
Incident Handling in IaaS Cloud Environment

using Digital Forensic Practices

THESIS
Submitted in partial fulfilment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

BKSP KUMAR RAJU ALLURI
ID. No. 2013PHXF0411H

Under the supervision of
Dr. G. Geethakumari

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
2018

i

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

CERTIFICATE

This is to certify that the thesis titled Incident Handling in IaaS Cloud Environment

using Digital Forensic Practices and submitted by BKSP KUMAR RAJU ALLURI ID

No 2013PHXF0411H for award of Ph.D. of the Institute embodies the original work done

by him under my supervision.

Signature of the Supervisor

Name in capital letters DR. G. GEETHAKUMARI

Designation Asst Professor, Dept. of CSIS

Date:

ii

Acknowledgements
Foremost, I would like to express my deepest thanks to my supervisor Dr. G.Geethakumari

for all her suggestions and constant support during this research. Her valuable guidance

and encouragement throughout the period were critical factors which contributed towards

completion of the work. Through her untiring efforts, she helped me to critically analyse

the problems in a systematic manner and consider innovative approaches to evolve practical

solutions.

I would like to thank MeitY, Govt. of India, for sponsoring my work. I would like to express

my gratitude to the PRSG Chairman Prof. PJ Narayanan, Director, IIIT Hyderabad, for his

valuable suggestions throughout the course of my Ph.D. and project work.

I would also like to thank Prof. R. Gururaj and Prof. Thatagata Ray, members of my doc-

toral advisory committee for their constant review and invaluable suggestions in steering

the work. I would also like to express my gratitude to other members of the faculty in the

Department of Computer Science and Information Systems Prof. Chittaranjan Hota, Prof.

Bhanu Murthy, Dr. Aruna Malapati, Mr. KCS Murti, for all their suggestions and encour-

agement during various presentations and whenever I interacted with them. I would also

like to thank each researcher in the department for all the wonderful time we shared during

our work.

Finally, my sincere acknowledgement of the sacrifices and support made by each member

of my family during this period. They were my pillars of strength, always understanding

and encouraging me. Without their support, this work would never have been completed.

BITS Pilani, Hyderabad Campus BKSP Kumar Raju Alluri

April, 2018

iii

Abstract

Cloud computing, as a computational paradigm, has enticed the information technology

community to facilitate various services with less operational and maintenance costs. How-

ever, the occurrence of various cloud incidents is affecting the trust of users on the cloud

environment. The scope of our work is to handle security incidents occurring at the In-

frastructure as a Service (IaaS) cloud systems. Incident handling in cloud is relatively new

and involves various technical, organizational and legal challenges. Traditional incident

handling approaches cannot be directly applied to the cloud environment due to its unique

aspects like multi-tenancy, physical inaccessibility, lack of transparency and rapid elasticity.

In this thesis, we handle cloud incidents using the stages of digital forensics as this would

increase the availability of evidences of the occurred incident which in turn would be the

key factor in effective incident handling.

We acquired various cloud specific evidences (vRAM, Service logs, Snapshots and

vDisk) at the IaaS user level and proposed the corresponding analysis approaches to han-

dle cloud incidents. Since the integrity and availability of the vRAM evidence acquired at

the virtual machine level is questionable, we proposed a trigger-based introspection model

to capture reliable and relevant vRAM events without compromising on its transparency.

Cloud systems introduce additional incident handling challenges with new evidences like

service logs. We identified the role of service logs for effective incident handling and pro-

posed a model which can allow the incident handler to analyze the service logs effectively.

Virtual Machine (VM) snapshots in the cloud are generally used for backup and restoration

purposes. We made use of these snapshots to handle cloud incidents by proposing a prove-

nance system. Finally, we came up with a methodology for correlating multiple evidences,

which can help the incident handler arrive at quick logical findings about the occurred cloud

incident. The proposed models for cloud incident handling are validated using an Openstack

cloud test bed.

iv

Table of Contents

Certificate i

Acknowledgements ii

Abstract iii

Table of Contents iv

1 Introduction 1
1.1 Incident Handling . 2

1.1.1 What is an incident ? . 2
1.1.2 Phases in the Incident Handling 2

1.2 Incident Handling in the Cloud Environment 3
1.2.1 Cloud Computing . 3
1.2.2 Significance of Cloud Incident Handling 5
1.2.3 Why Cloud Incident Handling is more challenging ? 6

1.3 Using Digital Forensic Science Approaches for Handling Cloud Incidents . 8
1.3.1 Background on Digital Forensics 8
1.3.2 Using Digital Forensic approaches for Cloud Incident Handling . . 9

1.4 Challenges in using Digital Forensic Principles for Cloud Incident Handling 10
1.5 Contributions of the Thesis . 11

1.5.1 Objectives of the research . 11
1.5.2 Scope and Assumptions . 11
1.5.3 Thesis contributions . 12

1.6 Organization of the Thesis . 14
1.7 Summary . 16

2 Background and Related Work 17
2.1 Incident Handling in Traditional Digital Environment 17
2.2 Cloud Incident Handling and its Research Challenges 18
2.3 Using Digital Forensic aspects for Effective Cloud Incident Handling 20

2.3.1 Digital Forensic Models . 20
2.3.2 Cloud Incident Handling Challenges: A Forensic Perspective 21
2.3.3 Incident Handling in IaaS Cloud Environment using Digital Foren-

sic Practices . 22
2.4 Current Solutions and Open Issues for Cloud Incident Handling using Dig-

ital Forensic Practices . 26
2.5 Summary . 30

v

3 Handling Cloud VM’s Volatile Traces by Improving their Availability 31
3.1 Introduction . 31
3.2 Proposed Trigger based Introspection Model for Cloud Instance Incident

Handling . 32
3.2.1 Drawbacks of existing hybrid introspection approaches 33
3.2.2 Proposed trigger based introspection model using logic analyzer . . 33

3.3 Rule and Graph based Approaches for Trigger Module 36
3.3.1 Rule based approach for introspection 36
3.3.2 Graph based approach for effective interpretation of introspection

events . 39
3.4 Root Cause Analysis through Complex Event Processing 40

3.4.1 Existing work on CEP . 40
3.4.2 Proposed architecture for root cause analysis targeting effective in-

trospection of VMs . 40
3.5 Evaluation of our Work . 42

3.5.1 Detecting the variation of known incidents 43
3.5.2 A scenario depicting root cause analysis 44
3.5.3 Merits of the approach . 47

3.6 ALTRA- Proposed Model to Address Lack of Transparency 48
3.6.1 Remote log creation and syncing 49
3.6.2 Automatic detection of suspicious events from the CFI logs 50

3.7 Approaches for Finding Suspicious Events Performed by the Incident Handler 50
3.7.1 Identified challenges . 50
3.7.2 Building a causality model from cloud forensic application logs to

identify forensically relevant events 50
3.7.3 Comparison of SeMS annd CoPS 53

3.8 Automatic Identification of Suspicious Events: A Typical Scenario 53
3.8.1 Scenario description . 53
3.8.2 Challenges to handle in the above scenario 55
3.8.3 Applying the proposed approaches to find suspicious events in CFI

logs . 55
3.8.4 Advantages of the proposed model 58

3.9 Summary . 59

4 A Model for Effective Event Reconstruction using Cloud Service Logs 60
4.1 Background and Motivation . 60

4.1.1 What are service logs? . 60
4.1.2 Effective event reconstruction of cloud service logs 62

4.2 Hypothesis Generation from Cloud Service Logs 64
4.3 SEASER: Proposed Model for Effective Event Reconstruction of Cloud

Service Logs . 65
4.4 Proposed Evidence/Event Segregation Approaches for Cloud Service Logs . 67
4.5 Proposed Evidence/Event Aggregation Approaches for Effective Event Re-

construction . 70
4.5.1 Scenario to show the role of aggregation for effective event recon-

struction . 71

vi

4.5.2 Proposed algorithms for aggregating the events in cloud service logs 73
4.5.3 Results and Discussion . 76

4.6 Summary . 82

5 Incident Handling using Cloud VM Snapshot Objects 83
5.1 Introduction . 84
5.2 Improving the Availability of the Cloud Virtual Machine Snapshots 85

5.2.1 Detecting the suspicious resource consumption of virtual machines
in the cloud environment . 86

5.2.2 Scenario testing: over-resource consumption of a VM in openstack
cloud . 87

5.3 Proposed Model to Handle Data Gravity of Cloud VM Snapshots 89
5.3.1 Modules of the SNAPS . 89
5.3.2 Spatio-Temporal model for efficient storage of cloud VM snapshots 90
5.3.3 Results and Discussion . 91

5.4 Building a Provenance aware System for Analyzing the Cloud VM Snapshots 94
5.4.1 Proposed taxonomy for existing provenance systems for cloud and

non-cloud environments . 94
5.4.2 Novelty of proposed SNAPS . 95
5.4.3 SNAPS approach to build provenance 95
5.4.4 Results and Discussion . 97
5.4.5 Advantages of our provenance system 98

5.5 Applying the Proposed Provenance System for cloud incident handling . . . 98
5.5.1 Scenario-1: Giving a recommendation about digital forgery 99
5.5.2 Scenario-2: Identifying the backdoors created 100
5.5.3 Scenario-3: Identifying suspicious activities 101
5.5.4 Scenario-4: Detecting the obfuscated files 102

5.6 Incident Handling using Deleted Cloud VM Snapshot Objects 105
5.6.1 Can we recover a deleted object from cloud VM Snapshot ? 105
5.6.2 Experimental observations on openstack VM snapshots 106
5.6.3 Proposed approach to recover deleted objects using NLP techniques 108
5.6.4 Validation of the proposed approach using Openstack VM snapshots 111

5.7 Summary . 113

6 Handling Cloud VM incidents using Event Correlation 114
6.1 Background and Motivation . 114

6.1.1 Event correlation across evidences from single CSP 115
6.1.2 Event correlation across multiple cloud providers 117
6.1.3 Novelty of our event correlation approach 117

6.2 Proposed Segregation Model for Cloud Event Correlation 117
6.3 Performing Homogeneous Correlation in the Incident Unknown Case . . . 119

6.3.1 Importance of this scenario from forensic based incident handling . 119
6.3.2 Detailed scenario description and methodology employed 119

6.4 Performing Heterogeneous Correlation in the Incident Known Case 122
6.4.1 Proposed approach for heterogeneous event correlation in cloud . . 122
6.4.2 Results and Analysis . 123

vii

6.5 Heterogeneous Event Correlation when the Incident is not Known 125
6.5.1 Correlation of cloud VM artifacts-incident not known 125
6.5.2 Results and Analysis . 126

6.6 Summary . 131

7 Conclusion and Future Scope 132
7.1 Summary of Contributions . 132
7.2 Future Scope of the Work . 133
7.3 Concluding Remarks . 133

List of Publications 135

Bibliography 138

Appendix 1 152

Appendix 2 154

viii

List of Tables

2.1 Summary of Incident Handling Models 19

2.2 Summary of Digital Forensic Models . 21

2.3 Summary of the existing forensic tools . 26

2.4 Summary of the existing cloud forensic solutions 27

2.5 Major unaddressed Issues in Cloud Incident Handling using Forensic Prin-

ciples . 28

3.1 Benefits and drawbacks of various introspection models (Out-band, In-band,

Derivation) . 34

3.2 Notations used for introspection rule generation 37

3.3 Comparison between SeMS and CoPS for the application logs 54

3.4 Comparison between SeMS and CoPS . 57

4.1 Statistics on Service log events of Openstack cloud 65

4.2 Number of events in the training and testing data 69

4.3 Service logs created for each service of Openstack cloud 71

4.4 Number of alerts in major service logs of Openstack 72

4.5 Number of raw alerts and hyper alerts (LFV 1) for major service logs of

Openstack cloud . 78

4.6 Number of raw alerts and hyper alerts (LFV 2) for major service logs of

Openstack cloud . 79

5.1 Time for building the provenance chains 97

5.2 Response time for sample queries . 98

5.3 Precision and Recall of the proposed provenance system 105

5.4 Before and after applying filters . 113

6.1 Time taken for transferring evidences from the cloud to incident handler’s

(IH) environment . 123

6.2 List of possible symptoms for rootkit identification 124

ix

6.3 An ideal codebook for rootkit . 125

6.4 Codebook after incident(rootkit) . 125

6.5 Supported formats for Disk analysis (do not support cloud vDisk analysis) . 128

6.6 Role of cloud service logs in incident handling 130

x

List of Figures

1.1 Domain Specific Incident Handling [7-10] 3

1.2 Cloud Service and Deployment Models 5

1.3 Digital Forensic Framework [28] . 8

1.4 Using Digital Forensic (DF) Techniques for Cloud Incident Handling (CIH) 9

1.5 Objectives of the Research . 14

1.6 Integrated model of our contributions . 15

2.1 Taxonomy of Security Incident Management and Incident Handling (Com-

piled from [42][43]) . 18

2.2 Cloud Incident Handling Challenges . 20

3.1 A trigger based introspection process in cloud 35

3.2 Shell code injection in Linux based virtualization environment 39

3.3 Proposed architecture for root cause identification using CEP 41

3.4 (a) CR3 events (b) User and Kernel Process Structure details 43

3.5 (a) Identifying suspicious processes (b) Identifying kernel based malware

processes . 44

3.6 Introspecting the system calls for OpenStack VM 45

3.7 Identified fake binary path . 45

3.8 Alert generation using CEP . 45

3.9 (a) Enumerating the target process details (b) Populating the DTB value . . 46

3.10 Root cause identification for fake binaries 47

3.11 Proposed model to improve the transparency between the incident handler

and the CSP . 48

3.12 Experiments conducted to decide the k value for different data sets 51

3.13 Events in the CFI log after pre-processing 56

3.14 Frequent top-k sequences identified using SeMS 56

3.15 DAG constructed from the healthy causalities of CFI log 57

3.16 Suspicious sequences identified by SeMS 58

xi

3.17 Suspicious sequences identified by CoPS 58

4.1 A sample service log event in the Openstack cloud 61

4.2 Identified service log events with forensic relevance to incident handling . . 61

4.3 Proposed model for cloud event reconstruction 66

4.4 Segregating the service log events for each instance 68

4.5 Identified demo user events using session based segregation 68

4.6 New events in the Nova are predicted with class labels (A or E) 70

4.7 Naive Bayes and SVM: Classification accuracy of various openstack services 70

4.8 Decision Tress and Random Forest: Classification accuracy of various open-

stack services . 71

4.9 Ceilometer-agent-compute.log of Openstack cloud: Generating multiple sim-

ilar events . 72

4.10 Nova-network.log of Openstack cloud: A single event generating multiple

similar alerts . 73

4.11 Output clusters (hyper alerts) after applying Algorithm 4- LFV 1 77

4.12 Output clusters (hyper alerts) after applying Algorithm 5- LFV 2 78

4.13 Time consumed by LFV 1 and LFV 2 for aggregation 80

4.14 Oultliers identified by log clustering tool (SLCT) 80

4.15 Outlier detection by the proposed aggregation algorithms 81

4.16 Deciding the minsup value for detecting the outliers effectively 81

5.1 CPU utilization of the target VM . 87

5.2 Read-write cycles calculated for the target VM 87

5.3 No. of non-target VM error events in the service logs 88

5.4 No. of target VM error events increased drastically in service logs 88

5.5 Log events showing multiple login failures 89

5.6 Organization of iRSM and iSTSM Modules 91

5.7 Snapshot regeneration time for all the three approaches 92

5.8 Space consumed by the VM snapshots for all the three approaches 93

5.9 Data loss incurred during snapshot transfer for all the three approaches . . . 93

5.10 The proposed high level taxonomy for the existing provenance systems . . . 94

5.11 Building the provenance system from multiple snapshots acquired from the

cloud . 96

5.12 Protocol followed by the incident handler after acquiring the snapshots . . . 97

5.13 Recommendation about whether a queried object is copied or not 99

xii

5.14 A visual representation of the queried object copy history 100

5.15 Backdoor is detected from the acquired VM snapshots of Openstack cloud . 102

5.16 Change in access control policy was detected on the system files of the

target VM . 102

5.17 Recommendations about the obfuscated objects in multiple snapshots . . . 104

5.18 Status of a deleted object . 106

5.19 Identifying the mapping strategy followed by Openstack cloud VM snapshot 107

5.20 Showing the deleted and reallocated objects in cloud VM snapshot 107

5.21 Direct blocks associated with the inode number 107

5.22 Reallocated object with newly allocated direct blocks 108

5.23 Memory window of cloud VM snapshot showing allocated and unallcoated

data units . 111

5.24 Unallocated data unit based logical grouping for text and PDF files 112

5.25 Unallocated data unit based logical grouping for doc files 112

6.1 High level taxonomy for event correlation applications 115

6.2 Proposed model for event correlation in cloud environment 118

6.3 Using MongoDB service log to extract metadata associated with each instance120

6.4 Applying normalization phase to the cloud logs in different formats 121

6.5 Prioritized host IPs used for accessing the target cloud instance 121

6.6 Features representing the kernel buffer messages for baseline and affected

system (here, Dmesg indicates events in kernel message buffers) 124

6.7 Checking for event bursts in target suspicious VM 126

6.8 Observed traces of the anomaly in cloud service logs 127

6.9 Timeline showing the description of VRAM events 128

6.10 Timeline showing the description of Service logs events 129

6.11 Timeline showing the description of vDisk events 129

A.1 Openstack cloud test bed setup in our lab 154

A.2 Conceptual model for the developed CFI tool 156

1

Chapter 1

Introduction

We do not need a hard disk in the computer if we can get to the server faster and carrying
around these non-connected computers is byzantine by comparison.

-Steve Jobs

Incident Handling is an integral part of security incident management of an organiza-
tion. It starts with preparing the target environment to reduce the risks of the incident and
ends with eradicating similar incidents in future [1]. The technological advancements in the
information technology changed the directions in the way data is stored, processed and an-
alyzed. This benefits the end user to receive highly valued services with less cost, less time
and with more accuracy. On the other side, this opens up opportunities to the adversaries to
intrude the network and compromise the target system(s) in the organization’s environment.

Over the last few years, security threats have increased drastically in terms of numbers,
level of sophistication and disruption. Some reported incidents include: in the year 2016,
Yahoo announced that 500 million user accounts were hacked and their data was available
for sale in the dark web [2]. A hacker group from Russia compromised the Oracle MICROS
point of sale systems which is among the top three gateways globally [3]. In 2014, eBay
was affected by a data breach in which more than 230 million users sensitive data was stolen
[4]. Alone in 2014, Computer Emergency Response Team (CERT) of Malaysia received
complaints about more than 4000 incidents [5].

Risk assessment strategies do exist to reduce the effect of the occurred incident. Since
new incidents are being reported frequently, it is not possible to completely prevent them.
Incident handling capabilities are therefore required to identify and analyze all the threat
aspects and reduce its impact on the organizational assets and services. Incidents differ
based upon the type and the targeted domain. Generalizing, the adversary can perform
incidents like unauthorized access, inappropriate usage, malicious code injection, resource
exploitation and multi-component threat strategies.

2

Handling the incidents in a timely fashion would benefit the organization in terms of
identifying relevant incident response strategy, quickly recovering from the incident and
improving the existing security policies.

1.1 Incident Handling

1.1.1 What is an incident ?

There are several definitions for ”Incident” and it varies from one organization to the other.
Generalizing all of them, SANS (System Administration, Networking and Security Insti-
tute) gave a definition for incident as, an adverse event in an information system which is an
attempt to harm the system. According to CERT (Computer Emergency Response Team)
guidelines, the organization can conform the occurrence of an incident if atleast one of the
following with respect to the violation of the security policies happens:

• An attempt to obtain unauthorized access

• Modifications without the actual owner instruction or knowledge

• Denial of resources

• Unauthorized use

1.1.2 Phases in the Incident Handling

Effective incident handling can mitigate the occurred incident and can aim to stop similar
incidents in the future. Incident Handling consists of four stages:

1. Preparation: The effect of the incident could be minimized by (i) establishing check-
lists for incident handling, (ii) notification process for the incident, and (iii) activating
risk assessment approaches for identifying incident response strategies.

2. Detection and Analysis: Each and every incident cannot be prevented using the prepa-
ration phase. The detection phase starts immediately after a suspicious activity has
been reported by the people or by any tool. The analysis is performed to conform the
claims made during the detection phase. Additionally, this also identifies the impact
of the incident on the organization’s assets and services.

3. Incident Response (Containment, Eradication, and Recovery): The initial step over
here is to reduce the extent of incident spread in the target environment. The attack
vector is closed to eradicate the same or similar incidents. Finally, the affected system
is rolled back to its latest safe state.

3

4. Post Incident: In this, postmortem analysis is conducted to understand the necessity
of changing/updating the existing security policies. Thus, the chances of the intruder
attacking the target system can be reduced.

Incident Handling approaches for various emerging domains like, Mobile Computing,
Cloud Computing and IoT is being explored in the literature [7-10][14]. We classify the
incident handling strategies according to the domains i.e. Traditional and Emerging (Figure
1.1). In this thesis, we focus on addressing the cloud incident handling issues due to its
unique challenges in terms of multi-tenancy, lack of control and rapid elasticity. Also, the
fact that other emerging technologies like, Mobile Computing and IoT directly or indirectly
use cloud services. This motivated us to take up Cloud Incident Handling as our problem
statement.

Figure 1.1: Domain Specific Incident Handling [7-10]

1.2 Incident Handling in the Cloud Environment

1.2.1 Cloud Computing

Technically the cloud paradigm evolved from grid computing. Several computers work
parallely in the grid to solve an individual problem whereas in cloud, the Cloud Service
Provider (CSP) delivers the end user with a unified service by leveraging multiple comput-
ing resources. Multiple definitions of cloud computing have been introduced in the litera-
ture [11][12] and the most widely accepted definition is given by the National Institute of
Standards and Technology (NIST) [13].

4

Definition

Cloud computing is a model for enabling ubiquitous, convenient, on demand network ac-
cess to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction. [11]

The cloud model is composed of five essential characteristics:

1. On-Demand self service: The capabilities like, processing power, storage, and net-
work usage can be unilaterally provisioned without human intervention.

2. Broad network access: All the computing capabilities can be consumed by the user
via a network through heterogeneous thin or thick clients.

3. Resource pooling: The multi-tenant model of cloud can facilitate many cloud con-
sumers to use its virtually available infinite computing resources through dynamic
provisioning.

4. Rapid elasticity: The resources can highly scale outward and inward to satisfy the
dynamic demands of the cloud consumers in terms of storage and computational ca-
pabilities.

5. Measured service: The metering capability can monitor, control and measure the
cloud resources consumed by the user.

Cloud Service Models and Deployment Models

The cloud environment in general is referred to as XaaS (Anything as a Service) provider.
The major service models encompassed in cloud include [12]:

• Software as a Service (SaaS): The applications at the cloud provider can be utilized
by the cloud user without much concern about the maintenance overheads. The data,
runtime environment, middleware, operating system, virtualization, servers, storage,
networking, and individual application capabilities are controlled and managed by
the cloud service provider (CSP). Examples include Concur, Google Apps, Citrix
GoToMeeting, Workday, Cisco WebEx, and Salesforce.

• Platform as a service (PaaS): The consumer can create applications using the libraries,
languages and tools supported by the CSP or can deploy the developed applications.
The consumers of this service can have a control on the deployed application and
data. The rest of the layers is managed by the CSP. Examples include Windows
Azure, AWS Elastic Beanstalk, Google App Engine, and Heroku.

• Infrastructure as a service (IaaS): The resources like, processing, network, and storage
can be provisioned by the consumer to install and run arbitrary softwares. The CSP

5

manages the cloud virtualization, servers, storage, and networking. The consumer
can control the applications, data, runtime environment, middleware and operating
system. Examples include Amazon Web Services (AWS), Microsoft Azure, Open-
stack, Cisco Metapod, Google Compute Engine (GCE) and Joyent.

The level of access varies based on the service model (Figure 1.2). Each service model
can be configured with any one of the following deployment models [12]:

• Private cloud: It is generally provisioned and maintained by a single or group of
organizations. Multiple business units of the organization can exclusively use the
cloud infrastructure.

• Community cloud: Consumers with shared requirements in terms of security, policy
and compliance prefer to use the community cloud. The cloud can be owned and
managed by one or multiple organizations, a third party or some combination of them.

• Public cloud: The cloud is owned and maintained by a single or group of entities
(academics, business or government). The cloud infrastructure is open to general
public and capable enough to exhibit high rapid elasticity.

• Hybrid cloud: More than one cloud infrastructure is used to form hybrid cloud and
accordingly it preserves the proprietary technology to achieve data and application
portability.

Figure 1.2: Cloud Service and Deployment Models

1.2.2 Significance of Cloud Incident Handling

Cloud computing is one of the most profound developments in the field of information tech-
nology. With the advent of this technology, the computational cost, software integration,

6

information access, and scaling of services were made easier and faster. A cloud service
pools the resources and provides them across multiple tenants, delivers the resources with-
out human intervention, monitors and measures the consumers resource usage accurately
[1]. Moreover, it is accessible from heterogeneous thin or thick clients.

Market research media predicted an annual growth rate of 30 % for cloud computing and
that this technology is expected to produce $270 billion by 2020. According to RightScale’s
cloud statistics of early 2016, almost 95 % of companies/respondents are using the cloud
services for their business operations [15]. Moreover, the popular analyst firm Forrester
estimated that for the year 2017, $463 billion will be spent on softwares among which $119
billion is solely spent in the domain of cloud computing [23].

On the contrary, cloud services are constantly being compromised by the intruders and
the recent cloud attacks prove the same. A few examples of reported cloud incidents are:
Amazon cloud was affected with a botnet in 2009 [17]. In 2013, hackers used the dropbox
platform to perform advanced persistent threats (APTs) [18]. In October 2015, students
at Worcester Polytechnic Institute hacked an instance in AWS which led to a data breach
[19]. In 2016, Amazon was hit by Denial of Service and it was achieved by compromising
the Domain Name System [20]. According to a survey conducted by [16], 56 % of cloud
incidents are non-transparent. Similar attacks may continue in the future as well if the
underlying isolation and cache management policies are not improved at both the hardware
and software levels.

From the above, it is evident that the cloud services are not always secured. In reality,
not every incident can be prevented. The incident handling in the cloud environment should
be performed at the tenant level in a timely fashion such that the target cloud user’s trust
on the cloud environment should be improved. It is important note that, cloud incidents can
happen at the cloud level and cloud tenant level and in this thesis, we focus on handling the
cloud incidents at the IaaS tenant level.

1.2.3 Why Cloud Incident Handling is more challenging ?

In a traditional environment, the Incident Handler can reach the physical location for de-
tecting, analyzing and eradicating similar incidents in the future. On the contrary, most
of these activities are not directly applicable for Cloud Incident Handling (CIH) due to its
distributed and rapid elasticity properties. This introduces many new challenges for cloud
incident handling [21][22]. They are:

• Evidence Availability: During Cloud Incident Handling, the availability of the evi-
dences is not always ensured as it is reactive in nature. Without the evidence, it is
highly impossible to arrive at accurate logical findings about the occurred incident.
This in turn would lead to inefficient containment and eradication strategies.

• Multi-tenancy: As the cloud systems facilitate the services to multiple tenants from
the same infrastructure, it would be difficult to identify the events specific to the target

7

user. The evidence heterogeneity in the cloud would further complicate the incident
handling.

• Admissibility of the evidence: The evidence collected should be legally admissible
in the court of law. To achieve this, the evidence should be complete and its integrity
should not be violated. This may not be always ensured due to the high dynamic
nature of the cloud environment.

The other reasons to conclude that cloud incident handling is difficult are briefed below
[21][24]:

• Service Logs which act as one of the major cloud evidences do not have unified format
and this introduces difficulties in acquiring and analyzing them.

• Deleted data is a good source of evidence for Cloud Incident Handing. It is difficult to
recover the deleted data from the cloud environment due to its dynamic resource allo-
cation and reallocation feature. Additionally, attributing the deleted data to a specific
user is still a challenge.

• Selective data acquisition is difficult as the Cloud Incident Handler may not know the
complete details of the occurred incident.

• Cloud confiscation and resource seizure may affect the business continuity of the
cloud.

• Cloud incident handling is highly challenging especially when the source of attack
instance is terminated.

• Due to the rapid elasticity property of cloud, it is laborious to find the traces of an
incident, especially when the process of Incident Handling is not initiated in a timely
manner.

• In general, the size of the cloud evidences starts from gigabytes and so, locating the
suspicious events related to the incident requires more time and human effort.

• Incident Handling on a live system may alter the state of the existing evidences and
in effect, it makes the target entity to arrive at inaccurate logical findings about the
occurred incident.

Deduction: We address the afore mentioned challenges of cloud incident handling using
digital forensic science practices. In this thesis, the term Incident Handling/Handler refers
to address various forensic challenges associated with the occurred cloud incident at IaaS
VM or user level.

8

1.3 Using Digital Forensic Science Approaches for Han-
dling Cloud Incidents

We use the Digital Forensic (DF) aspects to address the challenges of cloud incident han-
dling. Also, using DF practices for CIH would increase the evidence availability for the
incident handler.

1.3.1 Background on Digital Forensics

With the growing number of devices and threats, conducting forensic investigation gained
the attention of security professionals as well as incident responders. The process to conduct
digital forensic investigation was initially devised by FBI (Federal Bureau of Investigation)
and other law enforcement agencies in early 1984. Later, many digital forensic models were
developed from which an appropriate model could be chosen based on the investigator's
requirement [25][26].

Definition

Digital Forensics can be defined as, the use of scientifically derived and proven meth-
ods toward the preservation, collection, validation, identification, analysis, interpretation,
documentation, and presentation of digital evidence derived from digital sources for the
purpose of facilitation or furthering the reconstruction of events found to be criminal, or
helping to anticipate unauthorized actions shown to be disruptive to planned operations
[27].

The common phases followed for performing forensic investigation in the digital envi-
ronment are shown in the Figure 1.3 [28].

Figure 1.3: Digital Forensic Framework [28]

• Collection: The most relevant data sources pertaining to the incident should be iden-
tified and preserved without violating its integrity. Moreover, chain of custody should
be followed to ensure legal admissibility of the acquired evidences.

9

• Examination: From each acquired data source, files/events/processes of interest are
identified. This involves various activities like, using file viewers, uncompressing
files, displaying directory structure, identifying known files and accessing file meta-
data.

• Analysis: Logical findings are drawn from the collected evidence. The data from
multiple sources are correlated for quick interpretation. The integrity of the evidences
should be verified at the end of the analysis phase.

• Reporting: The results from the above phases are presented in the form of a document.
It also includes actionable information using which the investigator can acquire new
evidences. Preparation of the report should be done keeping in mind the objective of
the investigation and the purpose for which the analysis results are generated.

1.3.2 Using Digital Forensic approaches for Cloud Incident Handling

Existing works on cloud incident handling do not focus on evidence collection and analysis
due to which several questions remain unanswered like: how the incident occurred ?, from
where it originated ?, and what data was accessed/tampered with?.

There are a few research papers which discussed the integration of digital forensic as-
pects for improving traditional incident response capabilities [28][29][30]. Taking these as
base, we suggest that the aspects of digital forensics can be used for handling cloud incident
challenges. In CIH, evidence availability and its admissibility cannot always be ensured.
So when the digital forensic aspects are used for cloud incident handling then the chances
of evidence availability would increase due to the forensic readiness aspect in the digital
investigation domain. The same is pictorially shown in the Figure 1.4. The forensic aspects
which are used for cloud incident handling are discussed as below:

Figure 1.4: Using Digital Forensic (DF) Techniques for Cloud Incident Handling (CIH)

10

• Level 0 (Preparation phase of CIH uses Forensic Readiness aspect): Taking the foren-
sic readiness perspective of digital forensics and applying that to the cloud incident
handling would maximize the chances of evidence availability and helps the incident
handler to improve the risk management strategies.

• Level 1 (Detection and Analysis of CIH uses Forensic Analysis practices): Immedi-
ately after the incident is detected, the incident handler will start through the selective
evidence acquisition process such that its integrity is ensured. The forensic based in-
cident analysis on the collected evidences is started so as to evaluate the impact of the
occurred incident.

• Level 2 (Incident response of CIH considers Evidence Handling aspects): The as-
sets and services of an organization that are affected with the incident are recovered.
Inclusion of the evidence handling aspects makes the incident response effective.

• Level 3 (Post incident activity of CIH includes presentation phase of DF domain):
The findings from the above three hybrid phases are included in the form of a report
and presented to the court of law. The incident handler would go through the adaptive
learning process based on the logical findings made from the previous incidents. This
would finally improve the existing security policies of the target organization.

In this thesis, we address the challenges in Level 0 and Level 1. The reason is, address-
ing the technical aspects of these two levels would automatically help the incident handler to
reduce the difficulties in Level 2 and Level 3. It is important to note that, we use forensic as-
pects for cloud incident handling to mainly increase the evidence availability. This can even
be achieved by other proactive solutions. We only chose forensic aspects for performing
incident handling because of its legal admissibility.

1.4 Challenges in using Digital Forensic Principles for Cloud
Incident Handling

We identified that, applying digital forensic practices for cloud incident handling involves a
lot of challenges. We organized them into three categories:

• Architecture (Diversity, Complexity, Data segregation, Multi-tenancy, etc.) [31][32][33]:
This should deal with the variability in cloud architectures, building and maintaining
provenance systems such that the chain of custody is preserved, compartmentalization
of the on-demand resources, seizure of the cloud evidences without disrupting other
tenants, etc. The approaches to handle each of these needs to be designed ensuring
admissibility of the evidence.

11

• Analysis (Reconstruction, Anti-Forensics, Logs, Timelines, Correlation, Metadata,
etc.) [34][35][36]: We need to design correlation approaches for analyzing the data or
events of multiple artifacts of the same or different tenant(s). Handling anti-forensic
techniques (countermeasures employed by the intruder to divert the forensic inves-
tigator) in cloud, reconstructing the events/data of the acquired artefact, analyzing
cloud specific evidences like, service logs and snapshots, handling the issue of time
synchronization especially when VM resources are spread across multiple locations
are the issues which need to be considered for effective evidence analysis.

• Legal (Service level agreements, Subpoenas, Jurisdictions, Privacy ethics, etc.) [37][38]:
There are various legal issues to conduct cloud forensic based incident handling. A
few of them are, lack of international cooperation, missing terms in Service Level
Agreements (SLAs) and lack of cooperation among the cloud providers. Also, with-
out the proper knowledge of location of the physical resources, it is difficult to issue
subpoenas.

Among the above, we focus on the major challenges in Analysis and Architectural cate-
gories. The multi-jurisdiction issues for cloud incident handling through forensics is not in
the scope of our work.

1.5 Contributions of the Thesis

1.5.1 Objectives of the research

• Handling volatile evidences in cloud VM instances with trigger based introspection
approaches

• Devising event reconstruction and provenance approaches for various IaaS VM arti-
facts for handling cloud incidents

• Designing event correlation approaches for various cloud artifacts

1.5.2 Scope and Assumptions

• Our emphasis is on solving major analysis and architectural challenges of forensic
based incident handling at the IaaS tenant level.

• We test and validate the proposed cloud incident handling approaches using private
IaaS cloud test bed.

• The cross border legal issues which might emerge during the forensic based incident
handling are out of scope for this work.

12

• We assume that the Incident Handler (IH) gets the forensic support from various cloud
actors like the Cloud Service Provider (CSP).

• We also assume that the target cloud environment is enabled with the Cloud Forensic
Readiness (CFR) model(s).

1.5.3 Thesis contributions

The focus of this thesis is on addressing the major challenges in Data Analysis category by
considering Architectural issues for handling the incidents at the IaaS user level.

1. Handling the volatile evidences: The thumb rule in forensic based incident handling
is that the evidence acquisition should start from volatile artifacts. In reality, when we
image the target virtual machine memory from the user level, it may undergo many
changes which in turn can lead to inaccurate logical findings. The incident handler
should perform live forensics without altering the evidences in the vRAM (virtual
RAM) of the virtual machine which is possible through a technique called as Virtual
Machine Introspection (VMI). VMI monitors the state of the virtual machine from the
hypervisor level [39]. The CSP may not allow the incident handler to perform VMI on
the target virtual machine as it requires hypervisor access. We handle this by propos-
ing a model named ALTRA (Addressing Lack of Transparency) which addresses the
issue of lack of transparency between the incident handler and the CSP.

The incident handler can perform VMI to acquire memory events of the target virtual
machine. It is important to note that, VMI is not a new technique to capture memory
events and can have many delivery models to achieve the same [41]. We propose
a trigger based introspection model for efficient capture of the target VM memory
events. Finally, we propose improvisations for interpretation of the introspected data.

2. Devising approaches for event reconstruction and provenance: The evidences identi-
fied are segregated and transferred to the incident handler's environment for analysis.
The incident handler selects the analysis technique based on the artifact and the in-
cident type. In this work, we propose event reconstruction and provenance based
analysis techniques and applied on cloud service logs and VM snapshots respectively.

• Cloud Service logs: The cloud is managed by many inter-operable services. For
each service there is an associated log created at the cloud node(s). We propose
a model called SEASER (Applying Segregation, Aggregation on Cloud Service
logs) using which one can arrive at effective hypothesis without violating the
privacy of other users. The model addresses three major issues of service log
analysis i.e.

– Service logs contain events of multiple users and we propose approaches to
automatically identify the events pertaining to the target user/instance.

13

– All the service log events may not be of interest to the incident handler.
We apply various supervised machine learning algorithms to automatically
identify the events of interest to the incident handler.

– In general, every service log contains millions of events and it is extremely
time consuming to analyze all of those events. We address this problem
through aggregation. We propose two new aggregation algorithms namely
Leader-Follower Version 1 (LFv1) and version 2 (LFv2).

• Virtual machine Snapshots: Snapshots are the richest source of evidence for the
forensic based incident handling. We address the major challenges involved in
snapshot acquisition and analysis.

– In reality, snapshots for a VM may not always exist. To increase their avail-
ability, we suggest the use of Cloud Forensic Readiness (CFR) models in
which the snapshots are collected before the actual incident.

– The captured snapshots have to be transferred to the isolated incident han-
dler’s environment via network and it may lead to the problem of data grav-
ity (i.e. network and analysis overhead involved in cloud incident handling
is referred as data gravity) [40]. We resolve this problem by designing a
framework named SNAPS (Snapshots based Provenance System) which is
derived from the existing spatio-temporal models and is then customized to
suit the requirements of Cloud Incident Handling (CIH).

– The acquired snapshots need to be analyzed and the proposed framework
SNAPS achieve the same using provenance. Also, SNAPS can be used
to address various forensic based incident handling challenges and we il-
lustrate the same using VM snapshots acquired from the Openstack Cloud
Environment.

– On the other hand, using deleted objects for incident handling may give
clues about the occurred incident. Retrieving them in the cloud environ-
ment is challenging and we address this using Natural Language Processing
(NLP) techniques.

3. Performing Event Correlation: The term event correlation indicates or exposes the
relation between two or more events. It can be used to gain higher level of knowledge
from a huge number of events, to identify the faults and filter out the redundant,
irrelevant and spurious messages, and make predictions about the future trends [41].
In comparison with the existing work on event correlation, our proposed correlation
approach differs in the following aspects:

• The first and obvious difference is, our event correlation approach is specific
to the cloud environment and uses cloud specific artifacts like service logs for
incident handling.

14

• We correlate events effectively from all the major evidences available in the
target VM and the specific artifact to be investigated vary depending on the case
under consideration.

• Most of the existing correlation approaches deal with identifying the relations
among the events present in the same artifact. We extend the correlation capabil-
ities to identify the associations among the events present in multiple artifacts.
We also discuss the correlation approaches in both incident - known and un-
known cases.

The proposed approaches for handling cloud incidents would address many other cloud
architectural and analysis challenges. The same is shown in Figure 1.5.

Figure 1.5: Objectives of the Research

1.6 Organization of the Thesis

The thesis comprises seven chapters and the outline of each is described below.

• Chapter 2 discusses various incident handling and digital forensic models and their
current research thrust areas. We discuss the challenges, current solutions and open
issues of using digital forensic science practices for cloud incident handling.

• In chapter 3, first we describe the proposed hybrid introspection approach which can
handle volatile evidences of the target instance. The hybrid approach is proposed by
taking the analogy of logic analyzer. To identify the root cause of the incident from
the captured introspection events, we use Complex Event Processing (CEP). We add a
new module to the introspection flow process and this populates the events of forensic
relevance which can help the incident handler reduce the time spent on analyzing the
volatile evidences.

The second part deals with the proposed model which can address the lack of trans-
parency between the incident handler and Cloud Service Provider (CSP). We discuss

15

the proposed approaches - SeMS (Sequence Mining on user Sequences) and CoPS
(Conditional Probability on user Sequences) to detect suspicious events from the tar-
get application logs. Finally, we validate both the approaches using a typical inves-
tigative scenario.

• Chapter 4 describes the identified role of cloud service logs during incident handling.
We then discuss various approaches for segregating the target user events from other
users. We detect the events of incident handler relevance using various supervised
machine learning algorithms. We discuss the proposed aggregation approaches for
service log analysis and we validate them using Openstack cloud logs. Finally, we
discuss the identified application of the proposed approaches.

• Chapter 5 discusses the proposed approach to increase the availability of the virtual
machine snapshots to the incident handler. Further, we handle the issue of data grav-
ity using spatio-temporal models. We discuss the proposed provenance system for
snapshot analysis. Finally, we recover the deleted objects from the VM snapshots
using NLP techniques.

• Chapter 6 presents a framework for performing cloud event correlation. Event Corre-
lation can be homogeneous (same artifact is used) or heterogeneous (different artifacts
are used) and each of these can occur with the incident-known and incident- unknown
cases. Based on this, we derived four cases. In this work we address the follow-
ing three cases: Homogeneous-incident unknown based correlation, Heterogeneous-
incident known based correlation and Heterogeneous-incident unknown based corre-
lation.

• Chapter 7 summarizes the entire work with a discussion on the future scope.

An integrated model of our contributions is shown in Figure 1.6.

Figure 1.6: Integrated model of our contributions

16

1.7 Summary

The way data is stored and processed has changed with the advent of cloud computing. It
facilitates virtually infinite computing resources using which an intruder can compromise
the resources of other tenants/users. Evidence availability plays a significant role in effective
incident handling. Using digital forensic science principles for handling cloud incidents
ensures evidence availability. Performing forensic investigation in the cloud environment
involves various Architectural, Analysis and Legal challenges. In this work, we address the
major issues in the Architectural and Analysis categories.

In this chapter we introduced the challenges of cloud incident handling and gave an
insight into the cloud incident handling using digital forensic practices. In the next chapter,
we discuss various incident handling and digital forensic models and highlight the open
research issues for cloud incident handling even after using digital forensic practices.

17

Chapter 2

Background and Related Work

”Going Forward, It’s a mobile first, cloud-first world”

-Microsoft

As discussed in chapter 1, Cloud Incident Handling using the forensic aspects helps in
better containment, eradication and recovery of the incident. In this chapter, we discuss
the capabilities of Incident Management and Incident Handling in the traditional digital
environment. We then describe the challenges and existing solutions involved in IaaS based
cloud incident handling. Finally, we discuss the open forensic problems for the same.

2.1 Incident Handling in Traditional Digital Environment

Incident Management comprises many activities like, handling vulnerabilities, conducting
training programs to increase security awareness, managing events and generating alerts
[45]. The taxonomy for security incident management is shown in Figure 2.1. Incident
Handling (IH) falls under the category of security incident management.

Incident Handling can be performed in multiple ways based on various guidelines and
standards given by the most popular security agencies/organizations (Table 2.1) and the
same are briefed below:

• Computer Emergency Response Team/Coordination Centre (CERT/CC): Detailed guide-
lines to handle security incidents are discussed by [44]. It contains various phases
namely, incident alert/report, triage, incident response, analysis. All these phases
include 14 sub-phases for incident handling.

• National Institute of Standards and Technology (NIST) is a renowned standards labo-
ratory and it suggested a four phase Incident Handling process which includes prepa-
ration, detection and analysis, incident response and post incident activity [43]. The

18

Figure 2.1: Taxonomy of Security Incident Management and Incident Handling (Compiled
from [42][43])

second and third phases are conducted iteratively for better containment and eradica-
tion of the occurred incident.

• International Organization for Standardization (ISO): This suggested five phases
for Incident Handling which comprises planning and preparation, detection and re-
porting, assessment and decision making, response and lessons learned [47]. These
phases can also be used for managing the vulnerabilities and security events.

• European Network and Information Security Agency (ENISA) : This is a European
agency which guides the organizations to meet the network security and informa-
tion requirements [46]. It suggested a six phase process for incident handling which
includes phases namely, incident report, registering the report, triage, incident resolu-
tion, incident closure, and post analysis.

In this thesis, we follow the process suggested by NIST and apply it for cloud incident
handling. It is important to note that, incident handling models which we find today have
close similarity with the NIST incident handling guidelines [49][50].

2.2 Cloud Incident Handling and its Research Challenges

Governments of many countries have started focusing on cloud incident handling as they
realize about the dangers of intruder actions [52]. Till now, Cloud Incident Handling is
not fully understood and explored due to its inherent characteristics like distributed, rapid

19

Table 2.1: Summary of Incident Handling Models

Incident Handling Standards and Guidelines
CERT/CC [44] BIP 0107:2008 [42] ENISA [46]
Reporting and detection Incident detection and

recording
Incident report registration

Triage Classification and initial
support

Triage

Analysis Investigation and diagno-
sis

Incident resolution

Incident response Resolution and recovery Incident closure post-
analysis

ISO/IEC 27035:2011 [47] SANS (Kral, 2011) [48] NIST SP 800-61 [43]
Plan and prepare Preparation Preparation
Detection and reporting Identification Detection and analysis
Responses Containment, Eradication

and Recovery
Containment, Eradication
and Recovery

Lessons learned Lessons learned Post-incident activity

elasticity and multi-tenancy [53]. This inturn makes the incident recovery difficult and time
consuming. For instance, on February 28th 2017, AWS suffered an outage incident that
lasted for many hours and they could not immediately find the appropriate reasons behind
it. Incidents in cloud are frequently reported and unfortunately, 56 % of them are non-
transparent [55].

In the traditional incident handling, the experts can shutdown the system immediately
after the incident. In cloud, this is not possible and requires a new strategy to handle the
incidents. There are only a few papers which explored the possibilities for cloud incident
handling and the same are briefed below:

• The challenges of cloud IH are presented using five phases namely, detection, analy-
sis, containment, eradication and recovery, and continuous improvement [1].

• The authors in [21] concluded that, at the high level, the cloud IH is same as traditional
IH. The way we perform each phase of the incident handling in the cloud is different
when compared with the traditional IH process. This is due to its unique challenges
like, multi-tenancy, lack of transparency and having no physical access.

• The authors discussed the new challenges in the domain of cloud security and then
suggested that, there should be more cooperation among various cloud actors to de-
ploy policies and procedures as a monitoring solution. Since there exist no proper
policies for cloud incident handling, it can lead to privacy violation and thereby affect
the availability of the cloud services [56]. For example, the FBI during its investiga-
tion on fraud detection powered off the whole data center in Texas and it affected the
data availability of many users [51].

20

The extensive literature review on cloud incident handling has helped us compile a
comprehensive taxonomy of the challenges as depicted in Figure 2.2 [57][58][59].

Figure 2.2: Cloud Incident Handling Challenges

Deduction: Cloud Incident Handling in its present form responds to the incidents with-
out emphasizing on the relevant evidence collection. Without this due consideration, recur-
rence of the incidents cannot be prevented. We use the digital forensic practices for cloud
incident handling to address these aspects.

2.3 Using Digital Forensic aspects for Effective Cloud In-
cident Handling

Since we use Digital Forensic (DF) principles as a methodology for effective cloud incident
handling, we initially discuss the existing DF models. We discuss the challenges of applying
the digital forensic practices for cloud incident handling.

2.3.1 Digital Forensic Models

In Digital Forensics (DF), computer and other digital media crimes are investigated through
a scientific process to answer several forensically relevant questions pertaining to the oc-
curred incident. Apart from identifying and imaging the digital evidence, it can attribute the
digital evidences to exhibit and produce them in the court of law.

In the early 21st century, various cyber-security bodies have proposed several guide-
lines to investigate the digital crimes. Some of the popular digital forensic models are
summarized in Table 2.2. Using these models and forensic tools, the FBI is successfully
investigating thousands of digital cases reported every year in the USA [60].

21

Table 2.2: Summary of Digital Forensic Models

Guidelines for Performing Digital Forensic investigation
Martini [61] Choo et al. [62] Quick et al. [63]

Commence Prepare and
response

Commence Prepare and
response

Evidence source identifi-
cation and preservation

Identification and collec-
tion

Evidence source identifi-
cation and preservation

Collection Collection
Examination and analysis Preservation Analysis Examination and analysis
Reporting and presenta-
tion

Presentation Feedback
Complete

Reporting and presenta-
tion Feedback

The investigative agencies solved many interesting cases over the years using digital
forensic principles and practices like, Dennis Reader [64], Scott Tyree [65], Brad Cooper
[66] and James [67]. Recently, Clinton's Bombshell case was defused using digital forensics
[68]. Also, Cyber Forensics division in India solved many interesting cases using the stan-
dard digital forensic models [69]. In this thesis, we take the DF model proposed by Quick
et al., as a base and use it to address the challenges of the cloud incident handling.

It is important to note that, using digital forensic aspects for handling cloud incidents
would not solve all the challenges of it (CIH). The same are discussed in the subsequent
sections.

2.3.2 Cloud Incident Handling Challenges: A Forensic Perspective

Handling cloud incidents using digital forensic science differs from one service model to
another as the level of penetration and evidence availability significantly vary.

Cloud Incident Handling in (SaaS) vs (PaaS) vs (IaaS) - A forensic perspective

Forensic based Cloud Incident Handling for each service model of cloud is briefed below:

• SaaS (Eg - Salesforce, Cisco WebEx, Citrix GoToMeeting, etc.)[13][70]: The Cloud
Provider owns all the layers (Servers, Storage, Networking, Virtualization, Operating
System, Middeleware, Runtime, Data, Application) due to which customers’ mainte-
nance cost is significantly reduced. SaaS applications leave very limited traces at the
client end. The incident handler should rely on the logs stored at the cloud side and
that detailed information acts as a valuable source of evidence during forensic based
incident handling.

• PaaS (Eg - Apprenda, Heroku, Google App Engine, etc.)[13][71]: The customers use
the middleware components to develop their own applications. A full control on the

22

application layer will be with the customer including the application dependencies.
Due to this, the customer can create and maintain a detailed application log which
can definitely aid the incident handler.

• IaaS (Eg - Amazon Web Services, Microsoft Azure, Openstack, etc.)[13][72-77]: In
IaaS cloud, the virtual machines will be managed (location, scaling, security etc.)
by the cloud provider to satisfy the consumer requirements. The layers - Application,
Data, Runtime, Middleware, Operating System will be under the control of consumer;
the virtualization and hardware will be controlled by the cloud provider.

From the above discussion, it is evident that, the level of access control to the target user
differs from one service model to the other and among which, IaaS users will have more
penetration to the cloud resources. This may in turn increases the possibility of performing
an incident/suspicious activity by the intruder. In this thesis, we focus on addressing the
challenges in forensic based incident handling in IaaS environment.

2.3.3 Incident Handling in IaaS Cloud Environment using Digital Foren-
sic Practices

It is important to note that, even though cloud forensic investigation follows the same se-
quence of phases as traditional digital forensics, the process behind each forensic phase
differs in cloud due to its unique characteristics. This introduces several new challenges
during forensic based incident handling and we brief all of them phase wise as below:

Identification Phase: In this phase, the incident handler searches for likely value evi-
dences pertaining to the occurred incident and the challenges involved in it are:

• Logs as a source of Evidence: In general, the traces of cloud incident spreads across
multiple logs (Service logs, OS logs, Firewall logs, Network Logs, etc.) and then
automatically identifying the exact source of evidence still remains a challenge [78].
In [79], the authors suggested logging guidelines (what, where, and when to log)
to aid the cloud incident handler. In [80], the authors developed their own logging
mechanism in Eucalyptus cloud to easily identify forensically relevant events. In
[81], the authors devised an encrypted logging model and the logs generated using
this model are transferred to the central server in the encrypted format. All these logs
will be completely under the control of the consumer. The common drawback while
implementing the above cloud logging solutions is, the existing IaaS environment of
the CSP should undergo significant changes and it may not be feasible in reality.

• Volatile evidences [61][82]: Focusing on volatile evidences like, vRAM can help
the incident handler find forensically valued information (user names, passwords, en-
cryption/decryption keys, etc.) and then properly performing volatile memory anal-
ysis gives quick logical findings about the occurred incident. The vRAM evidence

23

may undergo a few changes during its imaging from the cloud virtual machine and
in this case, the modified evidence diverts the incident handler to generate inaccurate
inferences.

Data Collection and Preservation Phase: Once a VM in IaaS cloud gets compro-
mised, its identified evidences should be acquired without violating their integrity so that
the chances of legal admissibility would increase. From the literature, we identified that
there are five possible ways of acquiring the evidences from the IaaS cloud infrastructure
[78][79] i.e.

• Use the existing tools [83]: The standard traditional forensic tools like, Encase, FTK,
and Memoryze can be used to acquire vDisk/vRAM of the target virtual machine.
The main drawback with this approach is, remote acquisition through these tools may
not be trustworthy and cannot be legally admissible. Moreover, these tools cannot
acquire the cloud service logs (without violating privacy) and snapshots of the target
cloud instance (virtual machine).

• Use Trusted Platform Modules (TPM) [84]: TPMs can be installed on the cloud nodes
so that the hardware in each node can know the health status of the hosted guest virtual
machines. Once a TPM based hardware finds the suspicious activity in a certain VM
then its evidences can be preserved securely. The main drawback associated with the
TPM based acquisition is, there are chances that a VM process can be altered without
being known to the TPM modules. Moreover, till now, no cloud provider hosted their
virtual machines in the TPM based hardware. In the future, we expect that customers
may show keen interest on a cloud provider who has TPM modules integrated in to
the hardware.

• Management plane based acquisition: Cloud services are received by the end users
through the management plane. Using this, the incident handler/user can acquire the
evidences pertaining to the target VM [85]. The drawbacks associated with this type
of acquisition are, all the possible evidences cannot be acquired through management
plane. Also, this may open up a new attack surface and may not always ensure reliable
evidence collection.

• Forensics-as-a-Service (FaaS) [86]: The cloud provider collects the required evi-
dences and gives them to the target user/incident handler. Since the cloud provider
controls the complete infrastructure, the evidences gathered through this may be
legally admissible. The drawbacks associated with this type of acquisition are, there
is no standard protocol devised for facilitating FaaS to the end user, the response
time is high and the CSP may not monitor the target VM events at low level and so
preserving evidences is not possible in all the cases.

24

• Legal Solutions: Issuing legal warrants to the CSP and asking him to provide the
evidences of the affected virtual machine only works when laws satisfying multiple
jurisdictions are framed and executed [83]. Till date, no cloud provider has announced
its support for the law enforcement.

Depending on the context (type of incident, cloud provider policy, legal, acts etc.,),
any one of the above acquisition approaches can be chosen. Before which the following
acquisition related issues need to be considered and handled by the incident handler i.e.

• Preserving privacy [83][87]: Due to the multi-tenancy nature of cloud, it can host
evidences of several users. During evidence collection, the evidences pertaining to
the target user should be identified and isolated. If the evidence segregation is not
done properly then it leads to the privacy violation of other users. In [87], the authors
proposed three isolation techniques namely Instance relocation, Server farming and
Sandboxing. These approaches lacks practical feasibility.

• Ensuring data integrity [89]: Preserving the integrity of the evidence increases the
admissibility of the findings made through the forensic examination and analysis.
There is a likelihood of integrity errors being generated due to the involvement of
multiple cloud actors in the forensic investigation.

• Lack of thorough knowledge [92][93]: Since cloud is relatively a new and emerging
area, the digital forensic experts may not have detailed knowledge about the data
organization in the cloud, its architecture, policies, etc. This indeed leads to improper
negotiation with the CSP and needs special training.

• Chain of custody [91]: It is the process describing how the evidence is collected,
preserved and analyzed so that the admissibility of the collected evidences will be
strengthened in the court of law. In cloud, ensuring chain of custody is challenging
due to its multi-layered and distributed architecture.

Analysis Phase: Conducting forensic based incident analysis on the cloud evidences
is very challenging. The two major reasons for it are - (i) Volume of the cloud evidences
is generally very high when compared with the traditional digital environment and each
evidence contains a vast number of objects/events. Analyzing all those is challenging espe-
cially in time critical investigations. (ii) The data exported to the cloud is internally stored
in cloud’s native format and it is difficult for the incident handler to analyze them. The other
issues to be handled during this phase are:

• Lack of specialized tools: Due to rapid elasticity of cloud,its distributed nature and
lack of transparency properties, the existing digital forensic tools cannot be applied to
the cloud environment. There is a huge demand for dedicated cloud forensic tools to
enable the incident handler perform forensic investigation [92]. In [94], the authors

25

conducted a survey to know the expectations from cloud forensic tools and 58 % of
respondents replied that, automatic evidence analysis approaches (traditional/cloud)
should be developed. The applicability of various forensic tools to the cloud environ-
ment is assessed and the same is shown in the Table 2.3.

• Correlating the evidences gathered from multiple sources [95][97]: An incident trace
may spread across multiple artifacts and analyzing all of them to understand the asso-
ciations among the events is challenging in terms of time and human effort involved.
There are no proper evidence correlation approaches devised to handle the cloud inci-
dents. The event correlation among the evidences will give a comprehensive picture of
the occurred incident and may lead to quick appropriate findings. Unfortunately, the
challenges of performing effective cloud event correlation still remain unaddressed.

• Maintaining provenance for cloud evidences [88]: Provenance stores the history of
each object present in the target evidence. It is a proactive approach and intruder can
easily disable the provenance system deployed at VM level. Moreover, for a basic
user, storing provenance at object level adds to the space and cost overheads.

• Time Synchronization [90]: In forensic based incident handling, time related meta-
data can act as a crucial source of evidence. Generally, the cloud evidences spread
across multiple systems which are having different time zones. The issue of time
synchronization is especially challenging in the public cloud environments.

• Reconstructing the crime scene [91]: Knowing the sequence of suspicious activities
performed by the intruder is possible through Event Reconstruction. Reconstruction
of the crime scene is not always possible especially when the intruder restarts/terminates
the virtual machine after the incident. In [96], the authors suggested that, event re-
construction in this case could be possible by considering snapshots of the virtual
machine. Incident reconstruction may not be effective when the events in the evi-
dences are incomplete and the chances of that happening in the cloud are more.

26

Table 2.3: Summary of the existing forensic tools

Existing Forensic Tools
Tool Use Cloud/General

Based
Encase Remote
Agent [83]

Remote Acquisition General

FTK Remote Agent
[83]

Remote acquisition General

X-Ways [98] Live system based acquisition for Win-
dows and Linux systems

General

Sleuthkit [99] Can analyze forensic images of the hard
disk

General

E-discovery Suite
(Encase) [100]

Can investigate the network or computer
offline

General

FTK imager [101] Can image the memory and disk of the
target system

General

Snort [80] Network intrusion detection system for
Windows and Linux systems

General

Wireshark [102] Analyzes the to and fro network packets
of the target system

General

OWADE [103] User visited websites and can know
whether they contain any data stores in
the cloud

Cloud Based

FROST [104] Acquisition tool integrated into the Open-
stack management plane

Cloud Based

2.4 Current Solutions and Open Issues for Cloud Incident
Handling using Digital Forensic Practices

Focusing on the challenges in each phase of cloud incident handling using forensics prin-
ciples, researchers proposed several solutions and the same have been summarized in the
Table 2.4.

27

Table 2.4: Summary of the existing cloud forensic solutions

Existing Solutions
Phase and challenges Proposed Solution/Approach Ref.

Identification
Access to the evidence Eucalyptus framework (OS and logs) [80]

Extraction of the status of the relevant
data

[105]

A log based model [106]
An advanced logging model embedded
with encryption

[24]

Dependence on the CSP
Trust Issue Layers of trust model [83]
Data acquisition TrustCloud [107]
Compliance Cloud Management Plane [85]
Logs Service Level Agreements (SLAs) [108]
Volatile Data Cloud Persistent Storage [105]

API based continuous synchronization [109]

Preservation and Collection
Data Integrity Trusted Platform Modules [83][84]
Time Synchronization Unified time system [105]
Cloud literacy of incident handlers Improving the skills of incident handlers [93]
Chain of Custody Trained staff [92]
Ephemeral nature Snapshot acquisition and analysis [38]
Distributed storage VM location identification through in-

stance tagging
[72]

Analysis and Examination
Lack of standard forensic tools FROST, OWADE [103][104]
Lack of log framework Suggested complete log management sys-

tem
[83][110]

Evidence Time lining A partial solution by AWS Trail [111]
Encrypted Data Cloud key management infrastructure [112]

Presentation
Technical comprehension of jury Training [89]
Jurisdiction Cross border Laws and Legal Agreements

(Eg: MLAT)
[113]

Chain of custody Well defined principles and guidelines
(Eg: ACPO- UK)

[114][115]

28

Open Issues in Forensic based Cloud Incident Handling

Handling cloud incidents using digital forensic science aspects is relatively a new method-
ology and has lot of issues which still need to be addressed and the same is shown in Table
2.5. Each of those issues is discussed below:

Table 2.5: Major unaddressed Issues in Cloud Incident Handling using Forensic Principles

S.
No.

Gaps Identified for Cloud Forensic Inves-
tigation in IaaS

1 Lack of standard and dedicated tools
2 Evidence correlation and Timeline analy-

sis from multiple sources
3 Cross border Issues
4 Automatic analysis of cloud evidences
5 Handling the volatile evidences of the tar-

get virtual machine
6 Crime scene reconstruction
7 Technical comprehension of the jury

1. Lack of standard and dedicated tools [92][103][104]: From the Table 2.3, it is evident
that only two tools can perform forensic investigation in the cloud environment. There
are a lot of drawbacks for these tools i.e.

FROST: This is a forensic tool that was integrated into the Openstack cloud envi-
ronment. It can acquire the evidences from the content management plane without
interacting with the guest OS. The drawbacks associated with FROST tool are, it
only works in Openstack cloud and cannot be applied to other cloud platforms, it
requires significant changes in the Openstack cloud, it does not provide analysis ca-
pabilities for the acquired evidences, and it assumes the trust from multiple entities
(CSP, provider’s infrastructure etc.).

OWADE: This tool was developed by the researchers in Stanford university and was
launched in BlackHat Conference. It can store the websites visited, can track most
of the internet activities, can search the online identities, etc. OWADE is still in
development and only the basic version was released with the minimal features. The
major drawback associated with this tool is, it can only track the web related data
and cannot acquire the cloud specific artifacts like, Service logs and Snapshots. In
addition to this, the tool capabilities for analysis need to be improved.

From the above, it shows the necessity for developing a comprehensive cloud foren-
sic tool which should identify the distributed evidences, acquire all of them by em-
ploying proper preservation techniques and analyze (basic, advanced) the preserved
evidences.

29

2. Evidence correlation and Timeline Analysis [95][97]: Timeline analysis can sequence
the occurred events using which the incident handler can know various details like,
when, where and how an event had generated. If the events from multiple sources are
considered for timeline analysis then several issues need to be handled like, how to
interpret the events and how the events with different logging structure can be repre-
sented in a timeline without much data loss. Additionally, the cloud incident handler
should correlate the events in several evidences and identify the events pertaining to
the target incident. This correlation helps reduce the time for detecting and analyzing
the occurred incident.

3. Cross Border Issues [37][38]: Due to the distributed nature of cloud, the evidences
of victim/intruder virtual machine may spread to multiple locations. This gets worse,
when multiple evidences from different jurisdictions need to be acquired. Cross bor-
der issues hinder the process of developing new approaches for cloud forensic in-
vestigation. This shows the importance and necessity for framing global laws for
conducting forensic investigation in the cloud environment.

4. Automatic analysis of Cloud evidences [34][35][36]: The acquired cloud evidences
will have its own format. Consequently, this introduces new difficulties during the
analysis phase. For instance, the vDisk acquired from the Openstack cloud environ-
ment is in QCOW2 format and it cannot be analyzed by the existing digital forensic
tools. In addition to that, the cloud evidences will be of huge size and time taken to
analyze them is generally very high. New cloud forensic techniques should be devel-
oped to automate and reduce the time and human effort required for cloud evidence
analysis.

5. Handling volatile evidences of the target instance [82][109]: The basic principle in
forensics is to start investigation in the order of volatility. Acquiring volatile evidences
is always not possible as the intruder may restart/terminate the cloud virtual machine
after the occurrence of the incident. New approaches need to be devised to capture
the events from volatile memory of the target instance. Moreover, these approaches
should have analysis capabilities using which the incident handler can quickly know
the intricacies of the occurred incident.

6. Crime scene Reconstruction [91][96]: Reconstructing the crime scene can make the
incident handler to know about how, when, and where an incident occurred. There
are no existing approaches or algorithms for performing cloud event reconstruction.
Additionally, this introduces new difficulties for the incident handler when the events
from any of the evidences are missing.

7. Technical comprehension by the jury [89]: The findings from the cloud forensic ex-
amination and analysis should be presented as a report in the court of law. The report

30

should contain many details like, crime scene location, resources used by the vic-
tim/intruder, and legally admissible analysis format. To know all these information
from the cloud is would be challenging owing to its complex architecture. Compre-
hension of the technical findings by a non-technical jury member adds much more
complexity to the entire presentation stage.

2.5 Summary

In this chapter, we initially discussed various Incident Handling and Digital Forensic mod-
els. We discussed all the major forensic challenges in IaaS environment. We then described
the existing solutions and open issues for handling IaaS cloud incidents using forensic as-
pects. In this thesis, among all the above open forensic problems, we address the following
issues:

• Handle volatile evidences of the target cloud VM

• Devise effective event reconstruction and provenance approaches for various cloud
instance artifacts

• Perform correlation among the cloud virtual machine evidences

Chapter 3 discusses the proposed approaches for handling volatile evidences by address-
ing the lack of transparency between incident handler and the CSP.

31

Chapter 3

Handling Cloud VM’s Volatile Traces by
Improving their Availability

“Cloud is about how you do computing, not where you do computing”

- VMware

3.1 Introduction

The thumb rule in forensics based incident handling is to start investigation in the order of
volatility. One of the most volatile evidences in the virtual machine/instance is vRAM. It
contains valuable information like running process information, encryption keys, open files
for each process, unpacked versions of a program, memory resident malwares, user names
and passwords, and network connections. The main challenge while considering the vRAM
for incident handling is:

”After the incident, it is difficult to have the traces in the cloud virtual machine’s vRAM
as the intruder may restart/terminate the virtual machine”.

Our objective is to ensure the seamless availability of the vRAM evidence and analyze
it for handling cloud VM incidents. Accordingly, the chapter is divided into two parts and
the same are briefed below:

1. Proactively capture vRAM events from the target user cloud virtual machine and we
use Virtual Machine Introspection (VMI) technique to achieve this. VMI is a process
used to monitor and analyze the state of the virtual machine from hypervisor level.
We discuss the approaches proposed for analyzing the captured vRAM events.

32

2. Capturing events through VMI requires the incident handler to access the hypervisor
which also contains the content of other users. Intentionally or unintentionally, the
incident handler should not access the data of the non-target users as it violates the
privacy of those users. It is the responsibility of the existing cloud actors (specifically,
CSP) to make sure to track the activities being performed by the incident handler at
the hypervisor level. Accordingly, the motivation for the second part is as follows.

We propose a model called ALTRA (Addressing lack of Transparency) which can
record all the activities performed by the Incident Handler. If the incident handler
performs any suspicious activity then the ALTRA model will automatically alert the
Cloud Service Provider (CSP). The CSP can take necessary action on the incident
handler.

Organization of Part 1: In Section 3.2, we propose a design for effective introspection by
taking the analogy of logic analyzer. In Section 3.3, we discuss various introspection rules
from the identified categories along with their structural representations. In the same sec-
tion, we propose a mechanism based on static call graphs to increase the incident detection
capabilities from introspection data. We propose an approach for root cause identification
using Complex Event Processing (CEP) and the same is discussed in Section 3.4. In section
3.5, we present the experimental results.

3.2 Proposed Trigger based Introspection Model for Cloud
Instance Incident Handling

There are two main challenges in capturing the virtual memory of a cloud instance from
virtual machine level. (i) After the incident, the target virtual machine may not be in the
on state and so the virtual memory cannot be imaged (ii) Even though, the virtual machine
is in the running state, imaging the memory or collecting the information about the target
modules can change the state of the existing system and so the acquired evidences may not
be legally admissible.

To handle the above, a new method of monitoring and analyzing the state of a virtual
machine from hypervisor is introduced and it is named as Virtual Machine Introspection
(VMI) [116]. A major advantage of VMI is, the contamination of the acquired virtual
memory events is very less [117]. Moreover, VMI is a proactive technique which can ensure
the availability of vRAM data and can increase the reliability of the overall forensic based
incident handling process [118][119]. There are three types of delivery models for VMI
namely in-band delivery, derivation based and out-of-band delivery [120].

• In-Band Delivery: Guest software in the virtual machine provides the semantic knowl-
edge to the introspection module at VMM.

33

• Derivation-Based Model: Semantic data generation component derives the informa-
tion based on the hardware architecture.

• Out-of-band: The semantic knowledge of the guest OS is supplied to the introspection
module from external entity.

There are certain libraries to perform VMI. For example, LibVMI [121] supports Xen
and also KVM. VMI-PL [120] is another monitoring language that has additional features in
comparison with the LibVMI like, introspecting the data stream events. This library suffers
with performance and stability issues.

Since the monitoring is done outside the virtual machines, the semantic knowledge per-
taining to each VM may not be known and this can badly affect the data collection and
extent of analysis [122][123]. This indeed leads to various advantages and disadvantages
during the process of introspection. The same are summarized and shown in Table 3.1.

It is evident from Table 3.1 that, a single delivery model may not be sufficient in all
the cases [124]. For example, if a target virtual machine is affected with memory resident
malware then the data given by in-band delivery may not be comprehensive and reliable as
it modifies the events in memory. Thus hybrid introspection approaches have been projected
as a viable alternative. The technique, though, comes with its own issues.

3.2.1 Drawbacks of existing hybrid introspection approaches

Our intention is to take the aid of introspection for performing memory forensics based
incident handling on virtual machines. The hybrid introspection techniques in the current
state cannot serve our purpose as they are [124]:

• Unaware of the scenarios for proper capture of the events in accordance with time

• Unable to identify the effective combination(s) of hybrid model based on the context

Our emphasis is on the first issue. For this, we start with redesigning the concept of
introspection technique. Based on the extensive interdisciplinary study we have done, the
broad functionality of logic analyzer suits our requirement. We discuss the use of logic
analyzer for designing an effective introspection approach in the following subsection.

3.2.2 Proposed trigger based introspection model using logic analyzer

Logic analyzers are electronic devices used for digital measurements containing numerous
signals [125]. It is used for debugging the hardware in prototype digital systems. When
a logic analyzer is connected to the digital circuit, the trigger module in it continuously
monitors the logic state of the signal and sends out an alert when the defined signal pattern
has been observed. This motivated us to use the concept of logic analyzer for devising

34

Table 3.1: Benefits and drawbacks of various introspection models (Out-band, In-band,
Derivation)

S. No Delivery
Model

Advantage(s)/Disadvantage(s)

1 Out-of-
Band

Advantages

• Compromised VM will have less affect on the out-of-band
based introspection.
• The guest OS may not need to run during the time of in-
terpretation by introspection module.
Disadvantages
• The non-binding nature of the out-of-band delivery model
cannot have precise analysis when the guest software was
changed or replaced.

2 Derivation
Based

Advantages

• The model can work independent of the guest OS since
the binding is from the hardware level.
• Malicious entity cannot change the virtual hardware ar-
chitecture, so the external view generation function is not
affected.
Disadvantages
• It is difficult to retrieve more relevant information by mon-
itoring the hardware state.

3 In-Band
Based

Advantage

• There is no semantic gap at all
Disadvantages
•When the guest OS functionality is compromised then the
semantic knowledge given by it will not act as a reliable
source of information
• The semantic data generation component cannot function
when the virtual machine is powered off
• Some contents gets modified/erased by which the reliabil-
ity of the evidence(s) is questionable.

35

Figure 3.1: A trigger based introspection process in cloud

trigger based introspection approach. The modules of the proposed model are shown in
Figure 3.1 and each of them is briefed below:

Introspection module: This module is a facilitator for all the three delivery models. It
is the incident handler’s choice to pick up the required delivery model(s) to form the hybrid
model using which the data from the targeted virtual memory is collected.

Trigger Module: The trigger module is the main component of our proposed model. The
introspected virtual memory events will be piped through this module. The events which
satisfy the introspection rules mentioned in the trigger module will be stored and analyzed
first. In the following sections, we will elucidate the challenges involved in generating
introspection rules for memory events.

Sampler: After the specified triggers are satisfied, the basic functionality of the sampler
would be to take the image of the target virtual memory using VMI and perform the analysis.
Instead of taking the entire image, selective acquisition of virtual memory regions based on
the occurred incident can also be done. For example, if the trigger module at the hypervisor
identifies some suspicious events of a Linux VM after it is connected with the external drive
then the Common Internet File System (CIFS) regions can only be captured and analyzed
instead of capturing the whole VM memory.

Analysis and reporting: Correlating the data from the collected artifacts and knowing
what exactly has happened to the targeted virtual machine is the primary goal of this module.

The trigger module enhances the relevant data collection pertaining to the incident by
invoking the corresponding rule set. We do not discuss explicitly about the functionality
of the introspection module as there is a lot of work which describes the internals of this
module [122][123]. On other side, adding our trigger module to the introspection process
will have significant benefits which are listed and justified accordingly in Section 3.5. We
have used the Out-of-Band and In-Band Models of hybrid introspection and put emphasis
on the virtual memory events like, process events and system call events.

36

3.3 Rule and Graph based Approaches for Trigger Module

Irrespective of the delivery model(s) chosen, we identified that the VMI should handle the
following issues:

• The rate of introspection events of virtual memory is very high, especially in highly
virtualized environment like cloud and finding the events of interest is difficult and
time consuming.

• In most of the cases, the generated introspection data is difficult to interpret as it is
not semantically organized to reflect the real incidents.

We address the first issue with the aid of our trigger module whereas the data interpreta-
tion is done using other components-CEP engine and break points (we will discuss all these
components in the rest of the chapter).

3.3.1 Rule based approach for introspection

The main idea in addressing the first issue is adding the rules to the trigger module. When
a defined rule gets satisfied with the captured introspection events, then those events can be
treated as suspicious and correlating them would be sufficient to have a logical conclusion
about the occurred incident. For representation of the rules we use more formal notations
[126] and they are summarized in the Table 3.2.

Any combination of the above operators can occur like, events occurring at the same
location and one after the other is denoted as <>; and events occurring at different locations
and concurrently is denoted as ><||, etc. Existing rule language framework(s) do not focus
on events occurring at the same location. We even consider this in our rule generation
process. We have formulated a few rules based on the literature and the important ones are
described below:

Rule-1: UPX <>; Section headers = 0
This rule comes under the spatio-temporal category which indicates that an obfuscated

malware may use some packers like UPX and can remove the section header details. These
events happen one after the other and on the same process by which we used <>; operator.

Rule-2: a. Access to GOT <> strycpy / memcpy <> Overwrite Symbol Addresses
b. Access to GOT <> setuid/setgid <> Escalating privileges

The above rule (a) says that when there is an access to Global Offset Table (GOT) such
that there is a change in the symbol address with unprivileged access then the trigger module
at hypervisor confirms that a malware is trying to overwrite the symbol addresses. Rule (b)
says that, when there is an access to GOT with a modification of UID then it indicates
that malware is trying to escalate privileges. Similar things can happen when there are
modifications in the Process Linkage Table (PLT).

Rule-3: Access to /sys <>; Access to /kernel <>; ASLR=0

37

Table 3.2: Notations used for introspection rule generation

S. No Category Notion Comment

1 Spatial Ex <>Ey Events happening at the same loca-
tion

2 Spatial Ex ><Ey Events occurring at remote or dis-
tinct locations

3 Temporal Ex;Ey Events occurring one after the other
in sequence

4 Temporal Ex||Ey Events occurring at the same time
or concurrently

5 Temporal A(tx, Ey, tz) Occurrence of an event Ey will be
triggered during the time period of
tx and tz

6 Temporal P(Ex,
T(Ey), Ez)

Occurrence of Ey for every time pe-
riod of T and this starts when Ex

has occurred and stops until Ez hap-
pens.

7 Temporal P*(Ex,
T(Ey), Ez)

Once Ex has occurred then the
readings are taken for every time
period of T and the cumulative re-
sults are submitted once Ez has
happened.

8 Temporal ¬{tx, Ea, ty} Non-occurrence of an event be-
tween the time intervals of tx and
ty are recorded.

9 General
∧

, V Conjunction and disjunction opera-
tors

10 General ANY(n,
Ex, Ev · · ·
Et)

Occurrence of n events from t
events i.e |t|> = |n|

11 General ALL(Ex,
Ev · · · Et)

Triggering will happen when all the
t events occurred

38

There will be a huge and wide variety of information in procfs and sysfs file systems
and intruders try to generate rootkits in these file systems. These rootkits can violate the
integrity of the system as the data from these file systems are used by many utilities.

This rule falls under the category of Spatio-Temporal rule set and it says that, all the three
events are accessing and modifying the entities in the same file system /proc by following a
certain sequence i.e. initially, rootkits access the /sys, then the /kernel file system is accessed
and finally the Address Space Layout Randomization (ASLR) is made zero using which the
trigger module confirms the suspicious activity.

Rule-4: P(select kernel process, tx[DTB], Identify malicious process)
This rule helps the trigger module to identify whether the selected process is a malicious

user process or not. For this, it checks the Directory Table Base (DTB) value and if this value
is non zero for the kernel process then it indicates that the process is actually user based but
trying to blend itself as kernel process.

Rule-5: Any (1, (E1) V (E2) V (E3)) where

• E1: Getting the details and modifying the shadow files (contains passwords hashes)

• E2: Malicious process after stealing of keystrokes has to be stored in some files like
key loggers before they are actually sent to the target system through the network.

• E3: Also, malware can use the xmodulepath package to gain the root privileges

Any access/modification to confidential files acts like an input to the trigger module as
they aid in the process of incident handling.

Rule-6: Absence INTERP,¬{Dynamic Linker Funct}, Packer

The trigger module alerts the investigator when there is an absence of INTERP header
and presence of the packer during which if dynamic linker is malfunctioning then it can be
treated as suspicious under obfuscated malware.

Rule-7: Access to VM(e1) ><; mount to host(e2) ><; Any newConnection
Whenever there is an entity downloaded from the virtual machine and mounted on the

host machine then that is treated as suspicious by the trigger module especially, if it is
behaving unusually like, establishing a new network connection and sending details to the
target system/effecting the host system.

Rule-8: Access(ANY [(tmpfs) V (/dev/shm)]) <> Modification/ Deletion
There are certain memory resident malwares using which the artifacts are made visible

only in temporary file system (/tmpfs) of virtual memory. Intruders prefer to hide the data
by storing the related content in the /tmpfs and the trigger module focuses on this too.

These rules are specific to VMs with Linux guest OS. The rules can still be applied to
other guest operating systems with few modifications. We use complex event processing
engine to generate automatic rules using both the positive and negative traces (discussed
in the subsequent sections). The advantage of these sort of rule generation is the accuracy
involved in detecting the specified introspection events. Irrespective of any number of rules

39

generated, a variation of those suspicious events cannot be detected by the trigger module.
To overcome this, we add the feature of pattern matching to the trigger module and the
details are explained in the following subsection.

3.3.2 Graph based approach for effective interpretation of introspec-
tion events

We identified that detecting the incidents with the rules especially in the context of intro-
spection is difficult as the intruder can use n possibilities. In reality, knowing all those
possibilities and writing the rules accordingly may not result in increasing the detection
accuracy if:

• We are not able to capture some events during introspection

• Variation of suspicious events are captured in comparison with the ideal possible sus-
picious sequences

To address these issues, we draw a static call graph. It is a graph depicting all the
possible paths for the occurrence of an incident. For example, we identified different paths
for performing shell code injection. The corresponding static call graph is drawn and the
same is shown in Figure 3.2. To accomplish shell code injection, the intruder follows four
generic steps:

• Handle is created with the target process (using ptrace).

• Within the target process, both writable and executable memory regions have to be
identified (one of the ways is to use mmap)

• Once the memory region is found, shellcode is written into it (using poketext or pro-
cess vm writev)

• The inserted shell code is made to execute (using ptrace getregs, ptrace setregs and
ptrace con).

Figure 3.2: Shell code injection in Linux based virtualization environment

40

Figure 3.2 shows the granularity of system call level. From the captured events, we draw
the introspection graph and correlate that with the existing static call graph(s). This helps
us to know whether the incident occurred or not and also, the path followed to accomplish
the corresponding incident. Detailed analysis and its results are discussed in Section 3.5.

3.4 Root Cause Analysis through Complex Event Process-
ing

We discussed the approaches involved in detecting the suspicious events/incidents. Detec-
tion alone is not sufficient for most of the incident handling challenges [127]. We add the
feature of basic root cause identification to the trigger based introspection. To accomplish
this, we use complex event processing (CEP) approach. CEP systems analyze large flows of
primitive events received from a monitoring environment to timely detect composite events
(CE) [128]. Every event trace can be a positive or a negative. A trace is said to be positive
when the defined composite event has been satisfied else it is a negative trace.

3.4.1 Existing work on CEP

To the best of our knowledge, the research on CEP has focused only on the processing
efficiency of complex events. The issue which has taken less attention is, how to devise
mechanisms for generating effective rules. In general, knowing sequence of events and
the relative events with the information they carry may not be known. This difficulty is
addressed by our approach.

3.4.2 Proposed architecture for root cause analysis targeting effective
introspection of VMs

The challenges involved with CEP in knowing the sequence of events can be addressed by
the process of introspection. Until now, CEP techniques have focused only on the positive
traces for automated rule generation [128]. We devise our approach by considering the
negative traces as well so that the root cause of the occurred incident can be identified. The
proposed process is depicted through the architecture in Figure 3.3.

Break points are generic, composite events and provide them to act as input to the CEP
engine. In the introspection process, we consider each set of events with atleast one primary
key as an individual trace. Some examples of break points:

• Gaining root privileges by accessing the packages like xmodulepath at bash shell

• Observing changes in current shell path

• Frequent accessing of password hashes from shadow files

41

Figure 3.3: Proposed architecture for root cause identification using CEP

• Handle creation by a process targeting another process

These are a few break points pertaining to Linux operating system and according to the
incident handler requirements, there is scope of developing new break points.

Once the event trace under consideration satisfies the break point(s) then the CEP engine
follows the process in Algorithm 1 to identify the root cause of the incident. This knowledge
is given as an input to the trigger module for new and effective rule generation which finally
helps in detecting the previously unknown incidents.

Algorithm 1 Root cause identification using complex event processing

1: Si[] = { Bα, Bµ, Bγ ...until t} . 1 <= t <= number of break points
2: procedure FLOW EVENTS(E1,E2....Et) . Captured through Introspection process
3: for all t break points in Si do
4: if Si == true then
5: Ri[]← Store(Si−1, Si)
6: Epki[]← findPrimary key(TSi

)
7: Kα← Identify NT in Ri based on Epki

8: Pβ ←Search NT in other buckets based on Epki

9: end if
10: end for
11: event aggregation(Ri,Kα, Pβ)
12: end procedure

Explanation: Based on the break points, the CEP engine can identify, store and process
the events in two levels.

• Level-1(#L1): Identify the event trace and store at composite event level.

• Level-2 (#L2): Accumulate the stored traces for better correlation.

42

#L1: Define the break points before the actual introspection process starts (Si[]). The
CEP engine checks for the break point satisfaction in each trace. Once it is satisfied, we
store all the event traces starting from the previously satisfied break points (Si−1) to the
current satisfied break point (Si), irrespective of trace type-positive or negative.

#L2: Initially, identify the key Epki for the satisfied composite event trace TSi
. Based

on Epki , search for negative traces (NT) in the same bucket where the composite event is
satisfied. The same negative trace search is applicable for other buckets also. This search
results in identifying the positive and negative traces based on the key of satisfied break
point. All these filtered traces (Ri,Kα, Pβ) are aggregated and correlated to get the root
cause of the incident.

Once the new trigger conditions (TC) are satisfied then incident handler can still con-
tinue and enhance the analysis by invoking the sampler module. This module will provide
the facility of taking the image of virtual memory from hypervisor level. Moreover, the pro-
cess of introspection can still be continued after the incident and can check for consequent
events happening in relation with the incident (post triggers). Once these post conditions are
satisfied then re-invoking sampler module is required for taking further necessary action.

3.5 Evaluation of our Work

We have done extensive experiments to increase the effectiveness of introspection by reduc-
ing the semantic gap that was part of the existing approaches. We installed LibVMI which
is an introspection library in host OS with Linux 14.04 server and deployed all virtual ma-
chines with Ubuntu 14.04 servers. Initially, we ran the existing examples of memory events
in the LibVMI library. The corresponding observations are:

• Figure 3.4(a) gives pid and CR3 details (when paging is enabled, the processor uses
CR3 register to find the page table directory for the current process and it is finally
used for converting linear addresses into physical addresses of the corresponding pro-
cess)

• Figure 3.4(b) shows pid, pname and structure address details of each process

• The common deductions from both:

– Semantic interpretation of introspection data is difficult and may not help the
incident handler in all the cases.

– We observed that the rate of generated introspection events is very high and this
can make the job of incident handler difficult especially in finding the events of
interest.

We address these issues with the designed scenarios and the same are discussed below:

43

(a) (b)

Figure 3.4: (a) CR3 events (b) User and Kernel Process Structure details

Scenario-1: We populated high level information of each process using VMI. Figure
3.5(a) depicts parent id, child id, process name and these details enhance the semantic inter-
pretation of introspection events. For example, if we know the white list of the processes,
then identifying suspicious processes becomes easier. Moreover, if a parent process is sus-
picious then finding all of its children can be done automatically. This can reduce the time
invested in the analysis phase of forensic based incident handling.

Scenario-2: When there is a kernel-based malware in the target virtual machine’s mem-
ory then the incident handler wants a list of kernel processes in less time. This can be
achieved easily from VM level but getting the similar information using VMI is difficult.
We achieved this by accessing the required kernel data structures of the target VM. The
same is shown in the Figure 3.5(b).

From the above, it is evident that detecting and analyzing the events that satisfied the
rules configured in Trigger module helps the incident handler to generate accurate logical
findings. When there is a variation of known incident, this rule based approach may not
detect the incident. This issue was discussed theoretically using a graph based approach in
Section 3.3.2 and it is validated in the following subsection.

3.5.1 Detecting the variation of known incidents

In reality, the intruder may create a variation of the known incident by which the chances of
being caught would be reduced. To detect these sort of incidents, we introspected the event
traces at the system call level. In this context, there are three possibilities: (1) Introspected
system call trace of the target process can follow the exact sequence with one of the paths in
static call graphs. (2) The captured system calls of the target process can be incomplete as
all the events may not be properly introspected. (3) The introspected system call sequence

44

(a) (b)

Figure 3.5: (a) Identifying suspicious processes (b) Identifying kernel based malware pro-
cesses

may not exactly match with any one of the paths in the corresponding static call graph.
In all the above possibilities, we suggest that incident detection is possible through pat-

tern matching algorithms. For illustration, we considered shell code injected vRAM of the
target virtual machine. Each introspected event trace of system calls at the process level
(Figure 3.6) is correlated against the pattern in the paths of the corresponding static call
graph (Figure 3.2). Finally we identified that, in the process id 1417, the shell code was
injected using the below sequence:

pid(1417) : ptrace set regs→ ptrace get regs→ process vm write v → sys mmap

The logical finding from this approach is, the incident handler can know the sequence
of steps followed by the intruder to accomplish an incident. In reality, root cause analysis
would further help the incident handler to answer many forensically relevant questions and
can increase the event interpretation of the target system. Taking its forensic relevance, we
discuss that in the following subsection.

3.5.2 A scenario depicting root cause analysis

Scenario: Identifying the fake binaries
We detect the fake binaries using complex event processing.

• Fake binaries are generally placed in the temporary file system so that detection is not
possible once the virtual machine is turned off. Figure 3.7 shows the identified fake

45

Figure 3.6: Introspecting the system calls for OpenStack VM

Figure 3.7: Identified fake binary path

binary with the aid of full path and the incident handler can identify that, /tmp/rm is a
fake binary created by the pid=1215 as the original path should be /bin/rm.

We added this break point to the CEP engine. Our CEP engine uses Esper which is one
of the popular complex event processing softwares [133]. When the defined break point is
satisfied, it generates a warning along with time. We identify the primary key of the fake
binary event trace (i.e. pid). Once the key is known, then we search other buckets for event
traces with the same primary key value (here pid=1215). A screenshot depicting the same
is shown in Figure 3.8.

Figure 3.8: Alert generation using CEP

46

(a) (b)

Figure 3.9: (a) Enumerating the target process details (b) Populating the DTB value

To make the illustration simple, we considered only two CEP buckets in this case study.
The first CEP bucket gives the process name if the input is pid. The other one gives the
DTB (Directory Table Base) value of the corresponding process. System.map file is used in
identity paging to convert some of the static addresses. The drawback is, it cannot translate
addresses pertaining to all the regions of the memory. In most of the cases, list walking
and taking process memory details needs the potential to convert virtual addresses. To
accomplish this, we can use Directory Table Base (DTB) and the observations from the
victim virtual machine are:

• We identified the process name of the pid=1215 as xorg and the same is shown in
Figure 3.9(a).

• To know more about the process xorg, we populated its DTB (Directory Table Base)
value and we identified that, it does not have a DTB value (Figure 3.9(b)). The pro-
cesses which are not having DTB value can be treated as kernel processes.

• In the process of identifying the root cause, the next challenge is to understand as
to how the intruder created a fake binary with xorg kernel process ? To answer this,
we have taken the memory image of the victim virtual machine through VMI. The
acquired image bash history is correlated with the VMI results and we identified that,
the intruder aliased the bash kernel process to xorg and created fake binaries.

Finally, we parsed and stored each bucket (introspection file) in MySQL database along
with time. The incident handler can submit customized queries to identify the root cause of
the incident.
Example Query: Select pid, ppid, pname, DTB Time, path, trigger Time by joining the

47

results from DTB bucket, pname bucket and path bucket where pid=1215. The result of it
is shown in Figure 3.10 and the observations are:

• Fake binary is inserted by a process with pid=1215 and pname=xorg

• DTB time is the time when the corresponding event trace is parsed and stored in the
database

• trigger Time is the time when the defined break point was satisfied

• We identified the root cause of the incident from the above analysis i.e. a kernel
process is aliased to create fake binary

This scenario shows the capabilities of the proposed trigger module and CEP engine
when they are integrated into the introspection process. The same concept can be applied
for any type of incident by considering the positive traces and the negative traces for the
root cause identification.

Some more implementation details: We treat each of the populated introspected data
as a separate bucket. Accordingly, we stored it as a separate entity in the database by
adding timeline i.e. the time of parsing each trace and the time of trigger generation given
by the CEP engine. This resulted in improving the semantic interpretation for root cause
identification.

Figure 3.10: Root cause identification for fake binaries

3.5.3 Merits of the approach

Our main objective is to increase the semantic interpretation of introspection events in the
cloud environment. From our theoretical formulations and the experimental results, our
approaches have the following advantages:

• Independent of the type of the introspection model, the trigger module and CEP en-
gine can identify the irrelevant events pertaining to the occurred incident.

• With the aid of CEP engine, we created the flexibility of automatic updates to the rule
sets present in the trigger module .

• Analysis time for the incident handler can be reduced as only the suspicious and more
relevant events are passed to the correlation engine.

• Devised root cause identification and it drives the incident handler to effectively iden-
tify the primary source of failure.

48

Figure 3.11: Proposed model to improve the transparency between the incident handler and
the CSP

The rest of the chapter discusses the part 2 and its contributions.
Organization of Part 2: We discuss the proposed model ALTRA in Section 3.6 which

can increase the transparency between the incident handler and the CSP. We discuss the two
proposed approaches (SeMS and CoPS) as part of our model and these can automatically
detect suspicious events performed by the incident handler (Section 3.7). In Section 3.8, we
validate both the approaches using a typical investigative scenario.

3.6 ALTRA- Proposed Model to Address Lack of Trans-
parency

The Cloud Incident Handler (CIH) should go through the process of registration for each
incident which should be standard and legally admissible. The registration will be reviewed
by the cloud entities and then accordingly SLAs are prepared. From then, the incident
handler can start the process of incident handling using any cloud forensic toolkit. We test
the proposed ALTRA model using CFI tool (Cloud Forensic Investigator). CFI is a tool
developed by us to perform forensic investigation in IaaS cloud [129]. More details about
the CFI are mentioned in Appendix II.

When CFI or any cloud forensic tool is used by the Incident Handler then there could
be two possibilities: (1) The CIH can be trustworthy and uses the forensic tool (here, CFI)
to perform all the healthy activities. (2) The CIH can be untrusted and performs suspicious

49

activities using the cloud forensic tool (here, CFI). Here, we classify an activity as healthy
or suspicious based on the access control policies given to the incident handler. If the
incident handler violates those policies then it comes in the category of suspicious else it is
treated as a healthy activity. For example, if he/she accessed the data of a tenant for which
there is no permission then it falls under the category of suspicious. Currently, no cloud
provider is facilitating advanced incident handling services to the end user because of many
architectural and legal challenges. One of the main architectural challenges for the cloud
provider is to handle when the CIH is not trusted.

Since the incident handler is given the access for the cloud infrastructure during the
incident handling process, he/she can exploit the opportunity to perform any suspicious
activity. The CSP should be aware of the activities being performed by the incident handler
when using any CFI. We propose to achieve this by creating a CFI log at the cloud side.
This log is basically an application log and contains information like, the time at which
the incident handler started the process of acquisition, locations accessed by the incident
handler, the objects read along with the corresponding time, the list of artifacts acquired,
the time elapsed to acquire each artifact, the IP from which the incident handler accessed the
cloud, the objects modified by the incident handler along with its access and modification
time, the time at which the incident handler completed, etc.

the process of evidence acquisition.
By analyzing the CFI log in cloud, the CSP can know whether the activities performed

by the incident handler are suspicious or not. Manually, it consumes a lot of time to analyze
the events in the CFI logs. We reduce this time with our Forensic Analytical engine for
Logs (FORAL). It contains two modules as shown in Figure 3.11 and we brief each of them
as below:

3.6.1 Remote log creation and syncing

The log created by the CFI will be stored in the cloud. In the worst case, the incident
handler can even access and modify the events in the log as he/she can access the cloud
infrastructure during forensic investigation. Our model handles this using the concept of
remote syslog. In our context, the cloud itself acts as a rsyslog client (node 1) whereas
rsyslog server is the dedicated host assigned for the purpose of storing the CFI logs (node
2). Once both the nodes are configured with rsyslog then all the events recorded in node 1
will be continuously synced and stored in the specified node 2 as well. The CFI log in node
1 is accessible to both the incident handler and the CSP but the CFI log events in node 2
can be accessed only by the CSP. This policy of replicating the log events helps the CSP to
always have the valid logs with high availability.

50

3.6.2 Automatic detection of suspicious events from the CFI logs

The common drawback across multiple log analyzer tools like Cloudlytics [130], Google
Analytics [131] is, they are mostly used for statistical knowledge extraction and cannot be
directly applied to answer forensic questions. Our approach of log analysis is well suited
for incident handling.

Most of the relevant work which detect suspicious events are at the level of system logs
but not at the level of application logs. For example, in [132], the authors found suspi-
cious events from the system logs using known black list and whitelist. This approach of
detecting suspicious activities cannot be applied in our case, as individually, the events in
the application may seem healthy but when we interpret them as a sequence, they may be
categorized as suspicious. We handle this problem using Causality Models and its details
are described in the subsequent subsection.

3.7 Approaches for Finding Suspicious Events Performed
by the Incident Handler

Various challenges are involved in automatically finding suspicious events from any appli-
cation log (here, CFI application log). In this context, the following points are worthy of
mention.

3.7.1 Identified challenges

• There are numerous events in the CFI logs and it is very difficult for the CSP to find
the events of interest.

• Analyzing all the events to generate the hypothesis consumes a lot of time and some-
times may even lead to wrong hypothesis generation.

We address the above issues by using the concept of causality models [150].

3.7.2 Building a causality model from cloud forensic application logs
to identify forensically relevant events

Causality models are used to show the cause-effect relationship between the events/processes.
We construct this causality using Directed Acyclic Graphs (DAG). The major advantage
with DAGs is, it can represent different associations starting from simple to complex ones
like confounding, endogenous association, and d-separation [134]. This makes one to use
DAG for modeling the relations for any type of application irrespective of its complex logic
behind event generation. Our idea is to construct a DAG from the logs of the corresponding
application. For this, we apply the proposed approaches- SeMS/CoPS.

51

Figure 3.12: Experiments conducted to decide the k value for different data sets

Applying Sequence Mining to identify and build causal relations between the events
(SeMS)

Applying sequence mining to build causalities will work due to the following reasons:

• In every application, a sequence of events will occur starting from its launch time
to termination/closing time. If two events ex and ey occurred in a sequence of an
application session then we can say that ey is the outcome of the cause ex.

• The events in the sequence which are not co-occurring frequently can be identified
easily through sequence mining. Those sort of events can be treated as outliers and
will be forensically relevant.

There are many sequence mining algorithms but we used TKS (Top-k Sequences) as
it is more suitable for dense data sets. We used TKS to initially get the top-k frequent
item sequences. Here, k is the count of the most relevant sequences out of all the se-
quences. We arrived at a K value of 10 percentage of the data set after a series of trials
and observed accuracy improvement (Figure 3.12). Now, Algorithm 2 is applied to get
the suspicious sequences. Say, the CSP is interested to know the suspicious sequences in
CFI log, then each new sequence in the log during Time Window T is compared with the
frequent item sequences (freq seq). If a mismatch occurs, the percentage of fraction left
(per fractionLeft) will increase and if it is more than the user threshold (thseq) value then
it is considered as suspicious sequence.

It is always tricky to decide the exact value of threshold. For the current problem, we
identified various threshold value decision parameters like, history about the suspicious
sequences generated from the target application, investigating entity experience, and the
environment in which the log is stored. The only problem with SeMS is, it cannot quantify
the prediction of suspicious sequences. We proposed another approach called CoPS.

52

Algorithm 2 Finds suspicious sequences from cloud forensic application logs using SeMS
Input: A set of cloud forensic application sequences during TimeWindow T, thseq
Output: Suspicious sequences Sp, Sq, ..., Sy where each sequence contains set of events.
freq seq[] = apply seqMining()
for each sequence Si in T imeWindow T do

for each sequence Sj from freq seq do
for each item I in Sj do

if Si contains I then
remove Ifrom Si

end if
end for

end for
residue = original length(Si)− new length(Si)
per fractionLeft = (residue/original len) ∗ 100
if per fractionLeft > thseq then

consider Si as suspicious
end if

end for

Building the causalities between the application events using conditional probability
(CoPS)

We also identify the suspicious sequences of a cloud forensic application using conditional
probability. A conditional probability can be simply defined as:

”The extent of belief of the occurrence of an event Ex when Ey was given [135]”
This will work because there is a cause and effect association between the log events of

any application (here CFI). The extent of a cause leading to effect can be decided with the
associated probabilities. Once the probabilities are calculated then deciding the suspicious
sequence is a trivial job.

Here also, we take all the new sequences in the time window T and initially construct a
trie tree. The reasons for using trie tree are: (a) It is an ordered tree where keys are generally
strings. (b) Descendants of any node will have some common prefix which can be useful in
sequence matching.

For each node in trie tree, we calculate the conditional probability (P) using equation
3.7.1.

P = (C(ni)/C(nj)) (3.7.1)

where ni is the current node, nj is the parent node of ni and C(ni), C(nj) indicate
the respective node count. If the probability of an item in the sequence is less than the
predefined threshold (thseq) then the sequence is treated as suspicious (Algorithm 3).

53

Algorithm 3 Finds suspicious sequences from cloud forensic application logs using CoPS
Input: A set of cloud forensic application sequences during TimeWindow T, Threshold
thseq,
Output: Suspicious sequences Sp, Sq, ..., Sy where each sequence contains set of events.
for each sequence Si in T imeWindow T do

for each item Ia in sequence Si do
calculate the probability P of Ia node considering the occurrence of previous item

Ia−1 node for all Sj
end for
if P (Ia) < thseq then

consider Si as suspicious
end if

end for

3.7.3 Comparison of SeMS annd CoPS

Both the approaches have been applied to find the suspicious events in CFI logs. Based on
the CSP’s requirement, an appropriate method can be chosen. To take up this decision, a
comparison between the two approaches is made and the same is briefed in Table 3.3.

3.8 Automatic Identification of Suspicious Events: A Typ-
ical Scenario

To validate the proposed approaches (SeMS and CoPS), we have taken our own application-
Cloud Forensic Investigator (CFI) which is developed for performing incident handling in
the IaaS cloud environment [129]. The detailed scenario is given below.

3.8.1 Scenario description

A cloud user virtual machine VMx is compromised by the intruder’s virtual machine VMi.
Then VMx’s user raises a complaint to the CSP. The CSP employs an internal incident han-
dler to start examining the incident. In this case, the incident handler can use our proposed
model which involves major activity of running the cloud forensic application. The capa-
bilities of our CFI tool are briefed in Appendix II. More fine grained sequence of steps are
briefed below:

• New Case (Step 1): The incident handler creates a new case based on the registered
complaint. In this stage, the CIH enters various details about the case.

• Configuration Settings (Step 2): Here, the incident handler can enter credentials for
various cloud nodes. For example, when the cloud forensic application runs in the
openstack cloud, then the incident handler should enter the cloud compute node cre-
dentials. The compute node acts like a hypervisor in the openstack and this node

54

Table 3.3: Comparison between SeMS and CoPS for the application logs

S.
No

SeMS (using Sequence Mining for
finding Suspicious sequences)

CoPS (using Conditional
Probability for finding Suspicious
sequences)

1 Finds the top-k frequent item se-
quences and calculates the residue
by comparing with the sequences in
Time window T

Finds out the conditional probabil-
ities of all events in the input se-
quences of time window T

2 Input sequences above the thresh-
old are suspicious

Input sequences of conditional
probability below the threshold are
suspicious

3 Memory efficient when the data set
is small

Memory efficient when the data set
is large

4 Time complexity of finding top-k
frequent patterns: O(M*N) where
N is user sequences and M is input
sequences

Time complexity of building trie
: O(N*L), where L is length of
largest sequence and N is number of
user sequences

5 Time complexity of finding outlier:
O(N*k*L) where N is number of
user sequences, L is the maximum
length of frequent sequence

Time complexity of finding out-
liers: O(N) where N is number of
user sequences

6 Accuracy is governed by threshold
and value of k. If value of k is
not set correctly, then certain suspi-
cious sequences may be reported as
healthy

Accuracy is governed by threshold
alone.

contains the vDisk and service logs of the target and non-target instances. The con-
figuration should also accept the Openstack cloud user’s dashboard credentials by
which the target virtual machine’s vRAM can be acquired. There is a chance of trust
violation in this step which we describe in the next section.

• Selective acquisition (Step 3): The incident handler can select the required evidences
and transfer them to an isolated environment. To prove to the court of law regarding
the admissibility of the acquired evidences, the checksum is calculated at the cloud
side and recalculated at the incident handlers node. If both the checksums are equal
then it is legally accepted otherwise not.

• Analysis (Step 4): All the acquired evidences can be examined using the CFI analysis
capabilities and then the results are exported for legal proceedings.

55

3.8.2 Challenges to handle in the above scenario

There are certain issues that can be raised during Step 2 and Step 3. For example in step 2, to
acquire the introspection based vRAM events of the VMx user, the incident handler needs to
enter the compute node (hypervisor) details. Since the cloud is a multi-tenant environment,
the incident handler can introspect the vRAM events of non-target users and this leads to
the privacy violation of those users. We developed CFI with the basic assumption that the
incident handler is trustworthy. In reality, always this assumption may not hold good i.e. if
the incident handler is not a trusted entity then he/she can perform any suspicious activity
like acquiring other users’ data.

3.8.3 Applying the proposed approaches to find suspicious events in
CFI logs

We setup Openstack cloud with high end configuration following its legacy networking
architecture. We emulated the role of a bad incident handler and then performed suspicious
activities using CFI tool in the Openstack cloud. The activities performed using CFI tool are
logged at the cloud side. SeMS and CoPS are then used to detect the suspicious activities in
CFI log.

SeMS

We pre-processed the log by assigning a unique number for each event and the same is
shown in Figure 3.13. For example, presence of event ”1” in the pre-proceesed log indicates
that new case object has been invoked, number ”2” indicates that the details of the case are
entered by the incident handler and like these, each number in Figure 3.13 represents an
event generated by the incident handler (-1 is used as separator between every two events
and We have taken a minimum number range of 10 and maximum of 2 million). After giving
the pre-processed CFI log as input to the sequence mining algorithm, we got top-k frequent
sequences at one instance of time (Figure 3.14). The DAG is constructed by running the
TKS for multiple instances (Figure 3.15). Each user sequence in Time T is given as input to
Algorithm 2 and then it checks whether the input sequence is suspicious or not. The same
is shown in Figure 3.16 (here, user threshold value is taken as 25 %). We decide this as
threshold value based on the number of event types in the CFI application log.

CoPS

We represented the sequences in a given Time window T using trie data structure (ordered
tree with a common prefix to the descendants of each node). We iterated through trie for
each non-T sequence of the application and updated the count of each node for the matching
prefix. Finally, the probability of event occurrence P in the sequence is calculated. If the

56

Figure 3.13: Events in the CFI log after pre-processing

Figure 3.14: Frequent top-k sequences identified using SeMS

probability of any event is less than the given threshold then we considered that as suspi-
cious. For the same input file in Figure 3.13, CoPS identified the suspicious events and the
same is shown in Figure 3.17.

The comparison between SeMS and CoPS is shown in Table 3.4. Summarizing it, ex-
ecution time for SeMS is high than CoPS and the memory consumption for CoPS is high
when compared with SeMS.

Since the same CFI log events are given as input to both the SeMS and CoPS, the same
sequence is detected as suspicious by both the approaches (Figure 3.16 and Figure 3.17).
Describing the suspicious sequence found i.e. (Seq: {1} -1 {2} -1 {3} -1 {5} -1 {6} -1
{7} -1 {8} -1 {9} -1 {13} -1 {4}), the incident handler created a new case object (item
1), then details of the case were entered (item 2), did basic enumeration about the target
VM (item 3), acquired the vdisk of the target VM (item 5), modified the nova.api log at
/var/log/ of compute node (item 6), modified the keystone-all log at /var/log/ of compute
node (item 7), acquired non-target VM vdisk (item 8), did advanced enumeration about the

57

Figure 3.15: DAG constructed from the healthy causalities of CFI log

Table 3.4: Comparison between SeMS and CoPS

No. of se-
quences

Total Time
(ms) for
SeMS

Peak Mem-
ory (mb) for
SeMS

Total
Time(ms)
for CoPS

Peak Mem-
ory (mb) for
CoPS)

10 22 1.81805603 11 1.890281577
1450 130 6.30869293 91 7.572235107
4350 184 15.12903595 162 19.5663223
142100 709 79.12886047 519 81.42918396
2121600 7356 709.9880905 3797 711.2549823

non target VM (item 9), modified the host OS logs (item 13), terminated the application
without closing the case (item 4). It is important to note that, each item details mentioned
above are the message descriptions about the event in CFI log and can vary based on the
application. When the suspicious sequences are identified by SeMS/CoPS, then it indicates
that the incident handler who had accessed the cloud for evidence acquisition is not trusted
and CSP can further proceed with legal actions.

Correctness of SeMS and CoPS: We gave all the events generated from the suspicious
activities to both SeMS and CoPS. We observed that, both the approaches achieved an
average accuracy of 82.3 %.

So SeMS and CoPS alert the CSP whenever the incident handler performs any suspi-
cious activity in cloud. Analyzing the detected suspicious activities can make the cloud
provider to generate the hypothesis quickly by which he/she can get the answers for several
questions like, when, what and where the suspicious activities are performed by the incident
handler.

58

Figure 3.16: Suspicious sequences identified by SeMS

Figure 3.17: Suspicious sequences identified by CoPS

3.8.4 Advantages of the proposed model

There are several aspects considered by the proposed model. Some of them are briefed
below:

• For any user: Even though, the approaches are validated to identify untrusted incident
handler, they can be used to identify any user with bad intentions. In that case, SeMS
or CoPS takes the events from the cloud system logs/VM logs.

• Completeness: Our model gives the complete process involved in cloud incident han-
dling starting from the incident handler registration to report generation.

• High availability and reliability: Our CFI application uses the concept of remote log-
ging at multiple nodes. This ensures that CSP can rely on the log entries in the node
which is not accessible to the incident handler. Due to the redundant sync logging
feature, the log events are always available.

• Accurate hypothesis generation: Without applying SeMS or CoPS, the number of
events on the event reconstruction timeline will be very high and this will create diffi-
culties in generating hypothesis. After applying our approaches, the number of events

59

on the timeline reduced drastically and they are forensically relevant. This finally
would lead to arrive at accurate hypothesis about the occurred incident.

• Automatic identification of suspicious events: The suspicious events from the CFI log
are identified automatically without much human effort.

3.9 Summary

The contributions of this chapter have been organized into two parts. The first part deals
with increasing the availability of the volatile evidence vRAM and then analyzing it to have
accurate logical findings. The second part addresses the architectural issue pertaining to the
first part which can make the CSP to asses the trust aspect of the incident handler activities.

The volatile evidences play a key role during the forensic based incident handling. Its
availability cannot be always ensured. In this chapter, we focused on capturing the mem-
ory events from VMM level through Virtual Memory Introspection (VMI). The approach
of introspection reduces the changes in the target instance virtual memory and this may in-
crease the legal admissibility of the acquired memory events. We observed that the number
of introspected events of a VM is usually high and this introduces new difficulties for the
incident handler in finding events of forensic relevance. We reduced the challenges in this
issue by designing a trigger based introspection model. This can detect the known incidents
and variants of known incidents. It is important to note that, detection alone is not sufficient
and requires the incident handler to find the root cause of the incident. We achieved this
using Complex Event Processing (CEP). During the process of handling cloud incidents,
incident handler can perform suspicious activities and once it happens, FORAL engine of
our model detects and alerts the CSP using the proposed approaches- SeMS or CoPS. Thus,
the model improves the transparency between the incident handler and the CSP.

The work presented in this chapter is accepted and published work in [PUB4], [PUB6],
[PUB9, [PUB10] and [PUB11] (refer page no. 136-137). In the next chapter, we discuss
the proposed approaches for analyzing cloud service logs for incident handling.

60

Chapter 4

A Model for Effective Event
Reconstruction using Cloud Service Logs

“Cloud services help organizations move faster, lower IT costs, and scale”

- Amazon

In Chapter 3, we discussed the devised solutions for handling volatile evidences. In
the current chapter, we discuss the proposed approaches for analyzing the cloud specific
artifact named service logs which can serve as evidences for incident handling. Firstly,
we discuss their role during forensic based cloud incident handling. We then describe the
proposed segregation approaches and finally apply the proposed aggregation approaches on
the events of service logs which can lead to effective incident handling.

4.1 Background and Motivation

In this chapter, we consider cloud service logs as evidence for incident handling as we
identified many events which are relevant to the occurred incident at VM level.

4.1.1 What are service logs?

The IaaS cloud solutions are provided by many inter-operable services. For each service,
there is an associated log created at the cloud node(s). Each log contains events of mul-
tiple tenants, multiple users and multiple virtual machines. An example service log event
reflecting the same from Openstack cloud is shown in Figure 4.1.

61

Figure 4.1: A sample service log event in the Openstack cloud

Identified role of Service Logs for incident handling using forensic practices

Service logs are generally used for statistical and debugging purposes [136]. After going
through the extensive set of events in the service logs, we found that events in these logs can
also be used for cloud incident handling (Figure 4.2). Also, cloud service logs can answer
many forensically relevant questions during incident handling i.e.

• When a virtual machine has been terminated ?

• What are the critical events generated by an instance in the specified time period T ?

• When the event burst had happened and what was the service responsible for it ?

• Is there any anomaly usage at virtual machine level in the specified time range ?

• What are the high level VM activities performed by the target user ?

• Which user has more failed login attempts ? etc.,

Figure 4.2: Identified service log events with forensic relevance to incident handling

Once the target evidence is acquired (here, cloud service logs), the incident handler will
apply various analysis techniques [137]. One of the analysis approaches is Event Recon-
struction and it helps the incident handler in many ways like, event sequencing and hypoth-
esis generation/testing [138]. We observed that cloud service logs contain huge number of

62

events and it would be highly difficult to interpret/generate hypothesis from all of them.
We propose that the incident handler can emphasize on segregation and aggregation based
event reconstruction of the cloud service logs using which the hypothesis about the occurred
incident can be generated quickly (our scope).

4.1.2 Effective event reconstruction of cloud service logs

Event Reconstruction (ER) is the process of finding why an evidence possess certain char-
acteristics [138]. Event Reconstruction in cloud is relatively new and it poses additional
challenges when a unique evidence like Service Logs is considered. We have done exten-
sive literature survey to identify various aspects that the incident handler should consider
while performing event reconstruction and the same are discussed below.

The work on event reconstruction is classified in to three categories: (i) Resource based
ER (ii) Role based ER and (iii) Timeline based ER.

1. Resource based event reconstruction: Considers various system resources for evi-
dence collection and then passes them as input for event reconstruction phase. We
discuss the relevant research contributions below:

• In [139], the authors have suggested that evidence availability plays a key role
in event reconstruction and the availability of evidences can be improved with
the forensic readiness models. They considered system call traces as events
and collected all of them from various system resources on a continuous basis.
Advantage: The events collected are comprehensive and reliable. Disadvantage:
Storing and analyzing all those events is time consuming and involves a lot of
human effort.

• In [140], the authors captured process and file management based events and
then performed event reconstruction. Advantage: For quick analysis, the number
of events is reduced by considering offset intervals. Disadvantage: Since the
number of resources from which events are collected is very less, the analysis of
the events would be incomplete and hence legally inadmissible.

• In [141], flight data recorder captures the system calls, converts them to events
and finally stores in the logs. Advantage: Reduces the number of events to be
analyzed by removing the duplicate entries. Disadvantage: It is advisable to
identify the activity bursts in the logs so that time spent on the analysis can be
reduced. It is difficult to find the activity bursts at regular intervals of time in the
cloud environment due to its multi-tenant nature.

2. Role based event reconstruction [141]: In this, thousands of objects in the target ev-
idence are classified based on their characteristics. Based on the incident features,
relevant objects are identified and allowed to perform event reconstruction on each.

63

The sequence of phases followed to perform role based event reconstruction is: Evi-
dence examination→ Role classification→ Event construction and testing→ Event
sequencing→ Hypothesis testing.

• Advantages: (1) Initial impressions about the incident can be known (2) Con-
siders the causal associations between the objects for hypothesis generation and
testing.

• Disadvantages: (1) Most of the phases are not automated and require more hu-
man involvement (2) To arrive at correct hypothesis, the incident handler has to
spend a lot of time.

3. Timeline and miscellaneous based event reconstruction approaches: In this, the hy-
pothesis is generated based on time based event sequencing. This is a simple and
generic approach that can be extended to other environments. Some of the works in
timeline and miscellaneous based event reconstruction are briefed below:

• There are certain tools for performing time based event reconstruction like Cy-
ber Forensic Time Lab [143], Log2timeline [142], and Zeitline [144]. We iden-
tified that none of these address the challenge of handling the evidence when
it contains more number of events as analyzing all of them to perform event
reconstruction would be highly time consuming.

• In [145], the authors talk about reducing the number of events by converting all
the low level events to high level events. Advantage: The number of events on
the timeline is reduced to aid in effective event reconstruction. Disadvantages:
The current rules mentioned cannot be applied to any other scenario. Moreover,
generating rules for each scenario is not an appreciable approach. The rules
framed by the authors are specific to the file system and cannot be applied to
detect the same scenario in another file system.

• In [146], the authors tested the generated hypothesis using Finite State Ma-
chines. Advantage: Few widely accepted forensic theories are used. Disad-
vantages: Cannot represent complex scenarios as it may lead to combinatorial
explosions.

• In [147], the data extracted from the logs is given as input to neural networks for
performing logical reasoning behind the current state of an object. Advantage:
It can detect the activities of the application, based on the traces left by the user.
Disadvantage: Performance overhead is very high.

• In [148], the authors correlate various objects in an artifact to perform event
reconstruction. Advantage: Multiple artifacts of the system are considered for
analysis. Disadvantage: The number of events to analyze has to be reduced for
effective reconstruction which is not discussed.

64

Deductions: From the above literature, we identified the aspects to be considered for
effective event reconstruction of cloud service logs. They are:

• Evidence Acquisition: Evidences in cloud like service logs cannot be physically
seized and acquired. If acquired, transferring them securely to the incident handler’s
machine should be considered.

• Multi-tenancy and privacy violation: Cloud service logs contain events pertaining
to multiple users and they cannot be directly given to the incident handler who is gen-
erally interested in single user events. To preserve the privacy of other users, proper
segregation approaches/policies should be devised; otherwise it leads to privacy vio-
lation.

• Large number of events in the evidence: Due to the high rapid elasticity property
of cloud, the rate of event logging will generally be high. It would then be difficult
for the incident handler to perform event reconstruction by considering all of those
events. Events in the cloud service logs should be reduced without compromising on
the data loss.

• Data heterogeneity: The data collected from a crime scene (here, service logs) can
be in different formats. The forensic incident handler should then handle the format
(the events in the same artifact will be logged in different formats), the temporal
differences (the time related information of the same artifact may differ in cloud as
it can provide the services from multiple time zones) and the semantic differences
(an event can be represented in different ways) that can exist depending on the cloud
service models and deployment models.

Event Reconstruction (ER) is a complex task in the entire forensic investigation process.
It is important to note that, ER helps the incident handler in many ways like, event sequenc-
ing, and hypothesis generation/testing. The scope of our work for event reconstruction
limits to effective hypothesis generation for incident handling.

4.2 Hypothesis Generation from Cloud Service Logs

Our objective is to generate quick interpretation from the target user/VM events in the con-
sidered cloud evidence (here, service logs) such that it should lead to effective hypothesis
generation. We identified three challenges in addressing the above problem. They are:

• Service Logs Challenge 1- Event Segregation: Since the cloud is a multi-tenant en-
vironment, it contains evidences of multiple users/virtual machines. Acquiring the
target user events without violating the privacy of other users is challenging.

65

Table 4.1: Statistics on Service log events of Openstack cloud

Number of events in each service
S.no. Service Description No. of

events
1 Nova Manages VM life cycle 546247
2 Keystone Authentication service 65461
3 Glance Stores, retrieves disk images 986545
4 Ceilometer Metering Service 6531108
5 Cinder Facilitates volumes 1751854
6 Swift Stores, retrieves unstructured

objects
212495

• Service Logs Challenge 2- Events of Forensic Relevance: All events in the target
evidence (here, cloud service logs) cannot be used during incident handling. Auto-
matically identifying whether an event is forensically relevant or not is challenging.

• Service Logs Challenge 3- Quick interpretation: The number of events in the cloud
evidence (here, service logs) is very high and it would be highly time consuming
for the incident handler to interpret all those events (Table 4.1). Devising new ap-
proaches is required so that the time spent by the incident handler for event interpre-
tation should be less.

We address the above challenges by proposing a model named SEASER and the same
is discussed in Section 4.3. The Section 4.4 discusses the proposed approaches for event
segregation in service logs. We discuss the proposed aggregation algorithms for service logs
in Section 4.5. Finally, we conclude the chapter in Section 4.6.

4.3 SEASER: Proposed Model for Effective Event Recon-
struction of Cloud Service Logs

In this section, we discuss the proposed comprehensive model-SEASER (Applying Segregation,
Aggregation on Cloud Service logs) which can address the three challenges identified for
effective Event Reconstruction (Section 4.2). It contains the following phases:

1. Identification L1: In this phase, the incident handler initially perform analysis on the
cloud environment to know whether the incident had actually occurred or not. If so,
its details are extracted at higher level for examination. For example, the tenant (vic-
tim/intruder) details, the zone(s) from which a tenant is receiving the cloud services,
number of virtual machines used by the tenant and their configurations etc., can be
known.

66

Figure 4.3: Proposed model for cloud event reconstruction

2. Segregation: Once the target user is identified then his/her evidences can be acquired.
As cloud is a multi-tenant environment, we must ensure that the privacy of other
tenants is not violated during acquisition.

3. Identification L2: All the identified target user/VM events will not be useful for the
incident handler. Automatically identifying forensically relevant events would help
the incident handler generate accurate logical findings about the occurred incident.
The objective of this phase is to divide the events in the service logs into two classes
i.e. incident handler relevant events and useful events for CSP. It is important to note
that, using this phase we address the mentioned service logs challenge 2-Events of
Forensic Relevance (Section 4.2).

4. Aggregation: We observed that the number of events in the service logs is more. This
phase reduces the total set of events without much data loss using which the incident
handler can generate the hypothesis quickly.

5. Selective Analysis: Analysis on the aggregated events will make the incident handler
to identify objects of forensic interest pertaining to the occurred incident. Each of
those objects’ state is recorded and then passed to the event reconstruction phase to
know how an object reached its current state.

6. Event Reconstruction (ER): The set of filtered events from the above phases are given
as input to any event reconstruction timeline tool. During ER phase, the extent of
human effort involved is generally very high and cannot be completely automated
[149]. As the process is manual, the strategy to perform ER differs from one incident
handler to the other. Discussing all those possibilities is out of the scope of our work.

67

We discuss the proposed segregation and aggregation approaches. The advantage
with our approaches is that they can be completely automated.

7. Advanced analysis: This is generally used for knowing more details about the oc-
curred incident using indexing, carving, hash filtering, file system analysis, low-level
file analysis etc.

8. Reporting: Using standard forensic templates, the results from the above phases are
structured such that it is a legally admissible report with proper reasoning.

Among all the above phases, we focus on Segregation, Identification L2 (Section 4.4)
and Aggregation phases (Section 4.5).

4.4 Proposed Evidence/Event Segregation Approaches for
Cloud Service Logs

In this section, we address the following challenges when service logs are considered for
cloud incident handling.

• Identifying events of the target instance/tenant (Segregation phase): For identify-
ing the target user/VM events, we propose parameter-based and session-based ap-
proaches.

• Finding events of forensic relevance (Identification L2 phase): We address this chal-
lenge using machine learning algorithms from which the events in the service logs are
segregated as forensically relevant and irrelevant classes.

(A) Proposed parameter and session based segregation approaches

Logs, especially the service logs play a crucial role in the domain of forensic based cloud
incident handling [78]. If an incident occurs at the tenant virtual machine level then ana-
lyzing cloud service logs would take the investigation forward and thereby helping in the
incident handling process. As said, the major problem over here is, service logs contain the
events of all tenants and the incident handler should be allowed to access only the target
tenant events otherwise it would violate the PRIVACY of other users.

Parameter-based Segregation: We devised a solution that segregates the events in
service logs pertaining to each virtual machine by using a parameter like instance-id (Figure
4.4). This parsing logic takes the target instance details and service log as inputs from
which it outputs the segregated events pertaining to a target user VM. We also used other
parameters like uid and tenant-id to increase the accuracy in the segregation process. There
are some cloud service logs without these segregation parameters. The above approach
cannot be applied for those logs.

68

Session-based Segregation: To overcome this, we segregate the events based on the
user sessions. The session of the target user is identified using the tenant name by which
the list of VMs running can be known. For example, the Openstack instances running in the
target tenant can be known using OS4j API [151]. Finally, by taking all those VMs as base,
the events pertaining to the target tenant are identified (Figure 4.5).

Figure 4.4: Segregating the service log events for each instance

Figure 4.5: Identified demo user events using session based segregation

The above approaches would not help the incident handler in identifying the forensically
relevant events. We propose a new approach called as, Class-based Segregation and the
same is discussed below.

(B) Applying supervised machine learning algorithms for event segregation on the
cloud service logs

Basic Idea: Upon manual inspection, we identified that all the events in service logs are
not useful for incident handling. We want to divide the events in the service logs into two
classes i.e. Incident Handler (E) class and CSP (A) class. The events in the class A should
be useful in addressing statistical and maintenance issues of the CSP. The events in the class
E should be useful for the incident handler i.e. the events in the E class should contain

69

forensically relevant events. To achieve this segregation (A or E class), we applied various
supervised machine learning algorithms.

These algorithms are generally used to infer the supervisory signal for the new instances
based on the pre-labeled training data. We applied four major and popular supervised al-
gorithms (Naive Bayes, Decision trees, Support vector machines and Random forests)
on the cloud service logs. Accordingly, the proposed class-based segregation follows the
below steps:

1. Service logs are initially preprocessed to suit the requirements of the supervised ma-
chine learning algorithms

2. The selected classification algorithm is applied on each service log of the target cloud
environment and then corresponding accuracy is measured.

Results and Discussion: If the classification accuracy of an algorithm is x % then in
our case, it indicates that x % of that new log events were correctly classified as class E. Our
objective is to correctly classify and label each new event in the service log as either E or A
class.

The Openstack dataset that we considered for applying class based segregation is shown
in Table 4.2. We initially applied Naive Bayes on all the major service logs of Openstack.
For example, Naive Bayes classified Ceilometer log events into A and E classes and a sam-
ple output file for the same is shown in the Figure 4.6. We got the Naive Bayes classification
accuracy of 84.90 % for the nova service. It is important to note that, the first column in
the Figure 4.6 is the predicted class label (A or E) and the second column is the actual class
label (A or E).

Similar process is followed to apply other supervised algorithms for every service log.
The end results interms of classification accuracy is shown in Figure 4.7(a), 4.7(b), 4.8(a)
and 4.8(b).

Table 4.2: Number of events in the training and testing data

Openstack Cloud services
S.no. Service Training

events
Testing
events

1 Nova 546247 31040
2 Keystone 65461 14871
3 Glance 986545 41760
4 Ceilometer 6531108 487610
5 Cinder 1751854 310971
6 Swift 212495 79132

From above, we can conclude that for most of the service logs, Random Forest segre-
gated the events with high classification accuracy i.e. when a set of new events are given

70

Figure 4.6: New events in the Nova are predicted with class labels (A or E)

to the Random Forest, it can correctly classify and identify the events of forensic relevance.
This approach benefits the incident handler in arriving at quick hypothesis about the oc-
curred incident.

Figure 4.7: Naive Bayes and SVM: Classification accuracy of various openstack services

4.5 Proposed Evidence/Event Aggregation Approaches for
Effective Event Reconstruction

It is important to note that, we do not directly focus on the Event Reconstruction phase after
segregation and instead we emphasize on a newly added phase called as Aggregation. The
main technical difficulty in performing Event Reconstruction is the huge number of events in
the target evidence (here, service logs). We reduce the events in the service logs by applying
the proposed aggregation algorithms. Once the total number of events to investigate is
reduced then it leads to effective hypothesis generation which is one of the main motivations

71

Figure 4.8: Decision Tress and Random Forest: Classification accuracy of various open-
stack services

behind Event Reconstruction. We will explain the role of aggregation for achieving effective
reconstruction with a scenario:

4.5.1 Scenario to show the role of aggregation for effective event re-
construction

There are usually many services running on each node of cloud systems (here, Openstack
cloud) and each has its own set of logs. Moreover, every log has a unique role to play during
incident handling. The major services of Openstack and the associated logs are shown in
Table 4.3.

Table 4.3: Service logs created for each service of Openstack cloud

Service Service Logs
Ceilometer <-agent-control, -agent-notification, -alarm-

evaluator >
Cinder <cinder-api.log, cinder-scheduler.log >
Glance <glance-api.log, registry.log >
Nova <nova-api.log, -cert.log, -conductor.log, novncproxy,

nova-scheduler >
Keystone <keystone-all.log, keystone-manage.log >
Swift <swift-all.log >

We observed that each of the above service logs had lots of events. For example, one of
the service logs namely ceilometer-collector.log had more than 2 million entries in a short
span of time (Table 4.4 shows the event count in the other major service logs) and the count
keeps on increasing based on the usage and time. This creates difficulties for the incident
handler to analyze all of those events manually.

72

Table 4.4: Number of alerts in major service logs of Openstack

Service Log Alerts
ceilometer-agent.log 106105
ceilometer-alarm-
evaluator.log

336025

ceilometer-collector.log 2010107
cinder-api.log 594
cinder-scheduler.log 6075
nova-compute.log 35705
libvirtd.log 128

At this point, the incident handler should be provided with the reduced set of events
which can be done in two ways (In our work, we consider approach 2 mentioned below
because the first one would vary from one incident to the other):

• Approach-1: Identify the occurred incident characteristics based on which the events
from the evidences are extracted for selective analysis. This approach cannot be ap-
plied when the incident is unknown.

• Approach-2: Irrespective of the incident, the number of events can be reduced using
aggregation algorithms. The aggregation will work well for cloud service logs as we
have noticed the following common points across all the service logs:

– Most of the events in service logs are similar (see Figure 4.9). Finding all of
them manually is a time consuming task.

– A single event may generate multiple similar alerts and finding them takes more
effort and time (See Figure 4.10)

Figure 4.9: Ceilometer-agent-compute.log of Openstack cloud: Generating multiple similar
events

A common aggregation algorithm that is usually applied for logs is Leader-Follower
(LF) algorithm [153]. We observed that it cannot be applied on cloud service logs due to
the following reasons:

73

Figure 4.10: Nova-network.log of Openstack cloud: A single event generating multiple
similar alerts

• The existing LF is designed to be applied mostly for network logs.

• The attributes used to group various raw alerts (i.e. each individual event) in network
logs are not present in cloud service logs. For example, LF checks for events with
the same source IP and destination IP and places them in the same group. The cloud
service logs will not have these attributes.

• The aggregation is done based on source IP and destination IP addresses which may
not be useful in all situations. For example, if the given cluster of computers is com-
promised in an attack then all those victims are classified under different clusters just
because they happen to have different IP addresses.

To address the above limitations of the existing LF algorithm, we propose two new
versions of the LF which can aggregate the events in the cloud service logs.

4.5.2 Proposed algorithms for aggregating the events in cloud service
logs

The following sections describe the proposed algorithms extended from the basic LF i.e.
LFV 1 and LFV 2.

(A) Proposed aggregation algorithm-version1 (LFV 1)

It is important to note that we consider each event as raw alert and a group of similar raw
alerts as one hyper alert. The proposed LFV 1 algorithm linearly scans through all the raw
alerts and groups them into hyper alerts provided they abide by the following rules:

• The Raw Alert should fall within the time window T defined by the incident handler.
This decision is made by subtracting the start time of the Raw Alert from the start
time of the Hyper Alert.

• The alert type of the Raw Alert should match with that of the Hyper Alert.

74

• The Raw Alert should not be already assigned to any other Hyper Alert.

• The similarity measure of the Raw Alert and the first element of the Hyper Alert
should be within the threshold value given by the incident handler. We observed
that similar events contain similar message description. We used Levenshtein Edit
Distance for calculating the similarity between the events’ message descriptions.

More details about the Algorithm 4 (Leader-Follower (LF) version 1) is given below:
The first Raw Alert is directly made into a Hyper Alert and it is included in the Added

list. Every other Raw Alert that is not included in the Added list is compared with this
Hyper Alert and if all the conditions mentioned previously are satisfied, the Raw Alert is
added to the Hyper Alert and the parameters of the Hyper Alert are updated. This Raw Alert
is then included in the Added list. The same process is repeated for all the Raw Alerts. At
the end, if a Raw Alert is not a part of any Hyper Alert, that Raw Alert is made into a Hyper
Alert. The format of the Hyper Alert is as follows:

<Log Name, Hyper ID, Start Time, End Time, Alert Type, Alert Location, Alert
Message, Count >

• Log name: All the events in each service log are aggregated based upon the format of
the hyper alert mentioned above. As the attribute log name is included in each hyper
alert, it becomes easier for the incident handler to identify the associated service log
from a hyper alert . The other use of log name attribute is that it can even find the
similar hyper alerts generated from different service logs.

• Hyper Id: Used to uniquely identify the hyper alert.

• Start time and End time: The starting and ending time of the raw alerts in the formed
hyper alert.

• Alert type: There are various kinds of events generated by service logs. For example,
Openstack cloud generates seven types of events (error, warning, critical, info etc.,).
The incident handler can easily identify the different types of hyper alerts generated
at each location.

• Alert location: If many events are triggered from a single location, it can be easily
identified by using the location attribute of the hyper alert.

• Alert Message: This helps the incident handler to know more about the generated
hyper alert in the target service log.

• Count: This indicates the number of similar raw alerts in the service log aggregated
to form a hyper alert.

Our first version of the Leader Follower Algorithm has the following drawback:

75

Algorithm 4 Proposed extended version of Leader Follower algorithm-version1
1: Input:A set of Raw Alerts r1, r2, r3, , rn, TimeWindow T, thresholdmax
2: Output: A set of Hyper Alerts h1, h2, h3, , hm where m <= n
3: m := 1
4: for i← 1 to n do
5: if added[i] = false then
6: start index := i
7: start time := ri.start time
8: count := 1
9: added[i] := True

10: for j ← i+ 1 to n do
11: if rj.start time− ri.start time <= Tand added[j] = False then
12: if ri.type = rj.type and levenshtein.distance(ri.message, rj.message) <=

thresholdmax then
13: count := count + 1
14: end index := j
15: end time := rj.start time
16: added[j] := True
17: end if
18: end if
19: end for
20: hm := (log name,m, start time, end time, ri.type, ri.location, ri.message, count)
21: m := m+ 1
22: end if
23: end for

• Because it scans linearly and assigns the Raw Alerts to Hyper Alerts on the go, there
is a possibility that an alert is assigned to an incorrect Hyper Alert. For example, a
Raw Alert may be more suitable for Hyper Alert 3, because the Raw Alert satisfies
all the conditions previously mentioned, it could be assigned to Hyper Alert 1.

To counter this particular problem, we propose another version of LF algorithm i.e.
LFV 2.

(B) Proposed Leader Follower algorithm-version 2 (LFV 2)

The second Leader Follower Algorithm - LFV 2 that we propose retains the benefits of the
LFV 1 and also addresses the said drawback of LFV 1. The main difference between LFV 1

and LFV 2 is, instead of using the threshold input by the user in one go, LFV 2 progressively
increases the value of the threshold from 1 (Algorithm 5). This gives the algorithm the
ability to first group the most similar Raw Alerts and then move on to less similar Raw
Alerts. This tackles the drawback of Raw Alerts being assigned to wrong Hyper Alerts to a
large extent.

The hyper alert attributes are same in both the versions of LF but the way raw alerts
are grouped to form hyper alerts has been changed in LFV 2 to improve the classification

76

accuracy.

Algorithm 5 Proposed extended version of Leader Follower algorithm-version2
1: Input:A set of Raw Alerts r1, r2, r3, , rn, TimeWindow T, thresholdmax
2: Output: A set of Hyper Alerts h1, h2, h3, , hm where m <= n
3: Intermediate Stage: A set of intermediate alerts z1, z2, z3, ...zk where m <= k <= n
4: z1 := r1, z2 := r2,zn := rn
5: for threshold← 1 to thresholdmax do
6: k:= Number of elements in z
7: for i← 1 to k do
8: if added[i] = false then
9: start index := i

10: start time := ri.start time
11: count := zi.count
12: for j ← i+ 1 to k do
13: if zi.start time− zj.start time <= Tand added[j] = False then
14: if zi.type = zj.type and levenshtein.distance(zi.message, zj.message) <=

threshold then
15: count := count + zj.count
16: end index := max(zi.endindex, j)
17: end time := zendindex.end time
18: added[j] := True
19: end if
20: end if
21: end for
22: end if
23: end for
24: end for
25: m := 1
26: for i← 1 to k do
27: hm := (log name,m, start time, end time, zi.type, zi.location, zi.message, count)
28: m := m+ 1
29: end for

(C) Application of our proposed algorithms for outlier detection

Outliers are data points that are very far apart from most of the clusters and can be visualized
as anomalies. Since we are aggregating the raw alerts to fall into hyper alerts in both the
algorithms, the hyper alert less than the minimum support can be considered as an outlier.
This outlier detection is highly beneficial to the incident handler in the forensic perspective.
A more detailed description of the same is given in the next section.

4.5.3 Results and Discussion

We applied the proposed aggregation algorithms on the cloud service logs. We then com-
pared both the approaches and discussed their importance from forensic perspective. At the

77

end, we have taken the output of our aggregation algorithms to detect outliers.

Applying modified versions of leader follower algorithms on cloud service logs

As said, the existing Leader-Follower algorithm cannot be applied to the cloud artifacts like
service logs. We applied our proposed aggregation algorithm LFV 1 to the cloud service logs
and the observations are:

Figure 4.11: Output clusters (hyper alerts) after applying Algorithm 4- LFV 1

• Figure 4.11 shows the aggregated entries of ceilometer-agent.log. Before applying
the Algorithm 4, the number of entries in this log are 106105 and after applying the
aggregation, the number is reduced to 559 (Table 4.5).

• The same extent of aggregation was observed even when LFV 1 was applied on the
other service logs (Table 4.5)

• Almost no data loss is observed after the application of LFV 1

The main advantage of the proposed Algorithm 4 is that the time taken to aggregate
the events is less. The same is shown in Table 4.5. The disadvantage with this algorithm
is that it may result in a very few improper Hyper Alerts (not correctly classified). We
increase the accuracy of the aggregation using our Algorithm 5. We applied it on the same
log (ceilometer-agent.log) and the aggregation result obtained is shown in Figure 4.12. The
observations after applying LFV 1 are briefed below:

• The number of raw alerts in ceilometer-agent.log were reduced drastically to form
few sets of hyper alerts. The exact statistics are shown in Table 4.6.

• Similar results were observed when LFV 2 was applied on the other service logs (Table
4.6).

78

Table 4.5: Number of raw alerts and hyper alerts (LFV 1) for major service logs of Openstack
cloud

Service
Log

Number of
raw alerts
before
aggregation

Number of
hyper alerts
after apply-
ing LFV 1

Time
taken by
LFV 1

ceilometer-
agent-
compute.log

106105 559 1.363
sec

ceilometer-
alarm-
evaluator.log

336025 444 35.291
sec

ceilometer-
collector.log

2010107 198 153.298
sec

Figure 4.12: Output clusters (hyper alerts) after applying Algorithm 5- LFV 2

Comparative discussion on the algorithms-LFV 1 and LFV 2

We compare both the algorithms using two parameters: (1) Classification accuracy (2) Time
taken to perform aggregation.

• Classification accuracy of the algorithms

From both Table 4.5 and Table 4.6, we cannot directly say that, the accuracy of LFV 2

is more than LFV 1. For example, the number of events in ceilometer-collector.log
before applying the aggregation is more than 2 million. But when applied LFV 1,
it reduced to 198 Hyper Alerts and where as LFV 2 aggregated them to 205 Hyper
Alerts. From this, we can have following hypothesis:

– H1: LFV 1 can aggregate events better than LFV 2

– H2: LFV 2 can aggregate events better than LFV 1

To find the correct hypothesis, the following arguments are helpful:

– The difference between the aggregated events of LFV 1 and LFV 2 is very small.
For example, in the case of ceilometer-collector.log, there is only a difference

79

Table 4.6: Number of raw alerts and hyper alerts (LFV 2) for major service logs of Openstack
cloud

Service
Log

Number of
raw alerts
before
aggregation

Number of
hyper alerts
after apply-
ing LFV 2

Time
taken by
LFV 2

ceilometer-
agent-
compute.log

106105 572 3.291
sec

ceilometer-
alarm-
evaluator.log

336025 445 37.275
sec

ceilometer-
collector.log

2010107 205 156.784
sec

of 7 hyper alerts. If the number of dissimilar events is more, then the algorithm
with more number of Hyper Alerts is better. On the other side, if the number
of dissimilar events is less then the algorithm which generates lesser number of
Hyper Alerts is better.

– On manual inspection, we observed that almost all Openstack cloud service logs
had few events which are completely dissimilar. As said, the algorithm with
more Hyper Alerts should be better. For ceilometer-collector and other service
logs, we noticed that the number of Hyper Alerts for LFV 2 was greater than that
of LFV 1. From the above statements, we can safely conclude that LFV 2 is more
accurate than LFV 1.

Our Hypothesis H2 is correct in terms of aggregation accuracy.

• Time Consumption by LFV 1 and LFV 2

Both the versions of LFV 1 and LFV 2 are compared in terms of time taken (in sec)
to aggregate the events in the service logs and the same is shown in the Figure 4.13.
The time consumption by LFV 2 is slightly more since its aggregation is based on the
incremental threshold.

Identified application for our LFV 1 and LFV 2: Outlier detection

We observed that the results of LFV 1 and LFV 2 aggregation can be used for outlier detec-
tion. There are few existing log clustering tools which can detect outliers. Most of those
tools, process the log files at word level i.e. they first split the entire document in to set of
words and then cluster all the lines that conform to the cluster description. Any line whose
support is less than the given support value is considered an outlier. But most of them when
applied to cloud service logs will give inappropriate outliers as it might repeat the same

80

Figure 4.13: Time consumed by LFV 1 and LFV 2 for aggregation

outlier multiple times. It may do so because the message descriptions are not the same. But
actually they are similar to each other and should be grouped into one record. For example,
we used SLCT (a log clustering tool) to detect outliers from the cloud service logs and the
same is shown in Figure 4.14. From this, it is very obvious that many duplicate outliers
exist and it is a time consuming task for the incident handler to find all those manually.

Figure 4.14: Oultliers identified by log clustering tool (SLCT)

We now propose an alternate method of finding the outliers directly from the Hyper
Alerts generated by our LFV 1 and LFV 2. In this case, the incident handler can have his own
definition as to how frequent an alert should be so that it is not classified as an outlier. This
works on the output of our aggregation algorithms and so no additional computation time is
needed.

The output of the algorithm(s) is passed as input to a filter which removes all the Hyper
Alerts whose count value is more than minimum support to identify outliers. It also has the
ability to restrict the output to only one type. These features were missing from the existing
log clustering tools like SLCT. The outliers identified by our LFV 2 is shown in Figure 4.15
(here, we defined the hyper alerts with minsup <= 10 as outliers. It is important to note

81

that, deciding the count to define as outlier can vary depending on the incident handler’s
requirement). We conducted several experiments to decide the minsup value for detecting
the outliers effectively (Figure 4.16).

Figure 4.15: Outlier detection by the proposed aggregation algorithms

Figure 4.16: Deciding the minsup value for detecting the outliers effectively

Finally, when these reduced set of events are projected to any timeline tool then it would
lead to effective hypothesis generation which is the main motivation behind event recon-
struction.

Advantages of our Aggregation algorithms-LFV 1 and LFV 2

The proposed aggregation algorithms for cloud service logs have the following advantages:

• Less time and Effort: If the number of events on timeline is high then the time to
perform event reconstruction will also be high because, multiple phases like evidence
examination, role classification, hypothesis testing and event sequencing has to be
followed for Event Reconstruction [16]. The effort involved in going through all these
phases can be reduced when the initial total number of events in the corresponding
evidence are reduced which we have done through our aggregation algorithms.

82

• Almost no data loss: In incident handling, performing analysis on the incomplete
evidence would give wrong findings. In the name of reducing the number of events,
the data loss should not happen and this is taken care by our aggregation algorithms.

• Legally admissible: Immediately after the incident, the intruder will try to tamper
the existing evidences. In such a scenario, analysis on the modified evidence is not
legally acceptable. In this chapter, we considered cloud service logs which record
events at the cloud host systems and the chances of accessing and modifying them by
the intruder is very less. The integrity of the evidence (here service logs) is by default
maintained, the logical findings made out of it would also be admissible in the court
of law.

• Generic in nature: Our aggregation algorithms do not work on the basis of specific
attributes like IP addresses. The attribute we considered for aggregation is message
description as it will be the common attribute in most of the logs. Our approach can
even be applied to traditional logs.

• Effective event reconstruction: The process followed for ER should be able to gen-
erate correct hypothesis in less number of iterations. This can be achieved when the
number of events is reduced without much data loss. The same is achieved by the
proposed aggregation algorithms with which event reconstruction can also be done
faster.

4.6 Summary

Event Reconstruction in incident handling would help the incident handler in various as-
pects. In this work, we considered one of those capabilities namely Hypothesis Generation.
But performing Hypothesis Generation in cloud is challenging due to its multi-tenancy and
the huge scale of events generated per unit time. We proposed a model- SEASER which
can generate effective hypothesis. This is made possible by segregating and reducing the
number of events without much data loss. The model proposes segregation and aggrega-
tion before initiating the process of hypothesis generation. We devised various approaches
for segregation (parameter based, session based and ML based) and validated them using
Openstack cloud service logs. We proposed two new aggregation algorithms-LFV 1, LFV 2

as existing Leader-Follower algorithm (LF) cannot be applied on the cloud artifacts. We
also tested our aggregation algorithms on the Openstack cloud service logs independently
and observed that there is a high extent of event reduction without much data loss. Once the
total set of events in the cloud service logs is aggregated, those can be given as input to any
timeline tool for hypothesis generation.

The work in this chapter is accepted and published work in [PUB5], [PUB7] and [PUB8]
(refer page no. 136-137). In the next chapter, we discuss the proposed approaches for
analyzing VM snapshots for incident handling.

83

Chapter 5

Incident Handling using Cloud VM
Snapshot Objects

”Faster IT Innovation is possible by providing open source cloud platforms”

-Openstack

In Cloud Incident Handling, virtual machine snapshots act as one of the richest source
of evidences and can aid the incident handler for getting accurate logical findings. Various
cloud service providers like Azure and Openstack facilitate the end-users to take snapshots.
It is important to note that, this feature was introduced to address the data backup challenges
and not to meet the incident handling requirements of cloud [154][155]. This points to the
fact that there is a need to devise forensic based approaches for VM snapshot acquisition
and analysis to handle cloud incidents.

In reality, snapshots for a cloud VM may not always exist. To increase their availabil-
ity, we suggest the use of Cloud Forensic Readiness (CFR) models in which the possible
evidences (here, snapshots) are collected before the actual incident or while the incident
is happening. The captured snapshots have to be transferred to the incident handler’s en-
vironment via a network. Since the cloud VM snapshots will be generally of huge size,
transferring them elsewhere for processing may lead to the problem of data gravity (i.e. the
network and analysis overhead for incident handling is referred as data gravity). We han-
dle this problem by designing a framework named SNAPS which we arrived based on the
existing spatio-temporal models and then customized to suit for effective Cloud Incident
Handling. The motivation behind proposing SNAPS is to generate provenance for each
object/file in the target virtual machine using its multiple snapshots. Also, SNAPS can be
used to address various forensic based incident handling challenges starting from simple to
complex ones.

On the other side, SNAPS cannot retrieve the deleted objects from the snapshots which is
generally of high relevance during incident handling. We used Natural Language Processing

84

(NLP) techniques to recover deleted objects from the snapshots.

5.1 Introduction

Basically, the feature of cloud VM snapshot is introduced for the backup purposes and not
intended to solve the incident handling challenges. Only limited work exists on using the
cloud VM snapshots for forensic based incident handling. In [156], the authors used existing
VNsnap model and then modified it to take the periodic snapshots during the time of attack.
The advantages of their approach are:

• They ensured the integrity of the acquired evidences which is important in the court
of law.

• The downtime of the cloud VM while capturing snapshots is less.

• They have used fuzzy clustering techniques to increase the detection accuracy of
cloud attacks.

The drawbacks of their work are:

• Their approach lacks practical implementation and the questions like, how to analyze
a captured cloud VM snapshot is not discussed.

• The role of the CSP in capturing the snapshots is not mentioned without which foren-
sic based incident handling in the cloud is highly difficult.

• They did not validate their approach using any evaluation parameters like, data loss
of the evidence.

• The possibility of retrieving deleted objects from the cloud VM snapshots is not as-
sessed.

In [158], the authors developed forensic prototypes which can acquire data from public
cloud environments. The contributions and capabilities of their prototypes are:

• They concluded that the client side evidences will not help the incident handler to
conduct cloud forensic analysis.

• They built three interesting forensic prototypes for cloud drive acquisition (kumodd),
Google docs Acquisition (kumodocs) and cloud drive data preservation (kumofs).

The drawbacks with their approach are:

• The tool works only for the SaaS models and cannot be applied to IaaS cloud envi-
ronment, the service model which poses maximum challenges for incident handling.

85

• The challenges of data gravity were not handled. This is especially important when
the huge sized evidences have to be acquired and then transferred to the incident
handler’s environment.

In [157], the authors experimented on traditional snapshot acquisition techniques and
proposed a distributed framework for snapshot acquisition ensuring its admissibility. They
did not mention any practical findings of their approach.

Deduction: Based on the above literature, it is evident that there is no approach for
increasing the availability of snapshots considering the analysis time and network overhead.
Accordingly, the framed problem statements are briefed below:

• The availability of the cloud virtual machine snapshots should be improved.

• The snapshots at the cloud side should be transferred to the incident handler’s envi-
ronment by addressing the issue of data gravity.

• Analyzing multiple snapshots is a time consuming job. The incident handler’s time
and effort for snapshot analysis should be reduced.

• Approaches for recovering the deleted objects from the cloud VM snapshots should
be devised.

The rest of the chapter deals with addressing the above issues.

5.2 Improving the Availability of the Cloud Virtual Ma-
chine Snapshots

Cloud Forensic Readiness (CFR) models present ways to increase the evidence availability
for forensic based incident handling [159][160]. The core idea of CFR is to acquire the pos-
sible evidences (here, VM snapshots) before the incident or while the incident is happening.
There are several issues with respect to these models:

• The monitoring capabilities of most of the existing models are deployed at the VM
level. This can make the intruder to alter/stop the running CFR model.

• Some CFR models rely on the user to collect the evidences which may be an overhead
to the user.

• Many practical details about the suspicious activity detection in a VM have not been
discussed.

To overcome the above, we propose an improved Cloud Forensic Readiness Model
(iCFR) [161]. It is deployed at the hypervisor level and uses the Virtual Machine Intro-
spection (VMI) technique to detect suspicious activities of the target VM. It is important

86

to note that, iCFR also uses the cloud service logs stored in the hypervisor to analyze the
VM level activities. Once the suspicious activity is detected, then immediately the target
evidences (here, multiple VM snapshots) are captured till the incident impact is reduced and
finally transferred to the incident handler’s isolated environment via a network for analysis.

The definition of a suspicious activity may vary depending on the organizational policies
and cloud service provider’s terms and conditions. In general, the activities which can
be treated as suspicious are, over resource consumption, violation of security policies, an
attempt to obtain unauthorized access, modifications without the actual owner instruction
or knowledge etc. For illustration, we applied iCFR to know whether the activity of over
resource consumption by a VM is suspicious or not.

.

5.2.1 Detecting the suspicious resource consumption of virtual machines
in the cloud environment

For this, the proposed iCFR uses the default metering service running in the cloud hypervi-
sor and measures the resources consumed by the target VM. If the VM resources are over
utilized then we may consider the activities running in it as suspicious. But in all the cases,
over utilization should not be concluded as suspicious due to the rapid elasticity property of
the cloud. To reduce the false positives, iCFR checks multiple conditions i.e.

• We consider the recent resource consumption history of a target VM and if there is a
drastic deviation from its average resource consumption then we may consider that as
suspicious (Base Condition).

Along with the base condition, we check many additional conditions and some of
them are presented below:

• We check the extent of VM errors generated during the same time in the cloud service
logs. We consider this as one of the supporting conditions because, when the over
resource consumption in cloud is non-suspicious, service logs may not generate many
error events. If the number of errors is more than usual, then with more belief, one
can confirm the over resource consumption as suspicious.

• If the same VM is used from different geographical locations at the same time then
with more support one can confirm that the resource consumption is suspicious.

• We also check whether there is an over resource consumption or not, especially af-
ter observing multiple login failures from the same system. If they are present, it
indicates that the intruder had compromised the original cloud user account and he
(intruder) started over-consuming the resources in a short time.

87

Additional rules can be framed in accordance with the underlying cloud SLAs to rein-
force the suspiciousness of the activity. iCFR selects and checks the rules depending on the
suspicious activity.

5.2.2 Scenario testing: over-resource consumption of a VM in open-
stack cloud

Experimental Setup: We setup Openstack private IaaS cloud with four rack servers, each
with a high end configuration i.e. server 1: Controller node, server 2: Compute node, server
3: Storage node, server 4: Object storage node (Appendix I).

Each VM will be billed and charged according to its usage. In Openstack, it is achieved
by the ceilometer service. The testing is performed on a VM named test2 010316 clr
which is present in the demo user account- john. We queried various service logs per-
taining to the ceilometer service and then calculated the average resource consumption of
test2 010316 clr VM. In Figure 5.1, the middle line shows the average CPU utilization of
that VM, the first line shows the upper standard deviation and the bottom line shows the
lower standard deviation. We calculated the read-write cycles during the same time period
and observed a deviation (Figure 5.2). We observed that, these deviations are more than the
threshold value and this indicated that, the resources which are over consumed may be used
for performing suspicious activities. To confirm this, we checked multiple conditions i.e.

Figure 5.1: CPU utilization of the target VM

Figure 5.2: Read-write cycles calculated for the target VM

88

Figure 5.3: No. of non-target VM error events in the service logs

Figure 5.4: No. of target VM error events increased drastically in service logs

Error events in the cloud service logs: When there is an increase in the resource con-
sumption, we observed that for a non-victim VM, the error events are stable (Figure 5.3).
But for a suspicious VM (i.e. here, test2 010316 clr), the number of error events increased
drastically (Figure 5.4). Since this deviation is unusual when compared to the history of
test2 010316 clr VM, the argument of considering over resource utilization as suspicious
can be strengthened.

Multiple logins at the same time: We initially identified the system IP from which the
cloud VM (test2 010316 clr) is being accessed. From the IP-172.16.6.186 (IP1), there are a
few login failures. After receiving a complaint by the victim from IP1 regarding failed login
attempts, we observed that there are multiple successful logins from different systems with
IPs-172.16.6.193 (IP2), 172.16.6.112 (IP3), 172.16.6.124 (IP4). This confirms the Incident
Handler that test2 010316 clr VM was compromised and misused by multiple hosts, each
having different IPs. We arrive at this finding by normalizing the format of various cloud
service logs. We integrated all of those to form a single log revealing the details as shown
in Figure 5.5.

After verifying multiple conditions, we confirm whether an over consumption of re-
sources may be considered as suspicious or not. Thus, the number of false positives is
reduced. This is a scenario to detect a suspicious activity using the conditions mentioned
above. Defining multiple customized conditions will help the incident handler detect any

89

Figure 5.5: Log events showing multiple login failures

suspicious activity. Once a suspicious activity is detected, we start capturing multiple snap-
shots of the corresponding VM at frequent intervals till the effect of the incident is reduced.

If the incident handler has multiple snapshots of the target VM then it will definitely aid
in performing faster in-depth analysis and generate better logical findings about the incident.
In this context, we identified that the following issues need to be addressed:

• Data gravity: The analysis overhead involved for target VM snapshots should be
minimized by considering the network overhead aspects (Section 5.3).

• Legally admissible: The evidences transferred to the incident handler’s infrastructure
should be complete and reliable (Section 5.3).

To achieve both the above, we propose a model namely SNAPS- Snapshot based Provenance
System which we describe in the next section.

5.3 Proposed Model to Handle Data Gravity of Cloud VM
Snapshots

SNAPS contains various modules like, Monitoring module (deployed at CSP), Snapshot
accumulator (deployed at CSP), spatio-temporal modules-iRSM (deployed at CSP) and
iSTSM (deployed at the incident handler side), Regeneration module (deployed at the inci-
dent handler side). The major modules of it are described as below.

5.3.1 Modules of the SNAPS

• Monitoring Module: This collects the data regarding the VM activities. We use virtual
machine introspection (VMI) technique and cloud service logs to collect the target

90

VM events. Those are then analyzed to check for suspicious events. The advantage
of this is, it is difficult for the intruder to alter/stop the module functionality as all the
monitoring capabilities of it are from the hypervisor which is generally inaccessible
to any user.

• Snapshot Accumulator: Once a suspicious activity is detected in a VM, the snapshots
of it will be captured at frequent intervals of time and the frequency depends on
the severity of the incident. Each of those snapshots will be stored in a sandbox
environment (It is an isolated space to which only the CSP entities have access).
Before sending the snapshots to the incident handler’s environment they are passed
to the spatio-temporal module (iRSM) deployed at the cloud end. The details about
iRSM is discussed in the following subsection.

5.3.2 Spatio-Temporal model for efficient storage of cloud VM snap-
shots

In general, spatial temporal models are used when the data has both the time and space
attributes. Research in this domain had started three decades ago and most of the research
papers used these models to solve the environmental issues. For example, the occurrence of
acid rains in New York (USA) has been predicted along with the possible location and time
[162]. Various spatio-temporal models were proposed in the literature [163][164]. In this
chapter, we use two of those models namely Refined Snapshot Model (RSM) and Simple
Time Stamping Model (STSM) for efficient storage and analysis of the cloud VM snapshots.

A brief on the two models is given below:

• Refined Snapshot Model (RSM) [163]: Initial snapshot is stored completely. The
sequence of changes to it are stored as Delta objects. To get the current state, each
delta object has to be applied on its previous complete snapshot. The existing lit-
erature in spatio-temporal domain considered snapshot as current state showing the
geographical location. In our case, snapshot refers to the current state of the cloud
virtual machine.

• Simple Time Stamping Model (STSM) [164]: Each object in this model is tagged
with its creation time and cessation time. It also maintains links to the preceding and
succeeding versions of the object. The advantage with this model is that the state of
any object can be retrieved with respective to time.

We identified that the existing spatio-temporal models (RSM and STSM) cannot effec-
tively handle the issue of data gravity due to the following reasons.

• As the number of VM snapshots in the sandbox goes higher, the number of delta
objects which needs to get transferred to the incident handler will also go high. In

91

Figure 5.6: Organization of iRSM and iSTSM Modules

this connection, we observed that the time to reconstruct the recent snapshot from
its delta file is time consuming as from the base snapshot to the current delta file, a
sequence of multiple regenerations have to be performed. To reduce the time spent,
we modified the basic RSM and proposed an improved version of RSM (i.e. iRSM).

• Similarly we observed that, when STSM is directly applied to the cloud VM snap-
shots it cannot answer the forensically relevant questions on incident handling. For
example, STSM only stores the time associated with an object. Due to this, the inci-
dent handler can only get the objects which are modified/deleted at a certain point of
time. In most of the cases, the incident handler is interested in both the spatial and
temporal attributes. We propose a new version from the basic STSM and we call it as
iSTSM where each object in it is associated with both the time and location attributes.

The organization of both the iRSM and iSTSM is shown in Figure 5.6. All the target
VM snapshots in the cloud sandbox cannot be directly sent to the incident handler as it
can complicate the issue of data gravity. All of them were passed through iRSM module
which would keep multiple full snapshots instead of only one. The incident handler then
receives multiple full snapshots and several delta files and finally complete snapshots from
the corresponding delta file(s) are regenerated.

5.3.3 Results and Discussion

Using the Openstack cloud test bed (Appendix I), we created two instances. One is con-
figured with tinyOS and the other virtual machine holds Ubuntu Server. To illustrate the
proposed model-SNAPS, we present a simple investigative scenario.

Scenario description

Through the proposed iCFR model, we captured several snapshots of the TinyOS VM after
observing a suspicious activity in it. All those snapshots are initially stored in the sandbox

92

of the cloud. After the suspicious activity was confirmed then the spatio-temporal model-
iRSM is applied.

We compare our proposed approach (A3) with the existing approaches (A1 and A2) as
given below.

• Approach-1 (A1): In this, the captured snapshots will be stored in its original form.

• Approach-2 (A2): Only one full snapshot is stored in the sandbox and remaining all
snapshots of the same VM are stored as delta objects.

• Approach-3 (A3-Proposed approach (SNAPS-iRSM)): Instead of one full snapshot,
we will have multiple complete snapshots which are captured after every threshold
number of delta objects.

For comparison, we have taken eight snapshots of both the virtual machines separately.
If the incident handler’s interest is to regenerate and analyze the recent snapshot (worst case)
then the various comparison parameters are:

Regeneration Time: A3 has lesser regeneration time than A2 due to its intermediate
complete snapshots (Figure 5.7). It is important to note that, though A1 has the least regen-
eration time still is not an efficient approach due to its higher space occupancy.

Space Consumption: There is not much difference in the space occupancy of the snap-
shots between A2 and A3 (Figure 5.8). The reason is, among the eight snapshots there is
only one additional full snapshot in A3 when compared with A2. The threshold for tak-
ing full snapshots is three. The threshold value can change depending on the number of
snapshots for that virtual machine.

Data Loss: In the name of handling the data gravity challenges, the evidence (here
snapshot) should not be modified as it diverts the incident handler to give inaccurate logical
findings about the occurred incident. For all the three approaches, the snapshots and delta
objects were transferred from the cloud sandbox to the incident handler’s infrastructure. We
observed that A1 had more data loss when compared with A2 and A3 (Figure 5.9).

Figure 5.7: Snapshot regeneration time for all the three approaches

From the above discussion, it is clear that A3 is better than others in terms of handling
data gravity issue with less space consumption, less regeneration time and less data loss.

93

Figure 5.8: Space consumed by the VM snapshots for all the three approaches

Figure 5.9: Data loss incurred during snapshot transfer for all the three approaches

Analyzing a single regenerated snapshot

Once snapshots are transferred from cloud infrastructure to the incident handler’s environ-
ment using iRSM, then the two common tasks in the incident handling are: (1) Automati-
cally regenerate a snapshot from its delta file such that the entire process should be legally
admissible (2) Perform analysis on the regenerated snapshot.

Ensuring Evidence Admissibility: The acquired evidences should be legally admissible;
otherwise the logical findings made out of them will not withstand in the court of law. Two
main aspects to confirm evidence admissibility is completeness and preserving integrity.
These properties are followed for all the three approaches (A1, A2 and A3).

Snapshot Analysis: Using the forensic tools, only a single snapshot can be analyzed at a
time. In reality, the incident handler may want to analyze multiple snapshots simultaneously
and in that situation, the time for performing forensic based incident analysis would further
increase. To address this, we proceed in the following two stages.

• Building provenance: It represents the history of an object. We propose that, building
provenance from multiple snapshots would reduce the time for analyzing multiple
snapshots (Section 5.4).

• Generating recommendations: Using the provenance system built, we generate the
recommendations and each of these will help the incident handler to arrive at quick
logical findings about the incident or the suspicious activity (Section 5.5).

The above two modules are deployed at the incident handler’s end. We use the other
spatio-temporal model- iSTSM for building the provenance.

94

Figure 5.10: The proposed high level taxonomy for the existing provenance systems

5.4 Building a Provenance aware System for Analyzing the
Cloud VM Snapshots

Provenance has a lot of forensic applications for handling the occurred incidents in the target
environment [165]. We emphasize on two aspects of it i.e. to know how an object reached
to the current state and to improve the quality of search. We built provenance using the
objects in multiple snapshots.

5.4.1 Proposed taxonomy for existing provenance systems for cloud
and non-cloud environments

Upon extensive literature, we proposed a taxonomy of the existing provenance systems
and the same is shown in Figure 5.10. Provenance systems exist for both non-cloud and
cloud environments. To collect provenance data, some provenance systems mandate the
requirement of modifying the underlying file system (Eg: ProTrack, ProFS) and some other
systems can collect the provenance data without any requirement of changing the target file
system (Eg: SPADE) [165]. ProTrack is a provenance data collector and builds Versioning
File System (VFS) [166]. Most of the VFS based provenance systems suffer from memory
overhead. ProFS is a non-VFS provenance system which does not suffer with memory
overhead issues but it cannot provide effective querying capabilities [167].

Similarly, provenance systems can also be built for the cloud environment. An initial
effort in this direction is made by authors in [168]. They have customized the existing
Provenance Aware Storage System (PASS) to suit the cloud requirements. Their prove-
nance collector has to be configured and installed in the target VM. This may not be always
possible as the user of a VM may not be interested in the provenance data. Moreover, if
the intruder attacking a VM finds a provenance system then he/she can disable it or atleast

95

delete/modify the collected data. Observing these drawbacks, SNAPS proposes to capture
and acquire the VM snapshots from the hypervisor level and then build the provenance for
each object in multiple snapshots.

5.4.2 Novelty of proposed SNAPS

• SNAPS is a first of its kind solution which builds provenance system from snapshots
by considering various forensic aspects to handle cloud incidents.

• It is difficult for the intruder to disable the provenance system as it is hosted at VMM
level.

• It facilitates efficient querying capabilities and can answer several forensically inter-
esting questions:

– Get all the objects modified between time tx and ty in the location Loct.

– Find the most commonly modified object across multiple snapshots in the loca-
tion Locp.

– Identify all the copied files in various locations within the given time range.

– The location which had undergone more changes etc.,

• Analyzing multiple snapshots is a time consuming task. By incorporating a recom-
mendation engine, the proposed SNAPS technique reduces the time spent on analyz-
ing the snapshots.

5.4.3 SNAPS approach to build provenance

The following terms are worth mentioning:

• Provenance chains: Each object’s history is represented as a provenance chain. All the
nodes in a provenance chain represents the same object. A node to an Oi provenance
chain is added when there is a change in Oi ’s metadata. The provenance chain of Oi

will stop growing when it is deleted from the target VM.

• Provenance graph: Combining provenance chains of all objects creates a provenance
graph. Generally provenance graph is a DAG but we call the provenance graph gen-
erated from iSTSM as informal DAG [168]. The reason of calling it as informal is,
our provenance graph does not represent a cause and effect relation but can represent
only the effect.

96

Provenance Builder

Once the set of snapshots and delta files are transferred to the incident handler’s machine,
then we regenerate the complete snapshots. During the process of regeneration, we build the
provenance chain for each object using the proposed model iSTSM (Figure 5.11). Once the
provenance system is constructed, any existing object can be queried to get its provenance
chain using the query engine. The output of this engine is given to the recommendation
module where it will give a set of logical clues about the object which was queried. The
exact steps for provenance generation is given in Algorithm 6.

Figure 5.11: Building the provenance system from multiple snapshots acquired from the
cloud

Algorithm 6 Building the provenance chain for each queried object
1: Input: A set of snapshots and delta files i.e. S1, S2 Delta1, S3 Delta2, S4, S5 Delta3

etc. and say incident handler wants provenance data for object Oi

2: Output: Provenance Chain for Oi

3: for each Snapshot Si, Si+1 do . Got Si+1 from its delta file and Si
4: Search for Oi metadata entry in Si
5: if Oi metadata exists then
6: Mi ← Retrieve Oi Modified/Created T ime;
7: end if . Else, Assign Mi ← NULL
8: Search for Oi metadata entry in Si+1

9: if Oi metadata exists then
10: Mj ← Retrieve Oi Modified/Created T ime;
11: end if . Else, Assign Mj ← NULL
12: if Mi = = Mj then
13: Do not add a node in Oi’s Provenance Chain
14: else
15: Add a node in the Oi’s Provenance Chain
16: end if
17: end for

97

5.4.4 Results and Discussion

We validated the SNAPS model using Openstack cloud. After detecting the suspicious
activity in two Openstack VMs (Tiny OS VM and Ubuntu Server VM), SNAPS captured
several snapshots of each of them at frequent intervals of time till the incident impact is
reduced. All of them are passed through our spatio-temporal model (iRSM) and then trans-
ferred to the incident handler’s environment. The protocol followed by the incident handler
is shown in Figure 5.12. All the data of the snapshots is stored in the database and all their
metadata is extracted and indexed using Elastic search (It is a massively distributed system
which supports multi-tenancy and can perform advanced indexing). Performance of the
protocol is measured and the same is shown in Table 5.1 and Table 5.2.

Figure 5.12: Protocol followed by the incident handler after acquiring the snapshots

Table 5.1: Time for building the provenance chains

S.
No.

VM
OS

Snapshots Total
Size

Time

1 TinyOS S1, S2 delta, S3 delta,
S4 delta, S5, S6 delta,
S7 delta, S8 delta

50
MB

5 sec

2 Ubuntu
Server

S1, S2 delta, S3 delta,
S4 delta, S5, S6 delta,
S7 delta, S8 delta

65
GB

6640
sec

From the above, it implies that building provenance chains takes time and it depends on
the size of the snapshots. The overhead in time is obvious as the indexer in the configured
search engine has to go through each regenerated snapshot. We do not consider this as
setback as this is done only once. On the other hand, we observed that the response time for
querying the indexed provenance chains is less.

If the incident handler wants to analyze specific sets of objects across multiple snapshots
then doing it manually will consume a lot of time. To reduce this, our recommendation
engine will give possible findings about those objects automatically. The recommendation
engine will work for simple scenarios to complex ones. Some of them are described in the
next section.

98

Table 5.2: Response time for sample queries

S.
No.

Question Time

1 All objects modified between time 10:20 IST
and 17:00 IST in the location Downloads

10 msec

2 Most commonly modified object across 8 snap-
shots in the location MyFiles

11.5
msec

3 Check whether a specified object had modified
hard links

9.3 msec

4 Common block numbers modified across 8
snapshots

10.4
msec

5.4.5 Advantages of our provenance system

SNAPS benefits the incident handler in multiple aspects i.e.

• Improved evidence availability: This model can work in a realistic environment as a
series of suspicious activities may lead to an incident and before which the evidence
collection can be completed. Since, SNAPS is deployed at hypervisor, it would be
difficult for the intruder to alter/disable the monitoring capabilities of it.

• Reduces the analysis time: Analyzing a single snapshot involves human effort. If the
incident handler wants to analyze multiple snapshots then the scenario becomes more
complex. With the aid of the recommendation engine, SNAPS gives the high level
clues about the queried object. This saves a lot of time and effort for the incident
handler.

• Data independent persistence: When an object is deleted, its provenance data should
not be deleted. In our case, each object’s provenance chain is stored in the developed
recommendation engine and will be persisted even after the same object is deleted
from the target cloud instance.

• Scalable: The query results are faster even for huge sized snapshots as each evidence
is configured to go through the process of advanced indexing at object level.

5.5 Applying the Proposed Provenance System for cloud
incident handling

SNAPS can reduce the time spent by the incident handler during snapshot analysis and it is
designed to handle many interesting incidents. Some of them are described below:

99

5.5.1 Scenario-1: Giving a recommendation about digital forgery

This recommendation is used to identify digital forgery. It is very important especially
during forensic based incident handling to know where a particular object originated from
i.e. whether it is created or copied from some other location. We used Algorithm 7 for
generating the corresponding recommendations automatically and the same are shown in
Figure 5.13. For quick interpretation of the same, our provenance system also provides a
visualization capability as shown in Figure 5.14 (shows the origin of the object with inode
384).

Digital forgery is a common operation done by the intruders. There are various types of
digital forgery like splicing, retouching, and copy-move attacks [169]. We also identified
and created rule sets for detecting each of these. For example, in copy-move attack, the
object is moved to some other location and it is then modified keeping the base properties in-
tact. Algorithm 8 detects the objects with copy-move attack. The Sim(Oi, Oj) function uses
document similarity techniques like cosine, Term Frequency- Inverse Document Frequency
(TF-IDF) etc.

Algorithm 7 Recommendation about whether a queried object is copied or not
1: Input: Query(Oi) . Oi is forensically significant object for the incident handler
2: if Oi ∈ Si then . Say, Oi is present in location Locx and Si is the first snapshot

captured
3: for each Snapshot Si+1 do
4: if Oi ∈ Si+1 then
5: if Si inode(Oi)! = Si+1 inode(Oi) then
6: if Si hash(Oi) == Si+1 hash(Oi) then
7: reco(Oi) = ”File may be copied from Locx”
8: end if
9: end if

10: end if
11: end for
12: end if

Figure 5.13: Recommendation about whether a queried object is copied or not

100

Figure 5.14: A visual representation of the queried object copy history

5.5.2 Scenario-2: Identifying the backdoors created

A backdoor can provide unauthorized access to a remote system. Any intruder who created
a backdoor wants its life to stay for a long time. There are many ways in which an attacker
can do this and the most common way is performing a waterhole attack [170]. It is a
malicious program which can poison the system by injecting a backdoor at most frequently
used locations. The backdoor will be reinitialized each time the victim had interactions with
that common location/files.

A set of rules was devised to detect backdoors. Some of the important ones are shown
in Algorithm 9. We also framed a waterhole condition i.e. whether queried object Oi is
commonly used by the victim or not. Also, we applied all the relevant rules to increase the
correctness of the recommendation. For example, in Figure 5.15, we identified that abc.txt
was a symbolic link attached to abc.jpeg.

We initially identified from the victim network logs that abc.txt was injected from exter-
nal VM. After applying Algorithm 11 (subsection 5.5.4), we came to know that abc.txt was
obfuscated and its actual extension is .so and contains malicious code which was attached
as a symbolic link to abc.jpeg. Whenever VM restarts, the backdoor life may get expired. It

101

Algorithm 8 Recommendation on whether the queried object is undergone with copy-move
attack or not

1: Input: Query(Oi) . Oi is forensically significant object for the incident handler
2: if Oi ∈ Si then . Si is the first snapshot captured
3: for each Snapshot Si+1 do
4: for each Object Oj in Si+1 do
5: if Sim(Oi,Oj) >= thmax then
6: reco(Oi) = ”Object Oj is a victim of Copy-Move attack” . Oj is not

present in Si
7: end if
8: end for
9: end for

10: end if

gets reactivated each time when the victim interacts with the abc.jpeg file (frequently used
object in victim VM and it is known from its history of modification times). This makes the
intruder to always have a remote access of the victim machine. We added tens of rules to
our recommendation engine for detecting multiple variants of backdoor.

Algorithm 9 Recommendation about whether a queried object is used as backdoor
1: Input: Query(Oi) . Oi is forensically significant object for the incident handler
2: if Oi ∈ Si then . Si is the first snapshot captured
3: Store Oi = sym link (Oi)
4: end if
5: for each Snapshot Si+1 do
6: if Oi ∈ Si+1 then
7: if sym link(Oi != NULL) then
8: Store O

′
i = sym link(Oi)

9: if Store Oi != Store O
′
i then

10: reco(Oi) = ” May be to Oi, backdoor was linked”
11: reco

′
(Oi) = ” The backdoor name is Oj”

12: end if
13: end if
14: end if
15: end for

5.5.3 Scenario-3: Identifying suspicious activities

Once a backdoor is created, the intruder may alter/delete the data or metadata of an object
in the victim VM which he/she is not supposed to do and can be treated as suspicious.
For example, one of the common attacks is, Host File Redirect [171] i.e. in Windows,
/Etc/Hosts file resolves the name-to-IP lookup as always contacting a DNS server for the
same name resolution is a time consuming task. The intruder may add a malicious server IP
to the commonly visited domain name of the user for which he initially has to change the
permissions of the file.

102

Figure 5.15: Backdoor is detected from the acquired VM snapshots of Openstack cloud

Algorithm 10 takes any suspicious permission change as input and gives all the objects
associated with that activity. A similar detection was observed in the acquired snapshots
and the same is shown in Figure 5.16. When the input changes, the set of conditions we
check will also change.

Algorithm 10 Detects the suspicious activities on system files
1: Input: Query(reco) . suspicious permission change
2: if Oi ∈ Si then . Si is the first snapshot captured
3: for each Snapshot Si+1 do
4: if Oi ∈ Si then
5: if modified time(Oi(Si)) != modified time(Oi(Si+1)) then
6: if permissions(Oi(Si)) != permissions (Oi(Si+1)) then
7: reco(Oi) = ”Unauthorized operation, may be suspicious”
8: end if
9: end if

10: end if
11: end for
12: end if

Figure 5.16: Change in access control policy was detected on the system files of the target
VM

5.5.4 Scenario-4: Detecting the obfuscated files

Obfuscation is a process used to confuse, disorient and divert the forensic incident handler
during incident handling [172]. One of the common obfuscation techniques is to change

103

Algorithm 11 Detecting the obfuscated objects from the acquired snapshots
1: Input: Query(Oi) . Oi is forensically significant object
2: external ext = Oi.ext;
3: for each Snapshot Si do . i is max. no. of snapshots
4: if Oi ∈ Si then
5: internal ext = carve(Oi.ext);
6: if external ext != internal ext then
7: reco(Oi) = ”File Oi may be obfuscated”;
8: current = i;
9: break;

10: end if
11: end if
12: end for
13: for each object Ox in Scurrent−1 do
14: if hash(Oi) == hash(Ox) then
15: if inode(Oi) == inode(Ox) then
16: reco(Oi) = ”Oi may be obfuscated”;
17: reco(Oi) = ”Obfuscated from Ox”;
18: break;
19: end if
20: else if sim(Oi, Ox)>Threshmax then
21: reco(Oi) = ”Oi may be obfuscated”;
22: reco(Oi) = ”Obfuscated from Ox”;
23: break;
24: else
25: print(”Searching for next object”);
26: end if
27: reco(Oi) = ” Oi is newly created and obfuscated in Si and its source may not exist

in previous snapshot”
28: end for

104

Figure 5.17: Recommendations about the obfuscated objects in multiple snapshots

the extensions of the objects. There are many ransomwares in the market today which can
change the file extensions intelligently. They use unicode characters like (U+202e) which
can override the file name from right to left and can force the file system to display the text
in the reverse order. For example, a ransomware using this unicode character combination
will make the file name BirthdayGift by [U+202e]3pm.scr to appear as BirthdayGift by
RCS.mp3. This activity may create curiosity in the target user and makes him open the file
which thereby may affect his/her system as it is actually an executable file (i.e. .scr).

Using carving techniques, we have read the first few bytes of the header to know a file
internal extension. If both the external and internal extensions of an object are not equal then
our recommendation engine says that, the object has been obfuscated. Using the provenance
information generated from multiple snapshots, the capabilities of the recommendation en-
gine were extended to identify the source of the incident. In this case, there are two possible
approaches: (1) Obfuscation is done on the existing object (2) A duplicate copy of the object
may be created and then obfuscation may be performed on it.

For both the cases, we identify the source object of the obfuscation and the same is
shown in Algorithm 11. We configured these rules in to our recommendation engine to
give possible findings about the target objects in the acquired snapshots (Figure 5.17). The
source object of the obfuscation is also detected and given as recommendation.

Even though multiple snapshots are taken in a short interval of time, they may not cap-
ture every change in the VM. This drawback is neutralized by the several advantages that
SNAPS provides i.e. it is the most reliable provenance system, handles the data gravity
and helps the incident handler by giving possible recommendations. There will be cases
where the existing provenance systems may not capture anything when they are disabled
by the intruder but SNAPS can ensure the capture of multiple snapshots before the actual
incident. We tested our provenance system recommendation engine for various objects in
the acquired snapshots. The precision is 86% and recall is 81% (Table 5.3).

105

Table 5.3: Precision and Recall of the proposed provenance system

Predicted
Negatives

Predicted
Positives

TN: 250 FP: 8
FN: 11 TP: 50

5.6 Incident Handling using Deleted Cloud VM Snapshot
Objects

It is important to note that, recovering deleted objects from the cloud is difficult than the
traditional digital environment due to its multi-tenancy and rapid elasticity properties. In
[86] and [174], the authors concluded that there are no proper assessment approaches to
identify the extent of recovery possible for a deleted object in the cloud environment. To
answer this, we conducted several experiments on a cloud VM’s snapshot.

5.6.1 Can we recover a deleted object from cloud VM Snapshot ?

In forensic based incident handling, analysis on the deleted objects reveals interesting clues
and facts about the occurred incident. To recover a deleted file, all its unallocated data units
should be extracted. This can be done using either of the two approaches: Metadata-based
recovery and Application-based recovery respectively [173]. Our emphasis is on metadata
based object recovery as the application based recovery is not supported by all the file
systems and operating systems.

The common step that any intruder might take after performing an incident is to delete
the traces (suspicious files) from the system. Once a file is deleted, the extent of recovery
depends on the mapping type. All the possible mapping types of metadata category are
described below:

• One-to-one Mapping: In this case, recovery of a deleted file is possible as each data
unit of this category is only associated with one metadata entry (Figure 5.18(a)).

• Many-to-one Mapping: More than one meta data entry may point to a single data
unit. In this case, recovery is possible but it is difficult to identify the data unit’s
owner (Figure 5.18(b)).

• No Mapping: The data units in this category will not have any associated metadata
entry. In such a scenario, the incident handler may not be able to recover the object
(Figure 5.18(c)).

A deleted file’s data units can internally be in any of the above mappings and it de-
pends on several criteria like the file system, operating system, usage pattern and even the
underlying environment.

106

Figure 5.18: Status of a deleted object

5.6.2 Experimental observations on openstack VM snapshots

To test the feasibility of extracting the deleted files from a cloud VM snapshot, we acquired
the ext3 file system snapshot from the Openstack cloud VM. We use some of the features
provided by sleuthkit (an opensource forensic tool) to provide the basic analysis capabili-
ties for the cloud evidences [99]. We followed the below steps to know the possibility of
recovering any deleted object.

• Step-1: We extracted all the unallocated blocks of the snapshot using blkls command
of the sleuthkit (Figure 5.19(a))

• Step-2: The output of the blkls is given as input to blkcalc to get the actual fragment
number (Figure 5.19(b)).

• Step-3: The ifind command is then used to know the mapping followed by each block.
It returns an inode associated with the given block number. In Figure 5.19(c), for the
unallocated block number-1342, an inode does not exist which implies that the deleted
file in the Openstack cloud VM snapshot followed No Mapping strategy.

To check whether it uses No Mapping strategy in all the cases, we followed the below
steps:

• Step-1: We retrieved the list of all the deleted files along with their inode numbers
using the fls command of sleuthkit (Figure 5.20).

• Step-2: We then tried to list the blocks associated with each deleted file. For instance,
the inode 408 prints zero blocks (Figure 5.21). This indicates that the inode does not
have any mapped blocks and this validates our earlier conclusion that it follows - No
Mapping strategy.

107

It is important to note that, the list of deleted files in Figure 5.20 has some reallocated
files. When we apply the same istat command with the reallocated inode-379 then it lists
the newly associated block numbers (Figure 5.22). This indicates that the deleted inode-379
has been reallocated to some other new file and the old block numbers of 379 are unknown.
This makes the recovery of those objects highly difficult.

Deduction: Since cloud VM objects follow No-Mapping strategy, it would be very
difficult to retrieve deleted objects So, we propose an approach based on the NLP techniques
to achieve this and the same is discussed in the next subsection.

Figure 5.19: Identifying the mapping strategy followed by Openstack cloud VM snapshot

Figure 5.20: Showing the deleted and reallocated objects in cloud VM snapshot

Figure 5.21: Direct blocks associated with the inode number

108

Figure 5.22: Reallocated object with newly allocated direct blocks

5.6.3 Proposed approach to recover deleted objects using NLP tech-
niques

Analyzing every data unit will consume a lot of time. For example, if a 512 byte unallo-
cated data unit requires 5 seconds for analysis, then to analyze 400 GB of deleted data, one
requires 1940 days (nearly 5 years). Some researchers have considered every free data unit
and identified its file type using Linear Discriminant Analysis [175], K-Nearest neighbor
[176], Shannon Entropy [177] and Support Vector Machines [178]. These techniques are
good at classification of free data unit’s file type. These may not fit our requirement as
knowing the file type would not help us in retrieving the deleted files.

Our approach would generate multiple groups from all the unallocated data units based
on the content similarity. Each group pertains to a deleted object in the snapshot. We
consider a realistic assumption that, all the data units of a single file may have content
with some similarity. However, there could be some false positives which we reduce using
various identified filters.

Approach proposed for recovering deleted objects from snapshots

Since mapping does not exist for deleted files’ data units of a cloud VM snapshot, we extract
all the unallocated data units and give them as input to the NLP engine where it can form
various logical groups. Our NLP engine achieves this with the aid of its two modules i.e.

• Similarity Measurement Module: We use cosine similarity to calculate the similarity
between the unallocated data units [179]. It is a part of the vector-space model. All the
extracted unallocated data units are projected into an N-dimensional space where N is
the number of words in the term-document matrix. The angle between the unallocated
data units is calculated using the cosine rule (equation (5.6.1)).

109

cos−1 v1.v2√
v12 + v22

(5.6.1)

The lesser the angle between the vectors, the more closely the data units are related
to each other.

• Document Significance Module: Term Frequency and Document Frequency (TF-IDF)
is an amalgamation of two popular measures- (1) Term Frequency is the number of
times a given word appears in a document (here, unallocated data unit). (2) Document
Frequency is the number of documents in which the term appears. The higher the
term frequency, the higher is the importance of the term. The lower the document
frequency, the higher is the importance of the term (Equation 5.6.2).

TF − IDF = Termfreq ∗ log(N/nd) (5.6.2)

where nd is number of documents or unallocated data units in which the term appears
and N is the total number of documents.

By considering the above two measures, we applied Latent Semantic Analysis on the
unallocated data units. We obtain logical groups where each group consists of a set of
blocks with similar content. The blocks in a logical group may pertain either to a single
deleted file or to multiple deleted files. This triggered us to define two cases i.e.

• Best Case: If there is no similar content across deleted files then the blocks in each
logical group represent a deleted file. This helps the incident handler in knowing the
exact content of every deleted file.

• Worst case: In reality, a set of deleted files may have similar content. This might lead
to a situation where a few logical groups may also contain blocks of other files (false
positives). The more similar the deleted files, the more the number of false positives
in each logical group. This might lead to a reduction in the classification accuracy.

There are ways in which the classification accuracy can be improved even in the worst
case scenario. We achieve this by designing and applying various filters. Each of the filters
is described below.

• Pre-processing phase: Extract all the unallocated blocks and identify all the header
blocks. Randomly select any header block (Hbprim) and pass it to the NLP engine
and that gives a set of blocks which are similar to Hbprim.

It is important to note that, we do not pass each logical group through all the following
filters but only the groups that had the same block number in more than one group.

110

• Header based Filter: Check whether there is any header block of other files, say, Hbsec

in each logical group. If yes, then pass Hbsec header to NLP engine to get its own set
of logical group containing similar blocks. Then, check for the below conditions:

– Condition 1: If blocks in Hbprim logical group were present in the logical group
formed from Hbsec then check for condition 2.

– Condition 2: Extract a common block in both the logical groups (Hbprim, Hbsec).
Check the similarity value of that block in both the groups. If the block has more
similarity coefficient in Hbsec then remove the same block from the Hbprim else
the block has to be removed from the Hbsec. This condition has to be checked
against all the common blocks of both the logical groups.

A logical group may have more than two header blocks and even in that case the
above conditions can be applied.

• Carving based Filters: We use various carving techniques to reduce the number of data
units in each logical group. This reduction will increase the possibility of classifying
the blocks that pertain to the same object into a single logical group.

– Signature based: There can be multiple similar files with each file in a different
format. All these file blocks should not be categorized under a single logical
group. For example, a .docx and .pdf may contain very similar data but none
of the blocks of .pdf should fall into .docx and vice versa. To achieve this, we
carve the header block of a file to identify the signature of the file by which the
file type can be known. Using this technique, similar blocks of other file types
that were classified under the same logical group can be filtered out.

– File Structure based: Some file types like .ppt, and .xlsx. have file system
based data in their header block which include various details like modified
time/deleted time, file length, and file name. Using this information, the accu-
racy of each logical group can be increased. For example, if an incident occurs
during time period T then the other file blocks that were deleted much before
the incident can safely be ignored. Even file names of each logical group can be
known using the header of the logical group. The only limitation with this type
of carving is that it cannot be applied on all file formats as some of them might
not contain the required information in the header field.

– Embedded size based: The incident handler can specify the file sizes that he/she
is interested in. For example, after applying the above filters, if the size of a
logical group is x and the incident handler only wants to investigate the logical
groups whose size is above x, then only those groups can be considered. Fur-
thermore, removing the blocks using the above filters can be done until the total
size of logical group is equal to the size mentioned in the header block of that
group.

111

Figure 5.23: Memory window of cloud VM snapshot showing allocated and unallcoated
data units

Advantages of our approach: (1) Reduces human effort (2) Reduces the time spent in
analyzing unallocated data units (3) Helps the incident handler find out objects relevant to
incident handling in a faster way (4) Our approach of recovering the deleted objects works
for any file with readable content.

5.6.4 Validation of the proposed approach using Openstack VM snap-
shots

We initially acquired the VM snapshot of Openstack cloud VM. From the acquired snapshot,
unallocated blocks are identified (Figure 5.23). The yellow blocks are unallocated (i.e.
deleted) and the black blocks are allocated data units (non-deleted blocks). When incident
handler clicks on any of the unallocated block, the content can be seen and exported to the
desired location.

We select a header block data unit and gives that as an input to the NLP engine and it
outputs a set of unallocated blocks. All of those blocks greater than or equal to the defined
threshold are grouped into a single logical group. For example in Figure 5.24(a), the first
unallocated block number given is 234 and the blocks 598, 599, 600, 671, 672 and 700
which had similar content as compared to block-234 are placed in the same group. Here,
the threshold is fixed as 0.5 and can be changed depending on the block size, file size and the
incident handler’s requirement. For this, we used the data set state union from nltk data.
The approach is applied for various file types- pdf (Data set: movie reviews present in nltk
data) and doc (Data set: movie reviews present in nltk data). The same are shown in Figure
5.24(b) and 5.25 respectively.

If each logical group contains the blocks of only a single object then the analysis be-
comes very easy. In reality, the classification accuracy may not always be cent percent and
depends on the content of the files. Based on this, we identified three possible cases as

112

Figure 5.24: Unallocated data unit based logical grouping for text and PDF files

Figure 5.25: Unallocated data unit based logical grouping for doc files

shown in Table 5.4.

• Case 1: Deleted objects are not similar to each other. If content similarity is less
among deleted files then the classification accuracy will be high. We observed the
same (i.e. 96 % classification accuracy) when about 45 files were deleted (15 PDF, 15
text files and 15 Doc files) and they were reconstructed by forming 45 logical groups
where each logical group represented a deleted object. We noticed very few false
positives in all the logical groups. We then applied various filters to further enhance
the classification accuracy and achieved an improvement of 2 %.

• Case 2: In this case, some deleted objects have similar content and the remaining
deleted files have dissimilar content. The classification accuracy decreased as com-
pared to the above case. After applying various filters, we observed a reasonable
improvement in the classification accuracy (15 % better grouping).

113

Table 5.4: Before and after applying filters

Role of designed filters in improving the classification accuracy
Possible Cases Deleted Files Unallocated Blocks Classification

accuracy (before)
Classification
accuracy (after)

Case 1: Mostly
distinct Files

45 (15- txt, 15
- .pdf, 15- .doc
files)

180 Data units 96 % 98 %

Case 2: Both dis-
tinct and similar

30 (10- .txt,
10- .pdf, 10-
.doc files)

115 Data units 62 % 77 %

Case 3: Mostly
similar files

30 (10- .txt,
10- .pdf, 10-
.doc files)

122 Data units 41 % 81 %

• Case 3: Most of the deleted files have similar content. This is the most challeng-
ing case as each logical group may have blocks pertaining to other deleted files as
well. We observed that this case had the least classification accuracy (41 %) but after
applying various filters, it improved to more than 80 %.

From the above, it is evident that irrespective of the text content similarity across deleted
files, the classification accuracy after applying the required filters has increased.

5.7 Summary

VM Snapshots are the most crucial evidences for forensic based cloud incident handling.
The challenge is, always the snapshots may not be available. We addressed this problem
by proposing a model called iCFR and validated it with a scenario. We also addressed the
major issues of data gravity. The acquired snapshots from the cloud are transferred to the
incident handler’s environment where we build a provenance system using those snapshots.
The design of our provenance system is inspired from spatio-temporal models and we then
identified several applications of the proposed system which can reduce the time spent for
incident handling. Finally, we also proposed a NLP based approach for recovering deleted
objects indirectly from the target VM snapshot(s).

The publications from this work are [PUB1] and [PUB2] (refer page no. 136-137). In
the next chapter, we discuss the proposed event correlation techniques considering multiple
artifacts and these would help the incident handler to have quick interpretation about the
occurred incident.

114

Chapter 6

Handling Cloud VM incidents using
Event Correlation

”Cloud is the biggest digital revolution for every industry”

-Google

6.1 Background and Motivation

In this chapter, we deal with one of the technical challenges namely Event Correlation for
cloud incident handling. The term Event correlation indicates the relations between two
or more events [181]. Using this technique, the incident handler extracts higher level of
knowledge from huge number of events, identifies the faults and filter the redundant events,
finds irrelevant and spurious messages and makes the predictions about the future trends.

Event correlation benefits the incident handler in many ways like, to have better inter-
pretation of the underlying incident, to identify the root cause of the incident and to know
the incident scope and its intricacies [127]. Finally, all these will make the overall incident
handling effective. This helps in arriving at more reliable and fool proof results, which can
be submitted to the court of law.

Also, event correlation can enhance the natural process of incident handling to get the
comprehensive picture about the occurred incident. Absence of smoking gun evidences can
trigger one to use the event correlation techniques [183]. Event correlation has applications
in various domains like system management, security management, network management
and service management (Figure 6.1). In this chapter, we opt security management and in
it the approach of event correlation was chosen. Based on the literature study, we identified
that event correlation in cloud can be performed at two levels which we describe in the
following subsections.

115

Figure 6.1: High level taxonomy for event correlation applications

6.1.1 Event correlation across evidences from single CSP

Regarding the event correlation from a single Cloud Service Provider (CSP), the initial
major contribution is by [184] and was published as a Google US patent. It had designed
an event repository where all the timestamped events will be stored. With the aid of a query
engine, the events of interest were retrieved and analyzed. It just gave an overview of the
phases to be followed for performing event correlation and did not discuss its relevance to
incident handling.

In [95], an intrusion detection approach was designed using event correlation. Attack
detection by correlating the casual events was described with the consideration of time and
other constraints. The drawback is, it will not work for unknown attacks (i.e. a knowledge
base consisting of the attack constraints is a prerequisite to make this correlation approach
work which is not possible in the case of zero day attacks). Also, the suggested approaches
can be used only in proactive scenarios and not after the incident.

The other works which have applied the event correlation technique in different contexts
include:

• The power consumption of each Virtual Machine (VM) is calculated by using the
PCA and they found that the pairs {CPU, Cache} and {DRAM and disk} had high
correlation [185].

• Used the concept of correlation to check the dependence of multiple failure events
from which the availability of proactive check pointing can be made [186].

• Proposed a framework to collect the data from multiple levels of cloud and applied
the correlation technique to identify the intrusions that violate the service level agree-
ments [38].

The major finding from our literature review is that cloud event correlation has not
been extensively applied for handling cloud incidents by considering forensic practices.

116

Our objective, thus, is to handle them using the proposed forensic-based event correlation
techniques. We discuss event correlation approaches for handling incidents in traditional
environments below, which forms the motivation for our proposed approaches.

In [188], the idea of performing event correlation across disks was introduced. The
authors discussed a solution to extract various features like social security number, and
email id to perform both single and cross drive analysis. But, it has several disadvantages:

• The discussed approach is very basic and could not detect any incident automatically

• The set of features used for correlating various disks is very limited

• The correlation mechanism applies to only hard disk and not to any other digital
artifacts (main memory, logs)

In [189], a framework was proposed to correlate the events among multiple forensic
objects. It also discusses various parsers that can parse pcap files, configuration files and
memory data. But, this approach has certain drawbacks:

• Only the artifacts from a single system were considered; also issues involved in cross
artifact analysis from multiple computers were not discussed.

• The time spent on analysis can still be optimized

• No filtering module was present to reduce the extent of events that are to be analyzed

In [190], the authors proposed a correlation framework for botnet detection. They used
a network analyzer to identify the suspicious clusters and then used a host analyzer to ex-
tract each suspicious system data for verification purpose. But, this work has the following
drawbacks:

• Network and host activities were considered for effective event correlation but they
are limited to live systems

• Their work for event correlation is limited to botnets and did not address other inci-
dents.

In [191], the authors proposed an approach for finding the malware traces across com-
puters. They initially extracted features from the target evidence and then applied clustering
to detect botnets (key logger and spy bot). But this approach has the following shortcom-
ings:

• No consideration of optimal feature set for the proposed event correlation approach

• Except disks of multiple systems, other artifacts were not considered

117

6.1.2 Event correlation across multiple cloud providers

The limited interoperability among the cloud providers increases the complexity of incident
handling across CSPs. In reality, there are lot of dependencies among the cloud providers
[33]. If the dependency chain gets broken then the difficulties involved in event correla-
tion will become worse. Moreover, there is no standard policy or tool that facilitates the
event correlation across the cloud providers [35]. Our focus is only on performing event
correlation among the artifacts acquired from single CSP.

6.1.3 Novelty of our event correlation approach

In comparison with the above, our approach of event correlation differs in the following
aspects:

• The first and obvious difference is, the proposed event correlation approach is specific
to the cloud environment.

• To the best of our knowledge, our proposed approach is the first one to discuss in
detail about the role of cloud service logs for handling cloud incidents.

• We correlate the events effectively from all the major evidences available in the target
tenant VMs.

We identified all the possibilities of performing event correlation for handling cloud
incidents and then we organized the entire chapter as follows.

• In Section 6.2, we propose a segregation model for cloud event correlation.

• Event Correlation can be homogeneous (same artifact is used) or heterogeneous (dif-
ferent artifacts are used) and each of these can occur with the incident known and
incident unknown cases. Based on this, we derived four cases. In this work we ad-
dress the following three cases: Homogeneous-incident unknown based correlation
which we discuss in Section 6.3, Heterogeneous-incident known based correlation
in Section 6.4 and Heterogeneous-incident unknown based correlation in Section 6.5.
The fourth case namely Homogeneous-incident known based correlation is not within
the scope of this work as it varies from one incident to the other.

• Finally, we conclude the chapter in Section 6.6.

6.2 Proposed Segregation Model for Cloud Event Correla-
tion

Segregation of duties is a challenge while conducting forensic based incident handling in the
cloud environment [182]. To address this, we proposed a segregation model for cloud event

118

correlation i.e. suggested phases of event correlation were clearly spread across various
cloud actors (Figure 6.2). It is important to note that, this model has its base from our
proposed approach named SEASER (Chapter 4).

Figure 6.2: Proposed model for event correlation in cloud environment

Initially, the victim tenant will generate a complaint to the corresponding CSP. With
our strategy of mapping incident handling phases with forensic investigation stages, the
evidence availability is always ensured. All those evidences will be given as input to the
filter module (or segregation phase). This module preserves the privacy of other tenants i.e.
it takes the job to reveal only the data pertaining to the target tenant and all these events are
given to the normalization module present at the incident handler side. It synchronizes the
structure of various events to a common format so that it will help the incident handler in
effective correlation. The correlation module considers both the incident symptoms and the
event data to identify associations among the normalized events.

After correlation, groups are formed from the events based on their similarity. Pri-
oritizing these groups by assigning appropriate ranks will speedup the incident handling
process. Moreover, visualizing the formed groups will enhance the interpretation of corre-
lations among the events. Finally, the results of the analysis module will be given to the
user/legal authority in the form of a report.

Taking this model as a base, the following sections discuss the proposed approaches for
performing various types of event correlation.

119

6.3 Performing Homogeneous Correlation in the Incident
Unknown Case

There are four major cloud VM artifacts - vRAM, Service logs, vDisk and Snapshots. In
homogeneous event correlation, any one of these artifacts can be selected and it depends
on the context and as well as the incident handler’s requirement(s). We will discuss our
approach of performing homogeneous event correlation with a scenario- finding the host IP
from which the cloud VM was accessed. We considered this specific scenario as it helps
the incident handler to apply it irrespective of the incident (or when the incident was not
known). To accomplish this objective, we considered service logs artifact and then applied
event correlation.

6.3.1 Importance of this scenario from forensic based incident han-
dling

Even in traditional incident handling, finding the IP of the intruder system will benefit the
incident handler to identify and directly reach to that location. Similar advantages will be
reflected especially in the case of organization’s private cloud where the dedicated systems
can access the cloud. We assume that one of the VMs has been accessed by an intruder
from his/her dedicated system. Once we identify the host IP of the intruder then the incident
handler can easily identify the host system and then this allows him to get more information
about the incident.

We have used Service logs in the Openstack cloud test bed (Appendix I). These logs are
present in the compute and controller nodes of the cloud.

6.3.2 Detailed scenario description and methodology employed

Let us say, an incident ai has been performed on VMa(victim) by VMi who is an intruder.
The tenant of the VMa may register a complaint to the CSP. The incident handling process
can be started by prioritizing the artifacts in the order of volatility i.e. doing vRAM imag-
ing of VMa and checking for open network connections will give the set of IPs -{IPi} of
other VMs which are connected to the VMa. Each address in the set IPi is the virtual ma-
chine’s IP address and not the IP of the host system from which the VM has been accessed.
Knowing the host IP of the intruder will surely speedup the process of incident handling for
which we used service logs. The challenge involved over here is, they hold all the tenant’s
information and there will not be any explicit segregation. Our aim is to find the host IP of
the intruder system without violating the privacy of other tenants.

Filter Module: A tenant may have many virtual machines and each VM will have an
instance id. Based on this, events pertaining to the target VM can be identified. The prob-
lem is, all events in each service log may not have the attribute-instance id which makes

120

Figure 6.3: Using MongoDB service log to extract metadata associated with each instance

the investigating entity to identify only few events of the target VM. To address this, we
identified other parameters (i.e. request-id, tenant-id, project id, (pid,tid) pair etc.,) which
will enhance the process of segregation.

We also verified that, knowing at least one of these parameters, the other VM attributes
can be extracted from the MongoDB service log (Figure 6.3). For example, when request-
ids are known, the target VM events can be mapped and identified using MongoDB. Sim-
ilarly, if the virtual machine IP is known then the other required metadata can be found in
the same log itself.

The filtered events will be given to the incident handler for further analysis. All the
service logs may not be useful during incident handling. For example, rabbit@controller
log is a messaging broker between two nova components which may not be considered as
evidence. Another log, nova-compute falls under the same category i.e. it is only used to
store and track the resource consumption for the entire cloud and not specific to the VM.
This log will be more beneficial to the CSP (resource consumption rate may be known and
accordingly resources scaling can be planned) than to the incident handler.

Normalization: We observed that, there are variations in the format of service logs.
Converting them to a unique format will further make the correlation process easier. For
example, in Figure 6.4, we can see the service logs which are in different formats i.e. nova-
api-metadata of compute node, nova-scheduler of controller, error.log of controller node
etc. All these logs were considered and normalized with the schema as shown in Figure 6.4.
Accordingly, all the entries in each log were parsed and stored in the database.

Correlation: To achieve our objective, we have taken the access.log from the controller

121

Figure 6.4: Applying normalization phase to the cloud logs in different formats

Figure 6.5: Prioritized host IPs used for accessing the target cloud instance

node as base. This log stores the host IP addresses from which the cloud is accessed.
The problem is that the information as to which VMs are accessed from which host is not
explicitly mapped. With our correlation approach, we achieve this mapping. The basic idea
is, say there are n IPs from which the VMs have been accessed. We considered the host
IP address and identified all its access times to the cloud. The target VM events and their
timings were identified and compared with the access times of the current host IP using
exact brute force pattern matching algorithm. The same process is repeated for all host IP
addresses present in access.log. Here, we show only first three correlation results (Figure
6.5) which are having more close association with the target VM.

Ranking and visualization: Based on the visual representation, one can easily identify
the host ip which has accessed the target VM. For example, in Figure 6.5, IPz(172.16.6.186)
has the highest rank (close timely relation) using which we can confirm that the instance
named ”windows test” was accessed from IPz. If a tenant accesses multiple VMs from the
same host IP then all the instance details under the project can be extracted from MongoDB.
We need to follow a similar procedure to plot and get to know the host IP.

122

Report generation: The outcome of this homogeneous correlation emphasizes on listing
and validating the host IP from which the target VM was accessed. This is then submitted
to the user or legal authority for further steps.

6.4 Performing Heterogeneous Correlation in the Incident
Known Case

If a VM has been compromised, then there will be many artifacts which should be con-
sidered for cloud incident handling. We consider two major artifacts for heterogeneous
correlation i.e. vRAM and vDisk.

6.4.1 Proposed approach for heterogeneous event correlation in cloud

When investigating the cloud incidents, there are two possibilities. An incident may not
be known or may be known. In this section, we discuss the latter case. For any known
incident Ix, we can know the symptoms and these can be represented and correlated by
using various techniques like Bipartite graphs, Code based techniques, Bayesian networks,
Causality graphs, Context free grammars etc., [183]. In this chapter, we used the codebook
technique.

Codebook is an event correlation technique which uses matrix based representation.
Each cell contains either 1 or 0 with row indicating the symptom and each attribute indicat-
ing the fault/incident. If there is a 1 in the cell then it implies that the symptom is one of the
reasons to cause the corresponding fault. The reasons behind using code based approach
are:

• Similarities exist among many event correlation approaches. For example, causality
graph, bipartite graphs etc., can be converted and represented using codebook tech-
nique.

• Codebook based correlation approach can be simplified by preprocessing the events
which needs to be analyzed.

• An effective construction of the codebook will reduce the correlation approach to
minimal distance calculation.

The main disadvantage with the codebook is, it may not always be a best fault descriptor.
Taking this aspect into consideration, we avoided symptoms which are common across
many faults.

123

6.4.2 Results and Analysis

To illustrate the application of the codebook for performing event correlation, we consid-
ered an incident named rootkit. The behavior of the rootkits changes depending on its type.
For example, in this experiment we considered four major and popular variations of rootkits
i.e. I1: Kbeast, I2: Phalanx2, I3: Averagecoder, I4: Sutursu. Table 6.2 shows the pos-
sible symptoms for detecting each of these rootkits. Since the incident was known, ideal
codebook is constructed from the possible symptoms identified (Table 6.3). To confirm
the incident (I1 or I2 or I3 or I4) which affected the target victim VM, we followed a two
step process: (1) The data pertaining to each symptom is collected from the vRAM and the
vDisk of the target virtual machine and transferred to the incident handler’s environment
(Table 6.2) (2) We group all of them based on the existing similarity measures.

Table 6.1: Time taken for transferring evidences from the cloud to incident handler’s (IH)
environment

Evidence Size Time
taken

10 MB 2 sec
200 MB 39 sec
1 GB (Heavy traffic) 90 sec
10 GB (Heavy traffic) 750 sec
100 GB (Heavy traffic) 6200 sec

For example, if we want to confirm whether the rootkit has the symptom S9 or not. We
extracted features to search for the symptom S9 on both vRAM and vDisk. We applied
euclidean distance based grouping on that data and the result is shown in Figure 6.6. Com-
paring the resultant points present in Figure 6.6 (a) and 6.6 (b), the following observations
are made:

• There should not be any entries in the second group for baseline case as we are trying
to extract the same features for each symptom (here S9) from both the vRAM and
vDisk. It is important to note that, for the baseline system there are some points in
the second group. These can be ignored as they are not anomaly entries and related
to LiME (this is used to image the target VM’s vRAM).

• After the rootkit was affected, we have seen more entries in the second group of
Figure 6.6 (b) when compared to the baseline system second group. This happened
due to the rootkit dynamic behavior which can create feature differences even though
we try to extract the similar symptom data from both the artifacts. This confirms that,
symptom S9 was present in the target VM.

124

Table 6.2: List of possible symptoms for rootkit identification

Symptom Description
S1 system calls
S2 Sequence operations structures
S3 Loadable kernel modules
S4 The arguments of the processes
S5 Bash shell details during the termi-

nal session
S6 Processes and its hierarchy
S7 Process mappings
S8 Cred structure of the terminal ses-

sion
S9 Kernel debug messages buffers
S10 Function pointers
S11 Network connections
S12 Process list metadata
S13 File descriptors
S14 Code hoking
S15 Kernel opened files

The same process is applied for all the symptoms mentioned in Table 6.2 and the final
codebook after the incident is shown in Table 6.4. Now this newly created codebook has to
be compared with the ideal codebook. For comparison, we calculated the hamming distance
between the two. We observed that I2 has minimal hamming distance when compared with
others (I1, I3, I4) and this confirms that the target VM is affected with I2 i.e. phalanx2
rootkit.

Figure 6.6: Features representing the kernel buffer messages for baseline and affected sys-
tem (here, Dmesg indicates events in kernel message buffers)

125

Table 6.3: An ideal codebook for rootkit

S/I I1 I2 I3 I4
s1 1 1 0 1
s2 1 1 0 0
s3 1 1 1 0
s4 1 1 0 0
s5 0 0 1 1
s6 1 1 0 1
s7 1 1 0 0
s8 0 0 1 0
s9 0 1 0 0
s10 1 0 1 0
s11 0 0 0 1
s12 1 1 0 0
s13 0 1 0 0
s14 1 0 0 1
s15 0 0 0 1

Table 6.4: Codebook after incident(rootkit)

S Ix
s1 1
s2 1
s3 1
s4 1
s5 0
s6 1
s7 1
s8 0
s9 1
s10 0
s11 0
s12 1
s13 1
s14 0
s15 0

6.5 Heterogeneous Event Correlation when the Incident is
not Known

In the incident unknown case, the incident handler may face difficulties during incident
handling (worst case). For example, time spent on the case may be very high, directions to
proceed further may not be clear. To reduce these sort of difficulties, we suggest to use the
approach of Event Correlation. We would illustrate the proposed approach with a typical
scenario.

6.5.1 Correlation of cloud VM artifacts-incident not known

Since the incident is not known, approaches like Causality graphs, Context Free Grammars,
and Case Based Reasoning will not fit our requirement including the approach of codebook.
We use anomaly based detection to meet our objective. Due to the multi-tenant and virtu-
alized environment of cloud, anomaly based detection may give more false positives [157].
Thus we divide our approach into multiple stages so that the interpretation and reliability of
the correlation results may be increased i.e.

• Stage 1: Correlation among the events present in a single artifact.

• Stage 2: Correlation of events present in multiple artifacts of a cloud virtual machine.

We illustrate the above two stages with the following scenario:

• The tenants performed some malicious activity on the private cloud.

126

• No proactive solution enabled (like capturing the packets between the tenant host
system and cloud) by which the knowledge of abnormal activities that the tenants are
going to perform is not present with the CSP.

Figure 6.7: Checking for event bursts in target suspicious VM

In this case, we should rely only on the evidences left after the incident and then ac-
cordingly perform incident handling. Among all the major evidences (vRAM, Service logs,
Snapshots and vDisk), acquisition of service logs will be more reliable for the Incident
Handler. However, there are certain challenges involved in service logs acquisition like
segregation of events pertaining to each tenant which is addressed using the Filter module.
This segregation allows the CSP to give only the target tenant events to the incident handler.
Considering this, we have taken service logs artifact for handling Stage 1.

For Stage 2, we consider all the artifacts (vRAM, Service logs and vDisk). The correla-
tion results from the first stage can help the incident handler in enhancing the interpretation
on the acquired forensic data which helps in second stage correlation.

6.5.2 Results and Analysis

Correlation of events from single artifact (Stage 1)

We identified that any artifact can be considered for incident handling at the semantic level
and non-semantic level. In general, based on the outcome of the non-semantic analysis,
the input size of the events to the semantic level can be reduced. The artifact to be ana-
lyzed varies depending on the entity involved and even according to the case. As said, we
considered service logs because of its high availability and reliability.

Non-semantic level: We used event bursts for non-semantic analysis and applied it on
the cloud service logs. Each service log can record seven types of events: DEBUG, INFO,
AUDIT, WARNING, ERROR, CRITICAL, and TRACE. We considered only event types -
Error and Warnings as including all types of events will reduce the extent of interpretation.

127

All logs were parsed for the target VM events and plotted as shown in Figure 6.7. From it,
one can observe that the access and usage behavior of the target tenant VM contains some
anomaly (we checked the event bursts for all the VMs connected to the victim VM. We have
shown only the suspicious event burst of a VM). To increase the accuracy of the event bursts
value, we considered nine months of service log events.

Simply looking at the event bursts values, the incident handler may not be able to iden-
tify the exact reason for the anomaly. To confirm the abnormality involved, we used seman-
tic based event correlation on the target artifact (here service logs).

Semantic-Level: To perform correlation at this level, the prerequisite for the incident
handler is to have the knowledge about when an event will be logged. If so, in which log
the event traces can be found. Thus, we found a log where DOS incident traces are present
(Figure 6.8).

Figure 6.8: Observed traces of the anomaly in cloud service logs

Obviously, from both the above levels we can clearly say that, the anomaly observed in
event burst is due to the DOS incident. We extended the event correlation across multiple
artifacts so that details like how the incident (DOS) has been performed and what is its
impact in each artifact can be known. The details about the same is discussed as stage 2.

Correlation of events across multiple artifacts (Stage 2)

As the incident in the current case was not known initially, we did not emphasize on the
techniques which vary from one incident to the other [187]. Instead, our approach works
irrespective of the incident i.e. Timeline Generation and Analysis. The other advantages of
using timeline for correlating the events are: (1) Visualizing the timeline of events would
reveal many interesting facts in less time (2) The artifact to select and the events to analyze
may not be known in all the cases which can be known using timeline.

For correlating multiple evidences, we considered three major artifacts of cloud VM
namely vRAM, vDisk and Service logs to generate the timeline. We divide the entire pro-
cess of timeline based correlation in to two levels namely generating timeline and analyzing
the events using the created timeline.

Generating the timeline: The challenges we faced during timeline generation include
lack of unique time format, privacy violation and absence of tools for comprehensive time-
line generation.

128

Table 6.5: Supported formats for Disk analysis (do not support cloud vDisk analysis)

S.
No.

Disk forensic analy-
sis tool

Supported formats

1 Encase AFF, AF4, gfzip, raw, .e01
2 FTK dd, .e01, SMARTS
3 Autopsy raw, .e01
4 DFF raw, .ewf, .aff

a. Time format variations: Considering a single artifact itself like service logs, there are
differences in the time format. For example, the access.log of controller stores time in the
format of DD/Mon/Year hh:mm:ss + zone which is quite different from nova service logs:
Year-MM-DD hh:mm:ss.ms. We observed many variations in the time format even across
multiple artifacts.

b. Privacy violation: The timeline generated should be specific to a VM or tenant but
it should not represent any events from other tenants. Without the actual segregation of the
events, it leads to privacy violation especially in the case of service logs.

c. Existing tools do not support the generation of timeline: For the timeline generation of
the target virtual machine’s vDisk, we initially tried to use existing tools like DFF, sleuthkit,
encase, and FTK (Table 6.5). None of them supports timeline generation for the cloud VMs
as they have different formats.

Figure 6.9: Timeline showing the description of VRAM events

We resolved these issues and the methodology followed is briefed as below.
Irrespective of the time format of events, all of them are converted to same format.

Coming to the privacy preservation of the tenants, we identified certain parameters. For
example, uuid, req-id pairs for each instance, pid and tid pair etc., helps in better segregation
of target VM events. To resolve the third issue, we used a library called as libqcow which
can mount the cloud images of qcow2 format to the incident handler machine. The mounted
image is given as input to the sleuth kit timeline commands - fls and mactime to get a file
with events along with the proper timing information. Similarly, for getting the timeline for
VRAM we used various plugins of volatility framework. After following the above methods

129

Figure 6.10: Timeline showing the description of Service logs events

Figure 6.11: Timeline showing the description of vDisk events

and combining those, we are able to generate the timeline as shown in Figure 6.9, Figure
6.10, Figure 6.11.

Analyzing the events using timeline: Time based events play a crucial role in incident
handling (traditional, cloud), especially in the case of handling unknown incidents. In the
current case, till now we only identified that DOS incident has been performed by a tenant.
If the incident handler wants to know more information about the incident then we extend
the process of event correlation using timeline analysis. From the visual timelines, we had
the following observations:

• The virtual machine of the intruder used a proxy to achieve this incident as it may
increase his/her chances of hiding (Figure 6.9)

• The intruder achieved DOS by over utilizing the resources (Figure 6.10)

• We found an orphan file after the incident. We recovered it and observed that it has a
script to perform DOS. After the incident, the intruder deleted that file which we can
clearly see from the Timeline in Figure 6.11.

These are only few important observations pertaining to the incident. Also, we identified
that, using the proposed timeline based correlation across various artifacts, the incident
handler can get the responses for many forensically relevant queries easily which can lead
to effective incident handling. Some of them are shown in Table 6.6.

130

Table 6.6: Role of cloud service logs in incident handling

S.
No

Query on timeline? Artifact-Location(s)

1 Is there is any event which tried privilege
escalation, if so at what time?

Keystone-controller

2 When authentication failures occurred in
the target VM?

Keystone-controller

3 At time tx, what are the VM’s of the sus-
pected tenant which are in active state?

Nova-conductor

4 Give sequence of access times to the con-
sole of target VM from login time to lo-
gout time?

Nova-consoleauth and er-
ror.log of apache in controller

5 At specified time tx, is there are any VM
creation in the suspected tenant? May be
the new VM may get the same IP of pre-
viously deleted VM (in our case, with the
fixed pool it happens)

Nova-scheduler

6 At time tx, what is the availability zone
of the target VM? (very useful as it in-
creases the chances of retrieving the data
even though the VM is migrated)

Cinder-api log (Other infor-
mation like provider location,
attached host, creation time,
launched time etc)

7 What is the host IP from which the cloud
has been accessed through secure shell
(ssh) and when? (For detecting malicious
insiders)

Auth.log of compute node

131

6.6 Summary

In this chapter, we took up one of the technical challenges of cloud incident handling namely
event correlation and proposed a novel segregation model for the same. We validated the
proposed model in two stages using a private cloud IaaS test bed: (1) homogeneous cor-
relation and (2) heterogeneous correlation. Homogeneous correlation has been described
with the help of a relevant case study- finding the host system from which the cloud VM
was accessed. We have shown the process of heterogeneous correlation to achieve incident
detection with the aid of codebook technique. The incident-unknown case of heterogeneous
correlation is discussed using single artifact as well as multiple artifacts. Our approach of
cloud event correlation is comprehensive as it it facilitates the correlation of evidences of
same type as well as different types.

The work described here is an accepted and published work in [PUB1] and [PUB3]
(refer page no. 136-137).

132

Chapter 7

Conclusion and Future Scope

In this thesis work, we proposed various models for effective incident handling using which
multiple artifacts like vRAM, Service logs, VM snapshots and vDisk can be analyzed by
addressing the architectural aspects of it (CIH).

7.1 Summary of Contributions

In this work, we have proposed a mechanism for incident handling in the IaaS cloud envi-
ronment. The major contributions of the work are:

• Proposed a Trigger based Introspection approach for handling volatile evidences by
addressing the lack of transparency between incident handler and CSP.

• Devised approaches for Event Reconstruction (specifically, Hypothesis generation)
using cloud service logs and built Provenance System from VM snapshots for effec-
tive analysis during cloud incident handling.

• Designed Event Correlation approaches considering various cloud VM artifacts (Ho-
mogeneous and heterogeneous correlation in the incident known and unknown cases)

Volatile evidences like, vRAM, have a lot of forensically relevant information. However,
the challenge is to increase its availability irrespective of the cloud VM memory incidents.
To address this, we used Virtual Machine Introspection (VMI) technique. We proposed
a trigger based introspection approach which can detect known, variation of known inci-
dents and understand the root cause of an incident at memory level. The incident handler is
required to access the hypervisor for performing VMI. Cloud, being a multi-tenant environ-
ment, the Cloud Service Provider (CSP) needs to be alerted about the suspicious activities
if any, performed by the incident handler. We achieved this through the proposed ALTRA
model.

Event Reconstruction (ER) has many capabilities which can be used to handle the cloud
incidents effectively. In this work, we used the Hypothesis Generation capability of ER.

133

Generating hypothesis in cloud is challenging due to its multi-tenant nature. Also, the num-
ber of events in the target cloud evidence is huge. Taking into account these challenges, we
proposed a model named SEASER which can help the incident handler arrive at accurate hy-
pothesis generation. For the segregation phase of the model, we proposed parameter-based
and session-based approaches. Then, various machine learning were used for identifying
incident handler relevant events. For the aggregation phase of the model, we came up with
two algorithms namely LFv1 and LFv2.

Cloud VM snapshots are one of the richest sources of evidences for incident handling.
We proposed a model namely iCFR to improve the availability of cloud VM snapshots.
Since cloud VM snapshots are generally of huge size, it is desirable to have an automatic
analysis approach. For this, we proposed a model, SNAPS, which can build a provenance
system from multiple cloud VM snapshots. SNAPS cannot retrieve the deleted objects from
snapshots and we addressed this challenge using NLP techniques.

Event correlation helps in effective incident handling in cloud. The traces of an incident
can spread across multiple evidences. Analyzing all of those individually and correlating the
logical findings manually is time consuming. Thus, we proposed three ways of correlating
the artifacts- Homogeneous incident unknown, Heterogeneous known and unknown cases to
handle the cloud incidents better.

7.2 Future Scope of the Work

The proposed approaches for ”Incident Handling in IaaS Cloud Environment using Digital
Forensic Practices” are validated in the Openstack private cloud test bed. The solutions can
also be tested and validated on other cloud platforms like, OpenNebula, Eucalyptus and
CloudStack.

In future, approaches for performing homogeneous correlation in the incident known
case can be devised. Advanced NLP techniques can be used to analyze the deleted files in
the acquired VM snapshots. We proposed a root cause identification technique for volatile
events. As a future work, approaches for root cause analysis for various other cloud evi-
dences can be devised. The introspection capabilities can be used to detect more memory
level incidents. Also, the recommendation engine devised for snapshot analysis can be in-
tegrated with more features. The capabilities of the proposed models can be extended to
address other challenges of cloud incident handling for example, live migration, multiple
availability zones etc. Additional cloud incidents may be used to validate the proposed
models.

7.3 Concluding Remarks

Incident handling in cloud is always challenging. In this work, we presented ways in which
the incident handler can deal with the occurred incidents at the IaaS cloud environment.

134

Collaboration among the cloud actors would help in effective incident handling in cloud.
This in turn helps in improving the trust of the users in cloud systems. We believe that this
research work would help the cloud community to facilitate incident handling services to
the end user.

135

————————————————————————-
———————————————

136

List of Publications

International Journals

[PUB1] BKSP Kumar Raju and G Geethakumari, SCORPIO: Segregation and Correlation
for Virtual Machine Artifacts of IaaS Cloud, Journal of Network and Computer Applica-
tions (JNCA), Elsevier Publishers, 2018 (Accepted). SCI Indexed. Impact Factor: 3.5

[PUB2] BKSP Kumar Raju and G Geethakumari, SNAPS: Towards Building Snapshot
based Provenance System for Virtual Machines in the Cloud Environment, Journal of Com-
puters and Security, Elsevier Publishers, December 2017. SCI indexed, Impact Factor:
2.849

[PUB3] BKSP Kumar Raju, and G. Geethakumari. Event correlation in cloud: a forensic
perspective, Springer Computing Journal, 98.11 (2016): 1203-1224. SCI Indexed, Impact
Factor: 0.872

[PUB4] BKSP Kumar Raju, and G. Geethakumari. A trigger-based introspection approach
for cloud incident handling. Inderscience, International Journal of Big Data Intelligence,
3.3 (2016): pp 163-175. Indexed in DBLP Computer Science Bibliography.

International Conferences

[PUB5] BKSP Kumar Raju, Nikhil Bharadwaj Gosala and G Geethakumari, ”CLOSER:
Applying Aggregation for Effective Event Reconstruction of Cloud Service Logs, Proceed-
ings of 11th ACM International Conference on Ubiquitous Information Management and
Communication ACM IMCOM 2017, Beppu, Japan, January 5-7.

[PUB6] BKSP Kumar Raju, Bhupendra Moharil and G Geethakumari, ”FaaSeC: Enabling
Forensics-as-a-Service for Cloud Computing Systems, Proceedings the 9th IEEE/ACM In-
ternational Conference on Utility and Cloud Computing (UCC), Shangai, China, Dec 6-9,
2016.

[PUB7] BKSP Kumar Raju and G Geethakumari, ”Timeline based Cloud Event Reconstruc-
tion Framework for Virtual Machine Artifacts”, Proceedings the 4th Springer International
Conference on Advanced Computing, Networking, and Informatics (Springer ICACNI 2016),
22-24 September 2016, India.

137

[PUB8] BKSP Kumar Raju, Meera G and G Geethakumari, Cloud Forensic Investigation:
A sneak peak into acquisition”, IEEE, Proceedings of the Symposium on Emerging Topics
in Computing and Communications (IEEE SETCAC’2015), December 16 - 19, 2015, India.

[PUB9] BKSP Kumar Raju and G Geethakumari, A Digital Forensic Model for Intro-
spection of Virtual Machines in Cloud Computing, Proceedings of the IEEE International
Conference on Signal Processing, Informatics, Communication and Energy Systems 2015,
(IEEE SPICES 2015), February 19-21, 2015, India.

[PUB10] BKSP Kumar Raju and G Geethakumari, A Model for Trust Enhancement in
Cloud Computing, Proceedings of the IEEE International Conference on Computing and
Communication Technologies IEEE ICCCT2014, December 11-13, 2014, India, Proceed-
ings in IEEE Explore.

[PUB11] BKSP Kumar Raju and G Geethakumari, A Novel Approach for Incident Re-
sponse in Cloud Using Forensics, Proceedings of the ACM COMPUTE 2014, October 9-11,
2014, India; Proceedings in ACM Digital Library.

138

Bibliography

[1] Grobauer, Bernd, and Thomas Schreck. Towards incident handling in the cloud: chal-
lenges and approaches. In Proceedings of the 2010 ACM workshop on Cloud com-
puting security workshop. ACM, 2010.

[2] Yahoo Says 1 Billion User Accounts Were Hacked.
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html? r=0 Last
Accessed. 30-12-2016.

[3] Data Breach At Oracles micros Point-of-Sale Division.
https://krebsonsecurity.com/2016/08/data-breach-at-oracles-micros-point-of-sale-
division/ Last Accessed. 30-12-2016.

[4] eBay hacked: 230 million told to change passwords after major cy-
ber attack http://metro.co.uk/2014/05/21/ebay-hack-128-million-told-to-
change-password-after-major-cyber-attack-where-customer-details-were-stolen-
4735660/#ixzz4cstbKAQV Last Accessed. 21-04-2015.

[5] E-Business, online shoppers, job-seekers urged to be suspicious.
http://www.cybersecurity.my/data/content files/44/1309.pdf Last Accessed. 07-
02-2017.

[6] From Events to Incidents . https://www.sans.org/reading-
room/whitepapers/incident/events-incidents-646 Last Accessed. 24-01-2014.

[7] Patrick Kral , Incident Handlers Handbook, SANS, 2011. Accessed. 27-01-2014.

[8] Mobile Incident Response Overview. https://books.nowsecure.com/mobile-incident-
response/en/overview/index.html Accessed. 12-02-2016.

[9] Best practices for incident response in the age of cloud
http://www.networkworld.com/article/3116011/cloud-computing/best-practices-
for-incident-response-in-the-age-of-cloud.html Last Accessed. 17-11-2016.

[10] Planning and executing an IoT incident response.
https://www.safaribooksonline.com/library/view/practical-internet-
of/9781785889639/ch10s02.html Last Accessed. 03-01-2016.

139

[11] Foster, Ian, et al. Cloud computing and grid computing 360-degree compared. In
IEEE Grid Computing Environments Workshop, 2008. GCE’08. 2008.

[12] Vaquero, Luis M., et al. A break in the clouds: towards a cloud definition. In ACM
sigcomm Computer Communication Review 39.1, 2008. pp: 50-55.

[13] Mell, Peter, and Tim Grance. The NIST definition of cloud computing. 2011.

[14] Takahashi, Takeshi, Youki Kadobayashi, and Hiroyuki Fujiwara. Ontological ap-
proach toward cybersecurity in cloud computing. In Proceedings of the 3rd ACM
international conference on Security of information and networks, 2010.

[15] Cloud Computing Trends. http://www.rightscale.com/blog/cloud-industry-
insights/cloud-computing-trends-2016-state-cloud-survey Last Accessed. 21-
03-2016.

[16] CVW Group. Cloud computing vulnerability incidents: A statistical overview. Tech-
nical Report, March, 2013

[17] Lance Whitney, https://www.cnet.com/news/amazon-ec2-cloud-service-hit-by-
botnet-outage/. Last Accessed. 12-04-2014

[18] Higgins K.: Dropbox, wordpress used as cloud cover in new apt at-
tacks,In: https://www.threatconnect.com/in-the-news/july-11-2013-dark-reading-
dropbox-wordpress-used-as-cloud-cover-in-new-apt-attacks/, (2013), Last accessed
03-09-2016.

[19] Inci, Mehmet Sinan, et al,.: Seriously, get off my cloud! Cross-VM RSA Key Re-
covery in a Public Cloud. In IACR Cryptology ePrint Archive, 2015.

[20] Dow Jones Newswires, http://www.foxbusiness.com/features/2016/10/21/denial-
service-attack-hits-amazon-twitter-others.html. Last accessed. 12-11-2016.

[21] Munteanu, Victor Ion, et al. Cloud incident management, challenges, research direc-
tions, and architectural approach. In Proceedings of the 2014 IEEE/ACM 7th Inter-
national Conference on Utility and Cloud Computing, 2014.

[22] Ab Rahman, Nurul Hidayah, Niken Dwi Wahyu Cahyani, and KimKwang Raymond
Choo. Cloud incident handling and forensicbydesign: cloud storage as a case study.
In Concurrency and Computation: Practice and Experience of Wiley, 2016.

[23] Analyst firm Forrester. https://www.snowsoftware.com/blog/2016/10/26/cloud-
spend-23/#.WHXTVlV97IU Last Accessed. 21-11-2016.

[24] Birk, Dominik, and Christoph Wegener. Technical issues of forensic investigations
in cloud computing environments. In IEEE sixth Systematic Approaches to Digital
Forensic Engineering (SADFE) workshop, 2011.

140

[25] Reith, Mark, Clint Carr, and Gregg Gunsch. An examination of digital forensic mod-
els. International Journal of Digital Evidence 1.3 (2002): 1-12.

[26] Pollitt, Mark M. An ad hoc review of digital forensic models. In IEEE Second Inter-
national Workshop on Systematic Approaches to Digital Forensic Engineering, 2007.

[27] Carrier, Brian. Defining digital forensic examination and analysis tools using abstrac-
tion layers. International Journal of digital evidence, pp. 1-12, 2003.

[28] Kent, Karen, et al. Guide to integrating forensic techniques into incident response.
NIST Special Publication 10, pp. 800-86, 2006.

[29] Cohen, M. I. PyFlagAn advanced network forensic framework. Journal of Digital
investigation 5, Elsevier, pp. S112-S120, 2008.

[30] Kohn, Michael Donovan, Mariki M. Eloff, and Jan HP Eloff. Integrated digital foren-
sic process model. Journal of Computers & Security 38, Elsevier, pp. 103-115, 2013.

[31] Zatyko, Ken and Bay, John. The Digital Forensics Cyber Exchange Princi-
ple, http://www.dfinews.com/articles/2012/02/digital-forensics-cyber-exchange-
principle#.Uq83puLEqrU Last Accessed. 12-02-2014.

[32] Crosbie, M., Hack the Cloud: Ethical Hacking and Cloud Forensics, Cybercrime
and Cloud Forensics: Applications for Investigation Processes, IGI Global Journal,
December 2012.

[33] Ruan K., James I.J., Carthy, J., Kechadi, T. Key Terms for Service Level Agreement
to Support Cloud Forensics, Advances in Digital Forensics VIII, Springer, pp. 201-
212.

[34] Gonsowski D. Compliance in the Cloud and Implications on Electronic Discov-
ery, Cybercrime and Cloud Forensics: Applications for Investigation Processes, IGI
Global Journal, December 2012.

[35] Grivas S.G., Kumar, T.U., Wache H., Cloud Broker: Bringing Intelligence into the
Cloud -An Event-based Approach, IEEE 3rd International Conference on Cloud
Computing, pp. 544-545, 2010.

[36] Ruan K., Carthy, J., Cloud Computing Reference Architecture and its Forensic Im-
plications: a Preliminary Analysis, In Proceedings of the 4th International Confer-
ence on Digital Forensics & Cyber Crime, Springer Lecture Notes, October 25-26,
Lafayette, Indiana, USA.

[37] Orton I., Alva A., Endicott-Popovsky B., Legal Process and Requirements for Cloud
Forensic Investigations, Cybercrime and Cloud Forensics: Applications for Investi-
gation Processes, IGI Global Journal, December 2012.

141

[38] Ficco, Massimo, Massimiliano Rak, and Beniamino Di Martino. An intrusion detec-
tion framework for supporting SLA assessment in cloud computing. In proceedings
of fourth IEEE International Conference on Computational Aspects of Social Net-
works (CASoN), 2012.

[39] Dolan-Gavitt, Brendan, Bryan Payne, and Wenke Lee. Leveraging forensic tools for
virtual machine introspection. Georgia Institute of Technology, 2011.

[40] Roussev, Vassil, et al. Cloud forensicsTool development studies & future outlook.
Digital Investigation, Elsevier, pp. 79-95, 2016.

[41] Mohay, George. Technical challenges and directions for digital forensics. Interna-
tional Workshop on IEEE Systematic Approaches to Digital Forensic Engineering,
2005.

[42] British Standards Institution. BIP 0107:2008 foundations of IT service management
based on Itil V3, UK. 2007.

[43] Cichonski P et. al, Computer security incident handling guide recommendations of
the National Institute of Standards and Technology (NIST). Gaithersburg, 2012.

[44] West-Brown MJ, Stikvoort D, Kossakowski K-P, Killcrere G, Ruefle R, Zajicek M.
Handbook for computer security incident response teams (CSIRTs). 2nd ed. Pitts-
burgh: Carnegie Mellon/ SEI; 2003.

[45] Alberts C, Dorofee A, Killcrece G, Ruefle R, Zajicek M. Defining incident manage-
ment processes for CSIRTs: a work in progress. 2004. Pittsburgh

[46] European Network and Information Security Agency (ENISA). Good practice guide
for incident management. Athens: ENISA; 2010.

[47] International Standard for Organisation. ISO/IEC 27035:2011 information technol-
ogy e security techniques e information security incident management. 2011. Geneva.

[48] Grance, Tim, Karen Kent, and Brian Kim. ”Computer security incident handling
guide.” NIST Special Publication 800 (2004): 61.

[49] Mitropoulos S, Patsos D, Douligeris C. On incident handling and response: a state-
of-the-art approach. Computer Security, 2006; 25(5):351e70.

[50] Monfared A, Jaatun MG. Handling compromised components in an IaaS cloud in-
stallation. Journal of Cloud Computing Advance System Applications 2012.

[51] FBI Defends Disruptive Raids on Texas Data Centers.
https://www.wired.com/2009/04/data-centers-ra/. Last Accessed. 12.05.16.

142

[52] List of National CSIRTs http://www.cert.org/incident-management/national-
csirts/national-csirts.cfm? Last Accessed. 21.12.2015.

[53] Takabi, Hassan, James BD Joshi, and Gail-Joon Ahn. Security and privacy challenges
in cloud computing environments. IEEE Security & Privacy 8.6, pp: 24-31, 2010.

[54] AWS suffers a five-hour outage in the US.
http://www.datacenterdynamics.com/content-tracks/colo-cloud/aws-suffers-a-
five-hour-outage-in-the-us/94841.fullarticle Last Accessed. 09.03.2017.

[55] Cloud Computing Vulnerability Incidents: A Statistical Overview.
https://www.cert.uy/wps/wcm/connect/certuy/abfd80ca-3142-4d28-b99c-
e8f841568dde/Cloud Computing Vulnerability Incidents.pdf?MOD=AJPERES
Last Accessed. 12.03.2015.

[56] Sen, Jaydip. Security and privacy issues in cloud computing. Architectures and Pro-
tocols for Secure Information Technology Infrastructures, pp. 1-45, 2013.

[57] Khorshed T, Ali ABMS, Wasimi SA. A survey on gaps, threat remediation chal-
lenges and some thoughts for proactive attack detection in cloud computing. Future
Generation Computer Systems, Elsevier journal, 2012.

[58] Rong C, Nguyen ST, Jaatun MG. Beyond lightning: a survey on security challenges
in cloud computing. Computer Electrical Eng 2013;39(1):47e54.

[59] Zissis D, Lekkas D. Addressing cloud computing security issues. Future Generation
Computer Systems, Elsevier, 2012.

[60] FBI Cyber Division. https://en.wikipedia.org/wiki/FBI Cyber Division Last Ac-
cessed. 21-03-2014.

[61] Martini B, Choo K-KR. An integrated conceptual digital forensic framework for
cloud computing. Digital Investigation Journal, Elsevier, 2012;9(2):71e80.

[62] Quick D, Choo K-KR. Digital droplets: Microsoft SkyDrive forensic data remnants.
Future Generation Computer Systems, Elsevier, 2013a;29(6):1378e94.

[63] Quick D, Martini B, Choo K-KR. Cloud storage forensics. Syngress; 2014.

[64] Dennis Radar. https://en.wikipedia.org/wiki/Dennis Rader Last Accessed.
18.03.2015.

[65] Computer Forensics: The new fingerprinting.
http://www.popularmechanics.com/technology/security/how-to/a630/2672751/
Accessed. 16-09-2015.

143

[66] Computer Evidence. http://www.justiceforbrad.com/evidence/computer/overview.html
Last Accessed. 28-03-2015.

[67] The people of state of New York. http://www.courts.state.ny.us/Reporter/3dseries/2010/2010 07364.htm
Last Accessed. 30-11-2014.

[68] Hillary Clinton BOMBSHELL. http://www.express.co.uk/news/world/726407/Hillary-
Clinton-email-scandal-FBI-Trump-president-elections Last Accessed. 21.11.2016.

[69] Cyber Forensics: Case studies from India. http://prateek-
paranjpe.blogspot.in/p/cyber-forensics-case-studies.html Last Accessed.
12.09.2015.

[70] Cusumano, Michael. Cloud computing and SaaS as new computing platforms. Com-
munications of the ACM 53.4, pp. 27-29. 2010.

[71] Genez, Thiago AL, Luiz F. Bittencourt, and Edmundo RM Madeira. Workflow
scheduling for SaaS/PaaS cloud providers considering two SLA levels. Network Op-
erations and Management Symposium (NOMS), 2012 IEEE, 2012.

[72] Hay, Brian, Kara Nance, and Matt Bishop. Storm clouds rising: security challenges
for IaaS cloud computing. 44th Hawaii International Conference on System Sciences
(HICSS), 2011.

[73] Dikaiakos, Marios D., et al. Cloud computing: Distributed internet computing for IT
and scientific research. IEEE Internet computing 13.5, 2009.

[74] Bruneo, Dario. A stochastic model to investigate data center performance and qos
in iaas cloud computing systems. IEEE Transactions on Parallel and Distributed
Systems 25.3, pp. 560-569, 2014.

[75] Bhardwaj, Sushil, Leena Jain, and Sandeep Jain. Cloud computing: A study of infras-
tructure as a service (IAAS). International Journal of engineering and information
Technology, pp. 60-63, 2010.

[76] Grobauer, Bernd, Tobias Walloschek, and Elmar Stocker. Understanding cloud com-
puting vulnerabilities. IEEE Security & Privacy 9.2 (2011): 50-57.

[77] Armbrust, Michael, et al. A view of cloud computing. Communications of the ACM
53.4 (2010): 50-58.

[78] Khan, Suleman, et al. Cloud Log Forensics: Foundations, State of the Art, and Future
Directions. ACM Computing Surveys (CSUR) 49.1,(2016): 7.

[79] Marty, Raffael. Cloud application logging for forensics. In Proceedings of the 2011
ACM Symposium on Applied Computing. ACM, 2011.

144

[80] Zaferullah, Z., Anwar, F., Anwar, Z.: Digital forensics for eucalyptus. In IEEE Fron-
tiers of Information Technology, pp. 110116, 2011.

[81] Zawoad, Shams, Amit Kumar Dutta, and Ragib Hasan. SecLaaS: secure logging-as-
a-service for cloud forensics. Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security. ACM, 2013.

[82] Guo, H., Jin, B., Shang, T.: Forensic Investigations in Cloud Environments. In: 2012
International Conference on Computer Science and Information Processing (CSIP).
pp. 248251. IEEE.

[83] Dykstra, J., Sherman, A.T.: Acquiring forensic evidence from infrastructure-as-a-
service cloud computing: exploring and evaluating tools, trust, and techniques. Digit.
Investig. 9, S90S98 (2012)

[84] Ruan, K.: Designing a forensic-enabling cloud ecosystem. In: Cybercrime and cloud
forensics, pp. 331344. IGI Global, USA (2013)

[85] J. Dykstra, Cybercrime and Cloud Forensics, in Cybercrime and cloud forensics, K.
Ruan, Ed. USA: IGI Global, 2013, pp. 156185.

[86] Ruan, Keyun, Joe Carthy, and Tahar Kechadi. ”Survey on cloud forensics and critical
criteria for cloud forensic capability: A preliminary analysis.” Proceedings of the
Conference on Digital Forensics, Security and Law. Association of Digital Forensics,
Security and Law, 2011.

[87] Delport, Waldo, Michael Khn, and Martin S. Olivier. ”Isolating a cloud instance for
a digital forensic investigation.” ISSA. 2011.

[88] Li, J., Chen, X., Huang, Q., Wong, D.S.: Digital provenance: enabling secure data
forensics in cloud computing. Future Gener. Comput. Syst. (2013)

[89] Reilly,D., Wren,C., Berry,T.: Cloud computing?: pros and cons for computer forensic
investigations. Int. J. Multimed. Image Process. 1, 2634 (2011)

[90] Marangos, N., Rizomiliotis, P., Mitrou, L.: Time synchronization: pivotal element in
cloud forensics. Secur. Commun. Netw. (2014)

[91] Zawoad, S., Hasan, R.: Digital Forensics in the Cloud (2013)

[92] Ruan, K., Carthy, J., Kechadi, T., Crosbie, M.: Cloud forensics?: an overview. Adv.
Digit. Forensics VII 1526 (2011)

[93] Chen, G., Du, Y., Qin, P., Du, J.: Suggestions to digital forensics in Cloud computing
ERA. In: 2012 3rd IEEE International Conference on Network Infrastructure and
Digital Content, pp. 540544. IEEE, Beijing (2012).

145

[94] Al Fahdi, M., Clarke, N.L., Furnell, S.M.: Challenges to digital forensics: a survey
of researchers & practitioners attitudes and opinions. In: 2013 Information Security
for South AfricaProceedings of the ISSA 2013 Conference, pp. 18 (2013)

[95] Ficco, Massimo. ”Security event correlation approach for cloud computing.” Interna-
tional Journal of High Performance Computing and Networking 1 7.3 (2013): 173-
185

[96] Geethakumari, G., Belorkar, A.: Regenerating cloud attack scenarios using LVM2
based system snapshots for forensic analysis. Int. J. Cloud Comput. Serv. Sci. 1,
134141 (2012)

[97] Grivas S.G., Kumar, T.U., Wache H. (2010) ’Cloud Broker: Bringing Intelligence
into the Cloud - An Event-based Approach’, 2010 IEEE 3rd International Conference
on Cloud Computing, pp. 544-545.

[98] X-Ways: X-Ways technology. http://www.x-ways.net/ Accessed. 12-04-2014.

[99] Sleuthkit: Open Source Digital Forensics. http://www.sleuthkit. org/index.php Ac-
cessed. 19-04-2014.

[100] Taylor,M., Haggerty, J.,Gresty, D.,Hegarty,R.: Digital evidence in cloud computing
systems. Comput. Law Secur. Rev. 26, 304308 (2010)

[101] Almulla, S., Iraqi, Y., Jones, A.: A state-of-the-art review of cloud. In: 2014 ADFSL
9, pp. 728 (2014).

[102] Raghavan, S.: Digital forensic research: current state of the art. CSI Trans. ICT. 1,
91114 (2012).

[103] Kumar, M.: Computer Investigations. http://thehackernews.com/ 2011/09/offline-
windows-analysis-and-data.html Accessed. 25.03.2014.

[104] Dykstra, J., Sherman, A.T.: Design and implementation of FROST:digital forensic
tools for the openstack cloud computing platform.Digit. Investig. 10, S87S95 (2013)

[105] Damshenas, M., Dehghantanha, A., Mahmoud, R., Shamsuddin, S.: Forensics inves-
tigation challenges in cloud computing environments. cyber security. In: 2012 Inter-
national Conference on Cyber Warfare and Digital Forensic (CyberSec), pp. 190194.
IEEE, Kuala Lumpur (2012)

[106] Sang, T.: A log based approach to make digital forensics easier on cloud computing.
In: 2013 Third International Conference on Intelligent System Design and Engineer-
ing Applications, pp. 91 94. IEEE (2013)

146

[107] R. K. L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg, Q. Liang,
and B. S. Lee, TrustCloud: A Framework for Accountability and Trust in Cloud
Computing, 2011 IEEE World Congress on Services, 2011, pp. 584588.

[108] J. Dykstra and A. T. Sherman, Understanding Issues In Cloud Forensics: Two Hy-
pothetical Case Studies, in Proceedings of the 2011 ADFSL Conference on Digital
Forensics Security and Law, 2011, pp. 110.

[109] D. Birk, Technical Challenges of Forensic Investigations in Cloud Computing Envi-
ronments, Workshop on Cryptography and Security in Clouds, 2011, pp. 16

[110] Zawaod S, Hasan R. Cloud forensics: a meta study of challenges, approaches and
open problems. Distrib Parallel Clust Comput 2013. arXiv:1302.6312v1 [cs.DC].

[111] AWS Security Centre A. AWS cloud trail, user guide. 2013. Available at,
https://aws.amazon.com/documentation/cloudtrail/ [Accessed 12.12.14].

[112] CSA.Mapping the forensic standard ISO/IEC 27037 to cloud computing. 2013.
Available at, https://downloads.cloudsecurityalliance.org/initiatives/imf/Mapping-
the-Forensic-Standard-ISO-IEC-27037-to-Cloud- Computing.pdf [Accessed
07.02.14].

[113] INCSR. International narcotics control strategy report (INCSR): treaties and agree-
ments. United States of America: Department of State; 2012. Available at,
http://www.state.gov/j/inl/rls/nrcrpt/2012/vol2/184110. htm [Accessed 08.12.2014].

[114] Taylor M, Haggerty J, Gresty D, Lamb D. Forensic investigation of cloud computing
systems. Netw Secur 2011:4e10

[115] Biggs S, Vidalis S. Cloud computing: the impact on digital forensic investigations.
In: Proceedings of the 2009 International Conference for Internet Technology and
Secured Transactions, (ICITST). London, UK: IEEE; 2009. p. 1e6.

[116] VMI Definition Payne, Bryan D. ”virtual machine introspection.” Encyclopedia of
Cryptography and Security. Springer US, 2011. 1360-1362.

[117] Wang, Lianhai, Ruichao Zhang, and Shuhui Zhang. ”A model of computer live
forensics based on physical memory analysis.” Information Science and Engineer-
ing (ICISE), 2009 1st International Conference on. IEEE, 2009.

[118] Hay, Brian, and Kara Nance. ”Forensics examination of volatile system data using
virtual introspection.” ACM SIGOPS Operating Systems Review 42.3 (2008): 74-82.

[119] Nance, Kara, Matt Bishop, and Brian Hay. ”Investigating the implications of virtual
machine introspection for digital forensics.” Availability, Reliability and Security,
2009. ARES’09. International Conference on. IEEE, 2009.

147

[120] FlorianWestphal, Stefan Axelsson, Christian Neuhaus, and Andreas Polze. Vmi-pl: A
monitoring language for virtual platforms using virtual machine introspection. Digi-
tal Investigation, 11:S85S94, 2014.

[121] Bryan D Payne. Simplifying virtual machine introspection using libvmi. Sandia Re-
port, 2012

[122] Jonas Pfoh, Christian Schneider, and Claudia Eckert. A formal model for virtual
machine introspection. In Proceedings of the 1st ACM workshop on Virtual machine
security, pages 110. ACM, 2009.

[123] Asit More and Shashikala Tapaswi. Virtual machine introspection: towards bridging
the semantic gap. Journal of Cloud Computing, 3(1):114, 2014.

[124] Saberi, Alireza, Yangchun Fu, and Zhiqiang Lin. ”HYBRID-BRIDGE: Efficiently
bridging the semantic gap in virtual machine introspection via decoupled execution
and training memoization.” Proceedings of the 21st Annual Network and Distributed
System Security Symposium (NDSS14). 2014.

[125] Alan L Herrmann and Greg P Nugent. Embedded logic analyzer for a programmable
logic device, May 14 2002. US Patent 6,389,558.

[126] Subodh Nimkar Umesh Bellur. List of operators for comprehensive complex event
processing language framework. IITB, 2010.

[127] Grobler, C. P., C. P. Louwrens, and Sebastiaan H. von Solms. ”A multi-component
view of digital forensics.” Availability, Reliability, and Security, 2010. ARES’10 In-
ternational Conference on. IEEE, 2010.

[128] Alessandro Margara, Gianpaolo Cugola, and Giordano Tamburrelli. Learning from
the past: automated rule generation for complex event processing. In Proceedings of
the 8th ACM International Conference on Distributed Event-Based Systems, pages
4758. ACM, 2014.

[129] Raju, BKSP Kumar, G. Meera, and G. Geethakumari. ”Cloud forensic investiga-
tion: A sneak-peek into acquisition.” Computing and Network Communications (Co-
CoNet), 2015 International Conference on. IEEE, 2015.

[130] Cloudlytics. https://www.cloudlytics.com/main Accessed. 12.02.2016.

[131] Clifton, Brian. Advanced web metrics with Google Analytics. John Wiley and Sons,
2012

[132] Russ Anthony. Detecting Security Incidents Using Windows Workstation Event
Logs. SANS Institute Reading Room, 2013.

148

[133] Pearl, Judea. Causality: models, reasoning and inference. Econometric Theory 19
(2003): 675-685

[134] Textor, Johannes, Juliane Hardt, and Sven Knppel. DAGitty: a graphical tool for
analyzing causal diagrams. Epidemiology 22.5 (2011): 745.

[135] Dempster, Arthur P. Upper and lower probabilities induced by a multivalued map-
ping. The annals of mathematical statistics (1967): 325-339.

[136] Openstack admin guide for analyzing log files. In: http://docs.openstack.org/admin-
guide/cli-analyzing-log-files-with- swift.html. Accessed: 07-12-2016.

[137] Casey, Eoghan. Digital evidence and computer crime: Forensic science, computers,
and the internet. Academic press, 2011.

[138] Carrier, Brian D., and Eugene H. Spafford. ”Defining event reconstruction of digital
crime scenes.” Journal of Forensic Science 49.6 (2004): JFS2004127-8.

[139] Liao, Yi-Ching, and Hanno Langweg. ”Resource-Based Event Reconstruction of
Digital Crime Scenes.” Intelligence and Security Informatics Conference (JISIC),
2014 IEEE Joint. IEEE, 2014.

[140] T. King and P. M. Chen, Backtracking intrusions, in Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, ser. SOSP 2003. New York, NY,
USA: ACM, 2003, pp. 223 to 236.

[141] C. Verbowski et al., Flight data recorder: Monitoring persistent-state interactions to
improve systems management, in 7th Symposium on Operating Systems Design and
Implementation (OSDI 2006), November 6-8, Seattle, WA, USA.

[142] Kristinn.: Mastering the super timeline with log2timeline. In: SANS Institute (2010).

[143] Olsson, Jens, and Martin Boldt.: Computer forensic timeline visualization tool. In:
digital investigation, pp. S78-S87, Elsevier, 2009.

[144] Buchholz, Florian P., and Courtney Falk.: Design and Implementation of Zeitline: a
Forensic Timeline Editor. In: DFRWS. 2005

[145] Hargreaves, Christopher, and Jonathan Patterson.: An automated timeline reconstruc-
tion approach for digital forensic investigations. In: Digital Investigation, pp. S69-
S79, 2012.

[146] Gladyshev, Pavel, and Ahmed Patel. Finite state machine approach to digital event
reconstruction. Digital Investigation 1.2 (2004): 130-149.

149

[147] Khan, M. N. A., Chris R. Chatwin, and Rupert CD Young. A framework for post-
event timeline reconstruction using neural networks. digital investigation 4.3 (2007):
146-157.

[148] Case, Andrew, et al. FACE: Automated digital evidence discovery and correlation.
digital investigation 5 (2008): S65-S75.

[149] Thorpe, Sean, Indrajit Ray, and Tyrone Grandison. A secure Log Cloud Forensic
Framework. Proceedings of the International Conference on Cybercrime, Security
and Digital Forensics. Glasgow, UK. 2011.

[150] Pearl, Judea. Causality: models, reasoning and inference. Econometric Theory 19
(2003): 675-685.

[151] Openstack4j-Fluent Openstack SDK for java, http://www.openstack4j.com/javadoc/.
Last Accessed: 03-04-2014.

[152] Batista, Gustavo EAPA, Ronaldo C. Prati, and Maria Carolina Monard. A study of
the behavior of several methods for balancing machine learning training data, ACM
Sigkdd Explorations Newsletter 6.1 (2004): 20-29.

[153] Wang, Wei. A graph oriented approach for network forensic analysis. IOWA state
university, Digital Repository, 2010.

[154] Backup Azure virtual Machines, July 2016. Available at:
https://azure.microsoft.com/en-in/documentation/articles/backup- azure-vms/
Accessed. 12.09.2016.

[155] Amazon EBS snapshots, (Accessed) June 2016. Available at:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSSnapshots.html
Accessed. 12.07.2016.

[156] Belorkar, Abha, and G. Geethakumari. Regeneration of events using system snap-
shots for cloud forensic analysis. Annual IEEE India Conference. IEEE, 2011.

[157] Almulla, Sameera, Youssef Iraqi, and Andrew Jones. A Distributed Snapshot Frame-
work for Digital Forensics Evidence Extraction and Event Reconstruction from
Cloud Environment. IEEE 5th International Conference on Cloud Computing Tech-
nology and Science (CloudCom), . Vol. 1. IEEE, 2013.

[158] Roussev, Vassil, et al. Cloud forensicsTool development studies & future outlook.
Digital Investigation, 2016.

[159] De Marco, Lucia, M-Tahar Kechadi, and Filomena Ferrucci. Cloud forensic readi-
ness: Foundations. Digital Forensics and Cyber Crime. Springer International Pub-
lishing, 2013. 237-244.

150

[160] Kebande, Victor R., and Hein S. Venter. A Cloud Forensic Readiness Model Using a
Botnet as a Service. The International Conference on Digital Security and Forensics
(DigitalSec2014). The Society of Digital Information and Wireless Communication,
2014.

[161] Raju, BKSP Kumar, and G. Geethakumari. An advanced forensic readiness model
for the cloud environment. International Conference on IEEE Computing, Commu-
nication and Automation (ICCCA), 2016.

[162] Dept. of statistics and operations, Spatio-temporal models,
University of North Carolina at Chapel Hill. Available at:
http://www.stat.unc.edu/faculty/rs/s321/spatemp.pdf Accessed. 25.07.2014.

[163] Pelekis, Nikos, et al. Literature review of spatio-temporal database models. The
Knowledge Engineering Review 19.03 (2004): 235-274.

[164] Fernndez, Delia Cabrera, Rolando Grave de Peralta Menndez, and Sara L. Gonzlez
Andino. Some limitations of spatio temporal source mod- els. Brain topography 7.3
(1995): 233-243.

[165] Gehani, Ashish, and Dawood Tariq. SPADE: support for provenance au- diting in
distributed environments. In proceedings of the 13th International Middleware Con-
ference. Springer-Verlag New York, Inc., 2012.

[166] Somak Das, ProTrack: A Simple Provenance tracking Filesystem, MIT.

[167] Wagner, Alan. ProFS: A lightweight provenance file system, MIT, 2012.

[168] Muniswamy-Reddy, Kiran-Kumar, Peter Macko, and Margo I. Seltzer. Provenance
for the Cloud. FAST. Vol. 10. 2010

[169] Amerini, Irene, et al. A sift-based forensic method for copymove attack detection and
transformation recovery. IEEE Transactions on Information Forensics and Security
6.3, pp. 1099-1110, 2011.

[170] Sarala, R. et.al. Information security risk assessment under uncertainty using dy-
namic Bayesian networks. International Journal of Research in Engineering and
Technology, pp. 304-309, 2014.

[171] Roger A. Grimes, 7 sneak attacks used by today’s most devious hack- ers, Avail-
able at: http://www.infoworld.com/article/2610239/malware/7-sneak-attacks-used-
by-today-s-most devious devious-hackers.html Accessed. 12.05.2016.

[172] Battistoni et.al. CURE: Towards enforcing a reliable timeline for cloud forensics:
Model, architecture, and experiments. Computer Communications, 2016.

151

[173] Carrier, Brian. File system forensic analysis. Addison-Wesley Professional, 2005.

[174] Spyridopoulos T. and Katos V. (2013) Data Recovery Strategies for Cloud Environ-
ments, Cybercrime and Cloud Forensics: Applications for Investigation Processes,
Ed. 623 Ruan K, IGI Global, December 2012.

[175] Calhoun W, Coles D. Predicting the types of file fragments. In: Proceedings of the
2008 Digital Forensics Research Conference (DFRWS), 2008.

[176] Axelsson S. The normalized compression distance as a file fragment classifier. In:
Proceedings of the 2010 Digital Forensics Research Conference (DFRWS), 2010.

[177] Conti G, Bratus S, Sangster B, Ragsdale R, Supan M, Lichtenberg A, et al. Auto-
mated mapping of large binary objects using primitive fragment type classification.
In: Proceedings of the 2010 Digital Forensics Research Conference (DFRWS), 2010

[178] Li Q, Ong A, Suganthan P, Thing V. A novel support vector machine approach to
high entropy data fragment classification. In: Proceedings of the South African In-
formation Security Multi Conference (SAISMC 2010); 2010.

[179] Jeon, Jiwoon, W. Bruce Croft, and Joon Ho Lee. Finding semantically similar ques-
tions based on their answers. Proceedings of the 28th annual international ACM SI-
GIR conference on Research and development in information retrieval, 2005.

[180] Zhang, Wen, Taketoshi Yoshida, and Xijin Tang. A comparative study of TF-IDF,
LSI and multi-words for text classification. Expert Systems with Applications 38.3
pp.2758-2765, 2011.

[181] Kavulya, Soila P., et al. Failure Diagnosis of Complex Systems. Resilience Assess-
ment and Evaluation of Computing Systems. Springer Berlin Heidelberg. pp 239-
261, 2012.

[182] NIST cloud computing forensic science challenges. (2014). [Online]. Avail-
able: http://csrc.nist.gov/publications/drafts/nistir-8006/draft nistir 8006.pdf Last Ac-
cessed. 27.01.2015

[183] Tifiany, Michael. A survey of event correlation techniques and related topics. Re-
search paper, Georgia Institute of Technology, 2002.

[184] Dayan, Tal. Event correlation in cloud computing. Google U.S. Patent Application
12/841,371, 2012.

[185] Bohra, Ata E. Husain, and Vipin Chaudhary. VMeter: Power modelling for virtual-
ized clouds. IEEE International Symposium on Parallel and Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010.

152

[186] Yi, Sangho, Derrick Kondo, and Artur Andrzejak. Reducing costs of spot instances
via checkpointing in the amazon elastic compute cloud. 3rd International Conference
on Cloud Computing (CLOUD), IEEE.

[187] Ahmad, Mushtaq. Security risks of cloud computing and its emergence as 5th utility
service. Information Security and Assurance. Springer Berlin Heidelberg, pp. 209-
219, 2011.

[188] Garfinkel, Simson L. Forensic feature extraction and cross-drive analysis. digital in-
vestigation 3 : PP 71-81, 2006.

[189] Case, Andrew, et al. FACE: Automated digital evidence discovery and correlation.
digital investigation: S65-S75, 2008.

[190] Zeng, Yuanyuan, Xin Hu, and Kang G. Shin. Detection of botnets using combined
host-and network-level information. IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), 2010.

[191] Flaglien, Anders, Katrin Franke, and Andre Arnes. Identifying malware using cross-
evidence correlation. Advances in Digital Forensics VII. Springer Berlin Heidelberg,
pp 169-182.

153

Appendix I
Openstack Cloud Test Bed

Many organizations are using Openstack cloud for managing their daily business activ-
ities. Openstack or any cloud reduce the operational and maintenance costs. In this thesis,
we validated the proposed approaches using Openstack private cloud test bed.

Openstack is a cloud computing platform which contains many inter-operable services.

• Dashboard: This is an interface between the user and the cloud. Using dashboard, the
user can receive the services from the cloud environment.

• Compute (nova): The complete cycle of an instance is managed using this service
starting from scheduling to termination.

• Object storage: All the unstructured objects are stored and retrieved via RESTful API.

• Block Storage (cinder): This provides persistent capabilities for each instance in terms
of volumes. The volumes can be disassociated from an instance and can be attached
to any other instance at the tenant level.

• Identity service (keystone): This service authorizes and authenticates all the running
cloud services.

• Image service (Glance): This is used to store and retrieve the images and this is mainly
used during instance provisioning.

• Telemetry (Ceilometer): This service monitors the resource usage at the instance and
tenant level and helps in scaling.

Openstack icehouse can be deployed using two different types of architectures. (1)
Legacy networking and (2) Neutron networking. Both the type of architectures provide the
same services to the end user and only the number of nodes required for the installation
differs. In this thesis, we use Openstack cloud testbed with legacy networking architecture
(see below).

Details of configuration are as follows:

• controller node : hostname - controller

– em1 : external network (172.16.6.xxx)

– em2 : management network (10.0.0.11)

154

Figure A.1: Openstack cloud test bed setup in our lab

• compute node : hostname compute

– em1 : external network (172.16.6.xxx)

– em2 : management network (10.0.0.31)

• Storage node : hostname Block Storage

– em1 : external network (172.16.6.xxx)

– em2 : management network (10.0.0.41)

• Storage node : hostname Object Storage

– em1 : external network (172.16.6.xxx)

– em2 : management network (10.0.0.51)

Compute node uses a FlatDHCP manager. After installing the specified cloud services,
we can create instances using the openstack dashboard and then use the cloud capabilities.

155

Appendix II
Developed CFI Tool

We developed a tool named Cloud Forensic Investigator (CFI) which is first of its kind
to perform forensic investigation in the IaaS cloud environment.

Design of the CFI tool

Before we start developing CFI, we had many designs of the tool at multiple stages. Here,
we present the main flow of the tool in terms of its various phases.

The crime scene is the virtual and physical infrastructure of the cloud provider where
the evidences of the crime exist. The investigation includes five major stages - identifica-
tion, acquisition, preservation, analysis and presentation. Proposed conceptual diagram of
the process of forensic investigation in cloud systems is given in the below figure. For any
investigation to proceed, the investigator must have access to the cloud infrastructure. If
the investigator is a trusted third party, the CSP provides credentials to log in to the in-
frastructure, thereby also ensuring access control over him via roles, privileges and other
policies.

The first step of investigation is to identify artifacts to be collected and analyzed. The
type of artifacts chosen depends on the type of incident reported. In cloud forensics, the
artifacts relevant to investigation form a superset of those required for traditional digital
forensics. As virtualization is the backbone of multi-layered cloud systems, artifacts col-
lected from the virtual layer are as important as those from the underlying software and
hardware layers. This includes artifacts from the Virtual Machine (VM) instances as well
as those from the hypervisor or Virtual Machine Monitor (VMM). Once the artifacts are
identified, they should be cloned or imaged perfectly without causing any change to their
original state. Preservation ensures integrity of the artifacts collected. Usually an investiga-
tor generates a one-way checksum of the original artifact as well as its copy to ensure that
its state is preserved. Any modification to the artifact will change the checksum, which can
be identified during verification.

Acquisition is the phase during which we collect chosen artifacts for analysis. As most
of the artifacts relevant to cloud forensics are at the virtual layer, static analysis alone is not
sufficient. The investigator might need memory images for analyzing running processes and
other volatile information. As shown in the below figure, various types of artifacts can be
collected from various layers of the cloud. From the Host OS, the investigator can collect
access logs, event logs and so on. Also, all the services of the cloud provider run at the host
OS. Hence service logs pertaining to the specific cloud architecture can also be found at

156

Figure A.2: Conceptual model for the developed CFI tool

the host OS. The hypervisor logs and metadata regarding VMs are also available at the host
OS. The guest OS of the virtual machines contain logs pertaining to user access and usage.
These along with snapshots, images and other artifacts obtained by live acquisition provide
the baseline for forensic analysis.

During the analysis phase the data collected during the acquisition phase is extracted
and scrutinized for identifying relevant information suggesting malicious activity. Cloud
forensics investigation typically involves huge volumes of data. Hence we have to filter the
content based on the reported incident. For example, if we know the details of the user
suspected in the investigation we can eliminate log entries from other users and focus only
on the person of interest.

In some scenarios, the data may be hidden or even deleted. To recover such obstructed
content, the investigator may have to employ recovery techniques. In cloud forensics, due to
the presence of volatile data, we might need to use live forensics along with static forensic
analysis.

Evidences considered by the CFI tool

The developed Cloud Forensic Investigator (CFI) tool capabilities can be categorized into
three phases- Acquisition, Analysis and Reporting. The CFI tool can acquire the following
evidences from the IaaS cloud environment.

157

Artifact Acquisition Phase

• vDisk: Each virtual machine will have its own persistent storage and it is securely
acquired and transferred to the investigators environment.

• vRAM: The target virtual machines RAM is imaged using light weight kernel imager
and it is then transferred to the system where CFI is running. The tool ensures the
evidence integrity at multiple levels.

• Service logs: The selected logs by the investigator are pre-processed at the cloud side
and the tool facilitates to query them using multiple filters.

• Snapshots: All the available snapshots of the target virtual machine are shown to
the investigator. Then the selected snapshots were transferred to the investigators
environment. We calculate the checksum of the snapshot at the receiver end and
verify that against with the actual checksum at the cloud end.

Artifact Analysis Phase

Once the evidences are acquired to the system where the CFI tool is running then the tool
provides various analysis capabilities i.e.

• vDisk: The acquired vDisk format is Qcow2 and its file system is completely ex-
tracted. The tool can tag the files according to the investigators requirement, can
detect the obfuscated files, can sort the files according to the file type, can gener-
ate the visual timeline, can detect the hidden files, can show the complete metadata
associated with the file system level and file level etc.

• vRAM: The tool provides various networking, system and process level information.
For example, the process level data that the tool can provide is, list of active pro-
cesses, prints a parent/child relationship, detecting hidden processes, cross-reference
of processes based on multiple sources, open file descriptors and their paths for each
running process etc.

• Service logs: The tool provides events in the service logs which pertains to the se-
lected instance from the target tenant. This module also facilitates the investigator
with tuple and attribute filters.

• Snapshots: Each loaded snapshot into the CFI tool can perform indexing, cross arti-
fact analysis, viewing capabilities for various file types, gallery view of the images,
query engine etc.

Finally, CFI can generate comprehensive report including all the logical conclusions
made during the process of investigation. The report also stores all the case details, tenant
details, evidences acquired and associated metadata.

158

Glossary

Incident: This violates the existing security policies of the underlying cloud environment
and then the nodes/virtual machines hosted in the cloud behaves unexpectedly.

Cloud Incident Handler (CIH): In this thesis, we consider CIH as an entity who can handle
cloud incidents using digital forensic practices.
Cloud Tenant: He/she is a consumer of cloud services where it can have multiple users and
many virtual machines (or instances)

Evidences: To conduct investigation, the forensic examiner needs the traces of the occurred
incident which are available as a form of evidence. The four major evidences in the IaaS
cloud environment are vRAM, Service logs, Snapshots and vDisk. The evidence (or arti-
fact) to choose depends on the type of the occurred incident.

Actors: In the entire process of cloud incident handling, various actors are involved i.e.
Cloud Service Provider (CSP), is an on-demand service facilitator to the customer on rental
basis ; Incident Handler in our case, is a forensic expert and he/she can be given support by
the CSP organization; Cloud carrier, is the network provider that facilitates the customer to
receive configured cloud services.

Virtual Machine Monitor (VMM): This is also called as Hypervisor. VMM hosts all the
virtual machines and provides the guest operating system to manage its operations using
virtual operating platform.

Virtual Machine Introspection (VMI): This technique monitors the target virtual machine
and captures the guest operating system events from the VMM level. The acquired events
through VMI are less contaminated and they increase the chance of legal admissibility in
the court of law.

Hypothesis generation: In general, the cloud evidences are of huge size and it is difficult
for the investigator to generate the hypothesis about the occurred incident. But once the
framed hypothesis is accurate, it further benefits the investigator to generate quick logical
conclusions about the current case being investigated.

Provenance: It is metadata which can represent the history of an object in the target evi-
dence.

159

Event Correlation: It provides the association among two or more events and helps the
incident handler to get more comprehensive picture about the occurred incident.

Cloud Forensic Readiness: This can identify the possible sources of evidences before the
incident or while the incident is happening.

Digital Forensics: Scientific principles used by the investigator to handle the digital crime
scene.

Encase: This is a forensic tool which is used to conduct digital investigation in a forensi-
cally sound manner.

FTK: This is a standard digital forensic tool which can help the investigator to have quick
logical conclusions and can increase the admissibility of the generated report.

Sluethkit: This is an open source digital forensic tool available for three major operating
systems- Linux, Windows and Mac.

160

Biography: BKSP Kumar Raju Alluri

Mr. BKSP Kumar Raju is a Research Scholar in BITS Pilani Hyderabad Campus. He joined
in BITS in the academic year 2013-14. His research interests include Cloud Computing,
Digital Forensics, Operating systems, and Distributed Systems. Previously, he completed
his M.Tech from University College of Engineering, JNTUK, VZM in 2013.

Mr. Kumar Raju is a part of DIT funded project on Design and development of Cloud
Forensic Toolkit. Recently, the project has successfully completed and then deployed to
DIT, Central Government of India. The tool developed has taken appreciation from various
Cyber experts from industries and government agencies.

He also published papers in many international conferences (IEEE, ACM, Springer) and
peer-reviewed journals (Springer, Elsevier) as part of his Ph.D work. Also, during M.Tech,
he had published his work in IEEE international conferences. He is an organizing member
for the two events conducted for showcasing the developed tool and its capabilities.

161

Biography: Dr. G. Geethakumari

Dr Geetha joined the Dept. of Computer Science, BITS Pilani, Hyderabad Campus in 2008.
Prior to this, she worked as a faculty at the National Institute of Technology, Warangal.
Dr Geetha received Ph.D. in Computer Science from University of Hyderabad. Her Ph.D.
thesis was titled Grid Computing Security through Access Control Modelling. Dr. Geetha
has many international publications (in reputed conferences and peer-reviewed journals) to
her credit. Her present areas of research interests include: information security, cloud com-
puting - cloud security challenges and IoT security concerns like data protection and privacy.

Dr Geetha has successfully executed a funded project on Cloud Forensics sponsored by
DeitY, Govt. of India and is also a Project Review Steering Group (PRSG) member for
a DIT-funded project on Cloud Interoperability. She organized a Symposium on Cloud
Computing and Digital Forensics (SoC-D 2015) on September 4, 2015 in BITS Pilani, Hy-
derabad Campus. As part of the funded project on Cloud Forensics, Dr Geetha organized
a tech showcase event on January 30th, 2017 at BITS Pilani, Hyderabad Campus. Titled
”Unveiling CFIT: Cloud Forensic Investigator Toolkit - A Technology Showcase”, the event
was aimed at bringing out the design and development aspects of CFIT.

Dr Geetha got elevation to Senior Member Grade, IEEE from February, 2018. Her pub-
lications have reached over 1200 reads and 160 citations in ResearchGate. Dr Geetha has
produced four Ph.Ds. Presently she is guiding two scholars. A research article written by
Dr Geetha and Dr K P Krishnakumar titled Detecting misinformation in online social net-
works using cognitive psychology, was cited in a book Truth Decay: An Initial Exploration
of the Diminishing Role of Facts and Analysis in American Public Life, authored by Jen-
nifer Kavanagh and Michael Rich and published in January 2018. The research paper titled
An Efficient Secure Data Aggregation Technique for Internet of Things Network: An Inte-
grated Approach Using DB-MAC and Multi-path Topology and co-authored by Dr Geetha
and Sruthi Sagi has been cited in a paper in the IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, June 2017 Edition.

Dr Geetha has been in the forefront of technical activities at BITS-Pilani, Hyderabad Cam-
pus. She has been the Faculty Advisor for Computer Science Association during 2008-2011.
Presently she is the IEEE Student Branch Counselor, BITS-Pilani, Hyderabad Campus. She
is also the Coordinator for the Linux User Group, BITS Pilani, Hyderabad Campus. Dr.
Geetha is a Senior Member, IEEE as well as Member, IEEE Computer Society. She is also
a Professional Member, ACM. She was the Organizing Committee Member for the IEEE
INDICON Conference conducted in BITS Pilani, Hyderabad Campus during December

162

16 - 18, 2011. Dr Geetha was the Publicity Co-Chair for the IEEE Prime Asia Confer-
ence hosted by BITS Pilani, Hyderabad Campus during December 5-7, 2012. She was the
Organizing Committee Member for the Workshop on Advances in Image Processing and
Applications held in BITS Pilani, Hyderabad Campus during October 26 - 27, 2013. She
was in the Organizing Committee for the National Seminar on Indian Space Technology -
Present and Future (NSIST-2014) held at BITS Pilani Hyderabad Campus on 1st May, 2014.

Dr Geetha has given many guest lectures and tutorial sessions on topics in emerging areas
such as Internet of Things (IoT) security, cyber security, and cloud computing security. She
has been a member of the Technical Program Committees of various IEEE International
Conferences. An extract from the paper ’A taxonomy for modelling and analysis of diffu-
sion of (mis)information in social networks’, co-authored by Dr Geetha and published in
the International Journal of Communication Networks and Distributed Systems, Vol. 13,
No. 2, 2014, pp.119-143, by Inderscience Publishers, was selected for a press release on
Semantic attacks in online social media.

