
Towards Realizing Low Quantum Cost Reversible

Logic Circuits

THESIS

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Sai Phaneendra P

ID No. 2009PH230009H

Under the Supervision of

Dr. M. B. Srinivas

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

2017

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE,

PILANI

CERTIFICATE

This is to certify that the thesis entitled “Towards Realizing Low Quantum Cost

Reversible Logic Circuits” and submitted by Sai Phaneendra P ID No 2009PH230009H

for award of Ph.D. of the Institute embodies original work done by him under my

supervision.

Signature of the Supervisor

Dr. M. B. SRINIVAS

Professor

BITS-Pilani, Hyderabad Campus

Date:

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor

Prof. M. B. Srinivas for his constant support and valuable guidance through out my

work. I would also like to thank my Doctoral Advisory Committee members, Prof.

BVVSN Prabhakar Rao, Dr. Sumit Kumar Chatterjee and Prof. Y Yoganandam for

their time and their constructive comments and suggestions.

I take this opportunity to express my gratitude for Council of Scientific and Industrial

Research (CSIR) - India and BITS-Pilani, Hyderabad Campus, India for providing

financial assistance and infrastructure support during my thesis work.

I appreciate the help I received from Chetan Kumar V, Goutham M and Avinash S

Vaidya during different stages of my work.

Furthermost, I would like to thank all members of Department of Electrical Engineer-

ing at BITS-Pilani, Hyderabad Campus, that have supported me by their suggestions

and discussions. I would also like to thank members of Academic Research Division, Aca-

demic Registration & Counseling Division and Student Welfare Division at BITS-Pilani,

Hyderabad Campus for their support during my thesis work.

Finally, I am grateful to my family members, especially my parents, Sridhar and

Padmaja, and my wife, Keerthi, for their patience, encouragement and inspiration,

without which this thesis would not have been possible.

iii

Abstract

Research on reversible logic gained momentum in the past decade owing to its applica-

tions in quantum computing and low power circuit implementation. Reversible circuits

realized by the existing synthesis techniques are often sub-optimal and optimization

techniques are applied on them to reduce the ‘cost’, a metric used to compare reversible

circuits. While several optimization techniques are present in the literature, finding

optimal or near-optimal reversible circuit is still an open-problem.

In this thesis, a set of optimization techniques is proposed that can be applied on

a pair of gates to reduce the cost of a reversible circuit. Initially, a decomposition

technique is presented that decomposes a pair of gates into a set of smaller gates

without changing the functionality. This technique is then used in conjunction with

an Exclusive-OR Sum-of-Product (ESOP) based reversible circuit synthesis algorithm

to check its efficiency. It is known that the decomposition technique does not always

result in cost reduction for a given gate pair. This leads us to examine the condition

that results in reduction and it has been found that the effectiveness of this technique is

proportionate to the number of common control lines between the gate pair. In order to

increase the number of common control lines, a transformation approach is presented.

Lastly, a representation is proposed to classify a pair of gates according to their

control line characteristics. This classification helps in identifying the gate pairs that

iv

v

can be optimized as opposed to those that can not be. Based on this classification, a

methodology is presented to reduce the cost of a given gate pair. In order to apply the

proposed techniques on reversible circuits, these techniques are integrated into ‘greedy’

optimization algorithms. A set of benchmark circuits is applied on these algorithms

and are compared with existing benchmark circuits. Results indicate that the proposed

techniques lead to significant improvement in the cost of reversible circuits.

Contents

Acknowledgements iii

Abstract iv

Contents vi

List of Figures ix

List of Tables xii

List of Abbreviations xiii

1 Introduction 1

1.1 Contributions of the Thesis . 4

1.2 Organization of the Thesis . 5

2 Preliminaries 7

2.1 Introduction . 7

2.2 Reversible Functions . 7

2.3 Reversible Gates, Libraries and Circuits 11

2.3.1 Reversible Gate Libraries . 12

2.3.2 Reversible Circuit . 13

vi

Contents vii

2.4 Quantum Gates and Circuits . 15

2.5 Cost Metrics for Reversible and Quantum Circuits 20

2.5.1 Number of Gates . 20

2.5.2 Quantum Cost . 21

2.5.3 Number of Lines . 21

2.6 Summary . 22

3 Cube Decomposition Technique for Optimizing Reversible Logic Cir-

cuits 23

3.1 Introduction . 23

3.2 Background . 24

3.2.1 Decomposition of an MCT/MPMCT gate 24

3.2.2 Exclusive-Or Sum-of-Products (ESOP) based Reversible Circuit

Synthesis . 25

3.2.2.1 Exclusive-Or Sum-of-Products (ESOP) 25

3.2.2.2 ESOP based Reversible Synthesis techniques 26

3.3 Cube Decomposition Technique . 28

3.3.1 General Idea . 28

3.3.2 Generation of Primary and Secondary gates for a Cube Pair . . 30

3.3.2.1 Case 1:Ta ∩ Tb 6= φ . 32

3.3.2.2 Case 2:Ta ∩ Tb = φ . 33

3.3.2.3 Case 3:pga = G(Cb) or sga = G(Cb) 35

3.3.3 Algorithm for Cube Decomposition 36

3.4 Simulation Results and Comparisons 40

3.5 Summary . 45

Contents viii

4 Complementary Control Line Transformation for Optimizing Reversible

Logic Circuits 46

4.1 Introduction . 46

4.2 Motivation . 47

4.3 Complementary Control Line Transformation 51

4.4 CCL Transformation Algorithm . 54

4.5 Application of CCL Transformation Algorithm 57

4.5.1 CCL Transformation Algorithm and Decomposition Rule 57

4.5.2 CCL Transformation Algorithm and Rule Based Optimization . 57

4.5.3 Greedy Optimization . 60

4.6 Simulation Results . 62

4.7 Summary . 69

5 Classification of a Pair of Reversible Gates 71

5.1 Introduction . 71

5.2 Quadruple Representation to Classify a Gate Pair 71

5.3 Optimization Techniques for different QR classifications. 75

5.3.1 Optimization Technique for QR(gi, gj) = (α, β, γ, δ) when α > 0 75

5.3.2 Optimization Technique for QR(gi, gj) = (0, β, γ, δ) 79

5.3.3 Optimization Techniques for Specific QR Classifications 80

5.3.3.1 For QR(gi, gj) = (α, β, 0, 0) and (0, β, 0, 0) 80

5.3.3.2 For QR(gi, gj) = (α, β, 1, 0) and (α, β, 0, 1) 82

5.3.3.3 For QR(gi, gj) = (α, β, 1, 1) 83

5.4 Post-Synthesis Optimization Algorithm using QR Classification 88

5.5 Simulation Results and Comparison . 90

Contents ix

5.6 Summary . 95

6 Conclusions and Future Work 97

List of Figures

1.1 Design Flow for Reversible Logic Synthesis [17] 3

2.1 Negation Function (¬) . 8

2.2 OR function (∨) . 8

2.3 Half Adder Function . 8

2.4 Reversible OR function after Embedding Process 10

2.5 Reversible Half Adder after embedding process 11

2.6 Reversible Half Adder Function with a different embedding process . . 11

2.7 Reversible Gates . 13

2.8 Example of Reversible Circuit with cascade of gates 14

2.9 Reversible Half Adder Circuit . 14

2.10 Single-qubit Quantum Gates . 17

2.11 Two-qubit quantum gates . 18

2.12 Mapping of Toffoli gate for different combinations of control lines using

NCV library . 19

2.13 Mapping of Reversible Half Adder Circuit to Quantum Circuit 19

3.1 Decomposition of MCT gate into network of four smaller gates 24

x

List of Figures xi

3.2 (a) Cube list and (b) representation of cubes for functions f1 = x0x1 ⊕

x0x1x2 and f2 = x0 ⊕ x0x1x2 . 26

3.3 ESOP based Synthesis Technique presented in [31] 27

3.4 (a) Initial Circuit (QC=78) (b) Individual Gate decomposition (QC=98)

(c) Pairwise decomposition (QC=62) 28

3.5 Gate decomposition for a pair of cubes with the same empty line as

target line . 33

3.6 Gate decomposition for a cube pair with different empty lines as target

lines . 35

3.7 Gate decomposition for a cube pair with pga = G(Cb) 37

3.8 Cube list . 39

3.9 Decomposed gate netlist for the cube pair C1 and C4 39

3.10 Status of cube list and output gate netlist after iteration 1 39

3.11 Decomposed gate netlist for the cube pair C2 and C3 40

3.12 Status of cube list and output gate netlist after iteration 2 40

3.13 Output gate netlist after Final Iteration 41

4.1 Illustration of Decomposition Rule . 48

4.2 Illustration of Transformation Rules 52

4.3 Illustration of Example 4.2 . 54

4.4 Illustration of Gate Transformation Algorithm (a) Initial Gate Pair (b)

After Iteration 1 (c) After Iteration 2 (d) Final Transformed Gate Netlist 56

4.5 Illustration of Example 4.4 . 58

4.6 Illustration of Example 4.5 . 59

4.7 Illustration of Example 4.6 . 60

List of Figures xii

5.1 Example for quadruple representation (QR) 72

5.2 Examples for different QR classifications 73

5.3 Examples for Existing Optimization Rules 74

5.4 Example for QR(gi, gj) = (α, β, γ, δ) = (2, 2, 1, 1) 75

5.5 Example for QR(gi, gj) = (α, β, γ, 0) = (2, 2, 1, 0) 76

5.6 Example for QR(gi, gj) = (α, β, 0, δ) = (2, 2, 0, 2) 76

5.7 Example for QR(gi, gj) = (α, 0, γ, δ) = (3, 0, 2, 1) 76

5.8 Example for QR(gi, gj) = (α, 0, γ, 0) = (3, 0, 3, 0) 77

5.9 Example for QR(gi, gj) = (α, 0, 0, δ) = (3, 0, 0, 3) 77

5.10 Illustration of Example 5.2 . 79

5.11 Illustration of Example 5.3 . 81

5.12 Illustration of Example 5.4 . 82

5.13 Illustration of Example 5.5 . 83

5.14 Illustration of Example 5.6 . 85

5.15 Illustration of Example 5.7 . 86

List of Tables

2.1 Reversible Gate Libraries . 13

2.2 Quantum Cost of an MCT gate . 21

3.1 Comparison with Existing ESOP Based Synthesis Methods 42

4.1 Comparison with Input Gate Netlist 63

4.2 Comparison with Existing ESOP based Synthesis Methods 66

5.1 Quantum Cost reduction for different classifications after applying

decomposition Rule . 78

5.2 QR Transformation . 80

5.3 Summary of Optimization Techniques for different QR classifications . 87

5.4 Comparison with Existing Post-Synthesis Optimization Algorithms . 90

5.5 Comparision with Exisiting ESOP Based Methods 93

xiii

List of Abbreviations

BDD Binary Decision Diagram

CCL Complementary Control Line

CNOT Controlled NOT

ECL Equal Control Line

ESOP Exclusive-or Sum-of-Product

MCT Multi-Control Toffoli

MPMCT Multi-Polarity Multi-Control Toffoli

QC Quantum Cost

QR Quadruple Representation

SOP Sum-of-Product

UCL Unequal Control Line

xiv

Chapter 1

Introduction

Power dissipation is a significant problem in designing small and high performance com-

plex integrated circuits. Recent advancements in integration of circuits and fabrication

techniques have helped reduce the power consumption but some part of power, which is

independent of underlying technology, is dissipated due to information loss. In 1961

Landauer [1] proved that, a loss of single bit of information in irreversible (or conven-

tional) logic computation leads to dissipation of heat energy of kT ln2 Joules, where K

and T are Boltzmann’s constant and absolute temperature at which computation is

performed, respectively. This principle has been experimentally validated recently [2] by

measuring the amount of heat dissipated when a bit of information is erased. Further,

in 1973, Bennett [3] showed that the dissipated energy is directly correlated to the

number of information bits lost and if the computation can be made information-lossless

then the energy dissipation can be reduced or theoretically eliminated. One way this

can be achieved is by making computation reversible, i.e. a bijective mapping between

inputs and outputs, resulting in no information loss.

Reversible computation thus, for one, is motivated by its implication to reduce the

1

2

power consumption. Further, it also has relevance to quantum computing [4] because

unitary transformation in quantum computing was shown to be reversible [5]. Quantum

algorithms are known to solve some hard problems in polynomial time like Shor’s

algorithm [6] for factoring and Grover’s algorithm [7] for searching for which classical

computing is known to take exponential time. In applications of these algorithms,

currently a large part of the computation is performed using classical computing which

can be described in terms of classical functions [5]. If these were to be implemented on a

quantum computer, the classical logic functions need to be translated into reversible logic

functions (since quantum transformations are reversible in nature) and implemented

using reversible gates and circuits. Apart from the applications in low power design and

quantum computing, reversible computing also has applications in optical [8–10], DNA

computing [11,12], cryptography [13], program inversion [14] and coding devices [15,16].

The bijective mapping of a reversible function does not allow for fan-out and feedback

in the implementation of reversible logic circuits. These constraints limit the usage of

existing conventional logic synthesis techniques to synthesize reversible logic functions.

In order to implement these functions, new algorithms, techniques and design flows

have been developed in the past decade [17, 18]. A general design flow for reversible

logic function implementation is shown in figure 1.1.

Synthesis techniques can be broadly categorized in to exact and heuristic. Exact

synthesis techniques [19–21] are based on exhaustive search or Boolean satisfiability

which search for optimal solutions to generate minimum cost circuits but are applicable

only on functions with small number of variables (not more than 6) [18]. For functions

with a large number of variables, heuristic approaches like transformation based [22–25],

cycle based [26–28], binary decision diagram (BDD) based [29,30], Exclusive-OR Sum-

3

Pre-Synthesis
Optimization

Input Function

Synthesis

Post-Synthesis
Optimization

Technology
Mapping

Circuit

Reversible Function

Reversible Gate Netlist

Optimized Gate Netlist

Pre-Synthesis
Optimization

Input Function

Synthesis

Post-Synthesis
Optimization

Technology
Mapping

Circuit

Embedding Irreversible Function
Variable reordering

Exact Synthesis
Heuristics Synthesis

Gate Reduction
Line Reduction

Reversible Function

Reversible Gate Netlist

Optimized Gate Netlist

Figure 1.1: Design Flow for Reversible Logic Synthesis [17]

of-Product (ESOP) based approaches [31–36] are used. In the transformation based

approach [23] input specification is given in the form of a truth-table. The lines of

the truth-table are traversed and gates are added until it is transformed to a identity

function truth-table. In the cycle based approach [26], input specification is given in

the form of a permutation. This permutation is decomposed into a set of cycles and

each cycle is synthesized separately and cascaded to generate final gate netlist. In the

BDD based approach [29], a BDD is constructed from input specification and each

node is replaced with corresponding gate netlist and added to the circuit. In ESOP

based approach [31] the product terms of ESOP are directly mapped using equivalent

reversible gates.

Heuristic synthesis approaches usually generate circuits which are sub-optimal and

post-synthesis optimization techniques [25,37–40] are typically applied to reduce the

1.1. Contributions of the Thesis 4

cost of the circuit. Optimization technique presented in [40] reduces the cost of a

reversible circuit with the help of additional lines. However, increase in the number of

lines directly affects the complexity of its implementation [41]. Technique described

in [25] uses template-based local optimization to reduce the cost of the circuit. However,

this method involves a search for templates which becomes complex as the circuit size

increases. Rule-based optimization algorithms have been presented in [37–39] where a

group of gates is replaced with a lesser cost gate netlist using a set of rules. However,

when a pair of gates is considered, existing optimization techniques address only a few

combinations of gate pairs. In this thesis, we explores different optimization techniques

to reduce the cost of a reversible circuit using gate pairs and quantify their performance

with respect to the existing ones.

1.1 Contributions of the Thesis

Contributions of this thesis may be described as follows:

• Initially a technique is developed to decompose a pair of gates to a network of

smaller gates without any change in the functionality. This technique generates

and eliminates any redundant gates that appear at the time of decomposition

resulting in a gate netlist with reduced cost compared with initial pair. A cube

decomposition algorithm is presented which integrates the proposed technique

with ESOP based approach to synthesize reversible circuits with reduced cost.

• The decomposition technique however does not always result in cost reduction

for a given gate pair. This lead us to examine the nature of a given gate pair

that results in reduction and is found that the effectiveness of the technique is

1.2. Organization of the Thesis 5

proportional to the number of common control lines between the gate pair. That

is, larger the number of lines more effective the technique is. Thus, in order to

increase the lines, a transformation approach named “Complementary Control

Line Transformation” is proposed which transforms some of the unequal control

lines to equal control lines with the help of extra gates. Further, we also found

that this transformation enables application of some of the existing rules which

cannot be applied on gates with more than one unequal control line.

• Finally, a framework based on quadruple representation, which classifies a pair

of gates based on its control line characteristics, is proposed. This classification

helps in identifying gate pairs that can be optimized as opposed to those that can

not be. Further, this classification also helps in selecting appropriate techniques

that can be applied on a gate pair to reduce the cost of its implementation. A

‘greedy’ optimization algorithm is presented that uses the classification and the

proposed techniques to reduce the overall cost of the circuit.

1.2 Organization of the Thesis

Rest of the thesis is organized as follows:

Chapter 2 provides the necessary background required for the work described in this

thesis. It describes reversible logic, reversible gates and their circuit implementation. A

brief overview of quantum logic and quantum gates is presented. Finally, implementation

of reversible gates and circuits using quantum gates and the cost metrics to evaluate

them are discussed.

Chapter 3 presents a technique to decompose a pair of gates. Motivation for this

approach and its application in ESOP based synthesis are discussed. This technique is

1.2. Organization of the Thesis 6

then used in conjunction with an ESOP based reversible circuit synthesis algorithm to

verify its efficiency.

Chapter 4 demonstrates the relation between the number of equal control lines

in a given gate pair and the cost reduction achieved after applying the decomposition

approach. Later, a transformation approach is described that increases the number of

equal control lines in a given gate pair. Application of this transformation approach to

different existing optimization techniques is then presented.

Chapter 5 proposes a framework based on a representation to classify a pair of

gates. Existing and proposed optimization techniques are then categorized according to

this representation. Finally, an optimization algorithm is described which is applied to

these techniques to reduce the cost of a given reversible circuit.

Chapter 6 concludes the thesis and presents directions for future research.

Chapter 2

Preliminaries

2.1 Introduction

This chapter provides a brief summary of reversible logic, reversible gates and circuits

and necessary background required for the work reported in this thesis. The first part

of this chapter discusses reversible functions and conversion of irreversible functions to

reversible functions. The second part gives details of different reversible gates and their

functionalities, gate libraries and circuits. The third part discusses quantum gates that

can be used to implement reversible gates and circuits. Finally, different cost metrics

to evaluate these gates and circuits are presented.

2.2 Reversible Functions

In classical computing, a Boolean function is defined as

Definition 2.1 (Boolean Function). A Boolean function is a mapping f : Bn → B

where B = {0, 1} denotes the Boolean values and n ∈ N.

The behavior of a function is represented as a tabular form known as truth table.

7

2.2. Reversible Functions 8

The left side of this table lists the permutations of inputs and the right side provides

the results of the function as outputs for each input combination. Following examples

show different Boolean functions and their truth tables:

Example 2.1. Figure 2.1 shows the truth table of a negation function (¬) which has

one input (a) and one output (z).

a z
0 1
1 0

Figure 2.1: Negation Function (¬)

Example 2.2. Figure 2.2 shows the truth table of an OR function (∨) which has two

inputs (a , b) and one output (z).

a b z
0 0 0
0 1 1
1 0 1
1 1 1

Figure 2.2: OR function (∨)

A multi-output Boolean function with m outputs is a system of m Boolean functions

fi(x1, x2, ..., xn) where 1 ≤ i ≤ m. For example, figure 2.3 shows a multi-output

function, Half adder, with two inputs (a, b) and two outputs (sum, carry).

a b sum carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Figure 2.3: Half Adder Function

In contrast to classical computing, reversible computing is limited to functions which

can be operated in inverted fashion, i.e. inputs can be constructed from outputs. A

reversible function is defined as:

2.2. Reversible Functions 9

Definition 2.2 (Reversible Function). Anm-inputm-output function f : Bm → Bm

wherem ∈ N is said to be reversible if it has one-to-one and onto mapping i.e., bijective

mapping between inputs and outputs.

Since the mapping is bijective, reversible functions can be operated in forward and

backward directions resulting in no information loss. If a function f is reversible then its

number of inputs is same as the number of outputs. For example, negation function (¬)

shown in figure 2.1 is a reversible function whereas OR function (∨) shown in figure 2.2 is

not. Even though the half adder function shown in figure 2.3 has same number of inputs

and outputs, the mapping between inputs and outputs is not bijective and thus not

reversible. These irreversible functions can be transformed in to reversible function by

adding additional inputs/outputs and assigning don’t-care values such that the mapping

between inputs and outputs is bijective. This process of transforming an irreversible

function to reversible function is called embedding of irreversible function [42].

Definition 2.3 (Ancillary Inputs). The additional inputs that are added to make a

function reversible are termed as ancillary inputs or ancillae inputs. In general, these

inputs are assigned with constant values and thus they are also known as constant

inputs.

Definition 2.4 (Garbage Outputs). The additional outputs that are added to make

a function reversible are termed as garbage outputs.

According to Theorem 1 given in [43], the minimum number of garbage outputs

required to make a function reversible is dlog2(µ)e, where µ is the maximum of number

of times an output pattern is repeated in its truth table.

Example 2.3. Consider the OR function shown in figure 2.2. From the truth table, it

can be seen that the output has three occurrences of ‘1’. Thus, the number of garbage

2.2. Reversible Functions 10

outputs that is required to make this function reversible is dlog2(3)e = 2. Since, the

number of outputs and inputs should be equal, one ancillary input is required to make

the function reversible. After adding these additional inputs and outputs and assigning

values to the don’t cares, the final truth table is shown in figure 2.4. The outputs go1

and go2 are the garbage outputs and the input ai1 is the ancillary input. Don’t care

values are assigned in such a way as to achieve bijective mapping between the inputs

and outputs.

ai1 a b z go1 go2
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 1 1 0
0 1 1 1 1 1
1 0 0 1 0 0
1 0 1 0 0 1
1 1 0 0 1 0
1 1 1 0 1 1

Figure 2.4: Reversible OR function after Embedding Process

Example 2.4. Consider the half adder function shown in figure 2.3. The maximum

number of occurrences of an output pattern is ‘2’ for ‘10’. Thus at least one (dlog2(2)e =

1) garbage output and one ancillary input are required to make this function reversible.

The reversible half adder after embedding the extra inputs and outputs is shown in

figure 2.5 where go1 and ai1 are garbage output and ancillary input respectively.

The embedding of irreversible functions is not unique and there are several pos-

sibilities depending on the don’t care assignments. For example figure 2.6 shows an

alternative embedding of half adder function to make it reversible which is different from

the embedding shown in figure 2.5. This process of embedding irreversible functions to

reversible has been studied in the past and different approaches have been proposed in

literature [42, 44–46].

2.3. Reversible Gates, Libraries and Circuits 11

ai1 a b sum carry go1
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 1 0 0
0 1 1 0 1 1
1 0 0 0 1 0
1 0 1 1 1 1
1 1 0 1 1 0
1 1 1 0 0 1

Figure 2.5: Reversible Half Adder after embedding process

ai1 a b sum carry go1
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 1 0 0
0 1 1 0 1 1
1 0 0 1 1 0
1 0 1 1 1 1
1 1 0 0 1 0
1 1 1 0 0 1

Figure 2.6: Reversible Half Adder Function with a different embedding process

2.3 Reversible Gates, Libraries and Circuits

A reversible gate is defined as,

Definition 2.5 (Reversible Gate). A gate is said to be reversible if it realizes

reversible function i.e. bijection.

The variables of a reversible function are represented with circuit lines in the

reversible gates. The commonly used reversible gates are NOT, CNOT, Toffoli [47] and

Fredkin gates [48]. The characteristics and representations of these gates are discussed

below:

NOT Gate A NOT gate has one input and one output and inverts the input.

CNOT Gate A Controlled-NOT (CNOT) gate or Feynman gate has a control line

and a target line where the target line value gets inverted if the control line is

2.3. Reversible Gates, Libraries and Circuits 12

equal to ‘1’.

Toffoli Gate A Toffoli gate has two control lines and one target line where the target

line value gets inverted when both the control lines are set to ‘1’.

Swap Gate A Swap gate has two inputs, two outputs and swaps the values on the

two lines.

Fredkin Gate A Fredkin gate is a Controlled-Swap gate with one control and two

target lines. When the control line is set to ‘1’, the target lines are swapped.

MCT Gate A n-bit multi-controlled Toffoli (MCT) gate is a generalized Toffoli gate

with n− 1 control lines and one target line.

MPMCT Gate A multi-polarity multi-control Toffoli (MPMCT) gate is similar to

MCT gate but control lines can be either positive or negative. The negative

control line in a gate is active when it is set to ‘0’.

The representation of these gates is shown in figure 2.7. The positive control line is

indicated with •, negative control line with ◦ and target line with ⊕. The MCT and

MPMCT gates are represented as MCT (C; t) and MPMCT (C; t) respectively, where

C is the set of control lines and t is the target line.

2.3.1 Reversible Gate Libraries

A gate library is a group of basic gates by which any function can be implemented.

Similarly, a reversible gate library consists of gates that can realize any reversible

function. There exist different reversible gate libraries as shown in Table 2.1:

2.3. Reversible Gates, Libraries and Circuits 13

x0 x0
(a) NOT Gate

x0 • x0

f0 f0 ⊕ x0
(b) CNOT Gate

x0 • x0
x1 • x1

f0 f0 ⊕ x0x1
(c) Toffoli Gate

x0 × x1
x1 × x0

(d) Swap Gate

x0 • x0
x1 × x0x1 ⊕ x0x2
x2 × x0x2 ⊕ x0x1

(e) Fredkin Gate

x0 • x0
x1 • x1
x2 • x2
x3 • x3

f0 f0 ⊕ x0x1x2x3
(f) MCT Gate

x0 • x0
x1 x1
x2 • x2
x3 • x3
x4 x4

f0 f0 ⊕ x0x1x2x3x4
(g) MPMCT Gate

Figure 2.7: Reversible Gates

Table 2.1: Reversible Gate Libraries

Library Included Gate(s)
NCT NOT, CNOT and Toffoli Gates
NCTS NOT, CNOT, Toffoli and Swap Gates
MCT Multi-Control Toffoli Gates

MPMCT Multi-Polarity Multi-Control Toffoli gates

2.3.2 Reversible Circuit

The bijective mapping in reversible functions imposes the constraints like no fan-out

and no feedback in the implementation. Thus, reversible functions are realized by

cascading reversible gates to form a reversible circuit. For example, a reversible circuit

with cascade of four reversible gates is shown in figure 2.8. The representation of this

circuit with MPMCT gates is given as follows:

MPMCT ({x1};x0)◦MPMCT ({x0, x1};x3)◦MPMCT ({x0, x1, x2};x3)◦MPMCT ({x0};x1)

2.3. Reversible Gates, Libraries and Circuits 14

where ◦ denotes cascade of gates/circuits.

x0 • • x0 ⊕ x1
x1 • • • x0
x2 x2
x3 x3 ⊕ x1 ⊕ x0x1x2

Figure 2.8: Example of Reversible Circuit with cascade of gates

Similar to reversible gates, reversible circuits also have same number of inputs and

outputs and perform bijection. Also, reversible circuits can be operated in backward

direction to realize inverse functions.

Example 2.5. Consider the reversible half adder function given in Example 2.4. The

reversible circuit to implement this function is shown in figure 2.9. The carry is

generated using a Toffoli gate with the help of an ancilla line (ai1) and the sum is

generated using a CNOT gate. This circuit can be operated in backward direction to

get input a from Sum and b.

a • Sum

b • • b
ai1 Carry

Figure 2.9: Reversible Half Adder Circuit

Now, definitions used in this thesis for different lines of a reversible circuit are given

below:

Control Connection The control connection defines the state of connection i.e.,

positive or negative, of a given control line in a gate.

Equal Control Line (ECL) A line having same control connection and same value

for a set of gates is termed as equal control line (ECL) .

2.4. Quantum Gates and Circuits 15

Complementary Control Line (CCL) A line having positive control connection

on one gate and negative control connection on another gate is termed as

complementary control line (CCL) for the gate pair.

Unequal Control Line (UCL) A line having different control connections for a pair

of gates is termed as unequal control line (UCL).

Unused Line A line which is neither a control line nor a target line of a gate is termed

as unused line for that gate.

In order to the implement the classical Boolean functions in quantum algorithms,

the functions are first realized using reversible circuits and the gates in the circuit are

mapped to equivalent quantum circuits. In the next section different quantum gates

and circuits are explained along with the mapping of reversible circuits to quantum

circuit.

2.4 Quantum Gates and Circuits

In quantum computing, information is encoded into quantum states and is represented

using quantum bit represented as qubit. In contrast to Boolean logic where classical

bits take values of Boolean’s 0 or 1, qubits not only take values of Boolean’s 0 or 1 but

also take superposition of these values. A qubit |ψ〉 can be described as [5]:

|ψ〉 = α0 |0〉+ α1 |1〉 (2.1)

where |0〉 and |1〉 are column vectors corresponding to

 0

1

 and

 1

0

 respec-

tively. The coefficients α0 and α1 are complex values, with |α0|2 + |α1|2 = 1 , which

2.4. Quantum Gates and Circuits 16

represents the amplitudes of |0〉 and |1〉 respectively. When a qubit is measured, de-

pending on the current state, 0 and 1 are returned with a probability of |α0|2 and |α1|2

respectively.

Definition 2.6 (Unitary Matrix). If the conjugate transpose (U †) of a matrix (U)

is also its inverse then the matrix is termed as Unitary Matrix, i.e. U †U = UU † = I

where I is identity matrix.

For example, consider a matrix U =

 i 0

0 1

. The conjugate transpose of this

matrix is U † =

 −i 0

0 1

 and U †U = UU † =

 1 0

0 1

. Thus, the matrix U is a

unitary matrix.

A quantum gate is represented as 2n × 2n unitary matrix operated on n qubits. For

example, a single-qubit quantum gate where n = 1, the quantum gates represent a 2× 2

unitary matrix. The commonly used single-qubit gates are discussed below:

Pauli-X Gate The Pauli-X gate transforms a qubit |ψ〉 = α0 |0〉 + α1 |1〉 to |ψ〉 =

α1 |0〉+ α0 |1〉 i.e. interchanging the amplitudes of |0〉 and |1〉 and the transfor-

mation matrix is given in Eq. (2.2). Thus, this gate is also referred to as NOT

gate.

X =

 0 1

1 0

 (2.2)

V Gate The square-root of NOT (Pauli-X) gate is referred to as V gate i.e. V 2 = X.

The transformation matrix of this gate is given in Eq. (2.3). The cascade of two

V gates results in a NOT gate.

2.4. Quantum Gates and Circuits 17

V =
1 + i

2

 1 −i

−i 1

 (2.3)

V † Gate The V + gate is a complex conjugate of V gate i.e. V +V = I where I is a

identity gate and the transformation matrix is given in Eq. (2.4). Similar to V

gate, two consecutive V +gates also result in a NOT gate.

V + =
1− i
2

 1 i

i 1

 (2.4)

The representation of NOT (Pauli-X), V and V + gates are shown in figure 2.10.

(a) NOT Gate

V

(b) V Gate

V +

(c) V +Gate

Figure 2.10: Single-qubit Quantum Gates

Similar to a single-qubit quantum gate, a two-qubit quantum gate represents a

4× 4 unitary matrix. A general two-qubit gate is a controlled-U gate which consists of

control and target qubits. The unitary matrix U is applied on the target qubit only if

the control qubit is |1〉 else it is unchanged. The transformation matrix is given in Eq.

(2.5), where U00, U01, U10, U11 are elements corresponding to matrix U . The commonly

used two-qubit quantum gates are explained as follows:

Controlled− U =

1 0 0 0

0 1 0 0

0 0 U00 U01

0 0 U10 U11

(2.5)

The Controlled-NOT (CNOT), Controlled-V and controlled-V +gates are controlled-

U gates where U = X, U = V and U = V +respectively. The transformation matrices

2.4. Quantum Gates and Circuits 18

of these gates are given in Eqs. (2.6), (2.7) and (2.8) and their representation is shown

in figure 2.11.

CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

(2.6)

Controlled− V =

1 0 0 0

0 1 0 0

0 0 1+i
2

1−i
2

0 0 1−i
2

1+i
2

(2.7)

Controlled− V + =

1 0 0 0

0 1 0 0

0 0 1−i
2

1+i
2

0 0 1+i
2

1−i
2

(2.8)

•

(a) CNOT Gate

•

V

(b) Controlled-V Gate

•

V +

(c) Controlled-V + Gate

Figure 2.11: Two-qubit quantum gates

Quantum circuits are implemented by cascading quantum gates on a set of qubits.

The widely used quantum library in the literature to map reversible circuits to quantum

circuits is NCV library [49]. This library consists of NOT, CNOT, Controlled-V and

Controlled-V + gates. The quantum NOT and CNOT gates are same as reversible

2.4. Quantum Gates and Circuits 19

NOT and CNOT gates when applied on Boolean logic. The mapping of Toffoli gate to

quantum circuit, for different combinations of control lines, using NCV gate library is

shown in figure 2.12.

• • • •

• ≡ • •

V V V +

• • •

• ≡ • •

V V + V +

• • • •

≡ • •

V + V V +

• • •

≡ • •

V V V

Figure 2.12: Mapping of Toffoli gate for different combinations of control lines using
NCV library

Example 2.6. Consider the reversible circuit shown in figure 2.9. The gates in the

circuit are mapped to their quantum equivalent circuits resulting in circuit shown in

figure 2.13.

a • Sum a • • • Sum

b • • b ≡ b • • • b

ai1 Carry ai1 V V V + Carry

Figure 2.13: Mapping of Reversible Half Adder Circuit to Quantum Circuit

Since the quantum gates can be applied on at most two-qubits, the maximum

possible mapping for MCT/MPMCT gates is with the number of control lines as 2 i.e.

Toffoli gate. Thus these gates are decomposed into NOT, CNOT or Toffoli gates before

mapping to NCV gate library.

2.5. Cost Metrics for Reversible and Quantum Circuits 20

2.5 Cost Metrics for Reversible and Quantum Cir-

cuits

In this section, different cost metrics to evaluate reversible circuits that are available in

the literature are discussed.

2.5.1 Number of Gates

The ‘number of gates’ refers to the total number of reversible gates required to realize a

given function. This metric depends on the gate library that is selected to implement

the function. For example, the number of gates in the circuit shown in figure 2.8 is 4

when MPMCT gate library is selected but 8 when MCT gate library is selected. In this

thesis, the widely used reversible gate library i.e. NCT gate library is chosen to compute

the gate count in the circuit. The MCT/MPMCT gates in the circuit with more than

two control lines are decomposed into NCT gates using the approach presented in

Lemmas 7.2 and 7.3 of [49]. The cost of an MCT gate in terms of Toffoli gates is given

in Eq. (2.9) and the total number of lines in circuit respectively. The total number of

NCT gates that is present in a circuit gives the NCT cost of that circuit.

CostNCT (MCT) =

8(c− 3) if c > dn+1

2
e

4(c− 2) if c ≤ dn+1
2
e

(2.9)

where c and n denote the number of control lines of a gate.

2.5. Cost Metrics for Reversible and Quantum Circuits 21

2.5.2 Quantum Cost

The Quantum Cost (QC) of a reversible gate is the number of primitive quantum gates

required to implement the gate functionality. The primitive gates in NCV quantum

library are NOT, CNOT, controlled V and controlled V+ gates [49]. The QC of a

reversible gate is calculated according to RevLib [50] and is given in Table 2.2. Here

c denotes the number of control lines and n denotes the total number of lines in the

circuit. When all the control lines of an MCT gate are negative, the QC is increased by

a value of 2. The QCs of each reversible gate in a circuit are summed up to calculate

the QC of that circuit. As an example, the QC of the circuit shown in figure 2.8 is

1 + 5 + 13 + 1 = 20.

Table 2.2: Quantum Cost of an MCT gate

c
QC

(n− (c+ 1)) ≥
0 1 c− 2

0 1
1 1
2 5
3 13
4 29 26
5 61 52 38
6 125 80 50
7 253 100 62
8 509 128 74
9 1021 152 86
> 9 2c+1 − 3 24(c+ 1)− 88 12(c+ 1)− 34

where c is number of control lines in an MCT gate;
n is total number of lines in the circuit

2.5.3 Number of Lines

The total number of qubits in a circuit indicates the number of lines required to

implement the circuit. For example, the number of lines in the circuit shown in figure

2.6. Summary 22

2.8 is 4. For a reversible function, the number of lines is equal to the number of inputs.

However in the case of classical irreversible functions, ancillary inputs and garbage

output are added to realize a reversible circuit which increases this metric. Due to

technology limitation, the number of qubits in a quantum circuit is restricted and thus

different techniques have been presented and discussed in the literature to reduce the

number of lines [41].

2.6 Summary

In this chapter, the preliminaries required to understand the work reported in the

following chapters have been presented. The chapter introduced reversible logic functions

and their characteristics along with procedure involved in the conversion of irreversible

functions in to reversible ones. Different reversible gates and their properties, reversible

gate libraries and reversible circuits have also been explained. Finally, mapping of

reversible circuit to quantum circuits and cost functions used to evaluate these circuits

have been discussed.

Chapter 3

Cube Decomposition Technique for

Optimizing Reversible Logic Circuits

3.1 Introduction

As explained in Chapter 1, the existing synthesis algorithms/methods of reversible

circuits typically generate sub-optimal circuits and thus optimization methods are

applied to reduce circuit’s cost. In this work, a decomposition technique that decompose

pairs of gates to smaller gates while eliminating redundant gates is proposed. This

technique is incorporated in Exclusive-OR Sum-of-Product (ESOP) based synthesis

method which is then used to synthesize reversible functions. In the next section the

background required to understand the decomposition technique and existing ESOP

based synthesis methods are discussed.

23

3.2. Background 24

3.2 Background

3.2.1 Decomposition of an MCT/MPMCT gate

Any MCT/MPMCT gate can be decomposed into a network of smaller gates [49]. A

fundamental decomposition method was presented in Lemma 7.3 of [49] by which an

MCT/MPMCT gate of size m (where m > 5) can be decomposed into a network of

two gates, each of size p and two gates of size m− p+ 1 each, given at least one unused

line (line which is not a control or target line for the gate) in the circuit.

Example 3.1. Consider an MCT gate having 5 control lines, G =MCT (x0, x1, x2, x3, x4; f0),

shown in figure 3.1(a). According to Lemma 7.3 of [49], this gate can be decomposed

into a network of four gates of size 3 (i.e., p = 3) as shown in figure 3.1(b).

x0 • x0
x1 • x1
x2 • x2
x3 • x3
x4 • x4
x5 x5

0 f0

(a)

sg sg

x0 • • x0
x1 • • x1
x2 • • x2
x3 • • x3
x4 • • x4
x5 • • x5

0 f0
pg pg
(b)

Figure 3.1: Decomposition of MCT gate into network of four smaller gates

In this work, gates in the network that are realized on an unused line are termed

as secondary gates (represented as sg in figure 3.1(b)) and the gates that are realized

on the actual target line, i.e., f0 are termed as primary gates (represented as pg in

figure 3.1(b)). The decomposition network of a gate G can be written in terms of ‘sg’

and ‘pg’ as:

G = sg ◦ pg ◦ sg ◦ pg

3.2. Background 25

where ‘◦’ denotes composition i.e. cascading of the gates/circuits.

3.2.2 Exclusive-Or Sum-of-Products (ESOP) based Reversible

Circuit Synthesis

3.2.2.1 Exclusive-Or Sum-of-Products (ESOP)

A traditional Sum-of-Product (SOP) is a method of representing a function using

AND-OR expression, i.e., OR of several product terms. Likewise, an ESOP is a

type of representation in AND-XOR expression, i.e., Exclusive-OR of several product

terms [51]. The individual product terms in an ESOP expression are called cubes and

the variables in its positive or negative polarity form are called literals. A k-variable

function has different ESOP representations and thus many techniques, classified as

exact and heuristic, are available in the literature to generate an ESOP expression.

Exact technqiues [52–55] have been used to find ESOP expression with the smallest

number of cubes but these techniques require large computation time and thus are

applicable only for small functions. However, heuristic methods [56, 57] can find an

ESOP expression even for large functions.

Example 3.2. Consider a function in SOP form as f = x0x1 + x0x2. The ESOP

equivalent form of this function is f = x0x1 ⊕ x0x1x2. The term x0x1 and x0x1x2 in

the function are termed as cubes and the variables x0, x1, x1, x2 are termed as literals.

In general the cubes are represented as a vector of inputs, i.e. for n variables,

where x0, x1, . . . , xn−1 are inputs and xi ∈ {0, 1,−}, the cube Ci is represented as cube

Ci =< x0x1 . . . xn−1 >. The ‘−’ in a cube indicates that the variable at that position

has not appeared in the cube and is termed as a ‘don’t care’ literal. The ESOP functions

3.2. Background 26

are represented as a list of cubes called cube lists.

Example 3.3. Consider two functions f1 = x0x1⊕x0x1x2 and f2 = x0⊕x0x1x2, where

x0, x1 and x2 are input variables and f1 and f2 are outputs. The cube list along with

the cube outputs and representation of cubes for the functions f1 and f2 are shown in

figure 3.2.

x0 x1 x2 f1 f2
C1(x0x1) 1 0 − 1 0
C2(x0x1x2) 1 1 1 1 1
C3(x0) 0 − − 0 1

(a)

Ci < x0x1x2 >
C1 < 10− >
C2 < 111 >
C3 < 0−− >

(b)

Figure 3.2: (a) Cube list and (b) representation of cubes for functions f1 = x0x1⊕x0x1x2
and f2 = x0 ⊕ x0x1x2

3.2.2.2 ESOP based Reversible Synthesis techniques

The ESOP based synthesis technique for reversible circuits has been introduced in [31] in

which reversible as well classical functions can be synthesized in to reversible gate netlist.

In this technique, the cubes corresponding to every output variable are mapped to an

MCT gate. For example, considering the cube list shown in figure 3.2, the synthesized

reversible circuit after applying this technique is shown in figure 3.3.

In order to reduce the quantum cost of synthesized circuits, different techniques

have been presented [32–36]. A template matching approach has been presented in [32]

by which different templates are applied on a cascade of MCT gates to reduce the

quantum cost. A synthesis technique was presented in [33] which uses MPMCT gates

3.2. Background 27

x0 • • • • x0
x1 • • • x1
x2 • • x2

0 f1 = x0x1 ⊕ x0x1x2
0 f2 = x0 ⊕ x0x1x2

Figure 3.3: ESOP based Synthesis Technique presented in [31]

to eliminate the usage of NOT gates for negative literals in the cubes. Further, a set of

transformation rules is defined to transfer the targets on outputs to some input lines

which helps in reducing the number of lines in the circuit. An ordering based technique

has been presented in [34] to reorder the ESOP cubes such that the number of NOT

gates is reduced. In addition to this, a set of transformation rules has also been presented

to improve the quantum cost of the circuit. Based on these transformation rules, a

simulated annealing based approach has been developed in [35] to reduce the quantum

cost of circuit. In order to reduce the number of CNOT gates used for sharing MCT

gates among their outputs, a shared cube synthesis technique has been presented in [36]

which finds multiple outputs that have the largest number of common cubes. These

common cubes are first mapped on to respective MCT gates and then CNOT gates

are added to share the common cubes between the outputs. All these techniques use

EXORCISM-4 tool [57] to generate the cube list from truth tables or SOP expressions.

There are few other techniques [58, 59] targeting only reversible circuits to generate

cube lists.

3.3. Cube Decomposition Technique 28

3.3 Cube Decomposition Technique

3.3.1 General Idea

There are many optimization methods available in the literature for reversible circuits

[17]. One of these methods decomposes an MPMCT gate in a reversible circuit into a

network of smaller gates and removes redundant gates, if any. In general, this method

is applied independently on individual gates and thus generation of maximum number

of redundant gates may not happen. Rather than applying decomposition on individual

gates, if the decomposition is applied on a pair of gates with a systematic approach, the

chances of generation of redundant gates are higher. For example, considering a pair of

gates shown in figure 3.4(a), two different types of decomposition for the same pair are

shown in figures 3.4(b) and 3.4(c). The first decomposition is applied independently on

individual gates without any constraints whereas the second decomposition is applied

with a constraint to generate identical primary gates. The dotted box in figure 3.4(c)

contains primary gates that are equal and thus redundant. Hence they can be removed

from the circuit thereby reducing the quantum cost of the final decomposed circuit.

• •
•

•
•

• •

(a)

• • • •
• •

• • • •
• •

• •
• • • •

(b)

• • • •
• •

• • • •
• •

• •
• • • •

(c)

Figure 3.4: (a) Initial Circuit (QC=78) (b) Individual Gate decomposition (QC=98)
(c) Pairwise decomposition (QC=62)

The following lemma proves different conditions by which redundant gates can be

generated while decomposing a pair of gates.

3.3. Cube Decomposition Technique 29

Lemma 3.1. Consider two MPMCT gates G1 and G2. If the primary (or secondary)

gates of two decomposed MPMCT gates, G1 and G2, are identical or if one of the primary

(or secondary) gates of G1(G2) is identical to other gate G2(G1), then redundant gates

can be generated which can be removed from the circuit.

Proof. Consider two MPMCT gates G1 and G2. The decomposed network of these

gates in terms of their primary and secondary gates can be represented as,

G1 = sg1 ◦ pg1 ◦ sg1 ◦ pg1

G2 = sg2 ◦ pg2 ◦ sg2 ◦ pg2

where pg1, pg2 represent primary gates and sg1, sg2 represent secondary gates for

gates G1 and G2 respectively. The general circuit realization for the cascade of gates

G1 and G2 is given as,

G1 ◦G2 = G1 ◦G−12 [∵ MCT gates are self-inverse]

= sg1 ◦ pg1 ◦ sg1 ◦ pg1 ◦ pg2 ◦ sg2 ◦ pg2 ◦ sg2

(3.1)

If a pair of gates are equal and are adjacent, they can be removed from the circuit [24].

In Eq. (3.1) the primary gates of two MPMCT gates are equal and adjacent and thus

can be removed from the netlist resulting in

G1 ◦G2 = sg1 ◦ pg1 ◦ sg1 ◦ sg2 ◦ pg2 ◦ sg2 (3.2)

Similarly, if the primary gates of one of the gates is equal to the other undecomposed

3.3. Cube Decomposition Technique 30

gate, then pg1 ◦G2 = ∅. Thus, the cascade of gate G1 and G2 can be reduced to

G1 ◦G2 = sg1 ◦ pg1 ◦ sg1 ◦ pg1 ◦G2

= sg1 ◦ pg1 ◦ sg1

(3.3)

Thus from the above lemma, a systematic decomposition of MPMCT gates into a

network of smaller gates can result in the reduction of cost of circuit implementation.

Even though the decomposition technique discussed earlier is applied on MPMCT gates,

it can also be applied on cubes because they can be directly realized using MPMCT

gates. This means that the gate decomposition technique can be incorporated in to

ESOP based synthesis techniques which are applied on cubes.

The MPMCT gate realization of a cube C, represented as G(C), can be decomposed

into primary and secondary gates. The next subsection presents techniques to generate

these primary and secondary gates for a given pair of cubes so as to satisfy Lemma 3.1.

3.3.2 Generation of Primary and Secondary gates for a Cube

Pair

In order to generate the primary and secondary gates for a given pair of cubes, input

variables of these cubes are assigned to three groups namely equal, unequal and target

groups. The variables of a cube that are equal to the other cube (with same literal

value) are assigned to equal group (E) and the variables of a cube that are not equal

with the other cube are assigned to unequal group (U). The variables that are not

present in the cube, i.e., variables with don’t care term as values are assigned to target

3.3. Cube Decomposition Technique 31

group (T). The representation for these three groups is given as follows

Ea = Eb = {xi : ai = bi 6= ‘− ’}

Ua = {xi : ai 6= bi, ai 6= ‘− ’} & Ub = {xi : bi 6= ai, bi 6= ‘− ’}

Ta = {xi : ai = ‘− ’} & Tb = {xi : bi = ‘− ’}

where, the groups Ea, Ua and Tacorrespond to cube Ca and the groups Eb, Uband

Tbcorrespond to cube Cb. The elements ai and bi indicate the value of input variable xi

in cubes Ca and Cb respectively.

Example 3.4. Consider two cubes, Ca =< 10− 101 > and Cb =< 11−−11 >. The

equal, unequal and target groups of this cube pair are given as,

Ea = Eb = {x0, x5}

Ua = {x1, x3, x4} & Ub = {x1, x4}

Ta = {x2} & Tb = {x2, x3}

The variables in target group of a cube are taken as unused lines and they subsequently

act as target lines for the generation of secondary gate. Considering that an unused

line is represented as xt and actual target line of an MPMCT gate is represented as t,

the primary and secondary gates in terms of equal and unequal groups are given as,

pg =MPMCT (E, xt; t) & sg =MPMCT (U ;xt)

From the above expressions, E, U and t are known variables and the only unknown

3.3. Cube Decomposition Technique 32

variable that needs to be derived is xt. Depending on the availability of xt in target

groups of a cube pair, there arise different cases that generate primary and secondary

gates. These cases are discussed in the following subsections.

3.3.2.1 Case 1:Ta ∩ Tb 6= φ

If Ta ∩ Tb 6= φ, then one of the variables (denoted as xt) from the set Ta ∩ Tb can be

chosen as target line for generation of secondary gates. Since a secondary gate’s target

line is also a primary gate’s control line, xt is added to the list of control lines of primary

gates. Thus, the final primary and secondary gates representations are

sg1 =MPMCT (Ua;xt) , sg2 =MPMCT (Ub;xt)

pg1 = pg2 =MPMCT (Ea, xt; t)

The following example illustrates generation of primary and secondary gates for a

cube pair that satisfies this case.

Example 3.5. Consider two cubes Ca =< 10− 101 > and Cb =< 11−−11 >. The

equal, unequal and target groups of this cube pair are

Ea = Eb = {x0, x5},

Ua = {x1, x3, x4} & Ub = {x1, x4},

Ta = {x2} & Tb = {x2, x3}

From the target groups Ta and Tb, it is evident that the variable x2 is common and can

be used as a target line in generating secondary gates. Now, the primary and secondary

3.3. Cube Decomposition Technique 33

gates are

sg1 =MPMCT (x1, x3, x4;x2) , sg2 =MPMCT (x1, x4;x2)

pg1 = pg2 =MPMCT (x0, x5, x2; f0)

Since the primary gates of the cube pair are equal, the equivalent cube pair realization

is G(Ca) ◦G(Cb) = sg1 ◦ pg1 ◦ sg1 ◦ sg2 ◦ pg2 ◦ sg2 from Lemma 3.1. The final circuit

implementation of the cube pair Ca and Cb is shown in figure 3.5.

x0 • • x0
x1 • x1
x2 x2
x3 • x3
x4 • x4
x5 • • x5
f0 f0

(a) Circuit before Decomposition

x0 • • x0
x1 • • x1
x2 • • x2
x3 • • x3
x4 • • x4
x5 • • x5
f0 f0

(b) Circuit after Decomposition

Figure 3.5: Gate decomposition for a pair of cubes with the same empty line as target
line

3.3.2.2 Case 2:Ta ∩ Tb = φ

The previous case can be used only if there exists at least one common variable in both

the target groups of cube pair. In this subsection, another technique is presented when

there are no common variables in target groups, i.e. Ta ∩ Tb = φ. Here, two variables

xta and xtb are chosen from groups Ta and Tb respectively. These variables act as empty

lines for generation of secondary gates and also as control lines for primary gates for

their respective cubes. Thus the primary gates can be represented as

pg1 =MPMCT (Ea, xta; t) & pg2 =MPMCT (Eb, xtb; t)

3.3. Cube Decomposition Technique 34

From the above equations, it is evident that the primary gates of the cube pair are

not equal. In order to make them equal, the variable xtb is added to primary gate of

the cube Ca and the variable xta is added to primary gate of the cube Cb. Since xtb is

a control line in primary gate of cube Ca, it can be removed from the unequal group.

Similarly, the variable xta can be removed from the unequal group of the cube Cb. Thus

the final gate realization of primary and secondary gates is

pg1 = pg2 =MPMCT (Ea, xta, xtb; t)

sg1 =MPMCT (Ua − {xtb};xta) & sg2 =MPMCT (Ub − {xta};xtb)

The following example illustrates the generation of primary and secondary gates for

a cube pair with no common variables in their target groups.

Example 3.6. Consider two cubes Ca =< 10 − 101 > and Cb =< 1 − 1011 >. The

equal, unequal and target groups of these cubes are:

Ea = Eb = {x0, x5}

Ua = {x1, x3, x4} & Ub = {x2, x3, x4}

Ta = {x2} & Tb = {x1}

There is no common variable that exists in the target groups, Ta and Tb. Thus, x2 is

selected for the generation of secondary gate for the cube Ca and x1 for the cube Cb,

3.3. Cube Decomposition Technique 35

resulting in the primary and secondary gates as,

sg1 =MPMCT (x3, x4;x2), sg2 =MPMCT (x3, x4;x1)

pg1 = pg2 =MPMCT (x0, x5, x1, x2; f0)

Since the primary gates of the cube pair are now equal, the cubes can be implemented

as G(Ca)◦G(Cb) = sg1 ◦ pg1 ◦ sg1 ◦ sg2 ◦ pg2 ◦ sg2 following Lemma 3.1. The final circuit

implementation for the cube pair Ca and Cb is shown in figure 3.6.

x0 • • x0
x1 x1
x2 • x2
x3 • x3
x4 • x4
x5 • • x5
0 f0

(a) Circuit before Decomposition

x0 • • x0
x1 x1
x2 • • x2
x3 • • x3
x4 • • x4
x5 • • x5
0 f0

(b) Circuit after Decomposition

Figure 3.6: Gate decomposition for a cube pair with different empty lines as target lines

3.3.2.3 Case 3:pga = G(Cb) or sga = G(Cb)

As proved in Lemma 3.1, in a cascade of two MPMCT gates, if one of the gates’ primary

gate is equal to the other gate, the cost of circuit realization is reduced. For a pair of

cubes, this condition is satisfied when one of the cubes’ unequal group has only one

variable (denoted as xt) and the same is present in the target group of the other cube.

The cube with xt in target group is decomposed in to primary and secondary gates as,

sg1 =MPMCT (Ua;xt)

pg1 =MPMCT (Ea, xt; t)

3.3. Cube Decomposition Technique 36

The following example illustrates the generation of primary and secondary gates for

a cube pair with the condition discussed above.

Example 3.7. Consider two cubes Ca =< 110− 1 > and Cb =< 1−−11 >. The equal,

unequal and target groups for this cube pair are

Ea = Eb = {x0, x4}

Ua = {x1, x2} & Ub = {x3}

Ta = {x3} & Tb = {x1, x2}

The unequal group of cube Cb has only one variable, x3, which is also present in the

target group of cube Ca. This variable can now act as a target line to generate secondary

gate for cube Ca and is expressed as,

sg1 =MPMCT (x1, x2;x3)

pg1 =MPMCT (x0, x4, x3; f0)

The gate implementation of cube Cb is G(Cb) = MPMCT (x0, x3, x4; t). Since the

primary gate of one cube is equal to other cube’s gate implementation, the cube pair

can be realized as G1 ◦ G2 = sg1 ◦ pg1 ◦ sg1 following Lemma 3.1. The final circuit

implementation for the cube pair Ca and Cb is shown in figure 3.7.

3.3.3 Algorithm for Cube Decomposition

In this section, the algorithm for cube decomposition technique is presented. The input

to the algorithm is cube_list, which has a list of cubes and output is reversible gate

3.3. Cube Decomposition Technique 37

x0 • • x0
x1 • x1
x2 x2
x3 • x3
x4 • • x4
0 f0

(a) Before Cube Decomposition

x0 • x0
x1 • • x1
x2 x2
x3 • x3
x4 • x4
0 f0

(b) After Cube Decomposition

Figure 3.7: Gate decomposition for a cube pair with pga = G(Cb)

net-list GateNetlist. In the algorithm, initially a cube Ci from the given cube_list is

extracted. This cube is checked with the other cubes in the cube_list for any possible

decomposition using the function CheckingDecomposition(). This function returns

true if the pair of cubes can be decomposed with any one of the proposed decomposition

techniques else it returns false.

If the return value is false, then the gate realization of cube Ci is added to the

GateNetlist. If the return value is true, the decomposed gate netlist, Listdeco, and its

cost, Costdeco, are obtained using the function Decomposition(). After all the cubes in

the cube_list are checked for decomposition condition, the cube which has the least

circuit cost after decomposition is termed as BestCube and its cost as BestCost. If the

BestCost is less than the sum of the costs of gate realization of cube Ci and BestCube,

the decomposed netlist of BestCube is assigned to BestDeco and is appended to the

GateNetlist. If the BestCost is greater than the cost of gate realization of cube Ci

plus the cost of BestCube, the gate realization of cube Ci is added to the GateNetlist.

The pseudo code of this algorithm is given below:

This algorithm is illustrated with the following example.

Example 3.8. Consider the cube list, cube_list, with four cubes, C1, C2, C3 and C4,

shown in figure 3.8 which is given as input to Algorithm 3.1.

In the first iteration, C1 is removed from the cube_list and is checked for decom-

3.3. Cube Decomposition Technique 38

Algorithm 3.1 Cube Decomposition Algorithm
1: Input: cube_list
2: Output: Reversible GateNetlist
3: begin
4: while cube_list is not empty do
5: flag = false
6: Ci = pop(cube_list)
7: BestCost =∞
8: for each cube Cj ∈ cube_list do
9: if CheckDecomposition(Ci, Cj) is true then
10: Costdeco, Listdeco = Decomposition(Ci, Cj)
11: InitCost =MCTCost(Ci) +MCTCost(Cj)
12: if min{BestCost, InitCost} > Costdeco then
13: flag = true
14: BestCost = Costdeco
15: BestCube = Cj

16: BestDeco = Listdeco
17: end if
18: end if
19: end for
20: if flag is true then
21: AddToArray(GateNetlist, BestDeco)
22: DeleteCube(cube_list, BestCube)
23: else
24: AddToArray(GateNetlist, GenerateMCT (Ci))
25: end if
26: end while
27: return GateNetlist
28: end

position with every other cube in the cube_list . First, the cube C2 is checked with

C1 for decomposition using the function CheckDecomposition. Since none of the cases

discussed above is satisfied, this function return false and moves to next cube in the

list i.e., C3. Similar to C2, the cube C3 does not satisfy any of the cases, thus resulting

in CheckDecomposition function returning false. However, this function returns true

when checked with the cube C4 because it satisfies the condition described in case 3.

Hence, the function Decomposition returns the decomposed gate netlist and its cost

(27) after applying the decomposition technique as shown in figure 3.9. This cost is less

than the sum of cost of implementation of cubes C1 and C4 individually i.e. 42 setting

3.3. Cube Decomposition Technique 39

x0 x1 x2 x3 x4 f
C1 0 − 0 0 1 1
C2 1 1 1 1 − 1
C3 1 1 − − − 1
C4 − 1 0 − 1 1

(a)

Figure 3.8: Cube list

the flag to True. Now, the cube C4 is assigned as BestCube, its decomposed netlist

as BestDeco and its cost as BestCost. After all the cubes in the list are checked with

C1, the flag is checked for true condition. Since the flag is true in this example, the

BestDeco is added to the output netlist, GateNetlist, and the corresponding cube i.e.

C4 is removed from the cube_list. After first iteration, the status of cube_list and

GateNetlist is shown in figure 3.10.

x0 x0
x1 • x1
x2 x2
x3 x3
x4 • x4
0 f

Figure 3.9: Decomposed gate netlist for the cube pair C1 and C4

x0 x1 x2 x3 x4 f
C2 1 1 1 1 − 1
C3 1 1 − − − 1

(a) Updated Cube List cube_list

x0 x0
x1 • x1
x2 x2
x3 x3
x4 • x4
0 f

(b) Output Gate Netlist GateNetlist

Figure 3.10: Status of cube list and output gate netlist after iteration 1

In the second iteration, C2 is removed from the cube_list and is checked with

3.4. Simulation Results and Comparisons 40

cube C3. Since this pair satisfies the condition described in case 1, the Decomposition

function returns the decomposed gate netlist and its cost (38) as shown in figure 3.11.

Since this cost is more than the cost of implementation of cubes C2 and C3 individually

i.e. 34, setting the flag to False. As there are no more cubes left in cube_list and the

flag is false, the gate implementation of cube C2 is added to GateNetlist. After second

iteration, the status of cube_list and GateNetlist is shown in figure 3.12.

x0 • • x0
x1 • • x1
x2 • • x2
x3 • • x3
x4 • • x4
0 f

Figure 3.11: Decomposed gate netlist for the cube pair C2 and C3

x0 x1 x2 x3 x4 f
C3 1 1 − − − 1

(a) Updated Cube List cube_list

x0 • x0
x1 • • x1
x2 • x2
x3 • x3
x4 • x4
0 f

(b) Output Gate Netlist GateNetlist

Figure 3.12: Status of cube list and output gate netlist after iteration 2

In the final iteration, there is only one cube left in the list and thus the gate

realization of this cube is added to the GateNetlist as shown in figure 3.13.

3.4 Simulation Results and Comparisons

The proposed algorithm has been used to implement various reversible benchmark

functions available in RevLib [50] and compared with existing ESOP based reversible

3.4. Simulation Results and Comparisons 41

x0 • • x0
x1 • • • x1
x2 • x2
x3 • x3
x4 • x4
0 f

Figure 3.13: Output gate netlist after Final Iteration

circuit synthesis techniques such as [32,35,36,58,59]. The cubes list can be generated

either by EXORCISM-4 tool or other cube list generation techniques [58, 59]. To

evaluate the proposed technique, quantum cost reduction obtained by existing cube

transformation techniques that use EXORCISM-4 tool are considered.

Table 3.1 compares the quantum cost of related and existing ESOP based synthesis

techniques with the proposed one. The first column indicates the benchmark name in

alphabetical order. Columns 2-6 indicate the quantum cost of existing ESOP based

synthesis techniques for the corresponding benchmarks. The techniques presented in

columns 2-4 use EXORCISM-4 tool to generate cube list whereas techniques presented

in columns 5 and 6 use their own methods to generate the cube lists. Column 7 indicates

the quantum cost of the corresponding benchmark using the proposed technique. The

final column shows the percentage improvement of quantum cost achieved compared to

the existing techniques that give the best reduction for that benchmark.

For the benchmarks considered, there is a reduction in quantum cost for most

of the benchmarks when the proposed technique is applied as compared to existing

ones. Benchmarks like misex3, rd84, cordic, alu4, spla, table3 have improved by more

than 14% when compared to existing synthesis techniques. Further, the proposed

algorithm consumes a very less synthesis time with a maximum of 5 seconds for frg2

benchmark when implemented in Python programming language on a workstation with

Intel E3-1220 processor with 8GB of primary memory running Windows 7. For few

3.4. Simulation Results and Comparisons 42

benchmarks, the proposed technique results in more quantum cost when compared

to [59] because their cube list generation method is different from the one followed in

this work.

Table 3.1: Comparison with Existing ESOP Based Synthesis Methods

Benchmark [32] [36] [35] [58] [59] Proposed

Technique

%

Impr

5xp1 1349 786 807 865 - 759 3.44

9sym 5781 10943 3406 16487 1895 2222 -17.26

add6 6362 - - 5084 2683 3629 -35.26

alu1 243 - - - 156 156 0.00

alu2 5215 - 3679 4476 - 3458 6.01

alu3 2653 - 1919 - - 1828 4.74

alu4 48778 41127 38635 43850 - 31220 19.19

apex4 256857 35840 - 50680 51284 37018 -3.29

apex5 - 33830 33803 - - 29842 11.72

apla 4051 1683 1709 - - 1601 4.87

bw - 637 790 - 2233 649 -1.88

C17 97 - - - - 78 19.59

clip 6616 3824 3218 4484 - 2889 10.22

cm150a 844 - - - - 785 6.99

con1 207 162 - - - 150 7.41

cordic 349522 187620 111955 - - 91935 17.88

3.4. Simulation Results and Comparisons 43

Table 3.1 Comparison with Existing ESOP Based Synthesis Methods (Continued)

Benchmark [32] [36] [35] [58] [59] Proposed

Technique

%

Impr

cu 1332 781 780 - - 747 4.23

dc2 1956 1084 1099 - - 1019 6.00

decod 1924 399 - - 976 436 -9.27

dist 7414 3700 - - - 3367 9.00

e64 - - 24345 - - 23751 2.44

ex1010 183726 52788 - - 77293 52467 0.61

ex2 153 - - - 118 140 -18.64

ex3 97 - - - 73 59 19.18

f2 274 112 - - 116 107 4.46

f51m 34244 28382 25119 - - 22042 12.25

frg2 - 112008 114239 - - 97183 13.24

in0 22196 7949 - - - 7501 5.64

majority 147 - - - 106 106 0.00

max46 4432 - - - 3239 2875 11.24

misex1 1017 332 352 466 - 338 -1.81

misex3 122557 49076 54132 67206 - 42098 14.22

misex3c 118578 49720 - 85330 52600 42868 13.78

mlp4 3827 2496 - - - 2303 7.73

3.4. Simulation Results and Comparisons 44

Table 3.1 Comparison with Existing ESOP Based Synthesis Methods (Continued)

Benchmark [32] [36] [35] [58] [59] Proposed

Technique

%

Impr

mux 826 - - - 784 768 2.04

pm1 582 - - - 290 188 35.17

radd 798 - - - 349 316 9.46

rd84 2598 - 1965 2062 - 1687 14.15

root 3486 1811 1583 - - 1533 3.16

sao2 7893 3767 - 5147 - 3244 13.88

spla - - 45478 49419 - 28220 37.95

sqn 2170 - - - 1183 1222 -3.30

sqr6 1090 583 - - - 597 -2.40

sqrt8 584 - - 461 - 314 31.89

squar5 476 - - 251 - 231 7.97

t481 237 - - 237 - 205 13.50

table3 86173 - 32286 35807 - 17454 45.94

urf3 - 53157 - - 56766 51622 2.89

z4 674 489 - - 260 388 -49.23

3.5. Summary 45

3.5 Summary

In this chapter, a decomposition technique has been presented to decompose a pair of

gates into a set of smaller gates while eliminating redundant gates. This technique has

been incorporated into ESOP synthesis techniques, since the cubes on which ESOP

synthesis techniques are applied can be directly realized using the gates. A cube

decomposition algorithm has been presented in which the decomposition technique

is applied along with an ESOP based synthesis method to improve the synthesized

gate netlist. This algorithm has been applied on a set of benchmarks to validate its

efficiency. Results show a reduction in the quantum cost of several benchmark circuits

when compared to the known ESOP based synthesis methods.

Chapter 4

Complementary Control Line

Transformation for Optimizing

Reversible Logic Circuits

4.1 Introduction

The decomposition technique presented in the previous chapter depends on the number

of equal control lines in a reversible gate pair. In this chapter, an algorithm to transform

a set of control lines of a gate pair to equal control lines is proposed. A set of rules is

then applied on the transformed gate netlist to reduce the circuit’s cost. Finally, an

optimization method which integrates the algorithm and the rules to optimize a given

gate netlist is discussed.

46

4.2. Motivation 47

4.2 Motivation

A decomposition rule is derived using the decomposition technique presented in Section

3.3 and is given below:

Decomposition Rule: Consider a pair of gates ga = MCT (E ∪ Ua;xt) and gb =

MCT (E ∪ Ub;xt) where set E contains equal control lines and sets Ua and Ub contain

control lines that are unequal with respect to other gate. If an unused line xu is available,

then the gate pair can be decomposed as:

ga ◦ gb =MCT (Ua;xu) ◦MCT (E ∪ {xu};xt) ◦MCT (Ua;xu)◦

MCT (Ub;xu) ◦MCT (E ∪ {xu};xt) ◦MCT (Ub;xu) (4.1)

This decomposition rule is illustrated with the help of the following example:

Example 4.1. Consider the gate pair g1 and g2 shown in figure 4.1(a). These gates

have the same target line, three equal control lines, one unequal control line. Line x4

has control connection only in g1 while line x5 has control connection only in g2. As

can be observed, line x6 is unused line for this gate pair. Using the decomposition rule

given by Eq. 4.1, these gates can be decomposed into a network of smaller gates. The

resulting decomposed gate netlist is shown in figure 4.1(b).

It should be mentioned that the decomposition rule results in reduced quantum cost

only if the number of unequal control lines in the gate pair,i.e. Ua or Ub, is less than

half the total number of lines in the circuit. If this is not the case, then the rule results

in a higher-cost gate netlist when compared with the quantum cost of individual gates.

This result can be proved with the help of following lemma:

4.2. Motivation 48

g1 g2
x0 • x0
x1 • • x1
x2 • • x2
x3 • • x3
x4 • x4
x5 • x5
x6 x6

Cost = 104
(a) Initial Gate Pair

x0 • • x0
x1 • • x1
x2 • • x2
x3 • • x3
x4 • • x4
x5 • • x5
x6 • • x6

Cost = 72
(b) Decomposed Gate Netlist

Figure 4.1: Illustration of Decomposition Rule

Lemma 4.1. In a circuit that has n lines, consider two gates ga =MCT (E ∪ Ua;xt)

and gb =MCT (E ∪ Ub;xt) where set E contains equal control lines and sets Ua and Ub

contains unequal control lines and an unused line xu. The decomposition rule results in

higher-cost gate netlist when compared to the cost of individual gates in the following

conditions:

1. |Ua| ≤ dn+1
2
e, |Ub| ≤ dn+1

2
e and |E| ≤ 1

2. |Ua| > dn+1
2
e and/or |Ub| > dn+1

2
e

where |X| indicates the number of elements in the set X, i.e. Cardinality of the set

Proof. The cascade of gates ga and gb can be given as:

ga ◦ gb =MCT (E ∪ Ua;xt) ◦MCT (E ∪ Ub;xt) (4.2)

Consider |E|+ |Ua| > dn+1
2
e and |E|+ |Ub| > dn+1

2
e, the NCT cost (Eq. (2.9)) to

implement the gate pair ga and gb is

8(|E|+ |Ua| − 3) + 8(|E|+ |Ub| − 3)

=16|E|+ 8|Ua|+ 8|Ub| − 48 (4.3)

4.2. Motivation 49

The decomposed gate netlist after applying decomposition rule on gate pair ga and

gb can be given as:

ga ◦ gb = MCT (Ua;xu) ◦MCT (E ∪ {xu};xt) ◦MCT (Ua;xu) ◦

MCT (Ub;xu) ◦MCT (E ∪ {xu};xt) ◦MCT (Ub;xu) (4.4)

In order to replace the pair of gates, the decomposed gate netlist should have lesser

cost when compared to the cost of the gate pair. The NCT cost (Eq. (2.9)) of the

decomposed gate netlist for different cases is given below:

Case 1: If |Ua| ≤ dn+1
2
e, |Ub| ≤ dn+1

2
e and |E| > dn+1

2
e then the NCT cost of the

decomposed gate netlist is

2(4(|Ua| − 2) + 4(|Ub| − 2) + 8(|E|+ 1− 3))

=16|E|+ 8|Ua|+ 8|Ub| − 64 (4.5)

In order to replace the pair of gates with the decomposed gate netlist, the cost computed

by Eq. (4.5) should be less than the cost computed by Eq. (4.3)

=⇒ 16|E|+ 8|Ua|+ 8|Ub| − 64 < 16|E|+ 8|Ua|+ 8|Ub| − 48

−64 < −48

Thus, it follows from the above inequalities that the gate pair can be replaced in this

case by the decomposed gate netlist.

4.2. Motivation 50

Case 2: If |Ua| ≤ dn+1
2
e, |Ub| ≤ dn+1

2
e and |E| ≤ dn+1

2
e then the NCT cost of the

decomposed gate netlist is

2(4(|Ua| − 2) + 4(|Ub| − 2) + 4(|E|+ 1− 2))

=8|E|+ 8|Ua|+ 8|Ub| − 40 (4.6)

In order to replace the pair of gates with the decomposed gate netlist, the cost computed

by Eq. (4.6) should be less than the cost computed by Eq. (4.3)

=⇒ 8|E|+ 8|Ua|+ 8|Ub| − 40 < 16|E|+ 8|Ua|+ 8|Ub| − 48

|E| > 1

Thus, from the above inequalities the gate pair can be replaced by the decomposed gate

netlist only if |E| > 1 proving the first condition of the lemma.

Case 3: If |Ua| > dn+1
2
e, |Ub| > dn+1

2
e and |E| ≤ dn+1

2
e then the NCT cost of the

decomposed gate netlist is

2(8(|Ua| − 3) + 8(|Ub| − 3) + 4(|E|+ 1− 2))

=8|E|+ 16|Ua|+ 16|Ub| − 104 (4.7)

In order to replace the pair of gates with the decomposed gate netlist, the cost computed

by Eq. (4.7) should be less than the cost computed by Eq. (4.3)

4.3. Complementary Control Line Transformation 51

=⇒ 8|E|+ 16|Ua|+ 16|Ub| − 104 < 16|E|+ 8|Ua|+ 8|Ub| − 48

|E|+ 7 < |Ua|+ |Ub| (4.8)

In this case, the minimum value of |Ua| (and |Ub|) and the maximum value of |E| in

terms of n are dn+1
2
e+ 1 and dn+1

2
e respectively. Substituting these value in Eq. (4.8)

results in n < 9. Thus, for the maximum value of n i.e. 8, excluding target line and

unused line utmost 6 control lines are possible for a gate. However for n = 8, the

minimum value of |Ua| is 6 which is the maximum number of control lines allowed in

this case, resulting in |E| = 0. The condition for applying decomposition rule is |E| > 0

and thus proving the second condition of the lemma.

The above lemma shows that if |Ua| > dn+1
2
e and |Ub| > dn+1

2
e then the decomposi-

tion rule cannot obtain the cost reduction. However, if the values of |Ua| and |Ub| are

reduced such that |Ua| ≤ dn+1
2
e and |Ub| ≤ dn+1

2
e then the proposed decomposition rule

can be applied to achieve the cost reduction. In order to reduce the values of |Ua| and

|Ub|, we propose a transformation technique which is presented in the following section.

4.3 Complementary Control Line Transformation

The transformation technique converts complementary control lines (CCLs) to equal

control lines (ECLs) by adding extra gates to the circuit. This technique is explained

in Lemma 4.2 given below and the transformation rules (illustrated in Fig. 4.2) used in

this lemma are described as follows:

T1 MCT (X ∪{xi, xj};xt) =MCT ({xi};xj)◦MCT (X ∪{xi, xj};xt)◦MCT ({xi};xj)

4.3. Complementary Control Line Transformation 52

T2 MCT (X ∪{xi, xj};xt) =MCT ({xi};xj)◦MCT (X ∪{xi, xj};xt)◦MCT ({xi};xj)

T3 MCT (X ∪{xi, xj};xt) =MCT ({xi};xj)◦MCT (X ∪{xi, xj};xt)◦MCT ({xi};xj)

T4 MCT (X ∪{xi, xj};xt) =MCT ({xi};xj)◦MCT (X ∪{xi, xj};xt)◦MCT ({xi};xj)

• •
• •
• ≡ • • •
•

(a) T1

• •
• •
• ≡ • • •

•

(b) T2

• •
• •
≡ • •

• •

(c) T3

• •
• •
≡ • •

(d) T4

Figure 4.2: Illustration of Transformation Rules

Lemma 4.2 (CCL Transformation Rule). Consider a pair of gates gi =MCT (X∪

{xi, xj};xt) and gj =MCT (Y ∪ {xi, xj};xt). The CCL xj can be transformed to ECL

using two extra CNOT gates and the resulting cascade of gates, gi and gj, is given as:

gi◦gj =MCT ({xi};xj)◦MCT (X∪{xi, xj};xt)◦MCT (Y ∪{xi, xj};xt)◦MCT ({xi};xj)

Proof. The gates gi and gj can be represented as:

gi =MCT (X ∪ {xi, xj};xt)

gj =MCT (Y ∪ {xi, xj};xt)

The transformation rules, T1, T2, T3 and T4, are applied on the gates depending

on the control connections of lines xi and xj. Since gate gi has {xi, xj} and gate gj

has {xi, xj}, the transformation rules T1 and T4 are applied on the gates gi and gj

respectively resulting in:

4.3. Complementary Control Line Transformation 53

gi =MCT ({xi};xj) ◦MCT (X ∪ {xi, xj};xt) ◦MCT ({xi};xj) (4.9)

gj =MCT ({xi};xj) ◦MCT (Y ∪ {xi, xj};xt) ◦MCT ({xi};xj) (4.10)

The cascade of gates, gi and gj, using Eqs. (4.9) and (4.10) is shown below:

gi ◦ gj = MCT ({xi};xj) ◦MCT (X ∪ {xi, xj};xt) ◦MCT ({xi};xj) ◦MCT ({xi};xj) ◦

MCT (Y ∪ {xi, xj};xt) ◦MCT ({xi};xj)

The third and fourth gates in the above gate netlist are same and can be removed.

The resulting gate netlist can be given as:

gi◦gj =MCT ({xi};xj)◦MCT (X∪{xi, xj};xt)◦MCT (Y ∪{xi, xj};xt)◦MCT ({xi};xj)

(4.11)

From Eq. (4.11), the control line xj is transformed to ECL using two CNOT gates.

It may be noted however that the line xi cannot be transformed to ECL because it has

to be used as a control line for the CNOT gates that are added.

Example 4.2. Consider the gate pair shown in figure 4.3(a). This gate pair has three

CCLs (x0, x1, x2). Using the transformation rules T2 and T3, the gates g1 and g2 can

be transformed to a gate netlist shown in figure 4.3(b). The CNOT gates that are

adjacent to each other can be removed resulting in the gate netlist shown in figure

4.3(c). From the figures it can be seen that the CCL x1 has transformed to an ECL.

4.4. CCL Transformation Algorithm 54

g1 g2
x0 • x0
x1 • x1
x2 • x2

(a) Original Gate Pair

g3 g4
x0 • • • • • x0
x1 • • x1
x2 • x2

(b) After applying Transforma-
tion Rules T2 and T3 on gates
g1 and g2

g3 g4
x0 • • • x0
x1 • • x1
x2 • x2

(c) Adding CNOT gates for line x1

Figure 4.3: Illustration of Example 4.2

The above lemma and example explain the transformation of one CCL to ECL. In

the next section, an algorithm is presented to convert more than one CCL. It has to be

noted however that, in a gate pair with k CCLs, at most k−1 CCLs can be transformed

to equal control lines. The remaining CCL cannot be transformed because it has to be

used as a control line for the CNOT gates that are added. After the transformation,

different rules can be applied on the transformed gate pairs to reduce their cost.

4.4 CCL Transformation Algorithm

The method for converting CCLs to ECLs for a given pair of gates is presented in

Algorithm 4.1. This algorithm takes two gates Gi and Gj as inputs and returns a

gate netlist Gt as output. The set of CCLs (represented as ccl), if any, in the given

gate pair are extracted using the function ExtractComplementLines. From ccl, a line

is randomly selected as the baseline using the function random and is subsequently

removed from ccl. Now, for each line li in ccl, a CNOT gate with the baseline as control

line and li as the target line is added to an intermediate gate netlist called CG. The

function value determines whether the control connection of a line in a gate is positive

or negative control. The line li in gates Gi and Gj is set to negative control if it has the

4.4. CCL Transformation Algorithm 55

same control connection as the baseline, else is set to positive control. This updates

the initial gate pair Gi and Gj. Finally, the output gate netlist Gt is generated by

cascading the CG before and after the updated gate pair Gi and Gj. The proposed

gate transformation algorithm is illustrated in example 4.3.

Algorithm 4.1 Gate Transformation Algorithm for a Pair of Gates
1: Input: Gates Gi, Gj

2: Output: Gate Netlist Gt

3: begin
4: ccl = ExtractComplementLines(Gi, Gj)
5: if ccl = φ then exit
6: baseline = random(ccl)
7: ccl = ccl − {baseline}
8: CG = φ
9: for each li ∈ ccl do
10: append(CNOT (baseline, li), CG)
11: if value(Gi, baseline) == value(Gi, li) then
12: Gi(li) = Gj(li) = NegativeControl
13: else
14: Gi(li) = Gj(li) = PositiveControl
15: end if
16: end for
17: Gt = append(CG,Gi, Gj, CG)
18: return Gt

19: end

Example 4.3. Consider two gates gi and gj shown in Fig. 4.4(a), given as inputs

to Algorithm 4.1. First, the function ExtractComplementLines extracts the lines

x0, x1, x2 as CCLs for the gate pair and assigns them to the set ccl (ccl = {x0, x1, x2}).

Assuming that the random function selects the line x0 as the baseline from ccl, it is

removed from ccl and is updated to {x1, x2}.

In the first iteration, line x1 from the set ccl is selected as line li. A CNOT gate

with x0 (the baseline) as control line and x1 (line li) as target line is added to the gate

netlist CG. Since the function value returns the control connections of x0 and x1 in

gate gi as negative and positive control respectively, the line x1 in gates gi and gj is

4.4. CCL Transformation Algorithm 56

updated to positive control. At the end of the first iteration, status of the gate netlist

CG and that of gates gi and gj is shown in Fig. 4.4(b).

The algorithm then proceeds to update the gate netlist CG and the gate pair gi,

gj for the remaining lines in the ccl. Figure 4.4(c) shows the status after the second

iteration. Finally, the gate netlist CG is added before and after the updated gates gi

and gj to form the output gate netlist Gt as shown in Fig. 4.4(d).

gi gj
x0 • x0
x1 • x1
x2 • x2

f0

ccl = {x1, x2} and baseline = x0

(a)

Iteration 1−−−−−−−−−−→

CG
x0 •
x1
x2

f0

gi gj
x0 • x0
x1 • • x1
x2 • x2

f0

li = x1 and baseline = x0

(b)

yIteration 2

g1 g2
x0 • • • • • x0
x1 • • x1
x2 x2

Transformed Gate Netlist

(d)

Final Netlist←−−−−−−−−−−−

CG
x0 • •
x1
x2

f0

gi gj
x0 • x0
x1 • • x1
x2 x2

f0

li = x2 and baseline = x0

(c)

Figure 4.4: Illustration of Gate Transformation Algorithm (a) Initial Gate Pair (b)
After Iteration 1 (c) After Iteration 2 (d) Final Transformed Gate Netlist

4.5. Application of CCL Transformation Algorithm 57

4.5 Application of CCL Transformation Algorithm

In this sub-section, the proposed transformation algorithm is applied such that to

enable the decomposition rule discussed earlier and two existing rules to optimize the

transformed gate netlist.

4.5.1 CCL Transformation Algorithm and Decomposition Rule

The proposed CCL transformation technique changes the number of equal and com-

plementary control lines thereby changing the |E|, |Ua| and |Ub| of Eq. (4.1). If these

values satisfy the conditions in Lemma (4.1) then the decomposition rule is applied on

the transformed gate pair. Example 4.4 illustrates the usage of the decomposition rule

after applying the transformation method for a pair of gates.

Example 4.4. Consider two gates g1 and g2 shown in figure. 5.10(a). The decomposi-

tion rule cannot be applied on this gate pair because there are no equal control lines i.e.

|E| = 0. Applying the CCL transformation algorithm on this gate pair to transform

CCLs to equal control lines results in the gate netlist as shown in figure 5.10(b). Since

the gates ga and gb have three equal control lines, the decomposition rule can be applied.

The final decomposed gate netlist is shown in figure 5.10(c) where it can be seen that

the cost, represented as QC, has reduced from 104 to 78.

4.5.2 CCL Transformation Algorithm and Rule Based Opti-

mization

Existing optimization rules for a pair of gates like merging rule, replacement rule e.t.c.,

presented in [38] can be applied on the gates which has utmost two CCLs. If the gate

4.5. Application of CCL Transformation Algorithm 58

g1 g2
x0 • x0
x1 • x1
x2 • x2
x3 • x3
x4 • x4
x5 • x5
x6 x6

QC = 104
(a) Original Gate
Netlist

ga gb
x0 • • • • • • • x0
x1 • • x1
x2 • • x2
x3 • • x3
x4 • x4
x5 • x5
x6 x6

QC = 110
(b) After applying Gate Transfor-
mation Algorithm

x0 • • • • • • • • x0
x1 • • x1
x2 • • x2
x3 • • x3
x4 • • x4
x5 • • x5
x6 • • x6

QC = 78
(c) Final Decomposed Gate
Netlist

Figure 4.5: Illustration of Example 4.4

pair is having more than two CCLs, these methods cannot be applied to improve the

cost. However, the proposed transformation algorithm enables the usage of above rules

on a gate pair that has one or more than one CCL. This is because the algorithm can

reduce k CCLs in a gate pair to one CCL as described in Section 4.4.

The existing rules presented in [38] are briefly explained as follows:

1. Merging Rule: A pair of gates can be merged into a single gate if they have the

same target lines, one CCL and any remaining control lines that are equal.

This rule is represented as Equation 4.12 given below:

MCT (C ∪ {xi};xt) ◦MCT (C ∪ {xi};xt) =MCT (C;xt) (4.12)

where C is a set of equal control lines.

2. Replacement Rule: A pair of gates can be replaced with two gates if they have

the same target lines, one CCL, a control line with control connection only on

one gate and any remaining control lines that are equal.

4.5. Application of CCL Transformation Algorithm 59

This rule is represented as Equation 4.13 given below:

MCT (C ∪ {xi, xj};xt) ◦MCT (C ∪ {xi};xt) =

MCT (C ∪ {xi, xj};xt) ◦MCT (C;xt) (4.13)

where C is a set of equal control lines.

The process of transforming the gate pair and applying merging and replacement rules

is illustrated with examples 4.5 and 4.6.

Example 4.5. Consider a pair of gates shown in figure 5.12(a). These gates cannot be

optimized using merging rule as they have more than one CCL. After the application of

the proposed algorithm however, the resulting gate netlist has only one CCL as shown

in figure 5.12(c). The gates g1 and g2 in the resulting netlist have the same target line,

one CCL and two equal control lines. Thus, g1 and g2 can be merged into a single gate

gm using the merging rule. The final gate netlist is shown in figure 5.12(d) where it can

be seen that the cost of the gate netlist has reduced from 26 to 9.

x0 • x0
x1 • x1
x2 • x2

Cost = 26
(a) Original Gate pair

g1 g2
x0 • • • • • x0
x1 • • x1
x2 x2

Cost = 30
(b) Transformed Gate Netlist

gm
x0 • • • • x0
x1 • x1
x2 x2

Cost = 9
(c) Final Optimized Gate Netlist

Figure 4.6: Illustration of Example 4.5

Example 4.6. Consider a pair of gates shown in figure 4.7(a). These gates cannot be

optimized using the replacement rule because they have more than one CCL. After the

4.5. Application of CCL Transformation Algorithm 60

algorithm is applied however, the resulting gate netlist has only one CCL as shown in

figure 4.7(b). The gates g1 and g2 in the resulting netlist have the same target line, one

CCL, the line x4 with control connection only on gate g1 and three equal control lines.

Thus, g1 and g2 can be replaced with two other gates g3 and g4. The final gate netlist is

shown in figure 4.7(c) where it can be seen that the cost of the gate netlist has reduced

from 90 to 72.

x0 • • x0
x1 • x1
x2 • x2
x3 • • x3
x4 • x4

Cost = 90
(a) Original Gate pair

g1 g2
x0 • • x0
x1 • • • x1
x2 x2
x3 • • x3
x4 • x4

Cost = 92
(b) Transformed Gate Netlist

g3 g4
x0 • • x0
x1 • • • x1
x2 x2
x3 • • x3
x4 x4

Cost = 76
(c) Final Optimized Gate Netlist

Figure 4.7: Illustration of Example 4.6

In the next sub-section a greedy optimization algorithm, that utilizes the reduction

rules presented above to reduce the cost of the given gate netlist, is presented.

4.5.3 Greedy Optimization

In the greedy optimization algorithm given in 4.2, a reversible gate netlist G is given as

input and a gate netlist G′ is returned. Initially, the gate netlist G is traversed and the

gates with equal control lines but different target lines are merged using the function

target_merging [60]. This avoids regeneration of the same gate for different target

lines. Since the reduction rules presented in Section 4.5.2 can be applied only on the

gates with equal target lines, a set of segments consisting of gates with equal target

lines is generated and assigned to Segment.

4.5. Application of CCL Transformation Algorithm 61

Algorithm 4.2 Greedy Optimization Method for a Gate Netlist
1: Input: Reversible Gate Netlist G
2: Output: Modified Gate Netlist G′
3: begin
4: GN = target_merging(G)
5: Segment = φ
6: G′ = φ
7: for each g ∈ GN do
8: insert(Segment[target(g)], g)
9: end for
10: for each sg ∈ Segment do
11: while until sg is empty do
12: flag = false
13: Gi = select_gate(sg)
14: RemoveGate(sg,Gi)
15: CostTable(Gi) = φ
16: for each Gj ∈ sg do
17: Status = False
18: Gt = φ
19: NewCost =∞
20: Status, Gt, NewCost = translate(Gi, Gj)
21: if Status is True then
22: CostTable(Gi) = {Gj, Gt, NewCost}
23: flag = True
24: end if
25: end for
26: if flag is True then
27: Gp, Gnew = LeastCost(CostTable(Gi))
28: Append(G′, Gnew)
29: RemoveGate(sg,Gp)
30: else
31: Append(G′, Gi)
32: end if
33: end while
34: end for
35: return G′

36: end

For a sg in Segment, each gate Gi is paired with every other gate Gj and is given

to the translate function. This function takes a gate pair and checks for the possibility

of reduction using the transformation algorithm and the rules presented in Section 4.5.2.

If a possibility exists for a reduction of that pair, the function returns Status as True,

the reduced gate netlist as Gt and its cost as NewCost. Also, the gate netlist Gt and

4.6. Simulation Results 62

its cost NewCost are added to the CostTable(Gi) and the flag is set to True.

After Gi is paired with every other gate Gj in sg, the status of flag is checked. If

the flag is False, it indicates that there is no reduction possible for the gate Gi when

paired with any other gate in that segment and the gate Gi is added to the output

gate netlist G′. If it is True then the function LeastCost scans the CostTable(Gi) and

returns a gate Gp that results in maximum possible reduction when paired with Gi.

This function also returns Gnew which is the reduced gate netlist for the gate pair Gi

and Gp. Finally, the gate netlist Gnew is added to the output gate netlist G′ and the

gate Gp is subsequently removed from the segment sg. This process is repeated for each

sg in the Segment.

4.6 Simulation Results

The greedy optimization method has been applied on different benchmark reversible

circuits to evaluate its efficiency in terms of cost. The reversible gate netlist obtained

from Exclusive-OR Sum of Product (ESOP) based synthesis method presented in [31]

is given as the input for the optimization method.

The quantum cost for different benchmark circuits after applying the optimization

method is shown in Table 4.1. The first column gives the benchmark name while the

second and third columns provide the cost of input gate netlist and the gate netlist

obtained after target merging, respectively. The fourth column gives the cost of the

final gate netlist obtained after applying the optimization algorithm. The fifth and

sixth columns give the percentage improvement over the initial gate netlist and the gate

netlist obtained after target merging, respectively. It is seen from the Table 4.1 that

in the best case, there is a considerable reduction of quantum cost of up to 84%. An

4.6. Simulation Results 63

average cost improvement of about 45% is observed over all the benchmarks considered

in the table.

Table 4.1: Comparison with Input Gate Netlist

Benchmark

Cost of

Input Gate

Netlist

Cost After

Merge

Cost of

Proposed

Method

% Impr w.r.t

Proposed Method

Original
After

Merge

9sym 10937 10937 3055 72.07 72.07

add6 6679 5157 3848 42.39 25.38

alu1 205 205 205 0.00 0.00

alu2 4623 4306 3090 33.16 28.24

alu3 2432 1976 1828 24.84 7.49

alu4 43635 36913 25007 42.69 32.25

apex4 252939 39818 39806 84.26 0.03

apex5 49161 31891 27960 43.13 12.33

apla 3806 1713 1601 57.93 6.54

bw 4464 820 820 81.63 0.00

C17 77 77 77 0.00 0.00

clip 7445 3842 1837 75.33 52.19

cm150a 803 803 785 2.24 2.24

con1 150 150 150 0.00 0.00

4.6. Simulation Results 64

Table 4.1: Comparison with Input Gate Netlist (Continued)

Benchmark

Cost of

Input Gate

Netlist

Cost After

Merge

Cost of

Proposed

Method

% Impr w.r.t

Proposed Method

Original
After

Merge

cordic 343959 172199 64504 81.25 62.54

cu 1191 747 747 37.28 0.00

dc2 1957 1097 1017 48.03 7.29

decod 2001 460 460 77.01 0.00

dist 7489 3723 2739 63.43 26.43

e64 26129 23751 23751 9.10 0.00

ex1010 178709 54154 52822 70.44 2.46

ex2 146 146 140 4.11 4.11

ex3 76 76 59 22.37 22.37

f2 262 118 83 68.32 29.66

f51m 30300 26533 19374 36.06 26.98

frg2 186500 103876 97001 47.99 6.62

in0 20639 7623 7501 63.66 1.60

majority 133 133 110 17.29 17.29

max46 4524 4524 2876 36.43 36.43

misex1 935 358 358 61.71 0.00

4.6. Simulation Results 65

Table 4.1: Comparison with Input Gate Netlist (Continued)

Benchmark

Cost of

Input Gate

Netlist

Cost After

Merge

Cost of

Proposed

Method

% Impr w.r.t

Proposed Method

Original
After

Merge

misex3 106810 46381 40771 61.83 12.10

misex3c 104924 46977 41886 60.08 10.84

mlp4 3878 2511 2129 45.10 15.21

mux 800 800 768 4.00 4.00

pm1 494 188 188 61.94 0.00

radd 721 659 483 33.01 26.71

rd84 2520 2334 1751 30.52 24.98

root 3618 1829 1548 57.21 15.36

sao2 7702 3688 3324 56.84 9.87

spla 94371 30518 26862 71.54 11.98

sqn 2096 1348 791 62.26 41.32

sqr6 989 609 549 44.49 9.85

sqrt8 583 477 312 46.48 34.59

squar5 365 234 231 36.71 1.28

t481 229 229 205 10.48 10.48

table3 79348 17662 16863 78.75 4.52

4.6. Simulation Results 66

Table 4.1: Comparison with Input Gate Netlist (Continued)

Benchmark

Cost of

Input Gate

Netlist

Cost After

Merge

Cost of

Proposed

Method

% Impr w.r.t

Proposed Method

Original
After

Merge

urf3 146687 53963 50761 65.40 5.93

z4 517 494 352 31.91 28.74

Table 4.2: Comparison with Existing ESOP based Synthesis Methods

Benchmark [32] [36] [58] [59] [35]
Proposed

Method

%

Impr

5xp1 1349 786 865 - 807 773 1.65

add6 6362 - 5084 2683 - 3848 -43.42

alu2 5215 - 4476 - 3679 3090 16.01

alu3 2653 - - - 1919 1828 4.74

alu4 48778 41127 43850 - 38635 25007 35.27

apex4 256857 35840 50680 51284 - 39806 -11.07

apex5 - 33830 - - 33803 27960 17.29

apla 4051 1683 - - 1709 1601 4.87

bw - 637 - 2233 790 820 -28.73

C17 97 - - - - 77 20.61

4.6. Simulation Results 67

Table 4.2: Comparison with Existing ESOP based Synthesis Methods (Continued)

Benchmark [32] [36] [58] [59] [35]
Proposed

Method

%

Impr

clip 6616 3824 4484 - 3218 1837 42.91

cm150a 844 - - - - 785 6.99

con1 207 162 - - - 150 7.41

cordic 349522 187620 - - 111955 64504 42.38

cu 1332 781 - - 780 747 4.23

dc2 1956 1084 - - 1099 1017 6.18

decod 1924 399 - 976 - 460 -15.29

dist 7414 3700 - - - 2739 25.97

e64 - - - - 24345 23751 2.44

ex1010 183726 52788 - 77293 - 52822 -0.06

ex2 153 - - 118 - 140 -18.64

ex3 97 - - 73 - 59 19.18

f2 274 112 - 116 - 83 25.89

f51m 34244 28382 - - 25119 19374 22.87

frg2 - 112008 - - 114239 97001 13.40

in0 22196 7949 - - - 7501 5.64

majority 147 - - 106 - 110 -3.77

max46 4432 - - 3239 - 2876 11.21

4.6. Simulation Results 68

Table 4.2: Comparison with Existing ESOP based Synthesis Methods (Continued)

Benchmark [32] [36] [58] [59] [35]
Proposed

Method

%

Impr

misex1 1017 332 466 - 352 358 -7.83

misex3 122557 49076 67206 - 54132 40771 16.92

misex3c 118578 49720 85330 52600 - 41886 15.76

mlp4 3827 2496 - - - 2129 14.70

mux 826 - - 784 - 768 2.04

pm1 582 - - 290 - 188 35.17

radd 798 - - 349 - 483 -38.40

rd84 2598 - 2062 - 1965 1751 10.89

root 3486 1811 - - 1583 1548 2.21

sao2 7893 3767 5147 - - 3324 11.76

spla - - 49419 - 45478 26862 40.93

sqn 2170 - - 1183 - 791 33.14

sqr6 1090 583 - - - 549 5.83

sqrt8 584 - 461 - - 312 32.32

squar5 476 - 251 - - 231 7.97

t481 237 - 237 - - 205 13.50

table3 86173 - 35807 - 32286 16863 47.77

urf3 - 53157 - 56766 - 50761 4.51

4.7. Summary 69

Table 4.2: Comparison with Existing ESOP based Synthesis Methods (Continued)

Benchmark [32] [36] [58] [59] [35]
Proposed

Method

%

Impr

z4 674 489 - 260 - 352 -35.38

A comparison of costs obtained from the optimization method with different ESOP

based methods [32,35,36,58,59] is presented in Table 4.2. The first column gives the name

of the benchmark circuit while the columns 2-6 indicate the quantum cost of respective

benchmark circuits realized with existing ESOP based methods [32,35,36,58,59]. Column

7 provides the quantum cost to realize that benchmark using the proposed optimization

method. Column 8 shows the percentage improvement of quantum cost achieved

compared to the existing methods that give the best reduction for that benchmark.

It can be seen from the table that there is an improvement of up to 48% in quantum

cost. For arithmetic benchmark circuits like frg2, in0,max46,etc., and large benchmark

circuits like misex3, table3, etc., there is a reduction in the quantum cost. However,

for some benchmarks like add6, bw, z4 etc., the optimization method results in higher

quantum cost when compared to the existing ones [35,36,59]. This is because of limited

availability of a required gate pair that can be transformed using the algorithm and the

rules presented earlier.

4.7 Summary

In this chapter, an algorithm to transform complementary control lines of a gate pair

to equal control lines has been presented. It is shown that this algorithm enables the

4.7. Summary 70

usage of a set of rules by converting CCLs to equal control lines. A greedy optimization

technique which uses the transformation algorithm and the rules to optimize the given

gate netlist has also been presented and discussed.

Chapter 5

Classification of a Pair of Reversible

Gates

5.1 Introduction

Several techniques exist in the literature to reduce the quantum cost of a given gate

pair. These techniques are chosen based on the control connections of gate pair control

lines. However, there exists no methodology by which a pair of gates can be classified

into different classes based on the control connections of each gate in that pair. In this

work, a methodology to classify a pair of gates in a reversible circuit is proposed. This

classification is used to identify gate pairs on which appropriate optimization techniques

can be applied.

5.2 Quadruple Representation to Classify a Gate Pair

Quadruple representation (QR) for a gate pair, gi and gj, is denoted as QR(gi, gj) =

(α, β, γ, δ) where,

71

5.2. Quadruple Representation to Classify a Gate Pair 72

• α: Number of equal control lines in the gate pair

• β: Number of complementary control lines in the gate pair

• γ: Number of control lines that have control connection only in the gate gi

• δ: Number of control lines that have control connection only in the gate gj

For a gate pair gi and gj, the sets which contain control connections corresponding to

α, β, γ and δ are defined as K,C, P and Q respectively. QR can be understood with

the help of following example:

Example 5.1. Consider two gates g1 and g2 shown in the figure 5.1. They have two

equal control lines, K = {x0, x3}, one complementary control line, C = {x1}, the line

with control connection only on gate g1, that is, P = {x2} and the line with control

connection only on gate g2, that is, Q = {x4}. Hence, according to the QR defined

above, QR(g1, g2) = (2, 1, 1, 1).

g1 g2
x0 • • x0
x1 • x1
x2 • x2
x3 x3
x4 • x4

Figure 5.1: Example for quadruple representation (QR)

Lemma 5.1 stated below provides the possible number of classifications for a gate

pair when at least one of the elements of the QR is not equal to zero. If all the elements

in the QR of a gate pair are zero, then the gate pair is a cascade of two NOT gates

that can be removed from the circuit.

Lemma 5.1. In a reversible circuit, there exist 15 classifications for a gate pair gi and

gj, where at least one of the elements in QR(gi, gj) is a non-zero element.

5.2. Quadruple Representation to Classify a Gate Pair 73

Proof. The QR(gi, gj) is a quadruple with four elements α, β, γ and δ. Depending on the

elements that are either zero or non-zero, there exist 24 = 16 unique classifications. Of

these, one classification has all its elements as zero. Thus, the number of classifications

in which at least one of the elements is non-zero is 16− 1 = 15.

An example for each classification along with their QR is shown in figure 5.2.

(0, 0, 0, 0) (α, 0, 0, 0) (0, β, 0, 0) (0, 0, γ, 0) (0, 0, 0, δ) (α, β, 0, 0) (α, 0, γ, 0) (α, 0, 0, δ)

(0, 0, 0, 0) (4, 0, 0, 0) (0, 4, 0, 0) (0, 0, 4, 0) (0, 0, 0, 3) (2, 2, 0, 0) (3, 0, 2, 0) (3, 0, 0, 1)

• • • • • • • • • •
• • • • • • • • • •

• • •
• • • • • • •

•

(0, β, γ, 0) (0, β, 0, δ) (0, 0, γ, δ) (α, β, γ, 0) (α, β, 0, δ) (α, 0, γ, δ) (0, β, γ, δ) (α, β, γ, δ)

(0, 3, 2, 0) (0, 3, 0, 1) (0, 0, 2, 3) (2, 1, 1, 0) (1, 2, 0, 2) (2, 0, 1, 2) (0, 2, 2, 1) (2, 1, 1, 1)

• • • • • • • • • • • •
• • • • • • • •

• • • •
• • • • • • •
• • • • • • •

Figure 5.2: Examples for different QR classifications

There exist several rules in the literature to optimize (some) QR classifications as

given below:

Rule R1 If QR(gi, gj) = (α, 0, 0, 0), then the gates are identical and can be removed

from the circuit using the deletion rule presented in [24].

Rule R2 If QR(gi, gj) = (α, β, 0, 0) or (0, β, 0, 0), then the gates can be decomposed

into a network of smaller gates by applying the rule based optimization

presented in [37].

Rule R3 If QR(gi, gj) = (α, 1, 0, 0) or (α, 0, 1, 0) or (α, 0, 0, 1), then the gates can be

merged into single gate using the merging rule presented in [38].

5.2. Quadruple Representation to Classify a Gate Pair 74

Rule R4 If QR(gi, gj) = (α, 1, 1, 0) or (α, 1, 0, 1), then the gates can be replaced with

a lower cost gate netlist using the replacement rule presented in [38].

Rule R5 If QR(gi, gj) = (α, 0, γ, 1) or (α, 0, 1, δ), then the cost of the gate pair can

be reduced using the cube pairing technique presented in [59].

• •
• •

• •

≡

(a) Rule R1

• •
•
•
•

≡
• • •
• •
• •
•

(b) Rule R2

• •
• •
•

≡
•
•
• •
• •

•

≡
•
•

(c) Rule R3

• •
• •
•

≡
• •
• •
•
•

(d) Rule R4

• •
• •
•
•
•

≡

• •
• •
•
•
•

≡

•
•
• •
• •
•

(e) Rule R5

Figure 5.3: Examples for Existing Optimization Rules

An example for each of the rules discussed above is given in Fig 5.3. As mentioned

earlier, these rules can be applied only on a few QR classifications. For example, clas-

sifications like (α, β, γ, δ), (α, β, γ, 0), (α, β, 0, δ), (α, 0, γ, δ), (α, 0, γ, 0) and (α, 0, 0, δ)

do not have any optimization defined on them. In the following section, the mapping of

the techniques presented in Chapters 3 and 4 to most of the classifications is discussed

5.3. Optimization Techniques for different QR classifications. 75

5.3 Optimization Techniques for different QR classifi-

cations.

5.3.1 Optimization Technique for QR(gi, gj) = (α, β, γ, δ) when

α > 0

The decomposition techniques presented in section 3.3 to decompose ESOP cubes can

be directly applied to optimize MPMCT gates. This technique decomposes a pair of

gates using the number of equal lines (α) between them and thus can be applied for

QR classifications in which α > 0, i.e. (α, 0, γ, 0), (α, 0, 0, δ), (α, 0, γ, δ), (α, β, γ, 0),

(α, β, 0, δ) and (α, β, γ, δ).

Figures 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9 illustrate the decomposition technique when

applied to the gate pairs belonging to different classifications. The gate pairs are

decomposed such that they generate redundant gates which are then removed from the

circuit resulting in final gate netlists.

Redundant Gates

Figure 5.4: Example for QR(gi, gj) = (α, β, γ, δ) = (2, 2, 1, 1)

5.3. Optimization Techniques for different QR classifications. 76

Redundant Gates

Figure 5.5: Example for QR(gi, gj) = (α, β, γ, 0) = (2, 2, 1, 0)

Redundant Gates

Figure 5.6: Example for QR(gi, gj) = (α, β, 0, δ) = (2, 2, 0, 2)

Redundant Gates

Figure 5.7: Example for QR(gi, gj) = (α, 0, γ, δ) = (3, 0, 2, 1)

It can be seen from Table 5.1 that there is a quantum cost reduction in each case

5.3. Optimization Techniques for different QR classifications. 77

Redundant Gates

Figure 5.8: Example for QR(gi, gj) = (α, 0, γ, 0) = (3, 0, 3, 0)

Redundant Gates

Figure 5.9: Example for QR(gi, gj) = (α, 0, 0, δ) = (3, 0, 0, 3)

after applying this decomposition rule.

As explained in Lemma 4.1, the decomposition technique results in reduced cost only

if the number of unequal control lines in the gate pair, i.e. Ua(= β + γ) or Ub(= β + δ),

is less than half of the total number of lines in the circuit. However, if the values of

β + γ and β + δ are reduced such that β + γ ≤ dn+1
2
e and β + δ ≤ dn+1

2
e then the

decomposition technique can be applied to achieve the cost reduction. In order to reduce

the values of β + γ and β + δ and to increase the value of α, the CCL transformation

approach presented in Section 4.4 can be applied.

The CCL transformation approach changes the number of equal and complementary

5.3. Optimization Techniques for different QR classifications. 78

Table 5.1: Quantum Cost reduction for different classifications after applying decompo-
sition Rule

QR(gi, gj) Illustration Quantum Cost (QC)
Initial

Gate Pair
Effect of

Applying Rule
R6

(α, β, γ, δ) = (2, 2, 1, 1) Figure 5.4 104 78
(α, β, γ, 0) = (2, 2, 1, 0) Figure 5.5 78 62
(α, β, 0, δ) = (2, 2, 0, 2) Figure 5.6 106 88
(α, 0, γ, δ) = (3, 0, 2, 1) Figure 5.7 78 64
(α, 0, γ, 0) = (3, 0, 3, 0) Figure 5.8 93 78
(α, 0, 0, δ) = (3, 0, 0, 3) Figure 5.9 93 78

control lines that modifies the QR of a gate pair. For example, consider a gate pair gi

and gj with QR(gi, gj) = (α, β, γ, δ). The transformation approach converts β CCLs to

β − 1 ECLs resulting in α+ β − 1 equal and one complementary control line. Thus, the

QR(gi, gj) is transformed from (α, β, γ, δ) to (α+ β − 1, 1, γ, δ). If the transformed QR

satisfies the conditions presented in Lemma 4.1, then decomposition technique can be

applied to reduce the cost of the circuit. This process of applying the transformation rule

to modify the QR such that the decomposition technique can be applied is explained

with the help of an example given below:

Example 5.2. Consider two gates g1 and g2 as shown in figure 5.10(a). TheQR(g1, g2) =

(1, 3, 2, 1). According to Lemma 4.1, the decomposition rule does not result in cost

reduction when applied on this gate pair. The CCL transformation technique is applied

on this gate pair resulting in modified gate pair ga and gb with QR(ga, gb) = (3, 1, 2, 1)

as shown in figure 5.10(b). From this modified QR, it is evident that β + γ ≤ dn+1
2
e,

β + δ ≤ dn+1
2
e, α ≤ dn+1

2
e and the final decomposed gate netlist after applying the

decomposition rule is shown in figure 5.10(c). It is evident from the figure that there is

a reduction in the cost from 132 to 92.

So far, the QR classifications with α > 0 have been covered with the proposed

5.3. Optimization Techniques for different QR classifications. 79

g1 g2
x0 • x0
x1 • • x1
x2 • x2
x3 • x3
x4 • x4
x5 • x5
x6 • x6
x7 x7

QC = 132
(a) Original Gate Netlist

ga gb
x0 • • • • • x0
x1 • • x1
x2 • • x2
x3 • • x3
x4 • x4
x5 • x5
x6 • x6
x7 x7

QC = 136
(b) After applying CCL Transformation tech-
nique

x0 • • • • • • x0
x1 • • x1
x2 • • x2
x3 • • x3
x4 • • x4
x5 • • x5
x6 • • x6
x7 • • x7

QC = 92
(c) Final Gate Netlist

Figure 5.10: Illustration of Example 5.2

decomposition and transformation techniques. In the next section, the optimization

technique for QR classifications with α = 0 is discussed.

5.3.2 Optimization Technique for QR(gi, gj) = (0, β, γ, δ)

The technique presented in the previous section are applicable when α > 0 and can

not be applied directly on the QR classifications of the type (0, β, γ, δ), (0, β, 0, δ) and

(0, β, γ, 0). However all these classifications have β CCLs, which can be converted to

ECLs using the proposed CCL transformation approach. This approach transforms the

QR types as given in the table below:

From the Table 5.2, it can be seen that the QR classifications after CCL transforma-

tion have α > 0 and hence are a sub-set of QR classifications discussed in the Section

5.3. Optimization Techniques for different QR classifications. 80

Table 5.2: QR Transformation

Before applying CCL Transformation After applying CCL Transformation
(0, β, γ, δ) (β − 1, 1, γ, δ)
(0, β, γ, 0) (β − 1, 1, γ, 0)
(0, β, 0, δ) (β − 1, 1, 0, δ)

5.3.1. The following example illustrates the process of applying the transformation

approach to modify the QR such that the decomposition technqiue can be applied.

Example 5.3. Consider two gates g1 and g2 shown in figure 5.11(a). The QR(g1, g2) =

(0, 4, 1, 1). The CCL transformation approach is applied on this gate pair resulting in a

modified gate pair ga and gb with QR(ga, gb) = (3, 1, 1, 1) as shown in figure 5.11(b).

The decomposition rule can now be applied to obtain the final reduced gate netlist as

shown in figure 5.11(c). It is evident that there is a reduction in the cost from 104 to

78.

5.3.3 Optimization Techniques for Specific QR Classifications

In this section, different optimization techniques are presented for specific QR classifica-

tions.

5.3.3.1 For QR(gi, gj) = (α, β, 0, 0) and (0, β, 0, 0)

The gate pairs that come under QR classifications of type (α, β, 0, 0) and (0, β, 0, 0)

can be reduced by applying rule R2. However, the CCL transformation technique

further reduces the cost of the gate pair. This is achieved by converting β − 1 CCLs

to ECLs which modifies the QR from (α, β, 0, 0) and (0, β, 0, 0) to (α + β − 1, 1, 0, 0)

and (β − 1, 1, 0, 0) respectively. From the modified QRs it is evident that the rule R3

can be applied to reduce the resultant gate netlist. This process is explained with the

5.3. Optimization Techniques for different QR classifications. 81

g1 g2
x0 • x0
x1 • x1
x2 • x2
x3 • x3
x4 • x4
x5 • x5
x6 x6

QC = 104
(a) Original Gate Netlist

ga gb
x0 • • • • • • • x0
x1 • • x1
x2 • • x2
x3 • • x3
x4 • x4
x5 • x5
x6 x6

QC = 110
(b) After applying CCL Transformation
Technique

x0 • • • • • • • • x0
x1 • • x1
x2 • • x2
x3 • • x3
x4 • • x4
x5 • • x5
x6 • • x6

QC = 78
(c) Final Gate Netlist

Figure 5.11: Illustration of Example 5.3

following example:

Example 5.4. Consider a pair of gates with QR(g1, g2) = (0, 4, 0, 0) as shown in figure

5.12(a). The reduction of this pair using rule R2 results in the gate netlist as shown

in figure 5.12b. Applying CCL transformation on the gate pair modifies the QR to

(3, 1, 0, 0) as shown in figure 5.12(c). The modified gate pair can be merged to single

gate using the rule R3 as given in figure 5.12(d). From the figure it can be seen that

the cost of the circuit, as a result of applying rule R2 and CCL transformation with

rule R3, reduces to 52 and 19 respectively.

5.3. Optimization Techniques for different QR classifications. 82

x0 • x0
x1 • x1
x2 • x2
x3 • x3

QC = 58
(a) Original Gate pair

x0 • x0
x1 • • • x1
x2 • • x2
x3 • • • x3

QC = 52
(b) Reduced netlist using rule R2

g1 g2
x0 • • • • • • • x0
x1 • • x1
x2 x2
x3 x3

QC = 64
(c) Transformed Gate Netlist

gm
x0 • • • • • • x0
x1 • x1
x2 x2
x3 x3

QC = 19
(d) Final Optimized Gate Netlist

Figure 5.12: Illustration of Example 5.4

5.3.3.2 For QR(gi, gj) = (α, β, 1, 0) and (α, β, 0, 1)

The rule R4 can be applied on the classifications of type (α, β, 1, 0) and (α, β, 0, 1) only

if β = 1. However, if β > 1 then the CCL transformation can be used to modify the QR

classifications from (α, β, 1, 0) and (α, β, 0, 1) to (α+β−1, 1, 1, 0) and (α+β−1, 1, 0, 1)

respectively. This enables the use of rule R4 on the modified QRs which is explained

in the following example:

Example 5.5. Consider a pair of gates with QR(g1, g2) = (1, 3, 1, 0) as shown in figure

5.13(a). Applying CCL transformation on the gate pair modifies QR to (3, 1, 1, 0) as

shown in figure 5.13(b). Rule R4 can be applied on the modified gate pair and the

resulting gate netlist is shown in figure 5.13(c) in which it can be seen that there is a

reduction of the cost from 78 to 69.

5.3. Optimization Techniques for different QR classifications. 83

• •
•
•
•

QC = 78
(a) Initial Gate Netlist

• •
• • • • •
• •
• •

QC = 82
(b) After CCL Transformation

• •
• • • • •
• •
• •
•

QC = 69
(c) Final Gate Netlist

Figure 5.13: Illustration of Example 5.5

5.3.3.3 For QR(gi, gj) = (α, β, 1, 1)

An optimization technique is presented in this sub-section to reduce the cost of a gate

pairs,gi and gj, with QR(gi, gj) = (α, 1, 1, 1). This technique decomposes the gate pair

into a network of smaller gates and is explained with the help of following lemma:

Lemma 5.2 (Swap Rule). Consider two gates gi and gj with same target line xt. The

QR(gi, gj) = (α, β, γ, δ) and the sets of control lines corresponding to α, β, γ and δ are

defined as K,C, P and Q respectively. If β, γ and δ are equal to 1, C = {xC}, P = {xP}

and Q = xQ, then the gate pair gi and gj can be decomposed using the following rule:

gi ◦ gj =MCT ({xQ};xP}) ◦MCT ({xC} ∪ {xP};xQ) ◦MCT (K ∪ {xC} ∪ {xP};xt)◦

MCT ({xC} ∪ {xP};xQ) ◦MCT ({xQ};xP})

Proof. The gates gi and gj are represented as gi = MCT (K ∪ C ∪ P ;xt) and gj =

MCT (K ∪ C ∪Q;xt) respectively. If β, γ and δ are equal to 1, then there exists only

one control line in the sets C,P and Q respectively, i.e. C = {xC}, P = {xP} and

Q = {xQ}. Assuming the control line xC has a positive control connection in the gate

gi and a negative control connection in the gate gj, they can be written as:

5.3. Optimization Techniques for different QR classifications. 84

gi =MCT (K ∪ {xC} ∪ {xP};xt)

gj =MCT (K ∪ {xC} ∪ {xQ};xt)

The gate gj can be decomposed into two gates using the rules presented in [37]

which is given as follows:

gj =MCT (K ∪ {xC} ∪ {xQ};xt) ◦MCT (K ∪ {xQ};xt)

The cascade of gate pair gi and gj is given as:

gi ◦gj =MCT (K∪{xC}∪{xP};xt)◦MCT (K∪{xC}∪{xQ};xt)◦MCT (K∪{xQ};xt)

Using rule R5, the first two gates in the above netlist can be decomposed into

network of three gates as:

gi◦gj =MCT ({xQ};xP})◦MCT (K∪{xC}∪{xP};xt)◦MCT ({xQ};xP})◦MCT (K∪{xQ};xt)

The position of last two gates can be interchanged using the moving rule presented

in [24] and the resulting gate netlist is given as:

gi◦gj =MCT ({xQ};xP})◦MCT (K∪{xC}∪{xP};xt)◦MCT (K∪{xQ};xt)◦MCT ({xQ};xP})

5.3. Optimization Techniques for different QR classifications. 85

The second and third gates in the above netlist can be decomposed into a network

of three gates using rule R5 and the resulting netlist is given as follows, thus proving

the lemma:

gi ◦ gj =MCT ({xQ};xP}) ◦MCT ({xC} ∪ {xP};xQ) ◦MCT (K ∪ {xC} ∪ {xP};xt)◦

MCT ({xC} ∪ {xP};xQ) ◦MCT ({xQ};xP})

The following example illustrates the above lemma:

Example 5.6. Consider a pair of gates with QR(g1, g2) = (1, 1, 1, 1) as shown in figure

5.14(a). The set of control lines corresponding to this QR are K = {x0}, C = {x1},

P = {x2} and Q = {x3}. According to Lemma 5.2, the gate pair is decomposed into a

gate netlist as shown in figure 5.14(b) where it can be seen that there is a reduction in

the QC from 26 to 17.

g1 g2
x0 • • x0
x1 • x1
x2 • x2
x3 • x3

QC = 26
(a) Initial Gate Netlist

x0 • x0
x1 • • x1
x2 • • • x2
x3 • • x3

QC = 17
(b) Final Gate Netlist

Figure 5.14: Illustration of Example 5.6

Even-though Swap Rule adds two Toffoli and two CNOT gates, the gate pair is

merged to a single gate with reduced control lines, thereby reducing the cost of the gate

pair. This technique can be applied only if β = 1 but not if β > 1. Thus, if the gate

5.3. Optimization Techniques for different QR classifications. 86

pair has QR(gi, gj) = (α, β, 1, 1) then the CCL transformation technique can be applied

to modify the QR classifications to QR(gi, gj) = (α+ β − 1, 1, 1, 1) thus enabling the

use of Swap Rule to reduce the cost of the gate pair. This process is illustrated in the

following example:

Example 5.7. Consider a pair of gates with QR(g1, g2) = (1, 2, 1, 1) as shown in

figure 5.15(a). Since Lemma 5.2 can be applied only on gate pair with β = 1, CCL

transformation is applied on this gate pair and the modified gate netlist is shown in

figure 5.15(b) such that the QR is modified to (2, 1, 1, 1). From the modified QR, Swap

Rule can be applied on this gate netlist and the resulting circuit is shown in figure

5.15(c). From the figure, it is evident that the cost of the gate pair is reduced from 52

to 27.

• •
•
•
•
•

QC = 52
(a) Initial Gate Netlist

• •
• • •
• •
•
•

QC = 54
(b) After applying CCL transfor-
mation approach

•
• • • •
•

• • •
• •

QC = 27
(c) Final Gate Netlist

Figure 5.15: Illustration of Example 5.7

There can be no optimization technique that covers QR classifications of type

(0, 0, γ, 0), (0, 0, 0, δ) and (0, 0, γ, δ) because the gate pairs do not have any dependent

control lines like equal or complementary control lines. Table 5.3 summarizes the

QR classifications and the optimization techniques that can be followed for respective

classifications.

5.3. Optimization Techniques for different QR classifications. 87

Table 5.3: Summary of Optimization Techniques for different QR classifications

QR(gi, gj) Conditions Optimization
Techniques

(0, 0, 0, 0) - Deletion Rule R1

(α, 0, 0, 0) - Deletion Rule R1

(α, β, 0, 0),
(0, β, 0, 0)

β = 1 Rule R3

β > 1
CCL Transformation
Approach + Rule R3

(0, 0, γ, 0),
(0, 0, 0, δ),
(0, 0, γ, δ)

- No reduction technique

(α, β, γ, δ),
(α, β, γ, 0),
(α, β, 0, δ),
(α, 0, γ, δ),
(α, 0, γ, 0),
(α, 0, 0, δ)

(β = 0, γ = 0 and δ = 1) or
(β = 0, γ = 1 and δ = 0) Rule R3

(β = 1, γ = 1 and δ = 0) or
(β = 1, γ = 0 and δ = 1) Rule R4

(β > 1, γ = 0 and δ = 1) or
(β > 1, γ = 1 and δ = 0)

CCL Transformation
Approach + Rule R4

(β = 0 and γ = 1) or
(β = 0 and δ = 1) Cube Pairing Rule R5

(γ = 1 and δ = 1) Swap Rule

β + γ ≤ dn+1
2
e, β + δ ≤ dn+1

2
e and α > 1 Decomposition Technique

β + γ > dn+1
2
e, β + δ > dn+1

2
e,

α ≤ dn+1
2
e,1+γ ≤ dn+1

2
e and 1+ δ ≤ dn+1

2
e

CCL Transformation
Approach +

Decomposition Technique

β + γ > dn+1
2
e, β + δ > dn+1

2
e,

α ≤ dn+1
2
e,1+ γ > dn+1

2
e and 1+ δ > dn+1

2
e No reduction technique

(0, β, γ, δ),
(0, β, γ, 0),
(0, β, 0, δ)

β + γ ≤ dn+1
2
e, β + δ ≤ dn+1

2
e and β > 2 CCL Transformation

Approach +
Decomposition Techniqueβ + γ > dn+1

2
e, β + δ > dn+1

2
e,

β > 2,1 + γ ≤ dn+1
2
e and 1 + δ ≤ dn+1

2
e

β + γ > dn+1
2
e, β + δ > dn+1

2
e,

1 + γ > dn+1
2
e and 1 + δ > dn+1

2
e

No reduction technique

5.4. Post-Synthesis Optimization Algorithm using QR Classification 88

5.4 Post-Synthesis Optimization Algorithm using QR

Classification

A greedy algorithm for post-synthesis optimization is presented in Algorithm 5.1. This

algorithm takes a reversible gate netlist G as input and gets an optimized gate netlist

G′ as output. Initially, the gate netlist G is traversed and the gates with equal control

lines but different target lines are merged using the function target_merging [60]. This

avoids regeneration of the same gate for different target lines.

Each gate Gi is paired with every other gate Gj in GN and is given to the translate

function. This function takes a gate pair, classifies it using the proposed representation

and checks for the possibility of reduction using the optimization techniques presented

in the Table 5.3. If a possibility exists for optimizing that pair, the function returns

Status as True, the optimized gate netlist as Gt and its cost as NewCost. Also, the

gate netlist Gt and its cost NewCost are added to the CostTable(Gi) and the flag is

set to True.

After Gi is paired with every other gate Gj in GN , the status of flag is checked.

If the flag is False, it indicates that there is no optimization possible for the gate Gi

when paired with any other gate in the circuit and the gate Gi is added to the output

gate netlist G′. If it is True then the function LeastCost scans the CostTable(Gi) and

returns a gate Gp that results in maximum possible reduction when paired with Gi.

This function also returns Gnew which is the reduced gate netlist for the gate pair Gi

and Gp. If the gate netlist Gnew consists of single gate then the gate is added to initial

netlist GN else it is added to the output gate netlist G′ and the gate Gp is subsequently

removed from the netlist GN . This process is repeated for each gate in the netlist.

5.4. Post-Synthesis Optimization Algorithm using QR Classification 89

Algorithm 5.1 Post-Synthesis Greedy Optimization Method
1: Input: Reversible Gate Netlist G
2: Output: Modified Gate Netlist G′
3: begin
4: GN = target_merging(G)
5: G′ = φ
6: while GN is not empty do
7: flag = false
8: Gi = select_gate(GN)
9: RemoveGate(GN,Gi)
10: CostTable(Gi) = φ
11: for each Gj ∈ GN do
12: Status = False
13: Gt = φ
14: NewCost =∞
15: Status, Gt, NewCost = translate(Gi, Gj)
16: if Status is True then
17: CostTable(Gi) = {Gj, Gt, NewCost}
18: flag = True
19: end if
20: end for
21: if flag is True then
22: Gp, Gnew = LeastCost(CostTable(Gi))
23: if SizeOf(Gnew) == 1 then
24: Append(GN,Gnew)
25: else
26: Append(G′, Gnew)
27: end if
28: RemoveGate(GN,Gp)
29: else
30: Append(G′, Gi)
31: end if
32: end while
33: return G′

34: end

5.5. Simulation Results and Comparison 90

5.5 Simulation Results and Comparison

The post-synthesis optimization algorithm presented is applied on different benchmark

reversible circuits to evaluate its efficiency in terms of cost. These circuits are obtained

from RevLib library [50] and are given as inputs to the optimization algorithm. Table

5.4 presents a comparison of the proposed optimization algorithm with existing post-

synthesis optimization techniques presented in [39] and [38]. The first column gives the

name of the benchmark while second, third and fourth columns indicate the quantum

cost of original gate netlist from RevLib and two existing techniques respectively. The

fifth column gives the quantum cost of final gate netlist obtained after applying proposed

optimization algorithm. The sixth, seventh and eighth columns give the percentage

improvement over original gate netlist and the existing techniques. It can be seen

from the Table 5.4 that in the best case, there is a considerable reduction of quantum

cost of up to 78.5%. An average cost improvement of about 47% is observed over all

the benchmarks mentioned in the table. This is because, the proposed optimization

techniques optimize more number of QR classifications of gate pairs (as seen from Table

5.3) when compared to the techniques presented in [39] and [38].

Table 5.4: Comparison with Existing Post-Synthesis Optimization Algorithms

Benchmark Original [39] [38] Proposed % Impr with

Netlist

[50]

Optimization

[50]

[39] [38]

cordic_218 349522 348566 348532 74985 78.55 78.49 78.49

apex4_202 238146 237748 158095 38826 83.70 83.67 75.44

sym9_193 14193 12747 13090 3485 75.45 72.66 73.38

5.5. Simulation Results and Comparison 91

Table 5.4: Comparison with Existing Post-Synthesis Optimization Algorithms (Contin-
ued)

Benchmark Original [39] [38] Proposed % Impr with

Netlist

[50]

Optimization

[50]

[39] [38]

table3_264 80039 79326 61412 17963 77.56 77.36 70.75

in2_236 23814 23146 20600 7434 68.78 67.88 63.91

misex3_242 119177 115637 99119 38125 68.01 67.03 61.54

clip_206 6731 6535 6119 2354 65.03 63.98 61.53

misex3c_243 115190 111258 96064 39907 65.36 64.13 58.46

life_238 6767 5740 5744 2420 64.24 57.84 57.87

dist_223 7604 7288 6631 2875 62.19 60.55 56.64

sqn_258 2128 2041 1887 849 60.10 58.40 55.01

in0_235 20042 18999 16985 7761 61.28 59.15 54.31

inc_237 2145 2104 1745 929 56.69 55.85 46.76

apla_203 3444 3438 3029 1669 51.54 51.45 44.90

f51m_233 37417 33333 32882 18356 50.94 44.93 44.18

tial_265 56224 47145 47556 26644 52.61 43.48 43.97

max46_240 5444 4498 4538 2560 52.98 43.09 43.59

dc2_222 1898 1789 1688 1024 46.05 42.76 39.34

sqr6_259 1053 1034 876 567 46.15 45.16 35.27

decod_217 1746 1745 613 427 75.54 75.53 30.34

5.5. Simulation Results and Comparison 92

Table 5.4: Comparison with Existing Post-Synthesis Optimization Algorithms (Contin-
ued)

Benchmark Original [39] [38] Proposed % Impr with

Netlist

[50]

Optimization

[50]

[39] [38]

5xp1_194 1418 1327 1155 819 42.24 38.28 29.09

pm1_249 384 354 275 197 48.70 44.35 28.36

cu_219 1148 1054 954 702 38.85 33.40 26.42

mux_246 1078 804 804 598 44.53 25.62 25.62

dc1_220 425 419 249 187 56.00 55.37 24.90

cm150a_210 1096 822 822 618 43.61 24.82 24.82

frg1_234 15266 14737 14702 11560 24.28 21.56 21.37

The reversible gate netlist obtained from Exclusive-OR Sum of Product (ESOP)

based synthesis method presented in [31] is given as the input for the optimization

algorithm. A comparison of costs obtained from the optimization algorithm with different

optimization methods that are applied in ESOP based synthesis methods [32,35,36,58,59]

is presented in Table 5.5. The first column gives the name of the benchmark circuit while

the columns 2-6 indicate the quantum cost of respective benchmark circuits realized

with existing ESOP based methods [32, 35, 36, 58, 59]. Column 7 provides the quantum

cost to realize that benchmark using the proposed optimization method. Column 8

shows the percentage improvement of quantum cost achieved compared to the existing

methods that give the best reduction for that benchmark.

It can be seen from the table that there is an improvement of up to 48% in quantum

5.5. Simulation Results and Comparison 93

cost. For arithmetic benchmark circuits like frg2, in0,max46,etc., and large benchmark

circuits like misex3, table3, etc., there is a reduction in the quantum cost. However,

for some benchmarks like add6, bw, z4 etc., the optimization method results in higher

quantum cost when compared to the existing ones [35, 36, 59]. This is because only

a small number of required gate pairs is available that can be transformed using the

algorithm and the techniques presented earlier.

Table 5.5: Comparision with Exisiting ESOP Based Methods

Benchmark [32] [36] [58] [59] [35] Proposed

Optimization

%

Impr

5xp1 1349 786 865 - 807 741 5.73

9symml 5781 10943 16487 1895 3406 2709 -42.96

add6 6362 - 5084 2683 - 3132 -16.73

alu2 5215 - 4476 - 3679 2685 27.02

alu3 2653 - - - 1919 1810 5.68

alu4 48778 41127 43850 - 38635 21104 45.38

apex4 256857 35840 50680 51284 - 39832 -11.14

apex5 - 33830 - - 33803 26358 22.02

apla 4051 1683 - - 1709 1607 4.52

bw - 637 - 2233 790 807 -26.69

C17 97 - - - - 74 23.71

clip 6616 3824 4484 - 3218 2184 32.13

cm150a 844 - - - - 438 48.1

con1 207 162 - - - 136 16.05

cordic 349522 187620 - - 111955 64624 42.28

5.5. Simulation Results and Comparison 94

Table 5.5: Comparision with Exisiting ESOP Based Methods (Continued)

Benchmark [32] [36] [58] [59] [35] Proposed

Optimization

%

Impr

cu 1332 781 - - 780 603 22.69

dc2 1956 1084 - - 1099 980 9.59

decod 1924 399 - 976 - 461 -15.54

dist 7414 3700 - - - 2745 25.81

e64 - - - - 24345 23751 2.44

ex1010 183726 52788 - 77293 - 49490 6.25

ex2 153 - - 118 - 117 0.85

ex3 97 - - 73 - 53 27.4

f2 274 112 - 116 - 87 22.32

f51m 34244 28382 - - 25119 16850 32.92

frg2 - 112008 - - 114239 88554 20.94

in0 22196 7949 - - - 7474 5.98

majority 147 - - 106 - 134 -26.42

max46 4432 - - 3239 - 2254 30.41

misex1 1017 332 466 - 352 360 -8.43

misex3 122557 49076 67206 - 54132 36624 25.37

misex3c 118578 49720 85330 52600 - 38037 23.5

mlp4 3827 2496 - - - 2079 16.71

mux 826 - - 784 - 416 46.94

pm1 582 - - 290 - 188 35.17

5.6. Summary 95

Table 5.5: Comparision with Exisiting ESOP Based Methods (Continued)

Benchmark [32] [36] [58] [59] [35] Proposed

Optimization

%

Impr

radd 798 - - 349 - 470 -34.67

rd84 2598 - 2062 - 1965 1371 30.23

root 3486 1811 - - 1583 1439 9.1

sao2 7893 3767 5147 - - 2561 32.01

spla - - 49419 - 45478 26251 42.28

sqn 2170 - - 1183 - 831 29.75

sqr6 1090 583 - - - 557 4.46

sqrt8 584 - 461 - - 298 35.36

squar5 476 - 251 - - 227 9.56

t481 237 - 237 - - 205 13.5

table3 86173 - 35807 - 32286 16997 47.35

urf3 - 53157 - 56766 - 48836 8.13

z4 674 489 - 260 - 310 -19.23

5.6 Summary

In this chapter, a representation has been proposed to classify a pair of gates based on

its control lines characteristics. This classification helps in identifying the gate pairs that

can be optimized as opposed to those that cannot be. In addition, a set of optimization

techniques has been proposed which can be applied on classifications that do not have

existing techniques to reduce the cost. A ‘greedy’ optimization algorithm has been

presented which uses these classifications and optimization techniques to improve the

5.6. Summary 96

given reversible circuit.

Chapter 6

Conclusions and Future Work

In this thesis, a set of techniques has been proposed to reduce the quantum cost of

reversible circuits. These techniques consist of cube decomposition and CCL transfor-

mation followed by an algorithm that combines these two techniques.

While the proposed decomposition technique helped in eliminating the redundant

gates during the decomposition process, the cube decomposition method integrates the

same with ESOP based synthesis to realize a given reversible function with reduced

quantum cost.

Next, the conditions for which the above technique results in cost reduction have

been derived. From these conditions, it has been shown that the effectiveness of the

technique is proportional to the number of common control lines between a gate pair. A

transformation approach, which transforms a given gate pair by increasing the number

of common control lines, has been proposed and the decomposition technique has been

applied resulting in further cost reduction.

Further, a classification technique for gate pairs has been proposed based on the pairs’

control line characteristics. This helps in identifying gate pairs on which appropriate

97

98

optimization techniques can be applied. Also, another set of techniques has been

introduced to reduce the cost of gate pairs that do not have any existing optimization

techniques defined on them. Finally, an algorithm that uses the classification and the

proposed techniques to reduce the overall cost of a reversible circuit has been proposed.

The methodology described above has been applied on a set of reversible benchmark

circuits and compared with those available in the literature. Results indicate that the

proposed methodology leads to significant improvement in the quantum cost of the

reversible circuits.

Future Work

The optimization techniques presented in this thesis were mainly focused on gate pairs.

These techniques can further be expanded to more than two gates. Additionally, while

the quantum cost of reversible circuits has been calculated using NCV gate library, more

recent efforts have focused on Clifford+T gates because of their fault tolerant nature.

It would be interesting to explore the cost effectiveness of the proposed methodology in

this scenario.

Bibliography

[1] R. Landauer. Irreversibility and Heat Generation in the Computing Process. IBM

J. Res. Dev., 5(3):183–191, jul 1961.

[2] Antoine Bérut, Artak Arakelyan, Artyom Petrosyan, Sergio Ciliberto, Raoul

Dillenschneider, and Eric Lutz. Experimental verification of Landauer’s principle

linking information and thermodynamics. Nature, 483(7388):187–189, 2012.

[3] Charles H Bennett. Logical Reversibility of Computation. IBM journal of Research

and Development, 17(6):525–532, 1973.

[4] Alexis De Vos. Reversible computing: fundamentals, quantum computing, and

applications. John Wiley & Sons, 2011.

[5] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum

information. Cambridge university press, 2000.

[6] Peter W Shor. Algorithms for quantum computation: Discrete logarithms and

factoring. pages 124–134, 1994.

[7] Lov K Grover. A fast quantum mechanical algorithm for database search. In

Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,

pages 212–219. ACM, 1996.

99

Bibliography 100

[8] Robert Cuykendall and David R Andersen. Reversible optical computing circuits.

Optics Letters, 12(7):542–544, 1987.

[9] I Ciapurin, LB Glebov, and VM Smirnov. A scheme for efficient quantum compu-

tation with linear optics. Phys. Rev. Lett, 86(22):51885191, 2001.

[10] Wei-Bo Gao, Ping Xu, Xing-Can Yao, Otfried Gühne, Adán Cabello, Chao-Yang

Lu, Cheng-Zhi Peng, Zeng-Bing Chen, and Jian-Wei Pan. Experimental realization

of a controlled-not gate with four-photon six-qubit cluster states. Physical review

letters, 104(2):020501, 2010.

[11] Himanshu Thapliyal and MB Srinivas. The need of dna computing: reversible

designs of adders and multipliers using fredkin gate. In Proc. SPIE, volume 6050,

page 605010, 2005.

[12] Tao Song, Shudong Wang, and Xun Wang. The design of reversible gate and

reversible sequential circuit based on dna computing. In Intelligent System and

Knowledge Engineering, 2008. ISKE 2008. 3rd International Conference on, vol-

ume 1, pages 114–118. IEEE, 2008.

[13] John Patrick McGregor and Ruby B Lee. Architectural enhancements for fast

subword permutations with repetitions in cryptographic applications. In Computer

Design, 2001. ICCD 2001. Proceedings. 2001 International Conference on, pages

453–461. IEEE, 2001.

[14] Robert Glück and Masahiko Kawabe. A method for automatic program inversion

based on lr (0) parsing. Fundamenta Informaticae, 66(4):367–395, 2005.

Bibliography 101

[15] Robert Wille, Rolf Drechsler, Christof Osewold, and Alberto Garcia-Ortiz. Auto-

matic design of low-power encoders using reversible circuit synthesis. In Proceedings

of the Conference on Design, Automation and Test in Europe, DATE ’12, pages

1036–1041, San Jose, CA, USA, 2012. EDA Consortium.

[16] R. Wille, O. Keszocze, S. Hillmich, M. Walter, and A. Garcia-Ortiz. Synthesis of

approximate coders for on-chip interconnects using reversible logic. In 2016 Design,

Automation Test in Europe Conference Exhibition (DATE), pages 1140–1143,

March 2016.

[17] Mehdi Saeedi and Igor L Markov. Synthesis and Optimization of Reversible Circuits

- a Survey. ACM Computing Surveys (CSUR), 45(2):21, 2013.

[18] Robert Wille and Rolf Drechsler. Towards a Design Flow for Reversible Logic.

Springer Science & Business Media, 2010.

[19] Daniel GroBe, Xiaobo Chen, and Rolf Drechsler. Exact toffoli network synthesis

of reversible logic using boolean satisfiability. In Design, Applications, Integration

and Software, 2006 IEEE Dallas/CAS Workshop on, pages 51–54. IEEE, 2006.

[20] Daniel Große, Xiaobo Chen, Gerhard W Dueck, and Rolf Drechsler. Exact sat-

based toffoli network synthesis. In Proceedings of the 17th ACM Great Lakes

symposium on VLSI, pages 96–101. ACM, 2007.

[21] Daniel Große, Robert Wille, Gerhard W. Dueck, and Rolf Drechsler. Exact

Multiple-Control Toffoli Network Synthesis With SAT Techniques. IEEE Trans.

on CAD of Integrated Circuits and Systems, 28(5):703–715, 2009.

Bibliography 102

[22] Gerhard W Dueck, Dmitri Maslov, and D Michael Miller. Transformation-based

synthesis of networks of toffoli/fredkin gates. In Electrical and Computer Engineer-

ing, 2003. IEEE CCECE 2003. Canadian Conference on, volume 1, pages 211–214.

IEEE, 2003.

[23] D.M. Miller, D. Maslov, and G.W. Dueck. A transformation based algorithm for

reversible logic synthesis. In Design Automation Conference, 2003. Proceedings,

pages 318–323, June 2003.

[24] D. Maslov, G. W. Dueck, and D. M. Miller. Toffoli network synthesis with templates.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

24(6):807–817, June 2005.

[25] D. Maslov, G. W. Dueck, and D. M. Miller. Techniques for the synthesis of reversible

toffoli networks. ACM Trans. Des. Autom. Electron. Syst., 12(4), September 2007.

[26] Vivek V Shende, Aditya K Prasad, Igor L Markov, and John P Hayes. Synthesis

of reversible logic circuits. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 22(6):710–722, 2003.

[27] Mehdi Saeedi, Morteza Saheb Zamani, Mehdi Sedighi, and Zahra Sasanian. Re-

versible circuit synthesis using a cycle-based approach. ACM Journal on Emerging

Technologies in Computing Systems (JETC), 6(4):13, 2010.

[28] Mehdi Saeedi, Mona Arabzadeh, Morteza Saheb Zamani, and Mehdi Sedighi.

Block-based quantum-logic synthesis. arXiv preprint arXiv:1011.2159, 2010.

Bibliography 103

[29] Robert Wille and Rolf Drechsler. BDD-based Synthesis of Reversible Logic for

Large Functions. In Proceedings of the 46th Annual Design Automation Conference,

pages 270–275. ACM, 2009.

[30] Mathias Soeken, Robert Wille, Christoph Hilken, Nils Przigoda, and Rolf Drechsler.

Synthesis of reversible circuits with minimal lines for large functions. In Design

Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific, pages

85–92. IEEE, 2012.

[31] K Fazel, M Thornton, and JE Rice. ESOP-based Toffoli Gate Cascade Generation.

In IEEE Pacific Rim Conference on Communications, Computers and Signal

Processing, pages 206–209. Citeseer, 2007.

[32] JE Rice, KB Fazel, MA Thornton, and KB Kent. Toffoli Gate Cascade Generation

using ESOP Minimization and QMDD-based Swapping. Proceedings of the Reed-

Muller Workshop (RM2009), pages 63–72, 2009.

[33] Yasaman Sanaee and Gerhard W Dueck. ESOP-based Toffoli Network Generation

with Transformations. In 40th IEEE International Symposium on Multiple-Valued

Logic (ISMVL), 2010, pages 276–281. IEEE, 2010.

[34] JE Rice and NM Nayeem. Ordering techniques for ESOP-based Toffoli cascade

generation. In IEEE Pacific Rim Conference on Communications, Computers and

Signal Processing (PacRim), 2011, pages 274–279. IEEE, 2011.

[35] Kamalika Datta, Alhaad Gokhale, Indranil Sengupta, and Hafizur Rahaman. An

ESOP-Based Reversible Circuit Synthesis Flow Using Simulated Annealing. In

Applied Computation and Security Systems, volume 305 of Advances in Intelligent

Systems and Computing, pages 131–144. Springer India, 2015.

Bibliography 104

[36] Noor M Nayeem and Jacqueline E Rice. A Shared-cube Approach to ESOP-based

Synthesis of Reversible Logic. Facta universitatis-series: Electronics and Energetics,

24(3):385–402, 2011.

[37] Mona Arabzadeh, Mehdi Saeedi, and Morteza Saheb Zamani. Rule-based opti-

mization of reversible circuits. In Proceedings of the 2010 Asia and South Pacific

Design Automation Conference, pages 849–854. IEEE Press, 2010.

[38] Kamalika Datta, Indranil Sengupta, and Hafizur Rahaman. A Post-Synthesis

Optimization Technique for Reversible Circuits Exploiting Negative Control Lines.

IEEE Transactions on Computers, 64(4):1208–1214, 2015.

[39] Kamalika Datta, Gaurav Rathi, Robert Wille, Indranil Sengupta, Hafizur Ra-

haman, and Rolf Drechsler. Exploiting negative control lines in the optimization of

reversible circuits. In Proceedings of the 5th International Conference on Reversible

Computation, RC’13, pages 209–220, Berlin, Heidelberg, 2013. Springer-Verlag.

[40] D Michael Miller, Robert Wille, and Rolf Drechsler. Reducing reversible circuit

cost by adding lines. In 40th IEEE International Symposium on Multiple-Valued

Logic (ISMVL), pages 217–222. IEEE, 2010.

[41] Robert Wille, Mathias Soeken, and Rolf Drechsler. Reducing the number of

lines in reversible circuits. In Design Automation Conference (DAC), 2010 47th

ACM/IEEE, pages 647–652. IEEE, 2010.

[42] DM Miller, R Wille, and GW Dueck. Synthesizing reversible circuits from irre-

versible specifications using reed-muller spectral techniques. In Proc. Reed-Muller

Workshop, pages 87–96, 2009.

Bibliography 105

[43] Dmitri Maslov and Gerhard W Dueck. Reversible cascades with minimal garbage.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

23(11):1497–1509, 2004.

[44] D Michael Miller, Robert Wille, and Gerhard W Dueck. Synthesizing reversible

circuits for irreversible functions. In Digital System Design, Architectures, Methods

and Tools, 2009. DSD’09. 12th Euromicro Conference on, pages 749–756. IEEE,

2009.

[45] Marek Perkowski, Robert Fiszer, Pawel Kerntopf, and Martin Lukac. An approach

to synthesis of reversible circuits for partially specified functions. In Nanotechnology

(IEEE-NANO), 2012 12th IEEE Conference on, pages 1–6. IEEE, 2012.

[46] Mathias Soeken, Robert Wille, Oliver Keszocze, D Michael Miller, and Rolf

Drechsler. Embedding of large boolean functions for reversible logic. ACM Journal

on Emerging Technologies in Computing Systems (JETC), 12(4):41, 2016.

[47] Tommaso Toffoli. Reversible computing. Springer, 1980.

[48] Edward Fredkin and Tommaso Toffoli. Conservative Logic. International Journal

of Theoretical Physics, 21(3/4), 1982.

[49] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo, Norman

Margolus, Peter Shor, Tycho Sleator, John A Smolin, and Harald Weinfurter.

Elementary gates for quantum computation. Physical Review A, 52(5):3457, 1995.

[50] R. Wille, D. Grosse, L. Teuber, G.W. Dueck, and R. Drechsler. RevLib: An Online

Resource for Reversible Functions and Reversible Circuits. In Multiple Valued

Bibliography 106

Logic, 2008. ISMVL 2008. 38th International Symposium on, pages 220–225, May

2008.

[51] Tsutomu Sasao. And-exor expressions and their optimization. KLUWER INTER-

NATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE, pages

287–287, 1993.

[52] Tsutomu Sasao. An exact minimization of and-exor expressions using bdds. In

IFIP WG10. 5 Workshop on Applications of Reed-Muller Expansion in Circuit

Design, 1993.

[53] Tsutomu Sasao. An exact minimization of and-exor expressions using reduced cov-

ering functions. In Proc. of the Synthesis and Simulation Meeting and International

Interchange, pages 374–383, 1993.

[54] Takashi Hirayama and Yasuaki Nishitani. Exact minimization of and–exor ex-

pressions of practical benchmark functions. Journal of Circuits, Systems, and

Computers, 18(03):465–486, 2009.

[55] Stergios Stergiou and George Papakonstantinou. Exact minimization of esop

expressions with less than eight product terms. Journal of Circuits, Systems, and

Computers, 13(01):1–15, 2004.

[56] Tsutomu Sasao. Exmin2: a simplification algorithm for exclusive-or-sum-of-

products expressions for multiple-valued-input two-valued-output functions. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

12(5):621–632, 1993.

Bibliography 107

[57] Alan Mishchenko and Marek Perkowski. Fast Heuristic Minimization of Exclusive-

sums-of-products. Proceedings of the 5th Reed-Muller Workshop, pages 242–250,

2001.

[58] Rolf Drechsler, Alexander Finder, and Robert Wille. Improving ESOP-Based

Synthesis of Reversible Logic Using Evolutionary Algorithms. In Applications of

Evolutionary Computation, volume 6625 of Lecture Notes in Computer Science,

pages 151–161. Springer Berlin Heidelberg, 2011.

[59] Chandan Bandyopadhyay, Hafizur Rahaman, and Rolf Drechsler. Improved Cube

List Based Cube Pairing Approach for Synthesis of ESOP Based Reversible Logic.

In Transactions on Computational Science XXIV, volume 8911 of Lecture Notes in

Computer Science, pages 129–146. Springer Berlin Heidelberg, 2014.

[60] Robert Wille, Mathias Soeken, Christian Otterstedt, and Rolf Drechsler. Improving

the mapping of reversible circuits to quantum circuits using multiple target lines.

In Design Automation Conference (ASP-DAC), 2013 18th Asia and South Pacific,

pages 145–150. IEEE, 2013.

List of Publications

Publications related to this thesis

• Sai Phaneendra P, Chetan V, and M. B. Srinivas, “Optimizing Reversible Cir-

cuits using Gate Pair Classification”, ACM Journal on Emerging Technologies in

Computing Systems. (Communicated)

• Sai Phaneendra P, Chetan V, and M. B. Srinivas, “An ESOP Based Cube Decom-

position Technique for Reversible Circuits”, Lecture Notes in Computer Science,

vol. 10301, Springer, Cham, 2017, pp. 127--140.

• Sai Phaneendra P, Chetan V, and M. B. Srinivas, “Optimizing the Reversible

Circuits Using Complementary Control Line Transformation", Lecture Notes in

Computer Science, vol. 10301, Springer, Cham, 2017, pp. 111--126.

Other Publications

• C. Vudadha, P. S. Phaneendra, and M. B. Srinivas, “An Efficient Design Method-

ology for CNFET based Ternary Logic Circuits,” in 2016 IEEE International

Symposium on Nanoelectronic and Information Systems (iNIS), . IEEE, 2016,

pp. 278–283.

108

List of Publications 109

• Subhankar Pal, Chetan Vudadha, P Sai Phaneendra, Sreehari Veeramachaneni,

Srinivas Mandalika, “A New Design of an n-Bit Reversible Arithmetic Logic Unit”,

in 2014 Fifth International Symposium on Electronic System Design (ISED), 2014,

pp. 224-225.

• P. S. Phaneendra, C. Vudadha, V. Sreehari, and M. B. Srinivas, “An optimized

design of reversible quantum comparator,” in 2014 27th International Conference

on VLSI Design and 2014 13th International Conference on Embedded Systems, .

IEEE, 2014, pp. 557–562.

• C. Vudadha, S. Katragadda, and P. S. Phaneendra, “2:1 multiplexer based design

for ternary logic circuits,” in 2013 IEEE Asia Pacific Conference on Postgraduate

Research in Microelectronics and Electronics (PrimeAsia), . IEEE, 2013, pp.

46–51.

• P. V. Saidutt, V. Srinivas, P. S. Phaneendra, and N. M. Muthukrishnan, “De-

sign of Encoder for Ternary Logic Circuits,” in Microelectronics and Electronics

(PrimeAsia), 2012 Asia Pacific Conference on Postgraduate Research in. IEEE,

2012, pp. 85–88.

• C. Vudadha, P. P. Sai, V. Sreehari, and M. B. Srinivas, “CNFET based Ternary

Magnitude Comparator,” in 2012 International Symposium on Communications

and Information Technologies (ISCIT), . IEEE, 2012, pp. 942–946.

• Chetan Vudadha, P. Sai Phaneendra, V. Sreehari, Syed Ershad Ahmed, N. Moor-

thy Muthukrishnan, M. B. Srinivas, “Design of Prefix-Based Optimal Reversible

Comparator,” in 2012 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), 2010, pp. 201-206.

List of Publications 110

• Chetan Vudadha, P. Sai Phaneendra, V. Sreehari, Syed Ershad Ahmed, N. Moor-

thy Muthukrishnan, M. B. Srinivas, “Design and Analysis of Reversible Ripple,

Prefix and Prefix-Ripple Hybrid Adders” in 2012 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), 2010, pp. 225-230.

• C. Vudadha, P. Sai Phaneendra, G. Makkena, V. Sreehari, N. M. Muthukrishnan,

and M. B. Srinivas, “Design of CNFET based Ternary Comparator using Grouping

Logic,” in Faible Tension Faible Consommation (FTFC), 2012.

• C. Vudadha, G. Makkena, M. V. S. Nayudu, P. S. Phaneendra, S. E. Ahmed,

S. Veeramachaneni, N. M. Muthukrishnan, and M. B. Srinivas, “Low-power Self

Reconfigurable Multiplexer based Decoder for Adaptive Resolution Flash ADCs,”

in 2012 25th International Conference on VLSI Design (VLSID), . IEEE, 2012,

pp. 280–285.

Biographies

Candidate Biography

Sai Phaneendra P received the M. E. degree in Microelectronics in 2011 from Birla

Institute of Technology and Science (BITS)-Pilani, Hyderabad Campus, India, where

he is currently working towards the Ph.D. degree. His current research interests include

reversible logic and quantum computation, arithmetic circuits design and CNFET based

Multi-Valued Logic Design.

Supervisor Biography

Prof. M. B. Srinivas is presently Dean, School of Engineering and Technology at B. M. L.

Munjal University, Gurgaon, India. He was earlier a Professor of Electrical Engineering

at Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad Campus, India,

from where he is currently on leave. He obtained his Ph.D. degree from Indian Institute

of Science (IISc), Bangalore in 1991. His research interests include high performance

logic design, VLSI arithmetic, data converters and reversible computing.

111

