
TRANSFORM BASED MULTI-BAND SPEECH 

ENHANCEMENT ALGORITHMS 
 

 

 

 

 

 

 

 

NAVNEET UPADHYAY 

 

 

 

 

 

 

 

 

 

 

 

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING 

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI 

PILANI - 333031, INDIA 

APRIL, 2013 



Transform Based Multi-Band Speech 

Enhancement Algorithms 
 

 

THESIS 

 

 

Submitted 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

 

by 

 

NAVNEET UPADHYAY 

Department of Electrical & Electronics Engineering 
 

Under the Supervision of 
 

Dr. Abhijit Karmakar 
 

to the 
 

 

 

 

 

 

       

Birla Institute of Technology & Science, Pilani 

Pilani - 333031, India 

April, 2013 



 

ii 
 

CERTIFICATE 

 

 

This is to certify that the thesis entitled "Transform Based Multi-Band Speech 

Enhancement Algorithms" being submitted by Mr. Navneet Upadhyay, ID No.: 

2009PHXF035P, to the Department of Electrical & Electronics Engineering, Birla Institute of 

Technology & Science, Pilani for the award of the degree of Doctor of Philosophy is a 

bonafide record of research work carried out by him under my supervision. He has fulfilled 

all the requirements for submission of the thesis which has reached the requisite standard.  

I hereby declare that the content of this thesis, in full or in parts, to the best of my 

knowledge, has not been submitted to any other educational Institute or University for the 

award of any other degree or diploma.  

 

 

 

 

Date  : April 30, 2013                   (Dr. Abhijit Karmakar) 

Place : Pilani                   Associate Processor, AcSIR!  

                                      Principal Scientist, 

           CSIR - Central Electronics Engineering Research Institute 

     Pilani - 333031, India 

  

! 
Academy of Scientific & Innovative Research 

 



 

iii 
 

ABSTRACT 

 

Index Terms — single channel speech enhancement; adverse environment; additive noise; noise 

estimation; short-time Fourier transform; stationary wavelet packet filterbank; critical band rate scale; 

spectral subtractive-type algorithms; iterative processing; spectrogram; objective measure; subjective 

measure. 

 

The degradation of speech due to the presence of additive background noise causes severe 

problems in a variety of communication environments. The spectral subtraction method is a 

classical approach and is widely used for enhancement of degraded speech. The drawback of this 

classical approach is that it uses a fixed set of values for the subtraction parameters. Thus, its 

applications are limited only for the noises that degrade the speech signal uniformly. However, 

real-world noise is mostly non-stationary or colored in nature and a multi-band approach is found 

to be more efficient than the classical approach.  

This thesis mainly addresses the problem of single channel speech enhancement, where 

the signal is derived from a single microphone, in adverse environment and proposes transform 

based multi-band speech enhancement algorithms. The aim of the proposed research work is to 

explore the transform based multi-band algorithms for the augmentation of the overall quality and 

intelligibility of the processed speech by suppressing the background noise as well as the remnant 

component of the noise. The algorithms proposed in the thesis are based on short-time Fourier 

transform and stationary wavelet packet transform and the noise reduction is performed on the 

transform coefficients by using adaptive noise estimation approach. The performance of the 

algorithms has been evaluated comprehensively and their comparative study has been done. 

The thesis presents a detailed study of the spectral subtractive-type algorithms with a 

unified view of the single channel speech enhancement algorithms in the frequency domain, 

which provides the necessary algorithmic framework required for the development of the 

proposed transform based multi-band speech enhancement algorithms. The study includes the 
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comparative analysis of the different forms of spectral subtractive-type algorithms such as the 

basic magnitude spectral subtraction algorithm, spectral over-subtraction algorithm, multi-band 

spectral subtraction algorithm, Wiener filtering, iterative spectral subtraction algorithm, and 

spectral subtraction based on perceptual properties in noisy environments. 

The iterative processing based multi-band spectral subtraction algorithm proposed in the 

thesis aims to enhance the narrowband speech degraded by non-stationary noises. The speech is 

processed into four uniformly spaced continuous frequency bands and the spectral subtraction is 

performed independently on each band using band specific over-subtraction factors. This process 

is iterated a small number of times and the noise is estimated in each iteration.  In this scheme, the 

output from the base enhancement stage is used as the input for next iteration process, where the 

additive noise changes its form into remnant noise and subsequently, this remnant noise is re-

estimated in each iteration.  

An improved multi-band spectral subtraction based on critical band rate sale of human 

auditory system is explored next. Here, the speech degraded by non-stationary noise is processed 

by splitting the complete spectrum into six non-uniformly spaced frequency bands in accordance 

to the critical band rate scale and spectral subtraction is applied independently in each band using 

band specific over-subtraction factors. The enhancement algorithm uses an adaptive approach to 

estimate the noise from each band without the need of explicit speech silence detection. 

The thesis also proposes a perceptually motivated stationary wavelet packet transform 

based multi-band improved spectral over-subtraction algorithm for the enhancement the speech 

degraded in adverse environment. The perceptually motivated stationary wavelet packet filterbank 

is used to decompose the input noisy speech signal into seventeen non-uniform subbands and the 

speech is processed independently in each subband using improved spectral over-subtraction. The 

adaptive noise estimation approach used in this algorithm requires no voice activity detection and 

thus, it can update the noise estimate throughout the signal instead of being limited to estimating 

the noise in silence intervals. This allows a more accurate noise estimate and thereby, improves 

the quality of the enhanced speech further.  
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All the proposed algorithms are evaluated and compared with contemporary speech 

enhancement algorithms in terms of the quality and intelligibility of the enhanced speech. Various 

objective measures such as signal-to-noise ratio (SNR), segmental SNR (SegSNR), Itakura-Saito 

distortion (ISD), and perceptual evaluation of speech quality (PESQ) are performed on the test 

set, obtained by degrading three male utterances and a female utterance with seven different types 

of real-world noises and a computer generated stationary noise at different levels of SNRs, 

ranging from 0 to 15 dB.  A subjective listening test based on mean opinion score (MOS) is also 

carried out along with spectrogram analysis. The results of the subjective tests are also compared 

with those of the objective measures. The strengths and weaknesses of various proposed 

algorithms are analyzed and compared.  
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Chapter 1 

Introduction 

 

1.1. Background  

Speech is the most prominent and primary mode of interaction between human-to-human and 

human-to-machine communications in various fields such as automatic speech recognition and 

speaker identification [1]. The present day speech communication systems are severely degraded 

due to various types of interfering signals which make the listening task difficult for a direct 

listener and cause inaccurate transfer of information [2]. Therefore, to obtain near-transparent 

speech communication in applications such as in mobile phones, enhancement of degraded speech 

or equivalently the noise suppression has been one of the main research endeavors in the field of 

speech signal processing over the last few decades. The main focus of research in speech 

enhancement and its goals are : 

 

i) to minimize the degree of distortion of the desired speech signal and to improve one 

or more perceptual aspects of speech, such as, the speech quality and/or intelligibility 

of the processed speech, i.e., to make it sound better or clearer to a human listener, 

which, in turn, results in the reduction of listening fatigue [3, 4];  

ii) to improve the robustness of speech coders which tend to be severely affected by the 

presence of noise [5, 6] ; and   
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iii) to increase the accuracy of speech recognition system operating in less than ideal 

conditions [7, 8].  

 

The first aim is by far the most common focus of most researches in the area. The quality of 

speech signal refers to how the signal is perceived by the listener, i.e., its pleasantness or comfort 

of listening. It may also include attributes such as naturalness which is of highly subjective nature 

[9, 10]. On the other hand, intelligibility, refers to what the speaker has said, in terms of meaning 

or information content or how much information can be extracted from a speech signal, is an 

objective measure [3, 9, 10]. Quality can be measured using the mean opinion score (MOS) where 

a listener rates the quality of the speech on five-point scale (i.e. from 1 to 5) [9, 10]. Intelligibility 

measurements are conducted differently as the emphasis is on the understanding of speech. In 

such listening tests, listeners are asked to listen to various sentences or isolated words, and they 

have to write the words they can recognize. Based on the percentage of correctly recognized 

words, an intelligibility score is obtained [11]. These two features, quality and intelligibility are 

however uncorrelated and independent of each other in a certain context. For example, a very 

clean speech of a speaker in a foreign language may be of high quality to a listener but at the same 

time it will be of zero intelligibility. Therefore, a high quality speech may be low in intelligibility 

while a low quality speech may be high in intelligibility [10]. An example of latter was shown in 

an earlier work by Thomas et at. [12], in which high pass filtering and clipping were applied to a 

noisy speech utterance. The high pass nature of the filter boosted the unvoiced portions (see 

Section 1.2.1) of the speech, which are crucial to the understanding of the words, thus improving 

the intelligibility of the filtered speech. However, the enhanced speech sounds distort significantly 

and the quality of the speech is degraded considerably. Therefore, it is very difficult to optimize 

both attributes together. In many earlier works, speech enhancement algorithms tend to increase 

the quality but used to reduce the intelligibility also. Newer algorithms function better and have 

less of such trade-off. 
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The second aim is important, as speech vocoders (which encode only the perceptual 

important aspects of speech with fewer bits) are highly affected by the presence of noise. This is 

because compressed speech is represented by a minimum number of bits and the previous few bits 

may be used for representing noise instead of speech. The presence of noise also affects the 

accurate analysis of the speech, resulting in faulty parameters, e.g. linear predictive coding 

coefficients. The effect of noise on coded speech is often many times worse than the original 

uncompressed noisy speech. Speech enhancement has been shown to be an important front-end 

processing for such systems [5, 6].  

The third goal of speech enhancement is to address the well-known problem, increasing 

the accuracy of speech or a speaker recognition system in adverse conditions. It is well-known 

that the performance of such system degrades rapidly in practical noisy conditions [11]. This is 

due to the acoustic mismatch between the features used to train and test the systems and the 

ability of the models to describe the degraded speech. Typically, clean speech is used to train the 

acoustic models. Therefore, enhancement techniques which remove noise leaving an estimate of 

the clean signal are useful as a front-end (where speech enhancement is used as a pre-processing 

step for reducing the noise content and then use the enhanced signal as input to the speech 

processing system) [8, 24]. Put differently, speech enhancement can be regarded as an estimation 

problem, in which the clean signal is estimated from a set of noisy observations that consists of a 

clean speech signal plus random noise interferences [3, 13]. 

The noise sources present in a real environment can be of various types (see Section 

1.2.1) and there is no general solution for all types of environments and applications. Further, 

there are many practical situations where speech processing systems are confronted with an 

adverse environment and therefore need a powerful enhancement algorithm. The aim of each 

particular application has to be taken into account while developing the suitable speech 

enhancement algorithm for the particular case. The thesis contains the study and development of 

various related speech enhancement algorithms which may find applications in adverse noisy 

conditions. Some of the possible applications are: 
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i) Digital mobile radio telephony: radio channel with variable transfer function, 

background noise (moving car) and limited bandwidth. 

ii) Hands-free telephone systems. 

iii) Telephones located in adverse environments such as factories, city streets, and 

aircraft cockpits etc. 

iv) Teleconferencing systems. 

v) Communications over noisy channel (long-distance telephone lines). 

vi) Communication terminals in office environments (babble noise, computer fans, etc.). 

vii) Hearing aids design: needs an effective noise reduction front-end along with speech 

processing module to suit the listener's disability [7]. 

 

Due to the long history of speech enhancement, various algorithms have been proposed. A broad 

classification of the approaches will be divided into temporal and transform based processing 

methods. In temporal processing, direct operations are done on the speech waveform. Filtering is 

performed directly on the time sequence which includes techniques such as linear predictive 

coding [14], Kalman filtering [15-17] etc. In the transform based processing, the noise reduction 

is performed on the transform coefficients [13, 18-21]. The various types of transforms are used 

such as Fourier transform, short-time Fourier transform [13, 18-24, 89-91], and wavelet transform 

[27, 30-36, 88]. The idea behind performing the transform is that it should be easier to distinguish 

between speech and noise in the transform domain. The transform based techniques seem to be 

more popular among many researchers.  

Among various transform based speech enhancement algorithms, prsented in Section 

1.2.3), the spectral subtraction method proposed by S.F. Boll [13], is one of the most widely used 

methods based on the direct estimation of short-time spectral magnitude (STSM). The main 

attraction of spectral subtraction method is:  

 

i) Its relative simplicity, in that it only requires an estimate of the noise power spectrum, 

and 
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ii) Its high flexibility against the variation of subtraction parameters.  

 

Despite its capability of reducing the background noise, spectral subtraction method [13] 

introduces perceptual noticeable spectral artifacts, known as remnant musical noise, which is 

composed of un-natural artifacts with random frequencies and perceptually annoys to the human 

ear. This noise is caused due to the inaccuracies in the short-time noise spectrum estimate and it 

faces difficulties in pause detection. In recent years, a number of speech enhancement algorithms 

have been developed to deal with the modifications of the spectral subtraction method to combat 

the problem of remnant musical noise artifacts and improve the quality of speech in noisy 

environments. These frequency domain speech enhancement algorithms constitute a family of 

spectral subtractive-type algorithms (see Section 2.5.1) and are based on subtracting the estimated 

short-time spectral magnitude of the noise from the STSM of noisy speech or by multiplying the 

noisy spectrum with gain functions and to combine it with the phase of the noisy speech [13, 20- 

24, 89-91]. 

The wavelet transforms have been applied to various areas of research including speech 

and image de-noising, compression, detection, and pattern recognition, which can easily be 

computed by filtering a signal with multi-resolution filterbanks [25, 26]. In [27, 31], wavelet 

transform has been applied for enhancement of speech on the basis of a simple and powerful de-

noising technique known as wavelet thresholding (shrinking). However, it is not possible to 

separate the speech signal from noises by a simple threshold because applying a uniform 

threshold to all wavelet coefficients would remove some speech components, as well, while 

suppressing additional noise. This is especially true for the non-stationary or colored noise 

degraded signal and some deteriorated speech conditions. The unvoiced components of speech are 

often eliminated from this method which results in loss of much a-tonic information that affects 

the quality of reconstructed signal [27]. Yet, it remains unclear which speech enhancement 

algorithm performs so well where the background noise level and characteristics are constantly 

changing.  
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In real-world environment, most of the noise captured by a microphone (see Section 

1.2.3) is non-stationary or colored. If degrading noise is non-stationary, the multi-band (subband) 

approach has been found to be more efficient than whole band approach [3, 21].  In this thesis, we 

have presented transform based multi-band speech enhancement algorithms, especially suited for 

non-stationary conditions. In the next section, we describe the speech enhancement algorithms for 

adverse conditions.  

 

1.2. Speech Enhancement in Adverse Environment 

1.2.1 Description of Speech Signal 

Speech is a non-stationary signal due to the time varying nature of the human speech production 

system. The information it carries is contained in variations of the signal in time and frequency. 

Furthermore, successive samples of the speech signal are highly correlated. In general, speech 

processing algorithms operate on a frame-by-frame basis with frame sizes ranging from 10 to 30 

ms during which the signal is considered as stationary/quasi-stationary (short-time processing). A 

detailed description of speech properties can be found in [11, 28], nevertheless, few 

characteristics can be outlined here. Speech bandwidth varies approximately from 300 Hz to 3.4 

kHz, but some consonants such as, 'f', 's', 't', have frequency component up to 8 kHz. Speech can 

be decomposed in two principal classes of sounds: voiced speech, which has higher amplitude and 

energy at low frequencies (below 3 kHz) and unvoiced speech, with lower energy but spreading to 

higher frequencies. Voiced speech is produced when periodic pulses of air generated by the 

vibrating glottis resonate through the vocal tract, at frequencies dependent on the vocal tract 

shape. Unvoiced speech is non-periodic, random-like sounds, caused by air passing through a 

narrow constriction of the vocal tract as when consonants are spoken. There are also a small 

number of speech sounds which employ mixed excitation, such as voiced fricatives 'z' and 'v', as 

well as voiced stops as 'd' and 'b'. In a speech signal about two-thirds of speech is voiced and one-

third of speech is unvoiced. Therefore, voiced speech seems to be more important than unvoiced 

speech for preserving speech quality. Although unvoiced sections are shorter and of lower energy 
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 Voiced Speech  Unvoiced Speech 

but they are important for speech perception as well and most important for intelligibility. An 

example of unvoiced and voiced speech is given in Fig. 1.1.  

 

 

 

 

 

 

 

 

Fig. 1.1: Examples of unvoiced and voiced speech: (a) time domain, and (b) time-frequency 

domain (spectrogram). 

 

1.2.2 Noise Characteristics 

Noise can be defined as an unwanted signal and there are many forms of noise. The choice of 

particular speech enhancement method depends on the nature of the noise. Therefore, a good 

model of the noise source is important to analyze how well a speech enhancement 

algorithm/model works with different types of noise. Noises can have different statistical, spectral 

or spatial properties, as summarized in Table 1.1. 

 

TABLE 1.1. CLASSIFICATION OF NOISE BASED ON VARIOUS  

PROPERTIES. 

Properties Types of Noise 

Structure Continuous/Impulsive/Periodic 

Types of interaction Additive/Multiplicative/Convolutive 

Temporal behaviour Stationary/Non-stationary 

Frequency range Broadband/Narrowband 

Signal Dependency Correlated/Un-correlated 

Statistical properties Dependent/Independent 

Spatial Properties Coherent/Incoherent 

 

 (a) 
 (b) 
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Depending on the nature and the properties of the noise source, we can define the following 

classification [11, 29]: 

 

1) Background noise: additive, uncorrelated noise present in a lot of environments (apart 

from a sound proof room), such as cars (engine, road noise), offices, fans, city streets, 

machines, traffic noise, factories, aircraft cockpit. For example, operating a hands-free 

mobile phone in a car can be affected by at least three different types of background 

noises, namely wind, road as well as engine noise.  It can be stationary, slowly varying or 

non-stationary. The speech signal degraded by additive uncorrelated background noise is 

defined as noisy (unprocessed) speech [29]. 

2) Interfering speaker (speech-like noise): additive noise is composed of one or more 

competitive talkers. If the noise is a multi-talker babble noise, the phenomenon is called 

the 'cocktail party effect'. This noise has the characteristics and frequency range similar to 

that of the useful signal. 

3) Noise correlated with the signal : for example reverberations, echoes. 

4) Impulse noise: for example, noise resulting from slamming doors, noise in old recordings. 

5) Non-additive noise: transmission noise or channel distortion (speech on the telephone 

line), spectral shaping and non-linearities due to microphones. 

6) Non-additive noise due to speaker stress: noise can also induce changes in the speech 

production process. 

 

The most difficult situation to handle is a general non-stationary noise when no a-priori 

knowledge is available about the noise characteristics. Furthermore, if there is a temporal, 

frequency or spatial overlap between noise and speech, it is difficult to reduce the noise without 

distorting the speech. Some of the popular noise databases used for research in the area of speech 

are NOIZEUS
!
, TIMIT

!!
. 

 !   NOIZEUS - Noisy Speech Corpus. The noise database was prepared from the AURORA database. 

 

!!   TIMIT Acoustic  -  Phonetic  Continuous  Speech  Corpus. Corpus design was a joint effort between the Massachusetts Institute of   
     Technology (MIT) and Texas Instruments (TI).  
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1.2.3 Classification of Speech Enhancement Methods  

There are several methods proposed for speech enhancement in past decades. The reported 

algorithms can be categorized into two main classes as parametric and non-parametric methods. 

Parametric approaches needs a mathematical model for the signal generation or production 

process. This model describes the predictable structures and the observable patterns in the 

process. In this approach, noise suppression is performed depending on this a-priori information. 

Since the enhancement is based on the parametric model, selection of the model is crucially 

important in these algorithms. Whereas, non-parametric methods does not require the speech 

generation or production system. It simply requires an estimation of the noise spectrum. The noise 

spectrum can be estimated from the silence periods where the speaker is silent (single channel) or 

from a reference source (multi-channel) [29].  

The classifications of speech enhancement methods also depend on the number of 

available microphones that are used for recording speech data, namely, single, dual and multi-

channel approaches. In case of single channel, only one microphone input is available and 

therefore only one mixture (noisy) speech signal. This is the most difficult situation, since the 

noise and the speech are in the same channel. This situation is especially difficult in two cases:  i) 

when speech and noise overlap in the time and frequency domain, and ii) when noise is non-

stationary. The single channel is especially useful in mobile communication applications, where 

only a single microphone is available due to cost and size considerations. In case of multi-

channel, several microphones are spatially distributed in the surrounding, leading to more mixture 

speech signal which exhibits the advantage of both spatial and spectral information. However, 

since multi-microphones will come at an increased cost and may not be always available, the 

single channel speech enhancement always attracts attention [9]. 

The basic assumptions of our work are the following:  i) non-parametric and single 

channel speech enhancement,  ii) additive and uncorrelated noise, and iii) low SNR (<10 dB). Fig. 

1.2 shows the basic overview of additive noise and a speech enhancement system (speech 

enhancement model). Here       ,       and         are the clean speech signal, noisy speech 
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signal and the enhanced speech signal, respectively. The source of degradation is an additive 

random interference/noise      and the resulting degraded/noisy speech                . 

Here, it is assumed that the noise is additive and statistically independent with the signal. A single 

channel system cannot capture the time variation of noise, it is often impossible to suppress noise 

without distorting speech. As a consequence, the performance of such systems is limited by a 

trade-off between speech distortion and noise reduction. 

 

 

 

 

 

 

 

 

 
 

 

 

 Fig. 1.2: Basic overview of additive noise and a speech enhancement system (speech 

enhancement model). 

 

1.3. Motivation and Objective of the Thesis  

In noisy environment, the background noise, as described in Section 1.2.2, degrades the quality 

and intelligibility of the perceived speech and thus decreases the efficiency of communication 

between humans due to reduced intelligibility and quality. Also, the performance of speech 

enhancement systems significantly affects various speech processing systems, such as speech 

coding and recognition where the speech enhancement is routinely done in the pre-processing 

stage. Therefore, suppression of background noise is a relevant problem.  

The notable speech enhancement algorithms for suppressing background noise include 

spectral subtraction method [13, 20], Wiener filtering [22] and signal subspace based methods [3]. 

Among these algorithms classical spectral subtraction method has been widely use for 
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enhancement of degraded speech. The popularity of the spectral subtraction method is because of 

its simplicity and computational efficiency [3, 4]. In spectral subtraction method, enhanced 

speech is obtained by estimating the noise spectrum from the noisy speech and by subtracting the 

estimate of noise from the noisy speech spectrum [3, 4].  

This spectral subtraction method works well for additive stationary noise [3, 4]. The main 

problem of this method is the introduction of remnant musical noise which accompanies in the 

enhancement process. The remnant noise is a perceptually annoying noise with random 

frequencies and of irritating nature. The remnant noise can be reduced to some extent by 

introducing a set of subtraction parameters in the algorithm that also distorts the estimated speech 

[20].  Further, the drawback of this classical approach and its derivatives is that it uses a fixed set 

of values for the subtraction parameters. Additionally, these algorithms are limited to restrictive 

applications and generally work well with white Gaussian noise. 

The real-world noise is mostly non-stationary in nature, where it affects the speech 

spectrum non-uniformly [3]. Thus, a multi-band variation of spectral subtraction is found to be 

more appropriate, [3, 21, 47-50]. In multi-band approach, the speech is decomposed in a set of 

bands and spectral subtraction is employed in each band separately. Although, the multi-band 

spectral subtraction (MBSS) algorithm gives a certain level of performance improvement, the 

presence of remnant noise still exists and affects human listening. To address this problem, we 

have proposed several improvements on the multi-band spectral subtraction algorithms and 

studied their impact on speech enhancement.  

The first improvement on the multi-band spectral enhancement is the proposition of 

iterative processing of the enhanced speech. It is known that remnant noise the estimated speech 

can be suppressed further by iterating the base algorithm to a limited number of times for the 

whole spectrum [23, 51-54, 77]. Thus, if we iterative the enhanced speech obtained by MBSS to a 

finite number of time, further reduction in remnant noise can be obtained. Therefore, an iterative 

processing can be employed for the multi-band case, where the remnant noise is estimated from 

the enhanced speech from each band separately, and the operation is repeated to a finite number 
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of times. This approach of multi-band iterative processing for speech degraded by non-stationary 

noise is likely give us further improvement in terms of speech quality. In this thesis, we have 

explored an iterative processing based multi-band spectral subtraction algorithm. 

Next, we incorporate the perceptual frequency scale of human hearing for the processing 

of speech signals for developing the multi-band enhancement algorithms. This is because, the 

human listeners are the final judge to evaluate the quality of the enhanced speech and the 

selection of frequency bands in accordance with the perceptual auditory system is expected to 

give us better performance [24, 55]. The decomposition and processing of speech signal in 

resemblance with the human auditory system has been utilized in many speech processing 

applications and substantial performance improvement has been achieved [24, 30, 32-35, 55, 66, 

67]. The perceptually motivated non-uniformly spaced frequency bands have been employed for 

the proposed speech enhancement algorithms in our work. 

We have also explored the importance of precise estimation of noise spectrum for the 

accurate performance of these enhancement algorithms. Usually, the noise estimation is done by 

detection of speech pauses/silences using voice activity detector for identifying the segments of 

pure noise [3, 78-81]. In practical situation, this is a difficult task, especially if the background 

noise is non-stationary in nature or the signal-to-noise ratio (SNR) is low. Thus, a voice activity 

detector may not identify the noisy speech segments signal at very low SNR [3].  Hence, there is a 

strong need to update the noise spectrum adaptively and continuously over time [46, 82-84, 86].  

In our work, an adaptive noise estimation approach has been employed for the estimation of noise 

that does not require the explicit detection of voice activity. The noise estimate is updated by 

adaptively smoothing the noisy signal power and the smoothing parameter is controlled by a 

linear function of estimated SNR. 

The speech signal is non-stationary in nature and contains frequently transients. For 

analyzing non-stationary signals, such as speech, wavelet transform have been proved to be is an 

important tool and has been used in various speech applications [30-36]. Thus, the spectral 

subtraction algorithm with wavelet transform based time-frequency decomposition is likely to 
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give better performance than methods employing short-time Fourier transform (STFT). Also, the 

extension of discrete wavelet transform, namely, wavelet packet transform (WPT), is suitable for 

matching the frequency bands closely with the auditory frequency scale [25, 26, 57-61]. The over-

sampled filterbank realization of WPT i.e., stationary WPT (SWPT) [62-68] has been explored in 

this thesis as the front-end transform for multi-band speech enhancement algorithm. 

In this thesis, we have proposed speech enhancement algorithms and explored the 

implications of the iterative processing, improved noised estimation technique and the non-

uniform frequency decomposition in accordance of human auditory system in the framework of 

multi-band spectral subtraction approach. The time-frequency decomposition of the proposed 

algorithms is based on the STFT and SWPT.  The iterative processing based multi-band spectral 

subtraction algorithm is proposed first. Next, we have developed the non-uniformly frequency 

spaced multi-band speech enhancement algorithms based on perceptual frequency scale of human 

auditory system. The non-uniformly spaced multi-band approach makes use of both the 

transforms, namely STFT and SWPT and employs the proposed adaptive noise estimation 

technique.  

 

1.4. Major Contributions and Organization of the Thesis 

In this thesis, we have developed and implemented three transform domain multi-band spectral 

subtraction based single channel speech enhancement algorithms which exploit the iterative 

processing, adaptive noise estimation technique and perceptual frequency scale of human auditory 

system. In the iterative processing based multi-band spectral subtraction algorithm spectral, the 

speech is processed into four uniformly spaced frequency bands and spectral subtraction is 

performed independently on each band using band-specific over-subtraction factor This iteration 

process is iterated a small number of times and noise is estimated in each iteration. The next 

speech enhancement algorithm is an improved multi-band spectral subtraction based on critical 

band scale of human ear. Here, the noisy speech is processed by splitting the spectrum into six 

non-uniformly spaced frequency bands in accordance to the critical band rate scale and the 



 

14 

 

spectral subtraction is performed independently on each band using band-specific over-

subtraction factor. The proposed algorithm utilizes an adaptive noise estimation technique for 

estimating the noise in each band which does not need explicit speech silence detection. The third 

speech enhancement algorithm utilizes a wavelet transform based approach to decompose the 

degraded speech signal. The proposed algorithm is a perceptually motivated stationary wavelet 

packet filterbank (PM-SWPFB) based improved multi-band spectral over-subtraction (I-SOS) 

algorithm for the enhancement of narrowband speech degraded by non-stationary noises. The 

research work contained in this thesis is summarized as follows: 

 

 Determination of the limitations of the single channel speech enhancement techniques. 

 Extensive study and comparison of the spectral subtractive-type speech enhancement 

algorithms. Unification of the formulation. 

 Analysis and comparison of the structure of the remnant musical noise for various speech 

enhancement algorithms. 

 Study of wavelet transform, wavelet packet transform and stationary wavelet packet 

transform and their filterbank implementations.  

 Proposition of an iterative processing based multiband speech enhancement algorithm. 

 Realization of a noise estimation algorithm in an adverse environment. 

 Proposition of the transform based (STFT and SWPT) multi-band speech enhancement 

algorithms driven by the auditory perception criterion. 

 Study of the spectrogram and traditional objective measures  along with the perceptually 

motivated objective measures for the analysis of the performance of the proposed 

enhancement algorithms and their correlation with subjective listening tests using the 

NOIZEUS speech corpus. 

 

This thesis is divided into seven chapters, including this introduction chapter and the rest of the 

thesis is organized as follows:  
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 Chapter 2 presents an extensive study of the family of enhancement algorithms, known 

as, spectral subtractive-type algorithms. This study presents a comparison of various existing 

spectral subtraction algorithms and their derivatives. The methods used to reduce the remnant 

noise, which is a major drawback of these algorithms are presented with the results. This chapter 

forms the basis for the enhancement algorithms developed in the later chapters of this thesis. A 

study of the performance limitation of single channel enhancement algorithms is also carried out. 

Chapter 3 presents the complete overview of stationary wavelet packet transform which is 

utilized for the speech enhancement algorithm developed in Chapter 6. It starts with a brief review 

of the properties of wavelet, wavelet packet transforms, and stationary wavelet packet transforms. 

This chapter also illustrates how to use the filterbank structures to implement wavelet transform 

based speech signal processing. The content of this chapter forms the basis for the development of 

perceptually motivated stationary wavelet packet filterbank based speech enhancement algorithm 

developed in Chapter 6 of this thesis.  

The major contributions of this thesis are presented in Chapter 4, Chapter 5, and 

Chapter 6, each of which proposes an enhancement algorithm and evaluates their performance 

with several objective measures as well as subjective measures separately.  

In Chapter 4, a multi-band spectral subtraction algorithm based on iterative processing is 

proposed for the enhancement of degraded speech. This algorithm aims to give us additional 

remnant noise suppression over and above the background noise reduction obtained from the 

traditional multi-band approaches. In this technique, the speech is processed into non-overlapped 

uniformly spaced frequency bands, numbering four and spectral subtraction is performed 

independently in each band using band-specific over-subtraction factor. This process is iterated a 

small number of times and the noise is estimated for each band in each iteration. The central idea 

of this algorithm is that after the completion of the typical enhancement process the additive noise 

transforms into the remnant noise and afterwards, the remnant noise can be estimated in each 

iteration. 
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In Chapter 5, an improved multi-band spectral subtraction algorithm based on critical 

band rate scale is proposed for the enhancement of speech degraded by non-stationary noises. 

Here, the narrowband speech is processed by splitting into six non-uniformly spaced frequency 

bands in accordance to the critical band rate scale. Subsequently, the spectral subtraction is 

performed separately in each band using over-subtraction factors computed for the bands. The 

proposed algorithm uses an adaptive noise estimation technique to estimate the noise power in 

each band without the requirement of explicit speech pause detection.  

Chapter 6 proposes a perceptually motivated stationary wavelet packet transform based 

improved multi-band spectral over-subtraction algorithm for the enhancement of narrowband 

speech degraded by non-stationary noises. The perceptually motivated stationary wavelet packet 

filterbak is obtained from the uniformly spaced stationary wavelet packet tree that closely mimics 

the critical bands of the perceptual auditory system. After the decomposition of the input noisy 

speech signal into seventeen non-uniform subbands by the filterbank, the improved spectral over-

subtraction algorithm is used to estimate the speech from each subband.  The spectral over-

subtraction approach over uses the noise estimation technique similar to the one as proposed in 

Chapter 5, to estimate noise power from each subband without the need of separating the speech 

from non-speech regions. The noise estimate in each subband is updated by adaptively smoothing 

the noisy signal power. 

We have used the NOIZEUS speech corpus for performance evaluation of the proposed 

algorithms in Chapter 4, 5 and 6 in terms of the quality of the enhanced speech.  The spectrogram 

analysis is done for these algorithms and various objective measures such as signal-to-noise ratio 

(SNR), segmental SNR (SegSNR), Itakura-Saito distortion (ISD) and perceptual evaluation 

speech quality (PESQ) are obtained on the test data. Several real-world noises, such as, car noise, 

train noise, restaurant noise, babble noise, airport noise, street noise, exhibition noise and a 

computer generated stationary noise at various different levels of SNRs, have been taken for the 

evaluation purpose. A subjective listening test based on the mean opinion score (MOS) is also 
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carried out and the results are compared with be objective measure of subjective speech quality, 

PESQ. 

Finally, Chapter 7 concludes this thesis with a summary of the main developments and 

the contributions. Further, the chapter contains a discussion about the possible direction of future 

research work related to the work contained in the thesis. 
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Chapter 2 

Spectral Subtractive-Type Algorithms 

 

2.1. Introduction 

The spectral subtraction method is a classical approach for enhancement of single channel speech 

degraded by additive background noise. The basic principle of this method is to estimate the 

short-time spectral magnitude of speech by subtracting estimated noise spectrum from the noisy 

speech spectrum [13, 19, 38, 89-91].  This is achieved by multiplying the noisy spectrum with a 

gain function and later combining it with the phase of the noisy speech [38, 39]. The main 

drawback of this method is the presence of distortions in the enhanced speech, which is caused 

due to random variations of noise having a musical structure, called remnant musical noise [20]. 

Many derivatives of this method have been developed over the past years to address these 

limitations [20-24]. These variations constitute a family of spectral subtractive-type algorithms. 

The aim of this chapter is to provide a comparative and simulation study of the different forms of 

spectral subtractive-type algorithms. The study conducted in this chapter forms the basis of the 

algorithms proposed in this thesis in Chapter 4, Chapter 5 and in Chapter 6.                        
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The algorithms that are taken for the comparative study include the basic magnitude 

spectral subtraction (BSS) algorithm developed by Boll [13], spectral over-subtraction (SOS) 

algorithm [20], multi-band spectral subtraction (MBSS) algorithm [21], Wiener filtering (WF) 

[22], iterative spectral subtraction (ISS) [23], and spectral subtraction based on perceptual 

properties (SSPP) [24]. It is evident from the simulations and evaluations results that the modified 

forms of spectral subtraction method reduces remnant musical noise efficiently, and the enhanced 

speech, thus obtained, has minimal speech distortion with improved signal-to-noise ratio.  

The rest of Chapter 2 is structured as follows. In Section 2.2, the principle of spectral 

subtraction method is described. In Section 2.3, the limitation of spectral subtraction method is 

explained followed with two sub-sections, Section 2.3.1 and Section 2.3.2. Section 2.3.1 explains 

the remnant musical noise and Section 2.3.2 describes the speech distortion. In Section 2.4, noise 

estimation techniques are discussed. In Section 2.5, an improvement to spectral subtraction 

method is discussed followed by sub-section Section 2.5.1, which presents a detailed study of 

spectral subtractive-type algorithms. Section 2.6 presents the implementation, experiments results, 

and performance evaluation of spectral subtractive-type algorithms. Finally, Section 2.7 

concludes this Chapter. 

 

2.2. Principle of Spectral Subtraction Method  

The spectral subtraction method is one of the most popular and computationally simple methods 

for effectively suppressing the background noise from the noisy speech as it involves a single 

forward and inverse transform. The first comprehensive spectral subtraction method, proposed by 

Boll [13] is based on non-parametric approach, which simply needs an estimate of noise spectrum 

and used for both speech enhancement and speech recognition.   

 In real-world listening environments, the speech signal is mostly degraded by additive 

noise [2, 3, 13, 29]. Additive noise is typically the background noise and is uncorrelated with the 

clean speech signal. The background noise can be of stationary, such as white Gaussian noise 

(WGN) or of non-stationary or colored, such as multi-talker (babble) noise, restaurant noise, car 
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noise etc. People talking in the background also contribute to the unwanted noise in the degraded 

speech signal. The signal degraded by background noise is termed as noisy speech. The noisy 

signal can be modeled as the sum of the clean speech signal and the random noise [2, 3, 13, 29, 

90, 91] as  

                                                                          (2.1) 

where     is the discrete time index and     is the number of samples in the signal. Here,     , 

    , and      are the     sample of the discrete time signal of noisy speech, clean speech and 

the noise, respectively. Since, the speech signal is non-stationary in nature and contains transient 

components, usually the speech signal is divided in small frames to make it stationary or quasi-

stationary over the frames and short-time Fourier transform (STFT) is used for further processing. 

The STFT is of fundamental importance to signal analysis as it introduces a time dependent 

frequency analysis, which is not provided by the Fourier transform. The STFT is obtained by 

applying the Fourier transform at different points in time on finite length (i.e., frame) sections of a 

signal. Now representing the STFT of the time windowed signals by       ,      , and 

     , (2.1) can be written as [3, 13, 29], 

                                                                                       (2.2) 

where   is the discrete frequency index of the frame and   is the window (Hamming or Henning 

window). Put differently, for implementation of spectral subtractive-type speech enhancement 

algorithms, few assumptions are necessary. First, the speech signal should be stationary; second, 

the noise is zero mean and uncorrelated with clean speech signal [37]. Throughout this thesis, it is 

assumed that the signal is segmented into frames first and then windowed, hence for simplicity, 

we drop the use of subscript     from windowed signals. 

The spectral subtraction method mainly involves two stages. In the first stage, an average 

estimate of the noise spectrum is subtracted from the instantaneous spectrum of the noisy speech. 

This is termed as basic spectral subtraction step. In the second stage, several modifications like 

half-wave rectification (HWR), remnant noise reduction and signal attenuation are done to reduce 

the signal level in the non-speech regions. In the entire process, the phase of noisy speech is kept 
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unchanged because it is assumed that the phase distortion is not perceived by human auditory 

system (HAS) [38, 39]. Therefore, the short-time spectral magnitude (STSM) of noisy speech is 

equal to the sum of STSM of clean speech and STSM of random noise without the information of 

phase and (2.2) can be expressed as 

                                                (2.3) 

where                            ,                        , 

                           and       is the phase of the noisy speech. To obtain the short-

time spectrum of noisy speech        is multiplied by its complex conjugate       . In doing so, 

(2.2) become                  

                                                                                 (2.4) 

Here        and        are the complex conjugates of        and       , respectively. The  

       ,         , and         , are referred to as the short-time spectrum of noisy speech, clean 

speech, and random noise, respectively. In (2.4), the value of         ,           and 

          cannot be obtained directly and are approximated as,            ,                 

and               , where       denotes the ensemble averaging operator. As the additive noise 

is assumed to be zero mean and uncorrelated with the clean speech signal, the terms 

              and               reduce to zero. Therefore, (2.4) can be rewritten as 

                              

                                                    (2.5) 

where          and          is the power spectrum of estimated speech and the noisy speech, 

respectively. Here term          is the average noise power, normally estimated and updated 

during speech pauses using voice activity detector (VAD), as explained in Section 2.4. A VAD is 

used to discriminate between voice activities (i.e. speech presence) and silence/pause (i.e. speech 

absence). This assumption is valid for the case of stationary noise in which the noise spectrum 

does not vary over time. 
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In spectral subtraction method, it is assumed that the speech signal is degraded by 

additive white Gaussian noise (AWGN) with flat spectrum; hence the noise affects the signal 

uniformly over the spectrum. In this method, the subtraction process needs to be carried out 

carefully to avoid any speech distortion. The spectra obtained after subtraction process may 

contain some negative values due to inaccurate estimation of the noise spectrum. Since the power 

spectrum of estimated speech can become negative due to over-estimation of noise, but to get rid 

of this possibility, therefore, a half-wave rectification (by setting the negative portions to zero) or 

full-wave rectification (absolute value) are introduced. But the half-wave rectification (HWR) 

introduces annoying noise in the enhanced speech. Whereas, full-wave rectification (FWR) avoids 

the creation of annoying noise, but it is less effective in suppressing noise. Therefore, HWR is 

often used in spectral subtraction method due to its superior noise suppression ability. Thus, the 

complete power spectral subtraction algorithm is given by  

           
                                                  

                                                                                      
                        (2.6)  

As the human perception is relatively insensitive to phase [38, 39], the enhanced speech spectrum 

can be obtained with phase of noisy speech and thus the reconstruction is done by taking the 

inverse STFT (ISTFT) of the enhanced spectrum using the phase of the noisy speech and overlap-

add (OLA) method [19, 40] (see Appendix A), and can be expressed as 

                                                          (2.7) 

On the contrary, a generalized form of spectral subtraction method (2.5) can be obtained by 

altering the power exponent from        , which determines the sharpness of the transition. 

                                                                 (2.8) 

where      represents the power spectrum subtraction and     represents the magnitude 

spectrum subtraction. In Fig. 2.1, the block diagram of basic spectral subtraction method is 

shown. 
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Fig. 2.1: Block diagram of spectral subtraction method. 

 

2.3. Limitations of Spectral Subtraction Method  

Although the spectral subtraction method is computationally simple and efficient for stationary or 

slowly varying broadband additive noise but it suffers from some severe drawbacks. From (2.5), it 

is clear that the effectiveness of spectral subtraction is heavily dependent on accurate noise 

estimation, which additionally is limited by the performance of speech/pause detectors [13]. A 

VAD performance degrades significantly at lower SNR. When the   noise estimate is less than 

perfect, two major problems occur, such as, remnant noise, referred as musical noise, and speech 

distortion. These are discussed in the following sections.  

2.3.1 Remnant Musical Noise  

When the average noise is subtracted from the noisy frames and the half-wave rectification is 

done, the remnant noise will have a magnitude between zero and a maximum value measured 

during speech pauses. Transformed back to the time domain, the noise will sound like sum of tone 

generators with random frequencies. Put differently, remnant noise is the noise remaining after 

the enhancement process, given by  

                              (2.9) 

where,        is a remnant noise that has a musical nature leading to an unnatural quality. This 

effect is perceptually annoying because the remnant noise has a large variance and a 'musical' 

structure. A detailed study of this phenomenon is presented in [20]. Remnant noise is due to the 

subtraction of an averaged noise spectrum from an instantaneous spectrum, with values above and 
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 (a) 

 Musical Noise 

below the mean. It is of lower energy than the original noise, but with a higher variance due to 

tones at random frequencies. Therefore, this noise is very different from the original noise and can 

sometimes be even more disturbing. Remnant noise has an effect not only on human listener, but 

also on speech processing system like speech recognizer or speech coders. Since, the ultimate 

goal of speech enhancement is to provide good quality speech for human listeners, this is a severe 

flaw. 

In Fig. 2.2, the spectrogram of clean speech, noisy speech, and enhanced speech are 

shown. On comparing the parts in Fig. 2.2 (a), (b) and (c), it is evident that the enhanced signal (c) 

contains random frequencies that are not present in the clean signal (a). This is an example of 

remnant musical noise. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2:  Speech spectrogram: (a) clean speech, (b) noisy speech, and (c) enhanced speech, 

respectively. 

 

2.3.2 Speech Distortion  

The second problem created by the speech enhancement algorithms is the speech distortion, also 

examined in [13]. This happens due to imperfections in the noise estimation process, when speech 

 (c)  (b) 
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components are incorrectly attenuated or completely removed. This reduces the naturalness and 

intelligibility of the speech, and is again annoying to the listener.  

As the spectral subtraction method gives reasonable quality speech with a good level of 

noise reduction, it has been the goal of speech enhancement researchers over the past two decades 

to find accurate noise estimation techniques and to minimize these errors [13]. Since, it is not 

possible to completely eliminate both; researchers have tried to reduce distortion, while keeping 

the remnant noise below a certain level, as an acceptable trade-off between the two. It has been 

proven that listeners can tolerate a low level of noise, provided that it is of the same spectrum as 

the original additive noise, as this is less irritating than random musical noise [24]. 

 

2.4. Noise Estimation 

Most of the single channel enhancement systems need an estimation of the noise spectrum. Noise 

estimation is usually performed during speech silences/pause (see Section 2.4.1) segments of the 

speech signal. However, the speech/silence detection is not always reliable at low SNRs. This 

assumption is valid for the case of stationary/quasi-stationary noise, where the noise spectrum 

does not vary over time. Traditional VADs track the noise only frames of the noisy speech to 

update the noise estimate. But the update of noise estimate in those methods is limited to speech 

silence frames. Furthermore, if the noise is non-stationary in which the power spectrum of noise 

varies even during speech activity, it is not sufficient to update the noise estimate during speech 

silence, and therefore the system is unable to track the non-stationarities of noise. To overcome 

this effect, methods that are able to perform noise estimation during speech activity have been 

proposed. They are described in Section 2.4.2. 

2.4.1 Estimation during Speech Silences 

If noise is estimated during non-speech periods, these periods have to be long enough to obtain a 

good estimate with a small variance. Furthermore, this kind of noise is conditioned by the 

existence of a robust speech/noise detector. 
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The noise estimate can be obtained by averaging squared spectral amplitudes during 

speech silences. Generally, it is updated on a frame-by-frame basis according to the exponential 

averaging calculated at frame   [29, 41]:  

                                           
                               (2.10) 

where    is a time and frequency dependent smoothing parameter whose value depends on the 

noise changing rate and     refers to the current frame index. Here,           represents the 

short-time power spectrum of noisy speech,            is the updated noise spectral estimate, and 

             is the past noise spectral estimate. This equation is updated only during speech 

silence segments when              . The approximate value of    has to be chosen 

depending on the stationarity of the noise. This choice determines the number of noise frames     

used for the averaging. A typical value of    for 20 ms frame is 0.9 that results in a time constant 

of about 10 frames, or  200 ms. The relation between     and     is approximately given in as [42] 

  
 

      
                           (2.11) 

2.4.2 Estimation during Speech Activity 

Some methods have been developed for calculating the noise power estimate during speech 

activity, in order to track the non-stationarities of noise. Noise estimation methods that avoid 

explicit silence detection can be based on several principles: 

 

i) Estimation of noise during unvoiced periods. 

ii) Estimation of noise based on histograms. 

iii) Estimation of noise by detection of valleys in the spectrum. 

iv) Exploitation of the short-time characteristics of the speech signal. 

A very simple method is presented in [43]. The noise estimate, calculated using (2.10), is updated 

in each frame (instead of updating the estimation only during speech pauses). However, the new 

estimate           has to be lower than 1.006             and greater than 0.978         

   . This means that the estimate cannot increase faster than 3 dB or decrease faster than 12 dB 
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per second. Therefore, the noise estimate will slightly increase during speech segments but will 

rapidly return to the correct value during noise segments. 

Two methods avoiding explicit silence detection are described in [44]. The first method 

has a very low computational complexity and is also based on (2.10). When the value of  

         is greater than the adaptive threshold        given by: 

                                                                (2.12) 

then the segment is considered as speech and it is not taken into account in the averaging 

described in (2.10).  

The second method is based on the same principle, except that when        is below the 

threshold       , the noise level is estimated from histograms of the past values (about 400 ms) 

of          in 40 frequency bins, instead of using (2.10). The noise estimation is obtained by 

calculating the maximum in each band, with a smoothing versus time. Evaluation of histograms 

leads to more accurate results than exponential averaging. These two noise estimation techniques 

have been tested with non-linear spectral subtraction as a pre-processing step to a hidden Markov 

model (HMM) recognizer [44]. 

Several methods are based on temporal minima-tracking of the smoothed noisy speech 

power estimate            , given by  

                                           
                  (2.13) 

This equation (2.13) is similar to (2.10), but in this case, as the speech signal is non-stationary, 

less averaging can be performed, leading to decreased values for    compared to    . This 

method described in [45] looks for the minimum of            within a finite window of length  

 . The basic assumption of this algorithm is that peaks of the power spectrum correspond to 

speech activity, while valleys correspond to the smoothed noisy speech power. Valleys, can 

therefore, be used to estimate noise. The noise power estimate            is obtained as a 

weighted minimum of             within a window of     samples. The window length    must be 

long enough to contain speech activity peaks but short enough to follow the non-stationarities of 

noise (0.8 to 1.4 seconds). The performance of this algorithm depends on the trade-off between 
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the smoothing constant    and window length   .  For stationary noise, the performance is similar 

to classical noise estimation with an ideal speech/noise detector. This method is of particular 

interest in the case of non-stationary noise because it allows one to update the noise estimate even 

during speech activity frames. A variation of this method is proposed in [46]. This method is also 

based on a type of temporal minima tracking of            , but it is computationally more 

efficient. The noise estimate is obtained with the following equation: 

            
               

   

   
                                                                 

                                                                                                                                                              
                     

               (2.14) 

Here,     and     are constants which are determined experimentally. Typical values for the 

parameters are         , and            which lead to an adaptation period ranging from 0.2 

to 0.4 seconds. 

 

2.5. Improvements to Spectral Subtraction Method: Spectral Subtractive-

Type Algorithms 

In practice, the spectral subtraction method is imperfect, due to in-accurate estimation of the noise 

spectrum. Many improvements to the basic idea have been suggested over the years to address its 

limitations. These variations form a family of spectral subtractive-type algorithms. The key idea 

of this technique is to estimate the short-time spectral magnitude of speech by subtracting 

estimated noise from the noisy speech spectrum (or by multiplying the noisy spectrum with gain 

functions) and to combine it with the phase of the noisy speech. The forms of subtractive-type 

algorithms most notably, spectral over-subtraction [20], multi-band spectral subtraction [21], 

Wiener filtering [22], iterative spectral subtraction [23], and spectral subtraction based on 

perceptual properties [24] in noisy environments. 

2.5.1 Spectral Over-Subtraction Algorithm 

An improved version of spectral subtraction method was proposed in [20] to minimise the 

annoying noise. In this algorithm, the spectral subtraction method [13] uses two additional 
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parameters, namely, over-subtraction factor and noise spectral floor parameter [20]. The 

algorithm is given as  

           
                                

        

       
 

 

   
 

                                                                   

                                          (2.15)  

with                  

The over-subtraction factor       controls the amount of noise power spectrum subtracted from 

the noisy speech power spectrum in each frame and spectral floor parameter     prevent the 

resultant spectrum from going below a preset minimum level rather than setting to zero (spectral 

floor). Put differently, the over-subtraction factor determines the balance of the amount of noise 

reduction and speech distortion whereas the noise spectral flooring mask the remnant noise. The 

over-subtraction factor depends on the a-posteriori segmental SNR. The over-subtraction factor 

can be calculated as 

                    
       

              
                                 (2.16) 

where 

                
           
   

            
   

                         (2.17) 

Here     is the number of samples in the signal,     is the frame index. The value of        

                                               and            , used in (2.16), is the 

desired value of    at          . These values are estimated by experimental trade-off results. 

The relation between over-subtraction factor and segmental SNR is shown in Fig. 2.3.  

The implementation of SOS algorithm assumes that the noise affects the speech spectrum 

uniformly and the subtraction factor subtracts an over estimate of noise from noisy spectrum. 

Therefore, for a balance between broadband and musical tone removal, various combinations of 

over-subtraction factor   , and spectral floor parameter    give rise to a trade-off between the 

amount of remaining broadband noise and the level of perceived musical tone. For large value of  

 , the spectral floor is high, and a very little, if any musical tone is audible,  while with small   , 
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the  broadband  noise is greatly reduced, but the musical tone becomes quite annoying. Hence, the 

suitable value of    is set as per (2.16), and        . 

This algorithm reduces remnant musical noise, while preventing the resultant spectral 

components from going below a present minimum value. The level of perceived remnant noise is 

reduced, but background noise remains present and enhanced speech is distorted. In Fig. 2.4 the 

block diagram of spectral over-subtraction algorithm is shown. 

 

 

 

 

 

 

 

 

 

Fig. 2.3: The relation between over-subtraction factor and SNR. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4: Block diagram of spectral over-subtraction algorithm. 

 

2.5.2 Multi-Band Spectral Subtraction Algorithm  

In real-world listening environment, the noise does not affect the speech signal uniformly 

over the whole spectrum. Some frequencies are affected more adversely than others depending on 
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the spectral characteristics of the noise, which eventually mean that this kind of noise is non-

stationary or colored. This is best illustrated in Fig. 2.5, which shows the plot of the estimated 

segmental SNR of non-overlapped uniformly spaced frequency bands {60 Hz ～ 1 kHz (Band 1), 

1 kHz ～ 2 kHz (Band 2), 2 kHz ～ 3 kHz (Band 3), 3 kHz ～ 4 kHz (Band 4)} over frame 

number. It can be seen from the figure that the segmental SNR of the low frequency bands (Band 

1) is significantly higher than the segmental SNR of the high frequency bands (Band 4) [3, 21, 

47]. This phenomenon suggests that the noise signal does not affect the speech signal uniformly 

over the whole spectrum; therefore, subtracting a constant factor of noise spectrum over the whole 

frequency spectrum may remove speech also. 

 

 

 

 

 

 

 

 

Fig. 2.5: The segmental SNR of four uniformly spaced  

       frequency bands of degraded speech. 

 

To take into account that the real-world noise affects the speech spectrum differently at 

various frequencies, a multi-band uniformly spaced frequency approach of spectral over-

subtraction was presented in [21], which is the case of non-linear spectral subtraction (NSS) [41]. 

In this scheme, the noisy speech spectrum is divided into four uniformly spaced non-overlapping 

continuous frequency bands, and spectral subtraction is applied in each band, separately. The 

multi-band spectral subtraction algorithm re-adjusts the over-subtraction factor in each band. 

Therefore, the estimate of the clean speech spectrum in the  th
 Band is obtained by 
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                 (2.18)    

where      and        are the start and end frequency bins of the  th
 Band;    is the band specific 

over-subtraction factor of the  th
 Band, which is the function of segmental SNR of the i

th
 

frequency band             and provides a degree of control over the noise subtraction level in 

each band.  The segmental SNR of the  th
 Band        can be calculated as   

                  
        

     
      

         
     

    

                              (2.19) 

The band specific over-subtraction can be calculated using Fig. 2.3 as 

   

 
 

 
                                                                                                                       

                   
         

             
                          

                              
                                                                                                                         

        (2.20) 

Here                                                . These values are estimated 

by experimental trade-off results.  

The    is an additional band subtraction factor that can be individually set for each 

frequency band to customize the noise removal process and provide an additional degree of 

control over the noise subtraction level in each band. The values of    [21] is empirically 

calculated as most of the speech energy is concentrated below 1 kHz and set to 

   

 
 

 
                                                            

                                       
  

 
      

                                                 
  

 
      

                       (2.21) 

Here    is the upper bound frequency of the  th Band and    is the sampling frequency. 

The motivation for using smaller values of      for the low frequency bands is to minimize 

speech distortion, since most of the speech energy is present in the lower frequencies. 

Both factors,      and      can be adjusted for each band for different speech conditions to 

get better speech quality.  
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As the real-world noise is highly random in nature, improvement in the multi-

band spectral subtraction (MBSS) algorithm for reduction of WGN is necessary. But the 

performance of MBSS algorithm has been found to be better than other subtractive-type 

algorithms [13, 20] and has been demonstrated in [47-50]. In Fig. 2.6 the block diagram 

of multi-band spectral subtraction algorithm [50] is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.6: Block diagram of multi-band spectral subtraction algorithm. 

 

2.5.3 Wiener Filtering  

The spectral subtraction method can also be viewed as a filtering operation, by manipulating (2.8) 

such that, it can be expressed as the product of noisy speech signal spectrum and the frequency 

response of a spectral subtraction filter (SSF) [13] as  

                           

                                                                           (2.22) 

where      , the frequency response of the spectral subtraction filter, is defined as 
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               (2.23) 

The spectral subtraction filter        is a zero phase filter, with its magnitude response in the 

range of          . The filter acts as a SNR dependent attenuator. The attenuation in each 

frequency increases with the decreasing SNR, and vice-versa. 

The Wiener filter (WF) is a frequency domain filter and was suggested as an 

improvement to the spectral subtraction [38]. Rather than direct subtraction (as in case of the 

spectral subtraction method), a wiener gain function is calculated, and then multiplied by the 

noisy spectrum to attenuate noise component frequencies. Put differently, Wiener filtering is 

replaces the direct subtraction with a mathematically optimal estimate for the signal spectrum in a 

minimum mean squared error (MMSE) sense between clean speech and the estimated speech 

                  [22].  

Here, it is assumed that the speech and the noise obey normal distribution and do not 

correlate. The implementation of a WF requires the power spectrum of the signal and the noise.  

However, SSF can be used as a substitute for the WF when the signal spectrum is not available. 

The gain of the WF [22],           , can be expressed in terms of the power spectrum of clean 

speech        and the power spectrum of noisy speech        . But power spectrum of clean 

speech is not known, the power spectrum of the noisy speech signal          is used instead as 

           
       

     
 

                     
       

               
 

         
               

        
                                    (2.24) 

The weakness of the WF is that the fixed frequency response at all frequencies and the 

requirement to estimate the power spectral density of the clean signal and noise prior to filtering. 
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Therefore, non-causal WF cannot be applied directly to estimate the clean speech since speech 

cannot be assumed to be stationary. Therefore, an adaptive WF implementation can be used to 

approximate (2.24) as 

             
                

       
             (2.25) 

                            
           (2.26) 

             attenuates each frequency component by a certain amount depending on the power 

of the noise at the frequency. 

From (2.25), if             , then                and no attenuation takes place, i.e. 

there is no noise component at the frequency  , whereas if                 , then 

              . Therefore, the frequency component is completely nulled. All other values of 

             scale the power of the signal by an appropriate amount. 

On comparing       and              from (2.23) and (2.25), it can be observed that 

the WF is based on the ensemble-average spectra of the signal and noise, whereas the SSF (  

 ) uses the instantaneous spectra for noise signal and the running average (time-averaged spectra) 

of the noise. In WF theory, the averaging operations are taken across the ensemble of different 

realization of the signal and noise processes. In spectral subtraction, we have access only to single 

realization of the process.  

2.5.4 Iterative Spectral Subtraction Algorithm 

An iterative spectral subtraction (ISS) algorithm is proposed in [23], motivated from WF [22, 38], 

to suppress the remnant musical noise. In this algorithm, the output of the enhanced speech is 

used as the input signal for the next iteration process. As after the spectral subtraction process, the 

type of the additive noise is changed to the remnant musical noise and the output signal is used as 

the input signal of the next iteration process. The remnant noise is re-estimated and this new 

estimated noise, furthermore, is used to process the next spectral subtraction. Therefore, an 

enhanced output speech signal can be obtained, and the iteration process goes on.  If we regard 
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the process of noise estimate and the spectral subtraction as a filter, the filtered output is used not 

only for designing the filter but also as the input of the next iteration process.  

The iteration number is the most important factor of this algorithm which directly 

influence the performance of speech enhancement. The larger iteration number corresponds to 

better speech enhancement with the less remnant noise [51-54]. In Fig. 2.7 the block diagram of 

iterative spectral subtraction algorithm is shown. 

 

 

 

 

 

 

 

 

Fig. 2.7: Block diagram of iterative spectral subtraction algorithm. 

 

2.5.5 Spectral Subtraction based on Perceptual Properties 

The main weakness of spectral over-subtraction algorithm [20] is that it uses the fixed value of 

subtraction parameters that are unable to adapt the varying noise levels and noise characteristics. 

However, the optimization of the parameters is not an easy task, because the spectrum of most of 

the noise which is added in speech is not flat but non-stationary or colored. An example of 

adaptation is multi-band spectral subtraction algorithm (non-linear algorithm), this scheme adopts 

the subtractive parameters   and   in time and frequency based on the segmental signal-to-noise 

ratio, leading to improved results but remnant noise is not suppressed completely at low SNR's 

[21]. Put differently, in lower SNR conditions, it’s difficult to find the best trade-off between the 

amount of noise reduction, the speech distortion and the level of remnant noise in a perceptual 

sense. Therefore, the selection of appropriate value of subtractive parameters is the major task in 

subtractive-type algorithms for enhancement of noisy speech. 
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The concept of masking threshold of human auditory system is explored in [24], to reduce 

the annoying remnant noise below the noise masking threshold of clean speech signal and to 

make less speech distortion. When two signals are close in time or frequency, one is rendered 

completely or partially inaudible by the other. This is known as auditory masking. In this 

approach, the subtraction parameters are adapted based on the noise masking threshold of HAS to 

achieve a good trade-off between the remnant noise, and speech distortion. If the masking 

threshold is high, the remnant noise will be masked naturally and it will not be audible. In this 

case, the subtraction parameters have their minimum values, thereby reducing speech distortion.  

However, if the masking threshold is low, the remnant noise is not masked. In this case, it is 

necessary to increase the values of subtraction parameters. The adaptation of subtraction 

parameters is done according to the relations 

   

                                                                                                                            

                                                                                                                            

     
            

               
       

              

               
                           

    (2.27) 

 

   

                                                                                                                           

                                                                                                                           

     
            

               
       

              

               
                           

     (2.28) 

Here                         and                  are the maximal and minimal values of 

    and updated masking threshold       , respectively [24, 55]. It can be seen from (2.27) and 

(2.28) that   ,   achieves the maximal and the minimal values when      equals its minimal and 

maximal values. The noise masking threshold can be calculated from the enhanced speech as the 

method proposed by [56]. In Fig. 2.8, the block diagram of spectral subtraction based on 

perceptual properties is shown. 
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Fig. 2.8: Block diagram of spectral subtraction based on  

perceptual properties. 

 

2.6. Implementation, Experiments Results, and Performance Evaluation  

This section presents the implementation, experimental results and the comparative study of 

performance evaluation of spectral subtractive-type algorithms described in this chapter. For 

simulations, we employ MATLAB software as a programming environment as it offers many 

advantages. It contains a variety of signal processing and statistical tools, which help users in 

generating a variety of signals and plotting them. MATLAB excels at numerical computations, 

especially when dealing with vectors or matrices of data.  

The clean speech and noisy speech are taken from NOIZEUS speech corpus [76]. The 

NOIZEUS is a publicly available database often used for benchmark experiments. The NOIZEUS 

corpus composed of 30 phonetically balanced sentences pronounced by six speakers (three male 

and three female) in English language. The corpus is sampled at 8 kHz, quantized linearly using 

16 bits resolution and filtered to simulate receiving frequency characteristics of telephone 

handsets. Noise signals have different time-frequency distributions and a different impact on 

speech. For that reason, the NOIZEUS corpus comes with various non-stationary noises at 

different levels of SNRs. The non-stationary noises are car, train, restaurant, babble, airport, 

street, and exhibition.  
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In our evaluation, we have used the speech degraded by car noise (the car noise energy is 

concentrated in the low frequencies and its spectrum show an exponential decay when frequency 

increases) at global SNR levels of 0 dB to 15 dB in steps of 5 dB. We also generate a 

corresponding stimulus set degraded by additive white Gaussian noise (WGN) (stationary) at four 

SNR levels: 0 dB, 5 dB, 10 dB, and 15 dB. The performance of the spectral subtractive-type 

algorithms is tested on such noisy speech samples. 

In our experiments, the noise samples used are of zero mean and the energy of the noisy 

speech samples are normalized to unity. The frame size is chosen to be 256 samples (32 ms — a 

time frame), with 50% overlapping. The sinusoidal Hamming window with size 256 samples is 

applied on each frame before it is enhanced individually. The windowed speech frame is then 

analyzed using the fast Fourier transform (FFT). We employ FFT length of 256 samples. The 

noise estimate is updated during the silence frames by using averaging (2.10). The final enhanced 

speech is reconstructed from the enhanced frames using the weighted overlap-adds (OLA) 

methods.  

For SOS algorithm, the value of   is taken same as used in Fig. 2.2 [20] and β is kept 

fixed at 0.03. For MBSS approach four uniformly spaced frequency bands is used with         

and the value of     is set as per (2.21). For WF, the value of smoothing constant is taken as 0.99. 

For ISS algorithm, the iteration time is taken as 2-3 and for SSPP algorithm the value of       

                                     [24].  

The amount of noise reduction is generally measured with the SNR improvement, given 

by the difference between input SNR and output SNR. The following equation is computed for 

evaluation of SNR results of enhanced speech signals: 

                                                      (2.29) 

The           is the global SNR value of the input speech signal standing for the amount of the 

additive noise, the           is the global SNR value of the output enhanced speech signal 

standing for the speech enhancement scheme and the submission is performed over the signal 

length. The SNR can be calculated as follows: 
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            (2.30) 

where      is the clean speech signal,       is the enhanced speech reproduced by a speech 

processing system,    is the sample index, and   is the number of samples in both speech signals. 

The summation is performed over the signal length. 

The SNR improvement is the performance evaluation for calculating the amount of noise 

reduction in the background noise level conditions. The obtained value of SNR improvement for 

WGN for different enhancement algorithms is presented in Fig. 2.9. The best noise reduction is 

obtained in case of SSPP algorithm. The main drawback of the SNR is that it has a poor 

correlation with subjective quality assessment results. Therefore, the SNR of enhanced speech is 

not a sufficient objective measure of speech quality.  

Normally, spectral subtractive-type speech enhancement algorithms generate two main 

undesirable effects, i.e.,  remnant musical noise and speech distortion. These two effects can be 

annoying to a human listener, and causes listeners fatigue. However, they are difficult to quantify. 

Therefore, it is important to analyze the time-frequency distribution of the enhanced speech, in 

particular the structure of its remnant noise. The speech spectrogram is a good tool to do this 

work, because it can give more accurate information about remnant musical noise and speech 

distortion than the corresponding time domain waveforms. For comparative purpose, Fig. 2.10 

shows the plot of spectrogram of the clean speech signal, noisy speech (degraded by WGN) and 

speech enhanced by the different spectral subtractive-type algorithms, namely, BSS, SOS, MBSS, 

WF, ISS, and SSPP. Fig. 2.11 shows the spectrogram of enhanced speech in case of car noise. 

Fig. 2.10 (iii) presents the enhanced speech obtained with basic spectral subtraction (i.e. 

magnitude spectral subtraction) algorithm with no remnant noise reduction. The remnant noise 

level is very important and its musical structure can be observed. This shows that this basic 

method cannot be used at very low SNR without any improvement. 

The spectral over-subtraction (i.e. modified spectral subtraction) is a well-known method 

for removing remnant noise, as explained in Section 2.4.1.1. This parametric formulation is given 

in (2.15), and allows us to vary the parameters     and    . However, the choice of parameters is 
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not easy and depends on the noise level and noise type. Fig. 2.10 (iv) shows an enhanced speech 

spectrogram obtained with this algorithm. The remnant noise is reduced compared to BSS.  

Fig. 2.10 (v)-(viii) shows an enhanced speech spectrogram obtained with algorithms 

MBSS, ISS, WF, and SSPP algorithm. From the spectrogram, we can easily observe that the 

MBSS, ISS, and Wiener filtering have a very small amount of remnant noise and spectral 

subtraction based on perceptual properties has a better performance comparative to other 

algorithms for speech enhancement. Wiener filtering results in a smaller amount of remnant noise, 

but this noise has musical structure and speech regions, especially fricative consonants, are also 

attenuated. This type of BSS can result in speech distortion. Also, in case of car noise the BSS, 

SOS, ISS, and WF results are weak comparative to MBSS and SSPP. 

The best results were obtained with spectral subtraction with perceptual properties. In 

case of this type of subtractive-type algorithm small amount of remnant noise is remaining, but 

this noise has a perceptually white quality and distortion remains acceptable. Informal listening 

tests also indicated that the enhanced speech with SSPP algorithm is more pleasant, the remnant 

noise is better reduced, and with minimal, if any, speech distortion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9: Improved SNRs of different subtractive-type algorithms for WGN. 
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 Fig. 2.10: Speech spectrogram (From top to bottom): (i) clean speech, (ii) noisy speech at 

SNR = 15dB, (iii) – (viii) speech enhanced by different subtractive-type algorithms; (iii) 

speech enhanced by BSS, (iv) speech enhanced by SOS, (v) speech enhanced by MBBS, 

(vi) speech enhanced by ISS, (vii) speech enhanced by WF, and (viii) speech enhanced by 

SSPP.  
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 Fig. 2.11: Speech spectrogram (From top to bottom): (i) clean speech, (ii) degraded 

speech (car noise at SNR = 15dB), (iii) – (viii) speech enhanced by different subtractive-

type algorithms; (iii) speech enhanced by BSS, (iv) speech enhanced by SOS, (v) speech 

enhanced by MBBS, (vi) speech enhanced by ISS, (vii) speech enhanced by WF, and 

(viii) speech enhanced by SSPP. 
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2.7. Summary  

In this chapter, a comparative and simulation study of different derivatives of spectral subtractive-

type algorithms is presented with a unified view of the single channel speech enhancement 

algorithms in the frequency domain. In particular, algorithms based on short-time Fourier 

transforms are examined. The limitations of spectral subtraction are briefly discussed. The artifact 

introduced by spectral subtraction method and the way the conventional spectral subtraction 

method is modified to counter these artifacts is described. 

The performance evaluation of these approaches was carried out using objective measure 

of speech quality and informal subjective listening tests. Classical spectral subtraction method 

mostly results in audible remnant noise, which decreases speech intelligibility. The most 

progressive algorithm of speech enhancement is the spectral subtraction based on perceptual 

properties (SSPP), i.e. masking properties of psychoacoustic model of human auditory system. 

This speech enhancement algorithm takes advantage of how people perceive the frequencies 

instead of just working with SNR. It results in appropriate remnant noise suppression and 

acceptable degree of speech distortion, introduced during the enhancement process. In terms of 

SNR improvement, the algorithm spectral subtraction based on perceptual properties show the 

best noise reduction/speech enhancement results in comparison to other algorithms such as, 

Wiener filtering, multi-band spectral subtraction, iterative spectral subtraction. This observation is 

also noticed using spectrogram results. 

Moreover, it is evident from the informal subjective evaluation (listening) tests that the 

SSPP algorithm suffers from some artifacts in the enhanced speech. Therefore, a strong noise 

estimation approach is needed for improving the performance of speech enhancement system. 

The spectral subtractive-type algorithms presented in this chapter are the base for the 

development of the proposed speech enhancement algorithms in Chapter 4, Chapter 5, and 

Chapter 6. The next chapter, i.e., Chapter 3 presents the detailed study on stationary wavelet 

packet transform which is used in Chapter 6 for developing perceptually motivated stationary 

WPT. 
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Chapter 3 

Stationary Wavelet Packet Transform 

 

3.1. Introduction 

The study conducted in this chapter forms the basis of the speech enhancement algorithm 

proposed in Chapter 6 of this thesis. This chapter begins with a brief introduction of square-

integrable function in wavelet theory, and then the details of discrete wavelet transform (DWT) 

are presented. Next, the wavelet packet transforms (WPT) and its filterbank structure based 

implementation is described. Finally, this chapter describes the stationary wavelet packet 

transform (SWPT) and the advantage of SWPT over DWT and WPT is discussed. The stationary 

WPT is utilized for the time-frequency decomposition of the noisy speech signal for the 

perceptually motivated multi-band improved spectral over-subtraction based speech enhancement 

algorithm as presented in Chapter 6.  

 

3.2. Wavelet Theory  

Let us consider the space       of the square-integrable functions in   , where   is the set of 

real numbers. The condition for a function      belonging to        is 

                

                      
  

  
                                                                                                          (3.1) 

The reason for limiting the discussion to       space is that, in real-world the signals which we 

deal with have finite energy.  
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Let the wavelet function represent an orthonormal basis to the space of       such that  

                                   be a family of functions defined as scales (i.e. dilation) and 

translations (i.e. shifts) of a single function      as 

        
 

    
  

   

 
                                  (3.2) 

where   is time,   is the translation parameter, and   is the scale parameter. The parameter     

provides the time location of the window and it varies as the window is shifted through the signal, 

while parameter    controls the amount of stretching or compressing of the mother wavelet      . 

A large value of parameter   stretches the basic wavelet function and allows the analysis of low-

frequency components of the signal. A small value of   gives a contracted version of the basic 

wavelet and then allows the analysis of high frequency components.  

Here   is restricted to    ; which is natural since   can be interpreted as a reciprocal of 

frequency i.e.        , and   represents the frequency. Normalization by 
 

    
 ensures that 

          is independent of   and   . Wavelet functions are usually normalized to 'have unit 

energy', i.e.,             . 

The function   (is the transforming function, called the wavelet function or mother 

wavelet function) is assumed to satisfy the admissibility condition, 

    
       

   
                                (3.3) 

where                     is the Fourier transformation of      . The admissibility 

condition (3.3) implies 

                                                                                                                               (3.4) 

which means that        is a zero mean function in the time domain and resembles a band-pass 

filter in the frequency domain. Also, if             and                        for some  

    , then       . For any signal                  , the continuous wavelet transformation 

(CWT) is defined as a function of two variables [25, 26] 
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                                                                                                   (3.5) 

where     denotes complex conjugation and          is the       inner product operation. 

Throughout this discussion, wavelets will be assumed to be real, and so            . 

 

3.3. Discrete Wavelet Transform  

The continuous wavelet transformation is a function of two variables and redundant. To minimize 

the transformation one can select discrete values of    and     and still have a transformation that 

is invertible. However, sampling that preserves all information about the decomposed function 

cannot be coarser than the critical sampling. The critical sampling, shown in Fig. 3.1, defined by 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: Critical sampling in       half plane                    . 

 
 

                                                                                                                        (3.6) 

which produces the minimal basis. Any coarser sampling will not give a unique inverse 

transformation; i.e., the original function will not be uniquely recoverable. Moreover, under mild 

conditions on the wavelet function   , such sampling produces an orthogonal basis  

                                                                                                                     (3.7) 

where     denotes the set of integers. From (3.7) it is clear that the scaling function can be 

expressed as a linear combination of the half scale scaling function and its shifted versions which 

are orthogonal to each other. In this case, the space spanned by the scaling function with larger 
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scale is included in the space spanned by the scaling function with smaller scale. In other words, 

the space spanned by the scaling function with larger scale is subspace of the space spanned by 

the scaling function with smaller scale.  

There are other discretization choices. For example, selecting            will lead to 

non-decimated (or stationary) wavelets. For more general sampling, given by 

    
  

              
  

                                                                                      (3.8) 

Numerically, stable reconstructions are possible if the system               constitutes a frame. 

From (3.2) 

          
   

  
       

  

  
  

  

    
   

    
 
                            (3.9) 

Next, we consider wavelet transformations (wavelet series expansions) for values of   and 

  given by (3.8). An elegant theoretical framework for critically sampled wavelet transformation 

is Mallat’s multi-resolution analysis (MRA) [55]. 

 

3.4. Multi-Resolution (or Multi-Scale) Analysis 

The orthogonal wavelet expansion can also be seen as a multi-resolution formulation. According 

to Mallet, and Burrus et al. in [57, 58], there are two main components in the multi-resolution 

formulation of wavelet analysis, namely scaling and wavelet functions. The scaling function can 

be defined as 

                                                   (3.10) 

where   is the discrete step translation. The subspace of        spanned by these translates 

       is defined as  

                                              (3.11) 

For all integers   ,       . The over-line denotes the closure of a space. Then, a two-

dimensional family of functions is generated from the basic scaling function by dilation and 

translation as  
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                                                          (3.12) 

whose span over     is 

       
 

     
                        

                    
                                  (3.13) 

for all integers      . The subspace    , in (3.13) has nesting property [57] such that 

                                       (3.14) 

It is obvious that as    goes to infinity    enlarges to cover all energy signals        . On the other 

hand, as     goes to minus infinity      shrinks down to cover only the zero signal [57]. 

The difference between space spanned by scaling function and its half scale version is 

expressed as the orthogonal complement. This orthogonal complement is spanned by the 

corresponding wavelet function. This means, if we have a certain scaling function with particular 

scale, the space spanned by that scaling function can be decomposed into a subspace and its 

orthogonal complement. The subspace is spanned by the scaling function with double scale of the 

previous scaling function while the orthogonal complement is spanned by the corresponding 

wavelet function. Therefore we can define the space spanned by wavelet     as 

                        (3.15) 

If the    space is further decomposed, then the following is obtained 

                    

                             

                                  

                                  

                                                                                                    (3.16) 

with                          
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where   denotes the orthogonality operator. So, the approximation space at resolution       can be 

written as a sum of subspaces. These subspaces are mutually orthogonal. As a consequence of 

(3.16), the entire square-integrable functions can be represented as 

                     

                   
   
                                                                                                                (3.17) 

where    is the coarse approximation,    is detail at level 0,     is detail at level 1,     is detail 

at level 2, and so on. The     is the direct sum of orthogonal operator, which corresponds to the 

linear closure of two orthogonal spaces. In (3.17),      and     can be written in terms of the basis 

functions           and            as                    and                  . In discrete 

wavelet transform, any signal                   , can be written as a series expansion in terms of 

the scaling function and wavelets function on different scales as  

         
    

                     
    

 
    

                                                         (3.18) 

The first summation in (3.18) gives us with a coarse approximation to     , which is the 

projection of       onto    . The second summation for each   provides finer details and is the 

projection of        onto the    spaces. In (3.18), the DWT coefficients    
    (scaling 

coefficients) at scale       and         (detailed coefficients) at scale    denote the weight of 

scaling function           and wavelet function        , respectively, while    defines coarsest 

scale spanned by the scaling function [25]. Correspondingly, the DWT coefficients         and  

       can be expressed as 

                     

                                                                                                                                    (3.19) 

                     

                                                                                                                                    (3.20) 

The functions          and          form an orthonormal basis in       .  
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The basis functions         and         are the two-dimensional families of functions 

generated from the discrete scaling function               and the discrete analysis wavelet  

              on decomposition of signal       , and are given by 

                                                                                                             (3.21)  

                                                                                                                     (3.22) 

Here, parameter   denotes the dilation (i.e. scale) or the visibility in frequency, and   denotes the 

integer translation (i.e. shift or position) of the scaling function and wavelet functions. The basis 

functions         and         satisfy the following [57, 58]: 

 

i)         and         must be orthonormal bases of     and     respectively 

ii)                 

iii)        

 

Based on these conditions, the scaling function       and      are recursively, defined as 

                    
                                                                                            (3.23) 

                    
                                                                                           (3.24)                                                                                        

and are known as the two-scale equations. Since      in (3.23) and       in (3.24) is expressed as 

linear combination of its shifted half scale versions,      and      defines the weight of each 

half scale component and are known as the scaling filter and wavelet filter respectively. 

 

3.5. Implementation of Discrete Wavelet Transform 

3.5.1 Implementation of Discrete Wavelet Transform using Filterbanks 

Recalling the nesting property given in (3.14). One can find that if      is in     , then it is also in  

  , the space spanned by      . This means      can be expressed in terms of a weighted sum 

shifted       as 

                                    (3.25) 
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where, the coefficients      are a sequence of real or perhaps complex numbers called the scaling 

function coefficients (or the scaling filter or scaling vector) and    maintains the norm of the 

scaling function with the scale of two. Expression (3.25) is called the refinement equation, the 

multi-resolution analysis (MRA) equation or the dilation equation or scaling equation. 

Furthermore, according to (3.17), one can find that these wavelets reside in the space 

spanned by the next narrower scaling function, i.e.,      . Therefore, they can be also 

represented by a weighted sum of shifted scaling function       defined in (3.21) by 

                                    (3.26) 

for some set of coefficients     . From the requirement that the wavelets span the orthogonal 

complement spaces as well as the orthogonality of integer translates of the wavelet and the scaling 

function, the coefficients      and      have the following relations 

                            (3.27) 

This subsection will show that the wavelet transform can be implemented via filterbanks that 

embedded      and      given in (3.25) and (3.26). 

3.5.2 Analysis Filterbanks for Forward Wavelet Transform 

The discrete wavelet transform can be implemented using the filterbank structure as described 

below. Replacing     by           in (3.25) gives 

              

 

                 

                                                                                                                  (3.28) 

with        , (3.28) becomes 

                                              (3.29) 
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                                                                                                                    (3.30) 

Expression (3.30) relates the DWT approximation coefficients at the      and         scales. 

Similarly, one can obtain the expression of DWT detail coefficients        in terms of         as  

                                                                                                                   (3.31) 

Therefore, from expressions (3.30) and (3.31), one can perform the wavelet transform that does 

not require explicit forms of       and      but only depends on      and      . In other words, 

the wavelet transforms can be implemented through the two-channel filterbanks where filtering of 

a signal by a low pass filter       and high pass filter      . Then, the low pass and high pass 

filter outputs are down sampled by two, respectively; which removes the odd-numbered 

components after filtering. Consequently, the signal length of the low pass or high pass filter 

output is only half of original input. This processing is also called analysis bank. The 

implementation of equations (3.30) and (3.31) is illustrated in Fig. 3.2, where the down-pointing 

arrows denote decimation by two and boxes        and        denotes the finite impulse 

response (FIR) filters. The FIR filter implemented by       is a low pass filter (LPF), and 

      is a high pass filter (HPF). This algorithm for implementing DWT is known as Mallat’s 

algorithm or pyramid algorithm [57, 58]. 

 

 

 

  

 

 

 

Fig. 3.2: Implementation of DWT by Mallat's algorithm. 

 

The frequency response of a digital filter is the discrete Fourier transform (DFT) of its impulse 

response       and      . This is defined as  
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                                                                                                             (3.24)                                                           

               
                                                                                                             (3.25) 

Using this defination, the filter coefficients         and        can be re-drawn as      and 

     respectively.Using this notation Fig. 3.2 can be re-drawn as 

 

 

 

 

 

 

 

 

 

Fig. 3.3: Implementation of DWT by Mallat's algorithm re-drawn. 

 

For the level-3 decomposition, the iterating filterbank structure is shown in Fig. 3.4. The first 

stage of three banks divides the spectrum of        into low pass and high pass bands resulting in 

the scaling and wavelet coefficients at lower scale        and      . The second stage then 

divides the low pass band into further lower low pass and band pass bands. This results in a 

logarithmic progression of bandwidths as illustrated in Fig. 3.3. 

 

 

 

 

 

 

 

 

Fig. 3.4: Three-level DWT decomposition tree. 
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Fig. 3.5: The frequency bands of the three-level DWT decomposition tree. 

 

3.6. Wavelet Packet Transform 

In the previous section, we saw that in DWT the approximation (low frequency component) 

spaces      were iteratively decomposed until the space    is obtained and whose bias is the 

scaling function      . The wavelet packet transform (WPT) is a generalization of the DWT 

where the detail (high frequency component) spaces (  ) are also decomposed [59]. From MRA 

[57], we know that, given the basis functions                      and       

              of    and    respectively, the basis function of     is                   

   , where          ,  and       and      are as defined in (3.23) and (3.24). The splitting 

algorithm can be used to decompose   spaces as well. For example, if we analogously define 

                     , and                       , then           and 

          are the orthonormal basis function for the two subspaces whose direct sum is    .  

This can be generalized for                   by defining a sequence of functions, 

          
  as 

                                               (3.32) 

and 

                                    (3.33) 

where for                 is the scaling function and            is the wavelet function 

[59]. For the case of       , the full-tree decomposition is shown in Fig. 3.6. The figure also 
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shows the WPT coefficients and the frequency bands at each node of decomposition. In Fig. 3.7, 

decomposition of the starting signal space into orthogonal spaces is shown along with the 

frequency bands for this two-level full-tree WP decomposition.  

 One of the main ingredients in the wavelets transform is the down-sampling at each 

scale. Although the down-sampling reduces the output data-rate and results in compact 

representation, it also introduces one artifact—shift-variance. The wavelet transform of a signal 

and the wavelet transform of a shifted version of the same signal is drastically different. 

Therefore, the lack of shift-invariance is one well-known disadvantage of the discrete wavelet 

transform and wavelet packet transform [60, 61]. There has recently been much interest in 

developing shift-invariant orthonormal wavelet packet transform.  In Cohen et al. [66] the 

decimation step is adaptively chosen at the current level (even or odd indexed terms are retained).   

The stationary wavelet packet transform (SWPT) described in Section 3.7, in practical 

circular filtering terms, involves no decimation. We maintain full resolution in time and frequency 

by avoiding the 'best basis' selection which also gives different results according to the somewhat 

arbitrary choice of cost function.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6: The two-level tree structured filterbank implementation of wavelet packet transform and 

the frequency bands. 
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Fig. 3.7:  The orthogonal spaces and frequency bands of the two-level tree structured wavelet 

packet transform. 

 

3.7. Stationary Wavelet Packet Transform 

The stationary wavelet transform (SWT) and stationary wavelet packet transform (SWPT) is 

designed to overcome the shift/translation-invariant problem by removing the down-sampling at 

each decomposition level [62-65]. Thus, the approximation coefficients and detail coefficients at 

each level are the same length as the original signal. The SWPT is also known as un-decimated 

wavelet packet transform (UDWPT) or maximal overlap wavelet packet transforms (MOWPT) or 

shift/translation invariant wavelet packet transform.  

The SWPT decomposes a signal into a low frequency subband and a high frequency 

subband by using two channels filterbank without employing decimation after filtering. Then, the 

low frequency subband as well as the high frequency subband can be decomposed into a second 

level, low and high frequency subband and the process is repeated as in Fig. 3.8. At each level, 

the filter is up-sampled versions of the previous ones. The absence of a decimation leads to a full 

rate decomposition. Each subband contains the same number of samples as the input. So, for a 

decomposition of     levels, there is a redundant ratio of         . However, the absence of a 
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decimation makes the SWPT shift-invariant and linear. The SWPT not only improves the 

frequency resolution, but also maintains a temporal resolution. 

For any signal      , the discrete stationary wavelet packet coefficient at level     and 

subband  , with the number of         , is 

             
    

   
                           (3.34) 

             
    

   
                             (3.35) 

where             is the stationary wavelet packet filter at level     and subband    [60, 61]. 

The SWPT is based on filters   and   and on an up-sampling operator. The filter    is a 

low pass filter defined by a sequence      and the high pass filter    defined by a sequence  

    . The structure of two level SWPT is shown in Fig. 3.8. These filters can be obtained by the 

inner product of the scaling function      and wavelet function      as: 

                                   (3.36) 

                                   (3.37) 

where           and     . 

The SWPT coefficient frequency ranges for two levels decomposition are shown in Fig. 3.9. At 

every level, the SWPT frequency resolution is     
  

      and the frequency bandwidth of SWPT 

coefficients is  
   

     
       

       , where                   denotes the frequency band index 

within level   [57, 66-68]. 

The SWPT or UDWPT is defined in terms of an un-decimated filterbank implementation 

which is a generalization of Mallat's multi-resolution algorithm for computing DWT [25]. The 

key point is that we don't down sample the filtering output and keep separately filtering even 

samples and odd samples from every band. 
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Fig. 3.8: Two level stationary WPT decomposition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9: Stationary WPT coefficients frequency range. 
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3.8. Summary 

In this chapter, a detailed study on wavelet transform is presented. Due to efficient time-frequency 

localization and multi-resolution analysis, the wavelet transform, wavelet packet transform, and 

stationary wavelet packet transform are suitable for processing the non-stationary signals such as 

speech [66, 67]. Based on the wavelet framework described in this Chapter, a perceptually 

motivated stationary wavelet packet transform (WPT) is constructed which forms the basis of the 

speech enhancement algorithm proposed in Chapter 6 of this thesis. 

The next chapter describes an iterative processing based multi-band spectral subtraction 

speech enhancement algorithm which is based on multi-band spectral subtraction algorithm as 

described in Chapter 2. 
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Chapter 4 

Iterative Processing based Multi-Band Spectral 

Subtraction  

 

4.1. Introduction 

In real-world environments, the noise signal affects the speech spectrum differently at various 

frequencies. Therefore, for enhancement of speech degraded by real-world noise (which is usually 

of non-stationary), a multi-band spectral subtraction algorithm is found to be more appropriate 

[21]. Although the multi-band approach enhances the overall quality of speech to a reasonable 

extent, some unnatural sound tones does remain in the enhanced speech. This noise is referred as 

remnant noise which is of perceptual annoying nature and causes listening fatigue. 

 To reduce the remnant noise further, in this chapter we propose a novel speech 

enhancement algorithm that performs iterative processing for the multi-band spectral subtraction 

(MBSS) algorithm [21]. The iterative processing suppresses the remnant noise further, by 

iterating the enhanced output signal to the input again and performing the operation, repeatedly.   
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The output from the MBSS algorithm that contains remnant musical noise is used as the input 

signal again for next iteration process. After the first MBSS processing step, the additive 

background noise transforms to the remnant musical noise. Therefore, the remnant noise needs to 

be further re-estimated. The newly estimated remnant noise is further used to process the next 

MBSS step. This procedure is iterated a small number of times. The simulation results as well as 

the objective and subjective evaluations, explained in Section 4.5, confirm that the enhanced 

speech obtained by the proposed algorithm is more pleasant to listeners than speech enhanced by 

conventional MBSS algorithm [21].  

The rest of the chapter is organized as follows. In Section 4.2, the proposed algorithm, an 

iterative processing based multi-band spectral subtraction, is described. In Section 4.3, the details 

of the performance measures, both subjective and objective, are elaborated. In Section 4.4, the 

details about speech and noise database are given which is used for evaluation of proposed 

algorithm. Section 4.5 presents the study of speech enhancement results and finally Section 4.6 

concludes this chapter. 

 

4.2. Iterative Processing based Multi-Band Spectral Subtraction Algorithm 

In order to suppress the remnant noise, produced by the multi-band spectral subtraction algorithm, 

as explained in Section 2.5.2, in a real-world environment, we have used the multi-band spectral 

subtraction algorithm [21] that makes use of the proposed iterative processing. The iterative 

processing is a technique in which the speech enhancement procedure is executed on the 

estimated speech that is taken as the input and processed repeatedly, to obtain the further 

enhanced speech and thus reducing the remnant noise. The reduction of remnant noise can be 

achieved by estimating noise in each iteration, and improving the quality of speech progressively. 

The iterative processing method can also be closely related to the Wiener filtering based speech 

enhancement method [22, 38], as explained below. 

The block diagram of the proposed iterative processing based multi-band spectral 

subtraction, IP-MBSS, is illustrated in Fig. 4.1. In the proposed algorithm, the speech enhanced 
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by MBSS algorithm is used as the input of the next iteration process. It is evident from Fig. 4.1 

that the additive background noise changes its form to remnant noise after the completion of the 

initial step of reference MBSS algorithm. For example, say      is the input signal and after the 

MBSS processing the obtained enhanced speech is say       , as described in Section 2.5.1.2. 

Thus, the additive noise is greatly reduced by the MBSS algorithm. This reduction in noise is 

associated with the presence of irritating remnant noise which is of musical structure in the 

enhanced speech,      . In our proposed algorithm, this enhanced speech i.e., output signal is used 

as the input signal again for the next iteration process by re-estimating the remnant noise from 

each band in each iteration. Therefore, the final enhanced output speech signal can be obtained 

after a finite number of iteration steps.  

Moreover, if we regard the process of noise estimation and the multi-band spectral 

subtraction as a filtering step, then the output is used not only for designing the filter but also used 

as the input signal of the next iteration process. More importantly, this filter can be refreshed 

adaptively by re-estimating the remnant noise to improve the speech quality and intelligibility, 

effectively. 

Let us assume that the signal at the      iteration step is given by 

                                                 (4.1) 

 

 

 

 

 

 

 

 

Fig. 4.1: Block diagram of an iterative processing based multi-band spectral  

subtraction algorithm. 
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where,      and        are the start and end frequency bins of the  th
 Band;    is the band specific 

over-subtraction factor of the  th
 Band;    is an additional band subtraction factor for each band. 

The            
 
 ,           

 ,  and             
 
  is the power spectrum of estimated speech,  

noisy speech and estimated remnant noise power in the      Band at the     iteration step, 

respectively.  The estimate of the complete speech signal in the     iteration         is obtained 

by performing overlap-add processing (see Appendix A) after obtaining            from (4.2). 

Here, the phase of the noisy speech signal is used to obtain,          . 

Here, we note that (4.2) can be written as 

                    
       

         
              (4.3) 

                                      (4.4) 

where  

            
                 

          
               (4.5)      

where            ,            , and            represent the magnitude of the estimated speech, 

speech with remnant noise and gain  at      iteration step. We note that (4.4) is having a direct 

correspondence with Wiener filtering equation, as explained in Section 2.5.3. In the         

iteration processing step, the output signal         that is obtained by the     iteration 

processing step is set as the input signal again as follows: 

                                            (4.6) 

Here, the noise component of           transforms into the remnant noise component that 

could not be suppressed by the MBSS at     iteration. The IP-MBSS algorithm obtains the 

estimated noise spectrum               that is to be used in each band of          . If     

denotes the final number of times the iterations are repeated, then the resultant estimated speech is 

denoted by        . As the amount of the noise component is reduced in each MBSS processing 

step, with an increase in the number of iterations will reduce the amount of noise, progressively. 

In summary, the steps of the proposed IP-MBSS algorithm are given below: 
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STEP 1: Initialize the iteration count     to        . 

                                       

STEP 2: For        ,   estimate the noise spectrum              from  the  silent  

  periods of        . On the other hand,  for        ,  estimate            

  from the silent periods of           , which was obtained according to 

  iterative processing. 

STEP 3:  Compute  the  band  specific  over-subtraction factor      ,  also  set    the 

  additional band subtraction factor    for each band empirically. Multiply 

  the scaling factor         by the  estimated noise spectrum              to 

  adjust the amount of reduction in each band. 

STEP 4: Use the estimated noise spectrum  with  the  scaling  factor        , which 

  was obtained in STEP 3,   to  execute  MBSS  processing  in  each  band   

  for      , when          or  for             when       .  In  

  addition, obtain the output signal          in the     iteration.  

STEP 5: Set           and repeat the processing in steps. 

STEP 6: Stop, if remnant noise is within acceptable limit. Otherwise, go to STEP  

  5. 

 

The number of iteration steps is an important parameter of this proposed algorithm which 

affects its performance. The segmental SNR (SegSNR) at the end of each iteration step depends 

on the iteration number and the segmental SNR increases with the number of iterations. Thereby, 

the over-subtraction factor also increases as it depends on SegSNR directly. In Fig. 4.2, the 

variation of over-subtraction factor (mean value) with iteration number has been shown and 

explained in Section 4.5.1 of this chapter. The larger iteration number is expected to give better 

speech enhancement performance containing less remnant noise. But the performance of the 

algorithm deteriorates after a certain number of iterations. This will be elaborated in section in 

Section 4.5.1.  
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4.3. Performance Measures 

 

4.3.1. Subjective Measures 

Subjective measures are performed via listening tests. A review can be found in [3, 11, 69-71]. 

Subjective intelligibility measures lead to intelligibility scores and subjective quality measures to 

an overall impression. These tests can be informal or follow a determined protocol. They differ by 

the following points:  i) The choice of speech material (sentences, phonemes, words) which can 

be nonsense or meaningful,  ii) the formant of the test,   and  iii) the scoring method (open set or 

closed set, scaling). The principal existing subjective measures are the following: 

 

1) Intelligibility tests : Diagnostic Rhyme Tests (DRT) and Modified Rhyme Test (MRT). 

A rhyme test is a closed set response test in which the listener has to select his response 

among a small group of possible words (2 alternatives for the DRT, 6 alternatives for the 

MRT). The DRT tests only the initial consonant. The percentage of correctly heard words 

is a measure of intelligibility. A good score for intelligibility is in the range 85-90%. The 

DRT is given by the following relation: 

    
                    

     
                    (4.7) 

where            is the number of correctly understood words,            is the number of 

incorrect words and         is the total number of words used for the test. 

 

2) Quality tests: use of sentences in order to obtain an overall impression on intelligibility, 

acceptability, naturalness, etc. The most often used measures are the following: 

a) Diagnostic Acceptability Measure (DAM). This test is composed of 12 quality 

measures on a scale 0-100. 

b) Mean Opinion Score (MOS). This test provides scores on a 5-point scale as 

described in Table 4.1 [3, 11]. This method does not give absolute values but is 

well suited for ranking. Sometimes it is necessary to normalize the differences 

between MOS evaluations. 
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The MOS does not give any idea of the type of distortion, but only of the degree of 

impairment. Therefore, very different noise types can lead to the same quality. The DAM 

gives more complete results but is more time consuming. 

 

TABLE 4.1. MEAN OPINION SCORE FIVE-POINT SCALE 

Rating Speech Quality Level of Distortion 

5 Excellent Imperceptible 

4 Good Just perceptible but not annoying 

3 Fair Perceptible and slightly annoying 

2 Poor Annoying but objectionable 

1 Bad/Un-satisfactory Very annoying and objectionable 
 

 

Speech quality tests are usually performed on speech with high intelligibility. When speech 

quality is 'good' or 'excellent', intelligibility is always acceptable (>90%). Speech Intelligibility 

degrades when the quality is 'poor' or 'bad'. Therefore, in adverse environments (SNR < 10 dB), 

intelligibility enhancement becomes important. 

Subjective tests provide very good results but they are time and money consuming and 

also difficult to reproduce in the same conditions. It is, therefore, desirable to develop objective 

measures based on physical aspects of the speech signal to predict the subjective performances. 

Such objective measures have been developed to replace listening tests. These measures are 

described in Section 4.3.2. 

4.3.2. Objective Measures 

A performance measure has to be consistent with human perception. It is, therefore, important to 

have objective quality measures that are highly correlated to subjective tests, although this is not 

the general case. Many different objective measures have been developed, especially in the 

context of speech coding. This section presents an overview of existing measures. The correlation 

between these measures and subjective listening tests is discussed in Section 4.3.3. 

The choice of a performance measure is system dependent. For example, if the end user is 

a human, the aim of the system will be to improve perceptual aspects of speech. Therefore, the 
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objective measures used for the evaluation will have to show a high degree of correlation with 

subjective results. On the other hand, if the end user is a recognition system, the aim will be to 

reduce the recognition error rate. In the second case, the recognition accuracy becomes the 

objective performance measure. 

Generally, objective measures for determining the subjective quality of a speech 

processing algorithm perform well only for some types of processing. Furthermore, these 

measures have to be validated by subjective quality and intelligibility tests. It is important to find 

objective measures well correlated with subjective results. 

An objective measure represents a distance from the original speech parameters in noise 

free conditions [72]. Each measure calculates a distance      between the original speech        

and an enhanced speech        . Measures are calculated for each frame   . The averaging of local 

distances      across the whole sentence (all frames) produces a global measure    : 

  
 

 
    
   
                              (4.8) 

where      represents the number of frames in a signal.  Most of the work for calculating      has 

been done on spectral distance measures but there exist a great variety of distances.  Distances can 

be linear or logarithmic, and frequency weighing can improve the correlation with subjective 

results by giving higher weights to perceptual important components. Here is a description of 

some of objective measures: 

1) Global signal-to-noise ratio: one of the oldest and widely used objective measures, 

defined as the ratio of the total signal energy to the total noise energy in the utterance. It is 

mathematically simple to calculate, but requires both distorted (noisy) and undistorted 

(clean) speech samples. 

            
       
   

               
   

                (4.9) 

where      is the clean speech signal,       is the enhanced speech reproduced by a 

speech processing system,     is the sample index, and    is the number of samples in both 

speech signals. The summation is performed over the signal length.  
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But, the noise has different impacts on the various sections of speech signal. 

Therefore, the enhancement criterion as well as the performance evaluation depends on 

the impact of noise. In this context, a global SNR measure doesn't reflect the impact of 

noise on each specific section. This classical definition of the SNR does not correlate well 

with speech; as the SNR averages the ratio over the entire signal. This objective quality 

measure has a very poor correlation with subjective results. 

2) Segmental signal-to-noise ratio:  this measure makes a conversion of the SNR into dB 

prior to averaging it, in order to give equal weights to loud and soft part of speech. 

Speech energy fluctuates over time, and so portions where speech energy is large, and 

noise is relatively inaudible, should not be washed out by other portions where speech 

energy is small and noise can be heard over speech. Thus, several variations to the 

classical SNR exist which show much higher correlation with subjective quality. 

Therefore, the SNR is calculated in short frames, and then averaged. This measure is 

called the segmental SNR (SegSNR), and is defined as  

        
 

 
         

      
      
    

              
      
    

    
                        (4.10) 

where     represents the number of frames in a signal and     the number of samples per 

frame. In order to improve the measure, it is possible to suppress the periods of silence 

before calculating the SNR. The frame based SegSNR equation is reasonable measure of 

speech quality or takes into account both remnant noise and speech distortion. Since the 

logarithm of the ratio is calculated before averaging, the frames with an exceptionally 

large ratio is somewhat weighed less, while frames with low-ratio is weighed somewhat 

higher. It can be observed that this matches the perceptual quality well, i.e., frames with 

large speech and no audible noise does not dominate the overall perceptual quality, but 

the existence of noisy frames stands out and will drive the overall quality lower. 

However, if the speech sample contains excessive silence, the overall SegSNR values will 

decrease significantly since silent frames usually show large negative SegSNR values. In 
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this case, silent portions should be excluded from the averaging using speech activity 

detectors. In the same manner, exclusion of frames with excessively large or small values 

from averaging generally results in SegSNR values that agree well with the subjective 

quality. Furthermore, there exists a frequency weighted segmental SNR [3, 11]. 

3) SNR improvement or gain: SNR improvement indicates the difference between the 

SNR of enhanced speech (output) and the noisy speech signal (input) or segmental  SNR 

                                                   (4.11) 

                                                            (4.12) 

In above equations, the first term corresponds to output SNR and second term 

corresponds to input SNR. For the calculation of input SNR, the denominator term 

              of (4.9) is replaced by        .These equation takes into account both 

remnant noise and speech distortion. 

4) Itakura–Saito Distortion Measure: Itakura-Saito indicates the perceptual difference 

between an original spectrum      and an approximation       of that spectrum. The 

ISD is defined as the distance between two log-scaled DFT spectra averaged over all 

frequency bins. The distance is defined as 

                
 

  
  

    

     
     

    

     
    

 

  
                (4.13) 

A typical range for the ISD measure is 0~10, where the minimal value of ISD 

corresponds to the best speech quality. A correlation between the ISD and subjective 

quality measures is given in [3, 73, 87]. 

5) Perceptual Evaluation of Speech Quality: Perceptual Evaluation of Speech Quality 

(PESQ—an objective way of measuring the subjective speech quality) is an objective 

quality measure algorithm designed to predict the subjective opinion score of a degraded 

audio sample.  It is recommended by ITU-T for speech quality assessment [74, 75]. In 

PESQ measure, a reference signal and the processed signal are first aligned in both time 

and level. This is followed by a range of perceptually significant transforms which 
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include Bark spectral analysis, frequency equalization, gain variation equalization and 

loudness mapping. After the two signals have undergone these transformations, two 

parameters are computed. These parameters are then combined in a mapping function to 

give an estimate of mean opinion score. For normal subjective test material the PESQ 

score ranges from  0  to  + 4.5, although for most cases it will be a MOS-like score 

between 1 and 4.5, with higher score indicating better quality. The PESQ measure was 

reported to be highly correlated with subjective listening tests in [74, 75]  for a large 

number of testing conditions.  

4.3.3. Correlation with Subjective Results 

Subjective listening tests are the most reliable performance measure, as the end user is a human. 

However, when developing a new algorithm in various noise conditions, subjective tests become 

difficult to realize. In this case it would be desirable to replace them by objective measures. 

Furthermore, objective measures allow an identification of the most distorted speech segments, 

and this information is very useful for improving speech enhancement algorithms [3]. 

In order to replace subjective listening tests, the objective measures have to show a high 

degree of correlation with subjective results. This correlation depends on the type of distortion 

such as in the case of narrowband or wideband speech. A correlation of      means a perfect 

prediction of the subjective results. Table 4.2 represents a typical case of the correlations obtained 

for different objective quality measures [3, 70]. The first two objective measures in the table 

(SNR and segmental SNR) have been obtained for distortions evaluated in waveforms coders. The 

last objective measure in the table, i.e., PESQ shows maximum correlation with the subjective 

listening tests or equivalently, MOS scores. Extreme care must be taken when comparing these 

values, as they result from different test conditions and different distortions. In general,       

measures have a higher correlation than the corresponding linear measures. Most of these 

measures have free parameters that can be optimized to maximize the correlation   . This 

optimization is usually performed during a training phase with speech samples of known 

subjective quality. In [3], it is stated that a correlation of         or more is necessary for a 
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reliable measure. This is achieved only for measure that takes into account facts about human 

perception. However, none of the existing measures is able to replace subjective tests in all 

conditions, but they can be used to obtain preliminary results in a development phase. This shows 

the difficulty of defining a measure able to predict the subjective quality for each type of 

distortion and each type of enhancement algorithm. 

 

 TABLE 4.2: CORRELATION COEFFICIENTS BETWEEN 

SUBJECTIVE AND OBJECTIVE MEASURES 

Objective measures Correlation coefficients 

SNR (Global) 

Segmental SNR 

      

      

Itakura-Saito       

PESQ       

 

 

4.4. Speech and Noise Databases 

This section describes the database used for the evaluation of the proposed enhancement 

algorithm, IP-MBSS, for obtaining the performance results which are given in Section 4.5. The 

speech sentences and noisy speech samples have been taken from NOIZEUS corpus speech 

database [76]. The NOIZEUS corpus is a publicly available speech database, often used for 

benchmark experiments. The NOIZEUS corpus is composed of 30 phonetically balanced 

sentences belonging to six speakers, three male and three female. The speech data are sampled at 

8 kHz and quantized linearly using 16 bits resolution. 

The noise signals have different time-frequency distributions, and have different impact 

on speech samples. The sentences in the database are degraded by seven different non-stationary 

noises at varying SNR levels i.e., at global SNR levels of 0 dB to 5 dB. The non-stationary noises 

such as car noise, train noise, restaurant noise, babble noise, airport noise, street noise, and 

exhibition noise are the various noises in the NOIZEUS. 

For the evaluation of proposed speech enhancement algorithm, a total of four different 

sentences pronounced by three male and a female speaker have been taken from NOIZEUS 
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corpus. Every sentence has a silence segment in the beginning that lasts more than 0.25 ms, 

approximately. Eight different types of noises, seven real-world noise (non-stationary) and a 

computer generated white Gaussian noise (stationary), have been used for the evaluation and 

comparison of speech enhancement algorithm. Therefore, the sentences are degraded with eight 

types of noises at varying SNR levels i.e., at global SNR levels of 0 dB to 5 dB. The performance 

of the proposed speech enhancement algorithm is tested on such noisy speech samples. 

 

4.5. Study of Enhancement Results 

4.5.1. General Considerations 

This section presents an evaluation of the performance of the proposed speech enhancement 

algorithm, as well as comparison with other spectral subtractive-type algorithms. This evaluation 

is performed for the four speech sentences and the eight different noise (non-stationary and 

stationary) types presented in Section 4.4. The sampling frequency is 8 kHz and the other 

parameters that have been used for the implementation of the proposed algorithm are as follows: 

 

1) Frame size = 256 samples (32 ms) with 50% overlap (i.e. 128 samples (16 ms)). 

2) Hamming window with 256 samples for input signal weighting. 

3) FFT length = 256 points FFT. 

4) Noise estimation via exponential averaging with        . According to (2.11), this 

leads to an averaging of 20 frames (320 ms). 

5) No. of continuous non-overlapped uniformly spaced frequency bands      

                                                                      

                      . 

 

The proposed algorithm has been compared with the multi-band spectral subtraction algorithm 

(MBSS) to evaluate the performance benefit the iterative processing gives to the enhancement 

process. MBSS algorithm offers an adaptation of     based on the segmental SNR. The value of 
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over-subtraction factor    is determined using Fig. 2.4 and (2.14), and the value of additional 

over-subtraction factor      for each band is set as per (2.15). The value of spectral flooring 

parameter   is taken as 0.003 [21]. In case of IP-MBSS, the iteration time is an important factor, 

which directly affects the performance of speech enhancement. In order to explore the 

relationship between the performance of speech enhancement and the iteration times, the variation 

of the mean over-subtraction factor     of the speech degraded by car noise with iteration number 

are shown in Fig. 4.2.  It can be  seen  from  figure  that  the  value of     increases as the iteration 

number increases, which suggest the larger iteration number will correspond to the better speech 

enhancement performance resulting in less remnant noise. However, both the waveforms and the 

corresponding spectrogram suggest that the larger iteration number would start eliminating some 

component of the normal speech while reducing the remnant noise effectively. Therefore, the 

proposed iteration number for the car speech is set to 2 to 3 and the value of other parameters 

have been taken as same as the reference algorithm. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2: Variations of over-subtraction factor (mean value) with  

iteration number. 
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Generally, the objective performance evaluation is based on the application of the 

objective quality or intelligibility measures described in Section 4.3.2. The major drawbacks of 

these objective measures are the following:  i) they are not always well-correlated with speech 

perception [3, 73], and ii) they do not give information about how speech and noise are distributed 

across frequency. Usually, single channel spectral subtractive-type enhancement algorithms 

produce two main undesirable effects, i.e., remnant musical noise and speech distortion. These 

effects can be annoying to a human listener, but they are difficult to quantify with the help of 

these objective measures.  It is, therefore, important to analyze the time-frequency distribution of 

the enhanced speech, in particular, the structure of its remnant musical noise. This is done by 

observing the speech spectrogram, which gives more accurate information about remnant noise 

and speech distortion in comparison to the time waveforms.  

Taking into account these considerations, the performance evaluation is composed of the 

following steps: 

 

1) Informal listening tests during the development phase. 

2) Observation of time waveforms and speech spectrogram. 

3) Measure of the amount of noise reduction. 

4) Application of objective intelligibility and quality measures. 

5) Analysis of the structure of remnant noise and speech distortion. 

6) Subjective listening tests at the end of evaluation in order to validate the results given by 

the objective measures. 

 

The Section 4.5.2 presents the objective evaluation results of the algorithm, while the next Section 

4.5.3 presents the results of subjective listening tests and spectrogram analysis. 

4.5.2. Overall Performance in Additive Noise 

The additive background noises taken for the tests are car noise, train noise, restaurant noise, 

babble, airport noise, street noise, exhibition noise and white Gaussian noise with SNR levels 
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ranging from 0 to 5 dB. The measures that have been chosen for the performance evaluation are 

as follows: signal-to-noise ratio (SNR), segmental signal-to-noise ratio (SegSNR), Itakura-Saito 

distortion (ISD) and perception evaluation of speech quality (PESQ) 

The output SegSNR obtained for various types of noises at various noise levels is 

presented in Fig. 4.3. The overall trend suggests that the value of output SegSNR for various 

noise types as mentioned above increases at low input SNRs (≤ 5 dB). It is observed that for the 

case of exhibition noise our algorithm performs poorly in comparison to other noises at 5 dB 

SNR, whereas for babble and airport noise it shows very small decrement of SNR. For the case of 

restaurant noise the output SegSNR gives comparable results with the input. 

 In Fig. 4.4, the SegSNR improvements for various noise types at various noise levels are 

presented and compared with MBSS algorithm. The SegSNR improvements provided by the 

proposed algorithm produces an SNR improvement at low input SNRs (≤ 5 dB) compared to 

MBSS algorithm while for the case of restaurant and exhibition noises our algorithm shows no 

improvement in comparison to MBSS algorithm. 

 Table 4.3 presents the objective evaluation and comparison of the proposed algorithm, IP-

MBSS, in terms of output SNR (dB), output SegSNR (dB), and ISD at different labels of SNR. 

The values of output SNR, output SegSNR for different types of noises of IP-MBSS are observed 

to be better than MBSS algorithm. In case of ISD, the performance improvement is found to be 

more for IP-MBSS in compared to MBSS at some places only.  

Table 4.4 presents the results of the objective evaluation and the comparison with the 

proposed algorithm, IP-MBSS, in terms of SNR improvement (dB), and Seg.SNR improvement 

(dB) at different labels of SNR. The value of SNR improvement, Seg.SNR improvement for 

different types of noises for IP-MBSS is found to be better than the MBSS algorithm.  

4.5.3. Subjective Evaluation and Spectrogram Analysis 

In our subjective evaluation, the listening tests have been accomplished with five listeners in a 

closed room and headphones have been used during experiments. Each listener provides a score 

between one and five for each test signal. This score represents the listener's overall appreciation 
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of the quality of the speech sample which contains the remnant noise, the left-over background 

noise and speech distortion. The scale used for these tests corresponds to the MOS scale presented 

in Table 4.2 [3]. For each speaker, the following procedure has been applied:  

 

1) Clean speech and noisy speech are played and repeated twice;  

2) Each test signal, which is repeated twice for each score, is played three times in a random 

order.  

This leads to 20 scores for each test signal and is presented in Table 4.5. As the listeners 

appreciate speech quality differently, the mean of the different scores varies greatly from one 

speaker to another. However, the values obtained are well-suited for ranking the performance of 

the different methods tested. It can be seen from Table 4.5 that the MOS score of the enhanced 

speech obtained from using the IP-MBSS algorithm is the highest, followed by that from the 

MBSS algorithm for various sentences taken form NOIZEUS database. Fig. 4.6 shows the 

spectrogram of the enhanced speech obtained with the proposed algorithm for the speech sentence 

(sp1) degraded by car noise, train noise, babble noise, restaurant noise, airport, street, exhibition, 

and white noise, respectively at 5 dB SNR. 

Fig. 4.7 shows the temporal waveforms of the enhanced speech obtained with the 

proposed algorithm for the speech sentence (sp1) degraded by car noise, train noise, babble noise, 

restaurant noise, airport, street, exhibition, and white noise, respectively at 5 dB SNR. Fig. 4.8 to 

Fig. 4.12, show the temporal waveforms and spectrogram of the enhanced speech obtained with 

the proposed algorithm for the speech sentence pronounced by male speaker (sp1, sp6, sp10), 

female speaker (sp12) and degraded by car noise at 5 dB SNR and 10 dB SNR  in comparison 

with MBSS and BSS algorithms along with PESQ scores. The temporal waveforms and 

spectrogram of Fig. 4.12 presents the spectrogram of the enhanced speech obtained by IP-MBSS 

for the sentence pronounced by a female speaker. This results are comparable to the one obtained 

for a male in similar noise conditions in Fig. 4.8 to Fig. 4.11 along with PESQ scores. 
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It can be seen from Fig. 4.5 to Fig. 4.12 that the musical structure of the remnant noise is 

reduced more by the proposed algorithm compared to MBSS and BSS algorithms. Speech 

enhanced with the proposed algorithm is more pleasant and the remnant noise has a "perceptually 

white quality" while distortion remains within acceptable limit. This is confirmed from the values 

obtained from the objective measures (Table 4.3 and Table 4.4) and also validated by subjective 

listening tests. 

The results shown in Table 4.5, presents the MOS Scores and PESQ scores of IP-MBSS 

and MBSS algorithms.  It’s clearly evident that, in comparison with MBSS algorithm, the quality 

of subjective rating of the enhanced speech by the proposed algorithm is much better. In the case 

of the PESQ measure, the proposed IP-MBSS algorithm gives better PESQ scores than the MBSS 

and BSS algorithm, as expected.  

In Fig. 4.5, a scatter plot is shown between the MOS and PESQ scores of proposed 

algorithm, IP-MBSS, for various types of real-world noises and a computer generated white 

Gaussian noise.  It is observed that the subjects tend to give higher scores than the PESQ scores, 

although a high correlation between objective and subjective scores are noticed. It is evident from 

the figure that the PESQ score and the MOS score correlate poorly for of train and babble noises 

in all conditions, compared to other types of noises. 
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Fig. 4.3: Output SegSNR of IP-MBSS for car, train, restaurant, babble, airport, street, 

exhibition, and white Gaussian noises. 
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Fig.4.4: SegSNR improvement of IP-MBSS over MBSS for various noise types e.g. car, train, 

restaurant, babble, airport, street, exhibition, and white Gaussian noises. 
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Fig. 4.5: Scattered plot of PESQ score vs. mean MOS score of IP-MBSS for car, babble, 

restaurant, train, airport, street, exhibition, and white noises. 
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TABLE 4.3. 

OBJECTIVE EVALUATION AND COMPARISON OF THE PROPOSED ALGORITHM IN TERMS OF 

OUTPUT SNR (DB), OUTPUT SEGSNR (DB), AND ISD. 

Noise 

Type 

Enhancement 

Algorithms 

SNR (dB) SegSNR (dB) ISD 

0dB 5dB 0dB 5dB 0dB 5dB 

Car MBSS 4.26 6.01 4.19 5.98 1.80 1.40 

IP-MBSS 4.50 6.11 4.46 6.10 1.98 1.79 

Train MBSS 3.47 5.82 3.42 5.75 2.08 1.32 

IP-MBSS 3.57 5.96 3.54 5.92 1.97 1.75 

Restaurant MBSS 2.15 4.60 2.10 4.54 1.49 1.03 

IP-MBSS 2.27 5.04 2.24 4.99 2.11 2.02 

Babble MBSS 2.27 4.64 2.21 4.63 1.77 1.13 

IP-MBSS 2.40 4.89 2.35 4.88 1.99 1.77 

Airport MBSS 3.61 4.81 3.52 4.76 1.61 1.20 

IP-MBSS 3.71 4.97 3.63 4.91 1.96 1.75 

Street MBSS 4.24 5.00 4.17 4.89 1.74 1.00 

IP-MBSS 4.42 5.56 4.39 5.38 1.99 1.87 

Exhibition MBSS 3.65 4.72 3.60 4.64 2.22 1.29 

IP-MBSS 3.92 4.59 3.91 4.52 2.16 2.08 

White MBSS 5.09 6.87 5.03 6.85 2.69 2.23 

IP-MBSS 5.25 6.86 5.23 6.86 2.01 1.83 

 

 

TABLE 4.4. 

OBJECTIVE EVALUATION AND COMPARISON OF THE PROPOSED ALGORITHM IN  

TERMS OF SNR IMPROVEMENT (DB), AND SEGSNR IMPROVEMENT (DB). 

Noise 

Type 

Enhancement 

Algorithms 

SNR Improvement 

(dB) 

SegSNR Improvement 

(dB) 

0dB 5dB 0dB 5dB 

Car MBSS 4.26 1.01 4.19 0.98 

IP-MBSS 4.50 1.11 4.46 1.10 

Train MBSS 3.47 0.82 3.42 0.75 

IP-MBSS 3.57 0.96 3.54 0.92 

Restaurant MBSS 2.15 -0.04 2.10 -0.46 

IP-MBSS 2.27 0.04 2.24 -0.01 

Babble MBSS 2.27 -0.36 2.21 -0.37 

IP-MBSS 2.40 -0.11 2.35 -0.12 

Airport MBSS 3.61 -0.19 3.52 -0.24 

IP-MBSS 3.71 -0.03 3.63 -0.09 

Street MBSS 4.24 0 4.17 -0.11 

IP-MBSS 4.42 0.56 4.39 0.38 

Exhibition MBSS 3.65 -0.28 3.60 -0.36 

IP-MBSS 3.92 -0.41 3.91 -0.48 

White MBSS 5.09 1.87 5.03 1.85 

IP-MBSS 5.25 1.86 5.23 1.86 
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TABLE 4.5. 

RESULTS OF NOISE REDUCTION SPEECH QUALITY TEST. 

Noise 

Type 

Enhancement 

Algorithms 

PESQ Score MOS Score 

0dB 5dB 0dB 5dB 

Car MBSS 1.615 1.776 1.8 2.7 

IP-MBSS 1.693 1.915 2 2.8 

Train MBSS 1.608 1.886 2.6 3.3 

IP-MBSS 1.693 1.893 2.3 2.9 

Restaurant MBSS 1.697 1.885 1.8 2.7 

IP-MBSS 1.787 1.927 1.9 2.7 

Babble MBSS 1.665 1.907 1.6 2.7 

IP-MBSS 1.667 2.036 1.8 2.7 

Airport MBSS 1.774 1.953 1.8 2.8 

IP-MBSS 1.876 2.061 1.6 2.1 

Street MBSS 1.416 1.866 1.8 2.6 

IP-MBSS 1.614 1.956 2 2.7 

Exhibition MBSS 1.298 1.633 1.8 2.7 

IP-MBSS 1.379 1.782 1.9 2.6 

White MBSS 1.433 1.669 2.6 3.5 

IP-MBSS 1.602 1.901 2.9 3.6 
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Fig.4.6 (I): Speech spectrogram of sp1.wav utterance, "The birch canoe slid on the smooth 

planks", by a male speaker from the NOIZEUS corpus (From top to bottom): (a) clean 

speech; (b, d, f, h) speech degraded by car noise, train noise, babble noise, and restaurant 

noise, respectively (5 dB SNR); (c, e, g, i) corresponding enhanced speech. 
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Fig.4.6 (II): Speech spectrogram of sp1.wav utterance, "The birch canoe slid on the smooth 

planks", by a male speaker from the NOIZEUS corpus (From top to bottom): (j, l, n, p) 

speech degraded by airport, street, exhibition, and white noise, respectively (5 dB SNR); (k, 

m, o, q) corresponding enhanced speech. 
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 Fig. 4.7(I): Temporal waveforms of sp1.wav utterance, "The birch canoe slid on the smooth 

planks”, by a male speaker from the NOIZEUS corpus (From top to bottom): (a) clean 

speech; (b, d, f, h) speech degraded by car noise, train noise, babble noise, and restaurant 

noise, respectively (5 dB SNR); (c, e, g, i) corresponding enhanced speech. 
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 Fig. 4.7(II): Temporal waveforms of sp1.wav utterance, "The birch canoe slid on the 

smooth planks”, by a male speaker from the NOIZEUS corpus (From top to bottom): (j, l, 

n, p) speech degraded by airport noise, street noise, exhibition noise, and white noise, 

respectively (5 dB SNR); (k, m, o, q) corresponding enhanced speech. 
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 Fig.4.8: Temporal waveforms and speech spectrogram with sp1.wav utterance, "The birch 

canoe slid on the smooth planks", by a male speaker from the NOIZEUS corpus (From top to 

bottom): (a) clean speech (PESQ = 4.5); (b) noisy speech (degraded by car noise at 5 dB 

SNR) (PESQ = 1.922); (c) speech enhanced by BSS algorithm (PESQ = 1.9); (c) speech 

enhanced by MBSS (PESQ = 1.776), and (d) speech enhanced by IP-MBSS (PESQ = 1.915). 
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 Fig. 4.9: Temporal waveforms and speech spectrogram of sp1.wav utterance," The birch 

canoe slid on the smooth planks", by a male speaker from the NOIZEUS corpus (From top to 

bottom): (a) clean speech (PESQ = 4.5); (b) noisy speech (degraded by car noise at 10 dB 

SNR) (PESQ = 2.084); (c) speech enhanced by BSS algorithm (PESQ = 1.898); (d) speech 

enhanced by MBSS (PESQ = 2.030), and (e) speech enhanced by IP-MBSS (PESQ = 2.147). 
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Fig. 4.10: Temporal waveforms and speech spectrogram of sp 6.wav utterance, "Men strive 

but seldom get rich", by a male speaker from the NOIZEUS corpus (From top to bottom): 

(a) clean speech (PESQ = 4.5); (b) noisy speech (speech degraded by car noise at 10 dB 

SNR) (PESQ = 2.205); (c) speech enhanced by BSS algorithm (PESQ = 2.231); (d) speech 

enhanced by MBSS algorithm (PESQ = 2.157); and (e) speech enhanced by IP-MBSS 

(PESQ = 2.267). 
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Fig. 4.11: Temporal waveforms and speech spectrogram of sp10.wav utterance, "The sky that 

morning was clear and bright blue", by a male speaker from the NOIZEUS corpus (From top 

to bottom): (a) clean speech (PESQ = 4.5); (b) noisy speech (speech degraded by car noise at 

10 dB SNR) (PESQ = 2.169); (c)speech enhanced by BSS algorithm (PESQ = 2.154); (d) 

speech enhanced by MBSS (2.259); and (e) speech enhanced by IP-MBSS (2.459). 
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Fig.4.12: Temporal waveforms and speech spectrogram of sp12.wav utterance, "The drip of 

the rain made a pleasant sound", by a female speaker from the NOIZEUS corpus (From top 

to bottom): (a) clean speech (PESQ = 4.5); (b) noisy speech (degraded by car noise at 10 dB 

SNR) (PESQ = 2.043); (c) speech enhanced by BSS algorithm (PESQ = 1.782); (d) speech 

enhanced by MBSS algorithm (PESQ = 2.005); and (e) speech enhanced by IP-MBSS 

(PESQ = 2.255). 
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4.6. Summary 

In this chapter, an iterative processing based multi-band spectral subtraction (IP-MBSS) algorithm 

is proposed for the enhancement of speech degraded by non-stationary or colored noises. In the 

proposed algorithm, IP-MBSS, the output of multi-band spectral subtraction algorithm is used as 

the input signal again for the next iteration process. The iteration is performed to a limited number 

of times. After the execution of the reference MBSS algorithm, the additive noise changes to 

remnant musical noise. The remnant noise is re-estimated at each iteration and the spectral over-

subtraction is executed separately, in each band. A comparison with the MBSS algorithm is 

carried out to evaluate the performance of the proposed algorithm.  

Furthermore, the simulation results with different types of noises, have shown that the 

proposed algorithm, IP-MBSS, with appropriate iteration number reduces the remnant noise tones 

efficiently that appear in the case of MBSS algorithm and improves the quality and intelligibility 

of the enhanced speech. The IP-MBSS algorithm is found to perform mostly well for all types of 

noises  at low SNR (≤ 5 dB) except for the case of exhibition noise, in terms of various objective 

measures including PESQ.  It is also evident from the subjective listening tests that the speech 

enhanced by IP-MBSS algorithm does contains a little amount of remnant noise and speech 

distortion. Moreover, the remaining remnant noise is of perceptually white quality and the 

distortions stay within acceptable limit. 

In next chapter, an improved multi-band spectral subtraction algorithm is proposed which 

is based on critical band rate scale of human auditory system and the noise estimation is done in 

an adaptive manner.  
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Chapter 5 

An Improved Multi-Band Spectral Subtraction 

based on Critical Band Rate Scale 

 

5.1. Introduction 

In the last chapter, we have presented an iterative processing based multi-band spectral 

subtraction algorithm in which bands are continuous and uniformly frequency spaced. With this 

algorithm, for various noise types, we have found substantial reduction in remnant musical noise. 

But, ultimately the humans are the final judge to evaluate the speech quality and intelligibility. 

Many researchers have applied the perceptual frequency scale of hearing in numerous speech 

applications [30, 32, 35, 88] for narrowband and wideband speech.  Therefore, it is expected that, 

the processing of bands in accordance to the bands of human hearing in multi-band speech 

processing will be beneficial in terms of performance. In this chapter we have applied non-

uniformly spaced frequency bands that closely match with the perceptual frequency scale of 

human auditory system for multi-band spectral subtraction algorithm. 
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This chapter proposes an auditory perception based improved multi-band spectral 

subtraction (API-MBSS) algorithm for enhancement of speech degraded by non-stationary or 

colored noise.  In the proposed scheme, the whole speech spectrum is divided in different non-

uniform frequency spaced bands in accordance to the critical band rate scale and spectral over-

subtraction is executed independently, in each band. The proposed algorithm uses an adaptive 

approach to estimate the noise power from each band without the need of explicit speech pause 

detection. The noise estimate is updated by adaptively smoothing the noisy signal power in each 

band. The smoothing parameter is controlled by a linear function of a-posteriori signal-to-noise 

ratio (SNR). This noise estimation approach gives accurate results even at very low SNRs and 

works continuously, even in the presence of speech. The simulation results as well as evaluations 

from the objective tests and subjective listening tests show that the proposed algorithm suppresses 

the noise efficiently and the enhanced speech contains minimal speech distortions with improved 

SNR.  

The rest of this chapter is structured as follows. In Section 5.2, an adaptive noise 

estimation approach is described which is utilized in the API-MBSS algorithm. In Section 5.3, the 

proposed algorithm, an improved multi-band spectral subtraction based on critical band rate scale, 

API-MBSS is presented. Section 5.4, elaborates the experimental results and performance 

evaluation (subjective and objective measure) and finally Section 5.5 concludes this chapter. 

 

5.2. Noise Estimation 

In real-world listening environment, the speech signal is not affected uniformly over the entire 

frequency spectrum. Some of the frequency components of speech are affected more adversely 

than others. This kind of noise is referred as non-stationary or colored noise [3]. 

The noise spectrum estimation is the fundamental component of speech enhancement 

algorithms. If the noise estimate is too low, annoying remnant noise will be audible, while if the 

noise estimate is too high, speech will be distorted, resulting possibly in intelligibility loss. There 

are many  approaches  to  estimate  the  noise  power,  especially  during  speech  activity. The 
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non-stationary noise power can be estimated using minimal-tracking algorithms [45, 78, 79], and 

time-recursive averaging algorithms [46, 79-81].  

The minimal-tracking algorithms are based on tracking the minimum of the noisy speech 

over a finite window. As the minimum is typically smaller than the mean, unbiased estimates of 

noise spectrum were computed by introducing a bias factor based on the statistics of the minimum 

estimates. The main drawback of this method is that it takes slightly more than the duration of the 

minimum-search window to update the noise spectrum when the noise floor increases abruptly. In 

the recursive averaging type of algorithms [46, 79-81], the noise spectrum is estimated as a 

weighted average of the past noise estimates and the present noisy speech spectrum. The weights 

change adaptively depending on the effective SNR of each frequency bin.  In this chapter, the 

non-stationary noise estimate is updated by adaptively smoothing the noisy signal power as a sum 

of the past noise power and the present noisy signal power without the need of an explicit speech 

pause detection.  Moreover, the smoothing parameter is controlled by a linear function of a-

posteriori SNR.  

In our proposed algorithm, we have estimated and updated the noise spectrum in each 

frequency band, individually. Reproducing (2.10) for estimation of noise as a first order recursive 

equation, we obtain  

                                                                  (5.1) 

where   is the frame index at frequency   ,            is the noise power estimation (i.e. average 

noise power spectral density,                        ),  in the     frequency bin of current 

frame index    and            is the short-time power spectrum of noisy speech. Further,  

       is a time and frequency dependent smoothing parameter whose value depends on the 

noise changing rate. 

The smoothing parameter is the time-varying frequency dependent parameter that is 

adjusted by the speech presence probability. In [3, 82], the smoothing parameter        at frame 

  is selected as a sigmoid function changing with the estimate of the a-posteriori signal-to-noise 

ratio at frame    
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               (5.2) 

where parameter     in sigmoid function (5.2) affects the noise changing rate and is a constant 

with a value between 1 to 6. The parameter    in (5.2) is the center offset of the transition curve in 

sigmoid function and the value of    is around 3 to 5. A plot of smoothing parameter against the 

a-posteriori SNR at different values of   and different values of    is shown in Fig. 5.1 (i) and 

(ii), respectively. These curves are obtained with experimental conditions given in Table 5.3 and 

explained in Section 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1: Plot of smoothing parameter against the a-posteriori SNR:  i) for different values 

of   , and ii) for different values of   . 

 

It is also to be noted that, the smoothing function has also been obtained differently.  In 

[3, 82], a different function was proposed for computing        as 

               
 

          
                           (5.3) 

where     is an integer, and          is given by (5.4). 
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The updation of noise estimate is performed on a continuous manner. This is 

accomplished by controlling the smoothing factor         depending on the a-posteriori signal-

to-noise ratio at frame    , defined as 

                  
         

 

 
              
   

              (5.4) 

where, the denominator part is the average of the noise estimate of the previous   frames (value 

of     usually varying from 5 to 10). 

The slope parameter   in (5.2) controls the way in which smoothing parameter        

changes with a-posteriori SNR. Generally, larger values of    in (5.2) lead to larger values of  

       and slower noise updates, whereas smaller values of   in (5.2) give faster noise updates, 

at the risk of possible over-estimation during long voiced intervals. It results in smoothing 

parameter being close to 0 when the speech is absent in frame  , that is, the estimate of noise 

power in frame   follows rapidly the power of the noisy signal in the absence of speech. On the 

other hand, if speech signal is present, the new noisy signal power is much larger than the 

previous noise estimate. Therefore, the value of smoothing parameter increases rapidly with 

increasing the value of SNR. Hence, the noise update is slower or eventually stops because of the 

larger value of the smoothing parameter, as shown in Fig. 5.4. Theoretically, the a-posteriori SNR 

should always be 1 when noise alone is present and greater than 1 when both speech and noise are 

present.  

The main advantage of using the time-varying smoothing factor        , is that the noise 

power can be adapted differently, at different rates in the various frequency bins, and depends on 

the estimate of the a-posteriori  signal-to-noise ratio at frame     in that bin. In the next section, 

the auditory perception based improved multi-band spectral subtraction (API-MBSS) algorithm is 

elaborated which utilizes this noise estimation approach. 
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5.3. An Auditory Perception based Improved Multi-Band Spectral 

Subtraction Algorithm 

It is well-known that the sensitivity of human ear varies non-linearly in the frequency spectrum 

[84]. Therefore, the notion of critical band (CB) is important for describing hearing sensations 

such as perception of loudness, pitch, and timbre. A commonly used scale for this purpose is the 

Bark scale or critical band rate scale. Theoretically, the range of human auditory frequency 

spreads from 20 Hz to 20 kHz and covers approximately 24 CBs. However, the frequency range 

of the narrowband human voice is typically only from about 300 Hz to 3.4 kHz. The bands in the 

proposed algorithm are derived in a manner that it closely matches the psychoacoustic frequency 

scale of human ear , i.e., the critical band rate scale. 

Based on the measurements by Zwicker et al. [84, 85], the critical band rate scale can 

approximately be expressed in terms of the linear frequency as 

                                                                                      (5.5) 

Here,       is the CB rate scale in Bark, and   is the physical frequency in Hz. The underlying 

sampling rate was chosen to be 8 kHz for implementing the proposed algorithm. Fig. 5.2 shows a 

mapping between the physical (linear) frequency scale and the CB rate scale [85]. The 

corresponding critical bandwidth (CBW) of the center frequencies can be expressed by 

                            
                     (5.6) 

where    is the center frequency (Hz). Within this bandwidth, there are approximately 18 CBs as 

listed in Table 5.1 [85]. According to the specifications of center frequencies, lower and upper 

edge frequencies are given in Table 5.1. 
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 Fig. 5.2: Mapping between the physical frequency scale  

and critical band rate scale. 

 

TABLE  5.1. 

  CRITICAL BANDS OF THE HUMAN AUDITORY SYSTEM FOR  

FREQUENCY BANDWIDTH OF 4 KHZ. 

CB rate 

(Bark) 

Lower edge 

Freq. (Hz) 

Upper edge 

Freq. (Hz) 

Center 

Freq. (Hz) 

 

CBW 

(Hz) 

1 20 100 50 100 

2 100 200 150 100 

3 200 300 250 100 

4 300 400 350 100 

5 400 510 450 110 

6 510 630 570 120 

7 630 770 700 140 

8 770 920 840 150 

9 920 1080 1000 160 

10 1080 1270 1170 190 

11 1270 1480 1370 210 

12 1480 1720 1600 240 

13 1720 2000 1850 280 

14 2000 2320 2150 320 

15 2320 2700 2500 380 

16 2700 3150 2900 450 

17 3150 3700 3400 550 

18 3700 4000 3850 - 
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It is inefficient to separate the whole speech spectrum into such a large number of non-uniformly 

frequency spaced intervals, as given in Table 5.1, for our proposed algorithm. This is because it is 

very difficult to set the values of additional band over-subtraction or scale factor empirically, for 

each band separately. Therefore, after several implementations with various numbers of bands, it 

has been found that the performance of the algorithm does not improve, for bands numbering 

more than six. Thus, the critical bands, as in Table 5.1 are grouped together into six non-uniform 

bands each containing three consecutive critical bands. Therefore, the spectrum analysis is 

performed in a total number of six non-uniformly spaced frequency bands, matching closely with 

the the human auditory system. The six frequency bands are with ranges of {20 Hz ～ 300 Hz 

(Band 1), 300 Hz ～ 630 Hz (Band 2), 630 Hz ～ 1080 Hz (Band 3), 1080 Hz ～ 1720 Hz (Band 

4), 1720 Hz ～ 2700 Hz (Band 5), 2700 Hz ～ 4 kHz (Band 6)} and are tabulated in Table 5.2. 

 

TABLE  5.2. 

  THE CRITICAL BAND RATE SCALE BASED 

NON-UNIFORM BANDS FOR API-MBSS. 

Bands Frequency range 

(Hz) Band 1 20 Hz - 300 Hz 

Band 2 300 Hz - 630 Hz 

Band 3 630 Hz - 1080 Hz 

Band 4 1080 Hz -  1720 Hz 

Band 5 1720 Hz -  2700 Hz 

Band 6 2700 Hz -  4000 Hz 

 

Therefore, as in (2.18), the estimate of the clean speech spectrum in the    th
  Band is obtained  by 

           
                       

                                                

                                                                                                                   
         (5.7) 

where                

Here,      and        are the start and end frequency bins of the      Band,    is the band specific 

over-subtraction factor. Note that,     is a function of the segmental SNR.  
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In our algorithm, the over-subtraction factor has been modified for the perceptual band 

specific analysis to obtain the spectral over-subtraction. The segmental      is computed using 

spectral components of noisy speech and noise estimate               
    

  , and               
     

    
 

for each band           .  Here,     is the non-uniformly spaced frequency band number, 

      is the total number of perceptual bands. The segmental SNR of the i
th
 Band can be 

computed as  

                  
         
    
    

          
    
    

                            (5.8) 

where          
   is estimated using (5.1). For continuity of description, the expression of the band 

specific over-subtraction factor is reproduced from Chapter 2 (2.20) (see Fig. 2.3). The band 

specific over-subtraction can be calculated as 

    

                                                                                                                  

                   
         

             
                        

                                                                                                                  

        (5.9) 

The scale factor     , in (5.7), is used to provide an additional degree of control over the noise 

subtraction level in each band. The values of      is empirically determined and set to 

   

 
 

 
                                                             

                                     
  

 
      

                                                
  

 
      

                      (5.10) 

where      is the upper-end frequency of        Band and      is the sampling frequency. Since, most 

of the speech energy is present in the lower frequencies, smaller values of     are used for the low-

frequency bands in order to minimize speech distortion.  

The factors     and    can be adjusted for each critical band for different speech 

conditions to get better speech quality. Hence the estimate of the clean speech spectrum in the     

Band can be obtained by (5.7). Negative values resulting from the subtraction in (5.7) are floored 

to the noisy spectrum by setting the maximum attenuation threshold     to 0.03. In Fig. 5.3 the 

block diagram of complete auditory perception based improved multi-band spectral subtraction 

algorithm is shown.  



 

105 
 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3:  Block diagram of critical band rate scale based improved multi-band  

spectral subtraction algorithm. 

 

5.4. Experimental Results and Performance Evaluation 

This section presents the performance evaluation of the proposed speech enhancement algorithm, 

API-MBSS, described in this chapter, and its comparison with other subtractive-type algorithms. 

The noisy speech samples have been taken from NOIZEUS corpus speech database [76]. The 

NOIZEUS database is composed of 30 phonetically balanced sentences belonging to six speakers, 

three male and three female, degraded by seven different real-world noises at different SNRs. The 

corpus is sampled at 8 kHz, quantized linearly using 16 bits and filtered to simulate receiving 

frequency characteristics of telephone handsets. A total of four different utterances, from 

NOIZEUS corpus, are used in our evaluation. Every sentence has a silence segment in the 

beginning that lasts more than 0.25 ms (approx). Noise signals have different time-frequency 

distributions, and therefore a different impact on speech. Hence, eight types of noises, seven real-

world noises, as in NOIZEUS, and a computer generated white Gaussian noise, have been used 

for the evaluation. For our purpose, the sentences are degraded at varying SNR levels, i.e., at 

global SNR levels of 0 dB to 15 dB in steps of 5 dB. The real-world noises are car, train, 
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restaurant, babble, airport, street, and exhibition noise. The performance of the proposed speech 

enhancement algorithm is tested on such noisy speech samples. We have used MATLAB software 

as the simulation environment. The performance of the API-MBSS has been compared with basic 

spectral subtraction (BSS), spectral over-subtraction (SOS) and MBSS (with averaging-based and 

adaptive-based noise estimation) speech enhancement algorithms. 

For our enhancement experiments, the 8 kHz sampled noisy speech signals are quantized 

into digital signals with 16 bit resolution. The frame size is chosen to be 256 samples, i.e., a time 

frame of 32 ms, with 50% overlapping. The sinusoidal Hamming window with size 256 samples 

is applied to the noisy signal. The noise estimate is updated adaptively and continuously using the 

smoothing parameter (5.1). For calculation of smoothing parameter, the value of   and   is 

chosen to be 4 and 5, respectively in the sigmoid function (5.2). Fig. 5.4 shows the frame-by-

frame update of smoothing parameter in different frames and Table 5.3, depicts the experimental 

conditions used in our implementation. 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 5.4: Smoothing parameter updation. 
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TABLE 5.3. 

                       EXPERIMENTAL CONDITIONS. 

Sampling rate 

 

8 kHz or 8000 samples/sec. 

  

Quantization bit rate 

 

16 bit 

 

Frame length 

 

32 ms (256 sample points) 

 

Overlap 

 

16 ms (125 sample points, 50% 

overlapping frames) 

FFT length 256 points FFT 

Window function 

 

Hamming window (256 sampless) 

 

Speech Corpus 

 

NOIZEUS 

 

Noises 

(7 Real-world noise 

and a computer 

generated noise) 

(Car, Train, Restaurant,  Babble, 

Airport, Street, Exhibition), and 

(White Gaussian) 

 

Objective evaluation 

 

SNR, SegSNR, ISD, and PESQ 

 

Subjective evaluation 

 

Spectrogram and listening tests 

(MOS) 
 

 

For the uniformly frequency spaced multi-band spectral subtraction (MBSS) algorithm, 

the over-subtraction factor    is computed for each frequency band [21]. In this algorithm, four 

uniformly spaced frequency bands {60 Hz ～ 1 kHz (Band 1), 1 kHz ～ 2 kHz (Band 2), 2 kHz 

～ 3 kHz (Band 3), 3 kHz ～ 4 kHz (Band 4)} have been taken. The value of over-subtraction 

factor     is determined using Fig. 2.4 and (2.20), and the value of additional over-subtraction 

factor       for each band is set as per (2.21). The value of spectral flooring parameter    is taken 

as 0.03 and noise estimate is updated during the silence frames by using averaging [20].   

For the implementation of the proposed auditory perception based improved multi-band 

spectral subtraction (API-MBSS) algorithm, we compute    in accordance to (5.9) and then apply 

spectral over-subtraction in each band, independently. The number of bands that gives an optimal 

speech quality is found to be six, and these six non-uniformly frequency spaced bands have been 

taken as per the critical band rate scale, given in Table 5.2. The noise is estimated by using the 

adaptive noise estimation approach in each band as given in Section 5.2. The value of      is fixed 
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as per (5.10) and the value of other parameters have been taken to be same as the reference MBSS 

algorithm [21]. The performance of API-MBSS is evaluated using both objective measures and 

subjective listening tests.  

The input SNR vs. output SNR of API-MBSS in comparison to MBSS algorithm, spectral 

over-subtraction (SOS) algorithm and basic spectral subtraction (BSS) algorithm for real-world 

noises and white Gaussian noises has been shown in Table 5.4. The amount of noise reduction is 

usually measured with the SNR improvement which is given by the difference between input 

SNR and output SNR. The SNR improvements for BSS, SOS, MBSS, and API-MBSS algorithms 

are presented in Table 5.5. The SNR measure does not demonstrate much consistency in its 

performance, as suggested by informal listening tests. Therefore, apart from SNR, three other 

objective measures, namely the segmental SNR (SegSNR), Itakura-Saito distortion (ISD), and 

perceptual evaluation of speech quality (PESQ) are used under various noisy environments to 

evaluate and compare the performance of the proposed speech enhancement algorithm. SegSNR 

is defined as the average ratio of signal energy to noise energy per frame, and is regarded to be 

better correlated with perceptual quality than the SNR. In other words, it is well-known that Seg 

SNR is more accurate in indicating the speech distortion than the overall SNR. The higher value 

of the SegSNR indicates the weaker speech distortions. The input SegSNR vs. output SegSNR 

and ISD of API-MBSS over MBSS, and SOS algorithm for real-world noises and computer 

generated white Gaussian noises has been shown in Table 5.4. The SegSNR improvements for 

SOS, MBSS, and API-MBSS algorithms are presented in Table 5.5. Fig. 5.5 shows the 

performance of API-MBSS algorithm  at various real-world noises and white Gaussian noise at 

different SNR levels and Fig. 5.6 shows the performance improvement of API-MBSS at various 

real-world noises and white Gaussian noise at different SNR levels over SOS and MBSS. 

From the results given in Table 5.4, Table 5.5, and Fig. 5.5 - Fig. 5.6, we can conclude 

that the API-MBSS shows superior results for all types noises (non-stationary and stationary) at 

low SNR (≤ 10 dB) except for the case of restaurant noise, while for SNR (≈ 15 dB) it shows 

better results for car, exhibition, white (stationary) noises and gives poorer results for street noise. 
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Also, this proposed algorithms shows better performance than multi-band spectral subtraction and 

basic spectral subtraction algorithm at all levels of SNRs.  Further, API-MBSS shows comparable 

performance with spectral over-subtraction algorithm except for street noise case. For the 

stationary noise (AWGN) case, our results lie in the middle.  

 Table 5.6 presents the PESQ score results and MOS score results of enhanced speech by 

API-MBSS in comparison with BSS, SOS and MBSS algorithm. The PESQ score results of 

enhanced speech by API-MBSS is more for SNR > 5 dB in all noisy conditions except for white 

noise while MOS score is also more except for car noise, babble noise and white noise cases. 

Objective measures do not give indications about the structure of the remnant noise. 

Speech spectrogram constitutes a well-suited tool for observing this structure. Fig. 5.8 shows the 

spectrogram obtained with the proposed algorithm for the speech sentence (sp10) degraded by car 

noise, train noise, babble noise, restaurant noise, airport, street, exhibition, and white noise, 

respectively at 10 dB SNR.  

In Fig. 5.9, the temporal waveforms are shown which are obtained with API-MBSS for 

the speech sentence (sp10) degraded by car noise, train noise, babble noise, restaurant noise, 

airport, street, exhibition, and white noise, respectively at 10 dB SNR.  Fig. 5.10 - Fig. 5.13 shows 

the temporal waveforms and spectrogram of the enhanced speech obtained with the proposed 

algorithm for the speech sentence pronounced by male speaker (sp10, sp 6, sp1), female speaker 

(sp12) and degraded by car noise at 10 dB SNR in comparison with MBSS, and API-MBSS 

algorithm where the noise is estimated with averaging-based and adaptive-based noise estimation. 

It can be seen from Figs. 5.8 - Fig. 5.13 that the reduction of the musical structure of the 

remnant noise by the proposed algorithm is more pronounced compared to MBSS algorithm. 

Therefore, speech enhanced with the proposed algorithm is more pleasant and the remnant noise 

has a "perceptually white quality" while distortion remains acceptable. Also, the informal 

listening tests indicate that the API-MBSS not only reduces the low-frequency noise, but also 

eliminates the high-frequency noise substantially. This confirms the values of the objective 

measures given in Table 5.4, Table 5.5 and it is validated by listening tests, given in Table 5.6.   
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Subjective tests are also performed for comparison with different subtractive-type 

algorithms. These tests confirm that the proposed enhancement algorithm leads to the better result 

for a human listener compared to other subtractive-type algorithms. Fig. 5.7 shows a scatter plot 

of MOS vs. PESQ scores of API-MBSS for various types of real-world noises and a computer 

generated white Gaussian noise.  In Fig 5.7, a straight line with a constant slope is provided as a 

reference. It is observed that the PESQ scores are better correlated with MOS scores for airport, 

street, and car noise in comparison to train and babble noises for most of the conditions.    

 

 

 

 

 

 

 

 

 

 

 

 

           Fig. 5.5:  Output SegSNR of API-MBSS for car, train, restaurant, babble, airport, street, 

exhibition, and white Gaussian noises. 
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Fig. 5.6: SegSNR improvement of API-MBSS over SOS and MBSS for car, train, restaurant, 

babble, airport, street, exhibition, and white Gaussian noises. 
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Fig. 5.7: Scattered plot of PESQ score vs. mean MOS score of API-MBSS for car,  

   babble, restaurant, train, airport, street, exhibition, and white noises. 
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TABLE 5.4. 

OUTPUT SNR (GLOBAL), OUTPUT SEGSNR AND ITAKURA–SAITO DISTANCE (ISD) MEASURE 

RESULTS OF ENHANCED SPEECH SIGNALS AT (0, 5, 10, 15) DB SNRS. ENGLISH 

SENTENCE sp10.wav PRODUCED BY A MALE SPEAKER IS USED AS ORIGINAL SPEECH SIGNAL. 

Noise 

Type 

Enhancement 

Algorithms 

SNR (dB) SegSNR (dB) ISD 

0 dB 5 dB 10 dB 15 dB 0 dB 5 dB 10 dB 15 dB 0 dB 5 dB 10 dB 15 dB 

Car BSS 0.95 1.40 1.59 1.71 0.86 1.17 1.28 1.33 0.84 0.29 0.08 0.212 

SOS 4.39 9.42 12.89 16.01 4.30 9.19 12.68 15.78 2.29 1.48 0.90 0.78 

MBSS 2.75 7.05 9.61 12.85 2.68 6.86 9.39 12.59 2.27 1.43 0.89 0.76 

API-MBSS 4.34 9.31 12.30 15.63 4.23 9.05 12.05 15.41 2.28 1.45 0.89 0.78 

Train BSS 1.24 1.43 1.59 1.67 1.12 1.20 1.29 1.32 0.17 0.25 0.30 0.099 

SOS 5.54 8.04 11.91 15.74 5.34 7.81 11.73 15.53 2.15 1.41 1.13 0.89 

MBSS 4.07 5.73 9.55 11.78 3.88 5.53 9.35 11.59 2.15 1.40 1.34 0.86 

API-MBSS 5.32 7.83 11.80 14.79 5.12 7.60 11.59 14.58 2.15 1.40 1.05 0.87 

Restaurant BSS 2.07 1.59 1.84 1.64 1.75 1.27 1.37 1.30 0.48 .002 0.125 0.066 

SOS 1.72 7.20 9.81 15.13 1.48 7.00 9.59 14.95 1.42 1.02 0.82 2.79 

MBSS 2.66 6.02 9.54 11.18 2.52 5.84 9.29 10.90 1.11 1.27 0.65 2.70 

API-MBSS 2.35 7.45 11.52 14.36 2.14 7.25 9.96 14.38 1.18 0.93 0.51 2.87 

Babble BSS 1.47 1.52 1.63 1.74 1.19 1.21 1.29 1.35 0.35 0.42 0.073 0.023 

SOS 2.74 7.34 11.52 14.74 2.57 7.05 11.33 14.51 1.61 1.49 2.12 0.72 

MBSS 2.66 5.95 9.54 11.81 2.52 5.74 9.31 11.52 1.22 1.21 1.42 0.43 

API-MBSS 3.06 7.45 11.52 14.36 2.87 7.17 11.31 14.11 1.36 1.44 1.35 0.71 

Airport BSS 1.66 1.52 1.62 1.72 1.43 1.23 1.30 1.33 0.59 0.06 0.016 0.14 

SOS 3.60 8.30 11.04 15.68 3.33 8.06 10.85 15.48 1.80 0.91 1.06 0.75 

MBSS 3.93 6.75 9.06 12.04 3.78 6.53 8.81 11.77 1.28 0.90 1.05 0.77 

API-MBSS 5.31 7.58 11.62 15.01 5.26 7.43 11.44 14.81 1.49 0.91 1.05 0.76 

Street BSS 2.49 1.51 1.66 1.55 1.71 1.25 1.31 1.29 0.13 0.51 0.067  0.14 

SOS 0.02 7.14 11.17 14.61 -0.17 6.96 11.33 14.41 1.04 1.46 5.15 1.10 

MBSS 1.88 5.60 9.42 9.93 1.71 5.39 9.22 9.73 1.04 1.11 5.14 0.97 

API-MBSS 9.81 7.19 11.50 12.21 9.81 7.02 11.36 12.0 1.04 1.24 5.15 1.01 

Exhibition BSS 2.08 1.63 1.66 1.74 2.01 1.34 1.35 1.37 0.11 0.10 0.38   0.07 

SOS 1.29 7.31 11.13 15.12 1.07 7.10 10.9 14.91 1.69 1.10 1.32 0.60 

MBSS 2.24 7.18 9.09 12.36 2.05 6.99 8.92 12.13 1.68 1.06 1.21 0.51 

API-MBSS 7.04 9.13 11.07 15.40 7.01 8.99 10.94 15.20 1.69 1.10 1.32 0.58 

White BSS 1.42 1.59 1.70 1.78 1.18 1.31 1.34 1.38 0.60 0.38 0.25 0.214 

SOS 6.98 10.30 13.65 16.67 6.75 10.1 13.43 16.45 2.46 1.94 1.46 0.99 

MBSS 6.10 8.80 11.93 13.46 5.90 8.63 11.77 13.26 2.40 1.88 1.45 0.99 

API-MBSS 4.28 10.26 13.61 16.81 4.07 10.0 13.40 16.63 2.47 1.95 1.43 1.10 

  



 

114 
 

TABLE 5.5. 

 SNR IMPROVEMENT (GLOBAL), AND SEGSNR IMPROVEMENT RESULTS OF ENHANCED 

SPEECH SIGNALS AT (0, 5, 10, 15) DB SNRS. sp10.wav UTTERANCE PRODUCED BY A MALE 

SPEAKER IS USED AS ORIGINAL SPEECH SIGNAL.  

Noise 

Type 

Enhancement 

Algorithms 

SNR improvement (dB) SegSNR improvement (dB) 

0 dB 5 dB 10 dB 15 dB 0 dB 5 dB 10 dB 15 dB 

Car BSS 0.95 -3.6 -8.41 -13.29 0.86 -3.83 -8.72 -13.67 

SOS 4.39 4.42 2.89 1.01 4.30 4.19 2.68 0.78 

MBSS 2.75 2.05 -0.39 -2.15 2.68 1.86 -0.61 -2.41 

API-MBSS 4.34 4.31 2.30 0.63 4.23 4.05 2.05 0.41 

Train BSS 1.24 -3.57 -8.41 -13.33 1.12 -3.8 -8.71 -13.68 

SOS 5.54 3.04 1.91 .74 5.34 2.81 1.73 0.53 

MBSS 4.07 0.73 -0.45 -3.22 3.88 0.53 -0.65 -3.41 

API-MBSS 5.32 2.83 1.80 -0.21 5.12 2.60 1.59 -0.42 

Restaurant BSS 2.07 -3.41 -8.16 -13.36 1.75 -3.73 -8.63 -13.7 

SOS 1.72 2.20 0.19 0.13 1.48 2.00 -0.41 -0.05 

MBSS 2.66 1.02 -0.46 -3.82 2.52 0.84 -0.71 -4.1 

API-MBSS 2.35 2.45 1.52 -0.64 2.14 2.25 -0.04 -0.62 

Babble BSS 1.47 -3.48 -8.37 -13.26 1.19 -3.79 -8.71 -13.65 

SOS 2.74 2.34 1.52 -0.26 2.57 2.05 1.33 -0.49 

MBSS 2.66 0.95 -0.46 -3.19 2.52 0.74 -0.69 -3.48 

API-MBSS 3.06 2.45 1.52 -0.64 2.87 2.17 1.31 -0.89 

Airport BSS 1.66 -3.48 -8.38 -13.28 1.43 -3.77 -8.7 -13.67 

SOS 3.60 3.30 1.04 0.68 3.33 3.06 0.85 0.48 

MBSS 3.93 1.75 -0.94 -2.96 3.78 1.53 -1.19 -3.23 

API-MBSS 5.31 2.58 1.62 0.01 5.26 2.43 1.44 -0.19 

Street BSS 2.49 -3.49 -8.34 -13.45 1.71 -3.77 -8.69 -13.71 

SOS 0.02 2.14 1.17 -0.39 -0.17 1.96 1.33 -0.59 

MBSS 1.88 0.60 0.58 -5.07 1.71 0.39 -0.78 -5.27 

API-MBSS 9.81 2.19 1.50 -2.79 9.81 2.02 1.36 -3 

Exhibition BSS 2.08 -3.37 -8.38 -13.26 2.01 -3.66 -8.65 -13.63 

SOS 1.29 2.31 1.13 0.12 1.07 2.10 0.9 -0.09 

MBSS 2.24 2.18 -0.91 -2.64 2.05 1.99 -1.08 -2.87 

API-MBSS 7.04 4.13 1.07 0.40 7.01 3.99 0.94 0.20 

White BSS 1.42 -3.41 -8.3 -13.22 1.18 -3.69 -8.66 -13.62 

SOS 6.98 5.30 2.63 1.67 6.75 5.1 3.43 1.45 

MBSS 6.10 3.80 1.93 -1.54 5.90 3.63 1.77 -1.74 

API-MBSS 4.28 5.26 3.61 1.81 4.07 5.00 3.40 1.63 
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TABLE 5.6. 

RESULTS OF NOISE REDUCTION SPEECH QUALITY TEST. 

Noise 

Type 

Enhancement 

Algorithms 

PESQ Score MOS Score 

0 dB 5 dB 10 dB 15 dB 0 dB 5 dB 10 dB 15 dB 

Car BSS 1.749 1.925 2.154 2.213  

SOS 1.622 2.163 2.579 2.831 2.5 3.3 4 4.4 

MBSS 1.496 1.982 2.259 2.602 2.2 3 3.8 4.3 

API-MBSS 1.435 1.625 2.432 2.640 1.1 2 3.7 4.5 

Train BSS 1.873 1.666 2.079 2.156  

SOS 1.720 1.888 2.394 2.730 2.3 3.2 4 4.5 

MBSS 1.513 1.696 2.129 2.382 2.2 3 3.9 4.3 

API-MBSS 1.522 1.611 2.143 2.327 1.6 2.5 3.6 4.3 

Restaurant BSS 1.682 1.843 2.002 2.165  

SOS 1.785 2.157 2.362 2.811 2.6 3.5 4 4.4 

MBSS 1.842 2.062 2.367 2.603 2.4 3.2 4 4.3 

API-MBSS 1.633 1.958 2.321 2.563 2.6 3.3 4.1 4.5 

Babble BSS 1.481 1.924 2.110 2.215  

SOS 1.903 2.209 2.562 2.699 2 3 3.9 4.4 

MBSS 1.812 2.208 2.394 2.650 1.8 2.8 3.9 4.4 

API-MBSS 1.334 2.105 2.436 2.657 1 2.2 3.6 4.3 

Airport BSS 1.407 1.939 2.092 2.204  

SOS 1.891 2.222 2.476 2.836 2.6 3.4 4 4.2 

MBSS 1.790 2.106 2.323 2.681 1.7 2.9 3.6 4.4 

API-MBSS 1.462 2.117 2.424 2.729 2 3.3 3.9 4.5 

Street BSS 1.511 1.833 2.045 2.018  

SOS 1.578 2.013 2.406 2.536 2.4 2.9 3.8 4.4 

MBSS 1.592 1.933 2.249 2.213 1.9 2.8 3.5 4.3 

API-MBSS 1.402 2.017 2.304 2.297 2.2 3.1 3.9 4.4 

Exhibition BSS 1.721 1.655 2.109 2.127  

SOS 1.799 2.004 2.267 2.694 2.4 3.2 3.8 4.2 

MBSS 1.527 1.977 1.968 2.517 2 2.9 3.8 4.4 

API-MBSS 1.488 1.979 2.097 2.716 2 3.1 3.8 4.3 

White BSS 1.663 1.957 2.087 2.151  

SOS 1.912 2.232 2.483 2.800 3.0 3.7 4.2 4.4 

MBSS 1.655 1.971 2.303 2.563 3 3.7 4.3 4.5 

API-MBSS 1.535 1.825 2.229 2.676 2.2 3.3 3.9 4.4 
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Fig. 5.8 (I): Speech spectrogram of sp10.wav utterance, "The sky that morning was clear and 

bright blue", by a male speaker from the NOIZEUS corpus (From top to bottom): (a) clean 

speech; (b, d, f, h) speech degraded by car noise, train noise, babble noise and restaurant 

noise, respectively (10 dB SNR); and (c, e, g, i) corresponding enhanced speech.  
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 Fig. 5.8 (II): Speech spectrogram of sp10.wav utterance, "The sky that morning was clear 

and bright blue", by a male speaker from the NOIZEUS corpus (From top to bottom): (j, 

l, n, p) speech degraded by airport noise, street noise, exhibition noise, and white noise 

respectively (10 dB SNR); and (k, m, o, q) corresponding enhanced speech. 
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 Fig. 5.9 (I): Temporal waveforms of sp10.wav utterances, "The sky that morning was clear 

 and bright blue", by a male speaker from the NOIZEUS corpus (From top to bottom): (b, d, 

 f, h) speech degraded by car noise, train noise, babble noise, and restaurant noise, 

 respectively (10 dB SNR); and (c, e, g, i) corresponding enhanced speech. 
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 Fig. 5.9 (II): Temporal waveforms of sp10.wav utterances, "The sky that morning was clear 

 and bright blue", by a male speaker from the NOIZEUS corpus (From top to bottom): (j, l, 

 n, p) speech degraded by airport noise, street noise, exhibition noise, and white noise 

 respectively (10 dB SNR); and (k, m, o, q) corresponding enhanced speech. 
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Fig. 5.10 (I): Temporal waveforms  and speech spectrogram of sp10.wav utterance, "The sky 

that morning was clear and bright blue", by a male speaker from the NOIZEUS corpus (From 

top to bottom): (a) clean speech (PESQ = 4.5); (b) speech degraded by car noise (10 dB SNR) 

(PESQ = 2.169); (c) speech enhanced by MBSS (PESQ = 2.259); (d) speech enhanced by 

MBSS (with averaging based noise estimation replaced by adaptive noise estimation). 
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  Fig. 5.10 (II): Temporal waveforms and speech spectrogram of sp10.wav utterance, "The 

sky that morning was clear and bright blue", by a male speaker from the NOIZEUS corpus 

(From top to bottom): (e) speech enhanced by API-MBSS (with adaptive noise estimation 

replaced by averaging approach); and (f) speech enhanced by API-MBSS (PESQ = 2.432). 
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Fig. 5.11 (I): Temporal waveforms and speech spectrogram with sp 6.wav utterance, "Men 

strive but seldom get rich", by a male speaker from the NOIZEUS corpus (From top to 

bottom): (a) clean speech (PESQ = 4.5); (b) noisy speech (degraded by car noise at 10 dB 

SNR) (PESQ = 2.205); (c) speech enhanced by MBSS (PESQ = 2.157); (d) speech 

enhanced by MBSS (with averaging based noise estimation replaced by adaptive noise 

estimation). 

 

  



 

123 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11(II): Temporal waveforms and speech spectrogram with sp6.wav utterance, "Men 

strive but seldom get rich", by a male speaker from the NOIZEUS corpus (From top to 

bottom): (e) speech enhanced by API-MBSS (with adaptive noise estimation replaced by 

averaging approach); and (f) speech enhanced by API-MBSS (PESQ = 2.330). 
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 Fig. 5.12 (I): Temporal wave forms and speech spectrogram of  sp1.wav utterance, "The 

 birch canoe slid on the smooth planks", by a male speaker from the NOIZEUS corpus (From 

 top to bottom): (a) clean speech (PESQ = 4.5); (b) noisy speech (degraded by car noise at 5 

 dB SNR); (c) speech enhanced by MBSS (PESQ = 2.030); (d) speech enhanced by MBSS 

 (with averaging based noise estimation replaced by adaptive noise estimation). 
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Fig. 5.12 (II): Temporal waveforms and speech spectrogram of sp1.wav utterance, "The 

birch canoe slid on the smooth planks", by a male speaker from the NOIZEUS corpus (From 

top to bottom): (e) speech enhanced by API-MBSS (with adaptive noise estimation replaced 

by averaging approach); and (f) speech enhanced by API-MBSS (PESQ = 2.169). 
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Fig. 5.13 (I): Temporal waveforms and speech spectrogram of sp12.wav utterance, "The 

drip of the rain made a pleasant sound",  by a female speaker from the NOIZEUS corpus 

(From top to bottom): (a) clean speech (PESQ = 4.5); (b) noisy speech (degraded by car 

noise at 10 dB SNR) (PESQ = 2.043); (c) speech enhanced by MBSS (PESQ = 2.005); (d) 

speech enhanced by MBSS (with averaging based noise estimation replaced by adaptive 

noise estimation). 
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 Fig. 5.13 (II): Temporal waveforms and speech spectrogram of sp12.wav utterance, "The 

drip of the rain made a pleasant sound", by a female speaker from the NOIZEUS corpus 

(From top to bottom): (e) speech enhanced by API-MBSS (with adaptive noise estimation 

replaced by averaging approach); and (f) speech enhanced by API-MBSS (PESQ = 2.483). 
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5.5. Summary 

In this chapter, critical band rate scale (an auditory perception) based improved multi-band 

spectral subtraction,  API-MBSS, algorithm is presented for enhancement of speech degraded by 

non-stationary or colored noise. As the sensitivity of human ear is a non-linear function of 

frequency, the bands in API-MBSS has been kept non-uniformly frequency spaced. The proposed 

algorithm, API-MBSS, reduces noise tones efficiently that appear in the case of uniformly 

frequency spaced multi-band spectral subtraction (MBSS), BSS and SOS algorithms. 

 In our algorithm, the three adjacent critical bands are grouped together into six non-

uniformly spaced frequency bands that broadly resembles with the non-uniform frequency 

spacing given by the human auditory system. The algorithm presented in this chapter uses a noise 

estimation algorithm that does not the need of voice activity detection for noise estimation. This 

approach estimates and updates the noise spectrum continuously, even during speech activity 

from each band. 

Simulations with different type of noises and MOS scores of the subjective listening test 

reveal that the API-MBSS algorithm reduces the remnant noise tones efficiently that appear in the 

case of conventional multi-band spectral subtraction algorithm, BSS, SOS, and improves the 

overall quality of degraded speech at low SNRs. Furthermore, the API-MBSS has strong 

flexibility to adapt any complicated rigorous speech environment by adjusting the over-

subtraction factor for each non-uniformly frequency spaced band, separately.   

The API-MBSS shows superior results for all types noises (non-stationary and stationary) 

at low SNR (≤ 10 dB) except restaurant noise, while for SNR (≈ 15 dB) it shows better results for 

car, exhibition, white (stationary)  noises and gives poorer results for street noise. Also, this 

proposed algorithms shows better performance than multi-band spectral subtraction and basic 

spectral subtraction algorithm at all levels of SNRs; also, gives comparable performance with 

spectral over-subtraction algorithm except for street noise case.  
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In the next chapter, a perceptually motivated stationary WPT based improved multi-band 

spectral over-subtraction algorithm is proposed for enhancement of degraded speech. The 

stationary WPT and its advantages over WPT have already been described in Chapter 3. 
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Chapter 6  

Perceptually Motivated Stationary WPT based 

Improved Spectral Over-Subtraction 

 

6.1. Introduction 

The front-end time-frequency decomposition for the algorithms proposed in chapters 4 and 5 is 

obtained using STFT, and the speech enhancement is performed on the transform coefficients. For 

analyzing non-stationary signals with frequent transients, such as speech, wavelet transform have 

been proved to be is an important tool and has been used in various speech applications [30-36]. 

The wavelet transform divides a signal into different frequency components, and each component 

can be analyzed with a resolution matched to its scale. Since the speech signal is non-stationary in 

nature and contain transients, therefore spectral subtraction algorithms with wavelet transform 

based time-frequency decomposition is likely to give better performance than classical methods 

employing STFT. This is more so, as the background noise taken for our speech enhancement 

algorithms is also of non-stationary nature. 

Because of ease of implementation using binary filterbank structures, discrete wavelet 

transform (DWT) has been used for many speech applications structures. It also has the advantage  
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in the context  of  auditory  inspired  time-frequency  decomposition because of its octave band or 

logarithmic spectrum. In this context, the extension of DWT, namely wavelet packet transform 

(WPT), is suitable for matching the auditory frequency scale more closely with the frequency 

bands available in WPT. The over-sampled filterbank realization of WPT i.e., stationary WPT 

(SWPT) has been utilized instead of the critically sampled WPT. The advantage of using SWPT is 

that it does not suffer from the shift-variance problem as in WPT. Also, both for the low and high 

frequency band, we can work with maximum temporal resolution available. The stationary 

wavelet packet transform (SWPT) overcomes the shift-invariance problem by removing the 

down-sampling at each decomposition level [63, 64].  Also, the length of the approximation and 

detail coefficients at each level are of same length as the incoming signal. In general, the major 

drawback of speech enhancement in wavelet packet domain is that it contains substantial signal 

distortion because of down-sampling at each level of decomposition and high computational load, 

as described in Chapter 3. Although perceptual wavelet packet decomposition  (PWPD) leads to 

improved speech quality and reduces computational load but speech distortion causes loss of 

information, caused by down-sampling, still remains as a problem which reduces the intelligibility 

and perceptual quality of enhanced speech signal [30, 32, 34].    

It is well-known that the human auditory system operates like a non-uniform filterbank 

and humans are capable of detecting the desired speech in various noisy environments. This has 

been exploited in the proposed algorithm in chapter 5. In this chapter also, the perceptual 

properties of human auditory system has been exploited and the SWPT is obtained to closely 

match the perceptual frequency scale. The proposed algorithm in this chapter also employs the 

improved spectral over-subtraction algorithm to estimate the noise from each subband by using 

the noise estimate adaptively. The proposed algorithm, thus, utilizes the characteristics of the 

subband signal in the temporal domain separately, in accordance to the perceptual frequency 

scale. 

In [67], a speech enhancement system is proposed which integrates bark scaled filterbank 

and Wiener filtering, and modified according to speech presence uncertainty. Bark scaled 
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filterbank is obtained from a PWPD tree and adjusting five levels of full WPD tree of speech 

signal according to critical bands. The resultant decomposition tree structure is called as bark 

scaled wavelet packet decomposition (BS-WPD). The drawback of the Wiener filtering which is 

used for enhancement of frequency bands of bark scaled filterbank in [67] contains large remnant 

musical noise.  

In [68], a method using un-decimated wavelet packet perceptual filterbanks and minimum 

mean square error short-time spectral amplitude (MMSE-STSA) estimation is proposed to 

enhance the degraded speech. The drawback of this method is that it uses the voice activity 

detector (VAD) for estimation of noise power spectral density during speech pauses. The 

proposed perceptually motivated stationary WPT based speech enhancement algorithm does not 

require voice activity detection, and explained further below. 

The perceptually motivated stationary WPT based improved multiband spectral over-

subtraction (PMS-MBSS) algorithm proposed in this chapter where the front-end decomposition 

of the degraded speech in different subbands is performed by temporally processing it using a 

perceptually motivated stationary wavelet packet filterbank (PM-SWPFB). The proposed 

algorithm also incorporates an improved version of the spectral over-subtraction (I-SOS) 

algorithm for the reduction of the non-stationary or colored noise in the degraded speech. The 

PM-SWPFB is obtained by selecting the stationary wavelet packet tree in such a manner that it 

matches closely with the critical band structure of the psychoacoustic model of human auditory 

system. After the decomposition of the input noisy speech signal by the PM-SWPFB, the I-SOS 

algorithm is used to estimate clean speech from each of the subbands. The noise estimation 

technique for the I-SOS is done in each subband separately, without the need for explicit speech 

silence detection. Further, the subband noise estimate is updated by adaptively smoothing the 

noisy signal power. The smoothing parameter in each subband is controlled by a function of the 

estimated signal-to-noise ratio.  

The performance of the proposed speech enhancement algorithm is evaluated objectively 

by signal-to-noise ratio and subjectively by subjective listening test. The results confirm that the 
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proposed speech enhancement system is capable of reducing noise with small amount of speech 

degradation which remains acceptable in real-world environments. The overall performance of the 

proposed algorithm is found to be superior to several competitive methods, for some type of noise 

conditions. 

The remaining part of the chapter is organized as follows. In Section 6.2, the proposed 

speech enhancement algorithm is described in detail. Section 6.3 explains the design of 

perceptually motivated stationary wavelet packet filterbank. In Section 6.4, the noise estimation 

approach is details. Section 6.5 describes the improved spectral over-subtraction algorithm in 

detail. In Section 6.6 experimental results and performance evaluation is given. In this section, 

sub-section (i.e. Section 6.5.1) gives the approach for selection of wavelet filter. Finally, Section 

6.7 concludes this chapter. 

 

6.2. Stationary WPT based Improved Spectral Over-Subtraction Speech 

Enhancement Algorithm 

The block diagram of the perceptually motivated stationary WPT based improved multiband 

spectral over-subtraction (PMS-MBSS) speech enhancement algorithm, as proposed in this 

chapter is shown in Fig. 6.1. The steps of PMS-MBSS algorithm are as follows: 

 

i) Firstly, the perceptually motivated stationary wavelet packet filterbank (PM-SWPFB) is 

applied to decompose the input noisy speech signal      into non-uniform subband 

signals       . The detail of stationary WPT is explained in Section 3.7 of Chapter 3 and 

the construction of the perceptually motivated stationary (PM-SWPFB) has been 

explained in detail in Section 6.3 of this chapter. 

ii) Secondly, we use an improved spectral over-subtraction (I-SOS) algorithm, to estimate 

the speech in each subband signal by using an adaptive noise estimation approach. The 

noise estimation approach is explained in section 6.4 and subsequently in section 6.5; the 
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I-SOS is presented. The block diagram of the speech enhancement in each subband is 

shown in Fig. 6.2. 

iii) Finally, the enhanced speech signal          is reconstructed by the stationary wavelet 

packet filterbank synthesis stage. 

 

 

 

 

 

 

 

 

         Fig. 6.1:  Block diagram of proposed speech enhancement algorithm, PMS-MBSS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Fig. 6.2: Block diagram improved spectral over-subtraction algorithm. 
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6.3. Construction of Perceptually Motivated Stationary Wavelet Packet    

Filterbank (PM-SWPFB) 

The unique feature of auditory processing of human is existence of critical bands (CBs). When the 

critical bands are placed next to each other, the critical band rate scale is obtained. This critical 

band rate scale is based on the fact that our hearing system analyses a broad spectrum in parts 

corresponding to CBs. Thus, for wavelet based speech processing, the WP tree is often chosen so 

that the incoming signal is analyzed and processed with bandwidths of one CB. Here, for the 

stationary WPT based decomposition, the wavelet packet tree is selected to approximate the CBs 

of the psychoacoustic model as close as possible, so that the signal can be analyzed and processed 

in accordance to the perceptual frequency scale.  

The critical band scale is also known as Bark scale, where one Bark is referred as the 

bandwidth of one critical band. Based on the measurements by Zwicker et al. [84, 85], an 

approximate analytical expression to describe the relationship between linear frequency and 

critical band number (in Bark) is 

              
        

    
             

 

    
 
 
                       (6.1) 

Here,     is the critical band number in Bark, and     is the linear frequency in Hertz. The 

corresponding critical bandwidth (CBW), refers to the non-uniform frequency response of the 

human ear, of the center frequencies can be expressed by  

                      
  

    
 
 
 
    

            (6.2) 

where     is the center frequency in Hertz. Theoretically, the range of audio frequency spreads 

from 20 Hz to 20 kHz. However, the frequency range of the narrowband speech of human voice is 

typically only from about 300 Hz to 3.4 kHz, where the sampling rate is chosen to be 8 kHz. 

Within the signal bandwidth, there are approximately 17 CBs as listed in Table 6.1 [85].  

For a given sampling rate of    , the frequency bandwidth of stationary wavelet packet 

decomposition (SWPD) at the     level [65] is 
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                                     (6.3) 

where        represents the frequency bandwidth corresponding to level and node         in 

SWPT tree,    is the maximum number of levels             ;    is the position of node or shift, 

where            −     and    is the sampling rate. 

 According to the specifications of center frequencies       , CBW       , lower      , 

and upper      cut-off frequencies given in Table 6.1, the tree structure of the PM-SWPFB can be 

constructed as shown in Fig. 6.3 (a). The corresponding frequency bandwidth of the PM-SWPFB 

is shown in Fig. 6.3 (b).  

 

TABLE 6.1. 

 CB RATE SCALE,    AND PERCEPTUALLY MOTIVATED STATIONARY WAVELET 

 PACKET TREE FOR SAMPLING FREQUENCY OF 8 KHZ. 

  

[Bark] 

Zwicker's Critical Band 

(Hz) 

Perceptually Motivated 

Wavelet Packet Tree (Hz) 

                        

1 0 100 50 100 0 125 62.5 125 

2 100 200 150 100 125 250 187.5 125 

3 200 300 250 100 250 375 312.5 125 

4 300 400 350 100 375 500 437.5 125 

5 400 510 450 110 500 625 562.5 125 

6 510 630 570 120 625 750 687.5 125 

7 630 770 700 140 750 875 812.5 125 

8 770 920 840 150 875 1000 937.5 125 

9 920 1080 1000 160 1000 1250 1125 250 

10 1080 1270 1170 190 1250 1500 1375 250 

11 1270 1480 1370 210 1500 1750 1625 250 

12 1480 1720 1600 240 1750 2000 1875 250 

13 1720 2000 1850 280 2000 2250 2125 250 

14 2000 2320 2150 320 2250 2500 2375 250 

15 2320 2700 2500 380 2500 3000 2750 500 

16 2700 3150 2900 450 3000 3500 3250 500 

17 3150 3700 3400 550 3500 4000 3750 500 
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Fig. 6.3: (a) The tree structure of the proposed PM-SWPFB, and (b) the frequency bandwidths for 

the PM-SWPFB tree. 
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It contains 5 decomposition stages to approximate these 17 CBs which correspond to wavelet 

packet coefficient sets         . More precisely,          defines the     coefficient of the     

subband at       decomposition stage of PM-SWPFB, where          ,               , and  

                 .  

The resulting 17 band PM-SWPFB of the critical band rate scale and the CBW are plotted 

in Fig. 6.4 (a) and Fig. 6.4 (b), respectively. It can be observed easily observed that the 

perceptually motivated wavelet tree closely matches the critical band structure as proposed by 

Zwicker [85].  

 

 

 

 

 

 

 

 

 

 

 

           Fig. 6.4:  Comparison of the perceptually motivated stationary wavelet packet filterbank 

decomposition tree with Zwicker's model of perceptual frequency scale:  (a) critical 

bandwidth as a function of centre frequency, and (b) critical band rate scale as a function 

of frequency. 

 

6.4. Noise Estimation  

The noise estimate can have a major impact on the quality of enhanced signal. If the noise 

estimate is too low, annoying remnant noise will be audible. Whereas, if the noise estimate is too 

high, speech will be distorted, and possibly would result in intelligibility loss [3]. The simplest 

 (a)  (b) 
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approach is to estimate and update the noise spectrum during the silence segments of the signal 

using voice activity detection (VAD) algorithm. But the drawback of this approach is that it works 

satisfactorily only in case of stationary noise, and does not work well in more realistic 

environments (non-stationary noise), as discussed in Section 2.4. 

In the traditional approach, the noise is estimated with recursive averaging, where the 

noise spectrum is estimated as a weighted average of the past noise estimates and the current 

noisy speech spectrum. The weights change adaptively depending on the effective a-posteriori 

SNR of each frequency bin or the probability of speech presence. In our proposed algorithm, 

PMS-MBSS, we have estimated and updated the noise spectrum in each frequency subband, 

separately. 

The noise estimation as in (5.1) has been modified as below, for each subband using the 

first order relation as 

          
                 −        −                            (6.4) 

where,   is the subband number,   is the frame index,   is the frequency bin index,             
        

is the estimated subband noise power spectral density at frame   and frequency    and  

         
   is the noisy speech magnitude squared spectrum of subband noisy speech. Here,  

        is a time and frequency dependent smoothing parameter, at subband     for frame, whose 

value depends on the noise changing rate.  

In the recursive averaging technique, the smoothing parameter is chosen to be a sigmoid 

function which changes of the a-posteriori           , as  

        
 

    
                  

                              (6.5) 

where the noise changing rate is affected by the parameter   in sigmoid function (6.5). The 

expression in (6.5) is obtained for the subband specific case for the sigmoid function as in (5.2). 

The value of     varies between the range 1 to 6 at constant value of  T. The parameter    in (6.5) 

is the center-offset of the transition curve in sigmoid function and the value of      is around 4 to 
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5. The effect of     and    on the sigmoid function can be observed from Fig. 5.1, the simulation 

conditions of which is explained in Table 5.1 in Chapter 5. 

The updation of subband noise estimate must be performed only in the absence of speech 

at the corresponding frequency bin. This can be accomplished by controlling the smoothing factor  

        depending of the a-posteriori           in     subband, as 

                 
          

 

 
               
   

              (6.6) 

The denominator part of (6.6) is the average of the noise estimate of the previous   frames 

(numbering between 5 to 10) immediately before the frame    . 

Theoretically the a-posteriori SNR should always be 1 when only noise is present and 

greater than 1 when both speech and noise are present. The progression of the noise estimation 

algorithm as given in (6.4) and (6.5) is given below. 

 

i) If speech is present in frame  , the a-posteriori estimate            will be large and 

therefore          . Consequently, we will have           
          −       

according to (6.4). The noise update will cease and the noise estimate will remain the 

same as the previous frame’s estimate.  

ii) If speech is absent in frame   , the a-posteriori estimate             will be small and 

therefore          . As a result,            
           

   and the noise estimate 

will follow the power of the noisy spectrum in the absence of speech. 

 

The main advantage of using the time-varying smoothing factor        , is that the noise 

estimation will adapt to different rates for the various frequency bins, depending on the estimate 

of the a-posteriori           in the corresponding frequency-bins. Thus, the approach described 

above has the potential to effectively suppress the noise in each subband, separately, and is more 

suited for enhancement of speech degraded by non-stationary noise.  
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6.5. Improved Spectral Over-Subtraction Algorithm 

The spectral over-subtraction algorithm, proposed by Berouti [20], is used for enhancement of 

speech degraded by stationary noise. As explained in Section 2.5.1, the spectral over-subtraction 

algorithm, proposed by Berouti [20] shows the superior result from the classical spectral 

subtraction method. In our algorithm, PMS-MBSS, the spectral over-subtraction algorithm is 

modified suitably and applied in each subband signal separately, which are obtained by 

decomposition of the input noisy speech using PM-SWPFB as described in section 6.3. The noise 

is estimated from each subband by using adaptive noise estimation approach and over-subtraction 

factor is adjusted for each subband signal. The improved spectral over-subtraction (I-SOS) 

algorithm as used in the proposed speech enhancement algorithm is explained below: 

 The noisy speech signal is decomposed into tempo-spectral stationary wavelet 

coefficients of multiple subbands by the  PM-SWPFB. As, in (2.1), for the       noisy subband 

signal, i.e., the output of the      CB is given by  

                                                      (6.7) 

where                  is  the  output  from  the       CB  filter when  the  input  to  the  

filterbank  is  clean  speech  only,  and                    is  the  corresponding  output  

when  the  input  is noise  only. 

Next, the improved spectral over-subtraction (I-SOS) algorithm is applied in each 

subband signal, separately. The noise is estimated from each subband signal by using adaptive 

noise estimation approach and over-subtraction factor is adjusted for each of the subband signals. 

Therefore, the estimate of the clean speech spectrum in the   th
 subband signal is obtained by 

           
        −                                               

 

          
                                                                             

           (6.8) 

Here,    is the subband specific over-subtraction factor, which is the function of the segmental 

SNR. The segmental SNR for each frame of the i
th
 subband signal can be calculated as  

                  
         
    

   

          
    

   

                                         (6.9) 
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where      is the number of samples in the each subband,   is the frame index  and the value of    

        
  is estimated using (6.4). The subband specific over-subtraction can be calculated as 

            −          
       

              
                                    (6.10) 

Here, for our proposed algorithm, PMS-MBSS, the typical values for (6.10) are,       

                                               and       , . 

  

6.6. Experimental Results and Performance Evaluation 

This section presents the experimental results and performance evaluation of the proposed 

enhancement algorithm, PMS-MBSS, described in this chapter, as well as the comparison with 

other spectral subtractive-type algorithms. The noisy speech samples have been taken from 

NOIZEUS speech corpus [76] consisting of 30 phonetically balanced sentences belonging to six 

speakers, three male and three female. The sampling frequency for this corpus is 8 kHz, and 

samples are quantized linearly using 16 bits. The NOIZEUS corpus comes with non-stationary 

noises at different levels of SNR. A total of four different utterances, from NOIZEUS corpus, are 

used in our evaluation. Every sentence has a silence segment in the beginning that lasts more than 

0.25 ms.  

Eight different types of noises including one stationary white Gaussian noise have been 

used for simulation and evaluation purpose. The seven real-world non-stationary noises taken are 

car, train, restaurant, babble, airport, street, and exhibition noise. The performance of the 

proposed speech enhancement system is tested on these noisy speech samples. 

In our enhancement experiments, we normalize samples of each of the sentence files to be 

between -1.0 and +1.0. The frame size is chosen to be 256 samples, which contains a time 

window of 32ms, with 50% overlapping. The sinusoidal Hamming window with size 256 samples 

is applied to the noisy signal. The noise estimate is updated adaptively and continuously, using 

the smoothing parameter (6.5). For calculation of smoothing parameter, the value of    and    is 

chosen to be 4 and 5 (as Fig. 5.1), respectively in sigmoid function (6.5). The proposed algorithm, 
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PMS-MBSS, is compared with the basic spectral subtraction (BSS), spectral over-subtraction 

(SOS), and multi-band spectral subtraction (MBSS) algorithm. 

6.6.1 Selection of Wavelet Filter 

The decomposition of stationary wavelet packet filterbank (SWPFB) has been explained in detail 

in Section 3.7 of Chapter 3. For the wavelet based signal processing, the choice of mother wavelet 

function and the corresponding wavelet filter is important for the frequency selectivity. In 

addition, the computational complexity of the stationary wavelet packet filterbank (SWPFB) is 

directly dependent on the length of the wavelet filter. To put differently, the use of a longer 

wavelet filter will provide a better frequency resolution at the cost of heavy computational 

complexity.  

The wavelet coefficients, thus obtained, are processed spectrally in each subband. We 

may encounter some aliased noises in side-lobes because of the insufficient length of the wavelet 

filter. Therefore, a sufficient stop-band attenuation of the wavelet filter is required and the longer 

wavelet filters are needed. In our proposed algorithm, the orthogonal wavelet filters including 

Daubechies ('DbN'), Symlets ('symN'), and Cioflets ('coifN') are considered in the PM-SWPFB, 

and their relative performance compared [16]. 

In order to select an appropriate wavelet filter for the proposed speech enhancement 

algorithm from these wavelet filters, an experiment is performed, the result of which is listed in 

Table 6.2. 

  

TABLE 6.2. 

THE EXPERIMENTAL RESULTS FOR SELECTION OF WAVELET FILTER. 

Wavelet filter 

type 

Daubechies (Db N) Symlet (symN) Coiflets (coif 

N) 

Db 4 Db8  Db10 Db12 Db14 S12 S14 S16 C3 C5 

Filter length 8 16 20 24 28 24 28 32 18 30 

ER 5.22 5.23 5.29 5.28 5.27 5.29 5.25 5.29 5.26 5.27 

CPU time (Sec.) 4.48 4.66 4.79 4.72 4.95 4.77 5.03 5.24 5.17 5.18 

ER/CPU time 1.16 1.12 1.10 1.12 1.06 1.11 1.04 1.00 1.02 1.01 
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 (a) 

The enhancement rate (ER), as tabulated in Table 6.2 is defined as, 

    
                         
 
   

 
                      (6.11) 

where   denotes the number of test sentences used in the experiment. Here,            , and  

            denote  the SNR of the      enhanced speech signal and the original speech signal, 

respectively. In our experiment, 4         speech sentences degraded by different real-world 

noises and white Gaussian noise are used. 

Considering the enhancement rate as well as the computational complexity given  in 

Table 6.2, the 4-point Daubechies (Db) wavelet filter with length 8, has the best ER/CPU time 

ratio, and has been taken for the implementation of the proposed speech enhancement algorithm. 

This preserves sufficient frequency selectivity as well as maintains the time domain resolution for 

each critical band wide subband signal. 

The filterbanks are implemented using the high pass filter (HPF) and low pass filter (LPF) 

with the orthonormal wavelet, Daubechies (DbN) family wavelet [25]. The wavelet function, and 

the filter coefficients for Db 4 wavelet is shown in Fig. 6.5 (a), and (b), respectively.  
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Fig. 6.5: (a) Daubechies wavelet (Db 4), and (b) impulse response of the  

corresponding low pass and high pass filter. 

 

The PM-SWPFB is first applied to decompose the noisy speech signal into 17 subband 

signals (Fig. 6.3). The filterbanks are implemented using the high pass filter (HPF) and low pass 

filter (LPF) with the Daubechies (Db4) family wavelet, which divides the whole band into the 

perceptually motivated subbands. In the first level decomposition, scaling space and wavelet 

space will be decomposed into two subbands, which correspond to the frequency ranges of  

 –       and  –   kHz. This operation is repeated to obtain the filterbank structure with highest 

level of decomposition of five.  

Fig. 6.6 shows the temporal waveforms of noisy speech signal decomposed by PM-

SWPFB into 1
st
 to 8

th
 CBs and the enhanced speech of these subbands for speech sentence sp10 

pronounced by male speaker and degraded by car noise of SNR 10 dB, from NOIZEUS [76]. 
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From the left part of this figure it can be seen that the noise distributes quite differently across 

these subbands. The enhanced speech components in these subbands are shown in right half of 

this figure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6: Temporal waveform of subbands (obtained after decomposing noisy speech, which is 

degraded by car noise at 10 dB SNR, by PM-SWPFB) and enhanced subbands speech by I-SOS. 

 

6.6.2 Objective Measure 

The input SNR vs. output SNR of the proposed speech enhancement algorithm for seven types of 

real-world noises and a computer generated white Gaussian noises have been shown in Table 6.3. 

The amount of noise reduction in various background noise level conditions is usually measured 

with the SNR improvement which is given by the difference between input and output SNR. The 

SNR improvement of, PMS-MBSS, over BSS, SOS and MBSS algorithm is shown in Table 6.4. 

In the non-stationary noise environment, SNR of enhanced speech is not a sufficient objective 

measure of speech quality.  In addition, three other objective quality measures, i.e. SegSNR, ISD, 

and PESQ, are used to evaluate the performance of proposed algorithm. Table 6.3, further,  shows 
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the output SegSNR and ISD values for various real-world noises and white Gaussian noise at 

different SNR levels. In Table 6.4, we shows the SegSNR improvement in comparison over BSS, 

SOS and MBSS. Next, Fig. 6.7 shows the performance of PMS-MBSS for various real-world 

noises and white Gaussian noise at different SNR levels and Fig. 6.8 shows the performance 

improvement of PMS-MBSS at various real-world noises and white Gaussian noise at different 

SNR levels over SOS and MBSS algorithms. 

PESQ is an objective quality measure designed to predict the subjective opinion score of 

a degraded audio sample and it is recommended by ITU-T for speech quality assessment [75]. 

The larger value of PESQ indicates a better subjective quality. Table 6.5 shows the PESQ 

improvement of PMS-MBSS over BSS, SOS and MBSS. It can be observed from the table that 

the PESQ score of PMS-MBSS shows the best results in comparison to MBSS, BSS and is 

comparable with SOS.   

In order to analyze the time-frequency distribution of the enhanced speech, speech 

spectrogram constitutes a well-suited tool to give accurate information about remnant noise and 

speech distortion. It consists of Fourier transforms of overlapping, and windowed frames and 

displays the distribution of energy in time and frequency. Fig. 6.10 shows the spectrogram 

obtained with the proposed method for the speech sentence (sp10) degraded by car noise, train 

noise, babble noise, restaurant noise, airport noise, street noise, exhibition noise, and white noise, 

respectively at 10 dB SNR. 

Fig. 6.11 shows the temporal waveforms obtained with the proposed algorithm for the 

speech sentence (sp10) degraded by car noise, train noise, babble noise, restaurant noise, airport 

noise, street noise, exhibition noise, and white noise, respectively at 10 dB SNR. Fig. 6.12 - Fig. 

6.15 shows the temporal waveforms and spectrogram obtained with the proposed algorithm for 

the male speech sentences (sp10, sp6, and sp1) and female speech sentences (sp12) degraded by 

car noise at 10 dB SNR in comparison to BSS, SOS, and MBSS algorithms. 

It can be seen from Fig.6.10 - Fig.6.15 that the speech enhanced by the proposed 

algorithm is better compared to MBSS, BSS and is also comparable to SOS. The musical 
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structure of the remnant noise is also found to be suppressed more in comparison to MBSS, 

whereas the reduction is comparable in respect to SOS.  

For the case with sp1 sentence pronounced by male speaker our results show the 

performance even better than SOS, as noticed from Fig. 6.14.  

6.6.3 Subjective Listening Tests 

Fig. 6.8 shows a scatter plot of MOS score vs. PESQ scores, for PMS-MBSS, for various types of 

real-world noises and the computer generated white Gaussian noise. A straight line with the slope 

of one is provided as a reference. It is clear from the figure that the PESQ improvement score and 

MOS score at 5 dB SNR and above 5 dB SNR is well correlated in all conditions. Table 6.5 

shows the MOS score results of PMS-MBSS over SOS and MBSS. It can be observed from the 

table that the MOS score results of PMS-MBSS are comparable with SOS and is gives better 

result in comparison to MBSS. 

Experimental results using subjective and objective quality measurement test results have 

shown the superiority of the proposed speech enhancement algorithm to the other popular speech 

enhancement algorithms, such as, MBSS, BSS and SOS. The following conclusions can be 

extracted about experimental results and objective quality measurement test results. 

 

i) The stationary wavelet packet decomposition (SWPD) provides sufficient numbers of 

sample points, i.e. sufficient frequency resolutions, for designing a PM-SWPFB that 

closely matches with critical band structure of human auditory system. 

ii) The PM-SWPFB provides improved speech quality and low computational complexity. 

iii) I-SOS algorithm effectively reduces remnant noise and background noise, when of      is 

set as per (6.10) and the value of        . Parameters (smoothing factor) should be 

selected carefully, as there is a trade-off between noise removal and signal distortion in I-

SOS algorithm. 

iv) At high SNRs (5, 10, and 15 dB) the proposed speech enhancement algorithm, PMS-

MBSS, provides the best results. Although, the SNR value of SOS algorithm is higher 
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than that of proposed algorithm, the SegSNR and ISD results of the PMS-MBSS is better, 

than BSS, MBSS and SOS, as given in Table 6.3 and Table 6.4. It can also be seen from 

the PESQ score results and MOS score results that the PMS-MBSS gives better result 

than BSS, MBSS and SOS. This has been presented in Table 6.5 and Fig. 6.9. 

v) After carefully analyzing the signal waveforms and spectrogram (Fig. 6.10 - Fig. 6.15), it 

can be observed that the proposed algorithm reduces the musical structure of the remnant 

noise more than BSS, MBSS, whereas the performance is comparable to SOS. For sp1 

sentence pronounced by male our results are the best in comparison to even SOS. 

However, the proposed speech enhancement algorithm provides a good noise removal 

and less signal distortion is obtained even at low SNRs. Therefore, speech enhanced with 

the proposed algorithm is more pleasant with speech distortion remaining below the 

acceptable level.  

 

  

 

 

 

 

 

 

 

 

 
 

 

  Fig. 6.7: Output SegSNR of PMS-MBSS for car, train, restaurant, babble, 

airport, street, exhibition, and white noises. 
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Fig. 6.8: SegSNR improvement of PMS-MBSS over SOS and MBSS for car, 

train, restaurant, babble, airport, street, exhibition, and white noises. 
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Fig. 6.9: Scattered plot of PESQ score vs. mean MOS score of PMS-MBSS 

for car, train, restaurant, babble, airport, street, exhibition, and white 

noises. 
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TABLE 6.3.  

OBJECTIVE MEASURES OBTAINED WITH THE PROPOSED ALGORITHM FOR THE VARIOUS 

NOISE TYPES IN TERMS OF OUTPUT SNR, OUTPUT SEGSNR, AND ISD. 

Noise 

Type 

Enhancement 

Algorithms 

SNR (dB) SegSNR (dB) ISD 

0 dB 5 dB 10 dB 15 dB 0 dB 5 dB 10 dB 15 dB 0 dB 5 dB 10 dB 15 dB 

Car BSS 0.95 1.40 1.59 1.71 0.86 1.17 1.28 1.33 0.84 0.29 0.08 0.212 

SOS 4.39 9.42 12.89 16.01 4.30 9.19 12.68 15.78 2.29 1.48 0.90 0.78 

MBSS 2.75 7.05 9.61 12.85 2.68 6.86 9.39 12.59 2.27 1.43 0.89 0.76 

PMS-MBSS 2.74 5.75 9.86 14.53 2.71 9.02 14.34 19.28 2.43 1.44 0.85 0.78 

Train BSS 1.24 1.43 1.59 1.67 1.12 1.20 1.29 1.32 0.17 0.25 0.30 0.099 

SOS 5.54 8.04 11.91 15.74 5.34 7.81 11.73 15.53 2.15 1.41 1.13 0.89 

MBSS 4.07 5.73 9.55 11.78 3.88 5.53 9.35 11.59 2.15 1.40 1.34 0.86 

PMS-MBSS 2.72 5.70 9.81 14.53 4.22 8.76 13.89 19.26 2.01 1.63 1.06 0.86 

Restaurant BSS 2.07 1.59 1.84 1.64 1.75 1.27 1.37 1.30 0.48 .002 0.125 0.066 

SOS 1.72 7.20 9.81 15.13 1.48 7.00 9.59 14.95 1.42 1.02 0.82 2.79 

MBSS 2.66 6.02 9.54 11.18 2.52 5.84 9.29 10.90 1.11 1.27 0.65 2.70 

PMS-MBSS 2.69 5.74 9.81 14.50 5.02 10.3 14.70 19.26 1.31 0.72 29.14 0.36 

Babble BSS 1.47 1.52 1.63 1.74 1.19 1.21 1.29 1.35 0.35 0.42 0.073 0.023 

SOS 2.74 7.34 11.52 14.74 2.57 7.05 11.33 14.51 1.61 1.49 2.12 0.72 

MBSS 2.66 5.95 9.54 11.81 2.52 5.74 9.31 11.52 1.22 1.21 1.42 0.43 

PMS-MBSS 2.66 5.75 9.90 14.53 4.06 8.32 14.41 19.26 1.41 1.33 0.73 0.56 

Airport BSS 1.66 1.52 1.62 1.72 1.43 1.23 1.30 1.33 0.59 0.06 0.016 0.14 

SOS 3.60 8.30 11.04 15.68 3.33 8.06 10.85 15.48 1.80 0.91 1.06 0.75 

MBSS 3.93 6.75 9.06 12.04 3.78 6.53 8.81 11.77 1.28 0.90 1.05 0.77 

PMS-MBSS 4.81 9.88 14.66 19.48 4.66 9.71 14.52 19.32 14.8 1.01 0.92 0.41 

Street BSS 2.49 1.51 1.66 1.55 1.71 1.25 1.31 1.29 0.13 0.51 0.067 0.14 

SOS 0.02 7.14 11.17 14.61 -0.17 6.96 11.33 14.41 1.04 1.46 5.15 1.10 

MBSS 1.88 5.60 9.42 9.93 1.71 5.39 9.22 9.73 1.04 1.11 5.14 0.97 

PMS-MBSS 7.00 8.50 14.55 19.11 7.03 8.39 14.60 18.89 0.98 1.36 0.78 1.09 

Exhibition BSS 2.08 1.63 1.66 1.74 2.01 1.34 1.35 1.37 0.11 0.10 0.38 0.07 

SOS 1.29 7.31 11.13 15.12 1.07 7.10 10.9 14.91 1.69 1.10 1.32 0.60 

MBSS 2.24 7.18 9.09 12.36 2.05 6.99 8.92 12.13 1.68 1.06 1.21 0.51 

PMS-MBSS 5.33 9.67 14.47 19.50 5.22 9.47 14.33 19.30 1.26 0.95 1.31 0.71 

White BSS 1.42 1.59 1.70 1.78 1.18 1.31 1.34 1.38 0.60 0.38 0.25 0.214 

SOS 6.98 10.3 13.65 16.67 6.75 10.1 13.43 16.45 2.46 1.94 1.46 0.99 

MBSS 6.10 8.80 11.93 13.46 5.90 8.63 11.77 13.26 2.40 1.88 1.45 0.99 

PMS-MBSS 4.84 9.97 15.18 20.20 4.70 9.74 14.97 20.03 2.38 1.93 1.45 0.96 
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TABLE 6.4. 

OBJECTIVE MEASURES OBTAINED WITH THE PROPOSED ALGORITHM FOR THE VARIOUS  

NOISE TYPES IN TERMS OF SNR IMPROVEMENT, AND SEGSNR IMPROVEMENT. 

Noise 

Type 

Enhancement 

Algorithms 

SNR Improvement (dB) SegSNR Improvement (dB) 

0 dB 5 dB 10 dB 15 dB 0 dB 5 dB 10 dB 15 dB 

Car BSS 0.95 -3.6 -8.41 -13.29 0.86 -3.83 -8.72 -13.67 

SOS 4.39 4.42 2.89 1.01 4.30 4.19 2.68 0.78 

MBSS 2.75 2.05 -0.39 -2.15 2.68 1.86 -0.61 -2.41 

PMS-MBSS 2.74 0.75 -0.14 -0.47 2.71 4.02 4.34 4.28 

Train BSS 1.24 -3.57 -8.41 -13.33 1.12 -3.8 -8.71 -13.68 

SOS 5.54 3.04 1.91 .74 5.34 2.81 1.73 0.53 

MBSS 4.07 0.73 -0.45 -3.22 3.88 0.53 -0.65 -3.41 

PMS-MBSS 2.72 0.70 -0.19 -0.47 4.22 8.76 3.89 4.26 

Restaurant BSS 2.07 -3.41 -8.16 -13.36 1.75 -3.73 -8.63 -13.7 

SOS 1.72 2.20 0.19 0.13 1.48 2.00 -0.41 -0.05 

MBSS 2.66 1.02 -0.46 -3.82 2.52 0.84 -0.71 -4.1 

PMS-MBSS 2.69 0.74 -0.19 -0.50 5.02 5.3 4.70 4.26 

Babble BSS 1.47 -3.48 -8.37 -13.26 1.19 -3.79 -8.71 -13.65 

SOS 2.74 2.34 1.52 -0.26 2.57 2.05 1.33 -0.49 

MBSS 2.66 0.95 -0.46 -3.19 2.52 0.74 -0.69 -3.48 

PMS-MBSS 2.66 0.75 -0.1 -0.47 4.06 3.32 4.41 4.26 

Airport BSS 1.66 -3.48 -8.38 -13.28 1.43 -3.77 -8.7 -13.67 

SOS 3.60 3.30 1.04 0.68 3.33 3.06 0.85 0.48 

MBSS 3.93 1.75 -0.94 -2.96 3.78 1.53 -1.19 -3.23 

PMS-MBSS 4.81 4.88 4.66 4.48 4.66 4.71 4.52 4.32 

Street BSS 2.49 -3.49 -8.34 -13.45 1.71 -3.77 -8.69 -13.71 

SOS 0.02 2.14 1.17 -0.39 -0.17 1.96 1.33 -0.59 

MBSS 1.88 0.60 0.58 -5.07 1.71 0.39 -0.78 -5.27 

PMS-MBSS 7.00 3.50 4.55 4.11 7.03 3.39 4.60 3.89 

Exhibition BSS 2.08 -3.37 -8.38 -13.26 2.01 -3.66 -8.65 -13.63 

SOS 1.29 2.31 1.13 0.12 1.07 2.10 0.9 -0.09 

MBSS 2.24 2.18 -0.91 -2.64 2.05 1.99 -1.08 -2.87 

PMS-MBSS 5.33 4.67 4.47 4.50 5.22 4.47 4.33 4.30 

White BSS 1.42 -3.41 -8.3 -13.22 1.18 -3.69 -8.66 -13.62 

SOS 6.98 5.30 2.63 1.67 6.75 5.1 3.43 1.45 

MBSS 6.10 3.80 1.93 -1.54 5.90 3.63 1.77 -1.74 

PMS-MBSS 4.84 4.97 5.18 5.20 4.70 4.74 4.97 5.03 
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TABLE 6.5. 

RESULTS OF NOISE REDUCTION SPEECH QUALITY TEST. 

Noise 

Type 

Enhancement 

Algorithms 

PESQ Score MOS Score 

0 dB 5 dB 10 dB 15 dB 0 dB 5 dB 10 dB 15 dB 

Car BSS 1.749 1.925 2.154 2.213  

SOS 1.622 2.163 2.579 2.831 2.5 3.3 4 4.4 

MBSS 1.496 1.982 2.259 2.602 2.2 3 3.8 4.3 

PMS-MBSS 1.648 2.062 2.426 2.667 2.1 2.9 3.8 4.4 

Train BSS 1.873 1.666 2.079 2.156  

SOS 1.720 1.888 2.394 2.730 2.3 3.2 4 4.5 

MBSS 1.513 1.696 2.129 2.382 2.2 3 3.9 4.3 

PMS-MBSS 1.895 1.845 2.291 2.623 2.7 3.5 4.1 4.4 

Restaurant BSS 1.682 1.843 2.002 2.165  

SOS 1.785 2.157 2.362 2.811 2.6 3.5 4 4.4 

MBSS 1.842 2.062 2.367 2.603 2.4 3.2 4 4.3 

PMS-MBSS 1.692 2.105 2.310 2.679 2.4 2.9 3.7 4.2 

Babble BSS 1.481 1.924 2.110 2.215  

SOS 1.903 2.209 2.562 2.699 2 3 3.9 4.4 

MBSS 1.812 2.208 2.394 2.650 1.8 2.8 3.9 4.4 

PMS-MBSS 1.711 2.119 2.380 2.656 2 3.1 3.9 4.4 

Airport BSS 1.407 1.939 2.092 2.204  

SOS 1.891 2.222 2.476 2.836 2.6 3.4 4 4.2 

MBSS 1.790 2.106 2.323 2.681 1.7 2.9 3.6 4.4 

PMS-MBSS 1.745 2.134 2.357 2.655 2.4 3.3 3.9 4.3 

Street BSS 1.511 1.833 2.045 2.018  

SOS 1.578 2.013 2.406 2.536 2.4 2.9 3.8 4.4 

MBSS 1.592 1.933 2.249 2.213 1.9 2.8 3.5 4.3 

PMS-MBSS 1.548 1.845 2.346 2.492 2 3.2 3.9 4.4 

Exhibition BSS 1.721 1.655 2.109 2.127  

SOS 1.799 2.004 2.267 2.694 2.4 3.2 3.8 4.2 

MBSS 1.527 1.977 1.968 2.517 2 2.9 3.8 4.4 

PMS-MBSS 1.835 1.913 2.370 2.593 2.1 3 3.8 4.3 

White BSS 1.663 1.957 2.087 2.151  

SOS 1.912 2.232 2.483 2.800 3.0 3.7 4.2 4.4 

MBSS 1.655 1.971 2.303 2.563 3 3.7 4.3 4.5 

PMS-MBSS 1.803 2.144 2.426 2.683 3.2 3.8 4.3 4.5 
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   Fig. 6.10 (I): Speech spectrogram of sp10.wav utterance, "The sky that morning was clear 

 and bright blue," by a male speaker from the NOIZEUS corpus (From top to bottom): (a) 

 clean speech; (b, d, f, h) speech degraded by car noise, train noise, babble noise, and 

 restaurant noise, respectively (10 dB SNR); and (c, e, g, i) corresponding enhanced 

 speech. 
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  Fig. 6.10 (II): Speech spectrogram of sp10.wav utterance, "The sky that morning was clear 

and bright blue," by a male speaker from the NOIZEUS corpus (From top to bottom): (j, l, 

n, p) speech degraded by airport noise, street noise, exhibition noise, and white noise 

respectively (10 dB SNR); and (k, m, o, q) corresponding enhanced speech. 

  



 

157 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 6.11(I): Temporal waveforms of sp10.wav utterance, "The sky that morning was 

clear and bright blue," by a male speaker from the NOIZEUS corpus (From top to 

bottom): (a) clean speech; (b, d, f, h) speech degraded by car noise, train noise, babble 

noise and restaurant noise, respectively (10 dB SNR); and (c, e, g, i) corresponding 

enhanced speech. 
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  Fig. 6.11(II): Temporal waveforms of sp10.wav utterance, "The sky that morning was clear 

 and bright blue," by a male speaker from the NOIZEUS corpus (From top to bottom (j, l, n, 

 p) speech degraded by airport noise, street noise, exhibition noise, and white noise, 

respectively (10 dB SNR); and (k, m, o, q) corresponding enhanced speech. 
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Fig. 6.12: Temporal waveforms and speech spectrogram of sp10.wav utterance, "The sky 

that morning was clear and bright blue," by a male speaker from the NOIZEUS corpus 

(From top to bottom) : (a) noisy speech (speech degraded by car noise at 10 dB SNR) 

(PESQ = 2.169); (b) speech enhanced by BSS algorithm (PESQ = 2.154); (c) speech 

enhanced by SOS algorithm (PESQ = 2.579); (d) speech enhanced by MBSS (PESQ = 

2.259); and (e) speech enhanced by PMS-MBSS (PESQ = 2.426). 
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Fig. 6.13 (I): Temporal waveforms and speech spectrogram of sp 6.wav utterance, "Men 

strive but seldom get rich", by a male speaker from the NOIZEUS corpus (From top to 

bottom): (a) clean speech (PESQ  =  4.5); (b) noisy speech (speech degraded by car noise at 

10 dB SNR) (PESQ = 2.205); (c) speech enhanced by BSS algorithm (PESQ = 2.231); (d) 

speech enhanced by SOS algorithm (PESQ = 2.352). 
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Fig. 6.13 (II): Temporal waveforms and speech spectrogram of sp 6.wav utterance, "Men 

strive but seldom get rich", by a male speaker from the NOIZEUS corpus (From top to 

bottom): (e) speech enhanced by MBSS algorithm (PESQ = 2.157); and (f) speech 

enhanced by PMS-MBSS (PESQ = 2.195). 
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Fig. 6.14 (I) : Temporal waveforms and speech spectrogram of sp1.wav utterance, "The 

birch canoe slid on the smooth planks", by a male speaker from the NOIZEUS corpus (From 

top to bottom): (a) clean speech (PESQ = 4.5); (b) noisy speech (speech degraded by car 

noise at 10 dB SNR) (PESQ = 2.084); (c) speech enhanced by BSS algorithm (PESQ = 

1.898); (d) speech enhanced by SOS algorithm (PESQ = 2.167). 
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Fig. 6.14 (II): Temporal waveforms and speech spectrogram of sp1.wav utterance, "The 

birch canoe slid on the smooth planks", by a male speaker from the NOIZEUS corpus (From 

top to bottom): (e) speech enhanced by MBSS algorithm (PESQ = 2.030); and (f) speech 

enhanced by PMS-MBSS (PESQ = 2.276). 
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Fig. 6.15 (I): Temporal waveforms and speech spectrogram of sp12.wav utterance, "The drip 

of the rain made a pleasant sound", by a female speaker from the NOIZEUS corpus (From 

top to bottom): (a) clean speech (PESQ = 4.5); (b) noisy speech (degraded by car noise at 10 

dB SNR) (PESQ = 2.043); (c) speech enhanced by BSS algorithm (PESQ = 1.782); (d) 

speech enhanced by SOS algorithm (PESQ = 2.341). 
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 Fig. 6.15 (II): Temporal waveforms and speech spectrogram of sp12.wav utterance, "The 

drip of the rain made a pleasant sound", by a female speaker from the NOIZEUS corpus 

(From top to bottom): (e) speech enhanced by MBSS algorithm (PESQ = 2.005); and (f) 

speech enhanced by PMS-MBSS (PESQ = 2.242).  
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6.7. Summary 

In this chapter, we have presented a speech enhancement algorithm which incorporates a 

perceptually motivated stationary wavelet packet filterbank (PM-SWPFB) (based on human 

auditory system) and an improved spectral over-subtraction (I-SOS) algorithm. The PM-SWPFB 

decomposes the input speech signal in the non-uniform subbands as per critical band rate scale 

and then spectral over-subtraction is applied in each subband, separately. The I-SOS uses an 

adaptive approach to estimate the noise from each subband. The adaptive noise estimation 

technique does not require explicit voice activity detection, thus providing accurate results even at 

very low SNR. The approach works continuously, even in the presence of speech. The selection 

of the appropriate wavelet filter for the SWPT ensures adequate frequency resolution for 

designing the PM-SWPFB. 

The performance assessment of the proposed algorithm is done based on the various 

criteria such as, spectrogram plots, objective measures, and subjective listening tests. It is 

observed that the PMS-MBSS algorithm not only greatly reduces the noise but also prevents the 

speech spectrum getting deteriorated, especially at the low SNR noise cases. The superior results 

can be noticed for all types of noises of both non-stationary and stationary type at SNR (≤ 15 dB). 

This presented algorithms shows better performance than multi-band spectral subtraction and 

basic spectral subtraction algorithm at all levels of SNRs and shows better quality improvement 

than spectral over-subtraction algorithm at SNR (> 5 dB).  

Moreover, results show that the speech quality obtained by using seventeen non-

overlapping non-uniformly spaced frequency bands PMS-MBSS algorithm is better than the 

auditory perception based improved multi-band spectral subtraction (API-MBSS) algorithm with 

six non-overlapping non-uniformly spaced frequency bands, as described in Chapter 5. Further, 

both of these algorithms outperform the than an iterative processing based multi-band spectral 

subtraction (IP-MBSS) algorithm.  
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Chapter 7 

Conclusion 

 

7.1. Summary of Developments and Achievements 

This chapter summarizes the body of work contained in this thesis with a gist of contributions 

along with the major results obtained from the research work conducted. Section 7.2 gives some 

indications of possible directions for future research. 

This thesis has dealt with enhancement of single channel narrowband speech in adverse 

noisy conditions. The basic assumption about the noisy environments is that the additive 

background noise of both stationary and non-stationary types are additive in additive nature. The 

thesis has presented a set of transform based multi-band speech enhancement algorithms with two 

classes of multi-band criteria of both uniformly and non-uniformly spaced frequency bands. The 

uniformly spaced frequency bands based speech enhancement algorithm is proposed that utilizes 

iterative processing. Under the class of non-uniformly spaced frequency bands, two algorithms 

have been presented, namely, an improved multi-band spectral subtraction based on the critical 

band rate scale and a perceptually motivated stationary wavelet packet transform based improved 

spectral over-subtraction. These transform based multi-band speech enhancement algorithms are 

involved in identification and suppression of degraded speech regions and subsequent 

enhancement of these low SNR regions in frequency domain. Both the stationary and non-

stationary types of noises have been considered in our work and the proposed three algorithms 

have been evaluated with extensive objective measures and subjective listening tests. 
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A family of spectral subtractive-type algorithms have been described and compared in an 

unified framework.  This class of algorithms has been found to be attractive because of its simple 

implementation and ease of computation.  Its major drawback is the introduction of un-natural 

remnant sound tones with musical structure in the enhanced speech. This noise can be more 

annoying to a human listener than the original background noise at very low SNRs. In addition to 

the basic magnitude spectral subtraction algorithm, several variations have been developed. Based 

on the definition of a gain function in the frequency domain, a unified formulation of these 

algorithms has been studied which multiplies the spectral magnitudes of the noisy speech signal to 

obtain the enhanced spectral magnitude. Next, a detailed study on stationary wavelet packet 

transform has been described. These works form the basis for the development of the three multi-

band speech enhancement algorithms presented subsequently, in the thesis.  

The first algorithm proposed in the thesis is the iterative processing based multi-band 

spectral subtraction algorithm for enhancement of degraded speech. In this proposed algorithm, 

the output of basic multi-band spectral subtraction (MBSS) algorithm has been used iteratively for 

progressively reducing the remnant noise, which is re-estimated in each iteration separately, in 

each band. The simulation results as well as subjective evaluations confirm that the speech 

enhanced by proposed algorithm is more pleasant to listeners than speech enhanced by 

conventional MBSS algorithms.  From extensive simulation results and subjective listening tests 

it is observed that our iterative processing based multi-band spectral subtraction algorithm 

performs better than the classical MBSS  and BSS for each type of noise (used in this work) at 

low SNRs (SNR < 5 dB). 

An improved multi-band spectral subtraction based on critical band rate scale of human 

auditory system is presented next. In this algorithm, the bands are non-uniformly frequency 

spaced and noise estimate is updated by adaptively smoothing the noisy signal power. The 

simulation results as well as subjective evaluations show that the proposed algorithm reduces 

remnant noise efficiently and the enhanced speech contains minimal speech distortions (if any) 

with objective evaluation results. The noise estimation method used in our algorithm does not 
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require the explicit voice activity detection and the noise estimate is updated adaptively and 

continuously even during speech activity from each band. The various objective measures and 

PESQ score suggest that  performance of our algorithm shows better results at higher levels of 

SNR (> 5dB) except for the case restaurant and white Gaussian noise, in comparison to MBSS, 

BSS and SOS. 

The last algorithm proposed in the thesis is the perceptually motivated stationary WPT 

based improved multi-band spectral over-subtraction speech enhancement algorithm. The 

stationary wavelet packet filterbank is obtained by adjusting the uniformly spaced stationary 

wavelet packet tree by temporally processing the input noisy speech signal in such a way it 

mimics closely with the critical bands structure of human ear.  The noise estimate is updated by 

adaptively smoothing the noisy signal power independently, in the subbands, without the need of 

detecting speech pauses. It is inferred from the extensive simulation results and subjective 

listening tests that performance of the algorithm is superior to MBSS for SNR (> 0 dB), and BSS 

for each type of noise (that is considered in this thesis). In comparison to spectral over-subtraction 

algorithm, improvement in PESQ score is observed for car noise, train noise, and exhibition noise, 

at 0 dB SNR whereas poorer results are obtained for other type of noises. 

From the study of speech spectrogram of the enhanced speech, as well as from the 

subjective listening tests it is confirmed that the remnant noise is less annoying to a human 

listener because of the modification of its musical structure to a perceptually white quality while 

keeping the speech distortions in an acceptable limit.  The performance measure leads to the 

conclusion that the overall SNR improvement does not provide a good indicator to speech quality, 

whereas objective measures such as SegSNR, Itakura-Saito distortion (ISD), and PESQ score 

provide a much better indicator for evaluation of speech quality. 

The performance analysis study of the proposed algorithms lead us to conclude that the 

first proposed algorithm, i.e., iterative processing based multi-band spectral subtraction perform 

mostly well for all types of noises of both non-stationary and stationary types at low SNRs. It is 

also observed that this algorithm does not work well for high SNR (> 5 dB). The concept of 
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iterative processing is found to be effective for uniformly spaced multi-band case. In case of non-

uniform multi-bands, the effect of iterative processing does not seem to have much effect. 

The next algorithm proposed in this thesis, i.e., critical band rate sale based improved 

multi-band spectral subtraction, shows superior results for most  types noises (non-stationary and 

stationary) at low SNR (≤ 10 dB) except restaurant noise, while for SNR (≈ 15 dB) it shows better 

results for car, exhibition, white (stationary)  noises and gives poorer results for street noise. This 

algorithm shows better performance than multi-band spectral subtraction and basic spectral 

subtraction algorithm at all levels of SNRs; also, shows comparable performance with spectral 

over-subtraction algorithm except for street noise case. The optimum performance of this STFT 

based algorithm with adaptive noise estimation is achieved with six non-uniformly spaced 

frequency bands, matching closely with the critical band rate scale of human ear. 

 The perceptually motivated stationary wavelet packet transform based improved multi-

band spectral over-subtraction algorithm shows superior results for all types noises (non-

stationary and stationary) at all levels of SNR (≤ 15 dB). This algorithm shows better performance 

than multi-band spectral subtraction and basic spectral subtraction algorithm at all levels of SNRs; 

also, shows better performance than spectral over-subtraction algorithm at SNR (> 5 dB). This 

algorithm utilizing band-specific speech enhancement, adaptive noise estimation and the auditory 

frequency scale inspired subbands, gives the best performance with respect to the other two 

presented algorithms.  

Thus, the proposed algorithms have shown very promising results in various noisy 

conditions. Compared to other spectral subtractive-type algorithms with uniformly spaced 

frequency bands, and with fixed value of subtractive parameters, the speech enhancement 

obtained from the proposed algorithms is reasonably good. The adaptation of the subtraction 

parameters in the proposed algorithms leads to a significant reduction of the unnatural structure of 

musical remnant noise.  The introduction of iterative processing and auditory perception criterion 

(critical band rate scale) in transform domain as well as in temporal-transform domain allows us 
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to obtain remnant noise with perceptually white quality in various noisy environments and even at 

very low SNRs (SNR < 5 dB). 

We can summarize that, the transform based multi-band speech enhancement algorithms 

provide a definite improvement over the spectral subtractive-type algorithms and do not suffer 

from musical remnant noise to a great extent. The improvement in speech quality and 

intelligibility can be attributed to the multi-band approach, processing of signal in accordance to 

the human auditory system, the iterative processing and the non-uniform effect of non-stationary 

noise on the spectrum of speech. 

 

7.2. Scope for Future Work 

Although many issues of transform based multi-band speech enhancement algorithms have been 

investigated, there are still several important topics that provide focus on future research. Some of 

the possible research directions are depicted below: 

 

 There is a need to develop more robust and accurate voice activity detection (VAD) 

algorithm which preserves the transitional regions and unvoiced regions of speech signal 

containing low energy levels.  This will help in improving the speech enhancement 

algorithms performance in terms of quality and intelligibility of enhanced speech.  

 The empirically derived values for the additional band subtraction parameters have been 

used for the presented algorithms in the thesis. An automated way of adaptively, 

calculating the suitable value of additional band subtraction factor in place of empirically 

derived value will be an exciting direction of future work. 

 Voiced speech which contains higher energy segments seem to be more important than 

un-voiced speech for preserving speech quality. Therefore, besides suppressing the 

background noise, algorithms may be developed that boost up the voiced part from the 

speech signal. 
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 An alternative approach to calculate the over-subtraction factors in each band/subband 

can be investigated as the use of the logarithmic function is computationally expensive 

for implementation in real-time systems. 

 For the stationary WPT based speech enhancement algorithm, there is an inherent time 

delay which exists irrespective of implementation method one uses, for the decomposition 

of the noisy speech. There is a trade-off between the performance and delay time while 

selecting the wavelet filter. Generally, the longer wavelet filter has a better frequency 

response with a longer time delay whereas the shorter wavelet filter has a poorer 

frequency response with a shorter time delay. Therefore, obtaining a mother wavelet 

which gives superior frequency response with shorter support will be more desirable. 

 Fixed-point digital signal processors (DSPs) are becoming increasingly popular in 

applications such as mobile phones, and digital hearing aids due to their low-power 

consumption and high processing rate. The transform based multi-band speech 

enhancement algorithms, as presented in this thesis can be implemented in real-time on a 

fixed-point digital signal processor platform in real-world conditions. 
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Appendix A 

Overlap-Addition Method 

 

To construct a signal,     , which ideally should be the same as the original signal,     , the 

overlap-add (OLA) method requires that the inverse discrete Fourier transform (DFT) be taken for 

each frame in the discrete STFT. Each of these short-time sections are then overlapped and added 

[3, 19, 28]: 

     
 

    
  

 

 
                    

     
               (A.1) 

where 

           
                   (A.2) 

We can rewrite (A.1) as  

     
 

    
            

     
 

    
            

            (A.3) 

Therefore, for           , the following constraint must be met: 

        
                      (A.4) 

This is the OLA constraint. This constraint requires that the sum of the analysis windows (which 

are obtained by sliding        by 1 time sample) add up to the same value at each discrete point 

in time. This results in the elimination of the analysis window from the synthesized sequence. 

Further, if the STFT is decimated by factor   , then, 

     
 

    
  

 

 
                     

     
               (A.5) 

We can rewrite (A.5) as 
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                                    (A.6) 

Therefore, for            , the following constraint must be met: 

         
     

    

 
             (A.7) 

This is the generalised OLA constraint. This constraint requires that the sum of the analysis 

windows (which are obtained by sliding        by     time samples) add up to the same value at 

each discrete point in time. This process is graphically depicted in Table A.1. 

 

TABLE A.1 

OVERLAP-ADD PROCESSING 
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Appendix B 

MOS Test Listeners’ Profile 

 

The names and email addresses of the listeners who participated in the MOS test are given in the 

following table: 

TABLE B.1 MOS TEST LISTENERS’ PROFILE 

Initial Name Sex Email 

VLP Lt.Col. Vikrant Lakhan Pal Male vikrantlakhandipal@rediffmail.com 

JCJ Lt. Col. J.C. Joshi Male jcjoshi@gmail.com 

RM Roshan Mathew Male mails4roshan@gmail.com 

AN Ashwin N. Male ashwin.nenmini@gmail.com 

AMS Abhishek M.S. Male msabhishek.ms@gmail.com 
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