB1* mutation, at 7yrs, developed chronic kidney disease stage II and presented with behavioural issues both characteristic of *IQCB1* mutation. Monitoring the renal function of patients with *IQCB1* mutation periodically help in avoiding end stage complication and proper management of disease.

Screening of *SLC19A2* in the TRMA patient helped in confirming the diagnosis and thereby management. The megaloblastic anaemia was corrected using a pharmacological dose of thiamine (25-75 mg /day) and for diabetes; the patient is under 18U and 10U of insulin at morning and night, respectively.

LIMITATIONS

Large structural rearrangements such as duplications were not analyzed in this study. Deep intronic and regulatory regions of the twenty candidate genes screened were not sequenced in the current study. This might contribute to a small percentage of mutations in the negative cases. Three cases, LRS 46, LRS 24 and LRS 89 with novel heterozygous variants *MERTK*, c.1627T>C, p.(Ser543Pro); *RPE65*, c.814C>T, p.(Gly272Arg) and *RPGRIP1*, c.1480delA, p.(Asn495Thrfs*11) could harbour deep intronic variants. Recently, more candidate genes; *ALMS1*, *CCT2*, *CNGA3*, *CLUAP1*, *DTHD1*, *GDF6*, *IFT140*, *MYO7A* and *PRPH2* have been reported which were not screened in the current study. Although variants in each of these genes were reported in only one case, it might also contribute to the mutation spectrum in our cohort.

FUTURE SCOPE OF THE STUDY

- Whole exome or genome sequencing might help in identifying the causative variant involved in the mutation negative cases, either variants in deep intronic and regulatory regions of known candidate genes or novel genes.
- The phenotype and genotype correlation understood by the current study can be extrapolated to design phenotype based diagnostic testing to reduce the cost of gene testing for the patients.
- The available data on the mutation spectrum of the patients would help in the application of gene replacement therapy in the future.
- Identifying novel genes and understanding their function and disease mechanism may pave way for new therapeutic strategies.

REFERENCES

- HT Gabriel: HUMAN GENETICS '98: APOPTOSIS: Mechanisms of Cell Death in the Inherited Retinal Degenerations. *Am J Hum Genet* 1998, 62: 503–508.
- 2. Lorenz B Preising M, Stieger K.: Retinal blinding disorders and gene therapymolecular and clinical aspects. . *Curr Gene Ther* 2010, 10 ((5)): 350-370.
- Shobi V Csilla HL, Chang, Paul AS, Eyal B, S. Anand: Biology and therapy of inherited retinal degenerative disease: insights from mouse models. *Dis Model Mech* 2015, 8 (2): 109–129.
- 4. Daiger SP, Rossiter BJF, Greenberg J, Christoffels A, W. Hide: Data services and software for identifying genes and mutations causing retinal degeneration. *Invest OphthalmolVis Sci* 1998, 39: S295.
- Veleri S Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A.: Biology and therapy of inherited retinal degenerative disease: insights from mouse models. *Dis Model Mech* 2015, 8 (2): 109-129.
- Swaroop A Kim D, Forrest D: Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. *Nat Rev Neurosci* 2010, 11: 563-576.
- Benjamin MN Dale CW, John RG, Bruce B, Robyn VJ.: Retinal dystrophies, genomic applications in diagnosis and prospects for therapy. *Transl Pediatr* 2015, 4 (2): 139-163.
- Parmeggiani F, Sorrentino FS, Ponzin D, Barbaro V, S Ferrari, E. Di Iorio: Retinitis pigmentosa: genes and disease mechanisms. *Curr Genomics* 2011, 12: 238-249.
- Kohl S, Varsanyi B, Antunes GA, Baumann B, Hoyng CB, Jägle H, Rosenberg T, Kellner U, Lorenz B, Salati R *et al*: CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. *Eur J Hum Genet* 2005, 13 (3): 302-308.
- Gardner JC Webb TR, Kanuga N, Robson AG, Holder GE, Stockman A, Ripamonti C, Ebenezer ND, Ogun O, Devery S, Wright GA, Maher ER, Cheetham ME, Moore AT, Michaelides M, Hardcastle AJ.: X-linked cone

dystrophy caused by mutation of the red and green cone opsins. *Am J Hum Genet* 2010, 87 (1): 26-39.

- 11. Rachna S Chitra K, Subhadra J.: Genetics of Leber congenital amaurosis: an update. In: *Expert Review of Ophthalmology.* vol. 7; 2012: 141-151.
- Garcia-Hoyos M, Lorda-Sanchez , Gómez-Garre P, Villaverde C, Cantalapiedra D, Bustamante A, Diego-Alvarez D, Vallespin E, Gallego-Merlo J, Trujillo MJ *et al*: New type of mutations in three spanish families with choroideremia. *Invest Ophthalmol Vis Sci* 2008, 49 (4): 1315-1321.
- 13. Hiroyuki Y András S, Ulf E, Eddie H, Eliot LB, Thaddeus PD: Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus. *Nature Genetics* 1999, 22: 188 191
- 14. Katsanis N Shroyer NF, Lewis RA, Cavender JC, AA Rajhi AI, Jabak M, Lupski JR.: Fundus albipunctatus and retinitis punctata albescens in a pedigree with an R150Q mutation in RLBP1. *Clin Genet* 2001, 59: 424–429.
- 15. Ku CS, Naidoo N, Y. Pawitan: Revisiting Mendelian disorders through exome sequencing. *Hum Genet* 2011, 129: 351-370.
- Harville HM Held S, Diaz-Font A, Davis EE, Diplas BH, Lewis RA, Borochowitz ZU, Zhou W, Chaki M, MacDonald J, Kayserili H, Beales PL, Katsanis N, Otto E, Hildebrandt F. : Identification of 11 novel mutations in eight BBS genes by high-resolution homozygosity mapping. *J Med Genet* 2010, 47: 262-267.
- Collin RW Safieh C, Littink KW, Shalev SA, Garzozi HJ, Rizel L, Abbasi AH, Cremers FP, den Hollander AI, Klevering BJ, Ben-Yosef T.: Mutations in *C2ORF71* cause autosomal-recessive retinitis pigmentosa. *Am J Hum Genet* 2010, 86: 783-788.
- Jaakson K Zernant J, Kulm M, Hutchinson A, Tonisson N, Glavac D, Ravnik-Glavac M, Hawlina M, Meltzer MR, Caruso RC, Testa F, Maugeri A, Hoyng CB, Gouras P, Simonelli F, Lewis RA, Lupski JR, Cremers FP, Allikmets R.: Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. *Hum Mutat* 2003, 22: 395-403.
- 19. Chandra SP Rafal S, Andrze JT. : Sequencing Technologies and Genome Sequencing. *J Appl Genetics* 2011, 52: 413-435.
- 20. ML Metzker: Sequencing technologies the next generation. *Nat Rev Genet* 2010, 11 (1): 31-46.

- 21. Züchner S Dallman J, Wen R, Beecham G, Naj A, Farooq A, Kohli MA, Whitehead PL, Hulme W, Konidari I, Edwards YJ, Cai G, Peter I, Seo D, Buxbaum JD, Haines JL, Blanton S, Young J, Alfonso E, Vance JM, Lam BL, Peričak-Vance MA.: Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. *Am J Hum Genet* 2011, 88 (2): 201-206.
- 22. Roosing S Rohrschneider K, Beryozkin A, Sharon D, Weisschuh N, Staller J, Kohl S, Zelinger L, Peters TA, Neveling K, Strom TM; European Retinal Disease Consortium, van den Born LI, Hoyng CB, Klaver CC, Roepman R, Wissinger B, Banin E, Cremers FP, den Hollander AI.: Mutations in RAB28, encoding a farnesylated small GTPase, are associated with autosomal-recessive cone-rod dystrophy. *Am J Hum Genet* 2013, 93 (1): 110-117.
- Eisenberger T Slim R, Mansour A, Nauck M, Nürnberg G, Nürnberg P, Decker C, Dafinger C, Ebermann I, Bergmann C, Bolz HJ.: Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3. *Orphanet J Rare Dis* 2012, 7 (59).
- 24. Christina Z Samuel GJ, Christian PH, Kinga B, Marion N, Elise O, Xavier Z, Marie EL, Christelle M, Sharon BS, Beatrice B, Congenital Stationary Night Blindness Consortium, Aline A, Claire A, Melanie L, Jean PS, Tien DL, Florian S, Hoan N,Olivier P, Helene D, Odile L, Susanne K, Jose AS, Shomi SB, Isabelle A.: Whole-Exome Sequencing Identifies *LRIT3* Mutations as a Cause of Autosomal-Recessive Complete Congenital Stationary Night Blindness. *Am J Hum Genet* 2013, 92 (1): 67-75.
- 25. Koenekoop RK Wang H, Majewski J, Wang X, Lopez I, Ren H, Chen Y, Li Y, Fishman GA, Genead M, Schwartzentruber J, Solanki N, Traboulsi EI, Cheng J, Logan CV, McKibbin M, Hayward BE, Parry DA, Johnson CA, Nageeb M, Poulter JA, Mohamed MD, Jafri H, Rashid Y, Taylor GR, Keser V, Mardon G, Xu H, Inglehearn CF, Fu Q, Toomes C, Chen R.: Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. *Nat Genet* 2012, 44 (9): 1035-1039.
- 26. Ratnapriya R Swaroop A.: Genetic architecture of retinal and macular degenerative diseases: the promise and challenges of next-generation sequencing. *Genome Med* 2013 5(10): 84.

- Wang H, Wang X, Zou X, Xu S, Li H, Soens ZT, Wang K, Li Y, Dong F, al Chen R et: Comprehensive Molecular Diagnosis of a Large Chinese Leber Congenital Amaurosis Cohort. *Invest Ophthalmol Vis Sci* 2015, 56 (6): 3642-3655.
- 28. T. Leber: Uber retinitis pigmentosa und angeborene amaurose. *Albrecht Von Graefes Arch Ophthalmol* 1869, 15: 1-25.
- 29. Wang X Wang H, Cao M, Li Z, Chen X, Patenia C, Gore A, Abboud EB, Al-Rajhi AA, Lewis RA, Lupski JR, Mardon G, Zhang K, Muzny D, Gibbs RA, Chen R.: Whole-exome sequencing identifies ALMS1, IQCB1, CNGA3, and MYO7A mutations in patients with Leber congenital amaurosis. *Hum Mutat* 2011, 32 (12): 1450-1459.
- den Hollander Al Roepman R, Koenekoop RK, Cremers FP.: Leber congenital amaurosis: genes, proteins and disease mechanisms. *Prog Retin Eye Res* 2008, 27 (4): 391-419.
- 31. Heher KL Traboulsi EI, Maumenee IH. : The natural history of Leber's congenital amaurosis. Age-related findings in 35 patients. *Ophthalmology* 1992, 99: 241-245.
- Lorenz B Gyürüs P, Preising M, Bremser D, Gu S, Andrassi M, Gerth C, Gal A.: Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. *invest Ophthalmol Vis Sci* 2000, 41 (9): 2735-2742.
- 33. Yzer S van den BLI, Schuil J, Kroes HY, van GMM, Boonstra N, van den HB, Brunner HG, Koenekoop RK, Cremers FPM.: A Tyr368His RPE65 founder mutation is associated with early-onset retinal dystrophy with variable expression and progression in 10 families of a genetically isolated population. . J Med Genet 40 2003, 40: 709-713.
- Dharmaraj S Silva E, Pina AL, Li YY, Yang JM, Carter RC, Loyer M, El-Hilali H, Traboulsi E, Sundin O, Zhu D, Koenekoop RK, Maumenee IH.: Mutational analysis and clinical correlation in Leber congenital amaurosis. *Ophthal Genet* 2000, 21: 135-150.
- 35. Schuil J Meire FM, Delleman JW.: Mental retardation in amaurosis congenita of Leber. *Neuropediatrics* 1998, 29 (6): 294-297.
- 36. Kurent A Stirn-Kranjc B, Brecelj J.: Electroretinographic characteristics in children with infantile nystagmus syndrome and early-onset retinal dystrophies. *Eur J Ophthalmol* 2015, 25 (1): 33-42.

- 37. Samuel GJ Artur VC, Gustavo DA, Alejandro JR, Alexander S, William WH, Krzysztof P.: Improvement in vision: a new goal for treatment of hereditary retinal degenerations. *Expert Opinion on Orphan Drugs* 2015, 3 (5): 563-575.
- Chacon-Camacho OF Zenteno JC.: Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases 2015, 3 (2): 112-124.
- Perrault I Hanein S, Gerber S, Barbet F, Ducroq D, Dollfus H, Hamel C, Dufier JL, Munnich A, Kaplan J, Rozet JM.: Retinal dehydrogenase 12 (RDH12) mutations in leber congenital amaurosis. *Am J Hum Genet* 2004, 75 (4): 639-646.
- 40. Hanein S Perrault I, Gerber S, Tanguy G, Barbet F, Ducroq D, Calvas P, Dollfus H, Hamel C, Lopponen T, Munier F, Santos L, Shalev S, Zafeiriou D, Dufier JL, Munnich A, Rozet JM, Kaplan J: Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. *Hum Mutat* 2004, 23 (4): 306-317.
- Lotery AJ Jacobson SG, Fishman GA, Weleber RG, Fulton AB, Namperumalsamy P, Héon E, Levin AV, Grover S, Rosenow JR, Kopp KK, Sheffield VC, Stone EM.: Mutations in the CRB1 gene cause Leber congenital amaurosis. *Arch Ophthalmol* 2001, 119 (3): 415-420.
- 42. Freund CL Wang QL, Chen S, Muskat BL, Wiles CD, Sheffield VC, Jacobson SG, McInnes RR, Zack DJ, Stone EM.: De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis. *Nat Genet* 1998, 18 (4): 311-312.
- 43. Asai-Coakwell M March L, Dai XH, Duval M, Lopez I, French CR, Famulski J, De Baere E, Francis PJ, Sundaresan P, Sauvé Y, Koenekoop RK, Berry FB, Allison WT, Waskiewicz AJ, Lehmann OJ.: Contribution of growth differentiation factor 6-dependent cell survival to early-onset retinal dystrophies. *Hum Mol Genet* 2013, 22 (7): 1432-1442.
- 44. Bowne SJ Sullivan LS, Mortimer SE, Hedstrom L, Zhu J, Spellicy CJ, Gire AI, Hughbanks-Wheaton D, Birch DG, Lewis RA, Heckenlively JR, Daiger SP.: Spectrum and frequency of mutations in *IMPDH1* associated with autosomal dominant retinitis pigmentosa and leber congenital amaurosis. *Invest Ophthalmol Vis Sci* 2006, 47 (1): 34-42.

- 45. Ragge NK Brown AG, Poloschek CM, Lorenz B, Henderson RA, Clarke MP, Russell-Eggitt I, Fielder A, Gerrelli D, Martinez-Barbera JP, Ruddle P, Hurst J, Collin JR, Salt A, Cooper ST, Thompson PJ, Sisodiya SM, Williamson KA, Fitzpatrick DR, van Heyningen V, Hanson IM.: Heterozygous mutations of OTX2 cause severe ocular malformations. *Am J Hum Genet* 2005, 77 (2): 334.
- 46. Friedman JS Chang B, Kannabiran C, Chakarova C, Singh HP, Jalali S, Hawes NL, Branham K, Othman M, Filippova E, Thompson DA, Webster AR, Andréasson S, Jacobson SG, Bhattacharya SS, Heckenlively JR, Swaroop A.: Premature truncation of a novel protein, RD3, exhibiting subnuclear localization is associated with retinal degeneration. *Am J Hum Genet* 2006, 80 (2): 388.
- Morimura H Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP.: Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or leber congenital amaurosis. *Proc Natl Acad Sci U S A* 1998, 95 (6): 3088-3093.
- Dryja TP Adams SM, Grimsby JL, McGee TL, Hong DH, Li T, Andréasson S, Berson EL.: Null *RPGRIP1* alleles in patients with Leber congenital amaurosis. *Am J Hum Genet* 2001, 68 (5): 1295-1298.
- den Hollander Al Koenekoop RK, Yzer S, Lopez I, Arends ML, Voesenek KE, Zonneveld MN, Strom TM, Meitinger T, Brunner HG, Hoyng CB, van den Born LI, Rohrschneider K, Cremers FP.: Mutations in the *CEP290 (NPHP6)* gene are a frequent cause of Leber congenital amaurosis. *Am J Hum Genet* 2006, 79 (3): 556-561.
- Sohocki MM Bowne SJ, Sullivan LS, Blackshaw S, Cepko CL, Payne AM, Bhattacharya SS, Khaliq S, Qasim Mehdi S, Birch DG, Harrison WR, Elder FF, Heckenlively JR, Daiger SP.: Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. *Nat Genet* 2000, 24 (1): 79-83.
- 51. Aldahmesh MA1 Al-Owain M, Alqahtani F, Hazzaa S, Alkuraya FS.: A null mutation in *CABP4* causes Leber's congenital amaurosis-like phenotype. *Mol Vis* 2010, 16: 207-212.
- 52. Perrault I Rozet JM, Calvas P, Gerber S, Camuzat A, Dollfus H, Châtelin S, Souied E, Ghazi I, Leowski C, Bonnemaison M, Le Paslier D, Frézal J, Dufier

JL, Pittler S, Munnich A, Kaplan J.: Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis. *Nat Genet* 1996, 14 (4): 461-464.

- 53. Estrada-Cuzcano A Koenekoop RK, Coppieters F, Kohl S, Lopez I, Collin RW, De Baere EB, Roeleveld D, Marek J, Bernd A, Rohrschneider K, van den Born LI, Meire F, Maumenee IH, Jacobson SG, Hoyng CB, Zrenner E, Cremers FP, den Hollander AI.: IQCB1 mutations in patients with leber congenital amaurosis. *invest Ophthalmol Vis Sci* 2011, 52 (2): 834-839.
- 54. den Hollander AI Koenekoop RK, Mohamed MD, Arts HH, Boldt K, Towns KV, Sedmak T, Beer M, Nagel-Wolfrum K, McKibbin M, Dharmaraj S, Lopez I, Ivings L, Williams GA, Springell K, Woods CG, Jafri H, Rashid Y, Strom TM, van der Zwaag B, Gosens I, Kersten FF, van Wijk E, Veltman JA, Zonneveld MN, van Beersum SE, Maumenee IH, Wolfrum U, Cheetham ME, Ueffing M, Cremers FP, Inglehearn CF, Roepman R.: Mutations in *LCA5*, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. *Nat Genet* 2007, 39 (7): 889-895.
- 55. Wang H den Hollander AI, Moayedi Y, Abulimiti A, Li Y, Collin RW, Hoyng CB, Lopez I, Abboud EB, AI-Rajhi AA, Bray M, Lewis RA, Lupski JR, Mardon G, Koenekoop RK, Chen R.: Mutations in SPATA7 cause Leber congenital amaurosis and juvenile retinitis pigmentosa. *Am J Hum Genet* 2010, 86 (2): 293.
- 56. Zernant J Külm M, Dharmaraj S, den Hollander AI, Perrault I, Preising MN, Lorenz B, Kaplan J, Cremers FP, Maumenee I, Koenekoop RK, Allikmets R.: Genotyping microarray (disease chip) for Leber congenital amaurosis: detection of modifier alleles. *invest Ophthalmol Vis Sci* 2005, 46 (9): 3052-3059.
- 57. Khan AO Bolz HJ, Bergmann C.: Early-onset severe retinal dystrophy as the initial presentation of IFT140-related skeletal ciliopathy. *J AAPOS* 2014, 18 (2): 203-205.
- 58. Wang X Wang H, Sun V, Tuan HF, Keser V, Wang K, Ren H, Lopez I, Zaneveld JE, Siddiqui S, Bowles S, Khan A, Salvo J, Jacobson SG, Iannaccone A, Wang F, Birch D, Heckenlively JR, Fishman GA, Traboulsi EI, Li Y, Wheaton D, Koenekoop RK, Chen R.: Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa

patients by targeted next generation sequencing. *J Med Genet* 2013, 50 (10): 674-688.

- 59. Minegishi Y Sheng X, Yoshitake K, Sergeev Y, Iejima D, Shibagaki Y, Monma N, Ikeo K, Furuno M, Zhuang W, Liu Y, Rong W, Hattori S, Iwata T.: CCT2 Mutations Evoke Leber Congenital Amaurosis due to Chaperone Complex Instability. *Sci Rep* 2016, 6: 33742.
- Soens ZT Li Y, Zhao L, Eblimit A, Dharmat R, Li Y, Chen Y, Naqeeb M, Fajardo N, Lopez I, Sun Z, Koenekoop RK, Chen R.: Hypomorphic mutations identified in the candidate Leber congenital amaurosis gene CLUAP1. *Genet Med* 2016, 18 (10): 1044-1051.
- 61. Abu-Safieh L Alrashed M, Anazi S, Alkuraya H, Khan AO, Al-Owain M, Al-Zahrani J, Al-Abdi L, Hashem M, Al-Tarimi S, Sebai MA, Shamia A, Ray-Zack MD, Nassan M, Al-Hassnan ZN, Rahbeeni Z, Waheeb S, Alkharashi A, Abboud E, Al-Hazzaa SA, Alkuraya FS: Autozygome-guided exome sequencing in retinal dystrophy patients reveals pathogenetic mutations and novel candidate disease genes. *Genome Res* 2013, 23 (2): 236-247.
- Sergouniotis PI Davidson AE, Mackay DS, Li Z, Yang X, Plagnol V, Moore AT, Webster AR.: Recessive mutations in KCNJ13, encoding an inwardly rectifying potassium channel subunit, cause leber congenital amaurosis. *Am J Hum Genet* 2011, 89 (1): 183-190.
- 63. Hearn T Spalluto C, Phillips VJ, Renforth GL, Copin N, Hanley NA, Wilson DI: Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. *Diabetes* 2005, 54 ((5)): 1581-1587.
- 64. Zulato E Favaretto F, Veronese C, Campanaro S, Marshall JD, Romano S, Cabrelle A, Collin GB, Zavan B, Belloni AS, Rampazzo E, Naggert JK, Abatangelo G, Sicolo N, Maffei P, Milan G, Vettor R: ALMS1-deficient fibroblasts over-express extra-cellular matrix components, display cell cycle delay and are resistant to apoptosis. *Plos one* 2011 6 ((4)): e19081.
- Marshall JD Muller J, Collin GB, Milan G, Kingsmore SF, Dinwiddie D, Farrow EG, Miller NA, Favaretto F, Maffei P, Dollfus H, Vettor R, Naggert JK.: Alström Syndrome: Mutation Spectrum of ALMS1. *Hum Mutat* 2015, 36(7): 660-668.
- 66. Sayer JA Otto EA, O'Toole JF, Nurnberg G, Kennedy MA, Becker C, Hennies HC, Helou J, Attanasio M, Fausett BV, Utsch B, Khanna H, Liu Y, Drummond

I,Kawakami I, Kusakabe T, Tsuda M, Ma L, Lee H, Larson RG, Allen SJ,Wilkinson CJ, Nigg EA, Shou C, Lillo C, Williams DS, Hoppe B, Kemper MJ,Neuhaus T, Parisi MA, Glass IA, Petry M, Kispert A, Gloy J, Ganner A, Walz G,, Zhu X Goldman D, Nurnberg P, Swaroop A, Leroux MR, Hildebrandt F. : The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. *Nat Genet* 2006., 38: 674–681.

- Meiko T Yu ML, Yusuke N, Yoichi F: Isolation and characterization of a novel gene CLUAP1 whose expression is frequently upregulated in colon cancer. *Oncogene* 2004, 23: 9289–9294.
- 68. Ishikura H Ikeda H, Abe H, Ohkuri T, Hiraga H, Isu K, Tsukahara T, Sato N, Kitamura H, Iwasaki N, Takeda N, Minami A, Nishimura T. : Identification of CLUAP1 as a human osteosarcoma tumor-associated antigen recognized by the humoral immune system. *Int J Oncol* 2007, 30: 461-467.
- 69. Barbelanne M Hossain D, Chan DP, Peränen J, Tsang WY.: Nephrocystin proteins NPHP5 and Cep290 regulate BBSome integrity, ciliary trafficking and cargo delivery. *Hum Mol Genet* 2015, 24 (8): 2185-2200.
- 70. W Tina S and Uwe: Intraflagellar transport proteins in ciliogenesis of photoreceptor cells. *Biol Cell* 2011, 103: 449–466.
- 71. Schmidts M Frank V, Eisenberger T, Al Turki S, Bizet AA, Antony D, Rix S, Decker C, Bachmann N, Bald M, Vinke T, Toenshoff B, Di Donato N, Neuhann T, Hartley JL, Maher ER, Bogdanović R, Peco-Antić A, Mache C, Hurles ME, Joksić I, Guć-Šćekić M, Dobricic J, Brankovic-Magic M, Bolz HJ, Pazour GJ, Beales PL, Scambler PJ, Saunier S, Mitchison HM, Bergmann C.: Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. *Hum Mutat* 2013, 34 (5): 714-724.
- 72. Weil D Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, Levilliers J, Weston MD, Kelley PM, Kimberling WJ, Wagenaar M, Levi-Acobas F, Larget-Piet D, Munnich A, Steel KP, Brown SDM, Petit C.: Defective myosin VIIA gene responsible for Usher syndrome type 1B. . *Nature* 1995, 374: 60-61.
- Weil D., Blanchard, S., Kaplan, J., Guilford, P., Gibson, F., Walsh, J., Mburu,
 P., Varela, A., Levilliers, J., Weston, M. D., Kelley, P. M., Kimberling, W. J.,
 Wagenaar, M., Levi-Acobas, F., Larget-Piet, D., Munnich, A., Steel, K. P.,

Brown, S. D. M., Petit, C. : Defective myosin VIIA gene responsible for Usher syndrome type 1B. *Nature Genet* 1995, 374: 60-61.

- 74. Dong HH Guohua Y, Michael A, Tiansen L.: Retinitis Pigmentosa GTPase Regulator (RPGR)-interacting Protein Is Stably Associated with the Photoreceptor Ciliary Axoneme and Anchors RPGR to the Connecting Cilium. *The journal of biological chemistry* 2001, 276: 12091-12099.
- 75. Hameed A Abid A, Aziz A, Ismail M, Mehdi SQ, Khaliq S. : Evidence of RPGRIP1 gene mutations associated with recessive cone-rod dystrophy. . J Med Genet 2003, 40: 616-619.
- 76. Eblimit A Nguyen TM, Chen Y, Esteve-Rudd J, Zhong H, Letteboer S, Van Reeuwijk J, Simons DL, Ding Q, Wu KM, Li Y, Van Beersum S, Moayedi Y, Xu H, Pickard P, Wang K, Gan L, Wu SM, Williams DS, Mardon G, Roepman R, Chen R.: Spata7 is a retinal ciliopathy gene critical for correct RPGRIP1 localization and protein trafficking in the retina. *Hum Mol Genet* 2015, 24 (6): 1584-1601.
- 77. den Hollander AI Ghiani M, de Kok YJ, Wijnholds J, Ballabio A, Cremers FP, Broccoli V.: Isolation of Crb1, a mouse homologue of Drosophila crumbs, and analysis of its expression pattern in eye and brain. *Mech Dev* 2002, 110 (1-2): 203-207.
- 78. den Hollander A ten Brink JB, de Kok YJM, van Soest S, van den Born LI, van Driel MA, van de Pol DJR, Payne AM, Bhattacharya SS, Kellner U, Hoyng CB, Westerveld A, Brunner HG, Bleeker-Wagemakers EM, Deutman AF, Heckenlively JR, Cremers FPM, Bergen AAB. : Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12) *Nature Genet* 1999, 23: 217-221.
- 79. Freund CL, Gregory Evans CY, Furukawa T, Papaioannou M, Looser J, Ploder L, Bellingham J, Ng D, Herbrick JA, Duncan A, Scherer SW, Tsui LC, Loutradis AA, Jacobson SG, Cepko CL, Bhattacharya SS, McInnes RR. : Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. . *Cell* 1997, 91: 543-553.
- Takahisa F Eric MM, Constance LC: Crx, a Novel otx-like Homeobox Gene, Shows Photoreceptor-Specific Expression and Regulates Photoreceptor Differentiation. *Cell* 1997, 91: 531–541.

- Haeseleer F Imanishi Y, Maeda T, Possin DE, Maeda A, Lee A, Rieke F, Palczewski K.: Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. . *Nat Neurosci* 2004, 7: 1079-1087.
- Zeitz C Kloeckener Gruissem B, Forster U, Kohl S, Magyar I, Wissinger B, Matyas G, Borruat FX, Schorderet DF, Zrenner E, Munier FL, Berger W. : Mutations in CABP4, the gene encoding the Ca(2+)-binding protein 4, cause autosomal recessive night blindness. . *Am J Hum Genet* 2006, 79: 657-667.
- Asai-Coakwell M French CR, Berry KM, Ye M, Koss R, Somerville M, Mueller R, van Heyningen V, Waskiewicz AJ, Lehmann OJ.: *GDF6*, a novel locus for a spectrum of ocular developmental anomalies. *Am J Hum Genet* 2007, 80 (2): 306-315.
- 84. Tassabehji M Fang ZM, Hilton EN, McGaughran J, Zhao Z, de Bock CE, Howard E, Malass M, Donnai D, Diwan A, Manson FDC, Murrell D, Clarke RA. : Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndrome. . *Hum Mutat* 2008, 29: 1017-1027
- Bikash RP Matti PA, Ryan S, De-Ann MP. : Genetic defects in the hotspot of inwardly rectifying K+ (Kir) channels and their metabolic consequences: A review. *Molecular Genetics and Metabolism* 2012, 105: 64-72.
- Hejtmancik JF Jiao X, Li A, Sergeev YV, Ding X, Sharma AK, Chan CC, Medina I, Edwards AO. : Mutations in KCNJ13 cause autosomal-dominant snowflake vitreoretinal degeneration. . *Am J Hum Genet* 2008. , 82 174-180.
- Henderson RH Williamson KA, Kennedy JS, Webster AR, Holder GE, Robson AG, FitzPatrick DR, van Heyningen V, Moore AT.: A rare de novo nonsense mutation in OTX2 causes early onset retinal dystrophy and pituitary dysfunction. *Mol Vis* 2009, 15: 2442–2447.
- Shimada A Takagi M, Nagashima Y, Miyai K, Hasegawa Y.: A Novel Mutation in OTX2 Causes Combined Pituitary Hormone Deficiency, Bilateral Microphthalmia, and Agenesis of the Left Internal Carotid Artery. *Horm Res Paediatr* 2016, 86 (1): 62-69.
- 89. Wells J Wroblewski J, Keen J, Inglehearn C, Jubb C, Eckstein A, Jay M, Arden G, Bhattacharya S, Fitzke F, Bird A. : Mutations in the human retinal degeneration slow (RDS) gene can cause either retinitis pigmentosa or macular dystrophy. . *Nature Genet* 1993., 3: 213-218.

- Christopher JRL Orson LM, Robert SM.: Molecular Characterization of Peripherin-2 and Rom-1 Mutants Responsible for Digenic Retinitis Pigmentosa. *The journal of biological chemistry* 2001, 276 (25): 22388– 22396.
- 91. Seifollah A Laurie L, Robert SM: RD3, the protein associated with Leber congenital amaurosis type 12, is required for guanylate cyclase trafficking in photoreceptor cells. *PNAS* 2010, 107 (49): 21158–21163 |
- 92. Sohocki MM Perrault I, Leroy BP, Payne AM, Dharmaraj S, Bhattacharya SS, Kaplan J, Maumenee IH, Koenekoop R, Meire FM, Birch DG, Heckenlively JR, Daiger SP. : Prevalence of AIPL1 mutations in inherited retinal degenerative disease. . *Molec Genet Metab* 2000, 70: 142-150.
- 93. MacDonald JM Beach MG, Porpiglia E, Sheehan AE, Watts RJ, Freeman MR.
 : The Drosophila cell corpse engulfment receptor draper mediates glial clearance of severed axons. *Neuron* 2006, 50: 869-881.
- 94. Zagotta WN Siegelbaum SA.: Structure and function of the cyclic nucleotidegated channels. *Annu Rev Neurosci* 1996, 19: 235–263.
- Alexander MD David GL, Elena VO, Richard PL, James BH.: The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. *Neuron* 1994, 12: 1345-1352.
- 96. Kelsell RE Gregory-Evans K, Payne AM, Perrault I, Kaplan J, Yang RB, Garbers DL, Bird AC, Moore AT, Hunt DM. : Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. *Hum Molec Genet* 1998, 7: 1179-1184.
- 97. Thompson DA Li Y, McHenry CL, Carlson TJ, Ding X, Sieving PA, Apfelstedt-Sylla E, Gal A. : Mutations in the gene encoding lecithin retinol acyltransferase are associated with early-onset severe retinal dystrophy. . *Nature Genet* 2001., 28: 123-124.
- 98. Francoise H Geeng FJ, Yoshikazu I, Carola AGG, Driessen, Masazumi M, Peter SN, Krzysztof P.: Dual-substrate Specificity Short Chain Retinol Dehydrogenases from the Vertebrate Retina. *The journal of biological chemistry* 2002, 277 (47): 45537–45546.

- Gennadiy M Ying C, Yusuke T, Bill XW, Jian XM.: RPE65 is the isomerohydrolase in the retinoid visual cycle. *PNAS* 2005, 102 (35): 12413– 12418.
- 100. Sara JB Qin L, Lori SS, Jingya Z, Catherine JS, Catherine BR, Eric AP, Stephen PD: Why Do Mutations in the Ubiquitously Expressed Housekeeping Gene IMPDH1 Cause Retina-Specific Photoreceptor Degeneration? *Invest Ophthalmol Vis Sci* 2006, 47 (9): 3754–3765.
- 101. D'Cruz PM Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, Vollrath D.: Mutation of the receptor tyrosine kinase gene *MERTK*, in the retinal dystrophic RCS rat. *Hum Mol Genet* 2000, 9 (4): 645-651.
- 102. Ebke LA Pauer GJ, Willard B, Hagstrom SA.: A Novel Approach to Identify Photoreceptor Compartment-Specific Tulp1 Binding Partners. Adv Exp Med Biol 2016, 854: 605-611.
- 103. Hagstrom SA North MA, Nishina PM, Berson EL, Dryja TP. : Recessive mutations in the gene encoding the tubby-like protein TULP1 in patients with retinitis pigmentosa. . *Nature Genet* 1998., 18: 174-176.
- 104. Marshall JD Maffei P, Collin GB, Naggert JK.: Alström syndrome: genetics and clinical overview. *Curr Genomics* 2011, 12 (3): 225-235.
- 105. Vaizey MJ Sanders MD, Wybar KC, Wilson J. : Neurological abnormalities in congenital amaurosis of Leber. Review of 30 cases. . Archives of Disease in Childhood 1977, 52: 399-402.
- 106. Caridi G Murer L, Bellantuono R, Sorino P, Caringella DA, Gusmano R, Ghiggeri GM.: Renal-retinal syndromes: association of retinal anomalies and recessive nephronophthisis in patients with homozygous deletion of the NPH1 locus. *Am J Kidney Dis* 1998, 32 (6): 1059-1062.
- Parisi MA Doherty D, Chance PF, Glass IA. : Joubert syndrome (and related disorders) (OMIM 213300) *European Journal of Human Genetics* 2007, 15 (5): 511-521.
- Michelakakis HM Zafeiriou DI, Moraitou MS, Gootjes J, Wanders RJ.: PEX1 deficiency presenting as Leber congenital amaurosis. *Pediatr Neurol* 2004, 31 (2): 146-149.
- 109. Srikrupa NN Meenakshi S, Arokiasamy T, Murali K, Soumittra N.: Leber's congenital amaurosis as the retinal degenerative phenotype in thiamine

responsive megaloblastic anemia: a case report. *Ophthalmic Genet* 2014, 35 (2): 119-124.

- 110. Cideciyan AV Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ, Pang JJ, Sumaroka A, Windsor EAM, Wilson JM, Flotte TR, Fishman GA, Heon E, Stone EM, Byrne BJ, Jacobson SG, Hauswirth WW. : Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. *PNAS* 2008, 105: 15112–15117.
- 111. Maguire AM High KA, Auricchio A, Wright JF, Pierce EA, Testa F, Mingozzi F, Bennicelli JL, Ying GS, Rossi S, Fulton A, Marshall KA, Banfi S, Chung DC, Morgan JI, Hauck B, Zelenaia O, Zhu X, Raffini L, Coppieters F, De Baere E, Shindler KS, Volpe NJ, Surace EM, Acerra C, Lyubarsky A, Redmond TM, Stone E, Sun J, McDonnell JW, Leroy BP, Simonelli F, Bennett J. : Agedependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. *The Lancet* 2009, 374: 1597-1605.
- 112. Bainbridge JWB Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Jones SP, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moor AT, Ali RR. : Effect of Gene Therapy on Visual Function in Leber's Congenital Amaurosis. N Engl J Med 2008, 358: 2231-2239.
- 113. Amado D Mingozzi F, Hui D, Bennicelli JL, Wei Z, Chen Y, Bote E, Grant RL, Golden JA, Narfstrom K, Syed NA, Orlin SE, High KA, Maguire AM, Bennett J.
 : Safety and Efficacy of Subretinal Readministration of a Viral Vector in Large Animals to Treat Congenital Blindness. *Science Translational Medicine* 2010, 2 (21): 21ra16.
- 114. Jacobson SG Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, Peden MC, Aleman TS, Boye SL, Sumaroka A, Conlon TJ, Calcedo R, Pang JJ, Erger KE, Olivares MB, Mullins CL, Swider M, Kaushal S, Feuer WJ, Iannaccone A, Fishman GA, Stone EM, Byrne BJ, Hauswirth WW. : Gene Therapy for Leber Congenital Amaurosis Caused by RPE65 Mutations. "Safety and Efficacy in 15 Children and Adults Followed Up to 3 Years. Arch Ophthalmol 2012, 130: 9-24.
- 115. Bainbridge JW Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C, Georgiadis A, Mowat FM, Beattie SG, Gardner PJ, Feathers KL, Luong VA, Yzer S, Balaggan K, Viswanathan A, de Ravel TJ, Casteels I, Holder GE,

Tyler N, Fitzke FW, Weleber RG, Nardini M, Moore AT, Thompson DA, Petersen-Jones SM, Michaelides M, van den Born LI, Stockman A, Smith AJ, Rubin G, Ali RR.: Long-term effect of gene therapy on Leber's congenital amaurosis. *N Engl J Med* 2015, 372 (20): 1887-1897.

- 116. Cideciyan AV Jacobson SG, Beltran WA, Sumaroka A, Swider M, Iwabe S, Roman AJ, Olivares MB, Schwartz SB, Komáromy AM, Hauswirth WW, Aguirre GD.: Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. *Proc Natl Acad Sci U S A* 2013, 110 (6): E517-525.
- 117. Aboshiha J Dubis AM, Van der Spuy J, Nishiguchi KM, Cheeseman EW, Ayuso C, Ehrenberg M, Simonelli F, Bainbridge JW, Michaelides M.: Preserved outer retina in *AIPL1* Leber's congenital amaurosis: implications for gene therapy. *Ophthalmology* 2015, 122 (4): 862-864.
- 118. Zhong H Eblimit A, Moayedi Y, Boye SL, Chiodo VA, Chen Y, Li Y, Nichols RM, Hauswirth WW, Chen R, Mardon G.: AAV8(Y733F)-mediated gene therapy in a Spata7 knockout mouse model of Leber congenital amaurosis and retinitis pigmentosa. *Gene Ther* 2015.
- 119. SE. Boye: Insights gained from gene therapy in animal models of retGC1 deficiency. *Front Mol Neurosci* 2014, 7: 43.
- 120. Burnight ER Wiley LA, Drack AV, Braun TA, Anfinson KR, Kaalberg EE, Halder JA, Affatigato LM, Mullins RF, Stone EM, Tucker BA.: *CEP290* gene transfer rescues Leber congenital amaurosis cellular phenotype. *Gene Ther* 2014, 21 (7): 662-672.
- 121. Garanto A Chung DC, Duijkers L, Corral-Serrano JC, Messchaert M, Xiao R, Bennett J, Vandenberghe LH, Collin RW.: In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. *Hum Mol Genet* 2016, 25 (12): 2552-2563.
- 122. Mamatha G Srilekha S, Meenakshi S, Kumaramanickavel G.: Screening of the RPE65 gene in the Asian Indian patients with leber congenital amaurosis. *Ophthalmic Genet* 2008, 29 (2): 73-78.
- 123. Sundaresan P Vijayalakshmi P, Thompson S, Ko AC, Fingert JH, Stone EM.: Mutations that are a common cause of Leber congenital amaurosis in northern America are rare in southern India. *Mol Vis* 2009, 15: 1781-1787.

- 124. Sweeney MO, McGee TL, Berson EL, TP. Dryja: Low prevalence of lecithin retinol acyltransferase mutations in patients with Leber congenital amaurosis and autosomal recessive retinitis pigmentosa. *Mol Vis* 2007, 13: 588-593.
- 125. Srilekha S Arokiasamy T, Srikrupa NN, Umashankar V, Meenakshi S, Sen P, Kapur S, Soumittra N.: Homozygosity Mapping in Leber Congenital Amaurosis and Autosomal Recessive Retinitis Pigmentosa in South Indian Families. *PLoS One* 2015, 10 (7): e0131679.
- 126. Verma A Perumalsamy V, Shetty S, Kulm M, Sundaresan P.: Mutational screening of LCA genes emphasizing RPE65 in South Indian cohort of patients. *PLoS One* 2013, 8 (9): e73172.
- 127. Ramprasad VL Soumittra N, Nancarrow D, Sen P, McKibbin M, Williams GA, Arokiasamy T, Lakshmipathy P, Inglehearn CF, Kumaramanickavel G.: Identification of a novel splice-site mutation in the Lebercilin (LCA5) gene causing Leber congenital amaurosis. *Mol Vis* 2008, 14: 481-486.
- 128. Friedman JS Chang B, Kannabiran C, Chakarova C, Singh HP, Jalali S, Hawes NL, Branham K, Othman M, Filippova E, Thompson DA, Webster AR, Andreasson S, Jacobson SG, Bhattacharya SS, Heckenlively JR, Swaroop A.: Premature truncation of a novel protein, RD3, exhibiting subnuclear localization is associated with retinal degeneration. *Am J Hum Genet* 2006, 79 (6): 1059-1070.
- 129. Falk MJ Zhang Q, Nakamaru OE, Kannabiran C, Fonseca K Z, Chakarova C, Audo I, Mackay DS, Zeitz C, Borman AD, Staniszewska M, Shukla R, Palavalli L, Mohand SS, Waseem NH, Jalali S, Perin JC, Place E, Ostrovsky J, Xiao R, Bhattacharya SS, Consugar M, Webster AR, Sahel JA, Moore AT, Berson EL, Liu Q, Gai X, Pierce EA.: NMNAT1 mutations cause Leber congenital amaurosis. *Nat Genet* 2012, 44 (9): 1040-1045.
- 130. Lotery AJ Namperumalsamy P, Jacobson SG, Weleber RG, Fishman GA, Musarella MA, Hoyt CS, Heon E, Levin A, Jan J, Lam B, Carr RE, Franklin A, Radha S, Andorf JL, Sheffield VC, Stone EM.: Mutation analysis of 3 genes in patients with Leber congenital amaurosis. *Arch Ophthalmol* 2000, 118 (4): 538-543.
- 131. Sundaramurthy S Swaminathan M, Sen P, Arokiasamy T, Deshpande S, John N, Gadkari RA, Mannan AU, Soumittra N.: Homozygosity mapping guided

next generation sequencing to identify the causative genetic variation in inherited retinal degenerative diseases. *J Hum Genet* 2016, 61 (11): 951-958.

- 132. Cliff M Maria AD, Richard WT. : Next-Generation Sequencing for Cancer Diagnostics: a Practical Perspective *Clin Biochem Rev* 2011, 32.
- Eva CB Anna K, Ann CS. : Next-Generation Sequencing Technologies and Applications for Human Genetic History and Forensics. *Investigative Genetics* 2011, 2 (2).
- 134. Saumya PS Raman R, Ganesan S, Sahu C, Sharma T.: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study (SN--DREAMS III): study design and research methodology. *BMC Ophthalmol* 2011, 11: 7.
- 135. George R Arvind H, Baskaran M, Ramesh SV, Raju P, Vijaya L.: The Chennai glaucoma study: prevalence and risk factors for glaucoma in cataract operated eyes in urban Chennai. *Indian J Ophthalmol* 2010, 58 (3): 243-245.
- 136. Online Mendelian Inheritance in Man, OMIM (TM). 1996.
- 137. Landrum MJ Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR.: ClinVar: public archive of relationships among sequence variation and human phenotype. *Nucleic Acids Res* 2014, 42 (Database issue): D980-985.
- Cariaso M Lennon G.: SNPedia: a wiki supporting personal genome annotation, interpretation and analysis. *Nucleic Acids Res* 2012, 40 (Database issue): D1308-1312.
- 139. Cunningham F Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, Gil L, Giron CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Kahari AK, Keenan S, Martin FJ, Maurel T, McLaren W, Murphy DN, Nag R, Overduin B, Parker A, Patricio M, Perry E, Pignatelli M, Riat HS, Sheppard D, Taylor K, Thormann A, Vullo A, Wilder SP, Zadissa A, Aken BL, Birney E, Harrow J, Kinsella R, Muffato M, Ruffier M, Searle SM, Spudich G, Trevanion SJ, Yates A, Zerbino DR, Flicek P.: Ensembl 2015. *Nucleic Acids Res* 2015, 43 (Database issue): D662-669.
- 140. Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP). July 2015.

- 141. Abecasis GR Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA.: An integrated map of genetic variation from 1,092 human genomes. *Nature* 2012, 491 (7422): 56-65.
- 142. Exome Aggregation Consortium (ExAC). July 2015.
- 143. Sherry ST Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K.: dbSNP: the NCBI database of genetic variation. *Nucleic Acids Res* 2001, 29 (1): 308-311.
- 144. Stenson PD Mort M, Ball EV, Shaw K, Phillips A, Cooper DN.: The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. *Hum Genet* 2014, 133 (1): 1-9.
- 145. Kumar P, Henikoff S, PC. Ng: Predicting the effects of coding nonsynonymous variants on protein function using the SIFT algorithm. *Nat Protoc* 2009, 4 ((7)): 1073-1081.
- 146. Adzhubei IA Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR.: A method and server for predicting damaging missense mutations. *Nat Methods* 2010, 7 (4): 248-249.
- 147. Ferrer CC Orozco M, de la CX. : Sequence-based prediction of pathological mutations. *Proteins* 2004, 57: 811-819.
- 148. Li B Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P. : Automated inference of molecular mechanisms of disease from amino acid substitutions. *Bioinformatics* 2009, 25 ((21)): 2744-2750.
- 149. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, F. Cunningham: Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. *Bioinformatics* 2010, 26 ((16)): 2069-2070.
- Schwarz JM, Cooper DN, Schuelke M, D. Seelow: MutationTaster2: mutation prediction for the deep-sequencing age Nat Methods 2014, 11 ((4)): 361-362.
- 151. Hebsgaard SM Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S.: Splice site prediction in Arabidopsis thaliana DNA by combining local and global sequence information. *Nucleic Acids Research* 1996, 24 (17): 3439-3452.
- 152. Reese MG Eeckman, FH, Kulp, D, Haussler, D: Improved Splice Site Detection in Genie. *J Comp Biol* 1997, 4 (3): 311-323.

- 153. FO Desmet, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, C. Beroud: Human Splicing Finder: an online bioinformatics tool to predict splicing signals. *Nucleic Acid Research* 2009.
- 154. Rogers LE Porter FS, Sidbury JBJ. : Thiamine-responsive megaloblastic anemia. *J Pediatr* 1969, 74: 494–504.
- 155. Diaz GA Banikazemi M, Oishi K, Desnick RJ, Gelb BD. : Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anemia syndrome. . *Nat Genet* 1999, 22 309–312.
- 156. Helga T James TR, Jill PM. : Integrative Genomics Viewer (IGV): highperformance genomics data visualization and exploration *Briefings in Bioinformatics* 2013, 14: 178-192.
- 157. Landrum MJ Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J, Jang W, Katz K, Ovetsky M, Riley G, Sethi A, Tully R, Villamarin-Salomon R, Rubinstein W, Maglott DR. : ClinVar: public archive of interpretations of clinically relevant variants. . *Nucleic Acids Res* 2016, 44 (D1): D862-868.
- 158. Simonelli F, Ziviello C, Testa F, Rossi S, Fazzi E, Bianchi PE, Fossarello M, Signorini S, Bertone C, Galantuomo S *et al*: Clinical and Molecular Genetics of Leber's Congenital Amaurosis: A Multicenter Study of Italian Patients. *Invest Ophthalmol Vis Sci* 2007, 48 (9): 4284-4290.
- 159. Li Y, Wang H, Peng J, Gibbs RA, Lewis RA, Lupski JR, Mardon G, R Chen: Mutation survey of known LCA genes and loci in the Saudi Arabian population *Invest Ophthalmol Vis Sci* 2009, 50 (3): 1336-1343.
- 160. Coppieters F, Casteels I, Meire F, De Jaegere S, Hooghe S, van Regemorter N, Van Esch H, Matuleviciene A, Nunes L, Meersschaut V *et al*: Genetic screening of LCA in Belgium: predominance of *CEP290* and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. *Hum Mutat* 2010, 31 (10): E1709-1766.
- 161. Vallespin E Cantalapiedra D, Riveiro-Alvarez R, Wilke R, Aguirre-Lamban J, Avila-Fernandez A, Lopez-Martinez MA, Gimenez A, Trujillo-Tiebas MJ, Ramos C et al: Mutation screening of 299 Spanish families with retinal dystrophies by Leber congenital amaurosis genotyping microarray. *Invest Ophthalmol Vis Sci* 2007, 48 (12): 5653-5661.

- 162. Hosono K Nishina S, Yokoi T, Katagiri S, Saitsu H, Kurata K, Miyamichi D, Hikoya A, Mizobuchi K, Nakano T, Minoshima S, Fukami M, Kondo H, Sato M, Hayashi T, Azuma N, Hotta Y.: Molecular Diagnosis of 34 Japanese Families with Leber Congenital Amaurosis Using Targeted Next Generation Sequencing. *Sci Rep* 2018, 8 (1): 8279.
- 163. Thompson JA De Roach JN, McLaren TL, Montgomery HE, Hoffmann LH, Campbell IR, Chen FK, Mackey DA, Lamey TM.: The genetic profile of Leber congenital amaurosis in an Australian cohort. *Mol Genet Genomic Med* 2017, 5 (6): 652-667.
- 164. Porto FBO Jones EM, Branch J, Soens ZT, Maia IM, Sena IF, Sampaio SAM, Simoes RT, Chen R.: Molecular Screening of 43 Brazilian Families Diagnosed with Leber Congenital Amaurosis or Early-Onset Severe Retinal Dystrophy. *Genes (Basel)* 2017, 8 (12): E355.
- 165. Astuti GD Bertelsen M, Preising MN, Ajmal M, Lorenz B, Faradz SM, Qamar R, Collin RW, Rosenberg T, Cremers FP.: Comprehensive genotyping reveals *RPE65* as the most frequently mutated gene in Leber congenital amaurosis in Denmark. *Eur J Hum Genet* 2016, 24 (7): 1071-1079.
- 166. Lewis BP Green RE, Brenner SE.: Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. *Proc Natl Acad Sci U S A* 2003, 100 (1): 189-192.
- 167. Settara CC Francis PL, Danielle CK, Aparna K, Jamie KT, Frank XD, Elizabeth F, Shurjo KS, Supawat T, Erica S, Agata S, Arleen DA, Elaine AO, NISC Comparative Sequencing Program: Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia. *BLOOD* 2013, 121 (22): e138-e148.
- 168. Dharmaraj S, Leroy BP, Sohocki MM, Koenekoop RK, Perrault I, Anwar K, Khaliq S, Devi RS, Birch DG, De Pool E *et al*: The Phenotype of Leber Congenital Amaurosis in Patients With *AIPL1* Mutations. *Arch Ophthalmol* 2004, 122 (7): 1029-1037.
- 169. Lotery AJ, Jacobson SG, Fishman GA, Weleber RG, Fulton AB, Namperumalsamy P, Héon E, Levin AV, Grover S, Rosenow JR *et al*: Mutations in the CRB1 gene cause Leber congenital amaurosis. *Arch Ophthalmol* 2001, 119 (3): 415-420.

- 170. Schuster A, Janecke AR, Wilke R, Schmid E, Thompson DA, Utermann G, Wissinger B, Zrenner E, A. Gal: The phenotype of early-onset retinal degeneration in persons with RDH12 mutations. *Invest Ophthalmol Vis Sci* 2007, 48 (4): 1824-1831.
- Katrinka LH Elias IT, Irene HM: The Natural History of Leber's Congenital Amaurosis- Age related Findings in 35 Patients. *Ophthalmology* 1992, 99: : 241-245.
- 172. Dharmaraj S Leroy BP, Sohocki MM, Koenekoop RK, Perrault I, Anwar K, Khaliq S, Devi RS, Birch DG, De Pool E, Izquierdo N, Van Maldergem L, Ismail M, Payne AM, Holder GE, Bhattacharya SS, Bird AC, Kaplan J, Maumenee IH.: The phenotype of Leber congenital amaurosis in patients with *AIPL1* mutations. *Arch Ophthalmol* 2004, 122 (7): 1029-1037.
- 173. Wang H den Hollander AI, Moayedi Y, Abulimiti A, Li Y, Collin RW, Hoyng CB, Lopez I, Abboud EB, AI-Rajhi AA, Bray M, Lewis RA, Lupski JR, Mardon G, Koenekoop RK, Chen R.: Mutations in SPATA7 Cause Leber Congenital Amaurosis and Juvenile Retinitis Pigmentosa. *Am J Hum Genet* 2010, 86 (2): 293.
- 174. McKibbin M Ali M, Mohamed MD, Booth AP, Bishop F, Pal B, Springell K, Raashid Y, Jafri H, Inglehearn CF.: Genotype-phenotype correlation for leber congenital amaurosis in Northern Pakistan. *Arch Ophthalmol* 2010, 128 (1): 107-113.
- 175. Coppieters F Casteels I, Meire F, De Jaegere S, Hooghe S, van Regemorter N, Van Esch H, Matuleviciene A, Nunes L, Meersschaut V, Walraedt S, Standaert L, Coucke P, Hoeben H, Kroes HY, Vande Walle J, de Ravel T, Leroy BP, De Baere E.: Genetic Screening of LCA in Belgium: Predominance of *CEP290* and Identification of Potential Modifier Alleles in AHI1 of CEP290-related Phenotypes. *Hum Mutat* 2010, 31 (10): E1709-1766.
- 176. Lotery AJ Namperumalsamy P, Jacobson SG, Weleber RG, Fishman GA, Musarella MA, Hoyt CS, Heon E, Levin A, Jan J, Lam B, Carr RE, Franklin A, Radha S, Andorf JL, Sheffield VC, Stone EM Mutation analysis of 3 genes in patients with Leber congenital amaurosis. . *Arch Ophthalmol* 2000, 118: : 538-543.

- 177. Simovich MJ Miller B, Ezzeldin H, Kirkland BT, McLeod G, Fulmer C, Nathans J, Jacobson SG, Pittler SJ.: Four novel mutations in the RPE65 gene in patients with Leber congenital amaurosis. *Hum Mutat* 2001, 18 (2): 164.
- 178. Anurima M Kota NG, Pallavi C, Lokesh G, Nikolai OA.: Interaction of Aryl Hydrocarbon Receptor-interacting Protein-like 1 with the Farnesyl Moiety. *The Journal of Biological Chemistry* 2013, 288 (29): 21320 –21328.
- 179. Hidalgo-de-QJ Evans RJ, Cheetham ME, van der Spuy J.: The Leber congenital amaurosis protein AIPL1 functions as part of a chaperone heterocomplex. *Invest Ophthalmol Vis Sci* 2008, 49 (7): 2878-2887.
- 180. Visvanathan R Melanie R, Focco VDA, Gregory N, T. A. Reh, James BH: AIPL1, a protein implicated in Leber's congenital amaurosis, interacts with and aids in processing of farnesylated proteins. *Proc Natl Acad Sci U S A* 2003, 100 (22): 12630–12635.
- 181. Davis JA Handford PA, Redfield C.: The N1317H substitution associated with Leber congenital amaurosis results in impaired interdomain packing in human CRB1 epidermal growth factor-like (EGF) domains. J Biol Chem 2007, 282(39): (39): 28807-28814.
- 182. Yin Y Yeming Y, Lulin H, Yaru Z, Jie L, Zhilin J, Bo G, Hao F, Ramasamy K, Zhenglin Y, Periasamy S, Xianjun Z, Yu Z: Whole exome sequencing identified novel CRB1 mutations in Chinese and Indian populations with autosomal recessive retinitis pigmentosa. *Scientific Reports* 2016, 6 (Article number: 33681).
- Chau KY Chen S, Zack DJ, Ono SJ.: Functional domains of the cone-rod homeobox (CRX) transcription factor. *J Biol Chem* 2000, 275 (47): 37264-37270.
- 184. Shiming C Qing LW, Siqun X, Ivy L, Lili YL, Yufang W, Donald JZ: Functional analysis of cone–rod homeobox (CRX) mutations associated with retinal dystrophy. *Human Molecular Genetics* 2002, 11 (8): 873–884.
- 185. Duda T Venkataraman V, Goraczniak R, Lange C, Koch KW, Sharma RK. : Functional consequences of a rod outer segment membrane guanylate cyclase (ROS-GC1) gene mutation linked with Leber's congenital amaurosis *Biochemistry* 1999, 38: 509-515.
- 186. Hofmann L Tsybovsky Y, Alexander NS, Babino D, Leung NY, Montell C, Banerjee S, von Lintig J, Palczewski K.: Structural Insights into the Drosophila

melanogaster Retinol Dehydrogenase, a Member of the Short-Chain Dehydrogenase/Reductase Family. *Biochemistry* 2016, 55 (47): 6545-6557.

- Seung AL Olga VB, Natalia YK: Disease-Associated Variants of Microsomal Retinol Dehydrogenase 12 (RDH12) are degraded at Mutant-Specific Rates. *FEBS Lett* 2010, 584 (3): 507–510.
- 188. Coene KLM Roepman R, Doherty D, Afroze B, Kroes HY, Letteboer SJF, Ngu LH, Budny B, van Wijk E, Gorden NT, Azhimi M, Thauvin-Robinet C, Veltman JA, Boink M, Kleefstra T, Cremers FPM, van BH, de BAPM. : *OFD1* is mutated in X-Linked Joubert Syndrome and interacts with LCA5-encoded lebercilin. *Am J Hum Genet* 2009, 85 465-481.
- 189. Ramprasad VL Soumittra N, Nancarrow D, Parveen S, Martin M, Grange AW, Tharigopala A, Praveena L, Chris FI, Govindasamy K.: Identification of a novel splice-site mutation in the Lebercilin (LCA5) gene causing Leber congenital amaurosis. *Molecular Vision* 2008, 14: 481-486.
- 190. Yusuke T Ying C, Gennadiy M, Jian XA: Two Point Mutations of RPE65 from Patients with Retinal Dystrophies Decrease the Stability of RPE65 Protein and Abolish Its Isomerohydrolase Activity. *The Journal of Biological Chemistry* 2006, 281: 21820-21826.
- 191. Lau C Dolle C, Gossmann TI, Agledal L, Niere M, Ziegler M: Isoform-specific targeting and interaction domains in human nicotinamide mononucleotide adenylyltransferases. *J Biol Chem* 2010, 285 (24): 18868-18876.
- 192. Venselaar H Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G.: Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. *BMC Bioinformatics* 2010, 11: 548.
- 193. Otto EA Loeys B, Khanna H, Hellemans J, Sudbrak R, Fan S, Muerb U, O'Toole JF, Helou J, Attanasio M, Utsch B, Sayer JA, Lillo C, Jimeno D, Coucke P, De Paepe A, Reinhardt R, Klages S, Tsuda M, Kawakami I, Kusakabe T, Omran H, Imm A, Tippens M, Raymond PA, Hill J, Beales P, He S, Kispert A, Margolis B, Williams DS, Swaroop A, Hildebrandt F.: Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. *Nat Genet* 2005, 37 (3): 282-288.

- 194. Schafer T Putz M, Lienkamp S, Ganner A, Bergbreiter A, Ramachandran H, Gieloff V, Gerner M, Mattonet C, Czarnecki PG, Sayer JA, Otto EA, Hildebrandt F, Kramer Zucker A, Walz G.: Genetic and physical interaction between the NPHP5 and NPHP6 gene products. *Hum Molec Genet* 2008, 17: 3655-3662.
- 195. KK. Robert: RPGRIP1 is Mutated in Leber Congenital Amaurosis: A Mini-Review. *Ophthalmic Genetics* 2005, 26 (4).
- 196. Boggon TJ Shan WS, Santagata S, Myers SC, Shapiro L.: Implication of tubby proteins as transcription factors by structure-based functional analysis. *Science* 1999, 286 (5447): 2119-2125.
- Makia JM Fahd AM. : Senior-Loken syndrome: A novel NPHP5 gene mutation in a family from Kuwait. *Egyptian Journal of Medical Human Genetics* 2014, 15 (2): 203-207.
- 198. Estrada-Cuzcano A Koenekoop RK, Coppieters F, Kohl S, Lopez I, Collin RW, De Baere EB, Roeleveld D, Marek J, Bernd A, Rohrschneider K, van den Born LI, Meire F, Maumenee IH, Jacobson SG, Hoyng CB, Zrenner E, Cremers FP, den Hollander AI.: IQCB1 mutations in patients with leber congenital amaurosis. *Invest Ophthalmol Vis Sci* 2011, 52 (2): 834-839.
- 199. Rogers LE Porter FS, Sidbury JB, Jr.: Thiamine-responsive megaloblastic anemia. *J Pediat* 1969. , 74 494-504.
- 200. Viana MB Carvalho RI. : Thiamine-responsive megaloblastic anemia, sensorineural deafness, and diabetes mellitus: a new syndrome? . *J Pediat* 1978, 93: 235-238.
- 201. Mandel H Berant M., Hazani A, Naveh Y. : Thiamine-dependent beriberi in the 'thiamine-responsive anemia syndrome. *New Eng J Med* 1984, 311: 836-838.
- 202. Meire FM Van Genderen MM, Lemmens K, Ens-Dokkum MH.: Thiamineresponsive megaloblastic anemia syndrome (TRMA) with cone-rod dystrophy *Ophthalmic Genet* 2000 21: 243-250.
- 203. Neufeld EJ Mandel H, Raz T, Szargel R, Yandava CN, Stagg A, Faure S, Barrett T, Buist N, Cohen N. : Localization of the gene for thiamine-responsive megaloblastic anemia syndrome, on the long arm of chromosome 1, by homozygosity mapping *Am J Hum Genet* 1997, 61: 1335–1341.
- 204. Labay V Raz T, Baron D, Mandel H, Williams H, Barrett T, Szargel R, McDonald L, Shalata A, Nosaka K, Gregory S, Cohen N. : Mutations in

SLC19A2 cause thiamineresponsive megaloblastic anemia associated with diabetes mellitus and deafness. *Nat Genet* 1999, 22: 300–304.

- Yilmaz AS Aycan Z, Bas VN, Peltek KHN, Onder A. : Thiamine responsive megaloblastic anemia syndrome: a novel mutation. . *Genet Couns* 2012, 23: 149-156.
- 206. Katipoglu N Karapinar TH, Demir K, Aydin Koker S, Nalbantoglu O, Ay Y, Korkmaz HA, Oymak Y, Yıldız M, Tunç S, Hazan F, Vergin C, Ozkan B.: Infantile-onset thiamine responsive megaloblastic anemia syndrome with SLC19A2 mutation: a case report. *Arch Argent Pediatr* 2017 115 (3): e153e156..
- 207. Shaw-Smith C Flanagan SE, Patch AM, Grulich-Henn J, Habeb AM, Hussain K, Pomahacova R, Matyka K, Abdullah M, Hattersley AT, Ellard S. : Recessive SLC19A2 mutations are a cause of neonatal diabetes mellitus in thiamine-responsive megaloblastic anaemia. . *Pediatr Diabetes* 2012, 13: 314-321.
- 208. Subramanian VS Mohammed ZM, Molina A, Marchant JS, Vaziri ND, Said HM. : Vitamin B1 (thiamine) uptake by human retinal pigment epithelial (ARPE-19) cells: mechanism and regulation. . J Physiol 2007 582. (1): 73–85.
- 209. Lagarde WH Underwood LE, Moats-Staats BM, Calikoglu AS. : Novel mutation in the SLC19A2 gene in an African-American female with thiamineresponsive megaloblastic anemia syndrome. . *Am J Med Genet* 2004, 125A: 299-305.
- 210. Borgna-Pignatti C Marradi P, Pinelli L, Monetti N, Patrini C. : Thiamine responsive anemia in DIDMOAD syndrome *J Pediatr* 1989 114: 405-410.
- 211. HW. John: Gene Therapy in Large Animal Models of Human Genetic Diseases. . *ILAR J* 2009, 50 (2): 107-111.

Appendix

1. DNA extraction:

Requirements:

- NucleoSpin[®] Blood XL kit (Macherey-Nagel, GmbH, Duren, Germany)
- > 50 ml Collection tubes
- > 50 ml Collection tubes with Nucleospin® Blood XL column*
- REMI R-23 Centrifuge
- Water Bath with Shaker
- Pasteur pipettes

Reagents:

- Proteinase K [Lyophilized] *– 126 mg of proteinase K [lyophilized form] was dissolved in 5.75 ml of proteinase buffer. It was stored at 4°C
- Proteinase Buffer*
- Sterile Dulbecco's Phosphate Buffered Saline pH 7.4 (HiMedia, Mumbai, India)
- Lysis Buffer BQ1*
- > Absolute Alcohol (Hayman Limited, Witham, England)
- Wash Buffer concentrate BQ2*
- Elution Buffer BE*
- * Provided in the kit.

Procedure:

- Five hundred µl of proteinase K was added to 50ml collection tube.
- The blood sample was added along the sides of the labeled tubes. If the volume of blood was ≤ 10 ml, it is made up to 10 ml with phosphate buffer saline.
- Ten ml of lysis buffer was added to the blood sample and the tube was shaken vigorously for 5 minutes.
- The tube was then placed in 56°C shaker water bath for 15 minutes.
- The lysate was cooled at room temperature.
- Ten ml of chilled absolute alcohol was added to the lysate and shaken vigorously for 5 minutes.

- The lysate was transferred to Nucleospin[®] Blood XL column and centrifuged at 4500 rpm for 2 minutes.
- The flow through was discarded and the sides of the tubewas wiped clean.
- The column was washed with 7.5 ml of wash buffer, centrifuged at 4500 rpm for 2 minutes.
- The above step was repeated, with the centrifugation time being increased to 20 minutes, to ensure complete drying of the column.
- The column was transferred to a fresh 50 ml collection tube.

Elution of DNA

- Seven-hundred fifty µl of elution buffer pre-heated to 70°C was added to the column and left at room temperature, overnight.
- The DNA was eluted completely by centrifuging at 5000 rpm for 6 minutes. This was transferred into a 1.5 ml vial, labeled as 1st elute, and stored at 4°C for immediate use or at – 20°C for long term storage.
- Thousand µl of elution buffer pre-heated to 70°C was added to the column and left at room temperature overnight. It is centrifuged at 5000 rpm for 6 minutes. The eluted DNA was again added to the same column. The same was repeated for 4 more days.
- The elute was collected on the fifth day into a 1.5 ml vial and stored at -80°C.
 This was labeled as the 2nd elute.

2. Agarose Gel Electrophoresis

Requirements:

- Gel electrophoresis unit (Bio-Rad laboratories, California, USA)
- BIO-RAD, Gel Doc[™]XR Gel Documentation system (Bio-Rad laboratories, California, USA)
- Agarose (SeaKem® LE Agarose, Lonza, Maine, USA)
- 10X TBE buffer
 - Tris (Merck, New Jersey, USA) 54 g
 - Boric acid (Merck, New Jersey, USA) 27.5 g
 - ✤ EDTA (GeNeiTM, Bangalore, India) 3.72 g
 - Distilled water 500ml

- Ethidium bromide (Sigma-Aldrich, Missouri, USA)- 2mg/ml dissolved in distilled water
- Tracking dye- Bromophenol blue (BPB)
 - Bromophenol blue (HiMedia, Mumbai, India) 250 mg dissolved in 50ml 1X TBE buffer.
 - Sucrose (Merck, New Jersey, USA) 40 g dissolved in 50ml Milli Q water.

The above contents are mixed and stored in brown bottle.

Procedure

- The gel trough was cleaned with ethanol and the ends were sealed with cellophane tape. Combs were placed to form wells.
- Agarose was weighed and dissolved in 100 ml of 1X TBE buffer (1% for DNA, 2% for PCR products, 3% for ASPCR products and gel extraction)
- The agarose was melted in microwave oven and 20 µl of ethidium bromide was added to the molten agarose.
- > This was mixed and poured on to the sealed trough and allowed to set.
- After the gel solidified, the cellophane tapes and combs were removed and the trough was placed in electrophoresis tank containing 1X TBE buffer.
- > 4ul of sample and 4ul of tracking dye were mixed and loaded on to the wells.
- Iul of molecular weight maker (100bp ladder) and 2ul of tracking dye were mixed and loaded on to the well.
- > The electrophoresis was run at 120V for 20 to 30 minutes.
- The gel was docked in BioRad Gel Documentation system for visualization using Quantity one (v.4.6.2) software.

3. Polymerase Chain Reaction (PCR):

3.1. Primer Design:

For Direct sequencing:

The primers were designed using Primer 3 input (v.0.4.0) software. The primers were designed in such a way that they flank the complete exon sequence including 60-100bp intronic sequences. The properties like GC content, self-annealing, dimer formation, hairpin loop formation was checked for both forward and reverse primers using the Oligocalc software.

The table below lists the forward and reverse primer sequences for amplification of specific exons of the candidate genes.

S. No	Gene	Exon	Primer (5' - 3')	
			Forward Primer	Reverse Primer
1	AIPL1	2	GGGCCTTGAACAGTGTGTCT	GCTGCTGTGTTTCGGGAAA
2	AIPL1	5	GCAGCTGCCTGAGGTCATG	GTGGGGTGGAAAGAAAG
3	AIPL1	6	CTGGGAAGGGAGCTGTAG	AAAAGTGACACCACGATCC
4	CEP290	Intronic	ACAGGCACCCACCATCAT	TTCTTGTGGCAGTAAGGAGGA
5	CEP290	40	GCCAAAATGAAACGTGCATA	TGAAAGTCAGTTTTAACAAATACCAT
6	CEP290	18	TGGAGGGATTTTGGAAACAA	CCGGCTAAAACGGTGAAAC
7	CRB1	5	CCTCCTTTTAGGCAAATGCTC	AAAGCCATGGTCTGCCATAA
8	CRB1	11	TTCCCATTTCACAACCAATGT	GCTCGTCATTCATACGCAAA
9	CRB1	12A	GCTTGCTCTGGTTGGTCTTC	GCGGAACCACTGTGAAAGTT
10	CRX	2	GGATGGAATTCTTGGCATCCCAC	CTCTTTGTTCCGGGCAGGCCTC
11	CRX	3b	CCTCCACAGATGTGTGTCCAGAC	TGGGAGAAAGGTAGGGGTCTAGG
12	GUCY2D	3	GGACGGCGCCGCGAGCCAAGC	тсссстстсссттдссттстт
13	GUCY2D	9	CCCACATTGCCCTGGGCAGAA	CCTGCCCCAGGACGTCACCC
14	GUCY2D	10	AGCAGGCTGAGGCTGCCTCTT	TCCCGGTGGATCCTCGTCTGC
15	GUCY2D	11	GCGGCGCCTCAGCCCCTTCCC	CCCTGTGGGCCGAACTCCACG
16	GUCY2D	14	CAGCTGGAGCCCAGCCAGGTA	CTGGTGAAGCTGAATTGAAGG
17	GUCY2D	15	GTGGAGACAATAGGGGACGCC	CTAAAGAGGGAGATGGGCTGG
18	GUCY2D	16	CCCCGAGGCCCTACCTAGGTG	ACCTCCCCGTCTTGTCCCCGT
19	GUCY2D	17	GGTGAGTCCCGAGCTCACGGC	CGGGGCCTCCGGGAGGGGTTGG
20	GUCY2D	2a	GGGTTACTCGGGCTTGGA	GTTCACCGGACCCACGAG
21	GUCY2D	2b	GTCCCCGCTTCGAGGTAGCGC	CCGAGTGCATCACCATGATCAC
22	IQCB1	11	CACAACAGCAGCAGATGACA	TCATCACGTAGCTAGAAAAGTTGG
23	IQCB1	13	TCCCCTCCTTATACACACTCAGA	CAATGCATTACCTTATACCAGCA
24	IQCB1	14	CCTCTGCTAAGTGGTTGGGTA	TTTCCTGAGGTTAGGGGATGA
25	KCNJ13	3a	TGGCACCAAGAAATGTGTAAA	CCTGCATTGCTGAAAGGAA
26	LCA5	3	CACTGCCATGTGTTATGTTTCA	CCAACAAACCTTTTCTAAGTGC
27	LCA5	5	CATGCCAGCTGAATTCCATA	CCCTTCAAAAAGGCTAGTCG
28	LCA5	6	CCCCCTTTTCTATAATTTGTGA	TTCTTTCTCAAGGGATGCTGA
29	LCA5	7a	AAATATGGTGGTTTTATGAAAGTT	AGGTAACAATGGCAAAACAGG
30	NMNAT1	2	GGTGGCAGAGCAAGACCTTA	ACAGGCACAGTGAATTTTCG
31	RD3	1	CTCTCTCCCCCTTGGGTTC	CTCTAGTCCTGGTGGCCTCA
32	RDH12	2	ACCCTTCTTTGAGGCTGGAT	TTGAATCCCAGGTTCCTTGA
33	RDH12	6	TTGCTGCAGGAGATAAGCTG	GAAAAGCGGCACACGAGTAT

34	RPE65	2	CCCACCCAGCTGAGACTAGA	TAAAAAGCCCAAACCACCTG
35	RPE65	4	CTGTACGGATTGCTCCTGTC	TTAGAATCATACATTCGCAGCATG
36	RPE65	9	GTACACTTTTTTCCTTTTTAAATG	GTTTTAGATGTGATTCAGATTGAGTG
			CATC	
37	RPE65	10	TTGTCATTGCCTGTGCTCATG	TGAGAGAGATGAAACATTCTGG
38	RPE65	13	GCATATTGACTGATTGCTTG	GCAGTAAGAAGAGTATTCAG
39	RPE65	14	AGTCAGAAAAAGAAGTCAGGTC	ATTGCTTGCTCAACTCAGTGC
40	RPE65	12	CACACGGGAGTGAACAAATG	GCATATACTCAAAGCACTGTTCAAA
41	RPGRIP1	6	AGGGCATAGTCAAGGAGAA	CTGAATTGTGGCTTCTCATA
42	RPGRIP1	14	GAAAGAGCTCCCTACCCTT	GGAAATTCTGCATTGGTGC
43	RPGRIP1	21	CTTGGAGCCTCACTAACC	TTCATCAGACTTCCTCACC
44	RPGRIP1	24	AGTGTTCAACTGAGTGATGC	ACTATGGTTCCCTCAGAGAC
45	SLC19A2	2	CCAGGTCCTTTCATCACTAATGT	TGTAATTGCTACTATGGGGGC
46	SPATA7	1	GTCGGCTCCTCTTTTCCAG	CCCTGACAGCTGCCCTTTAC
47	SPATA7	3	ACAGCTGCAAGGTCTGGAAC	ACCTCCAGAACTCTCTTTATACTGC
48	SPATA7	6	TTCTAGCCAGTAAACCTTGTTACC	CCACCAACAGATTATTCTTC
49	SPATA7	7	AAAAAGTGCTGGATGGATAGAA	CATTTCAACTTTTACTAAGCACTTCA
50	SPATA7	10	CAACCTTTGTAGTTTCAGTGTTACG	GCACTTGCTTTTAATGTATTGTTTG
51	SPATA7	11c	AGAACGAGATATTCCCTTCACCA	TGAGTTACTGGCCATTTGAGG
52	<i>SPATA7</i> RT1	cDNA	CCAGTGGGGATCTTTTGGAT	GTCGCTCGAACAGTCGTTCT
		exon		
		7-10		
53	<i>SPATA7</i> RT2	cDNA	CCAAGGGCAATGTGTCAGTA	CATCCTTTGGTGCCGACAAT
		exon		
		9-11		
54	TULP1	11	TTCCCATCCTCTCACCTGTC	ACTGTGGTGGGTGCTCTACC
55	SLC19A2	1	CAATGGAAGAGCAGGCAAGT	CGCTTTTCTCGGTCCTCTCT
56	SLC19A2	2	CCAGGTCCTTTCATCACTAATGT	GCCCCCATAGTAGCAATTACA
57	SLC19A2	3	TGGGCCTGTAAATTGCTTTC	CAAATTTGGGAGGGGGGAAT
58	SLC19A2	4	GCAACAGCATTTGTGTAGCA	TGGGAATAAACAAAACTTGCCTA
59	SLC19A2	5	GTTGGAAAGGCAATTGACAG	TTCGATGCCAAAGGAGAGAT

For ASPCR:

Primer designing for ASPCR is similar to that as above where either the forward or reverse primer is specific to the wild and mutant type alleles at 3' end while the other primer in the pair is designed complementary to the wild type. Two PCR reactions, one with wild type and other with mutant primer were set for each mutation to be screened. ASPCR was performed to screen control samples for certain identified mutations.

S.No	PRIMER	SEQUENCE 5'-3'
1	AIPL1-X5-N230S-FP-WT	AAGCTGGAGAAGATGTTCAA
	AIPL1-X5-N230S-FP-MT	AAGCTGGAGAAGATGTTCAG
2	AIPL1-X2-E83K-RP-WT	ACCAGAACTCGGCCTCCTC
	AIPL1-X2-E83K-RP-MT	ACCAGAACTCGGCCTCCTT
3	IQCB1-R332X-RP-WT	TCTCCAGCAACATCTTTCATCG
	IQCB1-R332X-RP-MT	TCTCCAGCAACATCTTTCATCA
4	RPGRIP1-L1263P-FP-WT	CTACCCCAATAGGATGGCT
	RPGRIP1-L1263P-FP-MT	CTACCCCAATAGGATGGCC
5	TULP1-N349K-FP-WT	AACGGAGCAAGACAGGCAAT
	TULP1-N349K-FP-MT	AACGGAGCAAGACAGGCAAG
6	IQCB1-Q520X-FP-WT	GATCAGCACCAACGTGGAAC
	IQCB1-Q520X-FP-MT	GATCAGCACCAACGTGGAAT
7	RPE65-N321K-FP-WT	ACATCAACACCTATGAAGTCAAT
	RPE65-N321K-FP-MT	ACATCAACACCTATGAAGTCAAG
8	RPE65-L505R-FP-WT	AGCCTGCTTATCTCCTGTTTCT
	RPE65-L505R-FP-MT	AGCCTGCTTATCTCCTGTTTCG
9	CRB1-R1390X-RP-WT	ATCAAGTTCCACATTTCCTCTCG
	CRB1-R1390X-RP-MT	ATCAAGTTCCACATTTCCTCTCA
10	GUCY2D-G1013R-FP-WT	GGATGCACTTAACAAGGCT
	GUCY2D-G1013R-RP-WT	GTCACACTCACGCAGCAC
	GUCY2D-G1013R-RP-MT	GTCACACTCACGCAGCAT
11	LCA5-FP-R280X-WT	TTCTTCAAAAGGAGGTTCAGC
	LCA5-FP-R280X-MT	TTCTTCAAAAGGAGGTTCAGT
12	RDH12-R249L-RP-WT	GACAAAGGGGGAGAATAGCC
	RDH12-R249L-RP-MT	GACAAAGGGGGAGAATAGCA
13	RPGRIP1-Q40X-FP-WT	CCTCTATGACTTCACGTCCC
	RPGRIP1-Q40X-FP-MT	CCTCTATGACTTCACGTCCT
14	GUCY2D-L175R-FP-WT	GGATGCCCTCTACCCCCT
	GUCY2D-L175R-FP-MT	GGATGCCCTCTACCCCCG
	1	I

15	SLC19A2-Exon 2-FP	CCAGGTCCTTTCATCACTAATGT
	SLC19A2-Exon 2 –WT-RP	CCATGTAACAATAAGGCTGAGAC
	SLC19A2-Exon 2 –MT-RP	CCATGTAACAATAAGGCTGAGAT

4. Purification of cycle sequenced extension products

Requirements:

- Microfuge
- Cycle sequenced product.
- 0.5M EthyleneDiamineTetraacetic Acid (EDTA) (GeNei[™], Bangalore, India) [pH 8.0] - 1 in 4 dilution of above stock to obtain 0.125M EDTA- Freshly prepared
- 3M Sodium Acetate (GeNei[™], Bangalore, India) [pH 4.6]
- 100% absolute alcohol (Hayman Limited, Witham, England)
- 70% absolute alcohol- 70ml of 100% absolute alcohol made up to 100ml with distilled water. Freshly prepared.
- Sterile Water

Procedure

- Ten µl of sterile water, 2 µl of 0.125M EDTA, 2 µl of 3M sodium acetate (pH
 4.6) and 50µl of chilled absolute ethanol were taken in a 0.5ml vial.
- To this mixture 10 µl of the cycle sequenced product was added, vortexed and incubated at room temperature for 15 minutes.
- > It was microfuged at 13000 rpm for 20 min.
- > The supernatant was discarded without disturbing the pellet.
- Two-hundred µl of chilled 70% ethanol added, vortexed and microfuged for 10 minutes at 13000 rpm.
- The supernatant was discarded and the precipitate was once again washed with chilled 70% ethanol, centrifuged at 13000rpm for 10 minutes.
- > The pellet was air dried completely before loading to the sequencer.

5. Sequencing in genetic analyzer

Reagent:

➤ Hi-DiTM Formamide (Applied Biosystems, Foster City, USA)

Procedure

- ➤ The cycle sequenced, purified sample was re-suspended in 12µl of Hi-DiTM formamide.
- The sample was mixed well and microfuged. It was then loaded onto 96 well optical plate.
- > The sample was then denatured in the thermal cycler at 95°C for 3 minutes.
- After denaturation, the plate was loaded and linked to the sequencer ABI 3100 Avant or 3730 Genetic analyzer (Applied Biosystems, Foster City, USA) for sequencing by capillary electrophoresis.
- The data obtained was viewed by ABI PRISM DNA Sequencing Analysis Software v. 5.1.1 and also analyzed by BioEdit sequence alignment editor v.7.2.5.

6. Target sequences

> AIPL1- Exon 2

GGGCCTTGAACAGTGTGTCTAGAGCAGAGTGCACCGTCTCGGTGACTAGG TGATCTTTCATTTCCGCACCATGAAATGTGATGAGGAGCGGACAGTCATTG ACGACAGTCGGCAGGTGGGCCAGCCCATGCACATCATCATCGGAAACATG TTCAAGCTCGAGGTCTGGGAGATCCTGCTTACCTCCATGCGGGGTGCACGA GGTGGCCGAGTTCTGGTGCGACACCATCGTAAGTAGGCCCTGCGCGCCTG TCTCCTGGGACTAGTCTTTTCTGGGCTCACCCACCCGCTTTGCGGGGCTGC TGTGTTTCGGGAAA

> AIPL1- Exon 5

> AIPL1 – Exon 6

CTGGGAAGGGAGCTGTAGCTGGATGCTCCCTGCTCCCCACAGGCATCGTG AAGGCCTACTACGTGCGTGCCCGGGGCTCACGCAGAGGTGTGGAATGAGGC CGAGGCCAAGGCGGACCTCCAGAAAGTGCTGGAGCTGGAGCCGTCCATG

> CEP290 - Intronic- c.2991_1655A/G

➢ CEP290 −Exon 40

> CEP290 – Exon 18

TGGAGGGATTTTGGAAACAATTATTCTACCTTTGCATTAAAACTTGATTGTA GGTTTTAAGAATTAAAGTGTTGGAATAGTAGGAGGGTTATTTTAATGTTTTTA GTTTGTTAATTCTCTTATATATAGGATTAACCACTGAGGACCTGAACCTAACT

> CRB1 – Exon 5

CRB1 – Exon 11

CRB1 – Exon 12a

GCTTGCTCTGGTTGGTCTTCATTCCTGAGTAGTTCCATTGTCCTGAATATTT ATTTGCCTTTGCTATAGAATTCGCATCCCAATGATTTCAATCTTTCCAGTTGG CAGATGACTTGATCTCCGACATTTTCACCACTATTGGCTCAGTGACTGTCGC CTTGTTACTGATCCTCTTGCTGGCCATTGTTGCTTCTGTTGTCACCTCCAAC AAAAGGGCAACTCAGGGAACCTACAGCCCCAGCCGTCAGGAGAAGGAGGG CTCCCGAGTGGAAATGTGGAACTTGATGCCACCCCTGCAATGGAGAGAGCT GATTTAGGAGCATTGTGTCCCTTCGAGATGGGGATCCACACACTGTGAATG TGATGACTGTACTTCAGGTATCTCTGACATACCTGACAATGTTAATCTGCAA

CTGGGATTACACTGGAACTACAGGAATGATTCCTTTGACCACCTTAAAAACT TTCACAGTGGTTCCGC

> *CRX* – Exon 2

CRX – Exon 3b

CCTCCACAGATGTGTGTCCAGACCCTCTGGGCATCTCAGATTCCTACAGTC CCCCTCTGCCCGGCCCCTCAGGCTCCCCAACCACGGCAGTGGCCACTGTG TCCATCTGGAGCCCAGCCTCAGAGTCCCCTTTGCCTGAGGCGCAGCGGGC TGGGCTGGTGGCCTCAGGGCCGTCTCTGACCTCCGCCCCTATGCCATGA CCTACGCCCCGGCCTCCGCTTTCTGCTCTTCCCCCTCCGCCTATGGGTCTC CGAGCTCCTATTTCAGCGGCCTAGACCCCTACCTTTCTCCCA

GUCY2D – Exon 2a

GUCY2D – Exon 2b

GTCCCGCTTCGAGGTAGCGCTGCTGCCCGAGCCTTGCCGGACGCCGGG CTCGCTGGGGGCCGTGTCCTCCGCGCTGGCCCGCGTGTCGGGCCTCGTG GGTCCGGTGAACCCTGCGGCCTGCCGGCCAGCCGAGCTGCTCGCCGAAG AAGCCGGGATCGCGCTGGTGCCCTGGGGCTGCCCCTGGACGCAGGCGGA GGGCACCACGGCCCTGCCGTGACCCCCGCGCGGGATGCCCTCACGCC CTGCTTCGCGCATTCGGCTGGGCGCGCGCGCGCGCGCGGGCCCCGCGCCCCCA GGACCTGTGGGTGGAGGCGGGACGCTCACTGTCCACGGCACTCAGGGCC CGGGGCCTGCCTGTCGCCTCCGTGACTTCCATGGAGCCCTTGGACCTGTC TGGAGCCCGGGAGGCCCTGAGGAAGGTTCGGGACGGGCCCAGGGTCACA GGTAGGCTCCCTTGCAGGGTGCGAGGAGGTCGGCTGGTCCTGCCGGCAG CCGGACGGCGCCGCGAGCCAAGCCTCTGTCCGCAGCAGTGATCATGGTG ATGCACTCGG

> GUCY2D – Exon 3

GGACGGCGCGCGAGCCAAGCCTCTGTCCGCAGCAGTGATCATGGTGAT GCACTCGGTGCTGCTGGGTGGCGAGGAGCAGCGCTACCTCCTGGAGGCC GCAGAGGAGCTGGGCCTGACCGATGGCTCCCTGGTCTTCCTGCCCTTCGA CACGATCCACTACGCCTTGTCCCCAGGCCCGGAGGCCTTGGCCGCACTCG CCAACAGCTCCCAGCTTCGCAGGGCCCACGATGCCGTGCTCACCCTCACG CGCCACTGTCCCTCTGAAGGCAGCGTGCTGGACAGCCTGCGCAGGGCTCA AGAGCGCCGCGAGCTGCCCTCTGACCTCAATCTGCAGCAGGTAGACGGTC CCGGGAGGAGGGAAGAAGGCAAGGGAGAGGGGGA

> GUCY2D – Exon 9

GUCY2D – Exon 10

AGCAGGCTGAGGCTGCCTCTTACCCTACCCATTCCAAGGGAATAAGGTATC TGCACCATCGAGGCGTGGCTCATGGGCGGCGGCTGAAGTCACGGAACTGCATA GTGGATGGCAGATTCGTACTCAAGATCACTGACCACGGCCACGGGAGACT GCTGGAAGCACAGAAGGTGCTACCGGAGCCTCCCAGAGCGGAGGGTAAG AG TCCCCTGTGCAGACGAGGATCCACCGGGA

GUCY2D – Exon 11

GCGGCGCCTCAGCCCCTTCCCCATCCCCAGACCAGCTGTGGACAGCCCCG GAGCTGCTTAGGGACCCAGCCCTGGAGCGCCGGGGAACGCTGGCCGGCG ACGTCTTTAGCTTGGCCATCATCATGCAAGAAGTAGTGTGCCGCAGTGCCC CTTATGCCATGCTGGAGCTCACTCCCGAGGGTAAGGCTGCCCTGTG**CGTG** GAGTTCGGCCCACAGGG

> GUCY2D – Exon 14

CAGCTGGAGCCCAGCCAGGTAGAGTGGCCCCCAGGTGACCTCACTGCCT GCCATCCCTAGGTCTGTGGCTGAGGCCTTGAAGACGGGGGACACCAGTGGA GCCCGAGTACTTTGAGCAAGTGACACTGTACTTTAGTGACATTGTGGGCTT CACCACCATCTCTGCCATGAGTGAGCCCATTGAGGTTGTGGACCTGCTCAA CGATCTCTACACACTCTTTGATGCCATCATTGGTTCCCACGATGTCTACAAG GTGCAGTGTGTAGGGGACAAGCCCTCCTGACCTTCAATTCAGCTTCACCA G

GUCY2D – Exon 15

GTGGAGACAATAGGGGACGCCTATATGGTGGCCTCGGGGCTGCCCCAGC GGAATGGGCAGCGACACGCGGCAGAGATCGCCAACATGTCACTGGACATC CTCAGTGCCGTGGGCACTTTCCGCATGCGCCATATGCCTGAGGTTCCCGT GCGCATCCGCATAGGCCTGCACTCGGGTAACTCCCGGGTCTTCCCAGGCT CCAGCCCATCTCCCTCTTTAG

> GUCY2D – Exon 16

CCCCGAGGCCCTACCTAGGTGCAGCCCAGGGCCGGCCCTGCTAGCCCCG CCGACCCCCAGCATCTCCACAGGTCCATGCGTGGCAGGCGTGGTGGGGCCT CACCATGCCGCGGTACTGCCTGTTTGGGGACACGGTCAACACCGCCTCGC GCATGGAGTCCACCGGGCTGCGTGAGTGTGACGGGGGACAAGACGGGGAG GT

GUCY2D – Exon 17

GGTGAGTCCCGAGCTCACGGCGTCCCCCACCGCCACAGCTTACCGCATCC ACGTGAACTTGAGCACTGTGGGGGATTCTCCGTGCTCTGGACTCGGGGCTACC AGGTGGAGCTGCGAGGCCGCACGGAGCTGAAGGTGAGGCAGGGCCCCAA CCCCTCCCGGAGGCCCCG

> *IQCB1* – Exon 11

> IQCB1 – Exon 13

IQCB1 – Exon 14

CCTCTGCTAAGTGGTTGGGTACTTTGATACCTATGTCCTCTCTGTGACAGG TTTTTCTGTCCTGTGTTTCCAGGGCTCTCCAATGTCAGATGTGGTCAGTAGG GAGCTCCATGCCCAAGCTCAAGAACGACTGCAACACTACTTTATGGGCAGG GCCCTAGAAGAGCGAGCCCAGCAGCAGCACAGAGAAGCTCTGATAGCACAGAT CAGCACCAACGTTGAACAGCTAATGAGTATGTGCTCATTTTACTTTCGTTCT CTAAAAGGAACAACCTATGCGAGGTTTGTGACATCCAAAACCTTTAGAAGG AAACCATTACTAAGCATCTTTAGC**TCATCCCCTAACCTCAGGAAA**

> KCNJ13- Exon 3a

GCTGTACTCTATCAGGAAAGAGAAAATGGCAAACTCTACCAGACCAGTGTG GATTTCCACCTTGATGGCATCAGTTCTGACGAATGTCCATTCTTCATCTTTC CACTAACGTACTATCACTCCATTACACCATCAAGTCCTCTGGCTACTCTGCT CCAGCATGAAAATCCTTCTCACTTTGAATTAGTTGTA**TTCCTTTCAGCAATG** CAGG

LCA5 – Exon 3

CACTGCCATGTGTTATGTTTCATTGTTGGAATTTTTTTAAAGGACTGCTTTTT ATGTATTTATACATATAGGAGCTATCGAAAAACCTTGAACTGAGTACTAACA GTTTCCAACGACAGTTGCTTGCTGAAAGGAAAAGGGCATATGAGGCTCATG ATGAAAATAAAGTTCTTCAAAAGGAGGTACAGCGACTATATCACAAATTAAA GGTAAGTATTTTAAATTGCATTGTTTTCCATAATGTGTATTAGACGAAAATTA AATATTTTAAAACACTAAATGTTACTATTCATATTTGTAAGTTGGTACAATATA ATTTACAAAATTCTGATATTATCTTTA**GCACTTAGAAAGGTTTGTTGG**

LCA5 – Exon 5

CATGCCAGCTGAATTCCATATATTTTAGCATTATTCATTGTAATAATTTTTA AAAATAATTTTCACTGTAGCTGCATGCCAGAGTGATTTTGCAGACCTGTGTA CAAAAGGAGTACAAACCATGGAAGACTTCAAGCCAGAAGAATATCCTTTAAC TCCAGAAACAATTATGTGTTACGAAAACAAATGGGAAGAACCAGGACATCTT ACTTTGGTGAGTTTAGCAGTATTGTTATGTACCAAACTCGGTCTGAAGTTAT TCCTAAAAACACAATATCAGACATTTTAAAATTTCAGTAATGAAGCTAGTACT ATATCTATATGAATATG**CGACTAGCCTTTTGAAGGG**

LCA5 – Exon 6

LCA5 – Exon 7a

AGCCAGAGTGGGAAACTGGAAGGTACCAACTAGGAATGTATCCAATTCAGA ATATGGATAAATTGCAAGGAGGAGGAAGAAGAAGACTGAAGAGAGAAATGC TACTTGCTAAACTGAATGAAATTGACAGAGAACTCCAAGATTCTCGAAATCT AAAATAC**CCTGTTTTGCCATTGTTACCT**

> NMNAT1 – Exon 2

RD3 – Exon 1

RDH12 – Exon 2

RDH12 – Exon 6

RPE65 – Exon 2

CCCACCCAGCTGAGACTAGACCGGCAGGAGTGAACAGGCTTTGAGCCAG CCCTAGAGTGCCTTCTCTCCTGCAGCTCTGCCTCTATCTCTGCGGACTTTG AGCATCAACATGGGCTTCTTCCTTATTCTTCCACCATTTCAGGGTTGAGCAT CCTGCTGGTGGTTACAAGAAACTGTTTGAAACTGTGGAGGAACTGTCCTCG CCGCTCACAGCTCATGTAACAGGTTGGTCTCGCCCATCTTGAAGCCATCCT CTTTTATGTCAGTCTCTCTTCTTGGCTTCCTATTCCTTGGCGTCTCTCAGT GCAGACTCCCCCTGTGGGTCACAGGGAGAGGGATCAGGTGGTTTGGGCTT TTTA

RPE65 – Exon 4

CTGTACGGATTGCTCCTGTCTATACTCTTCCCTATGTTTCAATGTCCTTCAG GTTCATCCGCACTGATGCTTACGTACGGGCAATGACTGAGAAAAGGATCGT CATAACAGAATTTGGCACCTGTGCTTTCCCAGATCCCTGCAAGAATATATTT TCCAGGTTACTGAACCCAAACTGAATGTTACTCAAGACATTTTATATTAGCC CTTTTTCTCTCATGGCTTGAAAATTACTGGACTGAAAAATTCATTTGTTTCTA CAGGTTTTTTTTCTTACTTTCGAGGAGTAGAGGTTACTGACAATGCCCTTGT TAATGTCTACCCAGTGGGGGAAGATTACTACGCTTGCACAGAGACCAACTT TATTACAAAGATTAATCCAGAGACCTTGGAGACAATTAAGCAGGTGGGACA

RPE65 – Exon 9

RPE65 – Exon 10

TTGTCATTGCCTGTGCTCATGTTTGACTTTTATTTTTGCAGATTTGAGTTTG TTTATAATTACTTATATTTAGCCAATTTACGTGAGAACTGGGAAGAGGGTGAA AAAAAATGCCAGAAAGGCTCCCCCAACCTGAAGTTAGGAGATATGTACTTCC TTTGAATATTGACAAGGTAACCTGCTTCTCTGTAGATTTCAGATTTAACCAG AATGTTTCATCTCTCCA

> RPE65- EXON 12

CACACGGGAGTGAACAAATGTTTCTTTCAAAGAGATTAAGAGTTTTCCTAA GCATGTGCTCTATTTCGTAGCATTTGAGTTTCCTCAAATCAATTACCAGAAG TATTGTGGGAAACCTTACACATATGCGTATGGACTTGGCTTGAATCACTTTG TTCCAGATAGGGTAATTAATCCTTCTTACTAATATTTGAACAGTGCTTTGAGT ATATGC

> RPE65 – Exon 13

GCATATTGACTGATTGCTTGATTGATTTTCTTTCTTCACAAACAGCTCTGTAA GCTGAATGTCAAAACTAAAGAAACTTGGGTTTGGCAAGAGCCTGATTCATAC CCATCAGAACCCATCTTTGTTTCTCACCCAGATGCCTTGGAAGAAGATGATG GTAATGAAAGCAATTGTTGTGT**CTGAATACTCTTCTTACTGC**

RPE65 – Exon 14

AGTCAGAAAAAGAAGTCAGGTCATATGGTTTTCTATATTTGTCAATGTAATA CCTCCTATATTATTTCAATGACATTCAATCTATAGCTTGGGCTTTTAAAAAACT CAATATTGCCTAATTTACTTCTGATAAACAGGTGTAGTTCTGAGTGTGGTGG TGAGCCCAGGAGCAGGACAAAAGCCTGCTTATCTCCTGATTCTGAATGCCA AGGACTTAAGTGAAGTTGCCCGGGCTGAAGTGGAGATTAACATCCCTGTCA CCTTTCATGGACTGTTCAAAAAATCTTGAGCATACTCCAGCAAGATATGTTT TTGGTAGCAAAACTGAGAAAATCAGCTTCAGGTCTGCAATCAAATTCTGTTC AATTTTAGCCTGCTATATGTCATGGTTTTAACTTGCAGATGCGCACAATTTTG CAATGTTTTACAGAAA**GCACTGAGTTGAGCAAGCAAT**

> RPGRIP1 – Exon 6

RPGRIP1 – Exon 14

RPGRIP1 – Exon 21

CTTGGAGCCTCACTAACCTTTAGGAACTAAATAAACATTTTCCTTATCAGGA TTCAGAGAAGATGTGCATTGAAATTGTCTCCCTGGCCTTCTACCCAGAGGC AGAAGTGATGTCTGATGAGAACATAAAACAGGTGTATGTGGAGTACAAATTC TACGACCTACCCTTGTCGGAGACAGAGACATCCAGTGTCCCTAAGGAAGCCT AGGGCAGGAGAAGAAATCCACTTTCACTTTAGCAAGGGTGAGGCATCCTGT GTGGTTACTGG**GGTGAGGAAGTCTGATGAA**

> RPGRIP1 – Exon 24

AGTGTTCAACTGAGTGATGCTGTTTTTTTCCCTTTCCCAACAGTTGTTAGCC CTGAAGATCTGGCTACCCCAATAGGAAGGCTGAAGGTTTCCCTTCAAGCAG CTGCTGTCCTCCATGCTATTTACAAGGAGATGACTGAAGATTTGTTTTCATG AAGGAACAAGTGCTATTCCAATCTAAAAGTCTCTGAGGGAACCATAGT

SLC19A2 – Exon 2

> SPATA7- Exon 1

GTCGGCTCCTCTTTTCCAGTCCTCCACTGCCGGGGCTGGGCCCGGCCGCG GGAAGGACCGAAGGGGATACAGCGTGTCCCTGCGGCGGCTGCAAGAGGA CTAAGCATGGATGGCAGCCGGAGAGG**TAAAGGGCAGCTGTCAGGG**

> SPATA7 – Exon 3

> SPATA7- Exon 6

TTCTAGCCAGTAAACCTTGTTACCACAGTGCTTATATTTTGAAGGATTAACA ATTATTTATTTTAAATTATTACAGCTTTAAATCTGAGTTGGGGGACAGCTGAGA CTAAAAACATGACAGATTCAGAAATGAACATAAAGCAGGTAATAAGTATGAA ATCTTTTGGTATTGCTACATTTGAATTACAGATGTTTTTCAGTAAATAGAATAT GTACAGCTATTTAGACTGT**GAAGAATAATCTGTTGGTGG**

> SPATA7- Exon 7

> SPATA7- Exon 10

> SPATA7– Exon 11c

AGAACGAGATATTCCCTTCACCAACTGAATTTTTCATGCCTATTTATAAATC AAAGCATTCAGAAGGGGTTATAATTCAACAGGTGAATGATGAAACAAATCTT GAAACTTCAACTTTGGATGAAAATCATCCAAGTATTTCAGACAGTTTAACAG ATCGGGAAACTTCTGTGAATGTCATTGAAGGTGATAGTGACCCTGAAAAGG TTGAGATTTCAAATGGATTATGTGGTCTTAACACATCACCCTCCCAATCTGTT CAGTTCTCCAGTGTCAAAGGCGACAATAATCATGACATGGAGTTATCAACTC TTAAAATCATGGAAATGAGCATTGAGGACTGCCCTTTGGATGTTTAATCTTC ATTAATAAATA**CCTCAAATGGCCAGTAACTCA**

TULP1– Exon 11

TTCCCATCCTCTCACCTGTCTCCCCTTTTCCCCAGGTGTTCCTCTTGGCTGG CAGGAAACGAAAACGGAGCAAGACAGCCAATTACCTCATCTCCATCGACCC TACCAATCTGTCCCGAGGAGGGGGGGAGAATTTCATCGGGAAGCTGAGGTGGG GCTGGGCTTCCTGGGGCTGGGGGGGACTTGGGTCAGCAAAAGGCCATAGC CCGTCATCTCTGTCCTGCTGTGCCT**GGTAGAGCACCCACCACAGT**

> SPATA7RT1 – Exon 7-10

> SPATA7RT2 – Exon 9-11

CCAAGGGCAATGTGTCAGTATTCCCTGAAGCCCCCTTCAACTCGTAAAATC TACTCTGATGAAGAAGAACTGTTGTATCTGAGTTTCATTGAAGATGTAACAG ATGAAATTTTGAAACTTGGTTTATTTTCAAACAGGTTTTTAGAACGACTGTTC GAGCGACATATAAAACAAAATAAACATTTGGAGGAGGAAAAAATGCGCCAC CTGCTGCATGTCCTGAAAGTAGACTTAGGCTGCACATCGGAGGAAAACTCG GTAAAGCAAAATGATGTTGATATGTTGAATGTATTTGATTTTGAAAAGGCTG GGAATTCAGAACCAAATGAATTAAAAAATGAAAGTGAAGTAACAATTCAGCA GGAACGTCAACAATACCAAAAGGCTTTGGATATGTTATTGTCGGCACCAAA GGATG

> SLC19A2-EXON1

CAATGGAAGAGCAGGCAAGTATTCCCGGCGTCCGCTGTGATTGGTTCCCG GAGTGGAGGCGGTGGCAGAGGGTGGGCCTTAGGACGGGTCTCCCTTAAA CTGGGCGATCAGGCAGCGACCCTAGAGGCGTCTGTAGGGTAAAGCTGGG

> SLC19A2- EXON 2

SLC19A2 - EXON 3

> SLC19A2 - EXON 4

> SLC19A2 - EXON 5

GTTGGAAAGGCAATTGACAGTAGAAAGAAGGACTCTTCATGTTTAAAGATA AATGTTTACTTTTATTTAGAATAAATATTATAAGTACTCCAGAAGTAATTCTTA TTTATTCACTCTTTTATTTTTTTTTAAGTTTTCAAATTGCTGCAAACCTCAGCA TGGAACGCTATGCCCTAGTATTTGGTGTAAATACCTTCATTGCCCTGGCACT GCAGACGCTGCTCACTCTAATTGTGGTAGATGCCAGTGGCCTTGGATTAGA AATTACCACTCAGGTAAGATCTCTCCTTTGGCATCGAA

> SLC19A2 - EXON 6

GGCACGTGGTGTAAGTATGCAATATTTTTTGAGGCTTTATGGACAAATTCTGA ATATACTTTATTATAGAGTAATCCTCTTGTCATTGATAATTCAATAAACTGCTTT TCCCCCTTCTAGTTTTTGATCTATGCCAGTTATTTTGCACTCATCGCTGTGGT TTTCCTGGCCAGTGGTGCAGTCAGTGTTATGAAGAAATGTAGAAAGCTGGAA GATCCACAATCAAGTTCTCAAGTAACCACTTCATAATATACTGCTGAAGGGCT TCTTCTTATAGCAAGAACTCTGCACAGCA

The sequence in bold indicate the forward and reverse primer sequences.

LIST OF PUBLICATIONS AND PRESENTATIONS

PUBLICATIONS

- Natarajan N. Srikrupa, Sundaramurthy Srilekha, Parveen Sen, Tharigopala Arokiasamy, Swaminathan Meenakshi, Muna Bhende, Suman Kapur and Nagasamy Soumittra. Genetic Profile and Mutation Spectrum of Leber Congenital Amaurosis in a Larger Indian Cohort using High Throughput Targeted Re-sequencing. *Clin Genet.* 2017 Oct 25. doi: 10.1111/cge.13159. [Epub ahead of print].
- Srikrupa NN, Meenakshi S, Arokiasamy T, Murali K, Soumittra N. Leber's congenital amaurosis as the retinal degenerative phenotype in thiamine responsive megaloblastic anaemia: a case report. *Ophthalmic Genet*. 2014 Jun; 35(2):119-24. doi: 10.3109/13816810.2013.793363. PMID: 23638917.
- Srilekha S, Arokiasamy T, Srikrupa NN, Umashankar V, Meenakshi S, Sen P, Kapur S, Soumittra N. Homozygosity Mapping in Leber Congenital Amaurosis and Autosomal Recessive Retinitis Pigmentosa in South Indian Families. *PLoS One.* 2015; 10(7):e0131679. doi: 10.1371/journal.pone.0131679. PMID: 26147992.
- Bende P, Natarajan K, Marudhamuthu T, Madhavan J. Severity of familial isolated retinitis pigmentosa across different inheritance patterns among an Asian Indian cohort. *J Pediatr Ophthalmol Strabismus*, 2013; 50(1):34-6.
 PMID: 23463886.
- Dhandayuthapani Sudha, Srividya Neriyanuri, Srikrupa Natarajan, Mamatha Gandra, Arokiasamy Tharigopala, SathyaBharathi Ravichandran, Al Ameen Muhammed, Umashankar Vetrivel, Lingam Gopal, VikasKetan, Rajiv Raman, Subbulakshmi Chidambaram and Jayamurugapandian Arunachalam. Variable disease severity among XLRS patients with similar mutant RS1 secretion profile: An insight on the localization of mutant RS1. *Experimental Eye Research*. (Under review)

PRESENTATIONS

- Natarajan N. Srikrupa, Srilekha Sundar, Swaminathan Meenakshi, Parveen Sen, Muna Bende, Tharigopala Arokiasamy, Suman Kapur, Nagasamy Soumittra. High throughput gene screening of patients with Leber Congenital Amaurosis in an Indian Cohort. NextGen Genomics, Biology, Bioinformatics and Technologies (NGBT) Conference 2016, Cochin. Awarded Travel fellowship.
- Natarajan N. Srikrupa, Srilekha Sundar, Swaminathan Meenakshi, Parveen Sen, Muna Bende, Tharigopala Arokiasamy, Suman Kapur, Nagasamy Soumittra. Swarnalatha Punshi Award presentation 2015. Vision research foundation, Chennai. Awarded Swarnalatha Punshi Award for Best Research in Basic Science.
- Natarajan Srikrupa N, Swaminathan Meenakshi, Bhende Muna, Tharigopala Arokiasamy, Nagasamy Soumittra.Screening of LCA9 locus gene, *NMNAT1*, in LCA cases of Indian cohort. ASIA ARVO 2013, New Delhi. Awarded Second Best poster.
- Srikrupa Natarajan, Meenakshi S, Kaushik Murali, Nagasamy Soumittra. A novel mutation in SLC19A2 gene in a south Indian patient with thiamineresponsive megaloblastic anaemia (TRMA). Indian Society of Human Genetics 2012, Chandigarh.
- Srikrupa Natarajan, Manoharan Aarthi, Ronnie George, Manmath Kumar Das, VL Ramprasad, G Kumaramanickavel, Lingam Vijaya, Sripriya S, Parveen Sen. Association between the indel variant in the *LOC387715/ ARMS2* gene and Age-related Macular Degeneration in South Indian population. Indian Eye Research Group 2010, Hyderabad. Awarded Travel fellowship.
- D Sudha, Srikrupa Natarajan, T Karthiyayini, S Muthukumaran, V Umashankar, L. Gopal, VikasKhetan, A Jayamuruga Pandian. Molecular characterization of *RS1* gene mutants implicated in retinoschisis. Indian Society of Human Genetics 2012, Varanasi.

Sudha. D, Srividya. N, Srikrupa. N. N, Dharanija. M, Mamatha. G, Karthiyayini. T, Arokiasamy. T, SathyaBharathi. R, Muthukumaran. S, Al Ameen. M, Umashankar. V, Lingam. G, Vikas. K, Rajiv. R, Subbulakshmi. J, JayamurugaPandian. A. Nonsecreted mutant retinoschisin localizes to the plasma membrane. Indian Society of Human Genetics 2016, Chennai.

BRIEF BIOGRAPHY OF THE CANDIDATE

Ms. Srikrupa N N completed her bachelor's degree in Biochemistry at Dr. MGR Janaki College of arts and science for women affiliated to University of Madras, Chennai in the year 2006. She joined Medical Research Foundation, Sankara Nethralaya for her post-graduation degree in MS(MLT) (2006-2009) affiliated to BITS Pilani, Following her post-graduation, she joined the SNONGC department of Genetics and Molecular biology as a research fellow in a DBT funded project on age related macular degeneration (AMD) for a year (2009-2010). She was awarded a travel fellowship to present this work in IERG (2010) conference. She was then deputed in a 3 year DBT funded project on "Molecular diagnostics of LCA - a chip based resequencing approach". During this fellowship tenure she registered for PhD in BITS Pilani, under the guidance of Dr. N. Soumittra from Vision Research Foundation, Chennai and Prof. Suman Kapur from BITS Pilani, Hyderabad campus as co-supervisor. She had attended national and international conferences. She was awarded travel fellowship to attend and present her work in Indian Eye Research Group (IERG) 2010 and NextGen Genomics, Biology, Bioinformatics and Technologies (NGBT) Conference 2016. She is a recipient of the Swarnalatha Punshi Award for Best Research in Basic Science (2015) by Vision Research Foundation and awarded best poster in ASIA ARVO, the association for research in vision and ophthalmology (2013). She has 3 published research papers, and two manuscripts under revision. She has hands on experience in performing molecular biology techniques like PCR and its variants, Sanger sequencing, analysis and interpretation of next generation sequencing (NGS) data, cloning, transformation and tissue culture techniques. Her area of research is on genetics of retinal degenerative disease specifically Leber congenital amaurosis, mutation screening by NGS, phenotype genotype correlation and assisting in genetic counselling.

BRIEF BIOGRAPHY OF THE SUPERVISOR

Dr. N.Soumittra, Associate Professor and Principal Scientist, joined as Senior Scientist in the department of Genetics and Molecular Biology, Vision Research Foundation, Chennai in 2006. She completed her PhD from University of Madras and her doctoral work was on genetics of hereditary cancers. She is a recipient of Best outgoing student in biochemistry and overall Best outgoing student in the post graduate programme, MSMLT. She is UGC-CSIR lectureship qualified and was awarded "Best Paper award" by the Indian Society of Oncology Conference, 2004, "Young Scientist award" for the year 2004by the Indian Society of Human Genetics and "Best free paper" in Genetics at Asia ARVO 2013 conference. Her current research interests are genetics of retinal diseases and corneal dystrophies. Her technical areas of expertise include medium and high through put genotyping and expression analyses studies like linkage analyses, homozygosity mapping, next generation sequencing analyses (targeted resequencing and whole exome sequencing) and whole transcriptome expression using microarray. She has received grants from DBT and ICMR, Govt. of India, as principal and co-investigator and has two current and four completed grants to her credit including an ICMR-INSERM collaborative project. She has published twenty-two research articles in international journals with two publications in Nature Genetics and two book chapters. She is involved in teaching genetics and molecular biology courses to post graduate students and is also a recognized PhD guide by SASTRA University, Thanjavore and University of Madras. Currently, she has two PhD students under her supervision and one candidate who has completed her PhD. Dr. N. Soumittra is a genetic counselor and is involved in molecular diagnostics of inherited ocular diseases.

BRIEF BIOGRAPHY OF THE CO-SUPERVISOR

Dr. Suman Kapur joined BITS Pilani on 17th July 2004 as Professor in the centre for Biotechnology, department of Biological Sciences. She is presently working as the Dean, International Programs and Collaboration Division since June 2012. She has earlier served in several senior administrative positions like Dean, Research & Consultancy at the Hyderabad Campus and Chief of Community Welfare and International Relations Unit at BITS-Pilani.

Dr. Kapur is a popular teacher at BITS, Pilani and has been instrumental in introducing several new courses, namely MPH G513, MPH G522, MPH G692, MPH G539, MPH G521, MPH G681,BIO G515 and has developed the curriculum for a new degree program "Master of Public Health", incorporating learning through field visits and interdisciplinary teaching. Several of her students have gone to make excellent careers for themselves as CEO's of start up companies and faculty at some of the best institutions in USA. She has published more than 100 research articles in International and national journals.

Dr. Kapur's research interests lie in identifying biomarkers for unravelling the genetic basis of human diseases such as psychiatric disorders like depression, schizophrenia, addiction and Alzheimer's disease and metabolic disorders such as diabetes (T2DM), obesity, cataract and metabolic syndrome. Early and specific diagnosis is the backbone of effective treatment and reduction of both disease associated morbidity and mortality. Ours is the first group to show that in the Indian population a mutation in the mu opiate receptor is linked to risk for addiction to opiates, a mutation in the Ob (leptin) gene may be linked to hypertension in depressed individuals and similarly mutations in *CRYGA& B*, *SPHK* and *SPAG 16* genes are linked to Cataract.

Modern day integration of electronics and biological possibilities on an integrated chip can be successfully used to develop POC devices, especially suited for lowcost settings and our group has already developed two such devices for bacterial antibiotic susceptibility and blood glucose monitoring. She has founded a biotechnology start up company for commercialization of the same. Revival of research on Traditional Medicine/Herbal Remedies with a locally relevant evidence-based, disease-oriented approach is particularly relevant for India. Her group is also involved in developing clonal variants of Indian Medicinal plants and screening natural products for anti-diabetic, anti-inflammatory and anti-obesity activities in specific animal models for these diseases. Several industry sponsored projects are also in progress for bio-conversion, remediation & effluent treatment using consortia of microbial populations.