
Energy Efficient Multicore Scheduling

Algorithms for Real Time Systems

THESIS

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

MAYURI A. DIGALWAR

Under the Supervision of

Prof. Sudeept Mohan

and

Prof. Biju K. Raveendran

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

2016

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (Rajasthan)

CERTIFICATE

This is to certify that the thesis entitled "Energy Efficient Multicore Scheduling

Algorithms for Real Time Systems" and submitted by Mrs. Mayuri A. Digalwar, ID

No. 2009PHXF432P, for award of Ph.D. degree of the institute embodies original work done

by her under our supervision.

_____________________ _____________________

Signature of Co-Supervisor Signature of Supervisor

Name: BIJU K. RAVEENDRAN Name: SUDEEPT MOHAN

Designation: Assistant Professor Designation: Professor

Department of CSIS, Department of CSIS,

BITS, Pilani, Goa Campus BITS, Pilani, Pilani Campus

Date: Date:

ii

Dedicated to

My Family

iii

Acknowledgement

__

 My journey of Ph.D. required the countless and selfless support, generosity and time

of many people in my personal and academic life. I am glad to take the opportunity to

acknowledge and thank all of them.

 I am deeply grateful to Prof. Sudeept Mohan, my supervisor, for his constant support,

guidance and kindness during my pursuit in Ph.D. degree. This work would not have been

possible without his guidance and involvement, his support and encouragement on daily

basis from the beginning till this moment. His zeal of perfection and commitment towards

work always inspired me to do more. He has always been a great advisor, teacher and mentor

for me in my research as well as in my academic career. I am thankful to him for having long

discussions with me and giving me invaluable suggestions which helped me to grow my

understanding and gain maturity in research. I particularly appreciate him for finding time

from his busy schedule whenever I asked for it. I deeply express my gratitude and thank him

for his support and concern.

 While many students are fortunate to have a single supervisor, I have been blessed

with two. I am deeply grateful to Prof. Biju K. Raveendran, my co-supervisor, for his

invaluable guidance and support throughout my Ph.D. work. He has been a constant source

of encouragement to me. His expertise and experience further enriched my knowledge and

understanding in research. The discussions with him have always shown me new directions

and made me curious to go into the depth of concept. Since he is located in BITS Pilani, Goa

campus, we use to interact with each other through skype calls and emails. I am thankful to

him for making this research work successful under this constraint of location.

 I am thankful to Prof. Souvik Bhattacharyya, Vice Chancellor, BITS Pilani and Prof.

Ashoke Kumar Sarkar, Director, BITS Pilani, Pilani campus for giving me an opportunity to

pursue my Ph.D. research with financial support. I am thankful to Prof. Sanjay Kumar

Verma, Dean, and Prof. Hemant R. Jadhav, Associate Dean, Academic Research Division

(Ph.D. Programme) for providing necessary guidelines and extending full support, which

were very important for the successful completion of this thesis. I would like to thank Prof.

S.C. Sivasubramanian, Dean, Administration and Prof. J.P. Misra, Unit Chief, Information

iv

Processing Centre for their encouragement and support during the entire duration of this

research.

 Besides my advisors, I would like to thank to my Doctoral Advisory Committee

(DAC) members, Prof. S. Gurunarayanan, Dean, WILP and Dr. Abhishek Mishra, Assistant

Professor in Computer Science and Information Systems for evaluating my work and giving

me valuable comments and suggestions. I also thank all the reviewers of various conferences

and journals for reviewing our research papers and providing their valuable comments and

suggestions for improvement.

 I am thankful to the Head of the Department, Prof. Rahul Banerjee for all his support

in granting funds for attending conferences and his constant encouragement throughout. I

would like to thank the Convener and all members of Doctoral Research Committee (DRC)

for their constant support and guidance. My sincere thanks also go to Prof. Sundar

Balasubramaniam, Prof. Navneet Goyal, Prof. Poonam Goyal and Dr. Virendra Singh

Shekhawat. I am grateful to them for giving me valuable feedback and suggestions during

the departmental seminars which had strengthen my work over time. I am also thankful to

Mr. Sanwarmal for his administrative support throughout.

 I thank my fellow colleagues who have been a constant source of motivation,

encouragement and inspiration. Particularly, my friends, Vandana, Avinash and Asma were

always been there to support me technically through stimulating discussions. I had received

a big support from them in difficult situations during my research work. I would also like to

acknowledge one of my past post-graduate students, Mr. Pravin Gahukar with whom I have

worked on one of the problems in this thesis.

 A special thanks to my family. Words cannot express how grateful I am to my

mother-in-law, Sau. Ratna Digalwar and father-in-law, Shri. K. M. Digalwar for the

sacrifices made by them on my behalf. Without their constant support and motivation right

from the beginning till this moment, I would not have finished my work peacefully. I deeply

owe to my parents, who motivated and helped me at every stage of my life. I miss a lot my

father, Late. Shri. Nishikant Rajurwar who is not with me to share this moment of happiness.

I would like to show my gratitude towards my mother, Smt. Maya Rajurwar for her love and

trust which gave me strength throughout my life and in this Ph.D. work.

 I owe thanks to a special person, my husband, Prof. Abhijeet Digalwar for his

continued and unfailing love, support and understanding during my pursuit of Ph.D. degree

that made completion of this thesis possible. He was always there with me in the moments

when there was no one to solve my difficulties. I greatly value his contribution and deeply

v

appreciate his belief in me. Last but not the least, I appreciate my son, Akshat for the long

lasting patience and understanding he showed during the entire Ph.D. work and thesis

writing. I consider myself luckiest to have such a loving and caring son.

 Lastly, I thank the Almighty for giving me strength and patience to work.

Mayuri

vi

Abstract

__

 With the advancement of technology and ever increasing demand of portable,

scalable and sophisticated embedded systems, managing energy consumption to prolong the

battery life of embedded devices has become a big challenge. With the advent of multi-core

processors in the embedded market, reducing the energy consumption is becoming

increasingly important for multi-core processors as well.

 Modern multi-core processors consume two types of energy, viz., dynamic and static

energy. Dynamic energy is consumed due to switching activity whereas static energy is

consumed due to increase in leakage current. These processors have capability to

dynamically lower the supply voltage that reduces dynamic energy consumption. However,

reducing supply voltage increases gate delay which requires one to lower operating

frequency. As a consequence, the tasks take more time to execute. In this thesis, we have

focused on real time embedded systems that execute hard and soft real time tasks. The major

challenge for these systems is to optimize energy consumption using dynamic voltage and

frequency scaling (DVFS) without missing the timing constraints of the hard real time tasks

and responsiveness of the soft real time tasks. The energy saving achieved by DVFS is

severely limited with the dramatic increase in leakage power consumption. Therefore, to

minimize the overall energy consumption, there is a need to optimize dynamic as well as

static energy consumption.

 This thesis addresses the issue of overall energy optimization in real time embedded

systems at the operating system level using efficient real time task scheduling algorithms.

The proposed energy efficient scheduling algorithms, Energy Efficient Dynamic Voltage and

Frequency Scaling (EEDVFS) and Energy Efficient Uni-Core Scheduler (EE-UCS) optimize

dynamic energy consumption of uniprocessor. Another proposed energy efficient scheduling

algorithm, Multi-Core Scheduler (MCS) optimizes dynamic energy consumption of

homogeneous multi-core processors. These algorithms are capable of scheduling the hard

and soft real time tasks together. They use dynamic voltage and frequency scaling technique

to reduce dynamic energy consumption. The slack reclamation scheme devised to select the

optimal frequency is very aggressive and achieves maximum energy saving. At the same

time, the method of allocation and scheduling of soft real time tasks helps to achieve

acceptable response time. But the limitation of these algorithms is that they are not capable

vii

of reducing static energy consumption. Therefore, we proposed an energy efficient

scheduling algorithm - Leakage Aware Multi-Core Scheduler (LAMCS), which is an

extension to the previous algorithm MCS. The proposed LAMCS algorithm is capable of

minimizing both dynamic and static energy consumption resulting in overall energy

minimization. LAMCS is also capable of scheduling hard and soft real time tasks together.

Along with DVFS technique, LAMCS uses dynamic shutdown and procrastination schemes

to reduce dynamic as well as static energy consumption.

 A full-fledged simulation tool has been developed as a significant part of this work in

order to implement, test and evaluate the performance of the proposed algorithms. The

simulation tool is divided into two major categories - Task Scheduling and Task Set

Generation. Current simulator includes implementations of Earliest Deadline First (EDF),

EDF with Total Bandwidth Server (TBS) and Deferrable Server (DS), cycle conserving EDF

with TBS and DS for uniprocessor and multi-core processor platforms, DVFS based multi-

core scheduler implementation for mixed work load (MCS), leakage aware scheduler, DVFS

based leakage aware multi-core scheduler (LAMCS) etc. It has modules to generate

synthetic task sets of two types: periodic task sets and mixed task sets. The mixed task sets

contain hard and soft real time tasks. There are other modules which are responsible for the

calculation of various performance metrics such as energy consumption, aperiodic task's

response times, various decision counts such as scheduling points, preemption count,

migration count, cache impact points etc.

 The simulation tool is written in java programming language that makes use of object

oriented paradigm. The graphical User Interface (GUI) of simulator is very user friendly and

is easy to explore and use. The use of abstract classes facilitates addition of new scheduling

algorithms in the current version of simulator. Finally, an important and novel aspect of

simulator is its ability to produce analytical results of the algorithms by plotting various

graphs.

 The proposed algorithms in this work are extensively tested and evaluated using

synthetically generated benchmark suites. The parameters of energy consumption used in all

the experiments are taken from the Transmetta Crusoe processor.

viii

Table of Contents

ACKNOWLEDGEMENT iii

ABSTRACT vi

LIST OF FIGURES xii

LIST OF TABLES xv

LIST OF ALGORITHMS xvi

ACRONYMS xvii

1. Introduction 1

 1.1 Motivation 1

 1.2 Research Background 3

 1.2.1 Processor Energy Consumption 3

 1.2.2 Hardware Platform 4

 1.2.2.1 Classification of Multi-core Processors 5

 1.2.2.2 Memory Architecture 5

 1.2.3 Real Time Task Model 7

 1.2.4 Energy Efficient Real Time Task Scheduling 9

 1.3 Research Objectives 10

 1.4 Methodology 10

 1.5 Thesis Organization 11

2. Literature Review 13

 2.1 Introduction 13

 2.2 Background 14

 2.2.1 Classification of Energy Aware Scheduling 14

 2.2.2 Dynamic Energy Optimization 14

 2.2.3 Overall Energy Optimization 16

 2.3 Scheduling Algorithms for Uniprocessor Platform 17

 2.3.1 Dynamic Energy Saving 17

 2.3.1.1 Periodic Task Model 17

 2.3.1.2 Mixed Task Model 20

 2.3.2 Overall Energy Saving 24

 2.4 Scheduling Algorithms for Multiprocessor Platform 26

 2.4.1 Non Energy Aware Scheduling 26

 2.4.1.1 Periodic Task Model 27

 2.4.1.2 Mixed Task Model 27

ix

 2.4.2 Dynamic Energy Saving 28

 2.4.3 Overall Energy Saving 30

 2.5 Scheduling Algorithms for Multi-core Processor Platform 31

 2.6 Research Gaps and Challenges 41

3. Dynamic Voltage and Frequency Scaling Based Multi-Core Scheduling 43

 3.1 Introduction 43

 3.2 System Model 45

 3.2.1 Energy Model 45

 3.2.2 Processor and Task Model 47

 3.3 Scheduling on Uniprocessor Systems 48

 3.4 Proposed Energy Efficient Uniprocessor based Scheduling Algorithm (EEDVFS) 50

 3.4.1 Notations 50

 3.4.2 EEDVFS Algorithm 50

 3.5 Scheduling on Multi-core Systems 52

 3.5.1 Task Allocation 52

 3.5.1.1 Partitioned Task Allocation Strategy 52

 3.5.1.2 Global Task Allocation Strategy 55

 3.5.1.3 Hybrid Task Allocation Strategy 56

 3.5.2 Task Scheduling 56

 3.6 Proposed Multi-Core Scheduling Algorithm (MCS) 58

 3.6.1 Proposed Algorithm 58

 3.6.2 Schedule of Sample Task Set using MCS Algorithm 62

 3.6.3 Correctness Proof and Schedulability of MCS Algorithm 65

 3.6.4 Algorithmic Complexity of MCS Algorithm 67

 3.7 Parameters for Comparison 68

 3.7.1 Response Time 68

 3.7.2 Scheduling Decision Points 69

 3.7.3 Preemption Count 70

 3.7.4 Migration Count 70

 3.7.5 Energy Consumption 71

 3.8 Experimental Setup 73

 3.9 Results and Discussions 74

 3.9.1 Performance Analysis of Proposed Uniprocessor based Scheduling

Algorithms

74

 3.9.2 Performance Analysis of Proposed Multi-core Scheduling Algorithm

(MCS)

78

 3.9.2.1 Effect on Energy Consumption 78

x

 3.9.2.2 Effect on Response Time 81

 3.9.2.3 Effect on Scheduling Events 83

 3.10 Summary 88

4. Leakage Aware Dynamic Voltage and Frequency Scaling Based Scheduling for

Multi-core Systems

90

 4.1 Introduction 90

 4.2 System Model 91

 4.3 Shutdown Overhead 93

 4.4 Proposed Leakage Aware Multi-core Scheduling Algorithm (LAMCS) 94

 4.4.1 Task Allocation 94

 4.4.2 Voltage and Frequency Scaling 94

 4.4.3 Procrastination and Shutdown 96

 4.5 Schedule of Sample Task Set using LAMCS Algorithm 100

 4.6 Correctness Proof and Schedulability of LAMCS Algorithm 104

 4.7 Algorithmic Complexity of LAMCS Algorithm 108

 4.8 Energy Calculations for Proposed LAMCS Algorithm 109

 4.9 Results and Discussions 110

 4.9.1 Performance Analysis of Proposed LAMCS considering only Periodic

Tasks

111

 4.9.2 Performance Analysis of Proposed LAMCS considering Mixed Task sets 113

 4.9.2.1 Effect on Energy Consumption 113

 4.9.2.2 Effect on Response Time 118

 4.9.2.3 Effect on Scheduling Events 121

 4.9.3 Comparison of Static Energy Consumption 124

 4.10 Summary 126

5. Task Set Generation and Scheduler Simulator: STREAM 128

 5.1 Introduction 128

 5.2 Background 129

 5.3 Architecture of STREAM 132

 5.3.1 General Purpose Design 132

 5.3.2 Subsystem Architecture 133

 5.3.2.1 System Modeler 134

 5.3.2.2 Task Set Generator 137

 5.3.2.3 Schedulers, Controllers and Servers 144

 5.3.2.4 Current Design of STREAM 145

 5.3.2.5 Output Subsystem of STREAM 148

xi

 5.3.2.6 Performance Analyzer and Scheduling Profiler 151

 5.3.2.7 Visual Analyzer 155

 5.4 Summary 156

6. Conclusions and Future Work 158

Appendix A 164

References 177

List of Publications 197

Brief Biography of Candidate and Supervisors 198

xii

List of Figures

Figure No. Caption Page No.

1.1 Hierarchical Memory Architecture 7

1.2 Thesis Organization Roadmap 11

2.1 Taxonomy of Energy Aware Real Time Scheduling 15

3.1 Normalized Energy Consumption Vs. Number of Periodic Tasks (Uni-Core) 75

3.2 Normalized Response Time Vs. Number of Periodic Tasks (Uni-Core) 75

3.3 Normalized Energy Consumption Vs. Periodic Utilization (Uni-Core) 76

3.4 Normalized Response Time Vs. Periodic Utilization (Uni-Core) 76

3.5 Normalized Energy Consumption Vs. Number of Aperiodic Tasks (Uni-

Core)

77

3.6 Normalized Response Time Vs. Number of Aperiodic Tasks (Uni-Core) 77

3.7 Normalized Energy Consumption Vs. Number of Periodic Tasks 79

3.8 Normalized Energy Consumption Vs. Periodic Utilization 79

3.9 Normalized Energy Consumption Vs. Number of Aperiodic Tasks 80

3.10 Normalized Energy Consumption Vs. Processing Cores 80

3.11 Normalized Response Time Vs. Number of Periodic Tasks 82

3.12 Normalized Response Time Vs. Periodic Utilization 82

3.13 Normalized Response Time Vs. Processing Cores 83

3.14 Number of Preemptions Vs. Number of Periodic Tasks 84

3.15 Number of Preemptions Vs. Periodic Utilization 84

3.16 Number of Scheduling Decision Points Vs. Number of Periodic Tasks 85

3.17 Number of Migrations Vs. Number of Periodic Tasks 86

3.18 Number of Migrations Vs. Number of Aperiodic Tasks 86

3.19 Number of Migrations Vs. Processing Cores 87

4.1 Flowchart of Proposed LAMCS Algorithm 99

4.2 Timing Diagram for the schedule on Core 0 and Core 1 104

4.3 Normalized Energy Consumption Vs. Periodic Utilization

(WFD partition scheme and task set constitutes only periodic tasks)

112

4.4 Normalized Energy Consumption Vs. Periodic Utilization

(FFD Partition scheme and task set constitutes only periodic tasks)

112

4.5 Normalized Energy Consumption Vs. Number of Periodic Tasks (WFD

Partition Scheme)

114

4.6 Normalized Energy Consumption Vs. Number of Periodic Tasks (FFD

Partition Scheme)

114

4.7 Normalized Energy Consumption Vs. Periodic Utilization (FFD Partition

Scheme)

115

xiii

Figure No. Caption Page No.

4.8 Normalized Energy Consumption Vs. Number of Aperiodic Tasks (FFD

Partition Scheme)

116

4.9 Normalized Energy Consumption Vs. Processing Cores (WFD Partition

Scheme)

117

4.10 Normalized Energy Consumption Vs. Processing Cores (FFD Partition

Scheme)

117

4.11 Normalized Response Time Vs. Number of Periodic Tasks (WFD Partition

Scheme)

119

4.12 Normalized Response Time Vs. Number of Periodic Tasks (FFD Partition

Scheme)

119

4.13 Normalized Response Time Vs. Number of Aperiodic Tasks (FFD Partition

Scheme)

120

4.14 Normalized Response Time Vs. Processing Cores (WFD Partition Scheme) 120

4.15 Normalized Response Time Vs. Processing Cores (FFD Partition Scheme) 121

4.16 Number of Preemptions Vs. Number of Periodic Tasks (Partition Scheme:

FFD)

122

4.17 Number of Scheduling Decisions Vs. Number of Periodic Tasks (Partition

Scheme: FFD)

122

4.18 Number of Aperiodic Migrations Vs. Number of Periodic Tasks (Partition

Scheme: FFD)

123

4.19 Number of Aperiodic Migrations Vs. Number of Aperiodic Tasks (Partition

Scheme: FFD)

123

4.20 Static Energy Consumption Vs. Periodic Utilization (Partition Scheme:

WFD)

125

4.21 Static Energy Consumption Vs. Periodic Utilization (Partition Scheme: FFD) 125

5.1 Abstract Model of STREAM 133

5.2 Architecture of STREAM 134

5.3 Task State Transition Diagram 135

5.4 Processor Entity Diagram 136

5.5 Task set Generation Flowchart 142

5.6 A Sample Task Set File 143

5.7 Class Diagram of Scheduler Module 146

5.8 A partial snapshot showing scheduler execution log trace 149

5.9 A partial snapshot showing parallel per-core execution trace 150

5.10 A partial snapshot of DVFS setting log trace 151

5.11 Snapshot showing per-core utilization statistics 152

5.12 Snapshot showing normalized response time values generated by STREAM

per task set

153

5.13 Snapshot showing different decision counts per task set 154

5.14 Snapshot showing energy consumption per task set 155

xiv

Figure No. Caption Page No.

5.15 A line graph showing normalized energy consumption Vs. periodic utilization 156

A.1 Snapshot of Main Screen of STREAM 165

A.2 Snapshot of a Task Generator 165

A.3 Snapshot showing generation of task sets in SCHED VIEWER 166

A.4 Sample Task Sets File 167

A.5 Scheduler Interface showing selection of input file 168

A.6 Scheduler Interface showing selection of processor core count 169

A.7 Scheduler Interface showing selection of scheduling algorithm 169

A.8 Scheduler Interface showing selection of Task Allocation 170

A.9 Scheduler Interface showing selection of Log Trace Mode 170

A.10 Scheduler Interface showing selection of Analysis Mode 171

A.11 Scheduler Interface showing Running state of Scheduler 171

A.12 Scheduler Interface with SCHED VIEWER 172

A.13 Scheduler Interface when the execution is finished 172

A.14 Sample output showing Energy Consumption 173

A.15 Sample output showing various Decision Points 173

A.16 Sample output showing Aperiodic Response Time 174

A.17 Visual Analyzer showing selection of Analysis Type 174

A.18 Visual Analyzer showing selection of Output Files 175

A.19 Visual Analyzer Labeling a line that will appear on the graph 175

A.20 Visual Analyzer showing Graph and the Text File corresponding to that

graph

176

xv

List of Tables

Table

No.
Caption

Page

No.

2.1 Classification of DVFS techniques and the target uniprocessor scheduling algorithms 23

2.2 Summary of Leakage Aware Uniprocessor Scheduling Algorithms 26

2.3 Summary of Energy Efficient Multiprocessor Scheduling Algorithms 32

2.4 Summary of Energy Efficient Multi-core Scheduling Algorithms 40

2.5 Observations and Research Gaps 42

3.1 Mixed Task Set (MCS) 62

3.2 Schedule on Core 0 using Proposed MCS Algorithm 63

3.3 Schedule on Core 1 using Proposed MCS Algorithm 64

3.4 Scheduler Time Constants 72

3.5 Frequency/Voltage Settings of 70nm Transmeta Crusoe Processor 72

3.6 Energy Consumption over a Hyper Period (MCS) 72

3.7 Performance of the Proposed MCS Algorithm 87

4.1 70nm Technology Constants 92

4.2 Mixed Task Set (LAMCS) 101

4.3 Schedule on Core 0 using Proposed LAMCS Algorithm 102

4.4 Schedule on Core 1 using Proposed LAMCS Algorithm 103

4.5 Energy Consumption over a Hyper Period (LAMCS) 110

4.6 Performance of the Proposed LAMCS Algorithm 126

5.1 Summary of Existing Simulators 130

xvi

List of Algorithms

Algorithm

No.
Caption Page No.

3.1 Proposed EEDVFS Algorithm 51

3.2 Frequency Selection of Proposed EEDVFS Algorithm 52

3.3 Frequency Selection of Proposed MCS Algorithm 61

3.4 Proposed Multi-Core Scheduling Algorithm (MCS) 61

4.1 Frequency Selection of Proposed LAMCS Algorithm 96

4.2 Procrastination Interval Calculation in Proposed LAMCS Algorithm 97

4.3 Proposed Leakage Aware Multi-core Scheduling Algorithm (LAMCS) 98

xvii

Acronyms

DVFS Dynamic Voltage and Frequency Scaling

DPM Dynamic Power Management

wcet worst case execution time

aet actual execution time

CMOS Complementary Metal Oxide Semiconductor

EDF Earliest Deadline First

SNTA Stretching to Next Task Arrival

PBSS Priority Based Slack Stealing

UU Utilization Updating

ccEDF Cycle conserving Earliest Deadline First

laEDF Look ahead Earliest Deadline First

DS Deferrable Server

SS Sporadic Server

CBS Constant Bandwidth Server

TBS Total Bandwidth Server

SNRT Stretching to Next Replenishment Time

BBSS Bandwidth Based Slack Stealing

POSD Periodic Only Slack Distribution

WSE Workload based Slack Estimation

BRS Basic Reclamation Scheme

MRS Mutual Reclamation Scheme

BSS Bandwidth Sharing Scheme

RARA Ratio based Aggressive Reclaim Algorithm

EEDVFS Energy Efficient Dynamic Voltage and Frequency Scaling

GRUB – PA Greedy Reclamation of Unused Bandwidth - Power Aware

DFSA Deadline Based Frequency Scaling Algorithm

LC-EDF Leakage Controlled Earliest Deadline First

OWAA Optimal Workload Aware Algorithm

WFD Worst Fit Decreasing

xviii

FFD First Fit Decreasing

BFD Best Fit Decreasing

AMBFF Adaptive Minimal Bound First Fit

HeLP Hetero Efficiency to Logical Processor

HeLP-TM Hetero Efficiency to Logical Processor - Temporal Migration

GMF Growing Minimum Frequency

LTF Largest Task First

MCS Multi-Core Scheduler

LAMCS Leakage Aware Multi-Core Scheduler

SVFS Static Voltage and Frequency Scaling

Non-DVFS Non- Dynamic Voltage and Frequency Scaling

STREAM
Simulation Tool for Real time Energy efficient scheduling and Analysis for Multi-

core processors

PLL Phase Locked Loops

LLREF Largest Local Remaining Execution time First

- 1 -

Chapter 1

Introduction

 This chapter provides an introduction to the research work presented in this

thesis. It explains the motivation for pursuing this work and describes the research

background. In addition, it introduces the research work carried out in this thesis and

finally, it presents the organization of the thesis.

1.1 Motivation

 With the rapid growth in technology, the contemporary computing systems

available in today's era are shrinking in size and weight, exhibiting high performance and

are capable of communicating with each other over the network. This has made

embedded systems common place in everyday life. Unlike general purpose systems,

embedded systems receive input from different sources through sensors and provide

output to different devices through actuators without human intervention. These systems

are used in many diverse application areas namely, automated industry applications,

automotive applications, avionics, defense applications, consumer electronics etc. Many

of the embedded systems are specially made for performing real time tasks where the

timing constraints are important. Such systems are known as real time embedded

systems. For example, in a missile guided system, the highly critical hard real time tasks

like target sensing and track correction require an independent system mounted on the

missile to sense the target and correct the path of the missile. If these tasks are not

completed in time, the missile may home onto unwanted area and cause disaster (Mall,

2010). The systems which are designed to run such critical applications need powerful

processors which are capable of performing intensive computations. These powerful

processors consume significant amount of energy. Majority of these real-time embedded

systems operate on battery. Therefore, the key design issues of real time embedded

systems are energy efficiency and code density as these systems are expected to perform

complex functionalities within limited power budget and small memory foot print. In

addition, the modern real time embedded systems run applications that are dynamic and

- 2 -

interactive in nature in which it is required to take input from the user while executing

time constrained tasks. These interactive tasks, also known as aperiodic tasks, arrive

arbitrarily in time and need quick response for good performance. Therefore, the

responsiveness of the aperiodic tasks is also an important concern (Shin and Kim, 2006;

Brandenburg and Anderson, 2007; Kato and Yamasaki, 2008).

 Embedded systems are made up of one or more micro-processors / micro-

controllers that are connected via interconnection network. The power supply is non-

uniformly distributed over various components of the system which leads to variable

power density. The components that are used frequently and do intensive computations

consume more power than other components. The areas with more power density

generate more heat and result in increase in temperature and may lead to system failure

(Tiwari et al., 1996). In addition, heat dissipation becomes more challenging in embedded

systems as compared to general purpose systems due to their small size. Therefore,

energy optimization is an important issue in order to get longer battery life as well as for

keeping the system free from failures.

 Majority of the real time embedded systems now-a-days make use of

sophisticated applications which require complex software and hardware. This raises the

need of powerful processor design. In order to design such processors, the designers are

not focusing on miniaturization of single processor since this leads to greater energy

consumption and excessive heat dissipation. Instead, there is an increasing trend towards

multi-core / multi-processor systems for real time embedded applications (Davis and

Burns, 2011).

 Realizing the ever increasing demand of high performance multi-core processors

in battery operated real time embedded systems, many researchers have concentrated on

the energy efficiency of these systems (Yang et al., 2005; Seo et al., 2008; Devdas and

Aydin, 2010; Lu and Guo, 2011; Khandhalu et al., 2011; He and Muller, 2012a; Zhao et

al., 2013). Efforts have been made to minimize the processor energy consumption at

various levels such as architecture level, operating system level, compiler level,

application and system program level etc (Saha and Ravindran, 2012). Many solutions

have been proposed by hardware and software designers to deal with the problem of

- 3 -

energy optimization in embedded systems and researchers are further working in this

area.

 This thesis addresses the issue of energy consumption of multi-core processor

based real time embedded systems at the operating system level with the help of real time

task scheduling and various energy optimization techniques. In this thesis, various energy

efficient task scheduling algorithms are proposed for the optimization of both dynamic

and static energy consumptions on uniprocessor and multi-core platforms. Realizing the

importance of aperiodic tasks, all the proposed scheduling algorithms are capable of

scheduling mixed task sets containing a mix of periodic and aperiodic tasks.

1.2 Research Background

 The work presented in this thesis concentrates on the issue of energy consumption

in multi-core processor based real time embedded systems.

1.2.1 Processor Energy Consumption

 Viredaz and Wallach (2003) have stated that the processor cores consume

majority of the energy as compared to other hardware components. The two main

components of CMOS processor level energy consumption are static energy component

due to leakage current and dynamic energy component due to switching activities (Duarte

et al., 2002). There exist various strategies for reducing dynamic energy consumption like

clock gating, power gating, transistor sizing, low power logic synthesis, DVFS etc

(Benini et al., 1994; Tiwari et al., 1996; Borah et al., 1996; Macii et al., 2008; Li et al.,

2011; Kim et al., 2002; Raja et al., 2006; Roy et al., 2003). Most of the modern

processors in modern embedded systems are equipped with various levels of discrete

voltages and frequencies which allow the execution of tasks at different voltages and

frequencies (Burd and Brodersen, 1995). Such processors are named as DVFS enabled

processors. By exploiting the DVFS feature, various energy efficient operating system

scheduling algorithms were proposed for uniprocessor and multi-core platforms (Shin et

al., 2001; Kim et al., 2002; Pillai and Shin, 2001; Shin and Kim, 2006; Chin, 2013; Seo

et al., 2008; Devdas and Aydin, 2010; Lu and Guo, 2011; Khandhalu et al., 2011).

 Another component of processor energy consumption is the static energy

consumption which is present even when no logic operations are performed. The CMOS

- 4 -

circuit technology is well known for its low static energy consumption. At the same time,

there is a constant need of high performance and higher transistor density resulting in a

continuous decrease in device dimensions in each technology generation (Borkar, 1999).

As a result, there is constant electric field scaling which needs proportionate reduction in

supply voltage. The reduction in supply voltage requires proportionate decrease in

threshold voltage to maintain the desired gate delay. This leads to exponential increase in

sub-threshold leakage current thereby giving rise to a significant amount of static energy

consumption (Jejurikar et al., 2004). Dynamic Power Management (DPM) mechanisms

like dynamic shutdown and procrastination can be used to reduce static energy

consumption. DPM puts the processor in shut down mode whenever possible. The

limitation of DPM is that it suffers from an overhead of mode switching which causes

additional energy and latency penalty (Lee et al., 2003; Jejurikar et al., 2004; Niu and

Quan, 2004; Chen and Kuo, 2007). Therefore, the processor is always turned to sleep

mode whenever the idle interval is sufficiently larger than a certain threshold time

duration called the breakeven time.

1.2.2 Hardware Platform

 Due to increasing demand of higher processor performance and growing capacity

for number of transistors after every 18 to 24 months as stated in Moore's law, processor

designers focused on the circuit miniaturization to increase the clock frequency. But this

has led to the problem of high energy consumption and excessive heat dissipation. For

example, Intel canceled the launch of processor named Tejas in 2004 which was the

successor of the Pentium P4 processor, due to its extremely high energy consumption.

The problem of high energy consumption cannot be completely addressed by scaling the

voltage and frequency alone as this would limit the maximum task execution frequency

thereby restricting the performance. Therefore, in addition to DVFS, the solution to this

problem also requires to use multiple cores on a single chip which can take better

advantage of increasing transistor capacity and can achieve better performance by

exploiting parallelism. In 2007, Intel released the first Core 2 Duo processor. Since then,

there has been a paradigm shift towards the multi-core processors (Davis and Burns,

2011).

- 5 -

1.2.2.1 Classification of Multi-core Processors

 With respect to the task scheduling, the multi-core processor platforms can be

classified into three categories (Davis and Burns, 2011):

(1) Homogeneous: The processor cores are identical where the maximum operating

frequency of all the processor cores is same.

(2) Uniform: The processor cores differ in their maximum operating frequency but it

follows the same instruction set architecture (ISA). i.e., a task which executes at a speed

of x on one core may execute at a speed of 2x on another core.

(3) Heterogeneous: The processor cores have different hardware configurations,

frequencies, ISAs, private caches etc. The processor cores will not have inter-operability

in executing tasks.

1.2.2.2 Memory Architecture

 Memory architecture is an important aspect of any processor platform as it is one

of the most energy consuming parts. Memory architecture is also vital for designing task

scheduling algorithms on multi-core platforms which has private and shared spaces. The

two main categories of memory architecture are distributed and shared memory

architecture (Stallings, 2014). In distributed memory architecture, each core maintains its

own local queue and as a consequence, a processor cannot directly access the

data/instructions stored on another core. On the other hand, in shared memory

architecture, as all the cores have access to a central shared memory space, any processor

core can access the data/instructions belonging to the task of any other processor core.

 The memory architecture has a direct impact on the latency of task migration

from one core to another (Schirmeister, 2007). In distributed memory architecture, as

each core maintains its own local memory, if a task is required to be migrated from one

core to another, it has to transfer the entire task context including instructions and data to

another core. This transition is costly in terms of time consumption. In shared memory

architecture, the instructions and data of all the tasks are stored in a central memory and

are therefore available to all the cores. But serving the read/write requests of all the tasks

simultaneously is time consuming. Moreover, the size of central shared memory should

be much larger than the local memories in distributed memory architecture as it has to

- 6 -

store the instructions and data of all the tasks. This may lead to slower memory access.

Thus a single central memory in shared memory architecture lowers the overall system

performance and is not scalable with increase in number of processor cores.

 In order to overcome the limitations of single central memory in shared memory

architecture, modern processors make use of hierarchical memory architecture

(Schirmeister, 2007). In this architecture, levels of small and fast local memories called

caches are placed between processor and central memory. This type of memory

organization helps to reduce the memory access latency. The instructions and data of the

running task are stored in cache memory resulting in higher availability of

data/instructions at any time instance provided the task has not migrated to another core.

Since the cache memories are small and cannot store all the instructions and data

corresponding to a running task, the requested data/instruction which is not present in

cache memory is brought from the lower level memory.

 In modern processors, there are multiple levels of cache memories. Level 1 cache

(L1) is the smallest and fastest private cache which is nearest to the processor. Level 2

cache is bigger and slower than L1 cache. It may be private or shared amongst the cores.

Both L1 and L2 are generally made up of SRAM. Level 3 cache (L3) is usually made up

of SRAM and DRAM. It is larger and slower than L2 cache and it may be placed on or

off the chip. Hence, as the read/write request goes down the memory hierarchy, it takes

more time to transfer the data from/to the processor.

 In hierarchical memory architecture with one or two levels of cache as local to the

core, the transfer of task context in case of migration is time consuming. Additional time

is required for reloading the data at the target core from the shared higher level cache or

from the shared central memory and invalidating the data in present core. Thus, in both

types of the memory architectures, migration of a task incurs significant overhead

because of the memory access latency. In case of task preemption, the data / instructions

of a new higher priority task gets loaded into all levels of cache memories. When the

previous task resumes, its context may not exist in cache which results in increasing

execution time of the task. Both preemption and migration of a task result in overhead

which may affect the performance of the system. The proposed scheduling algorithms

- 7 -

assume shared memory architecture with multiple levels of cache memories as shown in

figure 1.

1.2.3 Real Time Task Model

 In real time systems, the unit of work which is executed by the processor is

known as job and the set of related jobs is called a task. The real time applications are

composed of real time tasks. These tasks are executed under timing constraints. The real

time constraints (or deadlines) are defined as either hard or soft based on the functional

criticality of the tasks, usefulness of late results and deterministic and probabilities nature

of the constraints. The distinction between hard and soft timing constraints is

quantitatively stated as a function of tardiness of a job. The tardiness of a job measures

the lateness of that job with respect to its deadline. The tardiness is zero if a job

completes its execution on or before its deadline. If a job is late, its tardiness is the

difference between the completion time and its deadline. A job with hard deadline falls

abruptly and may even cause disaster if the tardiness of such jobs is greater than zero. On

the other hand, the usefulness of the result produced by a soft deadline job decreases with

increase in tardiness. Other attributes of a real time task are release time; period/inter-

release time and worst case execution time (wcet). Release time is the time at which the

job is available for execution and period/inter-release time is the time when next job of

the task is released. wcet is the maximum amount of time required to complete the

execution of the job. It mainly depends on the complexity of the job and speed of the

Core 1 Core 2 Core 3 Core 4

L1

Inst

 Cache

L1

Inst

 Cache

L1

Inst

 Cache

L1

Inst

 Cache

L1

Data

 Cache

L1

Data

 Cache

L1

Data

 Cache

L1

Data

 Cache

Shared L2 Cache

Main Memory

Figure 1.1: Hierarchical Memory Architecture

- 8 -

processor. Since real time systems are deterministic in nature, the wcet of a task is known

in prior through analysis and measurement but the actual execution time (aet) is not

known. The wcet of a job is directly impacted by the structure of the program, type of

processor, processor platform, memory architecture, communication network and the

input data. The worst case utilization of a task is defined as the ratio of wcet and period

of that task. It tells the percentage of processor time the task requires for its successful

execution. The total utilization of a task set is the sum of utilizations of tasks in the task

set. It is used for determining the schedulability of the task set. Hyper period (H) of a task

set is defined as the least common multiple (LCM) of the periods of all the tasks in the

task set. The number of jobs produced by the periodic tasks in each hyper period is equal

to

 where n is the number of tasks in a task set and is the period of i

th
 task

(Liu, 2008).

There exist three types of real time tasks: (1) Periodic tasks (2) Aperiodic tasks and (3)

Sporadic tasks. The periodic tasks are the tasks whose jobs arrive at regular intervals and

they have hard deadlines. For example, in a radar system, a task of transmitting/receiving

the radio signals for object detection is a periodic task. As discussed earlier, the real time

system is required to respond to external events that arrive arbitrarily in the periodic task

system; these external events are modeled using aperiodic and sporadic jobs whose

release times are not known apriori. A task is aperiodic if its jobs have either soft

deadlines or no deadlines. The task which adjusts the sensitivity setting of the radar

surveillance system is an example of aperiodic task. Even though, these tasks have no

deadlines, there late response is annoying. Hence, it is important to optimize the

responsiveness of the aperiodic jobs but never at the expense of hard deadline periodic

jobs. In contrast, the tasks that arrive arbitrarily but have hard deadlines are called

sporadic tasks (Liu, 2008). For example, in an automatically controlled train, if the task

of applying brakes for stopping the train is not done as soon as the command to do so is

made, it may cause disaster. In this case, the command to apply the brake is a sporadic

job which arrives arbitrarily but has hard deadline.

 In this thesis, the proposed energy efficient scheduling algorithms schedule mixed

task sets that contain periodic and aperiodic tasks. These scheduling algorithms optimize

- 9 -

energy consumption along with achieving good response time of aperiodic tasks without

missing the deadlines of periodic tasks.

1.2.4 Energy Efficient Real Time Task Scheduling

 The energy efficient task scheduling can be implemented for processors that are

equipped with discrete frequency and voltage settings and are capable of modifying the

frequency and voltage dynamically at run time. The majority of the modern embedded

systems use such processors (Chen and Kuo, 2007).

 DVFS is an effective way of reducing the dynamic energy consumption of low

power embedded systems (Kim et al., 2002). It adjusts the supply voltage and

corresponding clock frequency of the processor dynamically without affecting the

performance of the system. Since the energy consumption of CMOS based processor has

quadratic dependence on supply voltage, lowering the supply voltage effectively reduces

the energy consumption. Therefore, DVFS is popularly used to reduce the processor level

energy consumption of the real time embedded systems (Chen and Kuo, 2007). It is

integrated with the real time task scheduling where at each scheduling decision point, the

frequency and voltage of the processor is decided. Such task scheduling algorithms are

called DVFS based energy efficient task scheduling algorithms.

 There exists another technique known as dynamic power management (DPM) for

reducing static energy consumption (Jejurikar et al., 2004). Static energy dissipation takes

place for all the time except when processor is in shutdown state. According to DPM

technique, the processor can be dynamically shutdown when it is in idle state. However,

putting the processor in shutdown state and then waking it up incurs some overhead

because the processor loses temporal data stored in various forms of memory such as

registers, caches, TLBs etc. Thus, before shutting down, all registers must be saved and

dirty cache lines must be written back to the memory and upon wake up, all the saved

data must be retrieved back to registers, cache lines etc. This results in additional memory

accesses and hence additional energy consumption. In order to decide whether to shut the

processor down or not, idle threshold interval is computed based on the idle state energy

consumption and shutdown overhead. If the idle interval is less than the threshold, then it

is not energy efficient to shutdown the processor.

- 10 -

1.3 Research Objectives

 The aim of this research is to design and develop an energy efficient real time task

scheduling framework for mixed task model containing a mix of hard and soft real time

tasks on homogeneous multi-core processor platform. In order to achieve the aim of this

research work, the following objectives were planned:

1. Design and implementation of energy efficient real time scheduling algorithms for

mixed task sets on uniprocessor platform.

2. Design and implementation of energy efficient real time scheduling algorithm for

dynamic energy optimization considering multi-core processor platform and

mixed task sets.

3. Design and implementation of a real time scheduling algorithm for the overall

energy optimization which includes both static and dynamic energy consumed by

multi-core processor for mixed task sets.

1.4 Methodology

 The objectives defined in the previous section are achieved by the

accomplishment of the following:

1. Study and analysis of the existing energy efficient real time scheduling algorithms

for uniprocessor as well as multi-core/multi-processor platforms.

2. Generation of synthetic task sets containing both periodic and aperiodic tasks for

various utilizations, number of tasks and hyper periods.

3. Design, implementation, validation and analysis of energy efficient scheduling

algorithms for uniprocessor platform.

4. Design, implementation, validation and analysis of scheduling algorithm for

multi-core platform.

5. Design, implementation, validation and analysis of scheduling algorithm for

dynamic energy optimization for multi-core platform.

6. Design, implementation, validation and analysis of a scheduling algorithm for the

overall energy optimization which includes both dynamic and static energy for

multi-core platform.

7. Design and development of a full-fledged software tool which includes the

implementation of basic real time scheduling policies, existing energy efficient

- 11 -

scheduling policies, the scheduling algorithms proposed during the thesis work

and the task set generation algorithm.

1.5 Thesis Organization

 The structure of the thesis is illustrated in figure 1.2. This thesis is composed of

six chapters.

 Chapter 2 provides an overview of on-going research directions in energy aware task

scheduling for uniprocessor, multi-core and multi-processor platforms. It reflects the

diversity of the issue involved in making the task scheduling energy efficient. It discusses

the fundamental study of energy optimization techniques, structure and function of multi-

core processors etc that are necessary in this research work. Together, it provides a

comprehensive overview of the existing literature and open issues to provide foundation

for this research work.

 Chapter 3 presents the scheduling algorithms developed for reducing dynamic

energy. It describes the DVFS based scheduling algorithms for mixed task set for

uniprocessor and multi-core platforms. The algorithms discussed in this chapter are able

to reduce dynamic energy consumption of the processor by meeting all the hard deadlines

Chapter 1. Introduction

Chapter 2. Literature Review

Chapter 3. Dynamic

Energy Optimization

Chapter 4. Overall

Energy Optimization

Chapter 5. Simulation

Tool

Chapter 6. Conclusions

and Future Work

Figure 1.2: Thesis Organization Roadmap

- 12 -

of the periodic tasks and ensuring early response times of aperiodic tasks. But these

algorithms do not take care of reducing the static energy consumption that exists in

processor's idle state.

Chapter 4 further extends the algorithms described in chapter 3 by reducing the static

energy consumption along with the dynamic energy consumption. It integrates DPM and

procrastination techniques with DVFS technique to reduce the overall energy

consumption. The results and analysis show that there is further reduction in processor

energy consumption. The hard deadline of periodic tasks and responsiveness of aperiodic

tasks are taken care in addition to reduction in overall energy consumption.

Chapter 5 illustrates the details of design and implementation of the software

simulation tool called "STREAM". STREAM stands for "Simulation Tool for Real time

Energy efficient scheduling and Analysis for Multi-core processors". It provides the in-

depth explanation of the architecture of the simulation tool, implementation of various

scheduling algorithms and various other novel aspects that are implemented in STRAEM

which are missing in other existing scheduler simulators.

Chapter 6 concludes the thesis by discussing the overall contribution of the research

in the context of the related work in this area. In addition, it discusses limitations of the

work and points to future research directions.

- 13 -

Chapter 2

Literature Review

 This chapter provides an overview of previous research work on energy efficient

real time scheduling algorithms. It introduces a variety of energy efficient scheduling

algorithms existing in the literature on uniprocessor, multi-core and multiprocessor

platforms. The real time task models considered in this literature review are periodic task

model and mixed task model where periodic and aperiodic tasks are scheduled together.

The main focus of the research described in this thesis is the energy efficient real time

scheduling algorithms for mixed task model on multi-core platform.

2.1 Introduction

 In the last decade, we have witnessed a paradigm shift in the embedded systems

domain. The growing demand of portable and battery operated high performance

embedded devices has essentially motivated the researchers to concentrate on two

important aspects: energy optimization and multi-core processors.

 The problem of energy consumption has been addressed at various levels -

architecture level, operating system level, compiler level, application program level and

system program level (Saha and Ravindran, 2012). At the architecture level, energy

consumption can be reduced by improving instruction set architecture, optimizing the

memory subsystem and by managing I/O operations more efficiently. At the operating

system level, energy consumption can be reduced by improving various aspects of

operating systems such as task scheduling, inter-process communication, paging systems

etc. Similarly, the energy consumed by application and system programs can be reduced

by efficient use of data structures and by optimizing the programs using compilers.

 Another major change in hardware design that can help in reducing energy

consumption is the parallel execution of tasks on multiple cores rather than executing

them sequentially on one processor at a very high speed. This is possible due to

increasing growth of number of transistors on a fixed die size. The hardware designers

realized that increasing the complexity of the hardware increases the performance at the

- 14 -

cost of high energy consumption. Therefore, the trend has changed towards utilizing large

number of transistors for constructing multiple cores/processors on a fixed die size

thereby exploiting parallelism and reducing energy consumption.

 In this chapter, we focus on energy saving mechanisms handled at the operating

system level (particularly by using real time task scheduling) on uniprocessor, multi-core

and multiprocessor platforms.

2.2 Background

 We present the research carried out in the area of energy aware real time

scheduling in last two decades. The literature can be classified on the basis of the

different processor platforms and the type of energy that is targeted for optimization.

Early research in late 1990's focused on energy optimization for uniprocessor platform.

Later, after year 2000, majority of the research in energy aware real time scheduling

focused on multi-processor platform. In recent time (after year 2008 till now), researchers

are working on different issues revolving around energy optimization on multi-core

platform.

2.2.1 Classification of Energy Aware Scheduling

 Irrespective of the processor platforms, the existing research can be classified into

two broad categories based on whether the scheduling techniques focus on reduction of

dynamic energy consumption alone or on both dynamic and static energy consumption.

Figure 2.1 shows taxonomy of the literature discussed in this chapter.

2.2.2 Dynamic Energy Optimization

 The tradeoff between performance and energy consumption can be addressed

using energy optimization technique called DVFS. DVFS reduces dynamic energy

consumption without hampering the performance of real time application. It is based on

two important aspects:

 The modern CMOS based processors are equipped with multiple discrete voltage

and frequency levels and are capable of varying operating frequency and supply

voltage dynamically.

- 15 -

 In majority of applications, high performance (or high frequency/speed) is

required only for small fraction of time while rest of the time we can have low

performance (or low frequency/speed).

 DVFS technique works on the idea of varying operating frequency of processor

which in turn varies supply voltage (Weiser et al., 1994). It lowers the frequency when

the processor load (or utilization) is low and increases the frequency when the processor

load (or utilization) increases. It exploits the fact that aet is most of the time less than or

equal to wcet of a task. The difference between wcet and aet is called slack time. This

available slack time is used for slowing down the processor to save energy. Since energy

consumed per cycle with CMOS circuitry scales quadratically with the supply voltage,

DVFS potentially reduces the processor energy consumption through voltage and

frequency scaling. In order to decide, when to execute at higher frequency and when at

lower frequency, it requires the cooperation of operating system scheduler with voltage

and frequency selection circuit. Therefore, DVFS technique is always applied in

coordination with operating system scheduler.

Energy Efficient Real

Time Scheduling

Algorithms

Uniprocessor

Dynamic Energy

Optimization

Dynamic and

Static Energy

Optimization

Multi-processor/

Multi-core

Partitioned

Approach

Global

Approach

Dynamic Energy

Optimization

Dynamic and

Static Energy

Optimization

Dynamic Energy

Optimization

Dynamic and

Static Energy

Optimization

Figure 2.1: Taxonomy of Energy Aware Real Time Scheduling

- 16 -

 When DVFS techniques are applied to submicron or deep submicron regimes, it

leads to increase in static energy consumption, resulting in increase of total energy

consumption (Lee et al., 2003; Jejurikar and Gupta, 2004). This is because, slowing down

the processor execution beyond certain frequency increases leakage current which leads

to increase in static energy consumption and thus increases total energy consumption.

The operating frequency below which static energy consumption dominates dynamic

energy consumption resulting in increase in total energy consumption is called critical

speed (Jejurikar et al., 2004). Thus, DVFS technique is more energy efficient if it does

not scale down below critical speed. If we assume that normalized operating frequency

lies within a range of 0 to 1, then the critical slow down factor (ηcrit) can be defined as

ratio of critical speed (or frequency) to maximum operating frequency. If slow down

factor (ηi) computed by any DVFS technique is less than ηcrit then the computed slow

down factor is raised to ηcrit to save static energy consumption.

 In real time embedded systems, the real time tasks should be executed under

timing constraints. These tasks have hard or soft deadlines before which they should

finish execution. Application of DVFS techniques on real time scheduling algorithm is

challenging because slowing down the processor speed should not cause a task to miss

the deadline.

2.2.3 Overall Energy Optimization

 DVFS limits energy optimization below critical speed due to the dominance of

static energy consumption. In order to overcome this limit and reduce static energy

consumption, shutting down the processor when it has enough idle time is proposed (also

known as DPM mechanism) (Lee et al., 2003; Jejurikar and Gupta, 2004). As shutting

down the processor during idle period may incur overhead, it is required to set a threshold

called break even time to decide whether it is energy efficient to shutdown or not. For

example, the breakeven time of a 70nm Transmeta Crusoe processor is 2 msec (Jejurikar

and Gupta, 2004). In order to stretch the idle period to reduce the number of short

shutdown intervals and also to reduce the shutdown overhead, a technique called

procrastination can be used (Lee et al., 2003; Jejurikar et al., 2004) which delays the

execution of jobs that arrive during idle period to increase the span of idle interval. In this

- 17 -

way, overall energy optimization can be achieved by the combination of slowdown,

shutdown and procrastination techniques.

 Identification of idle and procrastination intervals require the cooperation of

operating system scheduling algorithm. Thus, both DVFS and DPM with procrastination

techniques require the cooperation of scheduling algorithm. Both types of techniques are

applied on real time scheduling algorithms to minimize the overall energy consumption

of real time embedded systems.

2.3 Scheduling Algorithms for Uniprocessor Platform

 We start the review of research on how developments in energy efficient

scheduling algorithms progressed during late 1990s on uniprocessor platform. This was

an era when low power CMOS based microprocessors were introduced (Chandrakasan et

al., 1992; Younis and Knight, 1993; Weiser et al., 1994; Burd and Brodersen, 1995). The

idea of energy optimization by variable voltage and frequency was initially introduced by

Weiser et al. (1994). According to Weiser, DVFS based scheduling techniques utilize the

dynamic slack time generated by the running job upon its completion. Particularly for

real time systems, DVFS takes advantage of the fact that once the real time requirements

of the real time tasks are met; there is no further advantage in increasing the throughput.

Therefore, voltage and frequency scaling techniques take care of meeting the timing

constraints of the real time tasks.

2.3.1 Dynamic Energy Saving

 This section presents the literature on dynamic energy saving using energy aware

real time scheduling algorithms specifically designed for uniprocessor platform. The

algorithms designed for periodic and mixed task models are discussed separately.

2.3.1.1 Periodic Task Model

 There exist various DVFS based real time scheduling algorithms in the literature

which show different ways to utilize and distribute the slack time. Kim et al. (2002) have

done a comparative study of existing energy efficient scheduling algorithms for periodic

task model where they classified the existing algorithms based on the way slack time is

- 18 -

estimated and distributed. They classified the algorithms into three categories: intra-

DVFS, inter-DVFS and hybrid approach.

 Intra-DVFS (Shin et al., 2001; Gruain et al., 2001) algorithms adjust the

frequency and corresponding voltage by utilizing the available slack time within the task

boundary. Inter-DVFS (Kim et al., 2002) algorithms determine the frequency/voltage on

task by task basis at each scheduling point. They distribute the slack time from the

current task for the tasks following it. The hybrid approach follows a mix of these two

strategies.

 Intra-DVFS algorithms are based on the execution paths taken by the application

during run time. When the execution path taken is not the worst case execution path, it

results in slack time. This slack time is used to adjust the frequency and voltage of the

processor. There are two methods under Intra-DVS algorithms: Path-based method and

Stochastic method. In Shin et al. (2001), the authors described the path-based Intra-DVS

method in which initially the execution path is set to worst case execution path. When the

actual execution path deviates from the initially fixed path, for example, by branch

instruction, the slack time is generated and this slack time is utilized for voltage and

frequency scaling. The program locations are identified using static program analysis and

execution time profiling (Shin et al., 2001; Lee and Sakurai, 2000). In Gruain et al.

(2001), the authors described the stochastic method in which the application is initially

started at a low speed and the execution is later accelerated if needed. If the task takes

less than the wcet, then the speed is not raised. The speed is raised or slowed regardless

of the execution paths taken at run time. As compared to the path-based method, this

method does not utilize the slack time effectively. Kim et al. (2002) state that the path-

based Intra-DVFS achieves better performance than stochastic method when the slack

time is limited where as in case of large amount of slack time, the stochastic method

performs better.

 Kim et al. (2002) define the Inter-DVFS algorithm as "run-calculate-assign-run"

strategy to determine the frequency and voltage which can be elaborated as follows: (1)

run the current task (2) upon completion of current task, calculate the maximum

allowable execution time of the next scheduled task (3) assign the frequency and voltage

to the next task (4) run the next task. The Inter-DVFS algorithms differ in performing

- 19 -

step 2 that computes the maximum allowed execution time which includes the wcet and

available slack time.

 The inter-DVFS algorithms consist of two parts (Kim et al., 2002): slack

estimation and slack distribution. Slack estimation identifies the maximum available

slack time from the tasks whereas slack distribution distributes the identified slack time

uniformly among the tasks so that the speed is uniformly reduced during the schedule.

Many inter-DVFS algorithms use greedy approach for slack distribution where all the

available slack time is given to the next ready task. It is widely used because of its

simplicity. In slack estimation based inter-DVFS algorithms, there exist two sources of

slack times: static slack time and dynamic slack time. Static slack time is the extra time

available for the next task that can be statically identified. Dynamic slack time is

identified at run time during task execution.

 The slack estimation and slack distribution methods are different for periodic and

mixed task systems. For periodic task systems, maximum constant speed is a static slack

estimation method in which lowest possible clock speed that feasibly schedules the task

set is calculated based on the worst case utilization of the task set. If the total task set

utilization U is less than 1.0 at maximum frequency fmax, then the frequency of execution

is lowered to U*fmax when the task is scheduled using Earliest Deadline First (EDF) (Kim

et al., 2002; Pillai and Shin, 2001). This method cannot identify dynamic slack time that

exists during the task execution. Kim et al. (2002) proposed three dynamic slack

estimation methods for scheduling periodic task set: Stretching to Next Task Arrival

(SNTA), Priority Based Slack Stealing (PBSS) and Utilization Updating (UU).

 SNTA estimates slack time of the ready task using its next task arrival time

(NTA). Assume the ready task T is scheduled at time t. If the task's NTA is later than (t +

wcet(T)), then the task T can be executed at a lower frequency such that it completes

exactly at its NTA provided the ready queue does not contain any other task. The

algorithms low power priority based scheduling Earliest Deadline First (lppsEDF) and

low power priority based scheduling Rate Monotonic (lppsRM) (Shin et al., 2000) are

based on this approach.

 In PBSS, the slack time generated by early completion of the higher priority task

can be used by the following lower priority task to lower the execution frequency. The

- 20 -

algorithms Dynamic Reclamation Algorithm (DRA) and Aggressive (AGR) are based on

PBSS (Aydin et al., 2001, Aydin et al., 2004). In UU, the total processor utilization is

recalculated using aet of the completed task at each scheduling point so that

frequency/voltage can be scaled accordingly. The algorithms cycle conserving Earliest

Deadline First (ccEDF) and look ahead Earliest Deadline First (laEDF) are based on this

scheme (Pillai and Shin, 2001). The main advantage of this method is its simple

implementation since it has to only update the current processor utilization at each

scheduling point. Saha and Ravindran (2012) have done experimental evaluation of many

of the existing algorithms mentioned above such as ccEDF, laEDF, DRA, AGR etc. The

experimental evaluation is done using the ChroneOS, a real time Linux kernel (Dellinger

et al., 2011) on two hardware platforms: ASUS intel-i5 processor and AMD Zacate mini-

ITX motherboard.

2.3.1.2 Mixed Task Model

 The inter-DVFS algorithms for periodic task systems can be directly applied to

mixed task systems only if aperiodic tasks execute at maximum frequency as slack time

of aperiodic task is not known. Otherwise, there is a need of different slack estimation

schemes where aperiodic tasks are allowed to execute at scaled frequency. Irrespective of

whether aperiodic task is executed at maximum or at scaled frequency, the arbitrary

temporal behavior of the aperiodic tasks requires one to judiciously select the aperiodic

server in order to achieve better response time and reduced energy consumption.

 Various bandwidth preserving servers like Deferrable Server (DS), Sporadic

Server (SS), Total Bandwidth Server (TBS) and Constant Bandwidth Server (CBS) have

been proposed by researchers and are popularly used to schedule mixed task sets (Lui,

2008). Since these servers limit aperiodic task to execute within the available bandwidth,

these algorithms can estimate slack times by using characteristics of bandwidth

preserving servers. Along with slack estimation, these servers have to ensure energy

efficiency as well as responsiveness of aperiodic tasks. Shin and Kim (2006) proposed

four slack estimation schemes, namely, Stretching to Next Replenishment Time (SNRT),

Bandwidth Based Slack Stealing (BBSS), Periodic Only Slack Distribution (POSD) and

Workload based Slack Estimation (WSE).

- 21 -

 SNRT is a modified SNTA scheme which stretches the execution time of the

ready task till arrival time of next task and is applied on DS (Shin and Kim, 2004) and SS

(Shin and Kim, 2006). While executing an aperiodic task, if there is no periodic task in

the ready queue then currently executing aperiodic task can be stretched to min(NTA,R)

where R is replenishment time of aperiodic task. If there is only one periodic task in

ready queue and the server budget (qs) of aperiodic task is 0, then the periodic task can be

stretched to min(NTA,R). Shin and Kim (2006) proposed SS/lpps-RMS which is based

on lpps-RM algorithm (Shin et al., 2000) that uses SNRT scheme with SS for mixed task

set. SNRT gives poor energy performance if aperiodic workload is small. This is because

of the constraint that the periodic task cannot be stretched if qs > 0 which is true most of

the time when aperiodic workload is very low. In order to overcome this limitation,

BBSS scheme is proposed (Shin and Kim, 2006).

 BBSS scheme handles this case by computing slack time as the amount of time

available between current time and NTA of the periodic task excluding remaining

execution budget in qs. Shin and Kim (2006) proposed SS/lppsRM-B algorithm which is

based on BBSS. SS/lppsRM-B is based on lppsRM that uses BBSS with SS for mixed

task set.

 Periodic Only Slack Distribution (POSD) scheme is simpler than SNRT and

BBSS schemes but offers better responsiveness (Shin and Kim, 2006). In SNRT and

BBSS schemes, the periodic as well as aperiodic tasks use slack time to scale down the

frequency but in POSD scheme, the entire slack time is utilized by periodic tasks only

and aperiodic tasks are always executed at full speed. In POSD, the slack time is

estimated using BBSS. This scheme gives better response time with slight degradation in

energy saving. The lppsEDF-P algorithm is based on POSD scheme (Shin and Kim,

2006). Workload based Slack Estimation (WSE) scheme is applied on CBS. Since CBS

does not have fixed intervals, stretching rules of SNRT, BBSS and POSD cannot be

applied on aperiodic task. Here slack time is identified when workload of CBS is less

than the server utilization. CBS/DRA-W algorithm is based on WSE scheme (Shin and

Kim, 2006).

 Aydin and Yang (2004) proposed a composite performance metric, Energy *

Average Response Time. They also proposed three slack reclamation schemes which are

- 22 -

applied on DRA with TBS. These schemes are basic reclamation scheme (BRS), mutual

reclamation scheme (MRS) and bandwidth sharing scheme (BSS). BRS and MRS

dynamically use the slack time while BSS aggressively utilizes the bandwidth of TBS for

slowing down periodic tasks. Kuo (2013) proposed an algorithm, ratio based aggressive

reclaim algorithm (RARA), which is based on DRA and TBS. The slack reclamation

method of RARA performs better than MRS and BSS for the composite metric of energy

and average response time. Min-Allah et al. (2008) proposed an algorithm in which

deadline of TBS is extended based on available server utilization and periodic tasks are

executed at static frequency. Digalwar et al. (2013) proposed an energy efficient DVFS

algorithm EEDVFS that uses UU method for scheduling periodic tasks. The aperiodic

tasks are executed at maximum frequency to achieve reduced response time. The real

time scheduling policies used are EDF and DS.

 There are few other algorithms like Greedy Reclamation of Unused Bandwidth -

Power Aware (GRUB–PA) (Scordino and Lipari, 2006), On-Line DVS algorithm

(OLDVS) (Lee and Shin, 2004) which follow different methods other than the methods

mention above.

 Wu and Wu (2014) proposed an energy efficient algorithm for scheduling

dependent real time tasks which are required to access multi-unit resources in a system.

Niu and Quan (2015) considered energy consumed by peripheral devices along with

processor energy consumption and proposed a scheduling algorithm which minimizes

system wide energy consumption. They considered weakly hard real time systems where

at least m jobs should meet deadline out of k jobs.

 Table 2.1 shows the summary of the uniprocessor based energy efficient

scheduling algorithms discussed above under various voltage and frequency scaling

techniques for periodic and mixed task model.

 The limitation of the energy efficient scheduling algorithms that reduce dynamic

energy consumption is that they substantially lead to increase in static energy

consumption which is caused due to leakage current. Many researchers have focused on

leakage aware DVFS scheduling algorithms on periodic task systems for different

processor platforms.

- 23 -

Task

Model

Broad

Categories

of DVFS

Techniques

Voltage and

Frequency Scaling

Methods

DVFS based Scheduling Algorithms

Periodic

Task

Model

Intra-DVFS

Path based method intraShin (Shin et al., 2001)

Stochastic method intraGruian (Gruian et al., 2001)

Inter-DVFS

Maximum Constant

Speed

Static Voltage Scaling based EDF and RM

(Pillai and Shin, 2001)

Stretching to NTA lppsEDF and lppsRM (Shin et al., 2000)

Priority based Slack

Stealing

DRA and ARG (Aydin et al., 2001, Aydin et

al., 2004)

Utilization Update ccRM, ccEDF and laEDF (Pillai and Shin,

2001)

Mixed

Task

Model

(Periodic

and

Aperiodic)

Inter-DVFS

Stretching to NRT SS-lppsRM (Shin and Kim, 2006), DS-

lppsRM (Shin and Kim, 2004), SS-ccRM,

DS-ccRM

Bandwidth Based

Slack Stealing

SS-lppsRM-B, DS-lppsRM-B, SS-ccRM-B

and DS-ccRM-B (Shin and Kim, 2006)

Periodic Only Slack

Distribution

CBS-lppsEDF (Shin and Kim, 2006), CBS-

DRA (Shin and Kim, 2006), TBS-BRS,

TBS-MRS and TBS-BSS (Aydin and Yang,

2004), RARA-TBS (Kuo, 2013)

Workload based Slack

Estimation

CBS-DRA-W (Shin and Kim 2006)

Hybrid Method EEDVFS (Digalwar et al., 2013)

Table 2.1: Classification of DVFS techniques and the target uniprocessor

scheduling algorithms

- 24 -

2.3.2 Overall Energy Saving

 As the speed of processor is reduced below the threshold speed, static energy

consumption becomes dominant resulting in increase in overall energy consumption. In

DVFS enabled processors, the static energy is consumed in two situations: one, when the

processor is in idle state and the other, when execution speed is reduced below critical

speed. Therefore, there is a need to reduce static energy along with dynamic energy

consumption. This section provides the details of the scheduling policies that minimize

both dynamic and static energy consumption for uniprocessor platform.

 Martin et al. (2002) proposed a scheduling algorithm that uses DVFS along with

adaptive body biasing to reduce overall energy consumption and derived an analytical

expression to compute power consumption and processor performance as a function of

frequency, supply voltage and body bias voltage. In Lee et al. (2003), the authors

proposed a software controlled leakage power technique LC-EDF was investigated in

which the tasks that arrived during idle interval were procrastinated and processor was

put in shutdown mode. For rest of the time, the processor executes at maximum

frequency. Procrastination determination was done on the basis of wcet of the tasks. In

(Jejurikar and Gupta, 2004; Jejurikar et al., 2004), the authors identified an operating

point, called critical speed, below which it is not energy efficient to run the processor.

Their algorithm minimized overall energy consumption by applying DVFS and static

procrastination. They assumed that the processor is accompanied by a controller which

handles task procrastination. Niu and Quan (2004) proposed an algorithm, DVSLK,

which is similar to the algorithms in (Jejurikar et al., 2004) but with a difference in the

method of calculation of procrastination interval. The algorithm DVSLK uses job based

strategy to compute job's delay interval. This is more accurate than the task based

strategy used in (Jejurikar et al., 2004). Jejurikar and Gupta (2005) extended their

previous work by dynamically reclaiming the slack time generated by completed jobs.

Their algorithm maintains a free run time list which contains the details of jobs with their

slack time in priority order. This slack time is included in the procrastination interval to

lengthen the delay interval.

 Chen and Kuo (2006) proposed an energy efficient rate monotonic scheduling

algorithm which is designed in two phases. In the first phase, execution frequency and

- 25 -

supply voltages of the tasks are determined by applying an offline method and in the

second phase, the event at which processor is turned on/off is determined. Chen and Kuo

(2007a) proposed an algorithm in which instead of applying procrastination greedily, a

parametric procrastination is done. This technique delays the job execution only if the

interval is large enough for the processor to be shutdown and provides substantial energy

saving. Chen and Thiele (2008) adopted accelerating frequency strategy from (Lorch and

Smith, 2004) to reduce dynamic energy and modified it to save static energy by scaling

the frequencies of jobs to critical frequency if the selected frequency is less than critical

frequency.

 Huang et al. (2009) considered systems with active, standby and sleep mode each

with different energy consumptions. They developed algorithms for activation and

deactivation of the processor using historical information of event streams. The tasks are

considered as event streams whose arrivals are calculated using real time calculus with

hard timing constraints. A controller is used to make decisions during sleep mode. Nui

(2010) worked on ensuring QoS along with minimizing the overall energy consumption

on soft real time tasks. The QoS guarantee is achieved using window constraints which

require at least m jobs out of k non-overlapped jobs of a task to meet the deadline. The

scheduling technique is based on pattern variation, dynamic slack reclamation and

procrastination. Awan and Petters (2011) proposed an algorithm which reduces only

static energy consumption by accumulating the static and dynamic slack time by

executing tasks at maximum frequency. Chen et al. (2013) considered arbitrary event

arrivals and modeled these arrivals using real time calculus as in (Huang et al., 2009).

They proposed an online algorithm, namely Optimal Workload Aware Algorithm

(OWAA) which determines the optimal time for waking up the processor from sleep

mode and optimal frequency to execute the job after wake up. Arrival curve model is

used to estimate worst case idle interval.

 Table 2.2 provides the summary of leakage aware uniprocessor scheduling

algorithms. It can be observed from the literature discussed above and from table 2.1 and

2.2 that energy efficiency is sufficiently addressed in uniprocessor platform for periodic

task model. For the mixed task model, dynamic energy optimization is well researched

but the overall energy reduction is not thoroughly addressed.

- 26 -

2.4 Scheduling Algorithms for Multiprocessor Platform

 In this section, we first present basic approaches of real time scheduling

algorithms for multi-processor systems and then discuss about DVFS and leakage aware

scheduling algorithms existing in the literature.

2.4.1 Non Energy Aware Scheduling

 Multi-processor real time scheduling algorithms are categorized into partitioned

and global approaches. Both the approaches are applied on fixed priority as well as

Table 2.2: Summary of Leakage Aware Uniprocessor Scheduling Algorithms

Broad

Classification

of Parameters

Parameters of

Comparison Under

Broad Category

References

Type of Energy

Static Energy Lee et al., (2003), Haung et al., (2009), Awan and

Petter (2011)

Static and Dynamic

Energy

Martin et al., (2002), Jejurikar and Gupta (2004),

Jejurikar et al., (2004), Niu and Quan (2004),

Jejurikar and Gupta (2005), Chen and Kuo (2006),

Chen and Kuo (2007), Chen and Thiele (2008), Niu

(2010), Chen et al., (2013)

Task Model

Periodic Task Model Martin et al., (2002), Lee et al., (2003), Jejurikar and

Gupta (2004), Jejurikar et al., (2004), Niu and Quan

(2004), Jejurikar and Gupta (2005), Chen and Kuo

(2006), Chen and Kuo (2007), Chen and Thiele

(2008), Niu (2010)

Sporadic Task Model Haung et al., (2009), Awan and Petter (2011), Chen et

al., (2013)

Method of

Validation

Simulation Study Lee et al., (2003), Jejurikar and Gupta (2004),

Jejurikar et al., (2004), Niu and Quan (2004),

Jejurikar and Gupta (2005), Chen and Kuo (2006),

Chen and Kuo (2007), Chen and Thiele (2008),

Haung et al., (2009), Niu (2010), Awan and Petter

(2011), Chen et al., (2013)

Experimental Study Martin et al., (2002)

- 27 -

dynamic priority periodic task systems. A survey on EDF and RM based partition and

global multiprocessor scheduling algorithms for periodic task systems is done in

(Gracioli et al., 2013; Davis and Burns, 2011). These papers discuss partition based

algorithms such as Rate Monotonic First Fit (RMFF), Rate Monotonic Worst Fit

(RMWF), Earliest Deadline First - First Fit (EDF-FF), Earliest Deadline First - Best Fit

(EDF-BF) and Earliest Deadline First - Worst Fit (EDF-WF) and global algorithms based

on RM and EDF.

2.4.1.1 Periodic Task Model

 Davis and Burns (2011) gave detailed analysis of various existing scheduling

algorithms for periodic task system. They discussed existing partitioned and global

dynamic priority scheduling algorithms such as RMFF, RMWF, EDF-FF, EDF-BF,

Proportionate fair (Pfair), Early Release Fair (ERFair), LLREF etc. As stated in the

literature, partitioned scheduling have utilization bound of 50% (Zapata and Alvarez,

2004; Lopez et al., 2004; Baruah, 2013, Cho et al., 2006) and global scheduling, even if it

gives utilization bound of 100%, generates a large number of preemptions, incurring

significant overhead (Davis and Burns, 2011; Baruah et al., 1996). To overcome the

difficulties of partitioned and global approaches, researchers have proposed another

category of algorithms called semi-partitioned scheduling algorithms (Anderson and

Tovar, 2006; Lakshmanan et al., 2009; Guan et al., 2010; Sousa et al., 2011). In this

approach, one or few tasks from a task set are split into sub tasks. These sub tasks are

assigned globally to two or more processors and rest of the tasks are partitioned. With

this approach, utilization bound of partitioned approach is improved and preemptions are

also reduced due to restricted global assignment.

2.4.1.2 Mixed Task Model

 Very few scheduling algorithms have been proposed for mixed task systems.

Baruah and Lipari (2004a) proposed an algorithm that uses excess capacity of processors

for executing aperiodic tasks whereas periodic tasks are scheduled using global approach.

They proposed another algorithm which uses constant bandwidth server to schedule

aperiodic tasks (Baruah and Lipari, 2004b). Kato and Yamasaki (2008) proposed an

algorithm in which aperiodic jobs are assigned to a processor where they are executed

completely. This helps in reducing their response time. On the other hand, periodic jobs

- 28 -

are allowed to migrate upon preemption. The global and partitioned scheduling

algorithms are proposed in (Anderson et al., 2003a; Anderson et al., 2003b) for aperiodic

tasks whose future arrivals are unknown. Brandenburg and Anderson (2007) proposed an

algorithm that handles a mix of hard real time tasks, soft real time tasks and best effort

aperiodic jobs. Hard real time tasks are partitioned and scheduled using EDF. Soft real

time tasks and best effort tasks are scheduled in the background using dynamic slack

reclamation techniques. Another scheduling algorithm for scheduling aperiodic tasks uses

global approach in which priority assignment is done on the basis of slack time to avoid

dhall effect (Lundberg and Lennerstad, 2008). The algorithm proposed in (Tang et al.,

2011) can schedule periodic tasks along with aperiodic tasks on heterogeneous multi-

resource systems. Digalwar et al. (2014) proposed an algorithm for multi-core processor

platform for mixed task sets where periodic tasks are allocated to different cores using

Bin Packing algorithm, WFD. The aperiodic tasks follow global approach in which an

arriving aperiodic task is assigned to a core which can result in earlier response time. In

this algorithm, aperiodic tasks utilize the excess capacity of the processors that is

remaining after the periodic task allocation. This is an example of hybrid approach in

which excess capacity of the cores which exist after partitioning is utilized by applying

global approach.

2.4.2 Dynamic Energy Saving

 We now discuss DVFS based multi-processor scheduling algorithms for periodic

as well as mixed task models. One of the early works on energy saving on multiprocessor

system was carried out by Zhu et al. (2003) in which they proposed a shared slack

reclamation technique that shares the slack time among the processors. They have shown

that the technique meets the deadline of all the tasks and reduces energy consumption as

well. They used frame based tasks and assumed non-preemptive global scheduling.

 Aydin and Yang (2003) proposed EDF based energy aware partitioned multi-

processor scheduling algorithm called power partition that partitions the task set based on

WFD decreasing heuristic. A new task assignment algorithm called RESERVATION is

proposed that divides the processors and tasks into two categories: light and heavy. The

light tasks are assigned to light processors and heavy tasks are assigned to heavy

- 29 -

processors. The algorithm is a tradeoff between feasibility performance of First/Best Fit

heuristics and the energy performance of WFD heuristic.

 Chen et al. (2004) proposed a polynomial time approximation algorithm having

approximation bounds of processor with task migration and processor speed constraint

that minimizes the energy consumption. Chen et al. (2006) also proposed a technique that

does multiprocessor scheduling in two phases: task remapping and slack reclamation.

Task remapping decides whether the current task needs migration to another processor

before proceeding with execution. In slack reclamation phase, slack time is used for

slowing down the frequency.

 Xian et al. (2007) presented an energy aware task partitioning and scheduling

algorithm with uncertain workload under hard real time constraints. Task partitioning is

achieved through better workload balancing by utilizing the probabilistic distributions of

the task execution cycles.

 Chen and Kuo (2007b) have done a survey of energy aware multiprocessor

scheduling which covers aspects of energy optimization like DVFS and leakage power

for input task sets composed of periodic tasks, aperiodic tasks, tasks with critical section

etc. and derived the research gap. The research gaps presented by the authors are:

scheduling on input task set containing periodic as well as aperiodic tasks, tasks in a task

set having precedence constraint and application of these algorithms on heterogeneous

platform.

 Cong and Gururaj (2009) proposed an energy aware scheduling algorithm that

considers resource constraints, precedence constraints among the tasks and input

dependent variation in execution times of the tasks. The proposed algorithms are based

on mathematical programming formulation of scheduling and voltage assignment.

 Fujii et al. (2011) proposed an energy aware algorithm called Hetero Efficiency to

Logical Processor (HeLP) for scheduling periodic tasks on prioritized SMT processors.

Unlike other DVFS based processors, SMT processors cannot use wcet of task as these

processors simultaneously execute instructions from multiple tasks. Author proposed

HeLP, HeLP with temporal migration (HeLP-TM) and HeLP-TM-guarantee to reduce

energy consumption while ensuring the real time constraints.

- 30 -

 Moreno and Niz (2012) proposed DVFS based algorithm called Growing

Minimum Frequency (GMF), for uniform multiprocessor systems on periodic task set and

stated that their algorithm shows more energy saving than other algorithms on non-

uniform multiprocessors.

2.4.3 Overall Energy Saving

 Jha (2005) has done extensive survey of low power system scheduling and stated

that research on uniprocessor low power scheduling is well established and there is a

need to develop low power scheduling techniques for multi-processors. Since then the

research focus switched to multiprocessor scheduling.

 Langen and Juurlink (2006) designed a scheduling algorithm, LAMPS, for

determining minimum number of processors which will consume minimum energy for a

set of periodic tasks. This algorithm sets upper and lower bounds on number of

processors and applies binary search to find minimum number of processors. It does not

shutdown or procrastinate the job execution when the processor is idle. Langen and

Juurlink (2009) extended their previous work by incorporating DVFS, shutdown and

procrastination and found improvement in previous LAMPS algorithm. Chen et al.

(2006) proposed a task assignment method in which Largest Task First with First Fit

(LTF+FF) is used to allocate the tasks to processors. First the tasks are allocated

according to LTF and then the processors with load less than critical speed are identified.

The tasks on these lightly loaded processors are then re-assigned using FF in order to

reduce the number of processors. Procrastination is also applied when the processors are

idle for minimizing static energy consumption. The algorithm provides the approximation

ratios of 1.283 and 2 when shutdown overheads are negligible and non-negligible

respectively. Zeng (2009) proposed a DVFS based scheduling technique on periodic

task sets which includes practical constraints such as discrete speed, idle power,

inefficient speed and application specific power characteristics. Task assignment to

processor is done using adaptive minimal bound first-fit (AMBFF) algorithm where it is

stated that WFD based algorithms perform well when static energy consumption is

ignored. AMBFF algorithm allocates the tasks to the processor with least frequency

setting and also applies first fit heuristic in case of tie between two processors. This

technique helps to reduce the tradeoff between dynamic and static energy consumption.

- 31 -

 Yu et al. (2010) proposed a guided search heuristic to select best fit frequency

level that maximizes the additional cycles of the adaptive task from a task graph. The

algorithm also helps in selection of slack receiver task from a task graph. Bhatti et al.

(2011) proposed a generic scheme called HyPowMan which makes use of a set of

existing DVFS and DPM policies and applies a machine learning approach to

dynamically select the best policy for any given workload on identical multi-processor

systems.

 Legout et al. (2014) proposed a solution to reduce the static energy consumption

by efficiently using the low power states of multiprocessor systems. It works in two

steps: offline step uses mixed integer linear programming to minimize number of

preemptions and online step extends the existing scheduling algorithm to increase the

length of idle period so that penalty incurred in switching to active mode is reduced.

 Table 2.3 shows the summary of various energy efficient multiprocessor

scheduling algorithms discussed in this section. It can be observed from table 2.3 that

there is sufficient work done considering the periodic task model but no work has been

done on mixed task model.

2.5 Scheduling Algorithms for Multi-core Processor Platform

 For multi-core platforms, Yang et al. (2005) suggested a heuristic algorithm for

scheduling frame based periodic tasks that share common deadline. This algorithm

initially schedules the tasks at low frequency and keeps the idle cores in sleep state to

reduce energy consumption. Later, it increases the frequency to meet the deadline of

tasks. Isci et al. (2006) consider the energy optimization of multi-core processor using

global power management technique on non-real time tasks model.

 Seo et al. (2008) proposed two algorithms: Dynamic Repartitioning Algorithm

and Dynamic Core scaling Algorithm. Former algorithm balances the task utilizations

among the cores to minimize dynamic energy consumption while the latter algorithm

adjusts the number of cores to reduce static energy consumption.

- 32 -

Broad

Classification

of Parameters

Parameters of

Comparison

Under Broad

Category

References

Type of Energy

Dynamic Energy Zhu et al., (2003), Aydin and Yang (2003), Chen et al.,

(2004), Wu et al., (2004), Chen et al., (2006), Xian et

al., (2007), Fujii et al., (2011), Moreno and Niz (2012),

Kuo. C (2014)

Static Energy Langen and Juurlink (2006), Legout et al., (2014)

Dynamic Energy +

Static Energy

Langen and Juurlink (2008), Chen et al., (2006), Zeng

et al., (2009), Yu et al., (2010), Bhatti et al., (2011)

Task

Allocation

Partitioned Aydin and Yang (2003), Xian et al., (2007), Zeng et al.,

(2009), Fujii et al., (2011), Chen et al., (2006), Yu et al.,

(2010), Kuo. C (2014)

Global Zhu et al., (2003), Cong and Gururaj (2009), Moreno

and Niz (2012), Legout et al., (2014)

Hybrid Chen et al., (2004), Chen et al., (2006)

Task Model

Periodic Task

Model

Zhu et al., (2003), Aydin and Yang (2003), Chen et al.,

(2004), Wu et al., (2004), Chen et al., (2006), Xian et

al., (2007), Cong and Gururaj (2009), Zeng et al.,

(2009), Fujii et al., (2011), Moreno and Niz (2012),

Langen and Juurlink (2006), Langen and Juurlink

(2008), Chen et al., (2006), Yu et al., (2010), Bhatti et

al., (2011), Legout et al., (2014), Kuo. C (2014)

Method of

Validation

Simulation Study on

Synthetic Bench

mark

Aydin and Yang (2003), Chen et al., (2004), Chen et al.,

(2006), Xian et al., (2007), Zeng et al., (2009), Fujii et

al., (2011), Moreno and Niz (2012), Chen et al., (2006),

Bhatti et al., (2011), Legout et al., (2014), Kuo. C

(2014)

Simulation Study on

Real Bench mark

Langen and Juurlink (2006), Langen and Juurlink

(2008),

Simulation Study on

Synthetic and Real

Bench mark

Zhu et al., (2003), Cong and Gururaj (2009), Yu et al.,

(2010)

Table 2.3: Summary of Energy Efficient Multiprocessor Scheduling Algorithms

- 33 -

 Lee (2009) proposed a DVFS based scheduling solution for periodic task model

on lightly loaded multi-core processors. The technique exploits the overabundant cores

by executing the tasks simultaneously and putting the core in sleep state if no task is

assigned to it or if it is rarely used. Ren and Suda (2009) proposed load scheduling on

multi-core and GPU platform for energy efficiency of multiplication of large matrices.

The energy minimization is accomplished by multithreading CPU and parallel GPU by

using parallel CUDA algorithm design. Lee et al. (2009) proposed two methods that

reduce energy consumption of real time video streaming tasks. It considers the nonlinear

scaling property of parallel execution speed up and finite discrete energy consumption

rates of available frequencies.

 Devdas and Aydin (2010) proposed two algorithms: Coordinated VFS and

Coordinated VFS* on multi-core processors that have common clock. They applied

global DVFS on periodic tasks and dynamically identified idle intervals to reduce both

dynamic and static energy consumption.

 Shieh and Chen (2010) proposed two energy aware algorithms for periodic tasks

on dual core processors. One is offline approach in which they used integer linear

programming (ILP) whereas the other one is online approach in which they proposed a

heuristic algorithm. The results show that the online heuristic based algorithm is more

energy efficient than the offline approach and is close to the optimal bounds of the ILP

model.

 Wei et al. (2010) considered scheduling multi-media real time tasks such as H.264

decoding using data-partitioning based approach that exploits parallelism over multi-core

processors. This work reduces both dynamic and static energy using DVFS and DPM

techniques. Task assignment is done using Largest Task First (LTF) technique. The

experiments are done on AMD Phenon II platform using Linux Kernel 2.6.28.8.

Modification to kernel is done to accomplish the work.

 Xu et al. (2010) focus on energy consumption of processor cores and

interconnection hardware. The computation and inter-core data transfer scheduling

algorithm is proposed to reduce the interconnect energy consumption. Schonherr et al.

(2010) have been motivated by Intel Turbo Boost Technology and suggested DVFS

based scheduling technique for multi-core processors.

- 34 -

 Huang et al. (2010) designed an algorithm to reduce static as well as dynamic

energy consumption by applying DVFS and aggressive task reallocation strategies. The

task reallocation algorithm analyzes run time idle intervals and takes aggressive

reallocation decision which accumulates idle intervals and puts as many cores as possible

in sleep mode.

 Lu and Guo (2011) proposed two algorithms: pre-DVS and post-DVS which are

based on fixed priority scheduling with task splitting. In post-DVS, DVFS is applied after

scheduling while in pre-DVS, frequency selection of each task is done before scheduling

according to the total utilization of task set and number of cores available.

 Fu and Wang (2011) proposed a scheduling algorithm that combines the core

level feedback in terms of current core utilization with processor level optimization to

minimize dynamic and static energy consumption. The algorithm keeps track of current

utilization of each core and dynamically responds to large variation in execution time by

voltage and frequency scaling. Task consolidation is also carried out on a longer

timescale in order to put the unused cores in shutdown mode which results in static

energy saving. Independent periodic tasks are considered for scheduling. For

experimental analysis, a scheduler in linux kernel is modified and the Mibench

benchmark programs are used for testing the scheduler.

 Khandhalu et al. (2011) proposed an energy efficient task assignment algorithm

for voltage-island based multi-core processor. The algorithm considers fixed priority

scheduling for periodic tasks on individual cores. Authors state that load balancing

(which can be achieved by WFD) cannot give lower frequency when tasks are scheduled

using Rate Monotonic Algorithm (RMA). Therefore, they proposed Single-clock domain

multiprocessor Frequency Assignment Algorithm (SFAA) and have shown that it

performs better than the WFD task allocation algorithm.

 Lee (2012) suggested a heuristic scheduling algorithm on lightly loaded multi-

core platform. The heuristic scheduling scheme schedules the periodic tasks in parallel on

multiple overloaded cores to reduce dynamic energy and turns off the unused cores. He

and Muller (2012b) investigated the problem of power optimization of hard real time

systems on cluster based multi-core platform. They proposed a Simulated Annealing

(SA) heuristic algorithm for task allocation. A cluster wide global frequency is selected at

- 35 -

each scheduling point for each cluster. The jobs that are simultaneously running on all the

cores in a cluster must scale to this frequency. Sheikh et al. (2012) have done a survey of

allocation and scheduling algorithms, systems and software for reducing power and

energy dissipation of single processor, multi-core processors and distributed systems.

 He and Muller (2012a) offered a solution which combines DVFS and DPM for

hard real time systems on clustered multi-core systems having multiple low power states

with non-negligible switching overhead. The proposed algorithms use simulated

annealing heuristic approach to minimize the overall energy consumption. He and Muller

(2012b) have shown that energy efficient scheduling solution of uniprocessor cannot be

directly applied to cluster based multi-core systems if DVFS and DPM state switching

overheads are considered. They proposed a run time prediction technique that deals with

DPM switching overhead and two solutions that improve the schedulability when DVFS

switching overheads are considered.

 Lin et al. (2012) focused on mitigating energy consumption and improving

performance by developing a synchronization aware dynamic thread scheduling

algorithm. This scheduling algorithm aims to reduce the busy waiting time of a task

which is required to gain a lock. This paper considers spinlock for synchronization. By

reducing the busy waiting time, it achieves less completion and turn-around time. As a

result, it provides performance improvement and less energy consumption. The

simulations are done on a simulator based on the scheduler in linux kernel 2.6 on a real

bench mark application, i.e., digital video recorder.

 Zhao et al. (2013) proposed a scheduling technique that can be applied on multi-

core clusters on parallel applications with precedence constraint tasks. The dependency

based task grouping method is designed to assign the parallel tasks to multiple cores. The

algorithm achieves reduced energy consumption and improved resource utilization by

assigning the tasks with highest dependency degrees to one core. The simulation study is

carried out by using two real world applications viz. robot (Springer et al., 2006) and

fppp (Kappiah et al., 2006).

 Pagani and Chen (2013) suggested an algorithm namely Single Frequency

Approximation (SFA) for minimizing energy consumption of a system that has multiple

voltage islands. SFA is applied independently to each voltage island. The only work on

- 36 -

mixed task set carried out by Ahmed et al. (2013) suggests a method of scheduling mixed

task set for thermally constrained real time system.

 Chen et al. (2013) state that integrating DVFS before DPM with scheduling may

not give optimal solution. The proposed technique modeled the idle intervals of

individual cores such that both DVFS and DPM can be optimized at the same time. The

energy optimization problem is formulated as mixed integer linear programming

problem.

 Chen et al. (2014) proposed an energy efficient workload aware task scheduling

(EEWA) algorithm to reduce dynamic energy consumption of multi-core processors. It is

composed of two parts: workload aware frequency adjuster and preference based task

stealing scheduler. The workload aware frequency adjuster uses DVFS to scale the

frequency and voltage on the basis of the task's workload information collected from

online profiling. The responsibility of balancing the workload among the cores and

scheduling is effectively carried out by preference based task stealing scheduler. The task

sets scheduled by EEWA scheduler are made from the parallel applications. Experiments

are done by modifying the compiler and task scheduler of MIT Cilk (Frigo et al., 1998).

The results state that the EEWA achieves up to 29.8% of energy saving with little

degradation of CPU bound applications.

 Lin et al. (2014) designed a scheduling algorithm that reduces energy

consumption of multi-core processors by using DVFS on per core basis. The tasks are

executed in two different modes: batch mode, which execute jobs in batches and online

mode, in which the jobs have different timing constraints, arrival times and computational

workloads. They proposed optimal scheduling policy known as Workload Based Greedy

(WBG) policy to execute the jobs in batches. Another heuristic algorithm known as Least

Marginal Cost is proposed for scheduling online jobs. Both the algorithms are

theoretically proved and experimentally validated.

 Zang and Chang (2014) have focused on optimizing the energy consumption in

large scale enterprise data centers which execute multi-user applications on multi-core

systems. The proposed algorithm is named as Cool scheduler that varies frequency and

voltage by exploiting the run time program phases such as memory intensive phase and

CPU intensive phase. It is built into the linux kernel and tested on SPEC CPU2006 and

- 37 -

Phoronix Test Suite on quad-core systems. In addition to reducing energy consumption, it

reduces computation overhead and extra DVFS transitions.

 Sheikh and Ahmad (2014) proposed efficient heuristic algorithms for joint

optimization of performance, energy and temperature for task allocation on multi-core

platform. They named this optimization problem as PETOS, Performance, Energy and

temperature Optimization Scheduling. The authors state that the conventional multi-

objective optimization approaches can be used to solve the problem but these methods

take longer time and are not feasible for used at scheduling level. They proposed nine

heuristics that are responsible for task assignment to multi-core processors and frequency

selection decisions. The algorithms differ in a way they explore the scheduling decision

space. The algorithms are classified into five categories: iterative scan method, adjust and

schedule method, utility function based method, random and greedy method. It is found

that the iterative scan and adjust and schedule methods provide most practical solutions.

Greedy, random and utility function based methods achieve good diversity for large task

graphs at the cost of huge execution time. The tradeoffs among the performance, energy

and temperature at scheduling level are also discussed. In 2015, Sheikh and Ahmad

proposed an evolutionary algorithm for solving PETOS problem in which they have

integrated the strengths of multiple evolutionary algorithms and produced more accurate

solution to PETOS problem. The authors extended their work on evolutionary algorithms

for the energy optimization in their latest research in (Sheikh and Ahmad, 2016); Sheikh

and Ahmad (2012) proposed a multi-objective evolutionary algorithm to PETOS

(algorithm: SPEA).

 Singh and Kaiser (2014) developed an energy efficient multi-core scheduler on

the linux multi-core computing platform. The metric used to measure the performance/

energy efficiency is micro operations executed per joule (OPJ). As compared to

completely fair scheduler that already exist in linux system, the energy efficient

scheduling solution proposed in this work saves 30% energy.

 Li and Wu (2014) proposed a DVFS based multi-core scheduling algorithm for

scheduling arbitrarily arriving aperiodic tasks by using the sub-interval based scheduling

method. In sub-interval based scheduling, the sub-intervals are identified dynamically on

the basis of arrival time and desired execution requirement. The frequency selection is

- 38 -

carried out on the basis of intensity of the sub-interval. At any scheduling time t, the

greatest intensity among all the overlapped sub-intervals is considered to select the

frequency of task execution. The algorithm optimizes dynamic as well as static energy

consumption.

 Lee et al. (2014) concentrate on reducing the chip level peak power consumption

and temperature at design time. The chip level peak power consumption is another

significant design parameter that determines the cost and size of chip and the underlying

power supply. This energy efficient scheduling algorithm achieves the desired goal of

energy saving without violating any real time constraints and it does not make use of any

additional hardware for power management such as DVFS. The idea behind reducing the

peak power is to restrict the concurrent execution of tasks on different cores which leads

to peak power consumption.

 Liu and Guo (2014) focused on relaxing the constraint of reducing the power

consumption of individual cores and proposed a scheduling technique that reduces the

energy consumption on voltage islands on multi-core platform. The motivation behind

this work is that the modern multi-core processors adopt voltage islands in which a sub

set of cores is grouped and named as island where each island is operated at a common

frequency and voltage. The algorithm Voltage Island Largest Capacity First (VILCF)

selects the frequency of task execution by utilizing the remaining capacity of the cores in

the island efficiently without violating the real time constraints of the periodic tasks.

 Islam and Lin (2014 and 2015) adopted learning based method for selection of

DVFS technique and frequency scaling. The work in 2014 is applicable for uniprocessor

which is extended for multi-core processors in their next work in 2015.

 Fu et al. (2015) emphasized on the large amount of leakage power consumed by

the main memory shared by DVFS enabled multiple cores in modern multi-core

processors. The author designed an energy aware scheduling algorithm that optimizes

dynamic energy by applying DVFS technique and static energy by putting shared main

memory to sleep mode when all the cores have common idle time. The algorithm

maximizes the common idle time in order to stretch the memory sleep time. The

randomly generated periodic tasks are considered for scheduling. Another work by Fu et

al. (2015b) concentrated more on maximizing the common idle time of all the cores to get

- 39 -

larger memory sleep time. This algorithm is tested on synthetic and real benchmark

suites.

 Jin et al. (2015) considered Voltage Island based multi-core platform because

many of the modern multi-core processors have adopted voltage island based hardware.

The proposed energy optimization framework is capable of dynamically reconfiguring

the voltage frequency island which requires less hardware cost and is suitable for diverse

applications. It is also suitable for the multi-core systems with large number of cores.

 Tran et al. (2016) proposed a scheduling solution to reduce the energy

consumption of computational clusters with multi-core processors using DPM technique.

In this work, the computation clusters are made up of heterogeneous commercial server.

DPM is applied in a cluster where an idle server is turned-off and turn back to active state

when it has a task to execute. The workloads used in the experiments are the real traces

collected from production environment.

 Sasaki et al. (2016) focused on reducing the energy consumed in three important

shared resources: memory subsystem, CPU power and DRAM power. The proposed

algorithm improves the performance by balancing the shared resource usage among the

ready tasks. The evaluation results show that the algorithm shows better performance

than the state of the art scheduling techniques which only considers memory subsystem

contention.

 Table 2.4 shows the summary of energy efficient multi-core scheduling

algorithms. It can be observed from table 2.4 that researchers have addressed the issue of

energy optimization at operating system level considering real time and non-real time

tasks. Majority of the work focused on dynamic energy optimization and not on overall

energy optimization which includes both dynamic and static energy optimization. In case

of the existing work based on real time tasks, most of the energy efficient algorithms

considered periodic task system and less attention is given to the mixed task systems.

- 40 -

Table 2.4: Summary of Energy Efficient Multi-core Scheduling Algorithms

Broad

Classification of

Parameters

Parameters of

Comparison Under

Broad Category

References

Type of Energy

Dynamic Energy Chen et al., (2014), Lin et al., (2014), Zang and

Chang (2014), Sheikh and Ahmad (2012, 2014,

2015, 2016), Singh and Kaiser (2014), Lee et al.,

(2014), Liu and Guo (2014), Jin et al., (2015), Islam

and Lin (2015), Sasaki et al., (2016), Zhao et al.,

(2013), Lin et al., (2012), Khandalu et al., (2011),

Shieh and Chen (2010), Xu et al., (2010) , Schonherr

et al., (2010), Lee (2009), Ren and Suda (2009), Isci

et al., (2006)

Static Energy Tran et al., (2016)

Dynamic Energy +

Static Energy

Li and Wu (2014), Fu et al., (2015), Fu and Wang

(2011), Zhang et al., (2011), Wei et al., (2010),

Devdas and Aydin (2010), Haung et al., (2010)

Task Model

Periodic Task Model Lin et al., (2014), Liu and Guo (2014), Fu et al.,

(2015), Jin et al., (2015), Islam and Lin (2015), Fu

and Wang (2011), Khandalu et al., (2011), Shieh and

Chen (2010), Wei et al., (2010), Xu et al., (2010),

Lee (2009)

Aperiodic Task Model Li and Wu (2014)

Sporadic Task Model Lee et al., (2014)

Non-Real Time Task

Model

Chen et al., (2014), Zang and Chang (2014), Sheikh

and Ahmad (2012, 2014, 2015, 2016), Singh and

Kaiser (2014), Tran et al., (2016), Sasaki et. al

(2016), Lin et al., (2012), Schonherr et al., (2010),

Ren and Suda (2009), Isci et al., (2006)

Method of

Validation

Simulation Study on

Synthetic Bench mark

Li and Wu (2014), Lee et al., (2014), Liu and Guo

(2014), Jin et al., (2015), Islam and Lin (2015), Zhao

et al., (2013), Zhang et al., (2011), Khandalu et al.,

(2011), Shieh and Chen (2010), Lee (2009)

Simulation Study on

Real Bench mark

Tran et al., (2016)

Simulation Study on

Synthetic and Real

Bench mark

Sheikh and Ahmad (2012,2014, 2015, 2016), Fu et

al., (2015), Zhao et al., (2013), Lin et al., (2012)

Experimental Study Chen et al., (2014), Zang and Chang (2014), Singh

and Kaiser (2014), Sasaki et al., (2016), Fu and

Wang (2011), Wei et al., (2010), Xu et al., (2010),

Schonherr et al., (2010), Ren and Suda (2009), Isci et

al., (2006)

Simulation and

Experimental Study

Lin et al., (2014)

- 41 -

2.6. Research Gaps and Challenges

 From the literature described in this chapter, it can be observed that there is a need

to address the issues of overall energy optimization by taking care of hard deadline

periodic tasks and responsiveness of aperiodic tasks. Therefore, based on the survey of

previous work in this area, the following gaps are identified:

1. There is a need to enhance the existing uniprocessor based energy efficient

scheduling algorithms which can perform two important aspects:

a. The energy efficient scheduling algorithms should be able to optimize

dynamic as well as static energy consumption of the processor.

b. The algorithms should be able to handle arbitrarily arriving aperiodic tasks

in addition to periodic tasks. It should optimize the overall energy

consumption without hampering the time constraints of periodic tasks and

responsiveness of aperiodic tasks.

2. There is a need to optimize the overall energy consumption of multi-core

processors as majority of the modern real time embedded systems make use of

multi-core processors.

3. Very little work is done on energy optimization where the task model considered

for scheduling is a mix of periodic and aperiodic tasks. Therefore, there is a need

to design the energy efficient real time scheduling algorithms which can schedule

mixed task sets and take care of the performance of both types of tasks along with

energy optimization.

4. In case of multi-core scheduling, majority of the research work focused either on

partitioned approach or on global approach. There is a need to combine both the

approaches to overcome the limitations of both of approaches.

 Table 2.5 shows the observations from the previous literature and highlights the

research gaps that are targeted in this research work.

- 42 -

 In brief, there is a need to design a complete scheduling framework which can

schedule mixed task sets and minimize overall energy consumption of a DVFS enabled

multi-core processor having individual clock domain. The proposed energy efficient

scheduling algorithms take care of the hard deadline periodic tasks and responsiveness of

aperiodic tasks.

Table 2.5: Observations and Research Gaps

Processor

Platform
Task Model

Dynamic Energy

Optimization

Overall Energy

Optimization

Uniprocessor

Periodic Task

Model
Sufficiently Addressed Sufficiently Addressed

Mixed Task

Model
Sufficiently Addressed Not Sufficiently Addressed

Multiprocessor

Periodic Task

Model
Sufficiently Addressed Sufficiently Addressed

Mixed Task

Model
Not Addressed Not Addressed

Multi-core

Processor

Periodic Task

Model
Not Sufficiently

Addressed
Not Sufficiently Addressed

Mixed Task

Model
Not Addressed Not Addressed

- 43 -

Chapter 3

Dynamic Voltage and Frequency Scaling Based

Multi-Core Scheduling

 This chapter discusses the design and development of the proposed energy

efficient real time scheduling algorithms those are capable of reducing dynamic energy

consumption on uniprocessor and homogeneous multicore platforms.

3.1 Introduction

 Energy optimization is an important concern in contemporary real time embedded

systems based around microcontrollers as well as high performance microprocessors.

Specifically, the dynamic energy consumed by the hardware components within the

microprocessor contributes a large amount to the overall energy consumption. Dynamic

energy consumption is caused due to the presence of switching capacitance in the

processor that comes into play when the processor is in running state. The dynamic

energy is consumed by clock circuit, datapath, memory, control and input/output devices

present on the processor. In Tiwari et al. (1998), the authors stated that the major

contributor of dynamic power is the clock circuitry as it is active for the entire time

duration. This circuitry includes clock generator, clock driver, clock distributor, latches

and clock loading circuits. The datapath is the next largest consumer of energy. Memory,

control circuit and I/O devices consume relatively less amount of energy as compared to

clock circuitry and datapath.

 The issue of large amount of energy consumption can be addressed at various

levels of abstraction resulting in two broad categories: hardware based techniques and

software based techniques. The hardware based techniques include clock gating, power

gating, transistor sizing, low power logic synthesis etc (Benini et al., 1994; Tiwari et al.,

1996; Borah et al., 1996; Macii et al., 2008; Li et al., 2013).

 Clock gating is a most effective technique to optimize dynamic energy

consumption, since the clock distribution network consumes 40% of the total energy

budget of a CMOS circuit and it operates at highest switching frequency compared to any

other signal driving a large amount of capacitive load (Macii et al., 2008; Benini et al.,

- 44 -

1994). It dynamically identifies the unused hardware components and disables the clock

to these components, so that these components get deactivated and stop consuming

energy. Another hardware based technique called power gating is effective in reducing

the leakage power, in which sleep transistors are placed between the logic circuits and the

ground rail (Roy et al., 2003). There exist techniques that integrate both clock and power

gating to mitigate the overall energy consumption. There are many works in integration

of clock and power gating techniques (Macii et al., 2008; Li et al., 2013). Transistor

sizing is another effective technique that reduces the dynamic energy consumption by

increasing/reducing the channel width of a transistor. By increasing the channel width,

the current drive capability of the transistor increases there by reducing the signal rise/fall

time at the gate output. This results in reduction in dynamic energy consumption (Borah

et al., 1996; Raja et al., 2006).

 As the ultimate job of a processor is to execute software, the same should be

designed in a way that the processor consumes less energy. This motivated researchers to

develop software based energy optimization techniques. These techniques can be

implemented by using compiler optimization, instruction level optimization, source code

optimization and by modifying the scheduler in operating system (Hsu and Kremer,

2003; Tiwari et al., 1996; Pillai and Shin, 2001).

 One of the popular software based techniques is DVFS which can be applied on

processors that are capable of varying frequency and supply voltage dynamically. It

exploits the fact that in majority of the applications, high performance (or high

frequency/speed) is required for only a small fraction of time while most of the time low

performance (or low frequency/speed) is sufficient. DVFS technique works on the idea of

dynamically adjusting operating frequency and supply voltage of the processor based on

its current load. Typically, a processor can operate at low supply voltage at a lower

execution frequency whereas it operates on high supply voltage at higher execution

frequency. Executing a task at a lower frequency is possible because of the fact that the

aet is less than or equal to wcet of a task. The difference between wcet and aet is called

slack time. This available slack time is used to slow down the processor to save energy.

Since energy consumed per cycle with CMOS circuitry scales quadratically with the

supply voltage, DVFS potentially reduces the processor energy consumption through

- 45 -

frequency and voltage scaling. In order to decide when to execute at higher or lower

frequency, DVFS technique requires the cooperation of operating system scheduler. So

DVFS based techniques are always applied in coordination with operating system

schedulers.

 This chapter discusses the design and analysis of the following proposed

scheduling algorithms: energy efficient scheduling algorithm on uniprocessor platform

using two different aperiodic servers (EEDVFS and EE-UCS), non energy aware Multi-

Core Scheduler (non-DVFS MCS) and energy aware Multi-Core Scheduler (MCS). The

proposed scheduling algorithms are designed for scheduling real time task sets that

contain a mix of periodic and aperiodic tasks. The energy efficient uniprocessor based

scheduling algorithm is designed using two different aperiodic servers, Deferrable Server

(DS) and Total Bandwidth Server (TBS). The non-DVFS MCS schedules the mixed task

set on multiple homogeneous cores without optimizing energy consumption. MCS

schedules the mixed task set on multiple homogeneous cores and optimizes the dynamic

energy consumption using DVFS energy optimization technique.

3.2 System Model

 This section describes the system model assumed for designing the proposed

scheduling policies in this chapter. The system model includes energy model that

explains the type of energy considered for optimization, processor platform that is used as

a hardware platform and the task model that is being scheduled by the scheduling

policies.

3.2.1 Energy Model

 The total power consumed by any processor comprises of three components:

dynamic power (PAC), static power (PDC) and power required to keep the processor ON

(PON).

 The dynamic power is consumed when processor is running at certain frequency.

In CMOS based processors, dynamic power and maximum frequency can be defined by

equation 3.1 and 3.2 (Jejurikar et al., 2004):

 (3.1)

- 46 -

 (3.2)

 Where Vdd is the supply voltage, fCLK is the clock frequency, Vt is threshold

voltage, k is a constant and CEFF is the effective switching capacitance. The static power

consumption is caused due to sub-threshold leakage current (Isubn) and reverse bias

junction current (Ij). It can be represented in terms of Isubn , Ij and body bias voltage (Vbs)

by equation 3.3 (Jejurikar et al., 2004):

 (3.3)

 In addition to dynamic and static power, there is an implicit consumption of

power when the processor is in idle state. This power is denoted by PON and is required to

keep the processor on. It is caused mainly due to I/O sub-systems, PLL circuits etc. The

contributors of PON depend on technology and architecture of the processor.

 The total power (P) is calculated by summing PAC, PDC and PON and is given by

the following equation:

 (3.4)

Total energy consumption per cycle, E, is given by -

 (3.5)

Where,

 (3.6)

 (3.7)

 (3.8)

 Where EAC, EDC, EON are dynamic energy, static energy and energy required to

keep the processor ON respectively.

 Equation 3.2 states that in modern CMOS processor, frequency is directly

proportional to supply voltage. According to equation 3.6 and 3.7, it is seen that there is

quadratic and linear dependence of supply voltage on dynamic and static energy

respectively. Therefore, from equations 3.2 and 3.6, it can be shown that dynamic energy

consumption is directly proportional to the square of clock frequency fCLK (or from

equations 3.1 and 3.2, dynamic power consumption is directly proportional to cube of

clock frequency fCLK). This means that if frequency is increased to improve the

performance, it results in increased energy consumption. Thus there is a tradeoff between

- 47 -

processor performance and energy consumption. DVFS techniques are capable of dealing

with this tradeoff.

 Even though it is observed that there is quadratic and linear dependence of

dynamic and static energy respectively on supply voltage, decreasing the voltage beyond

a certain limit does not result in energy saving. This is because, the static energy

consumption increases if the processor speed decreases below a threshold. This threshold

is called critical speed. If the processor runs below this speed, the static power consumed

due to leakage current nullifies the gains of DVFS. Therefore, in order to retain the

benefits of DVFS, frequency scaling should be limited to critical speed (Jejurikar et al.,

2004).

3.2.2 Processor and Task Model

 A homogeneous multi-core processor consists of M identical processor cores

which are denoted as {C0,C1,......, CM-1}. Each core is capable of changing frequency and

voltage dynamically and has its own physical clock. It is assumed that the resource

sharing among the cores do not incur any inconsistency between the tasks executing

across the cores.

 The target task set includes a mix of periodic and aperiodic tasks with hard and

soft deadlines respectively. The periodic tasks considered in this work are highly critical

in nature such that they cannot miss the deadline. The examples of highly critical periodic

tasks can be target sensing and track correction in a missile guidance system. In a guided

missile, a computer is mounted on the missile which periodically senses the target and

corrects the path/track. If these tasks are not completed by a deadline or before, the

missile may home onto the unwanted area which may even cause a disaster. On the other

hand, aperiodic tasks do not have hard timing constraints but they require a good average

response time. A poor response time degrades the system performance. An example of an

aperiodic task is changing from manual to auto pilot mode or vice-versa in a computer

on-board an aircraft.

 The tasks (periodic/aperiodic) are independent and preemptive in nature. A task

set Τ consists of N periodic tasks and K aperiodic tasks. Each periodic task Pi is defined

by {ai, ci ,pi, Di} and each aperiodic task Ai is defined by {ai, ci}, where ai is the arrival

time, ci is the wcet at maximum frequency, pi is the period or inter-release time and Di is

- 48 -

the deadline. Periodic tasks have implicit deadlines (∀ Pi, pi = Di) and are in phase (∀ Pi,

ai = 0). Utilization of periodic tasks in a task set can be defined as
 .

Aperiodic tasks arrive arbitrarily at any time instance during the schedule. They can be

normally scheduled using any of the standard bandwidth preserving scheduling

algorithms.

3.3 Scheduling on Uniprocessor Systems

 In order to design an energy efficient scheduling algorithm for mixed task system

on uniprocessor platform, it is required to meet three major objectives. The first objective

is to maintain the schedulability of periodic tasks in presence of aperiodic tasks so that

the aperiodic tasks should not prevent the periodic tasks from finishing before the

deadlines. The second objective is to serve the aperiodic tasks with reasonable average

response time. For achieving the responsiveness of aperiodic tasks, many bandwidth

preserving scheduling algorithms such as Deferrable Server (DS), Sporadic Server (SS),

Total Bandwidth Server (TBS), Constant Bandwidth Server (CBS) etc are available. The

third objective is to optimize the processor energy consumption while scheduling a mixed

task system.

 The basic idea behind any bandwidth preserving scheduling algorithm is to

reserve some portion of the processor utilization for the execution of aperiodic tasks. The

above mentioned aperiodic servers differ in a way they utilize the preserved processor

utilization (or bandwidth) for the execution of aperiodic tasks. The responsiveness of

aperiodic tasks depends on the way the reserved bandwidth is utilized by the aperiodic

tasks.

 The proposed algorithms presented in this work are implemented using two

different aperiodic servers: DS and TBS. The brief description of DS and TBS is given

below (Liu, 2008):

 Deferrable Server (DS): The deferrable server is one of the simplest bandwidth

preserving servers. In this algorithm, an aperiodic server with fixed period ps and

execution budget es is maintained for scheduling arbitrarily arriving aperiodic

tasks. This aperiodic server is scheduled along with periodic tasks with additional

- 49 -

consumption and replenishment rules for aperiodic tasks. The consumption and

replenishment rules are defined as follows:

o Consumption Rule: The execution budget of the server is consumed at the

rate of one per unit time whenever the server executes.

o Replenishment Rule: The execution budget is replenished to es after every

regular interval of period ps. The budget is not allowed to be accumalated

from period to period.

 The aperiodic task is not allowed to execute more than es units of time in one

server period. It gets preempted if the budget is exhausted and again scheduled in next

interval when the budget is repleneshed. This results in late response time of aperiodic

tasks.

Total Bandwidth Server (TBS): TBS reserves the remaining utilization of the core

other than periodic utilization which is named as server utilization Us. Aperiodic jobs

cannot execute beyond server budget Us. In other words, utilization of aperiodic tasks

cannot exceed Us on each processor core. Therefore, on a processor core where a mix of

periodic and aperiodic tasks are executed, periodic tasks will not miss their deadlines, if

and only if

 (3.9)

 The replenishment rules of TBS are improved as compared to the rules of DS. In

this case, unlike DS, aperiodic tasks can utilize the server budget at a stretch. There is no

need to wait till next interval for replenishment. The replenishment rules of TBS with

execution budget es, server utilization are us, virtual deadline of aperiodic job d and

current time t are as follows:

o Initially, es = 0 and d = 0.

o When an aperiodic job with execution time e arrives at time t to an empty

aperiodic job queue, set d to max (d,t) + e/us and es = e.

o When the server completes the current aperiodic job, the job is removed

from its queue.

 If the server is backlogged, the server deadline is set to d + e/us and

es = e.

- 50 -

 If the server is idle, do nothing.

3.4 Proposed Energy Efficient Uniprocessor based Scheduling Algorithm (EEDVFS)

 This section describes an energy efficient uniprocessor based scheduling

algorithm for scheduling mixed task sets. An energy efficient dynamic voltage and

frequency scaling (EEDVFS) scheduling algorithm is designed for scheduling mixed task

set and optimizing energy consumption of uniprocessor platform. In this algorithm, the

periodic tasks are scheduled using EDF and aperiodic tasks are scheduled using DS. A

DVFS technique called utilization update (UU) (Kim et al., 2002) is applied to scale the

execution frequency of periodic tasks in a task set. The aperiodic tasks are executed at

maximum voltage and frequency in order to achieve better response time.

3.4.1 Notations

 Periodic task set T = {T0,,Tn-1} represents n periodic tasks. Each periodic task

Ti is represented by {Φi, Pi, Ci, Di} where Φ, P, C and D represent phase, period, wcet

and deadline respectively and Ei represents aet of periodic task. Aperiodic task set A =

{A0,.....,Am-1} represents m aperiodic tasks. Each aperiodic task Ai is represented by {Ai,

Ci} where A and C represent arrival time and wcet respectively. Tds = {Pds, Cds}

represents DS with period Pds and execution budget Cds. The parameters PRQ and ARQ

represent periodic and aperiodic queues respectively and are initialized to NULL. The

current time is represented by t and is initialized to 0. The parameters Ui, Uds and UT

represent utilization of periodic job, utilization of aperiodic job and total utilization

respectively. T<i,j> denotes j
th

 job of i
th

 task in the task set.

 The parameters fmax and vmax represent maximum frequency and voltage

respectively, fopt and vopt represent optimum frequency and voltage respectively. The

parameter n_d_p is next decision point, RET is Remaining Execution Time, Anp and Ana

represent arrival time of next periodic and aperiodic job respectively. Jhp and Jha

represent job at head of PRQ and ARQ respectively. The parameter tj represents number

of jobs in PRQ at time t.

3.4.2 EEDVFS Algorithm

 Algorithms 3.1 and 3.2 show the scheduling algorithm EEDVFS and its

corresponding frequency selection algorithm respectively. The periodic tasks are ordered

- 51 -

on the basis of EDF scheduling policy. At each scheduling point, if aperiodic job queue is empty or server

budget is exhausted, then the periodic job is scheduled and executed at the scaled frequency. In presence of

aperiodic job, if the server budget is available, the aperiodic job executes at maximum frequency. If the

remaining execution time of the aperiodic job is greater than the server budget then the aperiodic job is

preempted and it resumes after replenishment of the budget. If the periodic job queue is empty and server budget

is exhausted or there is no aperiodic job ready for execution, then the processor remains idle. The frequency

scaling is done on the basis of current utilization of the processor at every scheduling point. The current

processor utilization is calculated on the basis of the aet of the completed jobs and wcet of the newly arrived or

preempted jobs. The algorithm 3.2 shows the frequency scaling technique used in EEDVFS. In this algorithm,

the aperiodic job is executed in chunks whenever the server budget is available. The DS based aperiodic task

scheduling leads to longer response time of the aperiodic jobs as compared to other aperiodic servers such as

CBS, TBS etc. The working of EEDVFS algorithm is illustrated through the following example task set and the

corresponding schedule.
Tasks Arrival Period wcet Deadline # of jobs in a HP aet of jobs

Tds 0 10 3 10 - -

T0 0 25 7 25 2 3, 4

T1 0 50 15 50 1 8

Ap0 5 - 5 - - 5

Ap1 10 - 5 - - 5

Where R-Release, C-Completion, P(RET) - Preemption (Remaining Execution Time of preempted job at fmax), U(R/C) -

Total Utilization upon release or upon completion, fopt - Optimal Frequency, aet - Actual execution time of executing job.

Algorithm 3.1: Proposed EEDVFS Algorithm

EEDVFS (T, A, PRQ, ARQ, t)
Begin
 Join all pending periodic jobs till t to PRQ
 Join all pending aperiodic jobs till t to ARQ
 if (ARQ(!empty) and (Cds>0)) then
 n_d_p ← t + min (Cds, RET(Jha))
 execute Jha till n_d_p at fmax and vmax
 Cds← n_d_p - (min(Cds, CT(Jha)) + t)
 t ← n_d_p
 else if(PRQ (!empty)) then
 n_d_p ← min(t + RET(Jhp), Ana, Rp, Anp)
 execute Jhp till n_d_p at fopt and vopt

 t ← n_d_p
 else if((ARQ(empty) or Cds = 0) and PRQ(empty)) then
 CPU is idle till any other periodic or aperiodic job arrives or server
 replenishes the execution budget
End

Time R C P (RET) U(R/C) fopt aet

0 J<0,0>,J<1,0> - - 0.58 0.75 J<0,0> = 4

4 - J<0,0> - 0.42 0.5 J<1,0> = 16

5 Ap0 - J<1,0> (7.5) - 1 Ap0 = 5

8 - - Ap0 (2) - 0.5 J<1,0> = 15

10 Ap1 - J<1,0> (6.5) - 1 Ap0 = 2

12 - Ap0 - - 1 Ap1 = 5

13 - - Ap1 (4) - 0.5 J<1,0> = 13

20 - - J<1,0> (3) - 1 Ap1 = 4

23 - - Ap1 (1) - 0.5 J<1,0> = 6

25 J<0,1> - - 0.88 1 J<1,0> = 2

27 - J<1,0> - 0.74 0.75 J<0,1> = 5.33

30 - - J<0,1> (1.75) - 1 Ap1 = 1

31 - Ap1 - 0.75 J<0,1> = 2.33

33.33 - J<0,1> - - - -

- 52 -

3.5 Scheduling on Multi-core Systems

 Task scheduling on multiprocessor/multi-core systems is comparatively difficult

than scheduling on uniprocessor systems. Optimal schedulers are available for scheduling

independent real time tasks on uniprocessors. These schedulers have polynomial time

complexity. However, scheduling independent real time tasks on multiprocessor/multi-

core processor is an NP-Hard problem. Scheduling of real time tasks on multi-core

systems consists of two sub-problems: task allocation to processors and scheduling the

tasks on individual processor cores.

3.5.1 Task Allocation

 The task allocation problem deals with allocation of tasks to different processor

cores. This can be done statically or dynamically. The static task allocation is known as

partitioned approach whereas the dynamic task allocation is known as global approach.

3.5.1.1 Partitioned Task Allocation Strategy

 In the partitioned approach, once a task is allocated to a core, it permanently

resides on that core and all the jobs corresponding to this task are scheduled on the

assigned core. This approach requires prior knowledge about the attributes of the tasks.

The major advantage of this approach is that the well-established uniprocessor scheduling

algorithms can be directly applied to schedule the sub set of tasks on each core. The

Algorithm 3.2: Frequency Selection of Proposed EEDVFS Algorithm

Select_Frequency (Jk) // Jk is periodic job

Begin

 if (Jk Released) then

 set Uk ← Ck/Pk where 0 ≤ k < p

 else if (Jk Completed) then

 set Uk ← Ek/Pk where 0 ≤ k < p

 set Uds ← Cds/Pds

 tj

 UT ← ∑Ui + Uds

 i=0

 Select frequency fopt{f1, f2,..fmax | f1 < f2 <...< fmax} such that UT ≤ fopt/fmax

 return fopt

End

- 53 -

majority of the hard real time systems follow this approach (Davis and Burns, 2011).

Partitioned approach for task allocation is known to be NP - hard problem. Various

partition based approximation algorithms exist which give polynomial time solutions

(Burchard et al., 1995; Anderson et al., 2001; Anderson and Jonsson, 2003; Lopez et al.,

2004; Zapata and Alvarez, 2004). However, these algorithms waste processing capacity

of the multiprocessor as compared to the optimal approach.

 Utilization balancing and bin packing algorithms are the well known partition

based approximation algorithms available. At each core, dynamic priority scheduling

algorithm like EDF is used for scheduling (Davis and Burns, 2011). These algorithms are

discussed in brief below:

A. Utilization balancing algorithm

 Utilization balancing algorithm orders the tasks based on their increasing

utilization and inserts the ordered tasks in a queue. It then removes the highest priority

task (task with highest utilization) from the front of the queue and assigns it to the least

utilized processor core. This results in balancing the utilization of tasks among the cores.

However, it is difficult to achieve perfectly balanced load on each core using this

algorithm as it gives suboptimal results. This algorithm is suitable when the processor

cores in use at any given time are fixed (Krishna and Shin, 1997).

B. Bin Packing Algorithm

 Bin packing is a standard heuristic that is used to solve the problem of task

allocation in multiprocessor scheduling theory. The bins are considered as processors and

the tasks are the objects that are required to be packed in respective bins. The number of

objects packed in a bin should not exceed certain bound. For EDF scheduling policy, the

utilization bound on each processor core is 1 as the schedulability of EDF is 1. So the bin

packing algorithms used for task allocation make use of utilization bound of 1 when

scheduling tasks using EDF scheduling policy.

 There exist several bin packing algorithms in the literature (Garey and Johnson,

1979). According to Lopez et al. (2004), they can be categorized into two types:

Reasonable Allocation (RA) and Reasonable Allocation Decreasing (RAD). A reasonable

allocation algorithm is defined as the one that fails to allocate a task to a multiprocessor

- 54 -

only when the task does not fit into any processor. The reasonable allocation decreasing

algorithms are similar to RA algorithms with only one difference. That is, before

allocation, the tasks are ordered based on non-increasing order of utilizations and are

allocated to the processors sequentially in that order. The bin packing heuristic

algorithms are classified into two categories as below:

 RA Algorithms: First Fit (FF), Best Fit (BF), Next Fit (NF), Worst Fit (WF)

 RAD Algorithms: Worst Fit Decreasing (WFD), First Fit Decreasing (FFD), Best

Fit Decreasing (BFD)

 First Fit algorithm allocates tasks to a processor core with lowest index such that

the sum of its current utilization and utilization of newly arrived task does not exceed the

utilization bound of the core. If the sum exceeds the bound, then the new task is not

allocated to the core. The algorithm then finds the next lower indexed core which

satisfies the bound condition. Similarly, the Best Fit algorithm finds a core with smallest

available utilization which can be allocated to the new task. If more than one core is

available, then it assigns the task to the core with lower index. In Next Fit algorithm, after

allocating the new task to the current core, the next new task will be allocated to the same

core only if the utilization bound of that core does not exceed the maximum capacity

otherwise it is allocated to the next core. Lastly, Worst Fit allocates a new task to a core

that has maximum available utilization.

 Application of RAD algorithms is possible only if all the tasks in a task set are

available before allocation. This is because the tasks are required to be ordered before

allocation. These algorithms are more suitable for hard real time tasks as the attributes are

typically known a priori. Davis and Burns (2011), in a survey, have stated that, for

implicit deadline periodic task sets, the largest worst case utilization bound for any

partitioning algorithm is given by:

 (3.10)

 Where m is the number of processors and Uwc is the worst case utilization of the

system. The above equation 3.10 holds true because it is not possible to schedule m+1

tasks with execution time 1+ε each and a period of 2 on m processor cores. This further

shows that if all the tasks in a task set have utilization greater than 50%, then they cannot

be partitioned amongst the cores. This results in waste of processor capacity. This is the

- 55 -

main disadvantage of partitioned approach. The global approach explained below does

not suffer from this limitation.

3.5.1.2 Global Task Allocation Strategy

 In case of global task allocation, the jobs that are ready for execution are

dynamically assigned to the processor cores. In order to make this possible, all the ready

jobs are placed in a common priority queue (also known as global queue) and dispatched

to the processor cores for execution as soon as processor cores become available. It is

also possible to migrate a running job from one core to another if a higher priority job

arrives on the current processor core. This method does not require the entire task set to

be available before allocation. This approach is suitable for scheduling the tasks that

arrive arbitrarily at run time. Thus, this method is suitable when aperiodic or sporadic

tasks are present in the system as they arrive arbitrarily at run time. In this approach,

since the allocation is done on the basis of current load of the individual core, the

schedulable core utilization is better than the utilization achieved in static approach.

 The two popular global task allocation algorithms usually applied in distributed

systems are focused addressing and bidding and buddy algorithm (Krishna and Shin,

1997). In focused addressing and bidding algorithm, each processor maintains two tables:

status table and system load table. Status table contains the information about the tasks

that are ready for execution and system load table contains the current load information

of each of the processors in the system. Each of the processors broadcast their available

utilization, so that all the other processors can update their system load tables. Whenever

a task arrives at a processor, the processor checks its system load table and decides

whether to schedule that task or migrate it to some other processor. In case of migration,

to select a processor, it identifies some lightly loaded processors that can accommodate

this task by sending a request for bid to these processors. The task is then migrated to one

of the least loaded processors. The issue that may arise in this technique is that the system

load table may contain obsolete information. This technique may also have high

communication overhead since every processor has to communicate its current load to

other processors at regular intervals. Further, selecting a processor for task allocation also

requires message exchange. The Buddy algorithm performs better than focused

addressing and bidding in a way that it categorizes the processors into two types: under

- 56 -

loaded and overloaded based on a threshold value, so that the candidate processors are

reduced. Also, the processor does not broadcast their current load periodically, rather

they broadcast only when the status of processor changes from under loaded to

overloaded or vice versa. The communication overhead in this case is relatively less than

the previous method due to small number of message passing between the processors.

3.5.1.3 Hybrid Task Allocation Strategy

 The hybrid approach (Davis and Burns, 2011) exploits the advantages of both

partitioned and global approaches and overcomes their limitations. It tries to reduce the

fragmentation of available processor capacity and also tries to increase the maximum

utilization bound of 50% that exists in partitioned approach. It also tries to reduce the

global queue length and potentially reduce the migration overheads that exist in global

approach. In order to achieve this, there exist two techniques: semi-partitioned approach

and clustering.

 In semi-partitioned approach, one or few tasks from a task set are split into sub

tasks. These sub tasks are assigned globally to two or more processors and rest of the

tasks are partitioned. With this approach, utilization bound of partitioned approach is

improved and preemptions are also reduced due to restricted global assignment.

 In clustering, the processors are grouped into clusters and task allocation is done

among the clusters. Each cluster may share the same cache. This reduces the penalty for

migration. This also reduces the length of global queue as each cluster would have a

separate queue that potentially reduces the migration overhead.

3.5.2 Task Scheduling

 The second step in multiprocessor scheduling is task scheduling. The

multiprocessor scheduling using partitioned approach takes advantage of optimality

results of the uniprocessor scheduling since after partitioning, the tasks allocated to each

core are scheduled on respective cores. The jobs of the tasks belonging to a core are

maintained in separate run queues designated to that core (Davis and Burns, 2011). Rate

monotonic (RM) algorithm is the fixed task priority optimal preemptive uniprocessor

scheduling algorithm for periodic and sporadic task systems with implicit deadlines (Liu

and Layland, 1973). Similarly, deadline monotonic (DM) is the optimal preemptive

- 57 -

scheduling algorithm for tasksets with constraint deadlines while it is not optimal for

tasksets with arbitrary deadlines (Leung and Whitehead, 1982). EDF is the job level fixed

priority preemptive scheduling algorithm for periodic and sporadic tasks independent of

the deadline constraint (Dertouzos, 1974).

 In case of global scheduling, assigning a task depends on the state of all the

processors. The tasks are permitted to migrate from one core to another. The ready jobs

are maintained in a single run queue. This approach permits job-level migration in which

a particular job executes on a respective core but jobs of the same task can execute on

different cores. There exist many fixed job priority global scheduling algorithms for

periodic tasksets with implicit and constraint deadlines (Davis and Burns, 2011).

 Both the scheduling approaches have advantages and disadvantages over the other

one (Davis and Burns, 2011). Partitioned scheduling has the following advantages and

disadvantages as compared to global scheduling:

 There is no penalty of migration cost as the tasks run on respective cores.

 If a task overruns its worst case execution budget, then it only affects the other

tasks on the same core.

 It is easy to maintain a separate run queue per core as compared to single run

queue in global approach.

 The major disadvantage of this scheduling approach is that the available

processing capacity becomes fragmented resulting in large amount of capacity

unused by the tasks.

 Another disadvantage is that the partitioning problem is NP-Hard.

 Global scheduling has the following advantages and disadvantages as compared

 to partitioned scheduling:

 The context switching and preemptions are relatively fewer in this approach as the

scheduler will only preempt a task when there is not a single idle processor core.

 The slack time generated by a task can be utilized by all the tasks in the task set

and not just by the subset of tasks in the task set.

 If the task over runs its worst case execution budget, the probability of the

deadline miss is less because of the availability of multiple cores.

- 58 -

 The major disadvantage of global scheduling is the overhead in terms of

communication load and cache misses that is incurred due to migration of jobs.

 Thus it is more advantageous to use a hybrid scheduling approach which takes

 advantages of both partitioned and global scheduling approaches.

3.6 Proposed Multi-core Scheduling Algorithm (MCS)

 This section describes the design of a proposed energy efficient real time

scheduling algorithm, Multi-Core Scheduler (MCS), for mixed task set on multi-core

processor platform. The algorithm is explained with the help of an example task set

scheduled on a dual core processor.

3.6.1 Proposed Algorithm

 The problem of dynamic energy optimization using DVFS on multi-core platform

for mixed task model comprises of three parts: allocation of tasks to the cores,

assignment of frequency to each job and scheduling of jobs at each scheduling point.

 In order to ensure the hard deadlines of periodic tasks are met, these tasks are

statically partitioned among M processor cores. Once periodic tasks are allocated to the

respective cores, the jobs corresponding to these tasks execute on the allocated core.

Because of highly critical nature of periodic tasks, they are not allowed to migrate to

other core even if the cores are homogeneous. The reason behind this restriction is that

migration requires preemption of task on one core and resumption on another core which

in turn requires restoring the context on the other core. This can result in cache misses

and miss penalty. This kind of migration overhead may cause deadline miss of periodic

jobs especially in overloaded systems. On the other hand, aperiodic tasks are assigned to

one of the processor cores dynamically upon their arrival. They are allowed to migrate to

other cores upon preemption. This is because, there is no hard deadline requirement and

migration to other cores may provide early completion of aperiodic jobs in lightly loaded

systems. The selection of a core for an aperiodic task execution is based on ensuring early

response time.

 At each scheduling point, if a scheduled job is periodic, a scaled frequency is

assigned to the job which results in reduction of dynamic energy consumption. If the job

is aperiodic then maximum frequency is assigned which improves its response time.

- 59 -

Selection of frequency is discussed later in this section. The scheduling policy used for

periodic tasks is EDF since it is an optimal scheduling algorithm for uniprocessor

platform and TBS is used to schedule aperiodic tasks because it is simple and provides

good response time over other aperiodic servers (Spuri and Buttazzo, 1996).

 Algorithms 3.3 and 3.4 describe proposed scheduler, MCS. It is hybrid of

partitioned and global approaches. It partitions the periodic tasks amongst the processor

cores statically using the well-known Bin Packing heuristic such as WFD. WFD is a

widely used task allocation technique in literature where the focus is on dynamic energy

reduction (Zapata and Alvarez, 2004). The reason behind the choice of WFD is that it

balances the load uniformly on all the cores giving opportunity to scale the frequency and

voltage. Aperiodic jobs follow global approach in which they are allocated to one of the

cores dynamically and can migrate upon preemption if required. In this way, with the

combined use of both the approaches, the utilization of each of the individual cores is

increased and responsiveness of aperiodic jobs is improved.

 The subset of periodic tasks after partitioning is denoted as Si. Hence, S, the set of

all periodic tasks in the system, is defined as {S0, S1,.....SM-1} where M is the number of

cores. The algorithm maintains a set of M job queues, JQ = {JQ0, JQ1,, JQM-1}, one

per core Ci. Each subset of tasks, Si is assigned to its corresponding core Ci and all the

jobs belonging to the tasks in Si are inserted in job queue JQi.

 Task scheduling involves making scheduling decisions on each core separately at

scheduling points. The only scheduling decision points are completion of executing jobs

or arrival of new jobs. The conditional statements at line number 5 and 7 in algorithm 3.4

shows the completion point and arrival point respectively. At each scheduling decision

point, MCS computes dynamic core utilization Udyn_i of processor core Ci using the

formula in equations 3.11, 3.12 and 3.13 and selects the matching smallest frequency fopt

such that Udyn_i is less than or equal to the scaling factor α where α = fopt/fmax, with

fopt{f1,f2,..fmax | f1<f2<...<fmax}. The discrete frequencies are denoted by fi where i = 1

to the number of discrete frequencies in increasing order. The algorithm 3.3 shows

frequency selection. The proposed method of dynamic core utilization calculation at any

scheduling point gives the exact available utilization at that scheduling point and results

in assignment of accurate frequency level to the scheduled task. Further if the next job to

- 60 -

run on a particular core is a periodic job and if the aperiodic job queue is empty, then the

core runs at the selected optimal frequency, else it runs at maximum frequency (refer line

number 20-25). The dynamic utilization Udyn_i for processor core Ci is calculated as:

 (3.11)

where,

 ∀
 (3.12)

 ∀
 (3.13)

 Where Upast denotes the sum of the remaining utilization of the periodic jobs which

were released before time t and Ufuture denotes the sum of share of processor utilization of

the periodic jobs that will be released during the interval [t, DPJ). The notation Ji is the

periodic job, ci_rem is the remaining wcet of the preempted job, hp is hyper period and t is

the current time.

 Upon arrival of an aperiodic task, its virtual deadline is calculated using TBS

algorithm, based on the current utilization of each core. It is denoted as vk_i for aperiodic

job Ak for core Ci and is defined by

 (3.14)

 Where Usrv_i = 1 - Udyn_i , is the utilization of TBS on core Ci at the arrival time

of aperiodic job Ak. This aperiodic job is then assigned to the processor core on which it

finds earliest virtual deadline amongst all the cores as shown in equation 3.15.

 (3.15)

 Where min_index, is the index of processor core that results in minimum virtual

deadline among all the cores. Line numbers 10-17 in algorithm 3.4 handle calculation of

virtual deadline on each core and assignment of aperiodic job to a processor core. Virtual

deadline calculations and selection of core are done centrally by the aperiodic controller

and requires very small overhead. This aperiodic controller has the knowledge of current

utilizations of all the cores.

 MCS is capable of scheduling the task set on a processor with single core. In this case,

the periodic and aperiodic tasks are scheduled on a single core. The partitioning of

periodic tasks is not required. Further, the aperiodic task assignment does not require

finding a core that can provide minimum virtual deadline and does not have a situation in

- 61 -

which migration of aperiodic job is required. We name the algorithm for uni-core

processor as EE-UCS - Energy Efficient - Uni-Core Scheduler.

Algorithm 3.4: Proposed Multi-Core Scheduling Algorithm (MCS)

Pre-Condition: Si, set of periodic tasks belonging to core Ci after partition.

Post-Condition: Feasible schedule if exists; FAIL otherwise.

MCS
Begin
1: Join all pending jobs corresponding to core Ci in JQi
2: if Empty (JQi) then return IDLE Ci end if
5: if Curr.JQi.RemainingTime == 0 then
6: Curr.JQi = Head.JQi
7: else if Head.JQi.Priority > Curr.JQi.Priority then
8: if Curr.JQi is periodic then
9: preempt and insert Curr.JQi in JQi
10: else
11: find core with earliest virtual deadline using eq. (3.14) and (3.15)
12: if min_index != i then
13: preempt and migrate Curr.JQi to core Cmin_index
14: else
15: preempt and insert Curr.JQi in JQi
16: end if
17: end if
18: Curr.JQi = Head.JQi
19: end if
20: if ! DVFS OR JQi has at least one aperiodic job OR Curr.JQi is aperiodic job then
21: execute Curr.JQi till Min(Curr.JQi.Remaining Time, Arrival of next job) at fmax
22: else
23: fopt = Select_Frequency(Ci)
24: execute Curr.JQi till Min(Curr.JQi.Remaining Time / α, Arrival of next job) at fopt

25: end if
End

Algorithm 3.3: Frequency Selection of Proposed MCS Algorithm

Select_Frequency
Begin
1: Calculate Udyn_i from Eq. (3.11, 3.12, 3.13)

2: select smallest freq fopt{f1,f2,..fmax | f1<f2<...<fmax}
 such that Udyn_i <= fopt/fmax

3: Returns optimal frequency fopt

End

- 62 -

3.6.2 Schedule of Sample Task Set using MCS Algorithm

Assume a task set consisting of 3 periodic tasks (T0, T1, T2) and 2 aperiodic tasks (A0, A1)

on a dual core processor. The task attributes are shown in Table 3.1. Each task in the task

set is described by its arrival time, period, wcet, deadline, processor core number to

which it is assigned after partitioning, worst case utilization (Uwc = ci/pi), number of jobs

in a hyper period and corresponding aet of each job. Hyper period of this task set is 50.

The discrete frequencies assumed in this example are 40%, 50%, 70%, 90% and 100% of

maximum frequency. Scheduler decisions at various scheduling decision points and the

schedule are shown in table 3.2 and table 3.3 for Core 0 and Core 1 respectively.

 According to table 3.2 and 3.3, periodic task T1 is allocated to Core 0 while T0 and

T2 are allocated to Core 1 using WFD algorithm. At time 0, job J10 arrives on Core 0

while J00 and J20 arrive on Core 1. At time 0, dynamic utilization of Core 0 and Core 1 are

calculated as 0.6 using equation 3.11, so the optimal frequency of both cores is set to

70%. The aet of highest priority jobs on both cores (J10 on Core 0 and J20 on Core1) are

scaled down to 70% frequency and are started on respective cores. At time 8, when

aperiodic job A0 arrives, virtual deadline is calculated for job A0 on Core 0 and Core 1.

The aperiodic job A0 is allocated to Core 1 as it provides early virtual deadline than Core

0. Similarly, at time 20, due to arrival of higher priority periodic job J22, A0 is migrated to

Core 0 as it finds an early virtual deadline on that core. In this way, the entire schedule is

generated by following proposed MCS algorithm for dual core processor platform.

Table 3.1: Mixed Task Set (MCS)

Tasks Arrival Period wcet Deadline Core #

(WFD)

Uwc # of jobs

in a HP

aet of

jobs

T0 0 25 10 25 Core 1 0.4 2 3, 7

T1 0 50 30 50 Core 0 0.6 1 23

T2 0 10 2 10 Core 1 0.2 5 1,1.2, 1.4,

1.6, 1.8

A0 8 - 15 - - - 15

A1 25 - 5 - - - 5

- 63 -

Table 3.2: Schedule on Core 0 using Proposed MCS Algorithm

R/M - Release/Migration, S/RP/C - Started/Resumed after Preemption/Continued, Comp - Completed,

Preempt (RAET) - Preempted (Remaining Actual Execution Time at maximum frequency), UT(R/C) -

Dynamic Core Utilization (upon Release/upon Completion), Freq (%) - Normalized Frequency in %,

WCET, AET/RAET - Worst Case Execution Time, Actual Execution Time/Remaining Actual

Execution Time at maximum frequency, Scaled AET - Actual Execution Time at scaled frequency, VD

- Virtual Deadline of aperiodic task.

Time R/M S/RP/C Comp
Preempt

(RAET)
UT(R/C)

Freq

(%)

WCET,

AET/

RAET

Scaled

AET
VD

0 J10/- J10/-/- - - 0.6/- 70 30, 23/- 32.86 -

8.0 A0/- -/-/J10 - - 0.58/- 70 -, -/17.4 24.86
43.79 (A0 not

Allocated)

10.0 -/- -/-/J10 - - -/- 70 -, -/16 22.86
40.59(A0 not

Allocated)

20.0 -/A0 A0/-/- - J10(9.03) 0.53/- 100 -, -/4.2 4.2

29 (A0 Migrated

from Core 1to

Core 0)

24.2 -/- -/J10/- A0 - -/0.62 70 -, -/9.03 12.9 -

25.0 A1/- A1/-/- - J10(8.47) -/- 100 5, 5/- 5 42 (A1 Allocated)

30.0 -/- -/ J10/- A1 - -/0.77 90 -, -/8.47 9.41 -

39.4 -/- -/-/- J10 - -/- - -, -/- - -

CPU is idle from 39.4 to 50

- 64 -

Table 3.3: Schedule on Core 1 using Proposed MCS Algorithm

R/M - Release/Migration, S/RP/C - Started/Resumed after Preemption/Continued, Comp -

Completed, Preempt (RAET) - Preempted (Remaining Actual Execution Time at maximum

frequency), UT(R/C) - Dynamic Core Utilization (upon Release/upon Completion), Freq (%) -

Normalized Frequency in %, WCET, AET/RAET - Worst Case Execution Time, Actual Execution

Time/Remaining Actual Execution Time at maximum frequency, Scaled AET - Actual Execution

Time at scaled frequency, VD - Virtual Deadline of aperiodic task.

Time R/M S/RP/C Comp
Preempt

(RAET)
UT(R/C)

Freq

(%)

WCET/

AET/

RAET

Scaled

AET
VD

0 J00,J20/- J20/-/- - - 0.6/- 70 2/1/- 1.4 -

1.4 -/- J00/-/- J20 - -/0.58 70 10/3/- 4.3 -

5.7 -/- -/-/- J00 - -/0.41 - -/-/- - (CPU Idle)

8.0 A0/- A0/-/- - - 0.43/- 100 15/15/- 15
34.25 (A0

Allocated)

10 J21/- J21/-/- - A0 (13) -/- 100 2/1.2/- 1.2 -

11.2 -/- -/A0/- J21 - -/- 100 -/-/13 13 34.25

20.0 J22/- J22/-/- - A0 (4.2) 0.53/- 70 2/1.4/- 2

34.25 (A0

Migrated to

Core 0)

22.0 -/- -/-/- J22 - -/- - -/-/- - - (CPU Idle)

25.0 A1,J01/- J01/-/- - - 0.56/- 70 10/7/- 10
45.6 (A1 not

Allocated)

30 J23/- J23/-/- - J01 (3.5) 0.52/- 70 2/1.6/- 2.3 -

32.3 -/- -/J01/- J23 - -/0.48 50 -/-/3.5 7 -

39.3 -/- -/-/- J01 - -/- - -/-/- (CPU Idle)

40.0 J24/- J24/-/- - - 0.2/- 25 2/1.8/- 7.2 -

47.2 -/- -/-/- J24 - - - - - -

CPU is Idle from 47.2 to 50

- 65 -

3.6.3 Correctness Proof and Schedulability of MCS Algorithm

Theorem 1: A system of independent preemptable mixed tasks containing N periodic

and M aperiodic tasks, where periodic tasks have implicit deadlines and are in-phase and

aperiodic tasks have soft deadlines and arrives arbitrarily, is schedulable on K cores

according to MCS if the periodic tasks are partitionable among K processor cores using

Bin Packing heuristics, and the total utilization of periodic tasks and aperiodic tasks is

less than K.

Proof: MCS follows WFD partitioning heuristics which guarantee the assignment of

tasks among K cores. Since the Bin Packing partitioning heuristics provide the utilization

bound of 66% (Andersson and Tovar, 2006), the remaining utilization of each processor

core is used for executing aperiodic tasks thereby increasing the schedulability of the task

set.

 MCS follows EDF scheduling policy for scheduling periodic tasks on each

processor core independently. On the other hand, TBS scheduling policy is used for

scheduling aperiodic tasks along with periodic tasks where the utilization of TBS server

is equal to the remaining utilization of the processor core other than the assigned

utilization of periodic tasks.

 As EDF along with TBS scheduling policies are optimal (Liu, 2008) for

uniprocessors, bin packing heuristic allocates periodic tasks on multiple cores with

utilization bound of 66% and aperiodic tasks use the remaining utilization of processor

cores, MCS produces a feasible schedule on multi-core processor and increases the

utilization bound of the processor cores.

Theorem 2: In a system of independent preemptable mixed tasks consisting of periodic

and aperiodic tasks where periodic jobs follow EDF schedule and aperiodic jobs follow

TBS schedule, the dynamic energy optimization guarantees least idle time and is

achieved by DVFS.

Proof: The MCS algorithm selects the optimal frequency and voltage at each scheduling

point on the basis of dynamic utilization of the processor core at that scheduling point.

The dynamic utilization, frequency and voltage are calculated on the basis of current load

of the processor core which results in minimum idle intervals. The correctness of

- 66 -

dynamic utilization of a processor core is proved by using mathematical induction in

corollary 1.

Corollary 1: When a task set T contains N periodic tasks and M aperiodic tasks where N

 2 and M > 0, the dynamic utilization of the processer at any scheduling time t is given

by (from equations 3.11, 3.12 and 3.13)

Where

 ∀

 ∀

Proof:

 Assume that task set T contains (N+M) tasks where N 2 and M > 0. The

dynamic utilization stated in the above equations is proved by using mathematical

induction as follows.

 The mathematical induction is based on the number of periodic jobs to be

executed during the interval [t,hp) where t is any scheduling point.

Basic Step: At any scheduling time t, if there are no lower priority jobs waiting in the job

queue other than scheduled periodic job PJ and there is no job that is to be executed after

the scheduled job during interval [t,hp) then

 (3.16)

 = 0 (3.17)

 Therefore, dynamic utilization of the core Ci is equal to the ratio of wcet of the

scheduled periodic job PJ and remaining time from scheduling point t to hp.

Inductive Step: At any scheduling time t, Let j be the number of lower priority jobs

waiting in the job queue including scheduled job and k be the number of jobs arriving

during interval [t,hp). In this case, dynamic utilization can be stated as follows:

 (3.18)

 (3.19)

- 67 -

 Therefore, dynamic utilization at any scheduling time t will be the sum of Upast

and Ufuture.

Theorem 3: In a multi-core system where independent preemptable periodic tasks are

assigned and scheduled independently on different cores using MCS with DVFS and

aperiodic jobs are globally scheduled, the response time of aperiodic jobs are not affected

due to voltage and frequency scaling.

Proof: MCS schedules aperiodic jobs globally to any of the cores on multi-core system

on the basis of virtual deadline that aperiodic job receives on each core. It assigns the job

to a core which gives early virtual deadline. The correctness of virtual deadline

computation for an aperiodic job is given in corollary 2. All aperiodic jobs execute at

maximum voltage and frequency which results in minimum response time.

Corollary 2: In a system consisting of K processor cores, N periodic tasks and M

aperiodic tasks, the virtual deadline for an aperiodic job is computed as follows:

Proof: The virtual deadline of any aperiodic job depends on the TBS utilization. For

example, in a dual core system, if server utilization of core 1 is greater than server

utilization of core 2, then core 1 provides early virtual deadline than core 2. From the

above equation, it is observed that server utilization depends on core's dynamic

utilization; the correctness of dynamic utilization calculation can be proved by corollary

1.

3.6.4 Algorithmic Complexity of MCS Algorithm

 The algorithmic complexity of the proposed MCS is the product of the number of

scheduling decision points and the complexity per scheduling decision. Given a task set S

with hyper period H, the algorithmic complexity of MCS is

 (3.20)

 (3.21)

 Where Decisions is the number of decision points to be made by the algorithm

and Cdecision is the time complexity of a single decision. Decisions can be divided into

four types of decisions points: number of periodic job arrivals N(Ap) and number of

- 68 -

aperiodic job arrivals N(Aa), number of completion points (NC) and number of aperiodic

preemption points (NP). Time complexity of MCS can be derived as follows:

 (3.22)

where T is the number of tasks in a task set S. The time required for insertion in job

queues upon job arrival is O (T log2T). The constant K is the number of jobs appearing in

a time interval [t, hyper period) at any scheduling time t and P is the number of lower

priority jobs waiting in the job queue at time t. The number of time units required to

calculate dynamic utilization at any completion time are (K + P). In practice, the value of

K and P are very small as compared to total jobs. On preemption, the aperiodic jobs are

inserted in the job queue of one of the cores. This additional insertion time is O (NP *

Tlog2T). The time complexity of the selection of matching frequency level from the L

discrete frequency levels is O (L). O (M) is the constant amount of time required to select

a processor core which provides earlier virtual deadline to a scheduled aperiodic job

where M is the number of processor cores.

3.7 Parameters for Comparison

 This section presents the details of the parameters used to validate the

performance of the proposed algorithms, EEDVFS, EE-UCS and MCS over other

existing algorithms like non-DVFS, Static Voltage and Frequency Scaling (SVFS) and

cycle conserving EDF with TBS scheduling policy for multi-core processors. The non-

DVFS multi-core scheduler executes the jobs at maximum frequency, SVFS executes the

jobs at a frequency selected based on worst case utilization of the task set, cycle

conserving EDF executes the jobs at a frequency based on the utilization formula

discussed in Pillai and Shin (2001). These parameters include aperiodic response time,

number of scheduling decision points, number of preemption points, number of migration

points and energy consumption.

3.7.1 Response Time

 The response time of a job is an important performance metric for any real time

application. Specifically, it is a critical measure for aperiodic jobs as they have soft

deadline. In order to achieve good overall performance of a real time application,

- 69 -

response time of aperiodic jobs must be taken care of along with the hard deadlines of

periodic jobs. In this work, the proposed algorithms ensure early response time of all

aperiodic jobs along with meeting the hard deadlines of periodic jobs.

The response time of any job can be defined as

Response Time (Ji) = Finish Time (Ji) - Arrival Time (Ji) (3.23)

where Ji is any periodic or aperiodic job in a task set. We have focused on response time

of aperiodic jobs. For the purpose of evaluation, the maximum aperiodic response time

per task set is defined as -

Maximum Aperiodic Response Time (T) = max(Response Time (AJi)) (3.24)

where T is a mixed task set, AJi is an aperiodic job in the task set T. For example, let a

task set T contains 3 periodic tasks and 2 aperiodic jobs, the response times of the two

aperiodic jobs be AJ1 = 5 and AJ2 = 3. The maximum aperiodic response time of task set

T should be 5. The maximum response time is normalized with respect to execution time

of the corresponding aperiodic job. The normalized response time value of 1 corresponds

to the least possible response time.

3.7.2 Scheduling Decision Points

 The number of scheduling decisions made during entire schedule of a task is an

important parameter which is required to validate the performance of the scheduler. At

each scheduling decision point, scheduler decides which job to execute; this decision

takes additional time and energy. For example, if a job is preempted and requires

migration to other core, this decision and action takes time and energy. This is called as

scheduler overhead. As our focus is on saving energy consumption, we measure energy

consumed by the scheduler while taking scheduling decisions. The energy consumed by

various scheduling events such as periodic job arrivals, aperiodic job arrivals, job

completions, preemptions with cold cache job, preemptions with hot cache job and job

migrations are considered while performing the simulations. The energy consumed by

each scheduling event is explained in more detail in section 3.7.5.

- 70 -

3.7.3 Preemption Count

 Preemptive scheduling is one of the key aspects of any real time scheduling

algorithm. Preemptive scheduling algorithms perform better than the non-preemptive

algorithms on time-sharing real time systems where multiple real time tasks are running

simultaneously on one or more processor cores. For example, EDF, an optimal real time

scheduling algorithm for uniprocessor platform is a preemptive algorithm. On the other

hand, preemptive scheduling incurs significant overhead caused due to context switching.

This includes the time taken for suspending the running job and dispatching a new one

and cache misses which includes the time taken to transfer the requested page from lower

level cache to the higher-level cache. We have considered the energy consumed by the

preemption overhead while performing the simulations. The calculation for energy

consumed due to preemption is explained in detail in section 3.7.5.

3.7.4 Migration Count

 In global multiprocessor/multi-core scheduling, the jobs are permitted to migrate

from one processor core to another. The advantage of global scheduling is that it

increases overall system utilization but at the same time migration of tasks incurs

overhead due to information flow between the processor cores. The overhead is in terms

of time and energy. The use of shared memory architecture would incur considerably less

overhead than distributed memory architecture. Migration of a job requires transfer of

data/instruction from one processor core to another. In shared memory architecture where

L2 cache is shared among all the processor cores, transfer of data/instruction would

happen from shared L2 cache to private L1 cache of another target processor core. But, in

non-uniform memory architecture, the latency of transfer of data/instruction varies

between the cores and would typically take longer time than the shared memory

architecture. The simulations carried out in this work assume shared memory architecture

and includes the overheads caused due to migration of jobs. The energy consumed by the

migration overhead is explained in detail in section 3.7.5.

- 71 -

3.7.5 Energy Consumption

 The overall dynamic energy consumption includes energy consumed during task

execution and other scheduling events such as arrival, completion, preemption, migration

and scheduling decision. Energy consumption during task execution, Etask_exe, is

calculated in various intervals over the hyper period at different frequencies and voltages.

For calculating energy consumption of the scheduler, the number of task arrivals,

completions, preemptions, migrations and scheduling decision points are computed

throughout the hyper period for each task set. Equation 3.25 shows the formula for

calculating total dynamic energy consumption.

 (3.25)

where, Tsched is total time spent in scheduling events, E is the energy consumed per unit

time by the processor running at maximum frequency. The total time spent on scheduling

events is calculated as follows:

 (3.26)

where, pac, apac, cc, pccold, mc, dc and pchot are the number of periodic job arrival points,

aperiodic job arrival points, completion points, preemption points with cold cache job,

migration points, decision points and preemption points with hot cache job respectively.

The time constants CST, K1, K2, L, M1, M2 and P are time required for context

switching, periodic job arrival, aperiodic job arrival, completion of a job, transfer

data/instruction from L2 cache to L1 cache upon preemption, transfer data/instruction

from L2 cache to L1 cache upon migration and the scheduler to make a scheduling

decision respectively. These time constants and execution times are measured in

milliseconds. The time constants are calculated by first running the scheduler code for

large number of iterations and then taking average of all the iterations. These time

constants are shown in Table 3.4. Preemption and migration cost of a job is considered as

ten times the CST. It is assumed that the preemption and migration demand transfer of at

least 3 and 5 pages respectively.

 The simulations are conducted by considering the frequency and voltage values of

Transmeta Crusoe processor with maximum frequency of 3.1 GHz and maximum supply

- 72 -

voltage of 1 V. The critical speed of Transmeta Crusoe processor is 1.26 GHz which is

41% of maximum speed. The voltage corresponding to critical speed is 0.7 V (Jejurikar et

al., 2004). MCS takes care of critical speed and does not slow down the processor below

this speed. The details of frequency and voltage ranges are given in Table 3.5. Table 3.6

shows the energy consumption of the example task set (Table 3.1) with MCS, Cycle-

Conserving (Pillai and Shin, 2001), Non-DVFS and Static-VFS algorithms over one

hyper period.

Algorithm
Execution Energy

(m Joules)
Scheduler Energy

(m Joules)
Total Energy

(m Joules)

Proposed MCS
69.94

3.49 85.938

Non-DVFS
79.98

3.21 98.965

Cycle Conserving 72.53 3.21
89.696

SVFS 73.65 3.21 91.359

Table 3.5: Frequency/Voltage Settings of 70nm Transmeta Crusoe Processor

Level Frequency (GHz) Voltage (V)

0 3.1 1.0

1 2.79 0.95

2 2.48 0.9

3 2.17 0.85

4 1.86 0.8

5 1.5 0.75

6 1.26 0.7

Time Constants Value (in ms)

K1 0.002012

K2 0.012074

L 0.000344

M1 0.280506

M2 0.4675107

P 0.0010041

CST 0.0093502

Table 3.4: Scheduler Time Constants

Table 3.6: Energy Consumption over a Hyper Period (MCS)

- 73 -

3.8 Experimental Setup

 The synthetic task generator generates mixed task sets for experimentation. The

task set generation algorithm first obtains uniformly distributed utilization values for each

task in a task set (Emberson et al., 2010) and sums them to a total load of the task set.

Period of each periodic task is chosen to be a random number such that it is a natural

factor of a given hyper period value. Arrival time of the aperiodic task is obtained as a

random number over a hyper period and the minimum inter-arrival time between two

aperiodic tasks is not more than 5% to 10% of the hyper period. The execution time of

each periodic task is derived from the utilization and period. The synthetic task generator

generates periodic tasks for a wide range of utilizations: 30% to 80% and the aperiodic

tasks utilization is based on the remaining utilization of processor. The number of

periodic tasks in a task set range from 2 to 20 and aperiodic tasks in a task set range from

2 to 6. For each class of fixed number of tasks and utilization, 100 task sets are generated.

 A real-time mixed task set simulator, STREAM, (Digalwar et al., 2015) is

designed and implemented to run the synthetic benchmark programs using various

schedulers. The schedulers used in the simulator for evaluation are MCS, Cycle-

Conserving, Non-DVFS and SVFS. All the schedulers use EDF for scheduling periodic

jobs and TBS for scheduling aperiodic jobs. The simulator uses a local queue per core for

periodic jobs which is filled using WFD partitioning method. It uses a global queue for

aperiodic jobs. In the cycle conserving algorithm, frequency is selected at each

scheduling point based on the dynamic utilization method discussed in Pillai and Shin

(2001). In non-DVFS scheduling technique, the jobs are always executed at maximum

frequency and in static VFS scheduling technique, jobs are executed at a predefined

frequency such that total worst case utilization of periodic tasks is less than or equal to

scaling factor α where α = fstatic/fmax, fstatic{f1,f2,..fmax | f1<f2<...<fmax}.

 The simulator measures various parameters like number of job (periodic and

aperiodic) arrivals, job departures, scheduling decisions, preemptions with cold cache,

preemptions with hot cache and migrations. It also measures the overall energy

consumption and response time of aperiodic jobs. These parameters are measured for

MCS, Cycle-Conserving, non-DVFS and Static VFS schedulers on task sets generated by

the synthetic task set generator.

- 74 -

3.9 Results and Discussion

 This section analyzes the performance of the proposed scheduling algorithms, EEDVFS, EE-

UCS and MCS. The algorithms, EEDVFS and EE-UCS are compared for energy consumption and

response time. The algorithm, MCS is compared with Cycle-Conserving (Pillai and Shin, 2001), non-

DVFS and SVFS (Pillai and Shin, 2001) schedulers based on the parameters of comparison explained

in section 3.7. The energy is measured in milli-joules where as the response time is measured in milli-

seconds. The average energy consumption and average response time values presented in the graphs

are normalized with respect to hyper period and execution time respectively. The equation 3.27 and

equation 3.28 show the formulation of Normalized Energy Consumption (NEC) of a task set and

Normalized Response Time (NRT) of an aperiodic task with maximum response time in a task set. Let

n be the number of aperiodic tasks in a task set and Ai represents i
th

 aperiodic task in a task set.

 (3.27)

 (3.28)

3.9.1 Performance Analysis of Proposed Uniprocessor based Scheduling Algorithms

 The graphs in figures 3.1 to 3.6 show the result of investigation of the energy efficient

scheduling algorithms for uni-processor platform. The analysis shows the amount of energy

consumption and response time of aperiodic tasks by increasing the periodic tasks, total periodic

utilization and aperiodic tasks. From the figures, it can be observed that EE-UCS performs better than

EEDVFS in terms of energy saving and response time. This is because, EE-UCS is able to reclaim the

dynamic slack more accurately than EEDVFS and TBS used in EE-UCS utilizes the server budget

more efficiently than DS in EEDVFS.

 In figures 3.1 and 3.2, energy consumption and response time increase with increase in periodic

tasks due to increasing scheduling overheads. In figures 3.3, the energy consumption increases with

increasing periodic utilization as the execution energy increases with utilization. The response time of

aperiodic tasks also increases with increase in utilization as shown in figure 3.4 due to increase in total

execution time. From figures 3.5, it can be observed that there is little increase in energy consumption

with increase in number of aperiodic tasks in both the algorithms (EE-UCS and EEDVFS) as the

utilization of aperiodic tasks is fixed and scheduling overhead incurs small amount of energy. In case

of response time in figure 3.6, sufficient increase is visible for EEDVFS where EE-UCS does not have

more effect. This is due to the use of DS in EEDVFS which takes longer response time as compared to

EE-UCS which uses TBS.

- 75 -

Figure 3.1: Normalized Energy Consumption Vs. Number of Periodic

Tasks (Uni-Core)

Figure 3.2: Normalized Response Time Vs. Number of Periodic Tasks

 (Uni-Core)

- 76 -

Figure 3.4: Normalized Response Time Vs. Periodic Utilization

 (Uni-Core)

Figure 3.3: Normalized Energy Consumption Vs. Periodic Utilization

(Uni-Core)

- 77 -

Figure 3.6: Normalized Response Time Vs. Number of Aperiodic Tasks

(Uni-Core)

Figure 3.5: Normalized Energy Consumption Vs. Number of Aperiodic

Tasks (Uni-Core)

- 78 -

3.9.2 Performance Analysis of Proposed Multi-core Scheduling Algorithm (MCS)

 The graphs shown in figures 3.7, 3.8, 3.9 and 3.10 show the effect on energy

consumption by increasing number of periodic tasks in a task set, increasing periodic

utilization, increasing number of aperiodic tasks and increasing number of processing

cores.

3.9.2.1 Effect on Energy Consumption

 The plot in figure 3.7 shows the comparison of energy consumption measured for

MCS with three other scheduling algorithms. The energy is measured by increasing the

periodic tasks in a task set while keeping the total utilization of periodic tasks fixed at

50% and keeping the remaining 50% utilization reserved for aperiodic tasks. The number

of aperiodic tasks and processing cores are fixed to 2 and 8 respectively. Two

observations can be made from the graph in figure 3.7. First, the proposed MCS

algorithm results in more energy saving than other algorithms due to its efficient dynamic

frequency selection mechanism. Second, irrespective of the algorithms, the energy

consumption slightly increases with increasing number of periodic tasks because of the

scheduling overhead. The number of preemption counts and scheduling points increase as

number of periodic tasks are increases which consume additional energy.

 In figure 3.8, the energy consumption is measured by increasing the utilization of

periodic tasks in a task set by keeping number of periodic tasks, aperiodic tasks and the

number of processing cores fixed to 16, 2 and 8 respectively. In each case, the remaining

utilization is reserved for aperiodic server. The graph in figure 3.8 shows that the energy

efficient algorithm MCS consumes less energy than the other algorithms. Irrespective of

the choice of algorithms, the energy consumption increases with increasing periodic

utilization. This is because, the execution energy increases with increase in total

utilization.

- 79 -

 The graphs in figures 3.9 and 3.10 show energy consumption with respect to two

parameters: increase in number of aperiodic tasks and increase in number of processing

cores. In both the cases, the number of periodic tasks is fixed to 16 and total periodic

utilization is fixed to 50%. The energy consumption measured for MCS is less as

compared to other algorithms. There is no significant increase in energy consumption by

increasing number of aperiodic tasks as this does not highly increase the scheduling

Figure 3.8: Normalized Energy Consumption Vs. Periodic Utilization

Figure 3.7: Normalized Energy Consumption Vs. Number of Periodic

Tasks

- 80 -

events as well as scheduling overheads. The effect of increasing number of cores is very

little on the overall energy consumption. This is because of increase in static energy

consumed during idle state of processor cores. The idle state of processor cores increase

with increase in number of cores.

Figure 3.10: Normalized Energy Consumption Vs. Processing Cores

Figure 3.9: Normalized Energy Consumption Vs. Number of

Aperiodic Tasks

- 81 -

3.9.2.2 Effect on Response Time

 Figure 3.11 shows the effect of increasing number of periodic tasks in a task set

on normalized response time of aperiodic tasks. By increasing the number of periodic

tasks, there exist a rise in scheduling events such task arrivals, completions, preemptions

etc., which results in longer response time. Therefore, for all the algorithms, the response

time increases with increase in number of periodic tasks. MCS gives nearly equal

response time as compared to other energy aware and non-energy aware algorithms. This

is because two reasons. One is, MCS executes periodic job at maximum speed in

presence of aperiodic job and aperiodic job is always executed at maximum speed. Only

in absence of aperiodic jobs, periodic jobs are executed at a scaled frequency. The other

reason of nearly equal response time is because of efficient calculation of dynamic

utilization of processor cores which results in accurate selection of core for aperiodic task

execution.

 The graph in figure 3.12 shows the effect of increasing periodic utilization on the

response time of aperiodic tasks. It keeps the number of periodic and aperiodic tasks

fixed at 16 and 2 respectively. It can be observed from the graph that the response time

increases with increase in periodic utilization irrespective of the algorithms. This is due to

increase in execution time of the periodic tasks in a task set which in turn increases the

response time. The normalized response time achieved by all the algorithms is nearly

equal and it is ranging between 1.1 and 2.1. That is, in case of lower utilization, it is

nearly equal to optimal response time value of 1.

 Figure 3.13 shows normalized response time of aperiodic tasks vs. increasing

number of processing cores. It can be observed from the graph in figure 3.13 that it takes

longer response time for less number of cores and as the cores increase, the response time

decreases. This happens because the allocation technique allocates the aperiodic tasks to

lightly loaded core. With WFD partitioning scheme, as the number of cores is increased

for a task set of fixed utilization, the possibility of finding lightly loaded core increases

and thus response time decreases. Also, as MCS uses processor's current utilization, it

finds the lightly loaded core more accurately than Non-DVFS and SVFS algorithms. As a

result, in most of the cases, MCS is having shorter response time than the other

algorithms.

- 82 -

Figure 3.12: Normalized Response Time Vs. Periodic Utilization

Figure 3.11: Normalized Response Time Vs. Number of Periodic Tasks

- 83 -

3.9.2.3 Effect on Scheduling Events

 The analysis of scheduling overhead in terms of number of preemptions,

migrations and scheduling decisions is performed and the results are shown in the

following graphs. The graphs in figures 3.14 and 3.15 show the variations in number of

preemptions due to increase in number of periodic tasks and increase in periodic

utilization. In both the cases, the preemption count increases with increase in periodic

tasks and utilization. This is because, by increasing the number of tasks in a task set, the

probability of arrival of higher priority jobs increases resulting in increase in number of

preemptions. With increase in periodic utilization, the total execution time increases

which results in larger preemption count.

 In figure 3.16, the number of scheduling decisions is shown against increasing

number of periodic tasks. As number of periodic tasks increase, the number of jobs per

task over the hyper period also increases thereby increasing number of arrival and

completion events. As a result, scheduling decision points increase.

 Among all, MCS has more number of preemptions and scheduling decision points

because it takes more execution time as compared to other algorithms due to frequency

scaling.

Figure 3.13: Normalized Response Time Vs. Processing Cores

- 84 -

Figure 3.15: Number of Preemptions Vs. Periodic Utilization

Figure 3.14: Number of Preemptions Vs. Number of Periodic Tasks

- 85 -

 In figures 3.17, 3.18 and 3.19, the number of migrations of aperiodic jobs is

analyzed with respect to increase in periodic tasks, periodic utilization and number of

processing cores. In all the three cases, the number of migrations increases with increase

in each of the parameters. As periodic tasks are increased, the number of arrival of higher

priority jobs increases which results in increase in preemptions of periodic and aperiodic

jobs. The increase in aperiodic preemptions results in increase in migrations. In case of

increase in periodic utilization, the total execution time of all the jobs over the hyper

period increase which results in more number of aperiodic preemptions and migrations. It

is seen from figure 3.19 that with the increase in processing cores, the opportunity of

finding lightly loaded cores increases which results in increase in the number of

migrations.

Figure 3.16: Number of Scheduling Decision Points Vs. Number

of Periodic Tasks

- 86 -

Figure 3.18: Number of Migrations Vs. Number of Aperiodic Tasks

Figure 3.17: Number of Migrations Vs. Number of Periodic Tasks

- 87 -

 It can be observed from the above analysis that proposed MCS algorithm achieves

more energy saving than the other algorithms at the cost of slight scheduling overhead. It

also achieves comparable response time of aperiodic tasks even with increased execution

time. Table 3.7 shows the percentage energy saving and percentage increase in average

response time of aperiodic tasks measured using MCS algorithm with respect to other

existing algorithms.

MCS compared with

% Energy

Saving using

MCS

% Increase in

Response Time using

MCS

Non-DVFS 29.4% 2.5%

SVFS 10.1% 0.8%

Cycle Conserving

Algorithm
8.9% 1.1%

Table 3.7: Performance of the Proposed MCS Algorithm

Figure 3.19: Number of Migrations Vs. Processing Cores

- 88 -

3.10 Summary

 Energy optimization has become an important concern in majority of the

embedded systems. This chapter focused on dynamic energy optimization by using real

time scheduling algorithms for mixed task sets that contain periodic as well as aperiodic

tasks on uniprocessor and homogeneous multi-core processor. Energy efficient real time

scheduling algorithms, EEDVFS, EE-UCS and MCS, are proposed for the optimization

of dynamic energy consumption of the processors. In addition to it, the proposed

algorithms also optimize the response time of aperiodic tasks. EEDVFS and EE-UCS

differ in the way they schedule aperiodic tasks. EEDVFS uses DS where as EE-UCS uses

TBS for scheduling aperiodic tasks. It is observed that the use of TBS improves the

response time of aperiodic tasks significantly. Therefore, in case of MCS, TBS is used for

aperiodic task scheduling. MCS works in two steps: task allocation and task scheduling.

Static task allocation method is followed for periodic tasks while arbitrarily arriving

aperiodic tasks are dynamically allocated to the least loaded processor core. The use of

hybrid task allocation improves the utilization of each core in the system. The periodic

and aperiodic tasks assigned to each core are independently scheduled on respective

cores. The real time scheduling algorithms EDF and TBS are used to schedule the mixed

task set. The proposed DVFS based energy optimization techniques show significant

reduction in dynamic energy consumption.

 The proposed algorithms are simulated using the proposed simulation tool

STREAM and the analysis is done on various parameters such as energy consumption,

aperiodic response time, preemption count, scheduling decision points, migration count

etc. The behavior of the algorithms is tested on these parameters by varying number of

periodic tasks, number of aperiodic tasks, number of processing cores and by increasing

total utilization of the periodic tasks in a task set. For each performance metric, 100 runs

were made on 100 different randomly generated task sets. On the basis of the simulation

results, it is observed that, MCS performs better than all other algorithms used for

comparison. It significantly reduces energy consumption as compared to non-energy

aware scheduling algorithms. It gives better results than the existing energy efficient

cycle conserving scheduling technique. There is little overhead in terms of preemptions,

migrations and other scheduling events that consume some energy. MCS saves 29.4%,

- 89 -

10.1% and 8.9% energy as compared to Non-DVFS, SVFS and cycle conserving

algorithm respectively over one hyper period. This states that over multiple hyper

periods, MCS will show significant amount of energy saving. Similarly, In case of

aperiodic tasks, percentage increase in response time by MCS with respect to other

algorithms is very small and acceptable. The aperiodic response time achieved by MCS is

nearly equal to the minimum possible value.

 The limitation of DVFS is that if the frequency is reduced below critical speed,

the static energy consumption increases and as a result, it increases the overall energy

consumption. In this work, although, the frequency is not reduced below critical speed,

the static energy optimization is not explicitly taken care. We have proposed a new

algorithm that optimizes both dynamic and static energy consumption which is discussed

in next chapter.

- 90 -

Chapter 4

Leakage Aware Dynamic Voltage and Frequency

Scaling Based Scheduling for Multi-core Systems

 This chapter discusses a real time, leakage aware dynamic voltage and frequency

scaling based scheduling algorithm which reduces overall energy consumption of the

processor.

4.1 Introduction

 DVFS based scheduling techniques are effective in reducing dynamic energy

consumption but these techniques have a major bottle neck. If the speed of execution is

decreased below a certain threshold value, they result in drastic increase in sub-threshold

leakage current (Lee et al., 2003; Jejurikar and Gupta, 2004). This increase in leakage

current results in increase in static energy consumption which significantly increases the

overall energy consumption. The proposed leakage aware DVFS based scheduling

algorithm discussed in this chapter significantly reduces the dynamic as well as static

energy consumption.

 Jejurikar et al. (2004) suggested that the overall energy efficiency can be achieved

only if the processor is running above the critical speed. Another way to achieve energy

efficiency and to reduce static energy consumption is to shutdown the processor(s)

whenever it is in idle state. As shutting down the processor during idle period may incur

overhead, it is required to set a threshold, called break even time, to decide whether it is

energy efficient to shutdown or not. For example, the break even time of a 70nm

Transmeta Crusoe processor is 2 msec (Jejurikar et al., 2004). In order to stretch the idle

period to reduce the number of short shutdown intervals and also reduce shutdown

overhead, various procrastination techniques are in use (Jejurikar et al., 2004).

Procrastination techniques delay the execution of jobs to increase the length of idle

interval. Thus the overall energy optimization can be achieved only by optimizing the

combined energy consumption of static and dynamic components. This in turn can be

achieved by combining slowdown and shutdown techniques.

- 91 -

 This chapter describes the proposed energy efficient scheduling algorithm named

as Leakage Aware Multi-core Scheduler (LAMCS). It optimizes both dynamic and static

energy consumption for a mixed task set containing periodic and aperiodic tasks on a

DVFS enabled homogeneous multi-core processor platform where each core is having its

own physical clock. It combines slowdown and shutdown techniques to achieve overall

energy optimization. It also achieves early response time of aperiodic tasks without

hampering the hard deadline of periodic tasks.

4.2 System Model

 System model includes processor, task and energy models. The processor and task

models are same as discussed in chapter 3 (section 3.2.2). The processor under

consideration is a homogeneous multi-core processor consisting of M identical processor

cores. Each core is capable of changing frequency and voltage dynamically and they have

their own physical clock. The target task set includes a mix of periodic and aperiodic

tasks with hard and soft deadlines respectively. The periodic tasks under consideration

are highly critical in nature such that they cannot miss the deadline. The aperiodic tasks

do not have hard timing constraints but they require a good average response time.

 The current energy model differs from the energy model discussed in chapter 3

where we only considered the optimization of dynamic energy. In this chapter we would

be measuring and optimizing overall energy consumption that includes both dynamic and

static energy. The overall power consumption of a DVFS enabled CMOS based multi-

core processor consist of two types of power components: dynamic power (Pdynamic) due

to switching activities and static power (Pstatic) due to leakage current. Pdynamic is a convex

function of processer speed which contributes to the larger part of the total power

consumption during instruction execution whereas Pstatic occurs due to different leakage

sources such as sub-threshold leakage current (Isubn) and reverse bias junction current (Ij).

In addition to dynamic and static power consumption, there is an innate power cost to

keep the processor on, which can be denoted as Pon. Certain processor components such

as Phase Locked Loops (PLL) circuitry, I/O subsystems etc., consumes power even if no

work is carried out by the processor. The power consumption of such components adds

- 92 -

up to a significant portion of the total power consumption. Considering these three

sources of power consumptions, the total power consumption can be stated as:

 (4.1)

 (4.2)

 (4.3)

 (4.4)

where Vdd and f are the supply voltage and maximum frequency of the processor. The

description and values of the constants in the above equations are given in table 4.1. The

values of these constants are based on Transmeta Crusoe processor, scaled at 70nm

technology (Jejurikar et al 2004). The maximum voltage and frequency of this processor

are 1.0 V and 3.1GHz respectively.

 To assess the potential of DVFS and leakage aware scheduling, the total dynamic

and static energy consumption can be measured per cycle for different values of supply

voltages as follows:

 (4.5)

where,

 (4.6)

 (4.7)

 (4.8)

Table 4.1: 70nm Technology Constants

Constant Value

Effective switching capacitance (Cef)

Body bias voltage (Vbs) -0.7V

Technology constant (K3)

Technology constant (K4) 1.83

Technology constant (K5) 4.19

Reverse bias junction current (Ij)

Number of devices in the circuit (Lg)

- 93 -

 According to Eq. (4.6) and Eq. (4.7), even though it is observed that there is

quadratic and linear dependence of dynamic and static energy respectively on supply

voltage, it does not result in energy saving with decrease in voltage after certain limit.

This is because the static energy consumption increases if the processor speed decreases

below a threshold. This threshold is called critical speed. If the processor runs below this

speed, the static power consumed due to leakage current nullifies the gains of dynamic

voltage scaling and as a result the overall energy consumption increases. The critical

speed of Transmeta Crusoe processor is 1.26 GHz which is 41% of maximum speed. The

voltage corresponding to critical speed is 0.7 V. The experimentation carried out in this

paper takes care of critical speed and does not slow down the processor below this speed.

The details of frequency and voltage ranges are given in table 3.5 of chapter 3 (Section

3.7.5).

4.3 Shutdown Overhead

 Dynamic energy is minimized using DVFS technique while static energy is

minimized by putting the processor in shut down mode when it is in idle state. However,

putting the processor in shut down state and then waking it up incurs some overhead

because the processor loses temporal data stored in various forms of memory such as

registers, caches, TLBs etc. Thus before shut down, all registers must be saved and dirty

cache lines must be written back to the memory and upon wake up all the saved data

must be retrieved back to registers, cache lines etc. This results in additional memory

accesses and hence additional energy consumption. Therefore, in order to decide whether

to shut down the processor or not, threshold of idle interval is computed based on the idle

state power consumption and shut down overhead. If the idle interval is less than

threshold idle interval then it is not energy efficient to shut down the processor. The exact

length of threshold interval varies for different processor architectures. For the Transmeta

Crusoe processor, the value of idle threshold interval is 2 ms (Jejurikar et al., 2004).

- 94 -

4.4 Proposed Leakage Aware Multi-core Scheduling Algorithm (LAMCS)

 LAMCS is an energy efficient real-time mixed task set multi-core scheduling

algorithm. LAMCS addresses optimization of both dynamic and static energy for multi-

core processors. The algorithm is organized into three sub-parts: (1) Task Allocation (2)

Voltage and Frequency Selection and (3) Procrastination and Shutdown.

4.4.1 Task Allocation

 The suggested solution uses both partitioned and global methods for task

allocation. Since periodic tasks are highly critical and are not allowed to miss deadlines,

they are partitioned among multiple cores. Once allocated to the respective cores, the jobs

corresponding to the tasks are executed on that core and are not allowed to migrate as

migration incurs additional overhead which may result in deadline misses. Task

partitioning is done using Bin Packing heuristics (Gray and Johnson, 1979) like First Fit

Decreasing (FFD), Worst Fit Decreasing (WFD). The partitioning divides the task set

into M subsets where M is the number of cores in a multi-core system. Let each subset be

denoted as Si where i denotes the i
th

 core among M cores. Hence, S, the set of M subsets

of periodic tasks, is defined as {S0, S1,, SM-1}. The algorithm maintains a set of M job

queues, JQ = {JQ0, JQ1, JQ2,, JQM-1}, one per core Ci. The jobs of the tasks

belonging to subset Si are inserted in job queue JQi as soon as they are ready for

execution. Aperiodic job allocation is done using global approach where it can be

assigned to any core upon its arrival and can be migrated to other cores upon preemption.

It is better to use global assignment as aperiodic tasks have soft deadlines and migration

to lightly loaded core improves the response time of the task.

4.4.2 Voltage and Frequency Selection

 At each core, jobs of the periodic and aperiodic tasks are scheduled. Periodic jobs

are scheduled using EDF, which is an optimal uniprocessor scheduling algorithm (Liu,

2008). Aperiodic jobs are scheduled using TBS which offers simple implementation and

better performance than other existing aperiodic servers (Spuri and Buttazzo, 1996). The

scheduling decisions are made either on completion of an executing job or on arrival of a

new job. At each scheduling time t on a core Ci, Dynamic utilization Udyn (t) for periodic

job PJ with a deadline DPJ is computed as:

- 95 -

 (4.9)

where Upast (t) denotes the sum of the remaining utilization of the periodic jobs which

were released before time t and Ufuture_low(t) and Ufuture_high(t) denote the sum of share of

processor utilization of the periodic jobs that will be released during the interval [t, DPJ).

The subscripts future_low and future_high in equation 4.9 indicate that the jobs to be

released are of lower priority and higher priority than the scheduled job respectively. The

expressions to calculate Upast (t), Ufuture_low(t) and Ufuture_high(t) are given as below:

 (4.10)

 (4.11)

 (4.12)

where Ji is i
th

 periodic job arriving between [t,DPJ), ci_rem is the remaining worst case

execution time of the preempted job and t is the current time. Based on the current

dynamic utilization of the processor core, a matching smallest frequency fopt and its

corresponding voltage vopt is selected such that Udyn is less than or equal to scaling factor

α where α = fopt/fmax, with fopt{f1,f2,..fmax | f1<f2<...<fmax}. The algorithm 4.1 depicts the

frequency selection method of the proposed LAMCS algorithm. The proposed method of

calculating dynamic utilization gives the exact available utilization at any scheduling

point and assigns an optimal frequency to the scheduled job. Periodic job runs at optimal

frequency if there is no aperiodic job in its job queue. In presence of an aperiodic job, it

runs at maximum frequency as TBS uses the remaining processor utilization (Eq. 4.15)

other than periodic tasks utilization for the execution of aperiodic jobs leaving no scope

for DVFS.

- 96 -

 Upon arrival of an aperiodic task, its virtual deadline is calculated using TBS

algorithm based on the current utilization of each core. The virtual deadline is denoted as

vk_i for aperiodic job Ak on core Ci and is defined as follows:

 (4.13)

 (4.14)

where, Usrv_i = 1 - Udyn (4.15)

 Usrv_i is the utilization of TBS on core Ci at the arrival time ak of aperiodic job Ak

and WTk is the wake-up time of core Ci when Ci is in shut down mode during arrival of

Ak. Eq. (4.13) is used when the core is in running or idle state while Eq. (4.14) is used

when the core is in shut down state. After calculating the virtual deadlines on each core,

the aperiodic job is assigned to the processor core on which it finds earliest virtual

deadline amongst all the cores as shown:

 (4.16)

 where min_index denotes the index of a processor core that gives earliest virtual

deadline among all the cores. Virtual deadline calculations and selection of core are done

centrally by the aperiodic controller and has very small overhead. This aperiodic

controller has the knowledge of current utilizations of all the cores.

4.4.3 Procrastination and Shutdown

 When the job queue of a core Ci is empty, procrastination interval (PIi) is calculated

and compared with the threshold shutdown interval. If it is greater than or equal to the

threshold time interval, the processor core is put in shutdown mode till the timer is

exhausted. Algorithm 4.2 shows the procrastination algorithm and describes calculation

Algorithm 4.1: Frequency Selection of Proposed LAMCS Algorithm

Select_Frequency
Begin

Calculate Udyn from eq. 4.9, 4.10, 4.11 and 4.12

 select smallest freq fopt{f1,f2,..fmax | f1<f2<...<fmax f1 > fcritical}
 such that Udyn <= fopt/fmax

Returns optimal frequency fopt

End

- 97 -

of procrastination interval. It postpones the execution of periodic jobs that are arriving

during shutdown period to extend the shutdown interval. Let ATJi be the arrival time of a

periodic job Ji on core Ci which is arriving after the idle interval has started. The

procrastination interval (Zj) is calculated by considering all the jobs arriving in near future.

If this interval is greater than the shutdown threshold, then this will act as the next wake

up time (WT). The processor backs all the relevant data before shutting down the

processor till WT. Procrastination interval Zj is calculated as follows:

 (4.17)

 The wake up time value is chosen to ensure the timely completion of postponed jobs

which will be executed after the processor core wakes up. The first job after wakeup is

always executed at maximum frequency as the procrastination timer is calculated based on

the wcet of jobs at maximum frequency. The complete algorithm, LAMCS, is shown in

algorithm 4.3. Figure 4.1 shows the detail flow of LAMCS in a flow chart by highlighting

the sub-modules. The notations used in the flowchart are same as in algorithm LAMCS.

Algorithm 4.2: Procrastination Interval Calculation in Proposed LAMCS

Algorithm

Procrastination_Interval (Core Ci, Current Time loc_time)

Begin

WT = HP

Jnext = next periodic job which will arrive during idle interval;

while (ATJnext < WT)

Begin

 compute Z Jnext for Jnext using equation 4.17

 WT = min (WT, ATJnext + ZJnext)

 Jnext = next periodic job

End

set PI = WT - loc_time

return PI

End

- 98 -

Algorithm 4.3: Proposed Leakage Aware Multi-core Scheduling Algorithm

(LAMCS)
Pre-Condition: Si, set of periodic tasks belonging to core Ci after partition.
Post-Condition: Feasible schedule if exists; FAIL otherwise.
Waking Up Condition: Core Ci wakes up when procrastination timer exhausts.

LAMCS
Begin

Join all pending jobs corresponding to core Ci in JQi
if Empty (JQi) then

PIi = Procrastination_Interval (Ci,t)
if PIi >= threshold interval then

set Procrastination Timer to PIi
Put core Ci in shutdown state
Return

else
Core Ci remain idle
Return

end if
end if
if Curr.JQi.RemainingTime == 0 then

Curr.JQi = Head.JQi
else if Head.JQi.Priority > Curr.JQi.Priority then

if Curr.JQi is periodic then
preempt and insert Curr.JQi in JQi

else
 find core with earliest virtual deadline using eq. 4.13, 4.14 and
 4.17

if min_index != i then
preempt and migrate Curr.JQi to core Cmin_index

else
preempt and insert Curr.JQi in JQi

end if
end if
Curr.JQi = Head.JQi

end if
if ! DVFS OR JQi has at least one aperiodic job OR Curr.JQi is aperiodic job OR
PIi is exhausted then

execute Curr.JQi till Min(Curr.JQi.Remaining Time, Arrival of next job)
at fmax

 else
fopt = Select_Frequency(Ci)
execute Curr.JQi till Min(Curr.JQi.Remaining Time / α, Arrival of next
job) at fopt

end if
End

- 99 -

Frequency Selection

Handle Periodic Preemption

Start

Job Queue

Empty?

Procrastination and Shutdown

Calculate PI

PI
Threshold

Put the core Ci in

Shutdown State

Yes

No Core Ci

remains idle

Yes No Jcurr

Completed
?

No

P_Jhead >

P_Jcurr

Yes

No

Schedule
Next Job

Jhead

Complete

Jcurr

Yes

Yes

Preempt and
insert Jcurr in

Job Queue

 Handle Aperiodic Preemption

Jcurr received

VDmin on

same core?

No

Preempt and

migrate to a core

with VDmin

Schedule the next

job Jhead

Preempt and
insert Jcurr in

Job Queue JQi

Algo is non DVS or

Job Queue has

ap_job or Jcurr is

aperiodic or PI is

exhausted?

Yes

Yes

No

Select fopt
Execute Jcurr at

fopt

Execute at fmax End

Find core with

minimum vd

No

J_Curr

Periodic?

Figure 4.1: Flowchart of Proposed LAMCS Algorithm

- 100 -

4.5 Schedule of Sample Task Set using LAMCS Algorithm

 This section describes the proposed algorithm, LAMCS by generating a schedule

of a mixed task set on two cores. Table 4.2 shows the attributes of a task set consisting of

three periodic tasks (T0,T1, and T2) and 2 aperiodic tasks (A0 and A1) on a dual core

processor. Hyper period (HP) of the task set is 50. A periodic job J<mn> is denoted as

(n+1)
th

job of task Tm. The tasks are allocated on the basis of WFD partitioning scheme.

The resultant schedule while executing with LAMCS on Core 0 and Core 1 is shown in

tables 4.3 and 4.4 respectively. Each row in table 4.3 and table 4.4 is dedicated to either

arrival or completion of a job. At each scheduling point, each row in these tables show

which job has arrived, started, migrated, completed or has been preempted. It shows the

value of dynamic utilization of the core at a scheduling event. Based on the utilization,

selected optimal frequency and scaled aet is also shown. In case of aperiodic job, its

virtual deadline is shown in the respective column. In addition to all these parameters,

state of the processor core (running/shutdown/wakeup) and value of the procrastination

timer are mentioned which are used to defer execution of a periodic job.

 As can be seen in table 4.3, on Core 0, at time 0, J10 is ready for execution at a

current utilization of 0.6. Therefore, J10 is scheduled and executed at 60% of maximum

frequency. At time 25, upon arrival of A1, it is assigned to Core 0 since the virtual

deadline calculated for Core 0 is earlier than that calculated for Core 1. At time 25, J10 is

preempted as the deadline of A1 is earlier than J10 and A1 is scheduled. At time 30, when

A1 finishes, the current utilization reduces to 0.75. As a result, J10 executes at 80% of

maximum frequency and finishes at time 40.

 Similarly, as seen in table 4.4, on Core 1, at time 0, J00 and J20 have arrived.

According to EDF scheduling policy, J20 is selected for execution at optimal frequency,

60% of fmax. Upon its completion at time 1.7, dynamic utilization is calculated as 0.57

using Eq. (4.9), optimal frequency closest to utilization is selected as 60% of fmax and the

next ready job J00 is selected for execution at this frequency. At time 6.7, J00 completes

and processor core 1 is put in shutdown mode for 11.3 units of time. At time 8, upon

arrival of aperiodic job A0, virtual deadline is calculated for A0 on both the cores using

Eq. (4.13) and (4.14). A0 is assigned to Core1 since it gets early virtual deadline on

- 101 -

Core1. As Core1 is in shutdown state, A0 waits in job queue till the processor wakes up.

It is then scheduled in priority order. At time 18, upon wake up, J21 is scheduled which

completes at 19.2 and A0 gets the chance to execute on Core 1. A0 is preempted at time

20 due to arrival of higher priority job J22 which executes for 0.2 units of time and

finishes at time 19.4. A0 resumes execution and preempts at time 30. At time 30, J01 and

J23 which arrived at time 25 and 30 respectively are waiting in the ready queue. As J23 has

earliest deadline among the three job (J23, A0, J01) in ready queue, J23 is scheduled and

executed for 1.6 units of time. At time 31.6, A0 resumes and finishes at time 37.2. It

should be noted that in presence of aperiodic job, as the total utilization is 100%, all the

jobs are executed at maximum frequency. Upon completion of aperiodic job A0, the

current utilization is 0.94, therefore, J01, is executed at maximum frequency. But upon

completion of J01 at time 44.2, the current utilization drastically reduces to 0.34. As a

result, the next periodic job J24 executes at 40% of maximum frequency. The entire

schedule till the hyper period is shown in table 4.3 and table 4.4 for Core0 and Core1

respectively. Figure 4.2 shows the timing diagram of the entire schedule for the example

task set. The horizontal axis shows the time line from time 0 till the hyper period 50 and

the vertical axis shows the execution frequency.

Table 4.2: Mixed Task Set (LAMCS)

Tasks Arrival Period wcet Deadline Core #

(Partitioning
Scheme:
WFD)

Uwc # of
jobs
in a
HP

aet of jobs

T0 0 25 10 25 Core 1 0.4 2 3, 7

T1 0 50 30 50 Core 0 0.6 1 23

T2 0 10 2 10 Core 1 0.2 5 1, 1.2, 1.4, 1.6,
1.8

A0 8 - 15 - - - 15

A1 25 - 5 - - - 5

- 102 -

Table 4.3: Schedule on Core 0 using Proposed LAMCS Algorithm

R/M - Release/Migration, S/RP/C/P - Started/Resumed after Preemption/Continued, Comp -
Completed, Preempt (RAET) - Preempted (Remaining Actual Execution Time at maximum
frequency), UT(R/C) - Dynamic Core Utilization (upon Release/upon Completion), Freq (%) -
Normalized Frequency in %, WCET, AET/RAET - Worst Case Execution Time of released job,
Actual Execution Time/Remaining Actual Execution Time at maximum frequency, Scaled AET -
Actual Execution Time at scaled frequency, VD - Virtual Deadline of aperiodic task, PT -
Procrastination Timer

Time R/M
S/RP/

C/P
Comp

Preempt

(RAET)

UT(R/

C/W)

Freq

(%)

WCET,

AET/

RAET

Scaled

AET
VD

CPU

State
PT

0 J10/-
J10/-/-

/-
- - 0.6/- 60 30,23 / - 38.3 - Running -

8 A0/-
-/-

/J10/-
- - - - 15,15/- -

45.5(not

Allocated)
Running -

20

A0

preempted

on Core1

-/-

/J10/-
- - - - - -

55.3 (not

Migrated)
- -

25 A1/-
A1/-/-

/-
- J10(8) 1/-/- 100 5,5/- 5 37.5 Running -

30 -/-
-/J10/-

/-
A1 - -/0.75/- 80 -,-/8 10 - Running -

40 -/- -/-/-/- J10 - - - - - - Shutdown 10.0

- 103 -

Table 4.4: Schedule on Core 1 using Proposed LAMCS Algorithm

Time R/M
S/RP/

C/P
Comp

Preempt

(RAET)

UT(R/

C/W)

Freq

(%)

WCET,

AET/RA

ET

Scaled

AET
VD

CPU

State
PT

0
J00,J20/

-

J20/-/-

/-
- - 0.6/- 60 2,1/- 1.7 - Running -

1.7 -
J00/-/-

/-
J20 - -/0.57 60 10,3/- 5 - Running -

6.7 - -/-/-/- J00 - - - - - - Shutdown 11.3

8.0 A0/-
-/-/-/

A0
- - 1/- 100 15,15/- 15 44.25 Shutdown -

10 J21/-
-/-/-/

J21
- - - - - - - Shutdown -

18 -/-
J21/-/-

/-
- - -/-/1 100 2,1.2/- 1.2 - WakeUp -

19.2 -/-
A0/-/-

/-
J21 - -/1/- 100 15,15/- 15 44.25 Running -

20.0 J22/-
J22/-/-

/-
- A0(14.2) 1/-/- 100 2,1.4/- 1.4 - Running -

21.4 -/-
-/A0/-

/-
J22 - -/1/- 100 -,-/14.2 14.2 44.25 Running -

25.0
J01,A1/

-

-/-

/A0/-
- - 1/-/- 100 -,-/10.6 10.6

VDA1 =

55.6, not

allocated

Running -

30.0 J23/-
J23/-/-

/-
- A0(5.6) 1/-/- 100 2,1.6/- 1.6 - Running -

31.6 -/-
-/A0/-

/-
J23 - -/1/- 100 -,-/5.6 5.6 44.2 Running -

37.2 -/-
J01/-/-

/-
A0 - -/0.94/- 100 10,7/- 7 - Running -

40.0 J24/-
-/-

/J01/-
- - -/-/- 100 - - - Running -

44.2 -/-
J24/-/-

/-
J01 - -/0.34/- 40 2,1.6/- 4.5 - Running -

48.7 -/- -/-/-/- J24 - -/-/- - - - - Idle -

R/M - Release/Migration, S/RP/C/P - Started/Resumed after Preemption/Continued, Comp - Completed,
Preempt (RAET) - Preempted (Remaining Actual Execution Time at maximum frequency), UT(R/C) -
Dynamic Core Utilization (upon Release/upon Completion), Freq (%) - Normalized Frequency in %,
WCET, AET/RAET - Worst Case Execution Time of released job, Actual Execution Time/Remaining
Actual Execution Time at maximum frequency, Scaled AET - Actual Execution Time at scaled frequency,
VD - Virtual Deadline of aperiodic task, PT - Procrastination Timer

- 104 -

4.6 Correctness Proof and Schedulability of LAMCS Algorithm

Theorem 1: A system of independent preemptable mixed tasks containing N periodic

and M aperiodic tasks, where periodic tasks have implicit deadlines and are in-phase,

aperiodic tasks have soft deadlines and arrive arbitrarily, is schedulable on K cores

according to LAMCS if the periodic tasks are partitionable among K processor cores

using Bin Packing heuristics, and the total utilization of periodic tasks and aperiodic tasks

is less than K.

Proof: LAMCS follows worst fit decreasing and first fit decreasing partitioning

heuristics which guarantee the assignment of tasks among K cores. Since the Bin Packing

partitioning heuristics provides the utilization bound of 66% (Anderson and Tovar,

2006), the remaining utilization of each processor core is used for executing aperiodic

tasks thereby increasing the schedulability of the task set.

 LAMCS follows EDF scheduling policy for scheduling periodic tasks on each

processor core independently. On the other hand, TBS scheduling policy is used for

scheduling aperiodic tasks along with periodic tasks where the utilization of TBS server

is equal to the remaining utilization of the processor core other than the assigned

utilization of periodic tasks.

Figure 4.2: Timing Diagram for the schedule on Core 0 and Core 1

- 105 -

 As EDF along with TBS scheduling policies are optimal (Liu, 2008) for

uniprocessors, bin packing heuristic allocates periodic tasks on multiple cores with

utilization bound of 66% and aperiodic tasks use the remaining utilization of processor

cores, LAMCS produces a feasible schedule on multi-core processor and increases the

utilization bound of the processor cores.

Theorem 2: In a system of independent preemptable mixed tasks consisting of periodic

and aperiodic tasks where periodic jobs follow EDF schedule and aperiodic jobs follow

TBS schedule, the dynamic energy optimization guarantees least idle time, static energy

and dynamic energy with maximum shutdown duration achieved by DVFS and

procrastination.

Proof: The algorithm LAMCS selects the optimal frequency and voltage at each

scheduling point on the basis of dynamic utilization of the processor core at that

scheduling point. The dynamic utilization, frequency and voltage are calculated on the

basis of current load of the processor core which results in minimum idle intervals. The

correctness of dynamic utilization of a processor core is proved by using mathematical

induction in corollary 1.

 When the processor core is idle, LAMCS computes the shutdown interval by

using Eq. (4.17). The shutdown interval is extended by using dynamic procrastination

resulting in achieving maximum shutdown interval. The correctness of shutdown interval

with dynamic procrastination is proved by using mathematical induction in corollary 2.

Corollary 1: When a task set T contains N periodic tasks and M aperiodic tasks where N

 2 and M > 0, the dynamic utilization of the processer at any scheduling time t is given

by

where (from Eq. 4.10, 4.11 and 4.12),

- 106 -

Proof:

 Assume T contains (N+M) tasks where N 2 and M > 0. The dynamic utilization

stated in the above equations is proved by using mathematical induction as follows. The

mathematical induction is based on the number of jobs present in the ready queue at any

scheduling point.

Basic Step: At any scheduling time t, if there are no lower priority jobs waiting in the job

queue other than scheduled periodic job PJ and no job is released during interval [t,DPJ)

then

 (4.18)

 (4.19)

 (4.20)

 Therefore, dynamic utilization of the core Ci is equal to worst case utilization of

the scheduled periodic job PJ.

Inductive Step: At any scheduling time t, Let j be the number of lower priority jobs

waiting in the job queue including scheduled job, k be the number of jobs arriving during

interval [t,DPJ) which are lower priority than PJ and l be the number of jobs arriving

during interval [t,DPJ) which are higher priority than job PJ. In this case, dynamic

utilization can be stated as follows:

 (4.21)

 (4.22)

 (4.23)

 Therefore, dynamic utilization at any scheduling time t will be the sum of Upast,

Ufuture_low and Ufuture_high.

Corollary 2: For a core Ci, at time t, if JQi is empty and J is the periodic job which

arrives after time t, the calculation of procrastination interval is the highest possible

without missing any deadlines.

Proof: The corollary is proved using mathematical induction as follows:

Basic Step: At a time instance t, when the job queue JQi is idle and periodic job J arrives

after time t, assuming no job will arrive during interval [aJ,DJ), then the procrastination

interval ZJ (for core Ci) can be stated as:

- 107 -

 (4.24)

 Therefore, the execution of job J can be procrastinated for ZJ units of time.

Inductive Step: At a time instance t, when the job queue JQi is idle and periodic job J

arrives after time t, let us assume that k lower priority and l higher priority jobs will arrive

during the interval [aJ,DJ). The procrastination interval ZJ (for core Ci) in this case can be

stated as:

 (4.25)

 The above equation procrastinates the execution of periodic job J by taking care

of the share of each job arriving during the interval [aJ,DJ) and ensures the deadline of

job J.

Theorem 3: In a multi-core system where independent preemptable periodic tasks are

assigned and scheduled independently on different cores using LAMCS with DVFS and

DPM and aperiodic jobs are globally scheduled, the response time of aperiodic jobs are

not affected due to voltage and frequency scaling.

Proof: LAMCS schedules aperiodic jobs globally to any of the cores on multi-core

system on the basis of virtual deadline that aperiodic job receives on each core. It assigns

the job to a core which gives early virtual deadline. The correctness of virtual deadline

computation for an aperiodic job is given in corollary 3. All aperiodic jobs execute in

maximum voltage and frequency which offers minimum response time.

Corollary 3: In a system containing K processor cores, N periodic tasks and M aperiodic

tasks, the virtual deadline for an aperiodic job is computed as follows (From Eq. (4.13)

and (4.14)):

 The virtual deadline of any aperiodic job depends on the TBS utilization. For example,

in a dual core system, if server utilization of core 1 is greater than server utilization of

core 2, then core 1 provides early virtual deadline than core 2. From Eq. (4.15), it is

observed that server utilization depends on core's dynamic utilization; the correctness of

virtual deadline calculation can be proved by corollary 1.

- 108 -

4.7 Algorithmic Complexity of LAMCS Algorithm

 The algorithmic complexity of LAMCS is the product of the number of

scheduling decision points and the complexity per scheduling decision. Given a task set S

with hyper period H, the algorithmic complexity of LAMCS is

TLAMCS(S,H) = Decisions (LAMCS, S, H) * Cdecision (LAMCS, S, H) (4.26)

Decisions (LAMCS, S, H) = N(Ap + Aa) + NC1 + NC2 + NP (4.27)

 Where Decisions is the number of decision points to be made by the algorithm

and Cdecision is the time complexity of a single decision. Decisions can be divided into

five types of decisions points: number of periodic job arrivals N (Ap) and number of

aperiodic job arrivals N (Aa), number of completion points (NC1) when job queue is non-

empty, number of completion points (NC2) when job queue is empty and number of

aperiodic preemption points (NP). Time complexity of LAMCS can be derived as

follows:

TLAMCS(S,H) = O(N(Ap + Aa) * (T log2T)) + O(NC1 *(K + P)) + O(NP * Tlog2T) + O(L)

+ O(M) + O(NC2 * K
2
) (4.28)

 where T is the number of tasks in a task set S. The time required for insertion in

job queues upon job arrival is O(T log2T). The constant K is the number of jobs appearing

in a time interval [t, deadline of a scheduled job) at any scheduling time t and P is the

number of lower priority jobs waiting in the job queue at time t. The number of time units

required to calculate dynamic utilization at any completion time when the job queue is

non-empty are (K + P). In practice, the value of K and P are very small as compared to

total jobs. On preemption, the aperiodic jobs are inserted in the job queue of one of the

cores. This additional insertion time is O (NP * Tlog2T). The time complexity of the

selection of matching frequency level from the L discrete frequency levels is O (L). O

(M) is the constant amount of required to select a processor core which provides earlier

virtual deadline to a scheduled aperiodic job where M is the number of processor cores.

The time required for taking a shutdown decision is O (K
2
) as described in equations

4.11, 4.12 and 4.17.

- 109 -

4.8 Energy Calculations for Proposed LAMCS Algorithm

 This section presents the energy calculations of the experiments carried out in this

work. The overall energy consumption includes energy consumed during task execution

(i.e. dynamic energy), scheduling events such as arrival, completion, migration,

slowdown, shut down and wakeup. Energy consumed during task execution, Eexec_energy, is

calculated at various intervals over the hyper period at different frequencies and voltages.

Energy consumed in performing scheduling events is considered as scheduler overheads

Esched_overhead. For the calculation of Esched_overhead , it is required to know the number of job

arrivals, completions, preemptions, migrations and scheduling decisions throughout the

hyper period for each task set. The static energy Estatic, shutdown energy Eshutdown and

shutdown overhead energy Eshutdown_overhead consumption per unit time are considered as

per Transmeta Crusoe processor. The overall energy consumption can be stated as

follows:

 (4.29)

 (4.30)

 where, Tsched is the total time required to perform scheduling events, E is the

energy consumption per unit time by the processor core running at maximum frequency.

Tsched can be calculated as follows:

 (4.31)

 where, pac, apac, cc, pccold, mc, dc and pchot are the number of periodic job arrival

points, aperiodic job arrival points, completion points, preemption points with cold cache

job, migration points, decision points and preemption points with hot cache job

respectively. The time constants CST, K1, K2, L, M1, M2 and P are the time required for

context switching, periodic job arrival, aperiodic job arrival, completion of a job, transfer

data/instruction from L2 cache to L1 cache upon preemption, transfer data/instruction

from L2 cache to L1 cache upon migration and the scheduler to make a scheduling

decision respectively. These time constants and execution times are measured in

milliseconds. The time constants are calculated by first running the scheduler code for

- 110 -

large number of iterations and then taking average of all the iterations. These time

constants are shown in table 3.4 of chapter 3. Preemption and migration cost of a job is

considered as ten times the CST. It is assumed that the preemption and migration demand

transfer of 3 and 5 pages respectively. Table 4.5 shows the energy consumption of the

example tasks set with LAMCS, MCS and Non-DVFS algorithms over hyper period for

WFD partitioning scheme.

Table 4.5: Energy Consumption over a Hyper Period (LAMCS)

4.9 Results and Discussions

 This section provides details of the experiments conducted for the evaluation of

the proposed scheduling algorithm, LAMCS. The experimental set up used for the

experiments is same as in chapter 3 (section 3.8). LAMCS is compared with the

scheduling algorithms namely, non energy aware (Non-DVFS), Static Voltage and

Frequency Scaling (SVFS) and DVFS based Multi-Core Scheduler (MCS) scheduling

algorithms. The performance is evaluated on the basis of two relevant metrics: overall

energy consumption and response time of aperiodic tasks. In addition to these metrics, we

have also identified the effect of our approach on various other parameters such as

number of preemptions, migrations and scheduling decisions for two different partition

techniques: WFD and FFD by varying the number of periodic tasks per task set, aperiodic

tasks per task set, total periodic utilization and number of processing cores. The

significance of all the parameters is discussed in chapter 3 (Section 3.7).

Algorithm Execution
Energy
(m Joules)

Static
Energy
(m Joules)

Scheduler
Energy
(m Joules)

Shutdown
Energy
(m Joules)

Total
Energy
(m Joules)

Proposed
LAMCS

67.63 0.187

3.23 0.967

79.888

MCS 69.94

2.498

3.49 0.0 85.938

Non-DVFS 79.98

5.775

3.21 0.0 98.965

SVFS 73.65 4.505 3.21 0.0 91.359

- 111 -

4.9.1 Performance Analysis of Proposed LAMCS considering only Periodic Tasks

 Figures 4.3 and 4.4 compare the performance of LAMCS with the existing

algorithms that schedule only periodic task sets. In this case, LAMCS is applied on

periodic task set instead of mixed task set and the rest of the analysis that is shown in

figures 4.5 to 4.21 is performed for mixed task sets consisting of periodic and aperiodic

tasks.

 In figure 4.3 and 4.4, the existing scheduling algorithms used for comparison are

non energy aware (Non-DVFS) (Digalwar et al., 2014), cycle conserving scheduling

algorithm (Pillai and Shin 2001) and Leakage Control Earliest Deadline First (LC-EDF)

(Lee et al., 2003). These algorithms schedule only periodic task sets.

 Figure 4.3 shows that LAMCS gives nearly equal energy consumption as Cycle

Conserving algorithm and performs better than non-DVFS and LC- EDF. The reason for

nearly equal performance of LAMCS and cycle conserving is that the probability of

finding the shutdown intervals that are larger than the threshold time interval is less as the

load on each core is balanced. Thus LAMCS performs nearly equal to the cycle

conserving algorithm.

 On the other hand, in figure 4.4, as the partition scheme is FFD, the load is

concentrated among the subset of the cores keeping the remaining cores in idle state;

LAMCS saves significant energy as compared to all other algorithms. This is because;

the idle cores are kept in shutdown state resulting in significant amount of static energy

saving. Another observation shows that LC-EDF performs better than Cycle Conserving

algorithm for low and moderate task utilizations as the number of idle cores (which

consume static energy) are more when total task set utilization is low. For the periodic

utilization values of 70 and 80, Cycle Conserving algorithm saves more energy than LC-

EDF. This shows that, dynamic shutdown strategy is more effective for lightly loaded

processors as compared to heavily loaded processors.

- 112 -

Figure 4.4: Normalized Energy Consumption Vs. Periodic Utilization

(FFD Partition scheme and task set constitutes only periodic tasks)

Figure 4.3: Normalized Energy Consumption Vs. Periodic Utilization

(WFD partition scheme and task set constitutes only periodic tasks)

- 113 -

4.9.2 Performance Analysis of Proposed LAMCS considering Mixed Task sets

 The graphs shown in figures 4.5 to 4.19 show the effect on energy consumption,

response time and scheduling events for mixed task sets.

4.9.2.1 Effect on Energy Consumption

 Figures 4.5 and 4.6 show average normalized overall energy consumption for the

mixed task sets with various algorithms against increasing periodic tasks while keeping

number of aperiodic tasks, periodic and aperiodic utilizations and number of cores fixed.

Figure 4.5 and 4.6 show the results for WFD and FFD partitioning schemes respectively.

 The graphs in figures 4.5 and 4.6 show that the normalized energy measured with

respect to LAMCS is less as compared to the other algorithms. Another observation is

that MCS and LAMCS perform almost in similar fashion when partitioned with WFD

where as LAMCS saves more energy as compared to MCS in case of FFD. This is

because, the total shutdown period achieved in case of WFD is comparatively lesser than

in FFD scheme and the number of shutdown intervals in case of WFD scheme are more

as compared to FFD scheme. This leads to increase in energy consumed due to shutdown

overhead. As a result, LAMCS using WFD scheme does not show significant reduction

in overall energy as compared to MCS. On the other hand, in case of FFD partitioning

scheme, the effect of shutdown is significant such that the overall energy consumption

with respect to LAMCS is quit less as compared to MCS and other algorithms. In this

case, the cores to which, not a single periodic task is assigned during task partitioning are

completely shutdown. As a result, there is significant overall energy saving. In both the

partitioning schemes, the energy consumption increases with increasing number of

periodic tasks due to scheduling overhead of increasing number of tasks.

 The graph in figure 4.7 shows the normalized energy consumption by varying

total worst case utilization of periodic tasks in the mixed task set by keeping number of

cores, number of periodic and aperiodic tasks fixed for FFD partitioning scheme. The

overall energy consumption increases as the worst case periodic utilization is increased.

This is due to increase in total execution time of the task set. LAMCS performs better

than the other algorithms as it reduces both static and dynamic energy.

- 114 -

Figure 4.6: Normalized Energy Consumption Vs. Number of

Periodic Tasks (FFD Partition Scheme)

Figure 4.5: Normalized Energy Consumption Vs. Number of

Periodic Tasks (WFD Partition Scheme)

- 115 -

 Figure 4.8 shows the effect of increasing aperiodic tasks on the overall energy

consumption for FFD partitioning scheme. The parameters that are fixed to perform this

experiment are total worst case periodic utilization, aperiodic utilization, number of

processing cores and number of periodic tasks. The fixed values are shown in the graph.

There is no increase in energy consumption with the increase in number of aperiodic

tasks. This is because of fixed utilization of aperiodic tasks.

 We have also investigated our algorithm by increasing the number of processing

cores. In figures 4.9 and 4.10, normalized energy consumption is shown with respect to

increase in the number of cores for WFD and FFD schemes respectively. The periodic

utilization, number of periodic tasks and number of aperiodic tasks are fixed. The

periodic utilization is fixed to 50% with respect to four cores.

 In case of WFD scheme in figure 4.9, increasing the number of cores does not

affect the execution energy (or dynamic energy) consumption but increases the static

energy consumption due to increase in idle time. In addition, the inherent energy that is

consumed to keep the processor in switch-on state also increases as the number of cores

increase. Therefore, irrespective of the algorithms on the graph, the overall energy

consumption increases as the number of cores increase. Among all the algorithms,

Figure 4.7: Normalized Energy Consumption Vs. Periodic

Utilization (FFD Partition Scheme)

- 116 -

LAMCS performs better than the others. This is because; LAMCS gets more opportunity

to shut the cores as the number of cores increase.

 In figure 4.10, energy consumption measured with respect to LAMCS is constant

because FFD partitioning will remain unchanged even if we increase the number of cores.

Therefore, even if we increase the cores, they will remain in shutdown state as no tasks

will be assigned to them. For other algorithms, the scaled frequency selected for each

core will be closed to maximum as FFD distributes the load in such a way that it tries to

pack each core and then moves to the next core. They also show a slight increasing trend

due to increase in static energy caused due to increase in idle time.

Figure 4.8: Normalized Energy Consumption Vs. Number of

Aperiodic Tasks (FFD Partition Scheme)

- 117 -

Figure 4.10: Normalized Energy Consumption Vs. Processing Cores

(FFD Partition Scheme)

Figure 4.9: Normalized Energy Consumption Vs. Processing Cores

(WFD Partition Scheme)

- 118 -

4.9.2.2 Effect on Response Time

 Figures 4.11 - 4.15 show the effect of various parameters on aperiodic response

time. In Figure 4.11, aperiodic response time measured by increasing periodic tasks for

WFD scheme is shown. It can be noted that the response time increases by increasing

number of periodic tasks. This is because; there is rise in scheduling events such as task

arrivals, completions and preemptions which result in longer response time. In addition to

this, LAMCS takes longer response time than other algorithms due to procrastination of

aperiodic tasks that are arriving during shutdown period.

 Figure 4.12 shows the aperiodic response time in case of FFD scheme. The

algorithms other than LAMCS gives minimum possible response as these algorithms

schedule the aperiodic tasks on lightly loaded core which does not have any periodic

tasks assigned to it. But, in case of LAMCS, the cores that are not assigned the periodic

tasks are kept in shutdown state. Therefore, the aperiodic tasks are executed on available

cores with little higher response time. From figures 4.11 and 4.12, it is observed that the

percentage increase in aperiodic response time by LAMCS with respect to other

algorithms is higher in case of FFD than in WFD scheme. Figures 4.13 and 4.15 shows

response time with respect to other two parameters: number of aperiodic tasks and

number of cores for FFD scheme. These figures also show the same trend as seen in

Figure 4.12 for the same reason as justified for Figure 4.12.

 Figure 4.14 shows the affect of aperiodic response time on increasing number of

processing cores. It can be noted from the graph that as the number of processing cores

increase, the response time decreases because of decrease in current load on each core.

The algorithms, MCS and LAMCS calculate virtual deadline based on the current

processor utilization which is calculated dynamically and not on the basis of worst case

processor utilization. Therefore, these algorithms are able to identify lightly loaded cores

more accurately than Non-DVFS and SVFS algorithms resulting in decrease in response

time. On the other hand, as Non-DVFS and SVFS algorithms calculate virtual deadline

on the basis of worst case utilization of the cores, they are not capable of identifying the

exact lightly loaded cores. In case of LAMCS, with the increase in processing cores, the

response time is more with respect to other algorithms. For example, when the number of

- 119 -

cores becomes 6, 7 and 8, the response time measured by LAMCS is more than other

algorithms. This happens because of increase in shutdown period with the increase in

processing cores. Increase in shutdown period increases response time as the aperiodic

job execution is procrastinated during shutdown period.

Figure 4.12: Normalized Response Time Vs. Number of Periodic Tasks

(FFD Partition Scheme)

Figure 4.11: Normalized Response Time Vs. Number of Periodic

Tasks (WFD Partition Scheme)

- 120 -

Figure 4.14: Normalized Response Time Vs. Processing Cores (WFD

Partition Scheme)

Figure 4.13: Normalized Response Time Vs. Number of Aperiodic

Tasks (FFD Partition Scheme)

- 121 -

4.9.2.3 Effect on Scheduling Events

 The analysis of scheduling overhead in terms of number of preemptions,

migrations and scheduling decisions is performed and the results are shown in the

following graphs. The graphs in figures 4.16 and 4.17 show the variations in number of

preemptions and scheduling decisions due to increase in number of periodic tasks for

FFD scheme. The preemption count and scheduling decision points increase with

increase in number of periodic tasks. This is because, by increasing the number of tasks

in a task set, the probability of arrival of higher priority jobs increases resulting in

increase in number of preemptions and scheduling decision points.

 LAMCS has more number of preemptions and scheduling decision points because

of two reasons: (1) It takes more execution time as compared to other algorithms due to

frequency scaling. (2) The procrastination of tasks during shutdown period accumulates

more number of jobs in the ready queue at the wake up time which results in more

number of preemptions and scheduling decision points.

 The graphs in figures 4.18 and 4.19 show the effect of migration of aperiodic jobs

with increase in periodic tasks and increase in aperiodic tasks respectively. In both the

graphs, LAMCS requires few migrations but other algorithms do not require any

migration as the lightly loaded cores that do not possess any periodic tasks are available

Figure 4.15: Normalized Response Time Vs. Processing Cores (FFD

Partition Scheme)

- 122 -

for use. But in case of LAMCS, such cores are put in shutdown mode for energy

optimization. Therefore, aperiodic jobs are scheduled on the cores that are open for use.

Figure 4.17: Number of Scheduling Decisions Vs. Number of Periodic

Tasks (Partition Scheme: FFD)

Figure 4.16: Number of Preemptions Vs. Number of Periodic Tasks

(Partition Scheme: FFD)

- 123 -

Figure 4.19: Number of Aperiodic Migrations Vs. Number of Aperiodic

Tasks (Partition Scheme: FFD)

Figure 4.18: Number of Aperiodic Migrations Vs. Number of Periodic

Tasks (Partition Scheme: FFD)

- 124 -

4.9.3 Comparison of Static Energy Consumption

In figures 4.20 and 4.21, the comparison of static energy consumption for both the

proposed algorithms MCS and LAMCS is shown with respect to increasing periodic

utilization for WFD and FFD partitioning schemes respectively. In LAMCS, as we have

applied shutdown mechanism with procrastination of jobs, we consider the energy

consumed during shutdown and shutdown overhead in addition to static energy

consumption. Therefore, we compare the static energy consumption measured for MCS

with sum of static energy, shutdown energy and shutdown overhead energy. It can be

observed that LAMCS consumes quite less energy than MCS from both the graphs in

figures 4.20 and 4.21. This major static energy saving contributes to the overall energy

saving for LAMCS as compared to all the other algorithms.

 In case of WFD scheme, the static energy consumption measured with respect to

MCS and LAMCS decreases as the periodic utilization increases. This is due to increase

in execution time which increases dynamic energy but not static energy. On the other

hand, in case of FFD partitioning scheme, for MCS, static energy consumption decreases

with increase in utilization. The reason is, as the total periodic utilization increases, the

number of cores that are idle decrease. As a result, static energy consumption decreases.

Instead, in LAMCS, as the utilization increases, the cores that are active also increase (or

the number of cores that are in shutdown state reduces) resulting in slight increase in

static energy.

- 125 -

Figure 4.21: Static Energy Consumption Vs. Periodic Utilization

(Partition Scheme: FFD)

Figure 4.20: Static Energy Consumption Vs. Periodic Utilization

(Partition Scheme: WFD)

- 126 -

 It can be observed from the above analysis that LAMCS achieves more energy

saving than the other algorithms with slight scheduling overhead and increased response

time. Table 4.6 shows the percentage energy saving and percentage increase in average

response time of aperiodic tasks measured using LAMCS algorithm with respect to other

existing algorithms in case of FFD and WFD partitioning schemes.

Table 4.6: Performance of the Proposed LAMCS Algorithm

Partitioning

Scheme

Comparison of

LAMCS with

% Energy Saving

using LAMCS

% Increase in

Average Response

Time using LAMCS

FFD

MCS 25.48% 73.4%

Non-DVFS 32.1% 73.4%

SVFS 27.89% 73.4%

WFD

MCS 1.51% 15.89%

Non-DVFS 29.69% 15.64%

SVFS 10.15% 16.23%

4.10 Summary

 This chapter focused on the overall energy optimization that includes the

optimization of dynamic and static energy. The energy optimization is performed by

using real time scheduling algorithm for mixed task sets that contain periodic as well as

aperiodic tasks on homogeneous multi-core processor. A leakage aware DVFS based real

time scheduling algorithm, LAMCS, is proposed and implemented to optimize dynamic

as well as static energy consumption of each processing core in a multi-core platform.

The proposed algorithm LAMCS also optimizes the response time of aperiodic tasks by

meeting the hard deadlines of the periodic tasks. LAMCS is sub-divided into two parts:

(1) Task Allocation (2) Task Scheduling. Task allocation is done in similar way as in

chapter 3. Task scheduling does scheduling of tasks (using EDF and TBS algorithms),

takes care of optimizing dynamic energy consumption using DVFS based technique and

static energy consumption using dynamic shutdown and procrastination techniques. It

- 127 -

does not allow frequency scaling below critical speed. In order to reduce the shutdown

overhead, it tries to extend the shutdown intervals using procrastination technique.

Procrastination technique delays the execution of a task until the processor wakes up.

Aperiodic tasks are handled in the same way as in MCS except that if the task arrives

during the shutdown interval, its virtual deadline is calculated with respect to wake up

time.

 LAMCS is implemented using the proposed simulation tool STREAM and the

analysis is done on various parameters such as energy consumption, aperiodic response

time, preemption count, scheduling decision points, migration count etc. The behavior of

the algorithm is tested on these parameters by varying the number of periodic tasks,

number of aperiodic tasks, number of processing cores and by increasing total utilization

of the periodic tasks in a task set. For each performance metric, 100 runs were made on

100 different randomly generated task sets.

 On the basis of the simulation results, it is observed that, in case of FFD

partitioning, the proposed algorithm LAMCS gives significant energy saving as

compared to Non-DVFS, SVFS and MCS scheduling algorithms. It achieves 25.48%,

32.1% and 27.89% energy saving as compared to MCS, Non-DVFS and SVFS

algorithms respectively. There is little overhead in terms of preemptions, migrations and

other scheduling events that consume some energy. The aperiodic response time achieved

by LAMCS in case of FFD partitioning scheme is more as compared to others. In case of

WFD partitioning scheme, LAMCS consumes nearly equal amount of energy when

compared with MCS resulting in less energy saving. In case of WFD partitioning scheme,

LAMCS achieves 1.51%, 29.69% and 10.15% energy saving as compared to MCS, Non-

DVFS and SVFS algorithms respectively. There is small percentage increase in aperiodic

response time as compared to other algorithms. However, all the algorithms including

LAMCS achieve nearly optimal response time with WFD partitioning scheme. The

limitation of LAMCS is that in case of WFD partitioning scheme, the number of

shutdown intervals are more and as a result, energy consumed in shutting down and

waking up the processor core consumes significant amount of energy.

- 128 -

Chapter 5

Task Set Generator and Scheduler Simulator:

STREAM

This chapter discusses the details of the task set generation algorithm used in this work

and the design and implementation details of the scheduler simulator "STREAM" that is

developed to test various energy aware and non-energy aware real time scheduling

algorithms.

5.1 Introduction

 Recent advancement in real time systems has led researchers to design and

develop more efficient real time schedulers. To test the correctness and feasibility of

these schedulers, it is necessary to examine them on a variety of real time task models

and for huge number of task sets. Doing this manually is a cumbersome job and

correctness is also not guaranteed. This necessitates the need of an automation tool that

performs these jobs with greater flexibility and ease.

 In order to evaluate the efficiency of a new real time scheduling algorithm,

software simulation against other algorithms is commonly used. In real time system

community, very few such tools are available and of the available tools, none is robust.

These tools are mostly built for specific needs and do not cover all the aspects of real-

time scheduling. STREAM is one such tool which is designed to be robust, flexible, and

extensible. It serves as an automation tool for simulation, testing and evaluation of real

time multiprocessor scheduling algorithms. In addition to existing features of existing

simulators, STREAM particularly implements the missing aspects like adding robustness

and flexibility, aperiodic task scheduling, power/energy management, performance

analysis etc.

 This chapter presents an easy to use and well documented simulation tool called

STREAM that can simulate DVFS based real time scheduling algorithms for mixed work

load on multi-core processor by incorporating majority of QoS parameters. STREAM

stands for "Simulation Tool for Real time Energy efficient scheduling and Analysis for

- 129 -

Multi-core processors". It includes implementation of EDF, EDF with TBS, cycle

conserving EDF with TBS algorithms for uniprocessor and multi-core processor

platforms, DVFS based multi-core scheduler implementation for mixed work load, MCS

and leakage aware DVFS based multi-core scheduler, LAMCS. It has modules to

generate synthetic task set and to calculate various performance metrics such as energy

consumption, aperiodic task's response times, various decision counts such as scheduling

points, preemption count, migration count, cache impact points etc. The analytical results

of the algorithms can be visualized by plotting different graphs.

 STREAM is written in java programming language which makes use of object

oriented paradigm. The modules are organized in such a way that highly specific or

similar objects are grouped inside a single package. This helps new programmers to

quickly track the required module by navigating the group hierarchy. The graphical User

Interface (GUI) of simulator is very user friendly and is easy to explore and use. The use

of abstract classes facilitates addition of new modules in the current version of simulator.

The snap shots corresponding to various modules in STREAM are presented in Appendix

A.

5.2 Background

 Majority of the researchers in real time systems community evaluated the

correctness of new algorithms by using simulation on randomly generated task sets. As a

result, many simulation tools have been developed in last few years. The detail summary

of over 20 simulators is shown in Table 5.1. The summary of the existing simulators is

made on the basis the parameters viz., task model, processor model, task set generation,

energy optimization, performance analysis, programming language, scheduler profiling

etc. It can be observed from Table 5.1 that there is not a single simulation tool that covers

all the aspects of energy efficient real time scheduling. The proposed simulator,

STREAM, deals with all the parameters.

- 130 -

Table 5.1: Summary of Existing Simulators

Sr.

No.
Simulator

Task

Model

Processor

Platform
Language Design

Performance

Analysis

Scheduler

Profiling

Task Set

Generation
Energy

Open

Source

1
STRESS

(Audsley et al.,

1994)

Periodic

Task

System

Uni-processor

Domain

Specific

Language

Pseudo code design N N N N N

2

Generic

Simulator

(Vroey et al.,

1996)

Periodic

Task

System

Uni-processor C++

Complex, Non-Modular,

Redundant , No flexibility

to add new module

N N N N N

3
GHOST

(Sensini et al.,

1997)

Mixed

Task

System

Uni-processor C

Simple, Modular design,

Flexibility to add new

module

N Trace Generator
Trace

Generator
N N

4
MAST

(Harbour et al.,

2001)

Mixed

Task

System

Multiprocessor ADA
Modular, flexible to add

new component
Y Y N N Y

5
RTSim

(Manacero et

al., 2001)

Periodic

Task

System

Multiprocessor C++ - N N N N Y

6
Java Simulator
(Jakovljevic et

al., 2002)

Periodic

Task

System

Uni-processor Java

Modular, Concurrent

programming,

Independent Component

design

N N N N N

7
YASA

(Blumenthal et

al., 2003)

Periodic

Task

System

Multiprocessor ANSI C

Modular and Flexible,

supports RT-Linux and

RTEMS

Y N N N N

8
SimDVS

(Shin et al.,

2003)

Periodic

Task

System

Multiprocessor
-

Modular design, Flexible

Energy

Management
N N

Inter-DVFS and

Intra-DVFS

Techniques

N

9
Cheddar

(Singhoff et al.,

2004)

Mixed

Task

System

Multiprocessor ADA

Modular, Flexible, allows

integration of third party

components

N N N N N

10
TORSCHE
(Sucha et al.,

2006)

Periodic

Task

System

Multiprocessor
Matlab/

Simulink
Routine based design Timing Analysis N N N Y

11
Realtss

(Diaz et al.,

2007)

Periodic

Task

System

Uni-processor C/C++/TCL
Modular, flexibility to add

new scheduler
N N N N Y

- 131 -

Sr.

No.
Simulator

Task

Model

Processor

Platform
Language Design

Performance

Analysis

Scheduler

Profiling

Task Set

Generation
Energy

Open

Source

12
FORTAS

(Courbin et al.,

2011)

Periodic

Task

System

Multiprocessor Java
Modular, flexible,

Follows OOPS paradigm

Comparison

between different

scheduler

performance

N

UUnifast-

Discard

Algorithm ()

N Y

13
SPARTS

(Nikolic et al.,

2011)

Periodic

Task

System

Multiprocessor Java
Modular, flexible,

Follows OOPS paradigm

Execution time

Vs. Task Set size,

Simulation time

analysis

Scheduler overhead

statistics
Y Y

14
omNET

(Khalib et al.,

2012)

Periodic

Task

System

Uni-processor C++ Modular

CPU Utilization

Vs. deadline size

and deadline

stolerance

N N N Y

15
Yartiss

(Chandarli et al.,

2012)

Mixed

Task

System

Multiprocessor Java

OOPS design, Modular,

Flexible, Extensible,

Reusability

N
Tracking

Preemption points

UUnifast-

Discard

Algorithm ()

N Y

16
RTMultiSim

(Hangan et al.,

2012)

Periodic

Task

System

Multiprocessor -
Follows STORM like

design

CPU utilization,

parallelism degree
N

UUnifast-

Discard

Algorithm ()

N N

17
RealtssMP

(Ramrez et al.,

2012)

Periodic

Task

System

Multiprocessor C/C++/TCL
Modular, flexibility to

integrate new scheduler
Y

Tracking

Preemption points,

migration points,

Deadline miss

points

N N Y

18
ERTSim

(Pillai and Isha,

2013)

Mixed

Task

System

Uni-processor C/C++
Modular and Structural

paradigm of C/C++

Utilization upper

bound test,

Response Time

Analysis,

Processor Demand

Analysis

N

UUnifast,

UScaling and

Ufitting

N N

19
GEN4MAST

(Rivas et al.,

2014)

Periodic

Task

System

Multiprocessor Python Modular, flexible
CPU Utilization

Analysis
N

UUnifast-

Discard

Algorithm ()

N Y

19
GEN4MAST

(Rivas et al.,

2014)

Periodic

Task

System

Multiprocessor Python Modular, flexible
CPU Utilization

Analysis
N

UUnifast-

Discard

Algorithm ()

N Y

 20
STORM

(Urunuela et al.,

2010)

Mixed

Task

System

Multiprocessor Java

Generic and simple OOPS

design, Modular, Flexible,

Extensible, Reusability

N

Gives only

statistical

information about

scheduler

N
DVFS

Technique
Y

- 132 -

5.3 Architecture of STREAM

 The architecture of STREAM clearly separates the hardware specification from software

entities. Modular and flexible organization of design components makes it clearly understandable

for any new programmer. The provision of abstract classes and interfaces makes the modules

easily extensible to new implementation.

5.3.1 General Purpose Design

 The generic design structure of any real time simulator comprises of input/output

subsystem separated by the simulation core components. Input subsystem deals with providing

input data to be simulated by simulator components such as schedulers, servers, controllers etc.

Output subsystem produces the set of output as a result of simulation. The core simulation

components comprise of simulation building blocks, software components, hardware entities,

event manager etc. The architecture of STREAM follows the same standard design flow as

shown in figure 5.1.

 Input subsystem: This subsystem provides the input configuration data to be simulated.

This includes software configuration such as task set definitions, target hardware

requirements, type of scheduler and some miscellaneous configurations such as

power/energy specification (for energy efficient schedulers).

 Simulation Core: It provides the simulation core modules which are highly modularized

and coupled together to carry out sound and flexible simulation procedures on input data.

Simulation core interactively holds together the software and hardware systems. Software

system provides a bunch of simulation basic building blocks such as real time task model,

global data-structures, and active components such as schedulers, servers, energy

controllers, event recorders, performance analyzer, profilers etc. Software components

are executed on target hardware platform provided by hardware system, which includes

multi-core processor, per-core job queues and energy/power controllers.

 Output Subsystem: This subsystem records and tracks the output produced by event

recorder, performance analyzer, scheduler profiler and log trace generator. Also called as

- 133 -

result set, it is then used for visual analysis, scheduler profiling and examination,

processor execution trace analysis etc.

5.3.2 Subsystem Architecture

 Subsystem architecture of STREAM provides the overall view of the system. It describes

modeling and relationship between the different software and hardware entities in the system.

These entities are categorized into four sub-systems:

 System Modeler

 Task set Generator

 Scheduler/Controllers

 Performance Analyzer/ Scheduling Profiler

 The detailed architecture of the simulation tool STREAM is shown in figure 5.2. It shows

the internal architecture of each of the sub-systems and describes the flow of control among the

sub-systems.

Figure 5.1: Abstract Model of STREAM

- 134 -

5.3.2.1. System Modeler

 System modeler provides necessary working environment to facilitate and bring together

the execution behavior of the simulator. It encapsulates real time task entity, multi-core

processor entity, energy model and partition manager.

 Real Time Task Entity

 The real time task entity provides the characteristics of periodic and aperiodic real time

tasks. These two types of tasks descend the task entity. Figure 5.3 shows the state transition

diagram that shows all the events of a task throughout its life time. The events are explained

as follows:

 The task begins with a state called Zombie where it lives in the static list of suspended

tasks outside the execution environment.

 Upon its arrival, the task enters the Ready state where it is inserted into the ready

queue of the system.

Figure 5.2: Architecture of STREAM

- 135 -

 Upon getting the chance, the scheduler makes it eligible for execution on the

processor core, and the task enters Running state. This is depicted by a transition from

Ready to Running state.

 While running, a task may get preempted by arrival of a high priority task in which

case the scheduler brings back a task from its Running state to Ready state and gives

chance to a high priority task.

 Later, on getting a chance, the preempted task again jumps to Running state.

 On termination, a task is moved back to Zombie state, where it waits until its next

invocation (in case of Periodic task) or it marks its finished status (in case of

aperiodic task).

 In addition to the basic states explained above, few scheduling algorithms may allow

tasks to be migrated from one processor core to another (source execution unit to

destination execution unit) on preemption. This helps reduce the waiting time of a

task and gives lesser response time. This state is depicted in dotted lines (indicating

that it's a scheduler specific implementation) and is called as Migrated Ready. On

migration, it follows the same fundamental state behavior as explained above on the

target processor.

Figure 5.3: Task State Transition Diagram

- 136 -

 Multi-core Processor Entity

 The multi-core processor entity represents the virtual multi-core processor. The Basic

Processor Entity provided in STREAM can be extended to implement a more specific processor

entity by including the semantics of standard architecture of Intel, ARM etc. Multi-core

environment is provided by creating multiple instances of the processor entity which can then be

used to run the scheduler. As shown in figure 5.4, the processor entity consists of sub modules –

Task Data structure and Energy Profile.

 Task Data Structure

 The data structures that are designed for maintaining the task's information and

energy consumption information of a processor core are described as follows:

 Global Task Queue: This maintains a global static list of tasks. A partition

manager operates on this static list to perform partition across the

processor cores according to partitioning scheme. This list is also useful in

taking global scheduling decisions.

 Per-Core Static Queue: This queue is used to maintain a per-core static list

of tasks. Partition manager partitions the tasks across the cores and places

Figure 5.4: Processor Entity Diagram

- 137 -

them in per-core static-queue for further processing. Initially all the tasks

are in Zombie state.

 Per-Core Ready Queue: Each core has its ready queue to keep track of all

the ready tasks at a particular instance. This is basically a dynamic list of

ready tasks managed by scheduler. Periodic tasks enters ready queue at

every invocation and are removed after they finish their execution for one

invocation. Aperiodic tasks on the other hand, enter ready queue only once

at their arrival time and are removed after they are migrated or finish their

execution.

 Energy Profiler

 The energy specification of a processor depends on the type of architecture

semantics used to build a processor model. For example, Intel's energy specifications are

different from ARM's energy specification. The energy model in general represents

various power or energy management techniques, frequency specification, and voltage

specification that works on top of energy profile embedded inside the processor. In the

current version of STREAM, DVFS and DPM with procrastination techniques of energy

optimization are implemented.

 Partition Manager

 In case of partitioned scheduling policy, tasks need to be partitioned across

multiple cores. There are various partitioning schemes available in the literature. Few of

these are: Worst Fit, First Fit, and Best Fit Partitioning Schemes (Gray and Johnson

1979). These schemes are implemented and encapsulated inside a partition manager

module which is invoked prior to scheduling. There is a provision of adding new task

allocation techniques if required in future.

5.3.2.2. Task set Generator

 A rich set of task sets with uniform and even distribution serves as an important

prerequisite to test the correctness and validity of any new scheduler. STREAM provides an

independent module for generating synthetic task sets. The procedure of task set generation is

- 138 -

very flexible in the sense that the user can set or modify the input task set parameters according

to various requirements such as utilization, hyper period etc. These parameters are explained in

detail below.

 Task Set Generation Parameters

There are two categories of task set generation parameters:

 Default Parameters: These are the common parameters that are applicable for task set

generation with their default values. These parameters are kept constant for generating

large number of task sets. The default parameters are number of periodic tasks, number of

aperiodic tasks, total utilization of periodic tasks, total utilization of aperiodic tasks and

minimum number of target cores.

 User Parameters: These are the variable parameters that are accepted from user based on

the requirement. The user parameters are number of target task sets, hyper period range,

actual execution time range factor and aperiodic task arrival range factor. These

parameters vary according to the requirement of utilization, number of periodic tasks per

task set, number of aperiodic tasks per task set, number of cores etc.

 Brief description of all the parameters:

o Periodic tasks load (utilization) represents the total utilization of periodic tasks

present in one task set for single processor core. This utilization should be less than or

equal to 1(<= 100% Load).

o Aperiodic tasks load (utilization) represents the total utilization of aperiodic tasks

over a span of one hyper period. For example, if for a task set hyper period is HP and

Aperiodic tasks load is 70%, then the total aperiodic task load over a span of one

hyper period = 70% * HP.

o Number of task sets represents the total number of task sets of similar configurations

to be generated. The default value is 100 which can be changed in default parameters

settings of task set generator.

o Hyper period range represents the range factor which is used to constrain the hyper

period value from generating a very large number. The default range given in

- 139 -

STREAM is 360-3000; however, this can be changed in default parameter settings of

task set generator.

o Actual Execution Time (AET) generator represents a boolean field to allow generating

AET values over a hyper period corresponding to WCET value of a task.

o AET range factor is used to randomly generate AET values constrained within this

range factor. To generate an AET value corresponding to a WCET value of a task, a

random factor from within this range is selected and multiplied with a WCET. This

guarantees, the AET values generated are less than or equal to the WCET value. The

default range factor used is 0.30-0.95 of WCET. For ex, WCET = 20 and a randomly

selected factor within this range is 0.5(say), then the AET = 0.5 * 20 = 10.

o Aperiodic task arrival range factor is used to decide the release time interval of

aperiodic tasks. From a given range factor of 0.01-0.10(say), if 0.02 is the value

selected randomly, then first aperiodic task will arrive at time = 0.02 * hyper period.

The range factor for next aperiodic task will be upgraded to 0.11-0.20 and a randomly

selected value within this range multiplied by hyper period decides its arrival time,

and so on for all successive aperiodic tasks.

 Task set Generation Policy

 STREAM is capable of generating mixed task sets that contain periodic as well as

aperiodic tasks. The algorithm designed and implemented for the generation of mixed task sets is

derived from a well known algorithm: UUniFastDiscard (Davis and Burns, 2009) which is

capable of generating task sets with only periodic tasks.

 The generation of synthetic task sets should meet three key requirements: efficiency,

parameter independence and lack of bias. Efficiency in terms of ability to generate large number

of task sets for each task set parameter setting in the experiments. This is required to get

statistically significant results. The parameter independence refers to the ability of the algorithm

to generate task sets by varying subset of parameters and keeping other parameters constant. For

example, different task sets can be generated by increasing periodic tasks in a task set for fixed

periodic and aperiodic utilization. The distribution of task sets generated should be equivalent to

- 140 -

selecting task sets at random from all possible task sets and then discarding those that do not

match required parameter setting.

 The number of tasks and total utilization of the task set are the two important parameters

required to generate the tasks in a task set. The attributes of a periodic task are worst-case

execution time (C), period (P) and deadline (D). We assume implicit deadline where deadline is

equal to period. The attributes of aperiodic tasks are arrival time and worst-case execution time.

The total utilization of a task set can be defined as in equation 5.1:

 (5.1)

where,

 (5.2)

where n is the number of periodic tasks, Ui is the utilization of i
th

 periodic task, u is the total

utilization of periodic tasks. For the generation of periodic tasks, utilization values for all the

periodic tasks in a task set and corresponding periods should be randomly generated. The worst-

case execution time can be computed from equation 5.2.

 There exist various algorithms in literature for the generation of task utilization. In each

of the algorithms, the task utilization is randomly generated with the constraint that the sum of

utilizations should be constant desired total utilization of the task set. Bini and Buttazzo (2005)

proposed two algorithms UUniform and UUniFast for uniprocessor platform where total

utilization cannot exceed 1. UUniform algorithm is practically infeasible while UUniFast is an

efficient algorithm. The logic behind UUniFast is to initially sample a value which represents the

sum of n-1 task utilization values and then set a task utilization value to the difference between

required total and this sampled value. This operation is repeated for each task for the sampled

value in previous iterations as the required total. This algorithm works well for uni-processor

platform but for multiprocessor platform, as the utilization of each task should not exceed 1,

UUniFast cannot be directly applied. An algorithm UUniFast-Discard proposed by Davis and

Burns (2009) is a simple extension to UUniFast algorithm which simply discards the tasks whose

utilization is greater than 1. The limitation of this algorithm is that it becomes inefficient as total

utilization value approaches n/2 where n is very large. Another efficient algorithm proposed by

Stafford called Randfixedsum (Stafford, 2006) is efficient than the other algorithms. It efficiently

- 141 -

generates a set of vectors that are evenly distributed in n-1 dimensional space and whose

components sum is equal to a constant value. The reason behind its efficiency is that the random

samples are so generated that they are not required to be rejected.

 In our simulation tool STREAM, we have used UUniFast-Discard algorithm. Figure 5.5

shows the flowchart of synthetic task set generation with the attributes displayed in a separate

box. The task set generation algorithm is responsible for generating periodic and aperiodic tasks.

As shown in the flow chart, in each iteration, one mixed task set is generated. For generating

periodic/aperiodic tasks, it makes use UUniFast-Discard (Davis and Burns, 2009). It generates a

vector of uniformly distributed utilization values such that the sum of those utilization values is

equal to periodic/aperiodic load. It also discards those utilization values that are exceeding 1 in

case of periodic task. Period of each periodic task is chosen to be a random number such that it is

a natural factor of a given hyper period value. Execution time is derived from the utilization

value and period. Arrival time of the aperiodic task is obtained as a random number over a hyper

period and the minimum inter-arrival time between two aperiodic tasks is not more than 5% to

10% of hyper period. The wcet of aperiodic task is calculated as a product of utilization value

and the time left till the hyper period from its arrival. The synthetic task generator generates

periodic tasks for a wide range of utilization: 30% to 80% and aperiodic tasks utilization is based

on the remaining utilization of processor. The number of periodic tasks in a task set range from 2

to 20 and aperiodic tasks in a task set range from 2 to 6. For each class of fixed number of tasks

and utilization, 100 task sets are generated. Task set generator is implemented as a generic

interface that provides the flexibility of adding the new task set generation algorithm.

- 142 -

Start
#Periodic Tasks (np)

#Aperiodic Tasks (nap)

#TaskSets (NTS)
TaskSet counter (k)

Periodic Task Counter (Tp)

Aperiodic Task Counter (Tap)

Task Set
Parameters

k < NTS

Invoke Task Set Generation Algorithm

Generate Periodic

Utilization vector

(Uunifast Discard)

Generate Aperiodic

 Utilization vector

(Uunifast Discard)

Tp < np Tap < nap

Generate Period
(Natural Factor of HP)

Derive wcet (From
Utilization & Period)

Generate Arrival Time
(Inter-arrival time <

10% of HP)

Derive wcet
(From Utilization, HP &

Arrival Time)

Tp = Tp + 1 Tap = Tap + 1

Periodic Task

Set

Aperiodic Task

Set

Mixed Task

Set

Task Set File

End

k = k + 1

Figure 5.5: Task Set Generation Flowchart

- 143 -

 Figure 5.6 shows the sample task set file generated by the task set generator. Even though

the current version of STREAM generates tasksets in .txt file, there is provision to add other

useful file formats such as .csv, .xml etc. As shown in figure 5.6, two tasksets are separated by a

dotted line (---) also called a separator. Each task set consist of 'p' number of periodic tasks and

'a' number of aperiodic tasks, where p > 0 and a >= 0. This is followed by the hyper period value

for that task set and then the set of actual execution time (AET) values corresponding to each

task.

As shown in figure 5.6, for each task set,

A periodic task is represented as:

ARRIVAL_TIME<space>PERIOD<space>WORST_CASE_EXECUTION_TIME

An Aperiodic task is represented as:

ARRIVAL_TIME<space>0<space>WORST_CASE_EXECUTION_TIME

Task set hyper period follows the task definition and is represented as:

HP=<HYPERPERIOD VALUE>

Actual Execution Time (AET) follows next, the format is

Figure 5.6: A Sample Task Set File

- 144 -

Task# :< RANDOM AET VALUES SEPARATED BY COMMA (,) FOR n (= HP / PERIOD) JOBS OF A

TASK>

5.3.2.3. Schedulers, Controllers and Servers

 The main objective of any real time simulator is to test, analyze and evaluate the

scheduling algorithm by providing the necessary infrastructure around it. Simulator should

provide the flexible and extensible environment to design new scheduler. In STREAM,

Schedulers resides at the center of the simulator and are surrounded by the set of subsystems

consisting of task entity, processor entity, analyzer, task set generator etc. STREAM provides the

flexibility to add new scheduler to the simulator with minimum efforts.

 Scheduler Composition:

 In STREAM, a scheduler is composed of three executing components: Scheduler,

Controller and a Server. Of these, scheduler is mandatory since it offers the basic scheduling

policies such as EDF, RM etc. The other two are closely integrated with scheduler and are

optional, meaning that they can be included depending on the type of scheduler we want to

design. For example, an energy aware EDF scheduler would need to integrate DVFS controller

inside basic EDF scheduler component. Following sections discuss in detail about these

components.

o Scheduler:

 This is the fundamental component type necessary to be implemented in order to write

new scheduler. Basic scheduling policies such as EDF and RM are implemented as a part of this

component by implementing a Scheduler interface. This is the mandatory component for any

scheduler and it provides the flexibility to integrate other two optional components.

o Controller:

 In order to make the basic scheduler energy aware, it has to be composed with energy

controller(s). The implementation of energy controller depends on the type of power

management technique to be followed. In the current version of STREAM, DVFS and shutdown

with procrastination techniques of power management is followed which allows dynamic

management of power at various task state events such as start, finished, preempted etc. Energy

- 145 -

controllers relies on the energy specification provided by energy profile embedded inside the

processor.

o Server:

 In order to look after the scheduling of aperiodic tasks, a special scheduler component is

designated called as server or aperiodic server. The server can be embedded inside the basic

scheduler in order to make it handle aperiodic tasks. STREAM provides flexible way of defining

new aperiodic server. In current design, Total Bandwidth Server (TBS) is implemented for its

simplicity and efficiency as compared to other servers such as Deferrable server, Sporadic server

etc.

5.3.2.4. Current Design of STREAM

 In the proposed simulation tool, various flavors of dynamic priority schedulers have been

implemented. Though the current version of STREAM does not focus on fixed priority

scheduling techniques, it provides the flexibility to add new schedulers. The schedulers currently

implemented in STREAM are all based on EDF scheduling policy. The aperiodic server

currently implemented is TBS and DS. To make these schedulers energy efficient, a dynamic

energy optimization technique namely, DVFS is implemented. Also to optimize overall energy

consumption, DVFS together with shutdown and procrastination techniques is implemented. The

flexible design of simulator allows execution of different schedulers separately as well as in

combination with different aperiodic servers and energy controllers depending upon the user

requirement. For example, if a user wants to execute non energy aware scheduler for hard real

time tasks, then EDF can be selected or if a user wants to execute energy aware scheduler for

mixed task set, then a combination of EDF, TBS and DVFS can be selected. The scheduler,

aperiodic server and energy controller are implemented as java interface that makes it easy to

add new scheduling policy, another aperiodic server or any other energy optimization policy.

Figure 5.7 shows the detailed class diagram of the simulation core which includes scheduler,

server and energy controller.

- 146 -

 The current version of simulator provides following building blocks that are necessary to

design and build any advance real time schedulers.

 Basic Scheduling Policies:

 A dynamic priority-scheduling algorithm, EDF is implemented which can generate a

feasible schedule for a system of N-independent, pre-emptible tasks as long as the total

utilization of the system is less than or equal to 1.

 Every time an aperiodic task arrives, the TBS algorithm assigns the possible earliest

deadline to the aperiodic task. Since the aperiodic task does not have a deadline, a virtual

deadline is calculated for them. Once the task is assigned the virtual deadline, it is scheduled by

EDF with periodic tasks. The virtual deadline is determined based on the server bandwidth

(utilization).

 Controllers

 DVFS Controller: Energy aware schedulers invoke DVFS controller in

conjunction with EDF in order to perform power/energy management action. It is

invoked at every decision event and DVFS actions such as frequency-voltage

resetting, scaling of execution time etc. are performed.

Figure 5.7: Class Diagram of Scheduler Module

- 147 -

 Static Frequency Controller: It is basically a static version of DVFS Controller,

meaning that a dynamic frequency-voltage resetting doesn't happen and instead

worst-case frequency-voltage settings are used throughout the schedule.

 Leakage Aware DVFS Controller: The algorithms that optimize the dynamic as

well as static energy invoke DVFS controller in conjunction with a controller

responsible for shutdown and procrastination. These controllers are invoked on

top of basic EDF and TBS schedulers for mixed task set.

The current version of simulator includes the following real time scheduling algorithms designed

at the top of above building blocks.

1. Non-DVFS EDF+TBS Scheduler (Non-DVFS):

 This is non-energy aware version of EDF+TBS scheduler which doesn't apply DVFS

for energy reduction and executes tasks at full frequency and consumes maximum processor

power. The scheduler can work for uniprocessor and multi- core platforms.

2. Static Frequency EDF+TBS Scheduler (SVFS):

This scheduler is capable of scheduling mixed task set on multi-core processors using

EDF and TBS. It is able to optimize dynamic energy by scaling the frequency based on

the worst-case utilization of the task set. It can work for uniprocessor as well as multi-

core platforms.

3. Cycle Conserving DVFS Enabled EDF+TBS Multi-core Scheduler (CC_MCS):

This scheduling algorithm is DVFS enabled where frequency scaling is based on cycle

conserving approach followed by Pillai and Shin (Pillai and Shin, 2001).

4. DVFS Enabled EDF+TBS Multi-core Scheduler (MCS):

This scheduling algorithm is also capable of reducing dynamic energy. The frequency

scaling is done on the basis of dynamic utilization which is calculated at each scheduling

point.

5. Leakage Aware DVFS Enabled EDF+TBS Multi-core Scheduler (LAMCS):

This scheduling algorithm optimizes both dynamic and static energy consumption. The

dynamic energy is optimized using the frequency scaling technique used in MCS while

the static energy is optimized using shutdown and procrastination techniques.

- 148 -

 In all the above algorithms, in case of multi-core processors, the periodic tasks are

partitioned and allocated to different cores. The periodic tasks assigned to each core are

scheduled using EDF scheduling policy. The aperiodic tasks are assigned to any of the cores and

are scheduled along with periodic tasks on that core using TBS. In case of any of the frequency

scaling algorithms, the aperiodic tasks are executed at maximum frequency. All the algorithms

are capable of scheduling the tasks on uniprocessor as well as multi-core processor platform.

5.3.2.5. Output Subsystem of STREAM

 Output subsystem of the simulator provides ways to capture and record every single

event over the time of schedule. This subsystem works in background and performs logging of

various activities and events that scheduler performs while running. As a result of this, a number

of log traces are generated clearly describing the execution history or event history of the

scheduler. These log traces are useful in many ways, for instance, to examine and evaluate the

correctness and validity of designed scheduler, to verify the execution against the expected

outcome, to easily track down all the activities related to particular a event etc. Output subsystem

provides following facilities as a part of simulation result set: Scheduler execution log trace, per-

core execution log trace and energy measurement log trace.

 Scheduler Execution Log Trace:

 This log trace gives the complete details about the execution of scheduler. The details are

captured for every single time unit until the hyper period. This includes, the information about

the series of actions that took place in one time unit of execution; the information about the

processing of every single event and its outcome; the information related to reasons illustrating

task state transitions; the statistical information related to various data structures such as static

queues, per-core ready queues etc. It describes the important information about task set partition

across multiple cores. Figure 5.8 shows the sample log trace generated by the simulator while

executing energy aware EDF based scheduler.

- 149 -

 Per-core Execution Log Trace:

 This log trace is specifically generated for each core, describing the task execution over

one hyper period. In multi-core environment, it is very important to track down the behavioral

and statistical information about every single core which is useful in many cases such as, when

task migration is allowed across the cores, it is required to know the reason for migration and

extract the temporal description about the event. The log trace clearly illustrates, when a

particular task is started on the core, when it is finished, preempted or migrated indicating the

time of action. It also shows the time action if any task is missing deadline. This is helpful in

determining the reason for deadline miss based on the prior execution history, and thereby

deciding the cause for deadline miss. Figure 5.9 shows the sample log trace of 2-cores execution

in parallel.

Figure 5.8: A partial snapshot showing scheduler execution log trace

- 150 -

 Energy measurement log trace:

 This log trace provides useful information about energy management settings for energy

aware schedulers. This is modeled according to the type of energy management technique

employed in the scheduler. In case of DVFS technique, the log trace includes the sequential

information about frequency-voltage settings done at various events throughout the schedule.

This clearly describes the energy variations that occurred in the schedule, which is useful to

determine various energy related equations such as energy savings behavior, processor

frequency behavior against load etc. Figure 5.10 shows the sample view of DVFS setting log

trace generated by simulator out of energy aware scheduler.

Figure 5.9: A partial snapshot showing parallel per-core

execution trace

- 151 -

5.3.2.6. Performance Analyzer and Scheduling Profiler

 This is a very important module particularly when performance study and examination of

any scheduler is of top priority. It provides several options to do performance analysis on top of

scheduler. It generates analysis information in text format in separate files which can be

examined manually or can be supplied to a visual analyzer in order to get more user friendly

visual results. Visual analyzer is a part of performance analyzer which works as independent

module and uses a rich graphics library to visualize the performance analysis results in a user

friendly visual format such as line graphs, bar charts etc. Visual analysis makes it very easy to

quickly compare the performance of various scheduling algorithms against each other.

Currently, STREAM provides following performance analysis options.

o Processor Utilization Analysis

o Task Response Time Analysis

Figure 5.10: A partial snapshot of DVFS setting log trace

- 152 -

o Decision Point Analysis

o Energy Consumption Statistical Analysis

 Processor Utilization Analysis:

 Analyzing the utilization statistics of processor is important since it is the major

parameter for frequency selection. It is particularly useful in determining the busy/idle

percentage of processor against a given task load and partition. Figure 5.11 shows the

processor utilization by individual task sets.

 Task Response Time Analysis:

 Some schedulers are designed with a view to minimize the response time of a task.

Minimum response time guarantees are particularly stringent for aperiodic tasks since they arrive

at random time and are generally responsible for performing a high priority action which needs

quick attention. This objective is achieved while ensuring the deadline guarantees of periodic

tasks. STREAM provides the facility to determine the responsiveness of the task by calculating

its response time over a span of execution in one hyper period. In many schedulers, in order to

minimize the response time, optimization decisions such as task migration etc. are taken. Tasks

are generally migrated to a least utilized core, thereby allowing that task to get an early chance of

execution and hence finish early. In STREAM, many schedulers employ this technique for

aperiodic tasks execution. The procedure to calculate the response time of aperiodic tasks is to

Figure 5.11: Snapshot showing per core utilization statistics

- 153 -

first record the arrival and finish time for every aperiodic task. At the end of one hyper period,

analyzer takes charge and calculates the response time of all aperiodic tasks. In order to make

the analysis easy to examine, response time of a task is normalized over its actual execution time.

Finally, the maximum response time value among all aperiodic tasks in a task set is selected for

stating the analytical result. Figure 5.12 shows the partial snapshot of an output file which stores

the output data corresponding to normalized response time values generated by STREAM per

task set.

 Decision Point Analysis:

 This analysis is performed in order to examine the behavior of task execution states, to

know the statistical information about various task state transitions, and to record the accounting

information about them. As a part of this analysis, analyzer maintains and updates various

decision counts corresponding to various task scheduling events as shown in figure 5.13. This

includes arrival points, preemption points, completion points, migration points, hot and cold

cache impact points, scheduling points, idle count, dormant count and dormant intervals over one

hyper period. These counts are very useful is analyzing the performance of a scheduling

algorithm with respect to other algorithms.

Figure 5.12: Snapshot showing normalized response time values

generated by STREAM per task set

- 154 -

 The impact of cache memory access on energy consumption is analyzed by measuring

the number of hot and cold cache impact points. A separate cache impact detector module is

designed in STREAM in order to detect cache impact points. This module is embedded inside

the processor and executes along with processor. There are two types of cache impacts

considered in this analysis.

o Hot Cache Impact:

 Hot cache impact occurs when the same task resumes its execution after a delay of k-

higher priority task(s) execution after preemption. Here the value of k depends on the type of

processor model followed. In case of synthesized processor model, generally a value of k is taken

as 1. This means that a task remains available in cache if it resumes its execution after a delay of

one higher priority task execution after preemption. This is said to have a hot impact since

processor can avoid traversing the memory hierarchy to get that task thereby reducing the access

overhead.

o Cold Cache Impact:

 If a task doesn't resume its execution after a delay of k-higher priority tasks execution

after preemption, then processor has to traverse the memory hierarchy in order to bring that task

back to the cache, which obviously increases the access overhead. This effect is termed as cold

cache impact.

Figure 5.13: Snapshot showing different decision counts per task set

- 155 -

 In STREAM, separate counts are maintained for detecting hot impact and cold impact

events. These counts are generated as a part of decision point counts as shown in last columns of

figure 5.13.

 Energy Consumption Statistical Analysis:

 This type of analysis is very useful when a performance of energy aware scheduler is to

be measured in terms of its total energy consumption. STREAM provides the facility to calculate

the energy consumptions as guided by a specified energy controller by following the energy

profile embedded inside the processor. The two sources of energy consumption: dynamic energy

consumption and static energy consumption are measured and used for the analysis of various

energy aware scheduling algorithms. Figure 5.14 shows the snap shot of the analytical results

recorded as part of the energy consumption statistical analysis.

5.3.2.7. Visual Analyzer

 A visual analyzer is designed as a part of performance analyzer. It is responsible for the

visual display of the analysis results obtained by performance analyzer. It uses a rich graphics

and chart library called XCHART to convert the analysis results into various types of graphs

such as series graph, bar charts etc. There is also a provision inside visual analyzer to compare

the analysis results of different schedulers by plotting the comparison graphs. This helps to

quickly learn and examine the behavior of different schedulers under various aspects. In the

current version of STREAM, visual analyzer can plot different types of graphs such as energy

Figure 5.14: Snapshot showing energy consumption per task set

- 156 -

consumption analysis plot, response time analysis plot for various types of inputs: for different

number of periodic tasks in a task set, for increasing periodic utilization etc. Figure 5.15 shows a

line graph generated using visual analyzer of STREAM that shows the energy consumption

measured by using four different scheduling algorithms against increasing periodic utilization.

5.4. Summary

 Simulation is an important and one of the well accepted methods for the validation of

scheduling algorithms in real time systems community. This chapter discusses the design and

implementation aspects of one such scheduler simulator called STREAM. This simulator is

designed and developed as the part of the work in this thesis for the evaluation and validation of

the proposed schedulers.

 The main focus of this simulator is to develop the energy efficient real time schedulers

for the mixed task model. It is written in java programming language that makes use of object

oriented paradigm. The current implementation of STREAM includes various EDF based energy

aware and non energy aware schedulers. The output generated by the simulator includes various

Figure 5.15: A line graph showing normalized energy

consumption Vs. periodic utilization

- 157 -

log traces that can help the programmer to test and validate the working of the algorithms. In

order to examine the performance of the new scheduler against any existing one, various

performance parameters such as energy consumption per core, processor utilization, decision

points etc. can be generated in different file formats. Visual analyzer tool is an attractive feature

of STREAM which can generate graphs given the required performance related data as input.

- 158 -

Chapter 6

Conclusions and Future Work

 This chapter summarizes the main contributions and significant results obtained in

this research work along with insight into the future extensions of the work. This thesis

addresses the issue of overall energy optimization in multi-core systems at the operating

system level using efficient real time task scheduling algorithms. The objectives are

achieved by proposing various energy efficient real time task scheduling algorithms to

minimize dynamic as well as static energy consumption of the uniprocessor as well as

multi-core processors. A full-fledged scheduler simulation tool is developed to

implement and test various non-energy aware and energy aware real time task scheduling

algorithms.

 The dynamic energy optimization of the uniprocessor and multi-core processor is

achieved by dynamic voltage and frequency scaling techniques whereas the static energy

optimization is achieved by dynamic shutdown and procrastination techniques. The

timing constraints of hard real time tasks and responsiveness of soft real time tasks are

taken care while optimizing overall energy consumption. The response time of the soft

real time tasks is a significant parameter which is handled by the efficient task allocation

strategies and use of efficient aperiodic scheduling policy, TBS. In Chapter 2, we

summarized the major work done in the area of energy efficient scheduling algorithms

for uniprocessor, multiprocessor and multi-core processors for hard and soft real time

tasks. It was observed in literature survey that the issue of energy efficiency at operating

system level is sufficiently addressed for uniprocessor platform. For multiprocessor and

multi-core processor platform, even though there exist many energy efficient scheduling

techniques that optimize dynamic and static energy consumption, majority of them can

schedule only hard real time tasks and cannot handle hard and soft real time tasks

together. Therefore, there is a need to develop a complete scheduling framework which

can schedule both hard and soft real time tasks together, optimize both dynamic and static

energy consumption and ensure the responsiveness of soft real time tasks without

- 159 -

hampering the timeliness of hard real time tasks. In Chapter 3 we proposed algorithms

that optimized dynamic energy of uniprocessor and multi-core processors. In Chapter 4

we focused on optimization of dynamic as well as static energy of multi-core processors.

Finally, in Chapter 5 we described in detail the design and development of the simulation

tool that is capable of running and testing all the proposed algorithms.

 In chapter 3 of this thesis, we focused on dynamic energy optimization by using

real time scheduling algorithms for mixed task sets that contain periodic as well as

aperiodic tasks on uniprocessor and homogeneous multi-core processor. We have

 Proposedd two energy efficient real time scheduling algorithms for uniprocessor

platform, EEDVFS and EE-UCS that use EDF scheduling for periodic tasks and two

different bandwidth preserving algorithms, DS and TBS for scheduling aperiodic

tasks respectively. EE-UCS performs better than EEDVFS in terms of

responsiveness of aperiodic tasks and therefore, in multi-core scheduling, TBS is

used for aperiodic task scheduling.

 Proposed an energy efficient real time task scheduling algorithm, MCS, which

optimizes dynamic energy of each processing core in multi-core environment and

optimizes the response time of aperiodic tasks. MCS works in two steps: task

allocation and task scheduling. Static task allocation method is followed for periodic

tasks while arbitrarily arriving aperiodic tasks are dynamically allocated to the least

loaded processor core. This hybrid task allocation approach efficiently utilizes the

remaining processing load of each processing core by scheduling aperiodic tasks

globally to the lightly loaded processor core resulting in increase in overall

processor utilization. The periodic and aperiodic tasks assigned to each core are

independently scheduled on respective cores.

 Used the real time scheduling algorithms, namely, EDF and TBS to schedule the

mixed task sets. The proposed method of core's dynamic utilization calculation

allowed the use of available slack time for dynamic frequency and voltage scaling

resulting in significant reduction in dynamic energy of individual core.

 Implemented and tested EEDVFS, EE-UCS and MCS algorithms. The analysis of

these algorithms is done on various parameters like energy consumption, aperiodic

response time, preemption count, scheduling decision points, migration count etc.

- 160 -

The behavior of the algorithms is tested on these parameters by varying number of

periodic tasks, number of aperiodic tasks, number of processing cores and by

increasing total utilization of the periodic tasks in a task set. For the testing of each

performance metric, 100 runs were made on 100 different synthetic task sets.

 Analyzed the simulation results and it is observed that, MCS performs better than all

the other algorithms used for comparison. It significantly reduces energy

consumption compared to non-energy aware scheduling algorithm. It also gives

better results than the existing energy efficient cycle conserving scheduling

algorithm. There is little overhead in terms of preemptions, migrations and other

scheduling events that consume some energy. The aperiodic response time achieved

by MCS is nearly equal to the optimal value of 1. The proposed algorithm MCS

saves 29.4%, 10.1% and 8.9% energy as compared to Non-DVFS, SVFS and cycle

conserving algorithms respectively over one hyper period. This states that over

multiple hyper periods, MCS shows significant amount of energy saving.

 The limitation of DVFS based technique is that if we reduce the frequency below

the critical speed, the static energy consumption increases, and as a result, it increases

overall energy consumption. In the above work, although, the frequency is not reduced

below critical speed but static energy optimization is not explicitly taken care. We have

proposed a new algorithm that optimizes both dynamic and static energy consumption

which is discussed in chapter 4.

 In chapter 4 of this thesis, we have focused on the overall energy optimization

that includes the optimization of dynamic and static energy. The energy optimization is

performed by using real time scheduling algorithm for mixed task sets that contain

periodic as well as aperiodic tasks on homogeneous multi-core processor. We have

 Proposed and implemented a leakage aware DVFS based real time scheduling

algorithm, LAMCS, to optimize dynamic as well as static energy consumption of

each processing core in a multi-core environment. It also optimizes the response

time of aperiodic tasks by meeting the hard deadlines of the periodic tasks. LAMCS

is sub-divided into two parts: (1) Task Allocation (2) Task Scheduling. Task

allocation is done in similar way as that used in MCS.

- 161 -

 Done scheduling of tasks (using EDF and TBS algorithms) which takes care of

optimizing dynamic energy consumption using DVFS based technique and static

energy consumption using dynamic shutdown and procrastination techniques. It

does not allow frequency scaling below critical speed. In order to reduce the

shutdown overhead, it tries to extend the shutdown intervals using procrastination

technique. Procrastination technique delays the execution of a task until the

processor wakes up.

 Handled the aperiodic tasks in the same way as in MCS except that if the task

arrives during the shutdown interval, its virtual deadline is calculated with respect to

wake up time.

 Implemented LAMCS in STREAM simulator and analysis is done on various

parameters such as energy consumption, aperiodic response time, preemption count,

scheduling decision points, migration count etc. The behavior of the algorithm is

tested on these parameters by varying number of periodic tasks, number of aperiodic

tasks, number of processing cores and by increasing total utilization of the periodic

tasks in a task set. For each performance metric, 100 runs were made on 100

different randomly generated task sets.

 On the basis of the simulation results, it is observed that, in case of FFD

partitioning, LAMCS gives significant energy saving as compared to non energy

aware scheduling algorithms, SVFS and MCS. It achieves 25.48%, 32.1% and

27.89% energy saving as compared to MCS, Non-DVFS and SVFS algorithms

respectively. There is little overhead in terms of preemptions, migrations and other

scheduling events that consume some energy. The aperiodic response time achieved

by LAMCS in case of FFD partitioning scheme is more as compared to others. In

case of WFD partitioning scheme, LAMCS consumes nearly equal amount of

energy when compared with MCS resulting in less energy saving. In case of WFD

partitioning scheme, LAMCS achieves 1.51%, 29.69% and 10.15% energy saving

as compared to MCS, Non-DVFS and SVFS algorithms respectively. There is small

percentage increase in aperiodic response time as compared to other algorithms.

However, all the algorithms including LAMCS achieve nearly optimal response

time with WFD partitioning scheme. The limitation of LAMCS is that in case of

- 162 -

WFD partitioning scheme, the number of shutdown intervals are more and as a

result, energy consumed in shutting down and waking up the processor core is

significant.

 Simulation is an important and one of the well accepted methods for the

validation of scheduling algorithms in real time systems community. Chapter 5 discusses

the design and implementation aspects of scheduler/simulator developed by us called

STREAM. In this thesis we have

 Designed and developed a simulator called STREAM for the evaluation and

validation of the proposed schedulers. The main focus of this simulator is to develop

the energy efficient real time schedulers for the mixed task model. It is written in

java programming language that makes use of object oriented paradigm. The current

implementation of STREAM includes various EDF based energy aware and non

energy aware schedulers. The output generated by the simulator includes various log

traces that can help the programmer to test and validate the working of the

algorithms. In order to examine the performance of the new scheduler against the

existing one, various performance parameters such as energy consumption per core,

processor utilization, decision points etc. can be generated in different file formats.

Visual analyzer tool is an attractive feature of STREAM which can generate graphs

given the required performance related data as input.

Directions for Future Work

 The proposed energy efficient scheduling algorithms can be extended by relaxing

some of the assumptions like homogeneous multi-core to heterogeneous multi-core

processors, individual clock based processors to voltage-island based multi-core

processors.

 The proposed energy efficient scheduling algorithms can be further extended to

schedule sporadic as well as mixed criticality tasks as wide variety of real time

embedded applications make use of such types of tasks.

 The proposed energy efficient scheduling algorithms can be applied in robotic

control and vehicular networks used in self driving vehicles on roads.

- 163 -

 The proposed scheduling algorithms can be integrated on any real time kernel such

as RTLinux.

 In case of static energy optimization, further improvement can be done to reduce the

number of idle intervals so that the shutdown overheads can be further reduced.

 System wide energy consumption such as energy consumed by memory sub-

systems, interconnection network etc can be addressed.

- 164 -

Appendix A

STREAM: Simulation Tool for Real time Energy

efficient scheduling and Analysis for Multi-core

processors

User Manual

 This section explains the step wise details of the working of STREAM simulation

tool which includes working of various schedulers, task set generator and performance

analyzer.

A.1 Introduction

 The simulation tool STREAM is capable of executing various non-energy aware

and energy aware real time task scheduling algorithms, generating synthetic real time

tasks and generating various outputs such as log traces, various performance metrics such

energy consumption, response time, processor busy/idle time, decision counts etc. The

simulator is completely based on graphical user interface. The first screen of the

simulator is as shown in figure A.1.

A.2 Task Set Generator

 The simulation tool STREAM facilitates to generate synthetic task sets. The task

sets containing only periodic tasks and mixed task sets containing periodic and aperiodic

tasks can be generated using task set generator (or Task Creator). The number of periodic

and aperiodic tasks, number of processor cores, total periodic utilization, total aperiodic

utilization, range of hyper period and number of task sets to be generated are given as

input from the user. In addition to these inputs, there is a provision to select a task

generation algorithm and the output path where the generated task sets are stored by the

simulator. Each task set contains the tasks with their arrival time, period, worst case

- 165 -

execution time and actual execution time. Each task set is also associated with its hyper

period. The snapshot of a task set creator in STREAM is shown in figure A.2.

Figure A.2: Snapshot of a Task Generator

Figure A.1: Snapshot of Main Screen of STREAM

- 166 -

There is a provision to view the generation of task sets using SCHED VIEWER as shown

in figure A.3.

 The text file generated by the task set generator contains the predefined number of

task sets. Each task set in the file is separated by a dotted line. At the beginning of each

task set, the periodic tasks are written followed by aperiodic tasks and hyper period and at

the end actual execution time of each task is mentioned. The attributes of the tasks are

ordered as arrival time, wcet and period in each line. The snapshot of a file produced by

task set generator is shown in figure A.4.

Figure A.3. Snapshot showing generation of task sets in SCHED VIEWER

- 167 -

A.3 Scheduler

 The scheduler interface facilitates the working of various real time schedulers. It

takes the input as a text file containing predefined number of task sets and executes each

task set one by one. The output of all the task sets is generated and copied in output files.

The user has to first create an input file using task creator and then browse the input file

in the scheduler interface. Once the input file is selected, user has to select the number of

processor cores, the scheduling algorithm, task partitioning algorithm and the type of

output user wants to generate.

 There are two execution modes - Log trace mode and Analysis mode. In log trace

mode two types of log files can be produced. One is sched logger for generating the

scheduler log which contains the status of different jobs in execution. Another is DVFS

logger for generating the log which contains the information about the frequency

selection at various scheduling points. The other execution mode is Analysis mode in

which user can produce different outputs which can be used for analyzing the

Figure A.4: Sample Task Sets File

- 168 -

performance of the scheduler. The various outputs produced in this mode are processor

busy/idle time, various decision points like preemption count, migration count, arrival

count, cache impact points etc. In addition to these parameters, it can also output the most

important performance parameters: energy consumption and aperiodic response time.

 There is a progress bar that shows how many tasks have completed the execution

and how many are left. It also shows the status of currently executing job by highlighting

the boxes below the status bar. For example, if job is running, RUNNING will be

highlighted or if the job is migrated to other core, AP MIGRATION is highlighted.

Similarly, DEADLINE MISSING and FINISHED will be highlighted. The sequence of

steps for executing any scheduling algorithm is shown in figures A.5 to A.13.

Figure: A.5: Scheduler Interface showing selection of input file

- 169 -

Figure A.7: Scheduler Interface showing selection of scheduling Algorithm

Figure A.6: Scheduler Interface showing selection of processor core count

- 170 -

Figure A.9: Scheduler Interface showing selection of Log Trace Mode

Figure A.8: Scheduler Interface showing selection of Task Allocation

Algorithm

- 171 -

Figure A.11: Scheduler Interface showing Running state of Scheduler

Figure A.10: Scheduler Interface showing selection of Analysis Mode

- 172 -

Figure A.13: Scheduler Interface when the execution is finished

Figure A.12: Scheduler Interface with SCHED VIEWER

- 173 -

A.4 Output and Performance Analyzer

 The output files are produced based on the execution mode specified by the user

while running the scheduler. The sample output text files are shown in figures A.14, A.15

and A.16. The output values stored in these files are space separated and can be easily

used for further analysis.

Figure A.15: Sample output showing various Decision Points

Figure A.14: Sample output showing Energy Consumption

- 174 -

 One of the new features of this simulator is the visual plotter tool in visual

analysis tab. This feature can be used to plot the graphs for visually analyzing the

performance of the scheduling algorithms. The user has to first select the parameters of

comparison and then link the output files which are required for plotting the graphs. Then

by clicking the graph plotter button, it generates the plot. In addition to the graph, it also

generates a text file corresponding to the graph. This tool can be used to test the

performance of the proposed scheduling algorithm with the existing scheduling

algorithms. Figures A.17, A.18, A.19 and A.20 present the sequence of snapshots for

showing the step wise method to use the visual analyzer.

Figure A.17: Visual Analyzer showing selection of Analysis Type

Figure A.16: Sample output showing Aperiodic Response Time

- 175 -

Figure A.19: Visual Analyzer labeling a line that will appear on the graph

Figure A.18: Visual Analyzer showing selection of Output Files

- 176 -

Figure A.20: Visual Analyzer showing Graph and the Text File

corresponding to that graph

- 177 -

References

[1] Ahmed, R., Ramanathan, P., Saluja, K., & Yao, C. (2013). Scheduling aperiodic

tasks in next generation embedded real-time systems. Proceedings of 26
th

International Conference on VLSI Design and 12
th

 International Conference On

Embedded Systems, pp. 25-30.

[2] Andersson, B. & Jonsson, J. (2003). The utilization bounds of partitioned and

pfair static-priority scheduling on multiprocessors are 50%. Proceeding of 15
th

IEEE Euromicro Conference on Real Time Systems, pp. 33-40.

[3] Andersson, B. & Tovar, E. (2006). Multiprocessor scheduling with few

preemptions. Proceedings of 12
th

 IEEE International Conference On Embedded

And Real-Time Computing Systems And Applications (RTCSA'06), pp. 322-334.

[4] Andersson, B., Abdelzaher, T., & Jonsson, J. (2003a). Global priority-driven

aperiodic scheduling on multiprocessors. Proceedings of International Parallel

And Distributed Processing Symposium, pp. 8.

[5] Andersson, B., Abdelzaher, T., & Jonsson, J. (2003b). Partitioned aperiodic

scheduling on multiprocessors. Proceedings of International Parallel and

Distributed Processing Symposium.

[6] Audsley, N. C., Burns, A., Richardson, M. F. & Wellings, A. J., (1994). STRESS:

a simulator for hard real-time systems. International Journal of Software Practice

and Experience, Vol. 24, No. 6, pp. 543–564.

[7] Awan, M. & Petters, S. (2011). Enhanced race-To-halt: A leakage-Aware energy

management approach for dynamic priority systems. Proceedings of 23
rd

Euromicro Conference On Real-Time Systems, pp. 92-101.

[8] Aydin, H. & Yang, Q. (2003). Energy-aware partitioning for multiprocessor real-

time systems. Proceedings of International Parallel And Distributed Processing

Symposium, pp. 9.

- 178 -

[9] Aydin, H. & Yang, Q. (2004). Energy - responsiveness tradeoffs for real-time

systems with mixed workload. Proceedings of 10
th

 IEEE Real-Time And

Embedded Technology And Applications Symposium (RTAS 2004), pp. 74-83.

[10] Aydin, H., Melhem, R., Mosse, D., & Mejia-Alvarez, P. (2001). Dynamic and

aggressive scheduling techniques for power-aware real-time systems. Proceedings

of 22
nd

 IEEE Real-Time Systems Symposium (RTSS 2001) (Cat. No.01PR1420),

pp. 95-105.

[11] Aydin, H., Melhem, R., Mosse, D., & Mejia-Alvarez, P. (2004). Power-aware

scheduling for periodic real-time tasks. IEEE Transactions On Computers, Vol.

53, No. 5, pp. 584-600.

[12] Baruah, S. & Lipari, G. (2004a). A multiprocessor implementation of the total

bandwidth server. Proceedings of 18
th

 International Parallel And Distributed

Processing Symposium, pp. 40.

[13] Baruah, S. & Lipari, G. (2004b). Executing aperiodic jobs in a multiprocessor

constant-bandwidth server implementation. Proceedings of 16
th

 Euromicro

Conference On Real-Time Systems (ECRTS 2004), pp. 109-116.

[14] Baruah, S. (2013). Partitioned EDF scheduling: a closer look. International

Journal of Real-Time Systems, Vol. 49, No. 6, pp. 715-729.

[15] Baruah, S., Cohen, N., Plaxton, C., & Varvel, D. (1996). Proportionate progress:

A notion of fairness in resource allocation. Algorithmica, Vol. 15, No. 6, pp. 600-

625.

[16] Benini, L., Siegel P., & Micheli, G. D. (1994). Automatic synthesis of gated-

clocks for power reduction in sequential circuits. IEEE Design and Test of

Computers, Special Issue on Low Power, Mag., pp. 32-40.

[17] Bhatti, M., Belleudy, C., & Auguin, M. (2011). Hybrid power management in real

time embedded systems: an interplay of DVFS and DPM

techniques. International Journal of Real-Time Systems, Vol. 47, No. 2, pp. 143-

162.

- 179 -

[18] Blumenthal, J., Hildebrandt, J., & Golatowski, F. (2003). YASA-A framework for

validation, test, and analysis of real-time scheduling algorithms. Proceedings of

5
th

 Real-Time Linux Workshop, pp. 197-204.

[19] Borah, M., Owens, R., & Irwin, M. (1996). Transistor sizing for low power

CMOS circuits. IEEE Transactions On Computer-Aided Design Of Integrated

Circuits And Systems, Vol. 15, No. 6, pp. 665-671.

[20] Borkar, S. (1999). Design challenges of technology scaling. IEEE Micro, Vol. 19,

No. 4, pp. 23-29.

[21] Brandenburg, B. & Anderson, J. (2007). Integrating hard/soft real-time tasks and

best-effort jobs on multiprocessors. Proceedings of 19
th

 Euromicro Conference

On Real-Time Systems (ECRTS'07), pp. 61-70.

[22] Burchard, A., Liebeherr, J., Yingfeng Oh, & Son, S. (1995). New strategies for

assigning real-time tasks to multiprocessor systems. IEEE Transactions On

Computers, Vol. 44, No. 12, pp. 1429-1442.

[23] Burd, T. & Brodersen, R. (1995). Energy efficient CMOS microprocessor

design. Proceedings Of 28
th

 Annual Hawaii International Conference On System

Sciences, Vol.1, pp. 288-297.

[24] Chandarli, Y., Fauberteau, F., Masson, D., Midonnet, S., & Qamhieh, M. (2012).

YARTISS: A tool to visualize, test, compare and evaluate real-time scheduling

algorithms. Proceedings of 3
rd

 International Workshop on Analysis Tools and

Methodologies for Embedded and Real-time Systems, Pisa (Italy), pp. 21-26.

[25] Chandrakasan, A., Sheng, S., & Brodersen, R. (1992). Low-power CMOS digital

design. IEEE Journal of Solid-State Circuits, Vol. 27, No. 4, pp. 473-484

[26] Chen, G., Huang, K., & Knoll, A. (2014). Energy optimization for real-time

multiprocessor system-on-chip with optimal DVFS and DPM combination. ACM

Transactions of Embedded Computing Systems, Vol. 13, No. 3s, pp. 1-21.

[27] Chen, G., Huang, K., Huang, J., Buckl, C., & Knoll, A. (2013). Effective online

power management with adaptive interplay of DVS and DPM for embedded real-

- 180 -

time system. Proceedings of Euromicro Conference On Digital System Design,

pp. 881-889.

[28] Chen, J. & Kuo, C. (2007a). Energy-efficient scheduling for real-time systems on

dynamic voltage scaling (DVS) platforms. Proceedings of 13
th

 IEEE International

Conference On Embedded And Real-Time Computing Systems And Applications

(RTCSA 2007), pp. 28-38.

[29] Chen, J-J & Kuo, T-W. (2007b). Procrastination determination for periodic real-

time tasks in leakage-aware dynamic voltage scaling systems. Proceedings of

IEEE/ACM International Conference On Computer-Aided Design, pp. 289-294.

[30] Chen, J. & Kuo, T. (2006). Procrastination for leakage-aware rate-monotonic

scheduling on a dynamic voltage scaling processor. Proceedings of ACM

SIGPLAN/SIGBED Conference on Language, Compilers And Tool Support For

Embedded Systems (LCTES '06), pp. 153-162.

[31] Chen, J. & Thiele, L. (2008). Expected system energy consumption minimization

in leakage-aware DVS systems. Proceeding of 13
th

 International Symposium On

Low Power Electronics And Design (ISLPED '08), pp. 315-320.

[32] Chen, J-J., Hsu, H-R., Chuang, K-H., Yang, C-L., Pang, A-C. & Kuo, T-W.

(2004). Multiprocessor energy-efficient scheduling with task migration

considerations. Proceedings of 16
th

 Euromicro Conference On Real-Time Systems

(ECRTS 2004), pp. 101-108.

[33] Chen, Q., Zheng, L., Guo, M., & Huang, Z. (2014). EEWA: Energy-Efficient

Workload-Aware Task Scheduling in Multi-core Architectures. Proceedings of

IEEE International Parallel & Distributed Processing Symposium Workshops, pp.

642-651.

[34] Chen, J-J., Hsu, H-R & Kuo, T-W. (2006). Leakage-aware energy-efficient

scheduling of real-time tasks in multiprocessor systems. Proceedings of 12
th

 IEEE

Real-Time And Embedded Technology And Applications Symposium (RTAS'06),

pp. 408-417.

- 181 -

[35] Chen, J-J., Yang, C-Y & Kuo, T-W. (2006). Slack Reclamation for Real-Time

Task Scheduling over Dynamic Voltage Scaling Multiprocessors. Proceedings of

IEEE International Conference On Sensor Networks, Ubiquitous, And

Trustworthy Computing (SUTC'06), Vol. 1, pp. 8.

[36] Cho, H., Ravindran, B., & Jensen, E. (2006). An optimal real-time scheduling

algorithm for multiprocessors. Proceedings of 27
th

 IEEE International Real-Time

Systems Symposium (RTSS'06), pp. 101-110.

[37] Cong, J. & Gururaj, K. (2009). Energy efficient multiprocessor task scheduling

under input-dependent variation. Proceedings of Design, Automation & Test In

Europe Conference and Exhibition (DATE'09), pp. 411-416.

[38] Courbin P. & George, L. (2011). FORTAS: Framework for real-time analysis and

simulation. Proceedings of 2
nd

 International Workshop on Analysis Tools and

Methodologies for Embedded and Real-time Systems, pp. 21–26.

[39] Davis, R. I. & Burns, A. (2009). Priority assignment for global fixed priority pre-

emptive scheduling in multiprocessor real-time systems. Proceedings of 30
th

IEEE Real-Time Systems Symposium (RTSS 2009), pp. 398–409.

[40] Davis, R. & Burns, A. (2011). A survey of hard real-time scheduling for

multiprocessor systems. ACM Computing Survey, Vol. 43, No. 4, pp. 1-44.

[41] Dellinger, M., Garyali, P. & Ravindran, B. (2011). ChronOS Linux: a best-effort

real-time multiprocessor Linux kernel. Proceedings of DAC, pp. 474–479.

[42] Dertouzos, M. L. (1974). Control robotics: The procedural control of physical

processes. Proceedings of the International Federation for Information

Processing Working Conference on Data Semantics. pp. 807–813.

[43] Devadas, V. & Aydin, H. (2010). Coordinated power management of periodic

real-time tasks on chip multiprocessors. Proceedings of IEEE International

Conference On Green Computing, pp. 61-72.

[44] Diaz, A., Batista, R., Castro, O. (2007). Realtss: a real-time scheduling

simulator. Proceedings of 4
th

 International Conference on Electrical and

Electronics Engineering, pp. 165 - 168.

- 182 -

[45] Digalwar, M., Gahukar, P., & Mohan, S. (2014). Design and development of a

real time scheduling algorithm for mixed task set on multi-core

processors. Proceedings of 7
th

 IEEE International Conference On Contemporary

Computing (IC3 2014), pp. 265-269.

[46] Digalwar, M., Gahukar, P., Mohan, S. & Raveendran, B. K. (2015). STREAM: A

Simulation Tool for Energy Efficient Real Time Scheduling and Analysis.

Proceedings of International Workshop on Analysis Tools and Methodologies for

Embedded and Real-time Systems (WATERS) in conjunction with 27
th

 Euromicro

Conference on Real Time Systems (ECRTS), Lund, Sweden. July 2015.

[47] Digalwar, M., Mohan, S., & Raveendran, B. (2013). Dynamic voltage and

frequency scaling scheduling algorithm for mixed task set. Proceedings of IEEE

8
th

 International Conference On Industrial And Information Systems (ICIIS 2013),

pp. 643-648.

[48] Duarte, D., Vijaykrishnan, N., Irwin, M., & Tsai, Y. (2002). Impact of technology

scaling and packaging on dynamic voltage scaling techniques. Proceedings of 15
th

Annual IEEE International ASIC/SOC Conference, pp. 244-248.

[49] Emberson, P., Stafford, R., Davis, R. I. (2010). Techniques for the Synthesis of

Multiprocessor Tasksets. 1
st
 International Workshop on Analysis Tools and

Methodologies for Embedded and Real-time Systems (WATERS 2010), pp. 6-11.

[50] Frigo, M., Leiserson, C. E., & Randall, K. H. (1998). The implementation of the

Cilk-5 multithreaded language. ACM Sigplan Notices, Vol. 33, No. 5, pp. 212-

223.

[51] Fu, C., Li, M., & Xue, C. J. (2015a). Race to idle or not: Balancing the memory

sleep time with DVS for energy minimization. Design, Automation & Test in

Europe Conference & Exhibition (DATE 2015), pp. 13-18.

[52] Fu, C., Zhao, Y., Li, M., & Xue, C. J. (2015b). Maximizing common idle time on

multi-core processors with shared memory. Design, Automation & Test in Europe

Conference & Exhibition (DATE 2015), pp. 900-903.

- 183 -

[53] Fu, X. & Wang, X. (2011). Utilization-controlled task consolidation for power

optimization in multi-core real-time systems. Proceedings of IEEE 17
th

International Conference On Embedded And Real-Time Computing Systems And

Applications, pp. 73-82.

[54] Fujii, K., Chishiro, H., Matsutani, H., & Yamasaki, N. (2011). Dynamic voltage

and frequency scaling for real-time scheduling on a prioritized SMT

processor. Proceedings of IEEE 17
th

 International Conference On Embedded And

Real-Time Computing Systems And Applications, Vol. 2, pp. 9-15.

[55] Garey, M. & Johnson, D. (1979). Computers and Intractability: A guide to the

theory of NP-completeness. W. H. Freeman, New York, NY.

[56] Gracioli, G., Frohlich, A., Pellizzoni, R., & Fischmeister, S. (2013).

Implementation and evaluation of global and partitioned scheduling in a real-time

OS. International Journal of Real-Time Systems, Vol. 49, No. 6, pp. 669-714.

[57] Gruian, F. (2001). Hard real-time scheduling using stochastic data and DVS

processors. Proceedings of International Symposium on Low Power Electronics

and Design, pp. 46– 51.

[58] Guan, N., Stigge, M., Yi, W., & Yu, G. (2010). Fixed-priority multiprocessor

scheduling with Liu and Layland's utilization bound. Proceedings of 16
th

 IEEE

Real-Time And Embedded Technology And Applications Symposium, pp. 166-174.

[59] Hangan, A., & Sebestyen, G., (2012). RTMultiSim: A versatile simulator for

multiprocessor real-time systems. Proceedings of 3
rd

 International Workshop on

Analysis Tools and Methodologies for Embedded and Real-time Systems, Pisa

(Italy), Vol. 15.

[60] Harbour, M. G., Garcia, J. J. G., Gutierrez, J. C. P., & Drake, J. M., (2001).

MAST: Modeling and analysis suite for real time applications. Proceedings of

13
th

 Euromicro Conference on Real-Time Systems, pp.125-134.

[61] He, D. & Mueller, W. (2012a). A heuristic energy-aware approach for hard real-

time systems on multi-core platforms. Proceedings of 15
th

 Euromicro Conference

On Digital System Design, pp. 288-295.

- 184 -

[62] He, D. & Mueller, W. (2012b). Enhanced schedulability analysis of hard real-time

systems on power manageable multi-core platforms. Proceedings of IEEE 14
th

International Conference On High Performance Computing And Communication

& IEEE 9
th

 International Conference On Embedded Software And Systems, pp.

1748-1753.

[63] Hsu, C-H. & Kremer, U. (2003). The Design, implementation, and evaluation of a

compiler algorithm for CPU energy reduction. Proceedings of ACM Conference

on PLDI, pp. 38-48.

[64] Huang, H., Xia, F., Wang, J., Lei, S., & Wu, G. (2010). Leakage-aware

reallocation for periodic real-time tasks on multi-core processors. Proceedings of

5
th

 International Conference On Frontier Of Computer Science And Technology,

pp. 85-91.

[65] Huang, K., Santinelli, L., Chen, J., Thiele, L., & Buttazzo, G. (2009). Adaptive

dynamic power management for hard real-time systems. Proceedings of 30
th

 IEEE

Real-Time Systems Symposium, pp. 23-32.

[66] Isci, C., Buyuktosunoglu, A., Cher, C. Y., Bose, P., & Martonosi, M. (2006). An

analysis of efficient multi-core global power management policies: maximizing

performance for a given power budget. Proceedings of 39
th

 Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO'06), pp. 347-358.

[67] Islam, F. & Lin, M. (2014). Learning based power management for periodic real-

time tasks. Proceedings of IEEE International Conference On High Performance

Computing And Communications, IEEE 6
th

 International Symposium On

Cyberspace Safety And Security, IEEE 11
th

 International Conference On

Embedded Software And Systems (HPCC, CSS, ICESS), pp. 534-541.

[68] Islam, F. & Lin, M. (2015). A framework for learning based DVFS technique

selection and frequency scaling for multi-core real-time systems. Proceedings of

IEEE 17
th

 International Conference On High Performance Computing And

Communications, IEEE 7
th

 International Symposium On Cyberspace Safety and

- 185 -

Security and IEEE 12
th

 International Conference On Embedded Software And

Systems, pp. 721-726.

[69] Jakovljevic, G., Rakamaric, Z., & Babic, D. (2002). Java simulator of real-time

scheduling algorithms. Proceedings of 24
th

 International Conference on

Information Technology Interfaces, Cavtat, Croatia, pp. 411-416.

[70] Jejurikar, R. & Gupta, R. (2004). Dynamic voltage scaling for system wide

energy minimization in real-time embedded systems. Proceedings of

International Symposium On Low Power Electronics And Design (ISLPED '04),

pp. 76-81.

[71] Jejurikar, R. & Gupta, R. (2005). Dynamic slack reclamation with procrastination

scheduling in real-time embedded systems. Proceedings of 42
nd

 Annual Design

Automation Conference - DAC '05, pp. 111-116.

[72] Jejurikar, R., Pereira, C., & Gupta, R. (2004). Leakage aware dynamic voltage

scaling for real-time embedded systems. Proceedings of 41
st
 Annual Design

Automation Conference - DAC '04, pp. 275-280.

[73] Jha, N. (2005). Low-power system scheduling, synthesis and

displays. Proceedings of IEE Computers And Digital Techniques, Vol. 152, No. 3,

pp. 344-352.

[74] Jin, S., Pei, S., Han, Y., & Li, H. (2015). On optimizing system energy of multi-

core SoCs based on dynamically reconfigurable voltage-frequency island.

Proceedings of IEEE Conference on VLSI Design, Automation And Test (VLSI-

DAT), pp. 1-4.

[75] Kandhalu, A., Kim, J., Lakshmanan K., Rajkumar, R. (2011). Energy-aware

partitioned fixed-priority scheduling for chip multi-processors. Proceedings of

IEEE 17
th

 International Conference on Embedded and Real-Time Computing

Systems and Applications, Toyama, pp. 93-102.

[76] Kappiah, N., Lowenthal, D.K. & Freeh, V.W. (2006). Just In Time Dynamic

Voltage Scaling: Exploiting Inter-Node Slack to Save Energy in MPI Programs.

Proceedings of ACM/IEEE Supercomputing Conference, pp. 33.

- 186 -

[77] Kato, S. & Yamasaki, N. (2008). Scheduling aperiodic tasks using total

bandwidth server on multiprocessors. Proceedings of IEEE/IFIP International

Conference On Embedded And Ubiquitous Computing, Vol.1, pp. 82-89.

[78] Khalib, Z., Ahmad, B., & Bi, O. (2012). Performance analysis of a non-

preemptive dynamic soft real time scheduler using discrete event

simulator. Proceedings of 4
th

 International Conference on Computational

Intelligence, Modeling and Simulation, pp.182-187.

[79] Kim, W., Shin, D., Yun, H-S., Kim, J. & Min, S. L. (2002). Performance

comparison of dynamic voltage scaling algorithms for hard real-time

systems. Proceedings of 8
th

 IEEE Real-Time and Embedded Technology And

Applications Symposium, pp. 219-228.

[80] Krishna, C. M. and Shin, K. G. (1997). Real-Time Systems. Co-published by MIT

Press and McGraw-Hill, Inc.

[81] Kuo, C. (2013). Ratio-based aggressive reclaim algorithm for mixed task

sets. Proceedings of IEEE 10
th

 International Conference On High Performance

Computing And Communications and IEEE International Conference On

Embedded And Ubiquitous Computing, pp. 2042-2049.

[82] Kuo, C. (2014). Energy-efficient scheduling for real-time tasks on uniform

multiprocessors. Proceedings of IEEE 12
th

 International Conference On

Dependable, Autonomic And Secure Computing, pp. 192-195.

[83] Lakshmanan, K., Rajkumar, R., & Lehoczky, J. (2009). Partitioned fixed-priority

preemptive scheduling for multi-core processors. Proceedings of 21
st
 Euromicro

Conference On Real-Time Systems, pp. 239-248.

[84] Langen, P. & Juurlink, B. (2006). Leakage-aware multiprocessor scheduling for

low power. Proceedings of 20
th

 IEEE International Parallel & Distributed

Processing Symposium, pp. 8.

[85] Langen, P. & Juurlink, B. (2009). Leakage-aware multiprocessor scheduling.

Proceedings of Journal of Signal Processing Systems, Vol. 57, Issue 1, pp 73 - 88.

- 187 -

[86] Lee, C-H. & Shin, K. (2004). On-line dynamic voltage scaling for hard real-time

systems using the EDF algorithm. Proceedings of 25
th

 IEEE International Real-

Time Systems Symposium, pp. 319-335.

[87] Lee, J., Yun, B. & Shin, K. (2014). Reducing peak power consumption in multi-

core systems without violating real-time constraints. IEEE Transactions on

Parallel and Distributed Systems, Vol. 25, No. 4, pp. 1024-1033.

[88] Lee, S. & Sakurai, T. (2000). Run-time voltage hopping for low power real-time

systems. Proceedings of 37
th

 Design Automation Conference, pp. 806–809.

[89] Lee, W. (2012). Energy-efficient scheduling of periodic real-time tasks on lightly

loaded multi-core processors. IEEE Transactions on Parallel and Distributed

Systems, Vol. 23, No. 3, pp. 530-537.

[90] Lee, W. Y. (2009). Energy-saving DVFS scheduling of multiple periodic real-

time tasks on multi-core processors. Proceedings of 13
th

 IEEE/ACM International

Symposium on Distributed Simulation and Real Time Applications, (DS-RT '09),

pp. 216-223.

[91] Lee, W. Y., Ko, Y. W., Lee, H., Kim H. (2009). Energy-efficient scheduling of a

real-time task on DVFS-enabled multi-cores. Proceedings of the International

Conference on Hybrid Information Technology, pp. 273-277.

[92] Lee, Y-H., Reddy, K., & Krishna, C. (2003). Scheduling techniques for reducing

leakage power in hard real-time systems. Proceedings of 15
th

 Euromicro

Conference On Real-Time Systems, pp. 105-112.

[93] Legout, V., Jan, M., & Pautet, L. (2014). Scheduling algorithms to reduce the

static energy consumption of real-time systems. International Journal of Real-

Time Systems, Vol. 51, No. 2, pp. 153-191.

[94] Leung, J. Y.-T. & Whitehead, J. (1982). On the complexity of fixed-priority

scheduling of periodic real-time tasks. Performance Evaluation. Vol. 2, No. 4, pp.

237–250.

- 188 -

[95] Li, D. & Wu, J. (2014). Energy-aware scheduling for aperiodic tasks on multi-

core processors. Proceedings of 43
rd

 International Conference On Parallel

Processing, pp. 361-370.

[96] Li, L., Choi, K., & Nan, H. (2011). Effective algorithm for integrating clock

gating and power gating to reduce dynamic and active leakage power

simultaneously. Proceedings of 12
th

 International Symposium On Quality

Electronic Design, pp. 1-6.

[97] Lin, C., Chang, C., Syu, Y., Wu, J., Liu, P., Cheng, P., & Hsu, W. (2014). An

energy-efficient task scheduler for multi-core platforms with per-core DVFS

based on task characteristics. Proceedings of 43
rd

 International Conference On

Parallel Processing, pp. 381-390.

[98] Lin, C., Wang, B., & Hsiung, P. (2012). Synchronization-aware dynamic thread

scheduling for improving performance and saving energy in multi-core embedded

systems. 5
th

 International Symposium On Parallel Architectures, Algorithms And

Programming, pp. 13 - 18.

[99] Liu, C. L. & Layland, J. W. (1973). Scheduling algorithms for multiprogramming

in a hard-real-time environment. Journal of ACM, Vol. 20, No. 1, pp. 46–61.

[100] Liu, J. & Guo, J. (2014). Voltage Island Aware Energy Efficient Scheduling of

Real-Time Tasks on Multi-core Processors. Proceedings of IEEE International

Conference On High Performance Computing And Communications, IEEE 6
th

International Symposium On Cyberspace Safety And Security, IEEE 11
th

International Conference On Embedded Software And Systems (HPCC, CSS,

ICESS), pp. 645-652.

[101] Liu, Jane. W. S., (2008). Real Time Systems, Pearson Education, Inc and Dorling

Kindersley Publishing Inc.

[102] Lopez, J., Diaz, J., & Garcia, D. (2004). Utilization bounds for EDF scheduling

on real-time multiprocessor systems. International Journal of Real-Time

Systems, Vol. 28, No. 1, pp. 39-68.

- 189 -

[103] Lorch, J. & Smith, A. (2004). PACE: a new approach to dynamic voltage

scaling. IEEE Transactions On Computers, Vol. 53, No. 7, pp. 856-869.

[104] Lu, J. & Guo, Y. (2011). Energy-aware fixed-priority multi-core scheduling for

real-time systems. Proceedings of IEEE 17
th

 International Conference On

Embedded And Real-Time Computing Systems and Applications pp. 277-281.

[105] Lundberg, L. & Lennerstad, H. (2008). Slack-based global multiprocessor

scheduling of aperiodic tasks in parallel embedded real-time

systems. Proceedings of IEEE/ACS International Conference On Computer

Systems And Applications, pp. 465-472.

[106] Macii, E., Bolzani, L., Calimera, A., Macii, A., & Poncino, M. (2008). Integrating

clock gating and power gating for combined dynamic and leakage power

optimization in digital CMOS circuits. Proceedings of 11
th

 EUROMICRO

Conference On Digital System Design Architectures, Methods And Tools, pp.

298-303.

[107] Mall, Rajib. (2007). Real Time Systems - Theory and Practice, Pearson

Education, Dorling Kindersley (India) Pvt. Ltd.

[108] Manacero, A., Miola, M. B, Nabuco, V. A., (2001). Teaching real-time with a

scheduler simulator. Proceedings of 31
st
 Annual Conference on Frontiers in

Education, Vol.2, pp. T4D - 15.

[109] Martin, S., Flautner, K., Mudge, T., & Blaauw, D. (2002). Combined dynamic

voltage scaling and adaptive body biasing for lower power microprocessors under

dynamic workloads. Proceedings of IEEE/ACM International Conference On

Computer Aided Design (ICCAD 2002), pp. 721-725.

[110] Min-Allah, N., Kazmi, A., Ali, I., Jian-Sheng, X., & Yong-Ji, W. (2008).

Minimizing response time implication in DVS scheduling for low power

embedded systems. Proceedings of IEEE Conference on Innovations In

Information Technologies (IIT), pp. 347-351.

- 190 -

[111] Moreno, G. & Niz, D. (2012). An optimal real-time voltage and frequency scaling

for uniform multiprocessors. Proceedings of IEEE International Conference On

Embedded And Real-Time Computing Systems And Applications, pp. 21 - 30.

[112] Nikolic, B., Awan, M.A., & Petters, S.M. (2011). SPARTS: Simulator for power

aware and Real-Time Systems. Proceedings of 10
th

 International Conference

on Trust, Security and Privacy in Computing and Communications, pp. 999 -

1004.

[113] Niu, L. & Quan, G. (2004). Reducing both dynamic and leakage energy

consumption for hard real-time systems. Proceedings of International Conference

On Compilers, Architecture, And Synthesis For Embedded Systems (CASES '04),

pp. 140 - 148.

[114] Niu, L. (2010). Energy Efficient Scheduling for Real-Time Embedded Systems

with QoS Guarantee. Proceedings of IEEE 16
th

 International Conference On

Embedded And Real-Time Computing Systems And Applications, pp. 75-87.

[115] Niu, L. and Quan, G. (2015). Peripheral-conscious energy-efficient scheduling for

weakly hard real-time systems. International Journal of Embedded Systems, Vol.

7, No. 1, pp. 11–25.

[116] Pagani, S. & Chen, J. (2013). Energy efficient task partitioning based on the

single frequency approximation scheme. Proceedings of IEEE 34
th

 Real-Time

Systems Symposium, pp. 308-318.

[117] Pillai, A.S., & Isha, T.B. (2013). ERTSim: An embedded real-time task simulator

for scheduling. Proceedings of IEEE International Conference on Computational

Intelligence and Computing Research, pp. 1-4.

[118] Pillai, P. & Shin, K. (2001). Real-time dynamic voltage scaling for low-power

embedded operating systems. ACM Operating Systems Review (SIGOPS), Vol.

35, No. 5, pp. 89.

[119] Raja, T., Agrawal, V., Bushnell, M. (2006). Transistor sizing of logic gates to

maximize input delay variability. Journal of Low Power Electronics, Vol. 2, No.

1, pp. 121–128.

- 191 -

[120] Ramirez, A. D., Orduno, D. K., Alvarez, P. M. (2012). A multiprocessor real-time

scheduling simulation tool. Proceedings of 22
nd

 International Conference

on Electrical Communications and Computers, pp. 157-161.

[121] Ren, D. & Suda, R. (2009). Power efficient large matrices multiplication by load

scheduling on multi-core and GPU platform with CUDA. Proceedings of

International Conference on Computational Science and Engineering (CSE '09),

pp. 424-429.

[122] Rivas, J. M., Gutierrez, J. J., Harbour, M. G. (2014). GEN4MAST: A tool for the

evaluation of real-time techniques using a supercomputer. Proceedings of 3
rd

International Workshop on Real Time and Distributed Computing in Emerging

Applications co-located with 34
th

 IEEE Real Time Systems Symposium.

[123] Roy, K., Mukhopadhyay, S., & Mahmoodi-Meimand, H. (2003). Leakage current

mechanisms and leakage reduction techniques in deep-sub micrometer CMOS

circuits. Proceedings of the IEEE, Vol. 91, No. 2, pp. 305-327.

[124] Saha, S & Raveendran, B. (2012). An experimental evaluation of real-time DVFS

scheduling algorithms. Proceedings of the 5
th

 Annual International Systems and

Storage Conference, pp. 7-19.

[125] Sasaki, H., Buyuktosunoglu, A., Vega, A., & Bose, P. (2016). Mitigating power

contention: A scheduling based approach. IEEE Computer Architecture Letters,

pp. 1-1.

[126] Schirmeister Frank, (2007). Multi-core processors: fundamentals, trends and

challenges. Proceedings of Embedded Systems Conference (ESC), Imperas, Inc.

[127] Schoenherr, J. H., Richling, J., Muehl, G., Werner, M. (2010). A scheduling

approach for efficient utilization of hardware-driven frequency

scaling. Proceedings of 23
rd

 International Conference on Architecture of

Computing Systems (ARCS), pp. 1-10.

[128] Scordino, C. & Lipari, G. (2006). A resource reservation algorithm for power-

aware scheduling of periodic and aperiodic real-time tasks. IEEE Transactions On

Computers, Vol. 55, No. 12, pp. 1509-1522.

- 192 -

[129] Sensini, Fabrizio, Buttazzo, G., and Ancilotti, P., (1997). Ghost: A tool for

simulation and analysis of real-time scheduling algorithms. Proceedings of the

IEEE Real-Time Educational Workshop, pp. 42-49.

[130] Seo, E., Jeong, J., Park, S & Lee, J. (2008). Energy efficient scheduling of real-

time tasks on multi-core processors. IEEE Transactions on Parallel and

Distributed Systems. Vol. 19, No. 11, pp. 1540-1552.

[131] Sheikh, H. & Ahmad, I. (2014). Efficient heuristics for joint optimization of

performance, energy, and temperature in allocating tasks to multi-core

processors. Proceedings of International Green Computing Conference, pp. 1-8.

[132] Sheikh, H. & Ahmad, I. (2015). Niched evolutionary techniques for performance,

energy, and temperature optimized scheduling in multi-core systems. Proceedings

of 6
th

 International Green and Sustainable Computing Conference (IGSC 2015),

pp. 1-6.

[133] Sheikh, H. F. & Ahmad, I. (2012). Simultaneous optimization of performance,

energy and temperature for DAG scheduling in multi-core

processors. Proceedings of International Green Computing Conference (IGCC

2012), pp. 1-6.

[134] Sheikh, H., Ahmad, I., & Fan, D. (2016). An evolutionary technique for

performance energy temperature optimized scheduling of parallel tasks on multi-

core processors. IEEE Transactions on Parallel and Distributed Systems, Vol. 27,

No. 3, pp. 668-681.

[135] Sheikh, H., Tan, H., Ahmad, I., Ranka, S., & Bv, P. (2012). Energy and

performance aware scheduling of tasks on parallel and distributed systems. ACM

Journal on Emerging Technologies in Computing Systems, Vol. 8, No. 4, pp. 1-

37.

[136] Shieh, W. & Chen, B. (2010). Energy-efficient tasks scheduling algorithm for

dual-core real-time systems. IEEE International Computer Symposium (ICS

2010), pp. 568-575.

- 193 -

[137] Shin, D. & Kim, J. (2006). Dynamic voltage scaling of mixed task sets in priority-

driven systems. IEEE Transactions On Computer-Aided Design Of Integrated

Circuits And Systems, Vol. 25, No. 3, pp. 438-453.

[138] Shin, D. & Kim, J. (2004). Dynamic voltage scaling of periodic and aperiodic

tasks in priority-driven systems. Proceedings of Asia And South Pacific Design

Automation Conference (ASP-DAC 2004), pp. 653-658.

[139] Shin, D., Kim, J. & Lee, S. (2001). Intra-Task Voltage Scheduling for Low-

Energy Hard Real-Time Applications. IEEE Design and Test of Computers, Vol.

18, No. 2, pp. 20–30.

[140] Shin, D., Kim, J. (2005). Intra-task voltage scheduling on DVS-enabled hard real-

time systems. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 24, No. 10, pp. 1530-1549.

[141] Shin, D., Kim, W., Jeon, J., Kim, J., Min, S. L. (2003). SimDVS: An Integrated

Simulation Environment for Performance Evaluation of Dynamic Voltage and

Frequency Scaling Algorithms. International Workshop on Power-Aware

Computer Systems (PACS 2003), pp. 141–156.

[142] Shin, Y., Choi, K. & Sakurai, T. (2000). Power optimization of real-time

embedded systems on variable speed processors. Proceedings of IEEE/ACM

International Conference On Computer Aided Design. (ICCAD 2000), pp. 365-

368.

[143] Singh, D. & Kaiser, W. (2014). Energy efficient task scheduling on a multi-core

platform using real-time energy measurements. Proceedings of International

Symposium On Low Power Electronics And Design (ISLPED '14).

[144] Singhoff, F., Legrand, J., Nana, L. and Marce, L. (2004). Cheddar: a flexible real

time scheduling framework. Proceedings of SIGAda, pp. 1-8.

[145] Sousa, P., Andersson, B., & Tovar, E. (2011). Implementing slot-based task-

splitting multiprocessor scheduling. Proceedings of 6
th

 IEEE International

Symposium On Industrial And Embedded Systems, pp. 256-265.

- 194 -

[146] Springer, R., Lowenthal, D.K., Rountree, B. & Freeh, V.W. (2006). Minimizing

Execution Time in MPI Programs on an Energy-Constrained, Power-Scalable

Cluster. Proceedings of ACM SIGPLAN Principles and Practice of Parallel

Programming (PPoPP ’06), pp. 230-238.

[147] Spuri, M. & Buttazzo, G. (1996). Scheduling aperiodic tasks in dynamic priority

systems. International Journal of Real Time Systems, Vol. 10. No. 2, pp.179–210.

[148] Stalling, W. (2014). Computer Organization and Architecture, Designing for

Peroformance. Pearson Education, Dorling Kindersley.

[149] Sucha, P., Kutil, M., Sojka, M., & Hanzalek, Z. (2006). Torsche scheduling

toolbox for matlab. Proceedings of IEEE International Conference on Control

Applications, IEEE International Symposium on Intelligent Control, pp. 1181-

1186.

[150] Tang, H., Ramanathan, P., & Compton, K. (2011). Combining hard periodic and

soft aperiodic real-time task scheduling on heterogeneous compute

resources. Proceedings of International Conference On Parallel Processing, pp.

753-762.

[151] Tiwari, V., Malik, S., Wolfe, A. & Lee, M. T-C. (1996). Instruction level power

analysis and optimization of software. Journal of VLSI Signal Processing, pp-1-

18.

[152] Trans, X.T, Do,T. V. & Chakka R. (2016). The impact of dynamic power

management in computational clusters with multi-core processors. Journal of

Scientific and Industrial Research, Vol. 75, pp. 339-343.

[153] Urunuela, R., Deplanche, A.-M., Trinquet, Y. (2010). STORM: a simulation tool

for real-time multiprocessor scheduling evaluation. Proceedings of IEEE

Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1-8.

[154] Viredaz, M. & Wallach, D. (2003). Power evaluation of a handheld

computer. IEEE Micro, Vol. 23, No. 1, pp. 66-74.

- 195 -

[155] Vroey, S. D., Goossens, J., Hernalsteen, C., (1996). A generic simulator of real-

time scheduling algorithms. Proceedings of 29
th

 Annual Simulation Symposium,

pp. 242-249, 8-11.

[156] Wei, Y., Yang, C., Kuo, T., Hung, S., & Chu, Y. (2010). Energy-efficient real-

time scheduling of multimedia tasks on multi-core processors. Proceedings of

ACM Symposium On Applied Computing (SAC '10), pp. 258-262.

[157] Weiser, M., Welch, B., Demers, M. and Shenker, B. (1994). Scheduling for

reduced CPU energy. Proceedings of 1
st
 Symposium on Operating Systems Design

and Implementation, Monterey, CA, November, pp. 13–23.

[158] Wu, H., Ravindran, B., Jensen E. D., Li, P. (2004). CPU scheduling for

statistically-assured real-time performance and improved energy efficiency.

Proceedings of International Conference on Hardware/Software Codesign and

System Synthesis, CODES, pp. 110-115.

[159] Wu, J. and Wu, J-X. (2014). An SRP-based energy-efficient scheduling algorithm

for dependent real-time tasks. Proceedings of International Journal of Embedded

Systems, Vol. 6, No. 4, pp. 335–350.

[160] Xian, C., Lu, Y.H. and Li, Z. (2007). Energy-aware scheduling for real-time

multiprocessor systems with uncertain task execution time. Proceedings of 44
th

ACM/IEEE Design Automation Conference, pp. 664–669.

[161] Xu, C., Xue, C., Yi He, & Sha, E. (2010). Energy efficient joint scheduling and

multi-core interconnect design. Proceedings of 15
th

 Asia And South Pacific

Design Automation Conference (ASP-DAC), pp. 879-884.

[162] Yang, C-Y., Chen, J-J. & Kuo, T-W. (2005). An approximation algorithm for

energy-efficient scheduling on a chip multiprocessor. Proceedings of Conference

on Design, Automation And Test In Europe (DATE 2005), pp. 468-473.

[163] Younis, S., & Knight, T. (1993). Practical implementation of charge recovering

asymptotically zero power CMOS. Proceedings of Symposium on Integrated

Systems, Univ. of Washington, pp. 234-250.

- 196 -

[164] Yu, H., Veeravalli, B., Ha, Y. (2010). Leakage-aware dynamic scheduling for

real-time adaptive applications on multiprocessor systems. Proceedings of 47
th

ACM/IEEE Design Automation Conference (DAC), pp. 493-498.

[165] Zapata, O.U.P. and Alvarez, P.M. (2004). EDF and RM multiprocessor

scheduling algorithms: survey and performance evaluation. Report No.

CINVESTAV-CS-RTG-02, CINVESTAV-IPN, Mexico.

[166] Zeng, G., Yokoyama, T., Tomiyama, H., & Takada, H. (2009). Practical energy-

aware scheduling for real-time multiprocessor systems. Proceedings of 15
th

 IEEE

International Conference On Embedded And Real-Time Computing Systems And

Applications, pp. 383-392.

[167] Zhang, Z. & Chang, J. (2014). A cool scheduler for multi-core systems exploiting

program phases. IEEE Transactions On Computers, Vol. 63, No. 5, pp.1061-

1073.

[168] Zhao, Y., Li, X., Jia, Z., Ju, L., & Zong, Z. (2013). Dependency-based energy-

efficient scheduling for homogeneous multi-core clusters. Proceedings of 12
th

IEEE International Conference On Trust, Security And Privacy In Computing

And Communications, pp. 1299-1306.

[169] Zhu, D., Melhem, R. & Childers, B.R. (2003). Scheduling with dynamic

voltage/speed adjustment using slack reclamation in multiprocessor real-time

systems. IEEE Transactions on Parallel and Distributed Systems, Vol. 14, No. 7,

pp.686–700.

- 197 -

List of Publications

__

1. Digalwar, M., Gahukar, P., Raveendran, B. K. & Mohan, S. (2014). Energy efficient

real-time scheduling algorithm for mixed task set on multi-core processors.

International Journal of Embedded Systems, (In Press). (SCOPUS Indexed)

2. Digalwar, M., Gahukar, P., Mohan, S. & Raveendran, B. K. (2015). STREAM: A

Simulation Tool for Energy Efficient Real Time Scheduling and Analysis.

Proceedings of International Workshop on Analysis Tools and Methodologies for

Embedded and Real-time Systems (WATERS) in conjunction with 27
th

 Euromicro

Conference on Real Time Systems (ECRTS), Lund, Sweden. July 2015. (Tier I

Conference)

3. Digalwar, M., Gahukar, P., & Mohan, S. (2014). Design and development of a real

time scheduling algorithm for mixed task set on multi-core processors. Proceedings

of 7
th

 IEEE International Conference on Contemporary Computing (IC3 2014), pp.

265-269. (SCOPUS Indexed)

4. Digalwar, M., Mohan, S., & Raveendran, B. (2013). Dynamic voltage and frequency

scaling scheduling algorithm for mixed task set. Proceedings of 8
th

 IEEE

International Conference on Industrial and Information Systems (ICIIS 2013),

University of Peradeniya, Kandy, SriLanka, December 2013, pp. 643-648.

(SCOPUS Indexed)

5. Digalwar, M., Mohan, S., & Raveendran, B. (2013). Energy Aware Real Time

Scheduling Algorithm for Mixed Task Set. Proceedings of IEEE International

Conference on Advanced Electronic Systems (ICAES 2013), pp. 325-327.

6. Digalwar, M., Raveendran, B. K. & Mohan, S. LAMCS: A Leakage Aware DVFS

based Mixed Task Set Scheduler for Multi-Core Processors. Journal of Sustainable

Computing, Elsevier Publication (Revisions Communicated).

- 198 -

Biography

__

Biography of the Candidate

Ms. Mayuri Digalwar received M.E degree from Birla Institute of Technology and

Science (BITS), Pilani, India in 2009. She is currently pursuing Ph.D. degree in BITS,

Pilani and is lecturer in the same institute. She has over 8 years of teaching experience.

Her research interest includes real time scheduling algorithms, energy efficient

scheduling and energy efficiency issues in modern multi-core processors.

Biography of the Supervisor

Prof. Sudeept Mohan completed his PhD in Electrical Engineering from the Birla

Institute of Technology and Sciences (BITS), Pilani. He also holds a Masters (MSc.)

degree in Physics and Master of Engineering (M.E) in Electronics and Control from the

same institute. He has a teaching and research experience of over twenty years at BITS,

Pilani. Currently he is attached to the Computer Science department at BITS as Professor.

His research interests include automatic controls and robotics.

Biography of the Co-supervisor

Dr. Biju K Raveendran is Assistant Professor in Department of Computer Science and

Information Systems in Birla Institute of Technology and Science, Pilani, K. K. BIRLA

Goa campus. He is also heading the Computer Centre Unit which is the central

computing infrastructure for the complete campus. He obtained his Ph.D. (Computer

Science) from Birla Institute of Technology and Science, Pilani in 2003. His research

interests are high performance computing, distributed operating systems, real-time and

embedded operating systems, high performance architecture.

