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ABSTRACT 

In multi-robot systems, individual robots cooperate with each other and work as a team to 

solve complex problems that are otherwise difficult to solve for a single mobile robot. There 

are several motivations for developing multi-robot solutions. Some of them are: 

1. Some tasks are complex in nature and therefore it is difficult for a single robot to 

accomplish them, for example, parallel and simultaneous transportation of load. 

2. Some tasks are monotonous, inherently parallel, and hazardous, for example, floor 

cleaning, lawn mowing, field harvesting, patrolling and battle field surveillance.  

3. It is easier to build many simple robots rather than building a single monolithic 

omnipotent robot. 

4. The use of multiple robots increases the robustness of the system i.e., makes the 

system more fault tolerant. 

In this thesis we have proposed and implemented coordination algorithms for multi-robot 

systems for solving problem like, geometric pattern formation, online terrain coverage and 

load balanced task decomposition and allocation. We have shown that a properly 

coordinated robot team achieves better performance by efficiently utilizing the available 

system resources i.e. the robots.   

The first problem investigated in this thesis is that of geometric pattern formation using 

multiple mobile robots. Specifically, the uniform circle formation problem has received 

considerable attention. Many researchers have addressed this problem from computational 

perspective and have suggested algorithms while treating the robots as abstract 

computational entities. We have designed and implemented a decentralized algorithm, 

referred to as STATE, for uniform circle formation using multiple mobile robots. One of the 

benchmark algorithm proposed by Défago and Konagaya is re-implemented on our multi-

robot test-bed. The STATE algorithm is shown to perform better than the Défago and 

Konagaya’s algorithm. The better performance of the STATE algorithm is due to its order 

preserving scheduling policy for multi-robot synchronization. On the other hand, the Défago 

and Konagaya’s algorithm uses probabilistic scheduling policy for multi-robot 

synchronization which results in more number of activation steps and increased time for 

convergence of the algorithm. 
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The second problem investigated in this thesis is of terrain coverage. Terrain coverage has 

wide applicability in our day to day lives, ranging from small scale tasks like floor cleaning, 

lawn mowing, and harvesting to large scale missions like inspection of hazardous terrains 

and battlefield surveillance. These tasks are monotonous, time consuming and sometimes 

life-threatening. The problem of online terrain coverage (wherein the map of the 

environment is not known beforehand) using multiple mobile robots is investigated in this 

thesis. A centralized algorithm, Cluster, Allocate, Cover (CAC), based on frontier 

propagation is proposed. The CAC algorithm creates clusters of known frontier cells and 

allocates them to individual robots using an optimal allocation algorithm. One important 

characteristics of CAC is that it allows the robots to exploit the knowledge locally generated 

by them to its fullest and re-planning is done by the central controller only after each robot 

finishes its assigned task. Besides, several advantageous offered by CAC, it has two 

limitations i.e., it is not robust to failures and it does not cover the terrain contiguously. 

Another approach proposed in this thesis, referred to as FAST, is completely distributed, and 

is robust to failure of multiple robots. The robots executing FAST adopt a structured 

trajectory while covering the unknown region in a mutually exclusive manner which results 

in large unbroken and contiguous areas to be covered. Both the approaches, CAC and FAST, 

have been simulated and implemented on a multi-robot test-bed. Many other algorithms that 

are representative of the state-of-the-art have also been implemented and validated both in 

simulation and on a multi-robot test-bed. Empirical results obtained have shown that the two 

approaches suggested in this thesis perform better than many state-of-the-art approaches. 

The third problem that is addressed in this thesis is of balanced partitioning of the unknown 

region. Many times multi-robot systems are deployed in an unknown environment wherein 

they have no prior knowledge of the tasks, for example, exploration of an unknown region, 

foraging, landmine detection etc. Two primary methods used for decomposing and 

representing the environment into segments are (a) grid based decomposition and (b) 

polygonal decomposition. Polygonal decomposition is shown to improve the efficiency of 

the multi-robot system as it minimizes the interference between the robots. If the 

partitions/segments of the environment are decomposed in a balanced manner, such that, the 

difference between the areas of the smallest and the largest partitions/segments is minimum 

and then the partitions/segments are assigned to the robots for processing, it will certainly 

improve the efficiency of the multi-robot system in solving the assigned tasks. In this thesis 

we have proposed an approach for balanced task partitioning which can be used in an 
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unknown indoor environment. It allows the robots to first discover the skeleton of the 

unknown region and then segment out elementary units like, rooms, halls, and corridors. The 

environment is then represented as a topological graph wherein each vertex of the graph 

corresponds to a particular elementary unit. This graph is then partitioned into maximally 

balanced and connected partitions with the application of genetic algorithms. The suggested 

approach is implemented in simulation and is compared against one of the most recent state-

of-the-art approach. It is shown that the proposed approach creates better balanced partitions 

of the environment.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND 

During the past two decades considerable attention has been paid to multi robot systems 

(MRS) which act as a team to accomplish some complex task. The interest of research 

community in this direction is justified because of the several advantages offered by MRS. 

The main motivation behind employing MRS is that they can increase the efficiency and 

effectiveness of the solution for a given task, i.e., a team of robots can perform a task in a 

superior manner by taking advantage of distributed sensing and actuation [Hungerford 2014, 

Pini 2011, and Mataric 1995a]. MRS can be classified into different categories based on their 

applications, for e.g., multiple industrial manipulators, military vehicles, or unmanned 

networked transport vehicles etc. In this thesis the term MRS refers to a team of mobile 

robots deployed in an indoor environment which are required to cooperate with each other in 

order to solve complex real world problems like, geometric pattern formation, simultaneous 

coverage of an unknown region, task allocation etc.  

Cooperation in MRS has been extensively discussed in the literature and diverse definitions 

have been proposed. Some of them are: 

(a) The first definition [Premvuti 1990] says that, cooperation is, joining together for doing 

something that creates a progressive result such as increasing performance or saving 

time. This definition aims at efficient utilization of the system resources. 

(b) The second definition [Barnes 1991] says that, cooperation is a joint collaborative 

behavior that is directed toward some goal in which there is a common interest or 

reward. This definition is quantitative and is intended for profit maximization. 

(c) In contrast to the two definitions given above, the third definition [Mataric 1997] says 

that cooperation is a form of interaction, usually based on communication. 

Majority of the research in multi-robot task allocation (MRTA) is motivated by the first 

definition. The second definition leads to performance measurements in terms optimal 

completion time for a given task, by minimizing system resource utilizations. The last and 

the third definition encompass exchange of information about the robot's position (pose), and 
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belief (perception of the environment or map) with its peers. These definitions touch 

different aspects of cooperation in MRS i.e., the task, the performance of the robot team, and 

the communication protocol used.  

Central to any multi-robot solution is an algorithm which decomposes a bigger task into 

elementary sub-tasks (task-decomposition) that are easier to solve by individual robots. 

These elementary sub-tasks are intelligently assigned to multiple robots so that they can 

solve these tasks in parallel with each other. Most of the times the robots work in a mutually 

exclusive manner, but, sometimes the sub-tasks overlap and the robots are required to 

negotiate and resolve conflicts. In the end these sub-tasks are recombined and the final 

results are obtained. This recombination also defines the overall behavior of the system i.e., 

answers how the termination condition is defined.  

In multi-robot systems it is not only the performance of an individual but also the 

performance of the team which needs to be measured objectively. Key metrics on which the 

system performance can be measured are: task completion time, computational complexity 

of the algorithm, robustness/ completeness and fault tolerance. The performance of the robot 

team is dependent on the task definition, group architecture of the system (if it is centralized, 

weakly centralized, or distributed), composition of the team (if the multi-robot team is 

homogenous or heterogeneous), and the communication structure (ability of a given robot to 

recognize and model the intentions, beliefs, actions, and capabilities of other robots). The 

primary objective of MRS is to achieve better solution compared to a single complex robot 

for a given complex task. The existence of a better solution is largely dependent on the 

coherent and cooperative behavior of the robots. In order to achieve this objective individual 

robots in MRS communicate with each other. This communication can be explicit - by way 

of message passing or implicit - by way of sensing the features of the environment and 

localizing other robots.  

A multitude of these aspects which are required to be addressed simultaneously makes it 

difficult to design and deploy multi-robot solutions in the real world. Nevertheless, 

researchers have developed solutions addressing the chief characteristics of MRS like, group 

structure, communication structure, control, group composition, learning, conflict resolution 

mechanisms, in an integrated manner. The interplay and strong correlation in the 

characteristics of multi-robot systems makes it difficult to bring about a classification which 

is focused on any single characteristic.  
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A classification based on different aspects such as size of the team, communication structure, 

self-organizing capability of the team, computational capability, and group composition is 

presented in [Dudek 1996] and is shown in Figure 1.1 below.  

Taxonomy of Multi-Agent Robotics

Based on Task Requirement

Based on Size (number of robots)

Based on Communication Range

Based on Communication Topology

Based on Communication Bandwidth

 

Figure 1.1 MRS Taxonomy [Dudek 1996] 

Taxonomy of multi-robot systems based on coordination is presented in [Farinelli 2004] and 

is shown in Figure 1.2. In this classification the authors have described four different levels 

i.e., cooperation, knowledge, coordination, and organization.  

 

Figure 1.2 MRS Taxonomy [Farinelli 2004] 

At the topmost level cooperative approaches are distinguished from non-cooperative 

approaches. At the knowledge level the robots might be aware of the presence of other 

robots in the environment or they may be completely unaware of the presence of other 

robots. At the coordination level multi-robot systems can be strongly coordinated, weakly 

coordinated and uncoordinated. In a strongly coordinated system the robots are more 
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involved and they deliberate by exchanging information. This information exchange 

certainly improves the efficiency of the task completion. In a weakly coordinated system, the 

robots are less involved and they communicate within the groups in an ad-hoc manner which 

can minimize the volume of communication. If the robots are aware and not coordinated, 

then it is the case of emergent cooperation in which the intelligent behavior is expected to 

emerge when all the robots perform a set of predefined actions against different stimulus 

from the environment. The organization level is concerned with the autonomy of individual 

robots to take decisions about what actions to perform. In a centralized organization, most 

often, a leader is elected who is the in-charge and is responsible for all the robots. Contrary 

to that in a distributed organization robots have complete autonomy and every robot in the 

team is free to decide their own actions. This classification of organization is further refined 

and weakly centralized organization has also been proposed wherein leaders may be re-

elected if the currently elected leader dies or voluntarily resigns from its leadership position. 

Also the individual robots are partially autonomous. 

Another classification was presented in [Gerkey 2004] is based on MRTA and coordination 

mechanisms. A domain independent taxonomy of MRTA problem is presented in this work. 

By "tasks" the authors mean "sub-goals" that are necessary to achieve for achieving the 

global objective.  It is important for the designer of multi-robot system to understand the 

type of task allocation problem represented by the given task. For the same reason three axes 

for classification are defined as shown in Figure 1.3. 

 

Figure 1.3 MRS taxonomy [Gerkey 2004] 

Single task robots (ST) are capable of executing only one task at a time while multi-task 

robots (MT) can execute more than one task simultaneously at a time. Single robot tasks 

(SR) require only one robot to solve them while multi-robot tasks (MR) are to be solved by 

more than one robot. Instantaneous assignment (IA) means only one action or move ahead in 
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time can be planned. Time extended assignment means that the robots look ahead in time 

and the information available is sufficient to plan for future – more than one action or move 

ahead in time. The information is mostly related to the capabilities of the robots (sensors and 

actuators), specification of the tasks (what robot capabilities are required to accomplish the 

task, the number and location of the tasks, the arrival pattern of tasks), and the characteristics 

of the environment (location and geometry of the obstacles).  

The literature on multi-robot systems encompasses many aspects, viz. path planning, 

communication, control, learning and adaptation, self-organization, simultaneous 

localization and mapping (SLAM) etc. In this chapter, the various issues concerning the 

development and deployment of solutions based on MRS are presented. The rest of this 

chapter gives a brief overview of MRS. Advantages of MRS are presented in Section 1.2. 

Different real-world applications and some aspects of MRS are presented in Section 1.3. The 

objectives of the thesis are presented in Section 1.4. The scope of this thesis is discussed in 

Section 1.5. Finally, the structure of the thesis is discussed in Section 1.6. 

1.2 ADVANTAGES OF MULTI-ROBOT SYSTEMS 

It has already been mentioned previously that carefully designed solutions based on multi-

robot systems perform better than single robots. More complex tasks are now solvable with 

the advancement of robotic systems. Different aspects of multi-robot systems are discussed 

in this section and it is shown why multi-robot systems are favored over single robot 

systems. 

 Improved robustness: The performance of multi-robot system should not suffer 

from failure of few robots. Since in a MRS there are multiple robots with similar 

capabilities, the redundancy offered by the system is exploited to compensate for the 

failure of few robots [Gautam 2016b, Yang 2011, Fazli 2010, Mead 2009, and Parker 

1995]. Other robots should take charge of the task of the failed robot(s). It is true that 

performance of the system suffers from robot failures but it is always better to 

complete the task in some more time rather than not completing it at all. This is not 

the case in purely centralized systems where one robot is in charge of the whole team 

and hence there exists a single point of failure. The whole system stops working if 

this robot fails. Semi centralized systems supporting leader re-election or completely 

decentralized systems where every robot plans for itself are more preferred. 
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 Improved efficiency: Online terrain coverage, mapping and exploration, searching 

for an object of interest in an unknown region are different tasks which can be 

completed faster as the robots can quickly disperse in the environment.    

 Parallelism: Multiple robots can execute many tasks in parallel thus reducing the 

task completion time. With a single robot multiple tasks can be completed only in a 

sequential manner. 

 Reduced cost: Design and construction cost of many simple robots is much lesser 

than that of one monolithic robot equipped with different kinds of costly sensors and 

actuators.  

These aspects impress upon us to adopt multi-robot solutions but it certainly does not imply 

that multi-robot systems are easier to control, manage or monitor when compared to single-

robot systems. There are several challenging problems in MRS which do not exist with 

single robots and cannot be ignored. For example, localization of peer robots, 

communication for information exchange, and synchronization for solving overlapping tasks 

etc. Only careful coordination of multiple mobile robots delivers the benefits offered by 

harnessing the true potential of multi-robot system. If it is a centralized system, then a single 

task can be easily decomposed and optimally assigned to each robot, enabling multiple 

robots to solve the sub-tasks in a mutually exclusive manner without interference. On the 

other hand, in a decentralized system the following question must be answered (not all of 

these are however applicable in all situations): 

 How to decompose the bigger task into smaller (elementary) sub-tasks good enough 

for a single robot to accomplish? 

 Once the bigger task is broken down into several elementary sub-tasks, how the 

elementary tasks will be assigned to individual robots?  

 What kind of communication structure should be implemented between the robots? If 

there is a dependency between the two tasks one robot might have to wait for the 

other to finish its task and make the results available. Both robots should be aware of 

this dependency and inform each other of the status of their own tasks. This can only 

be achieved with the help of communication.   
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1.3 APPLICATIONS AND ISSUES OF MULTI-ROBOT SYSTEMS 

Cooperative robotics or multi-robot systems is a young and dynamically growing field of 

research. In the last two decades several solutions based on MRS have been developed which 

has made it possible to classify these systems based on the type of the robots and the context 

in which they are used. There are mobile robots which are ground vehicles and are 

extensively used in both indoor [Turtlebot 2016, Lizi 2016] and outdoor environments 

[Husky UGV 2016]. Other types of robots have also been used in different applications. For 

example, under water autonomous vehicles [Heron USV 2016] are used in sea exploration 

and unmanned aerial vehicles [Parrot ARdrone-2.0 2016] are frequently used for 

surveillance, mapping, etc. Multi-robot systems can be employed in different fields for e.g., 

industrial, defense, biomimetics (imitation of the models, systems, and elements of nature 

for the purpose of solving complex human problems) etc. Some of the applications of multi-

robot systems include terrain coverage, area exploration, parallel and simultaneous 

transportations of load etc. To be able to successfully accomplish these missions the multi 

robot solution demands intelligent and strong coordination between individual units. This 

means that the robots have to exchange information with their team mates about their 

relative positions and of their current belief about the environment and its features. In 

[Mataric 1995b] some empirical results have been presented for a box pushing experiment 

using two legged robots. A team of differential drive robots is shown to perform box pushing 

in [Yamada 2001] with no communication between the robots. An object handling task is 

accomplished in a cooperative manner in [ZhiDong 2003]. Robot motion planning based 

approach wherein multiple robots are employed to transport bigger objects is suggested in 

[Yamashita 2003]. In [Tanner 2003] the authors have used two robots with manipulators to 

carry a deformed object.  

Terrain coverage and area exploration are two significant tasks for which MRS are used. 

Terrain coverage requires every unobstructed region (free space) to be visited by at-least one 

robot whereas area exploration requires the robots to jointly build the map of an unknown 

environment. For terrain coverage several algorithms exist for both known and unknown 

maps. When the map of the terrain is known it is termed as offline coverage [Agmon 2008]. 

When the map of the terrain is not known a priori (online coverage) then the task becomes 

complex and requires the robots to build the map in an incremental manner in order to visit 

the free space. To achieve their mission of coverage, the robots are required to strategically 

coordinate with each other, explore different parts of the terrain and then merge the results to 
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build a global map. This follows divide and conquer strategy which results in efficient 

coverage in less time. Online coverage of the terrain is a non-trivial task which requires the 

robots to localize themselves and their peers with respect to each other and the features 

present in the environment. Simultaneous localization and mapping (SLAM) has been one of 

the frontier areas of research in robotics. A rigorous discussion on single robot SLAM is 

presented in [Durrant-Whyte 2006, Bailey 2006]. Variety of solutions have been proposed 

for multi-robot SLAM for e.g., in [Rekleitis 2001] the authors have shown the robots 

exploring and building maps of vast environment while localizing themselves with respect to 

each other and reducing odometric errors. A greedy approach for map building and 

exploration using MRS, based on market economy is presented in [Zlot 2002] wherein the 

robots try to maximize their individual profits by minimizing the cost of travelling to 

frontiers and maximizing the information gain on reaching those frontiers. Considerable 

research work in cooperative robotics has been directed to analyze and understand biological 

systems. With the introduction of behavior based control paradigm [Arkin 1998], robotics 

researchers inspired from the social characteristics of insects and animals, began developing 

engineering solutions which imitate biological swarms. It is very interesting to observe such 

analogies for e.g., fighter aircraft and naval formations imitating bird flocks [Krontiris 

2011], as shown in Figure 1.4.  

 

 

Figure 1.4 (a) A bird flock in a wedge like formation. (b) Indian air force squadron flying in 

a wedge like formation 

In MRS this is achieved by applying primitive control laws governing the colonies of living 

organisms like ant colonies, fish schools, animal herds etc. Several intelligent behaviors for 

e.g., foraging [Balch 1999, Shell 2006], flocking [Xiong 2010], dispersion [Damer 2006], 

have been reproduced by MRS. Flocking is one of the most important form of coordination 

(a) (b) 
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in multi-robot systems wherein the robots tend to move in a formation while preserving a 

pattern. The robots flock together to achieve some common group objective for e.g. patrolling, 

surveillance, delivering payloads etc. In 1987, Reynolds introduced three heuristic rules which lead 

to the creation of the first computer animation of flocking [Reynolds 1987]. For a successful flock he 

suggested the following three rules: 

(a) Flock centering: individuals attempt to stay close to their flock mates. 

(b) Obstacle avoidance: individuals avoid collision with nearby flock mates. 

(c) Velocity matching: individuals attempt to match their velocities with nearby flock mates. 

In the literature these rules are also termed as cohesion, separation, and alignment. These rules were 

abstract and had very broad interpretations. It could only become possible to correctly interpret these 

rules when Reynolds published more follow up papers [Reynolds 1999] which describe steering 

behaviors of autonomous characters in computer animation and which introduces a method for 

constructing large groups of autonomous characters [Reynolds 2000]. These autonomous characters 

were then made to respond in real-time and interact with the user, as well as with other characters 

and the environment. The remarkable works of Reynolds initiated extensive research on the group 

behaviors and dynamics [Mataric 1992, Parker 1993, Kube 1993] and was followed by further 

research on multi-robot pattern formations [Balch 1998, Wang 1991].  

Two more applications that are closely related to multi-robot systems are control of wireless sensor 

networks (WSNs) and mobile ad-hoc networks (MANETs). Particularly, MANETs require 

autonomous nodes to interact with each other in a distributed fashion i.e., without using any fixed 

base station or network infrastructure. MANET nodes can communicate with other nodes which are 

in their vicinity which is defined by their transmission range. Distant nodes are reached by relaying 

packets over a multi-hop network comprising of intermediate nodes using store and forward 

mechanism. MANET based approaches have been investigated by researchers for multi-robot search 

and rescue missions and exploration of an unknown regions. The flexible and the fault tolerant 

communication capability offered by MANETs has attracted researchers to propose MANET based 

multi-robot communication [Wang 2005, Sit 2007, Witkowski 2008]. Multi-robot systems have also 

been employed for variety of tasks in the military research for e.g., battle field surveillance [Trebi-

Ollennu 1999], area patrolling [Marino 2013], and intrusion detection [Fagiolini 2008, Fagiolini 

2009]. Several research efforts are also visible for multi-robot soccer playing (soccer robots) in 

competitions like robocups [Candea 2001, Weitzenfeld 2006b] etc.       
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1.4 OBJECTIVES OF THE THESIS 

The main objective of the thesis is to design efficient coordination algorithms for solving 

different real-world problems using multi-robot systems. The three domains chosen for this 

investigation are geometric pattern formation, online terrain coverage and area 

decomposition/ partitioning. Different objectives of the thesis are classified according to 

these three problem domains. Following is the detailed list of objectives.  

1. Geometric pattern formation 

(a) Study and identify the limitations of available solutions. 

(b) Design efficient decentralized algorithm(s) for solving the uniform circle formation 

problem.  

(c) Establish an experimental test-bed comprising of mobile robots for testing the 

efficacy of the algorithm(s) proposed in this thesis.  

(d) Re-implement some of the state of the art approaches for the purpose of comparison 

with the algorithm(s) proposed in this thesis. 

2. Online Terrain Coverage 

(a) Study and identify the limitations of available solutions. 

(b) Design and simulate both centralized and decentralized algorithm(s) that are efficient 

in terms of reduced coverage completion time and reduced overlapping coverage 

when compared with some of the state of the art approaches.  

(c) Establish an experimental test-bed comprising of mobile robots for testing the 

efficacy of the algorithm(s) proposed in this thesis.  

(d) Re-implement some of the state of the art approaches on the established test-bed for 

the purpose of comparison with the algorithm(s) proposed in this thesis. 

3. Area Partitioning/ decomposition 

(a) Study and identify the limitations of approaches for polygonal partitioning. 

(b) Design and simulate algorithm(s) that are efficient in terms of balancing the size of 

the partitions, such that, the area to be processed by individual robots is almost equal.   

(c) Re-implement some of the state of the art approaches in simulation for the purpose of 

comparison with the algorithm(s) proposed in this thesis. 
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1.5 SCOPE OF THE THESIS 

Many requirements are imposed on multi-robot systems in literature. Not all the 

requirements have been addressed in this thesis. The scope of the thesis in terms of these 

requirements is summarized as follows: 

(a) Fault-tolerance: The multi-robot system should be robust to failures of robots. In 

other words, there should not be a single point of failure. Centralized or leader-

follower approaches are incapable of handling failures. In this thesis, we have 

suggested decentralized algorithms for geometric pattern formation and fault-tolerant 

algorithm for online terrain coverage. The scope of thesis is limited to handling robot 

failures alone. Byzantine failures and communication failures are not in the scope of 

the thesis.      

(b) Speed: The multi-robot system should complete the assigned task quickly in an 

efficient manner. The suggested algorithms in this thesis have addressed this 

requirement and are demonstrated to achieve better results than some of the state of 

the art approaches. 

(c) Task allocation: The multi-robot systems should be able to decompose a bigger 

(global) task into smaller task subsets and then optimize the allocation of task subsets 

to individual robots in a decentralized manner. The task allocation strategy should 

ensure efficient and faster completion of the global task. This requirement is 

carefully addressed in the thesis.  

(d) Scalability: The multi-robot system should easily be able to accommodate the 

addition/ subtraction of robots during operation. This requirement is addressed in a 

limited sense in the thesis. The algorithm proposed in this thesis for solving the 

uniform circle formation problem allows addition and removal of robots once the 

pattern is established. The fault-tolerant decentralized algorithm proposed in this 

thesis for online terrain coverage allows the robots to be added and removed and it 

has self-organizing nature. The multi-robot system considered in this thesis is 

inspired from higher order animal species like wolf-pack hunting model [Weitzenfeld 

2006a] and humans (robo-soccer playing experiments [Weitzenfeld 2006b]), 

therefore, the multi-robot team size is restricted to ten robots. This thesis does not 

address the problems related to swarm robotics wherein the multi-robot team size of 

some hundreds or thousands is considered.  
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(e) Implementation: The multi-robot system should be implemented and proven on 

physical system. In this thesis, most of the work has been experimentally validated 

and tested on a team of mobile robots. Extensive efforts have been put in establishing 

and realizing different centralized and decentralized algorithms on a multi-robot test-

bed. Most of the experiments however are conducted in a controlled laboratory 

setting.  

Some other requirements that are not addressed at present in this thesis and may be 

addressed in future are: 

 Communication: The multi-robot system should be capable of dealing with limited 

and imperfect communication.  

 Extensibility: The multi-robot system should be easily extendable to accommodate 

new functionalities.  

 Heterogeneity: The multi-robot system should have ability to accommodate 

heterogeneous teams of robots. 

 Learning: The multi-robot system should be able to adapt itself for specific 

applications in real-time (on-line). 

1.6 STRUCTURE OF THE THESIS  

A brief overview of the research work carried out in the individual chapters is presented 

below: 

Chapter 2: Literature Review  

This chapter presents a review of the related works in this field of multi-robot systems 

conducted by researchers, including works on geometric pattern formation, online terrain 

coverage and area partitioning/ decomposition. 

Chapter 3: Geometric Pattern Formation by Multiple Mobile Robots 

Multi robot pattern formation has a wide range of applications like inspection of hazardous 

regions, parallel and simultaneous transportation of load, area exploration, etc. This problem 

has been investigated both from the scientific and engineering perspectives. There is a whole 

body of experimental work on robot formations and at the same time there is no dearth of 

theoretical research addressing this problem. Several assumptions considered in these 

theoretical studies are way too simplified. It is assumed that these assumptions will 
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somehow be reasonably approximated. A practical model is suggested in this chapter for 

geometric pattern formation. This model uses approximate solutions to some of the 

assumptions considered in theoretical research works. A decentralized algorithm (STATE) is 

proposed in this thesis and is shown to perform better than one of the benchmark approach 

i.e. the Défago and Konagaya's algorithm [Défago 2002, Défago 2008] for uniform circle 

formation. Both the algorithms are implemented on a multi-robot test bed. An independent 

software system is developed for localizing multiple robots moving on a floor in an indoor 

environment. The proposed system for multi-robot localization employs image processing 

algorithms to read the markers attached on top of the robots and determine their pose using 

an overhead camera. A framework for inter-robot communication has been developed for 

asynchronous and non-blocking robot-to-computer, and robot-to-robot communication. 

Chapter 4: An Efficient Approach for Online Multi-Robot Terrain Coverage 

In this chapter, an algorithm for online multi-robot coverage is suggested. The suggested 

algorithm is a centralized algorithm that proceeds with minimal knowledge of the already 

explored region and the frontier cells. It creates clusters of frontier cells which are allotted to 

robots using an optimal assignment scheme. Coverage is then performed by each robot using 

a modified motion plan which results in less redundant movement. Some approaches use 

data clustering algorithms like K-means for environment decomposition. These approaches 

do not specify strict time criteria for re-clustering. Moreover, the motion plans they use 

result in redundant coverage. To overcome these limitations, an appropriate motion plan for 

the robots is chosen based on the context of already covered frontiers. Dispersion of robots is 

an emergent behavior in this approach. The efficacy of the proposed approach is tested in 

simulation and on a multi-robot test-bed.  

Chapter 5: Synchronous Frontier Allocation for Scalable Online Multi-Robot Terrain 

Coverage 

In this chapter, we have proposed, Frontier Allocation Synchronized by Token passing 

(FAST), a distributed algorithm for online terrain coverage using multiple mobile robots, 

which ensures mutually exclusive selection of frontier cells. Many existing approaches cover 

the terrain in an irregular fashion, without considering the usability of the already covered 

region. For instance, in the task of floor cleaning in an office building, these approaches do 

not guarantee the cleanliness of large unbroken areas until a majority of the task is complete. 

FAST on the other hand, incrementally traverses the terrain generating structured trajectories 
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for each robot. Following a structured trajectory for coverage path planning is proven to be a 

powerful approach in literature. This renders large portions of the terrain usable even before 

the completion of the coverage task. The proposed map representation techniques used in 

FAST render it scalable to large terrains, without affecting the volume of communication 

among robots. Moreover, the distributed nature of FAST allows incorporation of fault-

tolerance mechanisms. Empirical investigations on maps of varied complexities and sizes 

both in simulation and on an experimental test-bed are discussed in this chapter. 

Chapter 6: Balanced Partitioning of an Unknown Region for Efficient Multi-Robot 

Coordination  

We consider the task of partitioning of an unknown region into sub-regions which are then 

apportioned to a multi-robot system for further processing. It is evident from the literature 

that polygonal decomposition of workspace is superior than grid based decomposition. Many 

existing approaches are based on Voronoi partitioning. However, they produce unbalanced 

partitions resulting in uneven distribution of the workload to individual robots. This chapter 

proposes an approach to create balanced partitions of the unknown region so that the regions 

to be processed by individual robots are almost equal in area. This type of partitioning can be 

especially useful in applications like floor cleaning, surveillance, and patrolling, wherein fair 

distribution of the workload between the agents is important. The proposed method requires 

the robots to use minimalistic sensors to first determine the boundaries of the unknown 

region which is then converted into a weighted connected graph. Further, this graph is 

partitioned into sub-graphs which are maximally balanced using genetic algorithm. These 

sub-graphs can be optimally allocated to the available robots. To the best of our knowledge 

this is the first attempt in this direction. 

Chapter 7: Conclusion and Future Work 

This chapter concludes the thesis by summarizing the research work presented in the 

previous chapters and the scope for the future work. It also enumerates the publications done 

based on the research work in this thesis. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

Multi-robot system research has gained considerable attention during the past two decades. 

In the following section, a detailed literature review on the coordination algorithms for 

multi-robot systems has been presented. In particular, a review of multi-robot solutions 

suggested in three different application domains namely, geometric pattern formation, online 

terrain coverage, and area partitioning/decomposition is presented. Specific description of 

the three aforementioned application domains follows: 

(a) Geometric pattern formation: Robot formations play a vital role in many applications 

and can be more advantageous than deploying a single mobile robot. For instance, robot 

formations can act as sensor arrays when organized in a lattice. This arrangement allows 

them to collect and exchange rich information about the state of their environment. 

Robot formations can be of great use when building the map of an unknown region. In 

[Howard 2004], the authors have exploited the redundancy in the measurements of 

multiple robots regarding the state of the environment to build an accurate and better 

quality map. Another advantage of geometric pattern formation is that, when the 

formation is established, individual robots can be assigned or they may assume different 

roles in task execution. The geometric pattern formation problem can be defined as a 

problem wherein a group of mobile robots are required to establish a predetermined 

geometric shape. It starts with an assumption that the shape is not known in advance to 

the robots; only information that is available of the robots is the relative positions of 

their peers. The geometric pattern formation is a problem that demands a distributed 

algorithm which is independently executed by each robot. The algorithm must ensure 

that the robot team converge to a particular geometric shape/formation in some finite 

iterations. In that sense, considerable work has been done on uniform circle formation 

problem and it has become a benchmark for comparing pattern formation algorithms. 

The problem of uniform circle formation is one of the focus of this thesis.  

(b) Online terrain coverage: The problem of distributed coverage of an unknown 

environment has emerged as a very important problem in multi-robot research. Online 
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terrain coverage requires the team of mobile robots to physically traverse the entire free 

space (unobstructed region) of the unknown environment while reducing the coverage 

completion time and the amount of overlapping or redundant coverage. Both centralized 

[Kapanoglu 2012] and decentralized [Andries 2013] algorithms have been suggested in 

the literature. These works are carried out both in simulation and/or validated on an 

experimental test-bed in a laboratory setting. Variety of assumptions about the 

communication, sensing, processing and storage capabilities of the robots have been 

considered.  For instance, some approaches consider limited communication range 

[Rekleitis 2004] while some other approaches consider limited sensing range/ visibility 

range [Fazli 2010]. There are approaches that consider a homogenous team of mobile 

robots doing coverage [Raghavan 2007] and some other approaches consider a team of 

heterogeneous mobile robots doing coverage [Yazıcıoğlu 2013]. Some approaches 

consider a team of low powered mobile robots with minimal processing [Cannata 2011] 

while on the other hand there are approaches that employ relatively powerful mobile 

robots [Ozkan 2010]. A large number of approaches suggested for online terrain 

coverage with different robot capabilities makes it difficult to compare and contrast 

them and therefore opens up opportunity for further research.  

(c) Area partitioning/ decomposition: Autonomous mobile robots require a map of their 

environment for successful navigation and path planning. Therefore, they build the map 

of their environment which is primarily represented in the robot’s memory in one of the 

two possible ways: grid based decomposition [Burgard 2005] and polygonal 

decomposition [Wurm 2008]. Polygonal decomposition of maps is proven to be better 

than grid based decomposition of the maps when it comes to automating tasks like 

exploration of an unknown region using multi-robot systems. Topological graphs are 

constructed on top of polygonal decompositions that considerably reduce the processing 

efforts for computing paths for mobile robot navigation. Spatial division of the map of 

the environment into meaningful elementary units has direct impact on the performance 

of the task [Bormann 2016]. Less attention has been paid towards measuring the impact 

of different area partitioning approaches. In particular, balancing the spatial partitions of 

the workspace is largely an untouched problem. 

The rest of this chapter is organized into three sections. In Section 2.2 the problem of 

geometric pattern formation has been reviewed. Specifically, the problem of uniform circle 

formation and its available solutions has been discussed. Different approaches addressing the 
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problem of online terrain coverage have been reviewed in Section 2.3. Various methods of 

area partitioning/ decomposition have been reviewed in Section 2.4. 

2.2 GEOMETRIC PATTERN FORMATION 

Some of the significant research works on multi-robot pattern formation are reviewed in this 

section. Experimental research works are reviewed first in Section 2.2.1 followed by purely 

theoretical studies in Section 2.2.2.  

2.2.1 Experimental Research on Multi-Robot Pattern Formation 

In this section, some of the approaches that are representative of the experimental studies in 

multi-robot pattern formation are discussed in a chronological order. In [Fredslund 2002], 

using only local sensing and minimal communication the authors have been successful in 

bringing a group of distributed robots in a predefined geometric shape. All robots identify a 

single friend robot using a pan and tilt camera. The robots always try to keep the friend robot 

in the center of the cameras field of view. Each robot is assigned a unique ID. Initially, 

before the formation is established the robots remain in a chain of friendship which is sorted 

by IDs. It is a neighbor referenced approach (a robot positions itself with respect to a 

neighbor robot) and therefore the robots continuously keep polling the neighbor robots 

which results in a waste of resources. Unlike [Fredslund 2002], the algorithm suggested for 

uniform circular formation in Chapter-3 i.e. the STATE algorithm [Gautam 2016a] does not 

require the robots to continuously poll their neighbors, neither it demands that the robots 

should be positioned in a predefined initial formation. In [Fax 2002], a motion planning 

approach for formations of mobile robots is presented. In this approach, a central controller 

explicitly plans the trajectories for individual robots while they maintain a predefined 

formation. This is done to allow the formation to change dynamically while performing 

complex maneuvers in the presence of obstacles. Unlike [Fax 2002], the STATE algorithm 

[Gautam 2016a] is a decentralized approach i.e. each robot independently executes the 

algorithm for circle formation.  

A notion of local templates is used in [Krishnanand 2005] which is similar to the concept of 

potential fields wherein the gradient of the field is followed by the robots. The robots 

successfully self-assemble into a grid, line, and wedge formations. But sometimes the robots 

may get trapped in local minima. This is an inherent limitation of the potential fields. In 

[Hao 2005], the authors have presented a practical framework for planning and control of 

formations of three UGVs. The main objective is to allow the formation to change in real-
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time in order to avoid obstacles while navigating in a dynamic environment. In [Marshall 

2006], the authors have conducted experimental implementation of multi-robot flocking and 

cyclic pursuit. The control laws are solely governed by local sensing and data processing. No 

use of explicit communication, GPS, or overhead camera is reported. Colored markers are 

attached to the robots which are tracked by other robots thus enabling them to continuously 

poll each other as they move. This involves complex image processing and doing it on 

onboard computer of the robot is an expensive operation particularly for applications like 

flocking. In [Antonelli 2007], two experiments have been conducted using a team of six 

mobile robots to determine the performance and robustness of a null space based behavioral 

(NSB) control method for formation control in multi-robot systems. The approach was 

implemented in a centralized manner for controlling a platoon of autonomous robots at 

kinematic level. The NSB has proved to be a powerful control mechanism. In [Antonelli 

2009a], the authors have successfully conducted experiments on formation control for a team 

of grounded mobile robots in the presence of both static and dynamic obstacles. Further, the 

authors have conducted experiments on flocking behavior under different conditions 

(moving rendezvous, 2D and 3D space, and in the presence of obstacles) of multi-robot 

systems in [Antonelli 2009b].   

The problem of pattern formation is addressed in [Mead 2009] for terrestrial robots. The 

formation is encoded in a cellular automaton. Individual members of the automaton are 

treated as an individual cell. An auction based approach is used for the recovery of formation 

in the event of failure. The robots are continuously required to poll their neighbors for a 

possible movement in order to align themselves correctly with respect to the desired pattern. 

This is not an efficient utilization of the system resources. Moreover, uniform circle 

formation is not possible with this approach. Leader-Follower based control architecture is 

suggested in [Monteiro 2010] so that a swarm of robots can be made to flock in a formation 

to a goal location. The goal location is known beforehand to the leader. Obvious 

disadvantages of centralized architecture also apply to this approach i.e., single point of 

failure. To this end we have seen some of the significant experimental research works 

carried on multi-robot pattern formation are control theoretic and provide solutions for 

flocking problem. In addition to these approaches a whole body of work on multi-robot 

pattern formation exists in theoretical computer science. In the next section we discuss some 

the significant theoretical research works. 
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2.2.2 Theoretical Research on Multi-Robot Pattern Formation 

In this section, we discuss two well-known system models followed by a detailed discussion 

on different approaches suggested by researchers under these models. 

A. Suzuki-Yamashita and CORDA model 

There are two well-known system models, the Suzuki-Yamashita model [Suzuki 1999] 

(SYm) and the CORDA model [Prencipe 2001]. These two models are hypothetical and 

therefore the robots and their world model are treated as an abstraction. The basic 

assumptions of the two models are listed in Table 2.1. 

Table 2.1 Comparison of the basic assumptions of SYm and CORDA models 

Model SYm  CORDA  

World model 2  
2  

Dimension Point robot Point robot 

Mobile Yes Yes 

Autonomous Yes Yes 

Anonymous Yes Yes 

Visibility Unlimited Unlimited 

Coordinate System Local Local 

Agreement Partial Partial 

Communication Implicit Implicit 

Synchronization Semi-synchronous Asynchronous 

Clock Global clock Not Applicable 

The robots are considered as a unit having computational capabilities. The world model of 

the robot is a two dimensional plane ( 2 ). The robots are treated as a point mass. Each robot 

is mobile and can freely move in 2 . The robots are autonomous i.e. they carry out their 

computations independent of each other. The robots are anonymous in the sense that they are 

indistinguishable or do not have unique identities. In addition, the robots are assumed to 

have unlimited visibility i.e. they are equipped with sensors to instantaneously detect the 

position and heading of other robots. The robots construct their own local view of the world 

i.e. they see the other robots in their own local coordinate system and are egocentric. 

However, the robots are assumed to have partial agreement on the local coordinate system. 

In particular, the robots agree on the direction and orientation of one of the coordinate axis, 

say the X axis. They also agree on clockwise and anti-clockwise direction. The robots in the 
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two models cannot explicitly communicate and the only means of communication is by 

sensing other robots. 

The main difference between the two models is in the level of synchronization i.e., the way 

the activation cycles of the robots are synchronized. In SYm, the activation cycle of a robot 

is a sequence of events Look-Compute-Move-Wait (LCMW), and in the CORDA model it is 

Wait-Look-Compute-Move (WLCM). It is to be noted that the time spent by the robots in 

each state of the activation cycle is not known or fixed, but it is finite. The SYm is a semi-

synchronous model. A global clock is assumed and the time is represented as an infinite 

sequence of discrete time instances. The robots, during each time instance could be either 

active or inactive. It is also assumed that the robots always become active only at the 

beginning of the time step. It is assumed that the robots execute their activation cycle almost 

instantaneously (atomically). This assumption implies that the robots only sense other robots 

when they are stationary. Contrary to this the CORDA model is asynchronous and makes no 

assumption on the cycle time of the robots. As a consequence of this assumption, while 

moving itself a robot can see other moving robots. This however does not mean that a robot 

can distinguish between a moving and a stationary robot. This limitation renders it difficult 

to design algorithms for control and coordination of multiple mobile robots in CORDA and 

is one of the main reasons why SYm is more preferred. We now present a detailed literature 

review on theoretical research on geometric pattern formation in cooperative robotics. 

Specifically, more stress is given to uniform circle formation problem. 

B. State of the Art 

As an illustration of self-stabilizing distributed algorithms a brief discussion on the problem 

of circle formation is presented in [Debest 1995], however, no solution is provided. Different 

algorithms on various geometric pattern formations have been proposed in [Sugihara 1996]. 

The authors have proposed a heuristics based algorithm which produces an approximation of 

a circle i.e., a Reuleaux triangle is obtained. A non-oblivious algorithm for the formation of 

regular polygon is proposed in [Suzuki 1999]. Eventually by executing this algorithm the 

robots get arranged at regular intervals on the circumference of a circle. However, the robots 

need to remember all of their past states and actions. An algorithm for point gathering is 

proposed in [Ando 1999] under Suzuki-Yamashita model, that supports robots with limited 

visibility. The point gathering problem is solved in [Flocchini 2005] under the CORDA 

model. Here the assumptions on the atomicity of the activation cycle and instantaneous 

movement are dropped, but common sense of direction of the two coordinate axes is 
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considered. Based upon the common knowledge possessed by the multi-robot system the 

authors in [Flocchini 1999] have studied the solvability of arbitrary pattern formation 

problem. An extensive survey has been conducted in [Cao 1997] and the authors have 

advocated that only few research works address the geometric pattern formation problem 

from computational perspective. This observation is also reinforced in [Flocchini 2005].  

Robot formations can act as sensor arrays while exploring and/or monitoring an unknown 

terrain. For area exploration of unknown terrain, circular formation tends to be the most 

suitable choice [Suzuki 1999, Krick 2009, Leonard 2010]. Many authors [Chatzigiannakis 

2004, Défago 2002, Défago 2008] have generalized the semi-synchronous model i.e., SYm. 

An algorithm for uniform circle formation in the semi synchronous setting has been 

proposed in [Défago 2002]. The authors have decomposed the problem into two sub-

problems which are then solved by them separately. The first sub-problem is to guide the 

robots to the circumference of a non-degenerated circle and the second sub-problem is to 

allow the robots to execute a deterministic algorithm that eventually brings them into a 

configuration where all the robots are spaced evenly i.e., for N robots the angular distance 

between any two direct neighbors is 2𝜋/N. An important characteristic of the solution to the 

second sub-problem is that the robots calculate and move half way distance towards the mid-

point between the two direct neighbors. This is done so that the multi-robot system does not 

get trapped in a livelock. In this work the two direct neighbors of a robot can be active at the 

same time. A computer simulation of this work has been carried out in [Souissi 2004] 

wherein the robots are probabilistically activated and their convergence time in terms of total 

number of activation steps has been measured. The probabilistic activation schedule does not 

guarantee fairness and as a result, the algorithm takes more number of activation steps to 

converge. The approach suggested in [Défago 2002] is extended in [Défago 2008] and a 

more rigorous proof is provided.  

In [Gautam 2012], a practical software framework which encapsulates and abstracts robot 

behaviors and allows the robots to execute a centralized algorithm for uniform circle 

formation is presented. Some of the best practices of software engineering and well known 

design patterns like observer and decorator have been employed. This increases the 

extensibility of the framework to accommodate newer algorithms for different applications 

of cooperative robotics. Within this framework, in [Gautam 2013b], the authors have 

suggested an algorithm for uniform circle formation based on the solution of the dining 

philosopher problem suggested in [Garg 2004]. This scheduling policy does not allow direct 
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neighbors of a robot to become active at the same time. It ensures fairness and the algorithm 

converges to a uniform circular formation. The work is mainly a simulation and no 

comparative study has been done. The algorithm suggested in [Gautam 2013b] was 

experimentally validated in [Gautam 2014]. The algorithm was executed on a single 

computer in a centralized manner and movement commands were sent to the robots in a 

synchronized manner. Moreover, the robot to computer communication was synchronous 

and blocking. In [Elor 2011], discrete time algorithms for uniform circle formation where the 

agents are allowed to move only in one direction on the vertices of a ring graph have been 

proposed.  A similar approach wherein the agents move only in one dimensional continuous 

space of the circle has been suggested in [Flocchini 2008]. To this end it is seen that the 

pattern formation problem, more specifically the uniform circle formation problem, for weak 

robots, has been addressed widely by researchers from theoretical and scientific perspective 

[Elor 2011, Flocchini 2008, Dieudonné 2008, Dieudonné 2009].  

At this point, we argue that not much attention has been paid to validating these algorithms 

on a real multi-robot test bed, nor an attempt has been made to compare the performance of 

these algorithms with other similar approaches. Therefore, it becomes important to 

understand how these assumptions can be approximated in order to implement and validate 

these algorithms on a physical multi-robot test-bed. The STATE algorithm [Gautam 2016a] 

suggested in Chapter 3 of this thesis is a distributed algorithm that allows a team of 

autonomous mobile robots to achieve a uniform circular formation. It is a real 

implementation of a distributed robotics system tested on a team of five e-puck robots. The 

robots communicate with each other by way of message passing. The robot to computer and 

robot to robot communication is absolutely asynchronous and non-blocking. Each robot 

individually runs the proposed algorithm on-board micro-controller (dsPIC) of the robot. 

One of the benchmark algorithms for uniform circle formation [Défago 2002, Défago 2008], 

referred to as DK algorithm, is also implemented on our experimental test-bed. Statistically 

it is found that the STATE algorithm performs better than the DK algorithm. Detailed 

explanation of the two algorithms, their implementations and the design of the experimental 

test-bed are discussed in Chapter 3 of this thesis. 

2.3 ONLINE TERRAIN COVERAGE 

Terrain coverage and area exploration are closely related problems. Online multi-robot 

exploration requires the robot team to explore and build the global map of an unknown 

region. Some exploration approaches [Wurm 2008, Puig 2011, Sheng 2006, Dasgupta 2009] 

http://dl.acm.org/author_page.cfm?id=81324488994&CFID=799797449&CFTOKEN=86047639
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aim at reducing the redundancy in exploration and target global dispersion for speedy 

completion of the exploration task, whereas some other approaches [Mukhija 2010, 

Yamauchi 1998, Rooker 2007, Zlot 2002] target local dispersion and exploit the redundancy 

in exploration to improve the accuracy of the global map constructed, thus enabling the 

robots to localize better. Exploration does not require the robots to physically traverse the 

entire free space in the unknown region. On the other hand, online terrain coverage can be 

stated as a problem of finding trajectories for individual robots such that the entire free space 

in an unknown region is physically traversed at least once, by some robot(s). The primary 

objectives of terrain coverage are minimizing overlap in regions covered by different robots 

and minimizing the time taken to complete the coverage. These objectives are no different 

than those of exploration, with the exception that the map of the environment is no longer a 

deliverable. However, a map of the environment is still required by the robots to localize 

themselves and for generating non-overlapping coverage paths. Hence we argue that an 

exploration algorithm can be adapted for the purpose of terrain coverage by restricting the 

robot's sensing range within a unit distance which is equal to the footprint of the robot. 

Approximate cell decomposition of the search space is a popular method of coverage path 

planning and is reviewed in [Galceran 2013]. In [Andries 2013], approximate cell 

decomposition based methods for terrain coverage and area exploration are classified into 

three different categories, i.e. (a) Tree cover algorithms (b) Ant-based algorithms and (c) 

Frontier propagation algorithms.  

In tree cover algorithms, a spanning tree is constructed over the environment, which is 

assumed to be known (i.e., offline terrain coverage). Segments of this spanning tree are then 

apportioned to multiple robots for coverage. Some examples of tree cover algorithms are 

[Hazon 2005, Zheng 2010, Senthilkumar 2012]. Ant-based algorithms are inspired from the 

pheromone laying and trail sensing nature of ants [Andries 2013, Ferranti 2007, Ferranti 

2009]. These algorithms are shown to be completely distributed and robust. In these 

methods, localization and communication are achieved by treating the environment as a 

shared memory on which pheromone trails released and deposited by robots are read by 

other robots. Failure of one or more robots and/or addition of robots are gracefully dealt 

with. Some algorithms consider special substances for use as pheromones. For example, 

alcohol trails and ink markings have been used in [Sharpe 1998] and [Svennebring 2004] 

respectively. Others allow the robots to drop smart tags in the environment [Andries 2013, 

Ferranti 2007, Ferranti 2009]. These smart tags can communicate with each other and can 
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also be read and updated by the robots. Despite their advantages, ant-based algorithms are 

not widely used since they are hard to realize. For instance, the implementation of precise 

trail laying and sensing hardware turns out to be challenging and the smart tags themselves 

are not fail-safe. Frontier propagation algorithms have received considerable attention in the 

past [Burgard 2005, Wurm 2008, Yamauchi 1998, Gautam 2015]. Frontier based exploration 

was suggested in [Yamauchi 1997] and has become a de-facto standard for area exploration 

in multi-robot system studies. A boundary between the known and the unknown region is 

referred to as a frontier. Robots move to the frontiers and add new information to their maps. 

In [Yamauchi 1998], the authors extend the basic frontier-based approach to multiple robots, 

wherein each robot greedily selects the nearest frontier cell to explore. There is a lack of 

coordination among the robots. As a result, two or more robots that are close to each other 

sometimes end up choosing the same frontier cell. Some approaches target local dispersion 

where the robots are dispersed just enough such that their sensory impressions do not 

overlap, while at the same time remaining in the communication range of at-least one other 

robot [Mukhija 2010, Rooker 2007]. On the other hand, some works target global dispersion. 

Either a centralized solution or greater inter-robot communication range [Wurm 2008] is 

required. In large and complex environments sometimes these approaches result in 

redundant coverage and take longer time to finish. To corroborate this fact, an excellent 

comparative study of exploration algorithms has been conducted in [Juliá 2012]. A 

coordinated multi-robot exploration approach is suggested in [Burgard 2005] where the 

utility of reaching a given frontier cell and the cost of visiting the same frontier cell are 

considered simultaneously. Once a frontier cell is assigned to a specific robot the utility of 

the unexplored region visible from the allotted frontier is reduced, forcing other robots to 

choose different targets. In [Zlot 2002], a market economy based approach is suggested for 

the assignment of cells lying in the unknown region to the robots. Robots negotiate the 

targets that are assigned to them with each other by way of auctioning and bidding. 

However, [Burgard 2005] is a centralized approach, and in [Zlot 2002], as the size of the 

environment increases, the length of the message (bid) increases, thus increasing the volume 

of communication. More recently, instead of allocating the frontier cells, researchers have 

proposed approaches to allocate an entire segment of the unknown region to each robot 

[Wurm 2008, Puig 2011, Hungerford 2016]. In [Wurm 2008], a Voronoi graph representing 

the environment is constructed and certain critical points are obtained at doorways and 

narrow passages. The graph is then partitioned into different segments, which are assigned to 

individual robots using the Hungarian method. This approach reduced the overhead incurred 
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due to repeated allocation of frontier cells. However, if there are very few critical points in 

the graph, a good segmentation of the map cannot be obtained. Also the approach is 

centralized and is not robust to failures. In [Puig 2011], K-means clustering is used for 

partitioning the terrain. Frontier cells in the interior and exterior of the partition allotted to 

the robot are assigned different costs. This approach demands a large number of 

computations to repeatedly cluster frontier cells in the unknown region, especially when the 

size of the environment is large. In a recent work [Hungerford 2016], Voronoi partitions are 

constructed in a distributed fashion. Each robot respects the territorial boundaries of the 

Voronoi partitions it falls in, and does not cross the boundaries of its partition. Each robot 

explores the boundary of its respective regions to determine patches in its region that are 

unreachable due to obstacles. These patches are then auctioned to other robots. This method 

guarantees complete, non-overlapping coverage in arbitrarily complex terrains. However, 

this method does not guarantee even distribution of the workload in the multi-robot system 

i.e., some robots might explore large regions while some other robots sit idle. More 

importantly, this method does not handle failure(s) of one or more robots. In [Gautam 2015], 

instead of allocating large unknown segments to the robots, subsets of tasks comprising of 

known frontier cells that are clustered using the Geodesic K-means algorithm [Asgharbeygi 

2008] are allocated to the robots using the Hungarian method [Kuhn 1955]. In this approach, 

the dispersion of robots is an emergent behavior i.e., in the beginning of the coverage task 

when less number of frontier cells are known, the robots are locally dispersed and when the 

map unfolds and more number of frontier cells become visible the robots start dispersing 

from each other. A very simple yet intuitive mechanism for terrain coverage is suggested in 

[Gonzalez 2003]. This approach is based on structured trajectories, such that, simple regions 

are covered by a single robot using spiral trajectories. As the spiral paths end at the middle 

of the rectangular region, a backtracking mechanism is introduced to detect and link other 

regions. It has been argued that structured patterns are more efficient as they sweep/cover 

long contiguous segments and require the robots to take less number of turns. A multi-robot 

extension of [Gonzalez 2003] is suggested in [Gerlein 2011]. However, this approach adopts 

a trivial allocation scheme and results in greater redundancy in coverage. This scheme still 

does not handle robot failures. In Chapter 4 and 5 of this thesis, we have suggested efficient 

algorithms for online terrain coverage [Gautam 2015, Gautam 2016b] that are better than 

some of the representative state of the art approaches. Table 2.2 gives a comparison of the 

features and capabilities of the different state of the art algorithms. 
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Table 2.2 A Comparative Analysis of Related Literature. Note O: Online, D: 

Distributed, C: Complete, and R: Robust (to robot failures) 

Approach O D C R 

[Yamauchi 1998]        

[Burgard 2005]       

[Puig 2011]       

[Sheng 2006]       

[Mukhija 2010]       

[Gerlein  2011]       

[Senthilkumar  2012]        

[Hungerford 2015]        

[Gautam 2015]       

[Gautam 2016b]         

2.4 AREA PARTITIONING / DECOMPOSITION 

Multi-robot systems are deployed in an unknown environment for several reasons including 

mapping and exploration, area coverage, search and rescue, surveillance, patrolling etc. For 

these tasks the decomposition of the unknown environment for the purpose of robot 

navigation and path planning is one of the chief characteristics of all the solutions suggested 

so far. The polygon based decomposition method is shown to be a better mechanism 

compared to grid based decomposition because the robots quickly disperse and divide the 

environment into sub-regions which are then processed in a mutually exclusive manner 

[Wurm 2008].  

In [Solanas 2004], the authors have suggested a centralized approach for multi-robot 

exploration of the unknown environment with known bounds. The environment is 

decomposed into grid cells using approximate cell decomposition. There are no 

communication range constraints. The environment is clustered into regions using K-means 

algorithm. Different clusters are then allocated to the robots for exploration. Once, any robot 

reaches its cluster centroid, re-clustering is done. This is a computationally expensive 

approach which results in uneven exploration. In [Wu 2007], for multi-robot exploration, 

Voronoi based decomposition is used for spatial partitioning of the unknown environment. 

This reduces the computational cost incurred by using K-means clustering in [Solanas 2004]. 

The Voronoi partitions are assigned to the robots for exploration. When any one robot 
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reaches the centroid of its partition, the remaining unknown region is re-partitioned. This is a 

centralized approach which results in uneven exploration. In [Fu 2009], the robots locally 

compute the Voronoi diagrams and therefore make independent decisions for processing 

their assigned regions. Although the approach is distributed it makes no claim for balancing 

the workload of the robots based on the area each robot has to process. In [Fazli 2010], the 

authors have suggested a fault-tolerant algorithm for area coverage of the robots. Static 

guard points are computed in a known map. Using these guards, a graph is constructed 

which is decomposed into a forest of partial spanning trees (PST) using Multi-prim 

algorithm. PST's are further processed to make a constrained spanning tour which is then 

followed by individual robots. This approach also makes no claim about balancing the 

workload of robots and produces uneven distribution of the tasks. In [Sheng 2006], the 

authors have suggested a market based approach for area exploration. The robots bid for the 

exploration task based on expected information gain and distance to a particular location in 

the environment. The robots avoid areas out of the communication range when the nearness 

measure as a decision parameter is factored into the bids. This approach allows only local 

dispersion. Again no claim of load balancing among the robots is visible. Genetic algorithms 

are used to perform area coverage in [Kapanoglu 2012]. A centralized path planning is 

adopted in a known map. Again no attempt has been made towards balanced distribution of 

the workload and the approach is centralized. In [Gautam 2016c], the authors have proposed 

a distributed algorithm for balanced workload distribution among the individual robots. The 

workload is defined in terms of the distance travelled by the robot tank team for 

accomplishing a common objective of destroying the enemy inventory. It is a static multi-

robot task allocation problem wherein the location of the tasks and the map of the 

environment is known upfront.  

Based on the above literature survey we can see that the problem of load balancing in task 

allocation to robots is largely unaddressed. In Chapter 6, a modified approach is proposed 

for load balanced partitioning of the unknown region. 
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CHAPTER-3 

GEOMETRIC PATTERN FORMATION BY MULTIPLE MOBILE 

ROBOTS 

 

3.1 INTRODUCTION 

It is advantageous to keep multiple robots in a formation when they are dispatched for 

complex missions like battlefield surveillance, environmental monitoring, etc., as it 

improves the quality of data collection, task completion time etc. Maintaining a formation 

requires the robots to execute certain coordination strategy. Multi-robot systems in their 

organization are expected to be decentralized, such that, individual robots should use only 

local information to implement their coordination strategy. However, there are situations 

when they are expected to move with high precision in a predefined strict geometric shape 

for e.g., parallel and simultaneous transportation of load which requires global knowledge 

about the work environment and also requires explicit inter robot communication. In the 

following sub-section our main motivation behind conducting research in geometric pattern 

formation using multiple mobile robots is discussed. 

3.1.1 Research Motivation and Contribution 

Theoretical algorithms for geometric pattern formation are proven to be sound and complete 

under certain assumptions that are way too simplified. For example, the robots are treated as 

point objects which can sense and move with infinite precision, etc. Such assumptions not 

uncommon to make when formulating models/solutions for robotic systems. It is understood 

that these assumptions will not be strictly met in an actual implementation. Nevertheless, it 

is possible to find approximate solutions for these assumptions. Therefore, such theoretical 

approaches cannot be compared with other empirical approaches unless someone translates 

them in an actual implementation. In that sense, the uniform circle formation problem (UCF) 

with a team of autonomous mobile robots has received considerable attention. The circle is 

one of the simplest shapes amongst all geometric shapes and therefore it has become a 

benchmark for such studies. Following are our main contributions described in this chapter: 

(a) Conducted a systematic study of various properties and assumptions considered in 

theoretical studies on geometric pattern formation using multi-robot systems and 

highlighted various implementation issues. 
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(b) Presented a model for practical implementation of algorithms for geometric pattern 

formation after finding approximate solutions of various assumptions. 

(c) In our initial attempts towards solving UCF problem with multiple mobile robots, a 

software framework was designed and implemented to support the implementation of 

two different algorithms for geometric pattern formation in simulation. The first 

algorithm is a centralized and greedy algorithm and the second algorithm is weakly 

centralized and is based on token passing. 

(d) A completely decentralized algorithm, referred to as STATE [Gautam 2016a], for 

solving the UCF problem is proposed. This algorithm does not require assumptions 

of atomicity, unlimited visibility, global clock etc. The STATE algorithm is shown to 

perform better than the algorithm suggested in [Défago 2002, Défago 2008], 

henceforth referred to as DK algorithm. The STATE algorithm is purely distributed 

in nature and makes use of conflict resolution graphs for multi-robot synchronization. 

In the proposed algorithm, multi-robot synchronization is achieved by way of 

message passing in the absence of global clock. 

(e) An independent software solution for multi-robot localization has been developed 

and implemented in a controlled laboratory setting.   

(f) A communication sub-system is designed and implemented which can be leveraged 

for peer to peer communication between multiple robots equipped with Bluetooth 

technology. The e-puck robots (used in this work) are one of the many instances of 

the robots equipped with Bluetooth. 

The rest of the chapter is organized into seven sections. The problem of UCF is formally 

stated in Section 3.2. As our initial attempts, a software framework for supporting the 

implementation of algorithms for geometric pattern formation and two algorithms have been 

proposed for solving the UCF problem which are discussed in Section 3.3. From the 

perspective of theoretical computer science, significant properties and assumptions regarding 

the capabilities of robots, their world models, and the interrelationship between the two, are 

studied in Section 3.4. Also one of the benchmark algorithms for solving the UCF problem 

i.e. the DK algorithm is discussed in Section 3.4.1. In Section 3.5, we have proposed a 

distributed algorithm for solving the UCF problem i.e. the STATE algorithm. The STATE 

algorithm employs the distributed solution of the dining philosopher problem for achieving 

synchronization in multi-robot system. The design of experimental test-bed/setup is 
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discussed in Section 3.6. A statistical comparison of the implementations of the DK 

algorithm and the STATE algorithm is presented in Section 3.7. We have conducted 

Wilcoxon test to substantiate our results and show that the STATE algorithm performs better 

than the DK algorithm. The chapter is summarized in Section 3.8. 

3.2 PROBLEM STATEMENT  

The problem of uniform circular formation with a team of autonomous mobile robots is 

expressed as follows: 

Given a group of N autonomous mobile robots arbitrarily scattered on a two dimensional 

plane, in finite time should develop consensus to arrange themselves on the periphery of a 

non-degenerated circle, and further should position themselves at regular intervals, such 

that, the angular distance θ between any two direct neighbors is N/2 . 

3.3 INITIAL ATTEMPTS 

The main objective of this chapter is to suggest a completely decentralized yet efficient 

algorithm for circle formation and practically validate the efficacy of the same. In this 

section, we present our initial attempts towards the stated objective.  

3.3.1 Software Framework  

In this section, we have proposed a software framework [Gautam 2012] for supporting the 

implementation of the two different algorithms for solving the UCF problem. The high level 

design of the framework is presented below:  

High-Level Design (HLD) 

The software framework is presented in terms of UML class diagrams in Figure 3.1 and 

Figure 3.2. The suggested framework makes use of two well-known software design patterns 

i.e. the observer and decorator pattern [Gamma 1995]. The robots are arbitrarily placed in 

the environment. In the beginning none of the robots can be discriminated as leader or 

follower. A robot can function either as a leader or as a follower. Two different decorators 

i.e. robot leader and robot follower are created. The leader robot is determined using a leader 

election algorithm like the one suggested in [Dieudonné 2007]. We decorate the elected 

leader robot with the responsibilities of a leader. All other robots are decorated with follower 

responsibilities. Two concrete decorator classes namely RobotLeader and RobotFollower are 

used for this purpose and are shown in the class diagram of Figure 3.1. The robot leader 

registers all the robot followers, computes and notifies appropriate positions for all of them 
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on the circle circumference. The observer design pattern provides the mechanism for 

information exchange between leader and followers. Figure 3.2 represents RobotLeader as a 

Subject and RobotFollower as an Observer. RobotFollowers use RobotSubject interface to 

register as Observers and also to remove themselves from being an Observer. This interface 

has just one method that gets called when the Subject’s (i.e. RobotLeader’s) states change. 

RobotLeader is a concrete subject which implements RobotSubject interface and has 

implementations to register, remove and a method to notify observers. RobotFollower is a 

concrete observer as it implements the RobotObserver interface. Each RobotFollower 

registers itself with RobotLeader to receive updates. With this HLD in place we have 

suggested two algorithms in the following section for solving the UCF problem. The two 

algorithms are implemented in simulation. 

 

Figure 3.1 Decorate Robot as Leader or Follower 

 

Figure 3.2 RobotLeader as Subject and RobotFollower as Observer 

3.3.2 A Centralized Algorithm for UCF  

A centralized algorithm for solving the problem of UCF is proposed in this thesis [Gautam 

2012]. The proposed algorithm starts with the assumption that the leader robot or 

RobotLeader is already elected and decorated with the role of a leader and all other robots 
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i.e. the follower robots or RobotFollower are decorated with the role of the follower. The 

algorithm executed by the leader robot for solving the UCF problem is presented below: 

1. Calculate Smallest Enclosing Circle (SEC): Assume a set P of n points representing 

the position of all RobotFollowers, P = {p1, p2, p3,…, pn} in the Euclidian plane 2 . 

The smallest enclosing circle [Skyum 1991] of P, SEC(P), is the circle with minimal 

radius enclosing all points in P and is shown in Figure 3.3. It is also well known that 

SEC(P) = SEC(H), where H is a proper subset of P, consisting of extreme points on 

the convex hull of P. 

2. Calculate Uniform Positions on the Circumference of SEC: The RobotLeader is 

positioned at the center of SEC, shown as star in Figure 3.4. It calculates the uniform 

positions for the RobotFollowers on the circumference of SEC.  

3. In Figure 3.4 the star and triangle robots are active, such that, the one that is on the 

center (star) is RobotLeader and the other one (triangle) is one of those 

RobotFollowers which was already on the circumference and is randomly picked up 

as a reference point. It is named FirstFollower and is positioned (will not move). 

Now the RobotLeader finds the coordinates of n-1 points for n-1 remaining robots 

beginning from FirstFollower, such that, all points are separated from each other by 

an angular distance of θ degrees: 

θ = 2𝜋/n-1, where n is the number of RobotFollowers 

4. Now we know x and y coordinates of RobotLeader, FirstFollower, and an angle θ. We 

want to determine the x and y coordinates of cross points shown in Figure 3.4 on the 

circumference of SEC.  

 

Figure 3.3 Smallest Enclosing Circle of a Set of Points Representing the Position of 

RobotFollowers 
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Figure 3.4 SEC with two Robots on circumference and three Robots inside it 

5. We calculate two points x and y as follows: 

x = FirstFollower.x – RobotLeader.x  

y = FirstFollower.y – RobotLeader.y 

To determine x and y coordinates of cross points we run a loop from i = 1 to n-1 and 

perform the following calculations: 

ai.x = RobotLeader.x + x*cos(i*θ) – y*sin(i*θ) 

ai.y = RobotLeader.y + y*cos(i*θ) – x*sin(i*θ) 

This way we determine all uniform positions where RobotFollowers are finally 

positioned. The running time of this algorithm is O(n-1). 

6. Finding right position for RobotFollowers: RobotLeader maintains a list of uniform 

positions. Leaving the FirstFollower and its position, RobotLeader runs an optimal 

allocation algorithm for finding the position of each RobotFollower on the basis of 

distance cost. All RobotFollowers are notified their assigned positions on the 

circumference of the SEC. RobotFollowers move to their respective positions. As a 

result, circle formation by arbitrarily scattered multiple mobile robots in 2D plane is 

achieved. 

3.3.3 A Weakly Centralized Token Passing Approach for UCF  

A weakly centralized approach for positioning multiple mobile robots in a circular formation 

based on token passing [Gautam 2013a] is presented in this section. This algorithm is an 

extension of the previously proposed centralized algorithm. It is also a leader-follower 

approach wherein it is the leader robot which computes the uniformly spread out positions 

on the circle circumference for all the follower robots. The problem of circle formation is 

divided into two sub-problems (a) leader selection and (b) finding positions for the follower 
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robots from the set of uniform positions computed by the leader robot. Both these problems 

are solved by way of token passing so as to reduce the burden of position assignment to all 

the followers from the leader robot. The introduction of token passing makes it a weakly 

centralized algorithm. This algorithm starts with the assumption that the leader robot is 

already elected and it has computed all the positions for the follower robots on the 

circumference of the SEC. These positions are notified to the follower robots. Only those 

follower robots that are outside the circle with the radius 
𝑆𝐸𝐶𝑟𝑎𝑑𝑖𝑢𝑠

2
 greedily select their own 

position on the basis of their distance from that position and broadcast this information. It is 

possible that more than one robot may select the same position to move to. All such robots 

form a virtual token ring amongst themselves based on their IDs and eventually bid for that 

position by way of token passing. The bid is nothing but the distance of the robot from the 

position under consideration. The position is allocated to the robot with minimum bid. The 

process repeats until there are claimants for some position. Otherwise, if some positions are 

left unoccupied and some robots are not assigned a position. The leader robot assigns all the 

unoccupied positions to all the unallocated robots. This algorithm relieves the leader robot of 

the burden of position assignment to all the robots.  

The two algorithms we have discussed in this section are centralized. Moreover, the second 

algorithm results in a sub-optimal assignment. Also they are unrelated to the theoretical 

studies and algorithms presented in the literature on UCF. Therefore, the discussion on these 

two algorithms is limited to this section only. In the next section, we have systematically 

studied various properties and assumptions considered in theoretical studies on geometric 

pattern formation using multi-robot systems and highlighted various implementation issues. 

Followed by that, a discussion on one of the representative state of the art algorithms for 

solving the UCF problem i.e. the DK algorithm is presented. 

3.4 ANALYSIS OF SIGNIFICANT PROPERTIES AND ASSUMPTIONS  

Theoretical research on geometric pattern formation using multiple mobile robots is based 

on the assumption that the robots are simple and have limited capabilities. Thus, the 

perceptual capabilities of the robots are abstracted. If not impossible, it is difficult to 

translate most of the assumptions into reality without compromising the model itself. It is 

important to understand how these assumptions can be approximated. Following is an 

analytical discussion of several assumptions considered in [Suzuki 1999, Prencipe 2001, 

Défago 2002, Souissi 2004, Chatzigiannakis 2004, Flocchini 2005, Défago 2008, Krick 
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2009, Flocchini 2008, Dieudonné 2008, Dieudonné 2009, Elor 2011]: 

(a) World model: The world model of the robot is an unbounded two dimensional plane 

without any noise. In actual implementation the noise in the environment greatly 

influences robot operations and should be addressed. 

(b) Robot's dimension: The robots are considered as a point on a plane (dimension less). 

In the real world, robots have some finite dimension which should be considered 

when designing algorithm(s) for multi-robot systems.  

(c) Mobility: It is considered that the robots move freely with infinite precision in the 

world. Real robots, however, are required to continuously localize themselves, avoid 

obstacles and plan their paths to their destination. 

(d) Visibility: It is assumed that the robots are equipped with sensors which 

instantaneously return the location of all other robots with infinite precision. Such an 

advanced sensing system for simple mobile robots is a very strong assumption. It 

completely eliminates the need for localization. In multi-robot systems the robots are 

typically equipped with sensors with limited capabilities and therefore motion 

capture systems are heavily used in the indoor environment. Localization is achieved 

with the help of an assembly of several high speed cameras which can track the 

reflective markers on the robots at the rate greater than 300 fps. One can expect to 

achieve precision of less than 1 mm by using this system. In outdoor scenario, the 

robots that are used are neither low cost nor they are simple in design. For the 

purpose of simultaneous localization and mapping (SLAM), robot's odometry with 

laser scanners [Howard 2006] and vision based methods are frequently used [Meltzer 

2004]. 

(e) Anonymity: It is assumed that the robots are identical and they cannot be 

differentiated from each other. For geometric pattern formation the robots are 

required to maintain a certain distance and orientation with their peers. It can only be 

achieved with accurate localization of the peers. This fact is also substantiated in 

several experimental research works [Fredslund 2002, Mead 2009]. In practice 

mobile robots continuously localize themselves with respect to the features present in 

the environment. The robots should be able to sense other robots (stationary or 

moving) and non-robot entities in the world. Therefore, anonymity contradicts the 

need for localization of the peer robots. Incidentally the unlimited visibility 
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assumption supports the assumption of anonymity. 

(f) Communication: The robots communicate and decide their own action only by 

implicitly observing other robots. The assumption of anonymity enforces implicit 

communication because robots do not know each other. Therefore, implicit 

communication has a profound reliance on the assumption of unlimited visibility and 

is difficult to realize with weak robots. A real multi-robot system, in the presence of 

sensor inaccuracies, noise in the environment, and without explicit communication, 

will end up wasting a lot of energy in cancelling disturbances. It might actually fail to 

complete its mission of uniform circle formation. In the work presented in this thesis, 

we have dropped the assumptions of anonymity and implicit communication. An 

algorithm has been designed, with explicit inter-robot communication model.  

(g) Autonomy: It is assumed that the robots are autonomous. Autonomous robots resist 

any type of external intervention in their operations. The success of the mission 

depends on the coherent behavior of individual robots, i.e., how well they coordinate 

and adapt to the movements of other robots. A robot involved in the task of 

geometric pattern formation requires precise knowledge of the initial placement of its 

peers. Further, the robots are arbitrarily deployed in their environment. They are 

expected to adapt to this initial placement and start their mission as soon as they are 

activated. The system is said to be self-stabilizing, if it makes continuous progress 

and converges to its final state of uniform circular formation. It is not trivial to 

coordinate the actions of mobile robots in a multi-robot system, especially when 

there is no explicit communication and coordination.  

(h) Coordinate system: No global reference frame is assumed. Each robot operates in its 

own local coordinate system. This essentially means that all the percepts are received 

in robot-centric coordinates. Therefore, based on only local computations the robots 

decide their future course of action. Again the robots need precise information 

(location and heading) about themselves and their peers. 

(i) Agreements: Partial agreement on the local coordinate system of robots is assumed, 

i.e., the direction and orientation of one of the axis, say the X axis is known to the 

multi-robot system. In [Prencipe 2002], the authors have proved that, with common 

knowledge of the direction and orientation of the two axes, multi-robot system can 

form an arbitrary given pattern. Also, if the robots only have a partial agreement, 



37 
 

then, there is no deterministic algorithm that permits an even number of robots to 

form an asymmetric pattern. They can only form symmetric patterns. The circle is a 

symmetric pattern and can be formed irrespective of the number of robots. In real 

multi-robot implementations, to be able to approximately translate this assumption, 

one needs highly precise heading sensors.  

(j) Synchronization: The time is represented as an infinite sequence of discrete time 

instances {t1, t2, t3,...,tn}. It is assumed that a global clock tick is reaching the robots, 

such that, at any time instance ti only a set of robots become active. Additionally, it is 

also assumed that the activation cycle LOOK-COMPUTE-MOVE-WAIT is 

instantaneous and the time to execute one cycle is negligible. This is a very strong 

assumption because in practical scenario the time to complete any single activation is 

going to be arbitrary and finite and cannot be determined a priori. Thus, it is very 

likely that between any two different time instances ti and tj some robots get 

activated. This violates the basic assumption of atomicity considered in SYm and 

brings the system in an inconsistent state. 

3.4.1 The Défago and Konagaya's (DK) algorithm  

The Défago and Konagaya's (DK) algorithm [Défago 2002, Défago 2008] is briefly 

described in this section. This algorithm relies on two assumptions: (a) the work 

environment of all the robots is invariant irrespective of the fact that the robots are ego-

centric and (b) the smallest enclosing circle is exclusive and invariant. The DK algorithm for 

solving UCF has two parts. In the first part, the robots are assumed to be arbitrarily 

positioned in the environment with distinct positions; the algorithm ∅𝑐𝑖𝑟𝑐𝑙𝑒 is suggested that 

brings the system into a configuration wherein each robot is sitting on the circumference of a 

smallest enclosing circle (SEC). Once all the robots reach the circumference of the circle, the 

second part an algorithm ∅𝑢𝑛𝑖𝑓𝑜𝑟𝑚 schedules and makes the robots move towards achieving 

a uniform circular formation.  Combining the two algorithms ∅𝑐𝑖𝑟𝑐𝑙𝑒 and ∅𝑢𝑛𝑖𝑓𝑜𝑟𝑚 solves the 

problem of UCF. 
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Figure 3.5 Pictorial representation of the algorithm ∅𝒄𝒊𝒓𝒄𝒍𝒆 independently executed by 

each robot 𝒓𝒊  

The basic idea behind the algorithm for circle formation i.e. ∅𝒄𝒊𝒓𝒄𝒍𝒆  is very simple: The 

robots that are already positioned on the circumference of the SEC are not allowed to move 

and those that are positioned in the interior of the SEC progress towards the circumference. 

After computing the Voronoi diagram, the robots that are positioned in the interior of the 

SEC may find themselves in three different situations:    

 In the first situation, the Voronoi partition of all the robots intersects the SEC, as 

shown in Figure 3.5(a). Therefore, the robots select the point of intersection of its 

Voronoi cell with the SEC and reach there.  

  In the second situation, the Voronoi partition of some robots does not intersect with 

the SEC. Such robots select a point inside their Voronoi partition which is closest to 

the circumference of the SEC, as shown in Figure 3.5(b). 

 In the third situation, for some robot(s) several points exist on the circumference of 

SEC, due to symmetry, as shown in Figure 3.5(c). In this case any one point is 

randomly selected. 

Once the circle is formed (i.e. all robots are positioned at the circumference of the SEC), 

each robot starts executing the uniform circle formation algorithm i.e. ∅𝑢𝑛𝑖𝑓𝑜𝑟𝑚 . The 

algorithm is described below: 

 Whenever some robot 𝑟𝑖 gets activated it travels halfway distance towards the mid-

point between the two of its immediate neighbors. This process continues until the 

system converge towards the UCF.    

(a) The SEC is 

Reachable 

(b) The SEC is 

Unreachable 

(c) The Symmetry 

is Broken 
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 A typical situation exists in this algorithm wherein the system starts oscillating 

endlessly between the two configurations if the robots are perfectly synchronized. 

Only to overcome this situation the robots are allowed to move half-way towards the 

mid-point between the two neighbors. The convergence of this algorithm is proved in 

[Souissi 2004]. 

In the following section we present a detailed discussion on the proposed algorithm i.e. the 

STATE algorithm which is empirically shown to perform better than the DK algorithm. 

3.5 PROPOSED APPROACH TO SOLVE UCF PROBLEM 

To make multiple mobile robots fall in a uniform circular formation we present a completely 

distributed algorithm in this section. Before we discuss the details of the proposed algorithm, 

a new system model is presented in the following sub-section. 

3.5.1 System Model 

The system model proposed in this section is highly suitable for empirical analysis of 

algorithms for geometric pattern formation of multiple mobile robots. It consists of a set of 

real mobile robots, R = {r1, r2, ..., rn}. We have used a team of five e-puck robots [Mondada 

2009] which are small differential wheeled mobile robots for experiments. The robot's 

working environment is a two dimensional plane ( 2 ). Each robot is powered by a dsPIC 

processor. The robots do not take into account their previous states and actions and are 

therefore oblivious. They can move freely on the plane and are mobile. Each robot operates 

in its own local coordinate system which includes an origin (which is the current position of 

the robot), direction and orientation of the positive X axis. The robots have no agreement 

with each other on the unit of length, origin of the circle, the orientation of the coordinate 

axes, and speed. All robots have a unique identity (ID). A special marker is attached on the 

top of the robots for identification. Localization in multi-robot systems is a different research 

problem and we are not explicitly targeting the same in this work. Instead, we have used an 

overhead camera connected to a computer that reads the markers attached on the top of the 

robots and stores the current system configuration, i.e., the ID, position and orientation of all 

the robots (henceforth referred to as CSC). This system is referred to as localization sub-

system and is discussed in Section 3.6.1. Although we are not carrying out localization on-

board the robot, our system should not be considered as a centralized system. Localization of 

mobile robots is an abstraction here. All the robots are autonomous and independently 

execute the proposed algorithm for uniform circle formation, perform obstacle avoidance 
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and path planning. Our model is a semi-synchronous model where robots synchronize with 

their peers by way of message passing using wireless communication. 

3.5.2 Activation Cycle of Robots 

Each robot in this model repeatedly goes through a sequence of four states (also known as 

activation cycle) as shown in Figure 3.6. Each state of the activation cycle is explained 

below: 

(a) Idle or Wait (W): Initially, all the robots are in the waiting state, but they cannot 

remain permanently in this state.  

(b) Sense or Look (L): When the robot becomes active it pulls the CSC from the 

localization sub-system and transforms the information in its own robot-centric 

coordinates.   

(c) Compute (C): The robot carries out local computations according to a deterministic 

algorithm. This algorithm is same for all the robots. The algorithm returns a 

destination point for the robot to move to.  

(d) Move (M): The robot moves towards its computed destination. The distance travelled 

by a robot in the single activation cycle is finite. 

 

Figure 3.6 Activation Cycle of a Robot 

3.5.3 Formulating the Activation Cycle of Robots as a Critical Section Problem 

In the proposed model, the activation cycle of the robots is not instantaneous i.e., for the 

robots to execute their activation cycle it will take some arbitrary amount of time. The 

amount of time a robot spends in any of the four states of its activation cycle is not known a 

priori. For a physical mobile robot, sensing, computing and moving to a destination is going 

to take some time which is bounded but arbitrary in magnitude. This is a practical condition 

which makes the uniform circle formation problem more complex.  
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If the robots are allowed to operate with complete autonomy it will result in race conditions1. 

This will bring the system configuration in an inconsistent state. Here the robot's activation 

cycle is required to be governed by some protocol, which does not allow the interleaving of 

the states. In other words, the activation cycle of a robot should be executed atomically.  

This problem can be formulated as a critical section problem where multiple processes 

compete for some shared system resources. We present an analogy that will help us develop 

a better understanding of the situation. Multiple mobile robots operate in the same 

environment and therefore it is analogous to a shared resource. The very first state in the 

activation cycle of the robot is the idle/wait state which is analogous to the entry section of 

the operating system process. In this state the robots get activated according to the activation 

policy employed (discussed in the subsequent section). Only active robots attempt to get into 

the critical section. The other three states, sense/look, compute, and move, fall in the critical 

section. Those robots which are in the critical section switch to the look state and the other 

robots remain in the wait state. In the sense/look state the robots pull the CSC, which is 

equivalent to a read operation on the environment. All robots in the critical section compute 

their next target position based on CSC and switch to move state. The move state changes 

the state of the system configuration and therefore it can be considered as a write operation 

on the environment. After reaching their destination and before switching back to the wait 

state, all the robots flush the CSC sensed earlier, which is analogous to the exit section of a 

process. There are no instructions in the remainder section. Figure 3.7 depicts the analogy 

presented above. The view presented in this figure is hypothetical in the sense that operating 

system processes which typically run on uni-processor or multi-processor machines make 

use of shared memory and solutions like semaphores, monitors, and test-and-set instructions 

are used for inter-process communication and synchronization.  

                                                           
1 This work doesn’t make any assumptions on time, i.e. the robots do not share a global clock nor do they try 

to synchronize their local clocks. The time duration for which a robot remains in a particular state (as described 
in the activation cycle of the robot) is unpredictable but finite. As a result of this unpredictability a complex 
situation arises. The robot before calculating its next target position senses the current positions of its neighbors. 
It is very much possible that the movement the robot performs is not coherent with the current context (the 
positions of the neighbors it has observed during its sense state and the position of the neighbors at the time 
when it executes the move state can differ) because different robots might be in different states of their activation 
cycle at a given time instance.  
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Figure 3.7 Structure of Robot's Activation Cycle  

In multi-robot systems, each robot is a computational entity and does not support sharing of 

files or memory with other robots. Basically, a multi-robot system is a distributed computing 

system where each robot carries out local computations, share data and critical resources by 

sending and receiving messages to and from other robots. No locking primitives that are 

defined for operating system processes can be directly used in a distributed computing 

system. Thus, it is a problem of distributed mutual exclusion. In the next sub-section, we 

have explained how distributed multi-robot synchronization is achieved with the activation 

policy/schedule suggested for DK and the proposed STATE algorithm. 

3.5.4. Distributed Multi-Robot Synchronization and Activation Policy  

Probabilistic scheduling is employed in DK algorithm [Souissi 2004] and it is shown that 

more the robots are involved with each other (act tightly in synchronization with each other) 

faster they are able to accomplish their mission of uniform circle formation. This requires 

clock based synchronization of multi-robot systems. A global clock is assumed in DK 

algorithm for the same reason. On the other hand, the proposed approach employs the 

solution suggested in [Garg 2004] for distributed mutual exclusion. No clock is required as 

mutual exclusion is implemented by event ordering. The algorithm enforces a particular 

order on robot's activation and hence we call it order preserving schedule. Following is a 

more detailed discussion of the above two scheduling policies: 

(a) Probabilistic schedule: We need to revisit the question as to how a multi-robot system 

exhibits semi-synchronous behavior in Suzuki-Yamashita model. In DK algorithm a 

global clock tick is assumed to be reaching all the robots. A robot gets activated after 

receiving a clock tick and finishes executing its activation cycle instantaneously in 
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negligible time. This entails that all active robots atomically complete their activation 

cycle at the same time in equal duration. As a result, the robots appear to be in semi-

synchronous mode of execution. A special case is reported when the robots execute in 

complete synchronization, i.e., all robots are activated every clock tick. The activation of 

a robot is assumed to be probabilistic, such that, probability (Pr) = 1 indicates fully 

synchronous behavior. Lower the probability of activation, lesser the number of robots 

active during each time instance. In [Souissi 2004], a probability (Pr) = 0.5 allows a 

sufficient number of robots to remain active in each round and as a result the system 

exhibits a semi-synchronous behavior. No particular order is prescribed for robot's 

activation, i.e., at every time instance, a robot which is sitting on the circumference of the 

circle may become active while its neighbors (clockwise and anti-clockwise) are also 

active. Also one robot may get activated more than once in consecutive clock ticks while 

its neighbors (clockwise and anti-clockwise) may remain silent. Such arbitrary 

activations do not add value to the system as far as convergence towards a uniform 

circular formation is concerned. Instead, it results in increasing the number of activation 

steps and wastes robot's resources. In our implementation of the DK algorithm on a 

physical robot test-bed, we have ensured that a new clock tick is sent to the robots only 

when all the robots which got activated in previous clock tick finish executing their 

activation cycles. This preserves the semi synchronous behavior of the system. 

(b) Order preserving schedule: Each robot gets activated in a well-defined order, i.e. if 

one robot is active its neighbors (clockwise and anti-clockwise) stay silent. This is a 

problem of distributed mutual exclusion. The semaphore and shared variable solution is 

not usable on distributed systems like ours where each robot is a separate processing unit 

and do not support sharing of physical memory with other robots. The synchronization 

protocol used by the robots is a distributed solution of the classical Dining Philosopher 

problem which is solved without central coordination with message passing and is 

suggested in [Gautam 2013b, Gautam 2014].  

The philosophers have three states, THINKING, EATING, and HUNGRY. Whenever the 

philosophers are HUNGRY they require shared resources, the forks, to eat. Analogous to this 

the robots (can be thought of as philosophers) also have three states: IDLE, ACTIVE, and 

EXECUTE. Whenever the robots are ACTIVE they wish to execute the steps described in 

their activation cycle, and for that they require shared resources (forks). Two requirements 

suggested for the use of shared resources are (i) mutual exclusion – shared resources cannot 
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be shared held by more than one robot at a time and (ii) freedom from starvation – every 

robot should be able to execute infinitely often. The distributed solution to the 

synchronization problem makes use of an undirected graph called conflict graph, in which 

each node represents a robot. An edge between two robots Ri and Rj represents that one or 

more resources are shared between them. It is required that we provide directions to all 

edges, such that, if the edge between Ri to Rj points from Ri to Rj (denoted as Ri → Rj) then Ri 

has a precedence over Rj. If the robot Ri has precedence over robot Rj it will associate a fork 

with the edge (i, j). The algorithm complies with two rules (a) Execution rule – A robot can 

execute if it has all the forks for the edges incident to it and (b) Edge reversal – A robot 

reverses the orientation of all the outgoing edges to incoming edges. It is important to 

distinguish between two scenarios, first when the robot has the forks but has not used them, 

and second, when the robot has the forks and has used them for execution. A Boolean 

variable “dirty” is attached with each fork, so that when a robot has executed with these 

forks they become dirty. Before a fork is sent to the neighbors they are cleaned. The forks 

are initialized and placed in such a manner that the conflict resolution graph remains acyclic. 

It is to be observed that acyclic conflict resolution graph is invariant and the algorithm 

ensures the same, by cleaning the forks before they are sent. The only action that changes the 

graph is when the robot executes its activation cycle thereby reversing all the edges incident 

to it. This edge reversal will never let cycles to be created in the conflict resolution graph and 

hence no robot ever does famish, which proves the fairness property.  

This solution satisfies all the three requirements which a correct solution to any critical 

section problem must satisfy i.e. mutual exclusion, progress, and bounded waiting, in a 

distributed manner. In STATE algorithm, we have applied the same activation policy. This 

policy ensures fairness and all robots get equal opportunity to execute their activation cycles 

periodically. As a result, the numbers of activation cycles reduce and the overall 

performance of the multi-robot system improves. 

3.5.5. The STATE Algorithm  

To make multiple mobile robots fall in a uniform circular formation we present a 

decentralized algorithm i.e. the STATE algorithm [Gautam 2016]. This algorithm is 

illustrated with the help of a flowchart shown in Figure 3.8. Also each step of the flowchart 

demands separate description which is as follows: 
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Step-1, Sense the position of other robots – Each robot pulls the CSC and therefore acquires 

the knowledge of the x and y positions of all other robots in its own local coordinate system 

which is maintained as a set P of n points, P = {p1, p2, p3…, pn} in the Euclidian plane 2 . 

Step-2, Calculate the Smallest Enclosing Circle (SEC) – Having the knowledge of the 

positions of all other robots each robot locally executes the algorithm for finding the smallest 

enclosing circle which is described in [Skyum 1991]. SEC(P), is the circle with minimal 

radius enclosing all points in P. It is also well known that SEC(P) = SEC(H), where H is a 

proper subset of P, consisting of extreme points on the convex hull of P. Doing this will 

implicitly develop a common consensus amongst all the robots to agree upon the definition of 

SEC(P), such that, the coordinates of the center of the SEC locally calculated by each robot 

will coincide with equal radius. The SEC is invariant. Three restrictions on the movement of 

the robots are imposed so as to preserve the invariance of the SEC i.e. to prevent the robots 

from making the movements that may lead to breaking of the SEC. The first restriction does 

not allow the robots to travel outside the boundary of the SEC, the second restriction requires 

that all robots located on the circumference of the SEC remains there and the third restriction 

demands that the robots located on the circumference do not move unless there are at least 

three such robots with distinct positions. If the SEC is defined by only two points, these points 

define the diameter of the SEC. Thus if one of them moves, the circle is broken. Robots are 

explicitly programmed to comply with these restrictions. 

 

Figure 3.8 Flowchart of STATE algorithm independently executed by each robot  
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Step-3, Each Robot Moves to the Circumference of the SEC – Using the circle line 

intersection formulation proposed in [Rhoad 1984] the robot determines the position on the 

SEC circumference which is at the shortest distance and moves to that position. Figure 3.9 

illustrates this scenario. The SEC is defined by the coordinates of only two robots R1 which is 

located at (x1, y1) and R2 which is located at (r2, y2). These two coordinates define the 

diameter of the SEC. Robot R3 is located at the coordinate (x3, y3) which is inside the SEC. 

This robot is required to move on to the circumference of the SEC. Considering the 

coordinates (c0, c1) of the origin C of the SEC and its own coordinates (x3, y3), Robot R3 

produces a secant which intersects the SEC at two points P0 and P1. It applies the following 

formulation for calculating the X and Y coordinates of the points P0 and P1. 

Defining, 

dx = x3 − x0      (3.1) 

dy = y3 − y0      (3.2) 

dr = √dx2 + dy2      (3.3) 

D =  |
x0 x3
y0 y3

| = x0y3 − x3y0    (3.4) 

Gives two points of intersection P0 and P1 as 

x =
Ddy±sgn(dy)dx√r2dr2−D

dr2     (3.5) 

y =
−Ddy±|dy|√r2dr2−D

dr2
     (3.6) 

Where the function sgn(x) is defined as 

sgn(x) ≡ {
−1 for x < 0
1 otherwise

     (3.7) 

Robot R3 calculates the Euclidean distance from both the points of intersection P0 and P1 

and moves to the one which is at the shortest distance, P0 in this case. When all the robots 

are on the circumference of the SEC they enter their activation cycle and make a transition 

to the IDLE state of their activation cycle. 
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Figure 3.9 Robot trying to determine and move to the position on the circumference of 

the SEC which is at the shortest distance 

Step-4, Run Activation Cycle – All robots infinitely and randomly become active within a 

bounded time which is proportionate to the number of robots. When a robot becomes active it 

goes to the SENSE state and determines its direct neighbors (clockwise and anticlockwise). At 

this point before making a transition to the COMPUTE state, the robots synchronize (Step-5) 

with their direct neighbors. Synchronization is defined as a sub-process of the activation cycle 

and is already described in Section 3.5.4. If a robot wins the chance it transits to the 

COMPUTE state and computes the next target position by executing the STATE algorithm as 

described below: 

-------------------------------------------------------------------------- 

Algorithm 3.1: STATE Algorithm for Uniform Circle Formation 
-------------------------------------------------------------------------- 

Notations used: 

(a) Θ=2Π/N (N=number of robots) is the characteristic angle. 

(b) R = {r1, r2,...,rN} is the set of N robots where "ri" denotes the current position and the 

unique ID of the robots on a two dimensional plane.  

(c) Given two points "a" and "b" on a two dimensional plane, [a, b] denotes the line 

segment between "a" and "b". |a, b| denotes the magnitude of the line segment [a, b]. 

(d) Given two line segments [c, a] and [c, b],  ([c, a], [c, b]) denotes the angle centered at 

"c" between the line segments [c, a] and [c, b]. | ([c, a], [c, b])| denotes the magnitude 

of the angle. 

(e) The smallest enclosing circle of all robots is denoted by "C", where the center of the 

circle is denoted by Ccenter and radius by rad. We say robot "ri" is on C if |ri, Ccenter|= rad. 
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(f) Clockwise neighbor of robot "ri" is denoted by next(ri) and the counter clockwise 

neighbor of robot "ri" is denoted by prev(ri). 

(g) CCWposition(x), where "x" is a point on the circumference, denotes the point such that  

| ([Ccenter, x], [Ccenter, CCWposition(x)])|= θ and CCWposition(x) is the counter-clockwise 

neighbor of "x". 

(h) CWposition(x), where "x" is a point on the circumference, denotes the point such that  

| ([Ccenter, x], [Ccenter, CWposition(x)])| = θ and CWposition(x) is the clockwise neighbor of 

"x". 

(i) Given two points "a" and "b" on the circumference of smallest enclosing circle "C", 

mid(a, b) denotes the mid-point between "a" and "b" in polar coordinates.  

Preliminaries: Each robot can be in any of the three states {2-Stable, 1-Stable, No-Stable}. 

A 2-Stable state is achieved when the robot is at a polar distance which is equal to angle θ 

with both of its direct neighbors i.e., clockwise and anti-clockwise. A 1-Stable state is when 

the robot is at a polar distance which is equal to angle θ with only one of its direct neighbors 

either clockwise or anti-clockwise. A No-Stable state is when the robot is neither 2-Stable 

nor 1-Stable. 

-------------------------------------------------------------- 

Pre-conditions:  ri R, |ri,Ccenter| = rad 

Description of Function ϕSTATE(R, ri): Each robot executes the STATE algorithm 

independently until convergence. The convergence condition is evaluated in a loop, that the 

robot ri is subtending the characteristic angle on its direct neighbors (Line-1). Until the 

convergence condition is satisfied the robot moves to the position returned by ϕmain(ri) 

(Line-2).   

Function ϕSTATE(R, ri): Each robot runs this function in order to calculate its next position 

until convergence. 

1. while(!(| ([Ccenter, ri], [Ccenter, next(ri)])| == | ([Ccenter, ri], [Ccenter, prev(ri)])| == θ)) 

2. move to position returned by ϕmain(ri)  

3. end while 

-------------------------------------------------------------- 
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Description of Function ϕmain(ri): This function returns the next target position of robot ri. 

First of all, the angle (α) subtended by the two direct neighbors on each other is calculated 

(Line-1).  

Function ϕmain(ri):  

1. α = | ([Ccenter, prev(ri)], [Ccenter, next(ri)])| 

2. if(α == 2*θ) then return (mid(next(ri), prev(ri))) 

3. else if (α < θ) then  return ri 

4. else 

5.  λ1 = | ([Ccenter, prev(ri)],[Ccenter , prev(prev(ri))]) | 

6.  λ2 = | ([Ccenter, next(ri)],[Ccenter , next(next(ri))]) | 

7.  if (λ1 == λ2 == θ || (λ1 != θ && λ2 != θ)) then 

8.      p1 = CWposition(prev(ri)) 

9.      p2 = CCWposition(next(ri)) 

10.      if ( | ([Ccenter, ri], [Ccenter, p1])|  < | ([Ccenter, ri], [Ccenter, p2])| ) then 

11.   return p1 

12.   else return p2 

13.      end if   

14.   end if 

15. end if 

16. end if. 

----------------------------------------------------------- 

If the angle α is equal to twice the characteristic angle, then a 2-stable configuration is 

possible and the robot simply moves to the angular mid-point of the direct neighbors (Line-

2). If the angle (α) is less than the characteristic angle, then the robot ri knows that neither 2 

nor 1 stable configuration is possible and it stays silent (Line-3). If the angle (α) is greater 

than the characteristic angle, then the robot ri evaluates, if making 1-stable configuration 

with one or both the neighbors can make them 2-stable or none of them can become 2-stable 

(Line-4 to 7). It selects the one which is closer and makes a 1-stable configuration with that 

robot (Line-10 to 12).   
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3.6 EXPERIMENTAL SETUP 

In this section we present the high level design of the software system developed for 

localization, and communication in the multi robot system. Separate treatment has been given 

to the image processing and communication modules in Sections 3.6.1 and 3.6.2 respectively.  

3.6.1 Image Processing based Multi-robot localization 

Localization is the first step in multi-robot systems before any coordination algorithm can be 

implemented on them. It is necessary for the robots to know their absolute and relative 

positions with respect to each other and in the global reference frame. In this section, we have 

developed a software system for fast and robust localization of multi-robot system. Basically, 

we have emulated a Global Positioning System by means of simple image processing that is 

carried out by an external entity, i.e., an overhead video camera attached to a laptop or PC. It 

provides each robot the following information: 

 Access to its own position and 

 Access to the position of other robots in its own ego-centric coordinate system. 

A special marker is designed and is attached on the top of the robots for unique identification 

and accurate localization. This marker uses four different colors, as shown in Figure 3.10. The 

position and orientation of up to five robots can be determined using an overhead camera with 

this marker. Use of additional colors can extend the limit on the number of robots, i.e., 16 

robots with 5 colors, 25 robots with 6, and (n-1)2 robots with n colors can be handled. 

 

Figure 3.10 Rectangular marker with four different colors (the black color is 

subtracted) 

The marker consists of a cyan strip in the center for recognition of a robot and its position 

estimation, along with two colored strips, one large and one small, for its identification as 

well as orientation. These two colored strips can have any three colors apart from cyan, hence 



51 
 

32 = 9 combinations are possible. The original image captured by the camera (the top view) 

after deploying multiple robots with fixed markers is shown in Figure 3.11(A). 

Localizing multiple mobile robots is a two-step process.  In the first step we need to recognize 

that a robot is present at a certain position in the shared environment and in the second step 

multiple robots are required to be identified uniquely using the attached markers. The steps in 

this process are described below: 

 Color segmentation: Each pixel of the marker is classified into a color class based on 

RGB lookup tables for each of the four colors. The lookup tables are produced utilizing 

the algorithm identified in [Bruce 2000]. Figure 3.11(B) shows a 5-ary image, which 

contains the color label for each of the four colors on the marker as well as background 

for each pixel. 

 Blob identification (or connected component analysis): This requires labeling of each 

connected component. A connected component of each color of the marker is labeled 

using the algorithm mentioned in [Chang 2004]. Figure 3.11(C) shows the labeled image. 

Post-processing a filter is applied to remove too large or too small blobs, i.e., min and 

max thresholds for the area. Figure 3.11(D), shows the image after elimination of blobs. 

Once we have a list of all the blobs, i.e., connected components in the image, we can 

recognize, uniquely identify, and determine the position and orientation of all the robots. 

The algorithm for the same is given below: 

 

Figure 3.11 (a) Original image (top view of the camera), (b) 5-ary segmented image 

created using lookup tables for each of the four colors and black background (shown 

with grey color), (b) Markers labelled with blobs, (d) Small and large blobs are 

removed 
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-------------------------------------------------------------- 

Algorithm 3.2: Multi-Robot Localization 
-------------------------------------------------------------- 

Each blob has three properties: (a) coordinates of the centroid (b) color and (c) area. The 

global list of blobs is split into three sub lists: (a) the list of cyan blobs (b) the list of large 

blobs and (c) the list of small blobs. For each cyan blob in the image, the following steps are 

carried out: 

1. Determine the closest large blob and its color (henceforth referred to as LB).  

2. Determine the closest small blob and its color (henceforth referred to as SB).  

3. Using the two colors LB and SB, the index number of the robot is identified.  

4. The robot’s position is set as the coordinates (x, y) of the cyan blob.  

5. The robot’s heading is set as the direction vector from the small blob to the large blob. 

The calculations required to determine the robot's heading are shown below in eqs. 3.8 - 

3.10. Figure 3.12 represents the same: 
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Where, 

 20  , 

CLBX  
= coordinate of the center of large blob 

CLBY  
= y coordinate of the center of large blob 

ImtopX
 
= topmost x coordinate of the image 

ImtopY
 
= topmost y coordinate of the image 
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xV and 


yV are unit vectors representing the robot's orientation w.r.t 

image coordinates 

6. All three blobs, cyan, large, and small are removed from their respective lists.  

-------------------------------------------------------------- 

In steps (1) and (2), if no blob is found, or the closest blob is farther than a certain threshold, 

then that cyan blob is deleted from the list and the process continues.  This happens rarely, 

when the robot is at the edge of the image and is only partially visible, or lighting errors have 

caused non-detection of some colors. In our experiment we have imposed movement 

restrictions on the robots, such that, they are not allowed to travel closer than 5 cm 

(empirically determined through camera calibrations) to the boundaries of the arena. Figure 

3.13 shows the final image where multiple robots and their orientation has been determined. 

Since the camera is fixed at a pre-determined height converting pixels into meters, i.e., the 

coordinates of the pixel (Xpixel, Ypixel) to the real world coordinates (Xmeters, Ymeters) is straight 

forward. The only variable we have to consider is the resolution of the image frame referred 

to as Widthframe and Heightframe. The dimensions of the 2D plane are previously known and are 

referred to as Widtharena and Heightarena. Once we receive the position of the robots in pixel 

they are converted into real world coordinates using the formula given in eq. (3.11) and (3.12) 

below: 

frame

arena

pixel

meters Width
Width

X
X *        (3.11) 
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framemeters Height
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Y
HeightY *










    (3.12) 

Usually the origin that is used for the image data type is the top left corner. Therefore, in eq. 

(3.12) the ratio of the pixel's Y coordinates and the arena's height is subtracted from the 

frame's height in order to change the origin to the bottom of the image. 



54 
 

 

Figure 3.12 Global and local reference frame of robots 

 

Figure 3.13 Final position and orientation of multiple robots 

3.6.1.1 Computational Complexity of the Image Processing Employed for Multi-Robot 

Localization –  

The suggested solution for multi-robot localization is a very inexpensive solution. The two 

main image processing steps of the algorithm, i.e., the color segmentation and the blob 

detection are both single pass algorithms, meaning, they access each image pixel only once. 

Identification of the robots requires finding the closest large and small blobs which is a 

nearest neighbor search problem having a complexity of O(n). Scalability of the overall 

algorithm depends mainly on the size of the image. In an indoor environment where the area 
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is small and the robots used are less (typically not more than 25), it performs pretty well. But 

we can overcome this limitation by parallelizing some of the image processing steps on a 

rather high performance machine. This algorithm can be scaled for up to n robots by using 

the square root of n+1 colors. Finally, we have successfully implemented a self-contained 

image processing module, which provides to each robot, absolute position and orientation of 

the robot itself and its peers using pull mechanism. Much effort has been spent in designing 

and implementation of robust software for reliable localization since the controller is going 

to generate the desired results only if it can trust the localization sub-system.   

3.6.2 Multi-Robot Communication  

Experiments are performed using e-puck robots [Mondada 2009]. The e-puck has several 

rich features but not much attention was paid to the wireless communication. The attached 

Bluetooth interface of e-puck only provides communication between a computer and the 

robot itself. In the past many extensions have been proposed to the basic robot's 

configuration to overcome this limitation. The range and bearing turret (e-RandB) proposed 

by [Gutiérrez 2009] allows short range communication (limited to 80 cms) with infrared. 

Apart from its limited communication range and low data rate the infrared signals are greatly 

influenced by the presence of obstacles and lighting conditions in the environment. To 

endorse cooperative robotics applications, in [Cianci 2006] Zigbee based communication is 

used. Network of robots can be formed with a flexibility of changing the communication 

range between 15 cm to 5 meters. This allows one to study the impact of communication 

range constraints on multi-robot applications in a laboratory setting. Besides several 

advantages of this extension, one primary limitation is that it is not commercial and has to be 

built from scratch. In this thesis, we have developed a self-contained software system which 

supports both asynchronous robot-to-computer and robot-to-robot communication. The 

following section describes how asynchronous communication is achieved. 

3.6.2.1 Robot to Computer Communication 

For a robot to computer communication star topology is suggested as shown in Figure 3.14. 

In client server architecture, the communication between the robots with the personal 

computer happens on e-puck's serial port over Bluetooth protocol. The software running on 

the computer sends appropriate commands to the robots and receives event 

acknowledgements from the robots. This is a traditional (synchronous) method which is 

based on blocking I/O, such that, the computer waits for a response from the robots before 
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issuing the command and vice-versa. Consequently, this mechanism is not really effective. 

The computer should be able to send the commands asynchronously to the robots without 

blocking. Similarly, the robots should be able to send acknowledgments without blocking. 

The Boost.Asio library [Radchuk 2013] which is a cross platform C++ library for low level 

I/O programming has been used for data communication between the e-puck robots and the 

computer. This library encapsulates essential building blocks for concurrency, networking, 

and other types of I/Os in C++. The default firmware (referred to as BTCom) of the e-puck 

robot is an open source software that provides simple text based interface to access the 

robot's hardware. We have modified BTCom and added support for asynchronous 

communication between robots and computer. 

 

Figure 3.14 Multi-robot communication perceived as a star topology 

3.6.2.2 Inter-Robot Communication 

Each physical robot is associated with a virtual robot which is nothing but a network process 

with a unique identity (ID), as shown in Figure 3.15, henceforth referred to as Vrobot. The 

Vrobot with ID equal to N has a clockwise neighbor with ID equal to N+1 and an 

anticlockwise neighbor with ID equal to N-1. The role of the Vrobot is crucial, such that, 

they execute the STATE algorithm. All the active Vrobots pull the current system 

configuration after receiving a notification from the image processing based localization sub-

system. They then compute the next target position of the physical robot associated with 

them and asynchronously send appropriate motion command to the physical robot. The 

Vrobots are supposed to synchronize with each other using the STATE algorithm and 

therefore they need to communicate with each other in an asynchronous manner. This is a 

challenging implementation because sockets in C do not provide intrinsic support for 

multithreading and there is no socket API in C++, i.e., std::socket does not exist. Therefore, 
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we have used a socket interface provided by Boost.Asio that provides a consistent 

asynchronous model for inter Vrobot communication over TCP sockets, as shown in Figure 

3.15. 

 

Figure 3.15 Proposed architecture for inter-robot communication using Boost.Asio 

library 

3.7 RESULTS AND DISCUSSIONS 

Russel and Norvig in [Russell 2014] have stated that "an agent should subjectively be able 

tell how happy it is with its own performance but some agents would not be able to say 

anything on that front and some others will delude themselves". Therefore, they insist on 

objective performance measurement wherein an external authority should establish a standard 

as to what it means to be successful in an environment and use it to measure the performance 

of an agent. In multi-robot systems this becomes challenging, because the performance of one 

robot has a direct impact on the performance of the team. In order to quantitatively compare 

the quality of the two algorithms for uniform circle formation by a set of mobile robots which 

act as a team, and follow a common protocol, two metrics have been chosen. They are 

defined below: 
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 Let 𝐴𝛼
𝑖  be the total number of activation steps performed by robot ri when it meets the 

condition of convergence while executing algorithm α. Let 
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  (where, N 

= number of robots) be the total number of activation steps required by all the robots in 

the multi-robot system to form a uniform circular formation. 

 Let 𝑇𝛼
𝑖  be the total time taken by robot ri when it meets the condition of convergence 

while executing algorithm α. Let MAX_TIME denote the maximum time taken by the last 

robot that meets the condition of convergence, such that, i

i

r
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 maxarg_ .  

The activation cycle of the robot described previously in Section 3.5.4 is atomic and therefore 

we consider one activation cycle as one activation step. Execution of each activation step 

would consume the resources of robots, i.e., the robot carries out sense, compute and move 

operations which require some energy. Therefore, total number of activation steps for 

achieving convergence is a natural choice of comparison between the two algorithms. We 

cannot say that the algorithm that requires less number of activation steps is better, as the 

robots may not spend equal time in the execution of subsequent activation steps. Therefore, it 

becomes apparent to also measure the total time it takes for the last robot in the multi-robot 

system for achieving convergence. All other robots would have already achieved convergence 

by that time. Nevertheless, it has been observed by conducting several rounds of experiments 

that, if the number of activation steps is high, then the maximum time required for achieving 

convergence is also high. 

Three different sets of results are obtained for circles with small (1 meter), medium (2 

meters), and large (3 meters) diameters. In each set five e-puck robots are placed in three 

different initial organizations, i.e., best placement, random placement, and worst placement. 

The three different placement scenarios are shown in Figures 3.16 - 3.18 respectively. We 

have considered ten point robots sitting on the circle circumference for the sake of clarity and 

representation. In the best placement scenario, as shown in Figure 3.16, the initial placement 

of the robots itself brings the robot team into a circular formation which is nearly balanced, 

i.e., leaving a few robots all other robots are already subtending an angle of 2𝜋/N on their 

clockwise and anti-clock wise neighbors. It can be seen in Figure 3.16 that robots (denoted by 

R) numbered 1, 2, and 6 should have been positioned at the midpoint, in terms of angular 

distance, of R=7 and R=10, R=9 and R=7, and R=5 and R=10 respectively. All other robots 

are correctly positioned and are in a balanced configuration. On the other hand, in case of 
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random placement scenario, as shown in Figure 3.17, the initial placement of the robots has 

many robots in an unbalanced configuration. In the worst placement scenario, the initial 

placement creates multiple clusters of the robots on a small arc of the circle. This is shown in 

Figure 3.18. Extensive experiments have shown that the size of the diameter, initial 

placement, and the chosen activation policy have significant impact on the total number of 

activation steps required and maximum time required by the robot team to achieve 

convergence.  

 

In each placement scenario and for three different sizes of the circle we have conducted 25 

runs of the two algorithms. Before we discuss specific results with respect to different sizes of 

the circle, certain common observations are made and are as follows: 

(a) Referring to Table 3.1 to 3.3, it can be inferred that, irrespective of the size of the circle 

and the initial placement of the robots, if we increase the activation probability of the DK 

algorithm from Pr = 0 to Pr = 1, the percentage improvement (in terms of completion 

time) of the proposed (STATE) algorithm over the DK algorithm is reduced. This is 

because the activation policy of the DK algorithm is probabilistic. It has been discussed in 

section 3.5.4 that, in case of the DK algorithm, lower the probability of activation of 

robots, lesser is the number of robots active during each time instance, and hence the 

algorithm takes longer to converge. Nevertheless, when compared with DK algorithm the 

proposed (STATE) algorithm always performs better in all situations.   

(b) Referring to Table 3.1 to 3.3, it can be observed that, fixing the activation policy of the 

DK algorithm, and increasing the size of the circle results in higher percentage 

improvement of the proposed (STATE) algorithm over DK algorithm. 

(c) Referring to Table 3.1 to 3.3, it can also be observed that, irrespective of the activation 

policy of the DK algorithm, the percentage improvement of the proposed (STATE) 

Figure 3.16 Best Placement 

 

Figure 3.17 Random Placement Figure 3.18 Worst Placement 

 



60 
 

algorithm is highest when the initial placement of the robots is made as in the worst case 

(Figure 3.18). 

We now discuss some specific cases with respect to different sizes of the circle:        

(a) The average number of activation steps and the average maximum time to convergence 

for a circle with small diameter for DK algorithm (with different activation policies) and 

the STATE algorithm are shown in Figure 3.19 and Figure 3.20 respectively. From Table 

3.1, it is evident that, for the three different placement scenarios i.e. the best, random and 

the worst, the percentage improvement achieved by STATE algorithm (in terms of 

number of activation steps and convergence time) when compared with different 

activation policies of the DK algorithm is significant for Pr = {0, 0.25} and not so 

significant for Pr = {0.5, 1}.  

(b) Figure 3.21 and Figure 3.22 show the average number of activation steps and average 

maximum time to convergence required respectively for a medium size circle. It can be 

observed from Table 3.2 that, for the three different placement scenarios i.e. the best, 

random and the worst, the percentage improvement achieved by the STATE algorithm (in 

terms of number of activation steps and convergence time) is significant when compared 

with all the activation policies of the DK algorithm.  

(c) Figure 3.23 and Figure 3.24 show the average number of activation steps and average 

maximum time to convergence required for the circle with large diameter respectively. 

Again in all the three different placement scenarios i.e. the best, random and the worst, the 

STATE algorithm performs better (in terms of number of activation steps and time) than 

all the activation policies of the DK algorithm. This observation follows from Table 3.3. It 

can easily be observed that the percentage improvement of the STATE algorithm over 

DK algorithm is significant in all the situations. 
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Figure 3.23 Average of Totalactivations for Large 

Sized Circle 

 

Figure 3.24 Average of MAX_TIME for Large 

Sized Circle 

Figure 3.21 Average of Totalactivations for Medium 

Sized Circle 

 

Figure 3.22 Average of MAX_TIME for Medium 

Sized Circle 

 

Figure 3.20 Average of MAX_TIME for Small 

Sized Circle 

Figure 3.19 Average of Totalactivations for Small 

Sized Circle 
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Table 3.1 Percentage Improvement of STATE Algorithm over DK Algorithm in case of 

Small Sized Circle (Diameter = 1 meter) 

PLACEMENT STATE vs. 

PERCENTAGE 

IMPROVEMENT IN 

AVERAGE 

ACTIVATION STEPS 

PERCENTAGE 

IMPROVEMENT IN 

AVERAGE 

COMPLETION TIME 

BEST 

DK (P=0) 32.37 24.29 

DK (P=0.25) 22.82 19.81 

DK (P=0.5) 8.12 9.38 

DK (P=1) 6.48 4.24 

RANDOM 

DK (P=0) 36.07 31.38 

DK (P=0.25) 24.62 26.3 

DK (P=0.5) 10.31 12.57 

DK (P=1) 8.38 6.68 

WORST 

DK (P=0) 47.15 32.78 

DK (P=0.25) 37.71 26.83 

DK (P=0.5) 27.66 18.32 

DK (P=1) 9.19 9.53 

Table 3.2 Percentage Improvement of STATE Algorithm over DK Algorithm in case of 

Medium Sized Circle (Diameter = 2 meters) 

PLACEMENT STATE vs. 

PERCENTAGE 

IMPROVEMENT IN 

AVERAGE 

ACTIVATION STEPS 

PERCENTAGE 

IMPROVEMENT IN 

AVERAGE 

COMPLETION TIME 

BEST 

DK (P=0) 33.33 26.68 

DK (P=0.25) 26.03 22.85 

DK (P=0.5) 19.89 15.46 

DK (P=1) 12.82 5.04 

RANDOM 

DK (P=0) 39.55 31.87 

DK (P=0.25) 26.88 25.35 

DK (P=0.5) 20.61 17.36 

DK (P=1) 14.65 7.23 

WORST 

DK (P=0) 48.52 40.91 

DK (P=0.25) 38.28 32.33 

DK (P=0.5) 29.14 22.75 

DK (P=1) 19.12 9.83 
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Table 3.3 Percentage Improvement of STATE Algorithm over DK Algorithm in case of 

Large Sized Circle (Diameter = 3 meters) 

PLACEMENT STATE vs. 

PERCENTAGE 

IMPROVEMENT IN 

AVERAGE 

ACTIVATION STEPS 

PERCENTAGE 

IMPROVEMENT IN 

AVERAGE 

COMPLETION TIME 

BEST 

DK (P=0) 49.9 38.29 

DK (P=0.25) 37.81 29.79 

DK (P=0.5) 25.18 20.66 

DK (P=1) 14.93 11.83 

RANDOM 

DK (P=0) 50.25 44.44 

DK (P=0.25) 41.25 31.01 

DK (P=0.5) 28.97 22.59 

DK (P=1) 15.18 11.85 

WORST 

DK (P=0) 51.33 45.13 

DK (P=0.25) 42.83 34.27 

DK (P=0.5) 31.18 27.42 

DK (P=1) 20.95 14.86 

 

Although, the STATE algorithm is found to perform better than the DK algorithm in terms of 

a smaller number of activation steps and lesser total time required for achieving convergence 

towards a uniform circular formation, as shown in the graphs of Figure 3.19-3.24 and from 

Table 3.1 – 3.3, the benefit of the strategy is not evident from the average values alone in 

certain cases i.e. of the small circle. Therefore, Wilcoxon signed rank test have been 

performed to verify whether the difference of the results of a given metric is statistically 

significant. For three different sizes of the circle (small, medium, and large) and for three 

different initial placements of the robots (best, random, and worst), we have recorded the 

values of 25 runs for both DK and the STATE algorithm. Probabilistic activation policy with 

Pr = {0, 0.25, 0.5, 1} is adopted for the DK algorithm. For the STATE algorithm order 

preserving activation policy is used. Since the data obtained is not normally distributed it 

makes sense to conduct the Wilcoxon signed rank test. Specifically, we performed a one-

tailed test with the null hypothesis that the results of the two algorithms are statistically 

identical. The significance level of α=0.05 is considered to be compared with the P-values 

obtained from the experimental data. If the P-values obtained are less than α, the approaches 

are considered statistically different. The results of the Wilcoxon tests are presented in Table 

3.4 (for the Activation Steps) and Table 3.5 (for Time). We have used the Wilcoxon signed 
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rank test calculator available from [SciStatCalc 2016]. It is evident from the results that the 

STATE algorithm performs better than Défago and Konagaya (DK) algorithm in terms of 

number of activation steps and total time required for achieving convergence. However, there 

exists an exception with the circle of small diameter. Referring to Table 3.4 and Table 3.5, for 

the Best and Random placement of the robots and the activation policy of Pr = 0.5 the P-

values (shaded with blue color) are greater than 0.05 and the results are statistically identical, 

the null hypothesis is accepted. Similarly, for Pr = 1, for three different placements the P-

values (shaded with grey color) are greater than 0.05 and the results are statistically identical 

and the null hypothesis is accepted. Considering a circle with small diameter and greater 

synchronization between the robots, we can conclude that there is no noticeable difference 

between the Défago and Konagaya (DK) algorithm and the proposed STATE algorithm. 

However, for the circle with bigger diameter irrespective of the level of synchronization in 

Défago and Konagaya (DK) algorithm, the STATE algorithm always performs better. 

Table 3.4 P-values of Wilcoxon test for Activation Steps (α = 0.05, N=25) 
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Table 3.5 P-values of Wilcoxon test for Time in Seconds (α = 0.05, N= 25)  
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3.8 CHAPTER SUMMARY 

In this chapter, several implementation issues with respect to different abstract assumptions 

considered in theoretical research in the area of multi-robot pattern formation are discussed. 

Approximate solutions to some of the assumptions have been proposed. A modified 

algorithm, STATE, is proposed and is shown to perform better than DK algorithm for 

solving the uniform circle formation problem. Both the algorithms are implemented on a real 

multi-robot test bed. A new framework for inter-robot communication is developed. It 

supports seamless asynchronous and non-blocking robot-to-computer, and robot-to-robot 

communications. The activation policy for achieving multi-robot synchronization in DK 

algorithm is probabilistic (discussed in Section 3.5.4). In our practical implementation of the 

DK algorithm a global clock is implemented for realizing the probabilistic activation 

schedule. It has been ensured that all the active robots finish executing the DK algorithm 

before a next clock tick is issued, to avoid race-condition. This resulted in more number of 

activation steps and longer time of convergence for the DK algorithm, because some robots 

have to remain in their wait/idle state for longer time. On the other hand, in the proposed 

approach in this thesis we have allowed the robots to explicitly communicate with their peers 

and therefore the robots are able to synchronize with their direct neighbors. It implies that, if 

a robot is active and is executing the STATE algorithm its direct neighbors stay silent. 
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Furthermore, contrary to the DK algorithm, in the STATE algorithm the robots directly 

move to the mid-point of their neighbors and thus achieve convergence in lesser number of 

activation steps. This also results in a smaller time to convergence. Finally, it is argued that 

proper coordination among the robots improves the efficiency of the task at hand. In chapter 

4, research has been conducted on multi-robot coordination in the context of unknown 

terrain coverage.   
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CHAPTER 4 

AN EFFICIENT APPROACH FOR ONLINE MULTI-ROBOT 

TERRAIN COVERAGE 

 

 

4.1 INTRODUCTION  

Multi-robot terrain coverage has gained considerable attention during the last two decades. 

The activity requires the robots to traverse the entire terrain for complete coverage. Various 

tasks requiring terrain coverage are sometimes monotonous (floor cleaning), time consuming 

(harvesting) and/or life threatening (inspection of hazardous terrains). Hence, automation of 

these tasks is highly desirable. Online algorithms for terrain coverage [Yamauchi 1998], 

[Wurm 2008], [Sheng 2006] do not rely on the cognition of the terrain. Therefore, the robots 

incrementally construct their trajectories and maps in real-time. An efficient coordination 

strategy results in faster coverage [Burgard 2005]. However, it also creates several 

challenges, as the robots have to execute many tasks in parallel, such as obstacle avoidance, 

mapping, localization, path planning, communication with peers, etc. Moreover, the very 

nature of the deployment of mobile multi-robot systems requires the robots to be simple in 

terms of their computational, sensing, storage, and communication capabilities. Knowing 

that the plan of one robot influences the plan of other robots intrinsically it becomes 

important for the robot team to properly coordinate.  

This work presents an efficient approach for designating to each robot a set of frontiers. A 

path planning method which allows the robots to cover the set of frontier cells allocated to 

them in a less redundant manner is proposed. Empirical results both in simulation and on a 

multi-robot test-bed demonstrate that the proposed approach achieves faster completion of 

coverage and higher utilization of robots when compared with other state of the art 

approaches. The remainder of this chapter is organized as follows. There is a very thin line 

of difference between coverage and exploration which is explained in Section 4.2. A brief 

discussion on a set of approaches which are representative of the state-of-the-art on terrain 

coverage is presented in Section 4.3. These approaches are experimentally compared with 

the proposed approach. The motivation of this research and our contributions are presented 

in Section 4.4. The potential targets for terrain coverage are described in Section 4.5. 

Preparation of task subsets using a well-known unsupervised data clustering algorithm i.e. 
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the K-means algorithm is discussed in Section 4.6. The frontier clusters thus obtained are 

allocated to individual robots using an optimal task assignment algorithm i.e., the Hungarian 

method, this process is described in Section 4.7. The proposed approach is detailed in 

Section 4.8 followed by experimental results and analysis which are discussed in Section 

4.9. Section 4.10 presents the chapter summary. 

4.2 COVERAGE VERSUS EXPLORATION 

Before we start our discussion on some of the state-of-the-art approaches it is important to 

bring out the distinction between the task of terrain coverage and terrain exploration. Terrain 

coverage requires the robots to completely traverse the unknown terrain in lesser time while 

exploration requires the robots to build a quality global map of the unknown region. In 

exploration the robots after scanning a region simply head towards unexplored territories, 

they are not required to traverse the whole region. Although, they are two fundamentally 

different applications but there is a lot commonality between them in terms of operations 

performed by robots which are as follows: 

 The map of the terrain is not known to the robots beforehand. 

 Approximate cell decomposition is used to decompose the terrain in equal sized grid 

cells. This is not the only method of terrain decomposition but we have limited our 

scope to frontier exploration techniques alone.   

 The robots should be able to localize themselves. In the absence of a global map 

simultaneous localization and mapping (SLAM) techniques [Dissanayake 2001], 

[Montemerlo 2003] are used for building the map.   

 The robots plan their next move based on the map information generated locally 

using their sensors and/or received from their peers. In that sense the robots fuse the 

useful map information obtained from other robots for the purpose of navigation. 

 The robots communicate with each other, to exchange information regarding the 

local instance of the global map known to the robot at that point of time and 

sometimes to synchronize their actions. They may also share other information like 

their pose, current task assigned to them and its completion status, and their health 

status. 

One important difference between the two applications is that, in the process of exploration 

the robots have a sensing radius that is higher than one cell and for the terrain coverage task 
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the robots are able to sense only the eight surrounding cells from the robot's position. Before 

this argument is accepted as a fact it is essential to discuss some of the recent state of the art 

multi-robot exploration approaches. Brick&Mortar [Ferranti 2007], RAPID [Ferranti 2009], 

and BMI [Andries 2013] are three different ant based approaches in which the environment 

is divided into a grid of square cells. The size of the cell depends on two things (a) the 

distance measured by the range sensors (rsense) and (b) the communication range (rcomm) of 

the agents. In [Ferranti 2009] it is assumed that the agent sitting at the center of some cell c 

will be able to cover c entirely and therefore the size of the cell c i.e., x should be less than or 

equal to  
2∗𝑟𝑠𝑒𝑛𝑠𝑒

√2
 and the agent is able to communicate within eight cells surrounding c, 

therefore, the communication range of the robot is less than or equal to 
2∗𝑟𝑐𝑜𝑚𝑚

3√2
, as shown in 

Figure 4.1. 

 

Figure 4.1 Sensing (rsense) and Communication Range (rcomm) of Robots [Ferranti 2009] 

RAPID is an extension and BMI is an improvement over Brick&Mortar. These three are 

suggested as exploration approaches by the authors. Yet the robot's coverage is limited to 

only one cell in which it is currently located and it is able to sense the status of eight 

surrounding cells by probing the smart tags lying in those cells. Therefore, if the sensing 

range of the robots is restricted to one cell all exploration algorithms will transform into 

coverage algorithms. We argue that terrain coverage is also a form of exploration with one 

additional requirement that the robots have to physically traverse whole of the free space and 

which is a single connected component. We have compared some of the state of the art 

approaches of exploration [Yamauchi 1998], [Burgard 2005], and [Puig 2011] (restricting 

the sensing range of robots to one cell) with the approach presented in this chapter.  
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4.3 DISCUSSION ON REPRESENTATIVE APPROACHES 

In this section, a representative set of important multi-robot exploration approaches which 

are compared with the proposed approach are discussed. Three highly praised techniques 

have been considered: 

(a) Pure frontier exploration [Yamauchi 1998] - It is the most basic form of frontier 

exploration wherein the robots do not coordinate with each other. They just 

exchange their map data with their peers and greedily select the target frontier cells.  

(b) Coordinated exploration [Burgard 2005] - This is an extension of Pure Frontier 

Exploration. The robots coordinate with each other for the selection of the frontier 

cells. However, the coordination mechanism is not very sophisticated.    

(c) Dispersion based exploration [Puig 2011] - This algorithm exhibits stronger form of 

coordination than the other two. The unknown region is partitioned and optimally 

assigned to individual robots for further exploration.   

These techniques are different from each other in the level of multi-robot coordination. It is 

worth comparing these methods within a common framework and evaluates how fruitful 

they will be for the purpose of online terrain coverage task. This helps us in identifying the 

advantages and disadvantages of each method so that the most suitable method can be 

selected for the said task. The working and the chief characteristics of each method is 

addressed in the rest of this section.  

4.3.1 Pure frontier exploration  

A popular technique referred to as frontier-based exploration for a single mobile robot is 

proposed in [Yamauchi 1997]. The border between the known and the unknown region is 

referred to as a frontier. The map unfolds as the robot moves to explore the nearest frontier. 

Formally the process is described as follows: Suppose F={f1, f2, f3, ..., fk} is the collection 

of frontier cells currently being evaluated. The current position of a robot ri is pos(ri). The 

nearest frontier, say nf, is the one that can be reached in least cost from pos(ri) and is 

obtained as follows: 

nf =  𝑝𝑎𝑡ℎ(𝑓𝑖 , 𝑝𝑜𝑠(𝑟𝑖))𝑓𝑖 ∈𝐹
arg 𝑚𝑖𝑛

    (4.1) 

path() is a function that returns the length of the shortest path from some cell ci to cj. In 

this case both the nearest frontier and the shortest path are determined using Dijkstra's 
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algorithm [Dijkstra 1959]. The robot then reaches the nearest frontier and continues 

exploration. The procedure is repeated until no more frontiers are visible. This technique has 

been extended to multiple robots in [Yamauchi 1998]. Each robot has its own local instance 

of the global grid map. Every robot after reaching its nearest frontier observes the 

environment using its sensors and generates a local evidence grid. The robot integrates its 

local impression with its own local instance of the global grid map. Also, the robot 

broadcasts this information to all the other robots. The other robots receiving these 

broadcasts stores them and integrate this information in their own global grid map after 

reaching their destinations i.e., the frontiers cells chosen by them. Based on the knowledge 

of the global grid map the robots avoid visiting already explored frontiers. From the 

experimental perspective this method sequences the frontier cells by clustering those frontier 

cells which are in the immediate neighborhood. Small frontier sequences are ignored. The 

mid-points of the frontier sequences are selected as potential target for exploration. Let us 

call them target frontier cells. Navigation cost starting from a robot’s position to all the 

target frontier cells is propagated in the multi-robot system. Euclidean distance cost is 

assumed between frontier cells. Infinite cost is associated to those cells which correspond to 

obstacles and unknown cells and some penalty is associated to those cells which are too 

close to obstacles for the robot to derive and follow a safe path. Each robot selects a target 

frontier cell with the minimum cost path (mcp) found after backtracking. The low-level 

planner of the robot makes the robot follow the mcp. The planner executes again and 

reassesses the path in three situations (a) after a specified time (b) when the robot reaches its 

destination and (c) when the path is blocked by an obstacle. This revolutionary work has a 

limitation that it allocates the frontiers to the robots, which may lead to improper utilization 

of resources by assigning the same frontier to multiple robots. This is due to the fact that 

while selecting a particular target frontier cell x only the mcp to x is considered and not the 

information gain that can be obtained by visiting x. The robots stay close to each other 

confined within the communication range and disperse locally. Despite the aforementioned 

limitation, the frontier-based exploration technique has become a de-facto standard for 

multi-robot exploration.  

4.3.2 Coordinated exploration  

It is a decision theoretic approach which extends [Yamauchi 1998] so that the robots 

coordinate with each other for faster completion of the exploration task. A function is 

defined that trades of the utility with the cost of reaching a particular target frontier cell. The 



72 
 

cost is nothing but the length of the shortest optimal path from the robot's position to the 

target frontier cell. The utility of a target frontier is the area that can be discovered when the 

robot arrives at it. The utility of target frontier cell x is lesser when the target frontier cells in 

the neighborhood of x are assigned to other robots. The target frontiers cells with the 

maximum utility are chosen by the robots. This ensures that the robots select the target 

frontier cells that are far from each other. Following is the formal summarization of the 

whole idea: 

Let F={f1, f2, f3, ..., fn} be a set of target frontier cells. Let fr be a target frontier cell for 

some robot r with a position pos(r). Let cost(fr ,pos(r)) be a function that returns the 

cost of robot r reaching the target frontier cell fr. The cost is calculated as a ratio of the 

shortest optimal path from the position of the robot r to the target frontier fr and the 

maximum of the shortest optimal path length of robot r reaching all the other target frontiers 

F'={F - fr}. The cost function is defined below: 

cost(𝑓𝑟 , pos(r)) = 
𝑝𝑎𝑡ℎ(𝑓𝑟,   𝑝𝑜𝑠(𝑟))

  𝑝𝑎𝑡ℎ(𝑓𝑗 ,𝑝𝑜𝑠(𝑟))𝑓𝑗 ∈{𝐹−𝑓𝑟}
𝑚𝑎𝑥    (4.2) 

The path function is defined above in the Yamauchi's algorithm. The utility of a robot r 

reaching the target frontier fr is calculated as follows:  

util(𝑓𝑟 , r) = ∑ 𝑝(𝑍∈{𝑅−𝑟} 𝑓𝑟 , 𝑍)    (4.3) 

Here R is the set of all robots including robot r and Z is the set of all robot excluding robot r. 

Function p returns the distance between the target frontier cells chosen by other robots and 

the target frontier cell fr selected by robot r. The value of p is evaluated as follows: 

𝑝(𝑓𝑟 , 𝑍) = 


 

otherwise

ffdistifffdist i

Zr

i

Zr

,0

),(,/),( 
  (4.4) 

where 𝑓𝑍
𝑖 is the target frontier cell assigned to robot 𝑖 ∈ 𝑍,  is a parameter that models the 

robots sphere of influence. Now the benefit b obtained by robot r when it selects the target 

frontier cell 𝑓𝑟 is given below:  

 b (𝑓𝑟 , r) = util (𝑓𝑟 , r) - cost (𝑓𝑟 , pos(r))   (4.5) 

Each robot sends a bid (the benefit) for each target frontier cell to all the other robots. Each 

robot selects a target frontier cell which has a maximum bid for itself. Finally, the robot 

plans a path to the chosen target frontier cell. Although the overlap between the robots 

reduces and the approach tends to minimize the completion time but it confines the robots 
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locally within the sensing range i.e., the robots disperse locally until there is no overlap in 

the newly discovered region and therefore is similar to Yamauchi's algorithm. Moreover, the 

algorithm does not scale well even in a graph of moderate size. Another shortcoming of this 

work is that it does not try to optimize the allocation of the target frontier cells to the robots.   

4.3.3 Dispersion based exploration  

For the purpose of exploration dispersion of robots is particularly important. In fact, 

dispersion remains at the heart of most of the exploration algorithms. The more the robots 

are dispersed better will they be able to discover new areas and thus complete the 

exploration faster. This is the main theme of the above algorithm. Instead of allocating the 

frontiers cells (which are many in large maps) using auctions the cells in the unknown 

region of the occupancy grid map are clustered into disjoint regions using the K-means 

algorithm. The number of clusters is equal to the number of robots. The initial seeds for the 

K-means algorithm are chosen randomly. Euclidean distance to the centroid of a region from 

the current position of the robot is considered for computing an optimal assignment of 

robots to distinct regions using linear programming. The next task is that of leading the 

robot to their assigned regions. For each robot-region pair if there is a direct path from the 

robot's position to the region's centroid via the free space, the region is accessible to the 

robot it is assigned to. Otherwise the region is inaccessible. In that case the robot selects a 

frontier cell in the accessible region which is nearest to the region assigned to it. Separate 

distances are defined for reaching to both accessible and inaccessible regions as follows:  

 Let us denote the accessible region by A and the robot by r. The distance from r to A 

is the distance from r to the closest cell c ∈ A and is a shortest real path distance 

(minimum cost path in the previously discussed approaches) from r to all frontier 

cells in the neighborhood of c. If Fc is the neighborhood of c then the distance is 

calculated as follows: 

𝑑(𝑟, 𝑐) = min  { 𝑝(𝑟, 𝑓) | 𝑓 ∈ 𝐹𝑐}, c ∈ A   (4.6) 

 where function p returns the shortest path. 

 Let us denote the inaccessible region with I. For region I geometric distance is 

defined from r to c. If there is an obstacle on a direct line connecting r and c a 

penalty ρ is added to the distance calculation as follows.  

𝑑(𝑟, 𝑐) = 𝑔(𝑟, 𝑐) +  𝜌, 𝑐 ∈ 𝐼    (4.7) 
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 The final objective is to find a robot-region pair which is the minimum of the 

distances to all regions (say AR) as shown below: 

𝑑(𝑟, 𝐴𝑅) = min  𝑑(𝑟, 𝑐), 𝑐 ∈ 𝐴 𝑜𝑟 𝑐 ∈ 𝐼  (4.8) 

After the region assignment goals are assigned to the robots. The robots which are assigned 

to inaccessible regions have higher precedence.  The distance between a target frontier and a 

robot is calculated as follows: 
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   (4.9) 

Where 𝑛𝑐𝑟
𝑖  is the nearest cell of the region assigned to robot 𝑟𝑖. The quantity ),( i

ri ncf  is 

equal to the sum of geometric distance between 𝑓𝑖 and 𝑛𝑐𝑟
𝑖  i.e., ),( i

ri ncfg , penalty 𝜌1if there 

is an obstacle between 𝑓𝑖 and 𝑛𝑐𝑟
𝑖  i.e., ),(1

i

ri ncf and if the frontier 𝑓𝑖 is already chosen by 

some other robot another penalty  𝜌2 i.e., )(2 if
 
is added. When the robots arrive at their 

destinations Burgard's algorithm [Burgard 2005] is used for the purpose of exploration 

within the region. The main difference with the [Yamauchi 1998] and the [Burgard 2005] is 

that this approach targets global dispersion. Global dispersion is successfully achieved by 

penalizing the robots when they choose frontiers that do not belong to their assigned regions 

or are chosen by other robots. Although, this approach is successful in achieving global 

dispersion and claims to complete the exploration faster by reducing the regional waiting 

time, it has few significant limitations. The limitations are: 

 The K-means algorithm uses Euclidian distance for clustering. The quality of the 

clusters obtained in a free space (the region without any obstacles and walls) and the 

region with obstacles of arbitrary size, shapes and walls will be completely different. 

Suppose the map is a known map, such that, the planner has complete knowledge of 

the geometry of the obstacles and the walls in the environment. In this situation 

instead of using traditional K-means algorithm, Geodesic K-means clustering 

[Asgharbeygi 2008] can be used. This only allows the grid cells in neighborhood i.e., 

those that are not separated by obstacles to be clustered together as shown in Figure 

4.4. Since the map is unknown and the size, shape and location of the obstacles and 

the walls is also not known a prior, geodesic distance cannot be used. This surely 

results in producing clusters of grid cells that are separated by obstacles as shown in 

Figure 4.3. As a result, the robots may have to travel much longer distances. This 
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issue is not addressed by the authors and therefore all the three claims of minimum 

completion time, minimum total path length travelled by the robots, and minimum 

variance of regional waiting time are questionable. 

 The primary reason for the above situation is that the robots are directly sent to 

explore unknown territories therefore they were not able to exploit the global 

knowledge which is getting generated as they explore and discover walls and 

obstacles. Since no re-planning or re-clustering is done the robots have to travel 

longer distances. 

 In order to guarantee the completion of exploration task either the individual robots 

will have to communicate their task completion status and the map information to all 

the other robots, like [Yamauchi 1998] and [Burgard 2005] or it should be a 

centralized algorithm. The algorithm sends the robots in far off regions thus it 

requires long range inter-robot communication. In its present state the algorithm is 

centralized as it states nothing about who is running the clustering algorithm.  

 The algorithm is not robust to failure of robots. Let us assume that robots fail with 

some random probability and one robot survives till the end to finish the exploration 

task. This approach will have to repeatedly cluster the unknown region every time a 

robot fails (let us call it iteration). In large maps the volume of frontier cells to be 

clustered remains high and therefore the algorithm progresses slowly. 

At this point it is very important to state that when these algorithms are employed for the 

purpose of online terrain coverage they are required to visit each and every frontier cell 

discovered in the process of execution until no more frontier cells are visible. Therefore, the 

algorithms are improvised in the manner that they do not ignore any frontier cell. 

Moreover, each frontier cell is a potential target for coverage and continues to remain a 

frontier until it is not traversed by a robot. Each frontier cell gets equal opportunity for it to 

be selected by some robot for coverage. The path planning algorithm executes only when the 

frontiers are more than two grid cells away from the robot’s position.   

4.4 RESEARCH MOTIVATION AND CONTRIBUTION 

The main motivation behind this work comes from the fact that the potential of reuse of 

algorithms designed for terrain exploration has not been considered for the purpose of terrain 

coverage. But it is possible to improvise exploration algorithms and achieve online terrain 

coverage. The main limitations of previous approaches are:   
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(a) Many previous approaches which are based on frontier exploration [Burgard 2005, 

Sheng 2006, Zlot 2002] allow the robots to disperse locally within the sensing range of 

the range sensors. This increases the overlapping sensing impression of the robots which 

in turn increases the chance of robots selecting nearby target frontiers for exploration. 

This produces difficulty in managing the exploration process due to the following 

reasons: 

 Interference of sensors. 

 The robots spend a lot of time in collision avoidance with other robots thus affecting 

the speed of the exploration algorithm. 

 In a larger terrain some portion of the terrain will be explored much later than the 

portion from where the robots have actually started exploring. 

 These approaches are exploitatory in nature. The robots tend to exploit their 

knowledge to its maximum and explore newer regions in a conservative manner. As 

a result, exploration becomes slower. 

(b) Approaches which are more exploratory in nature target global dispersion. The 

environment is partitioned into bigger segments which are then assigned to the robots for 

mutually exclusive exploration or coverage. Various techniques are used for the purpose 

of partitioning including data clustering algorithms like K-means [Stachniss 2006], [Wu 

2010], [Puig 2011], graph coloring [Carvalho 2013], graph partitioning [Fazli 2010], and 

Voronoi partitioning [Wu 2007], [Hungerford 2016]. These methods have obvious 

advantage over the pure frontier based approaches in terms of faster task completion time 

[Wurm 2008] but also have many challenges:  

 Fixed partitions: the robots plan longer paths as they do not exploit the knowledge of 

the structure of the environment that gets generated when they explore or cover the 

environment. Moreover, the motion plans they use result in redundant coverage. 

 Fault tolerance: handling robot(s) failure has not been addressed by the above 

approaches. To detect the same either long range communication is required or the 

robots should develop consensus and go to a rendezvous point periodically.  

 Re-planning: is an essential component of a good algorithm. None of these 

approaches specify strict time criteria for re-planning.  
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An efficient algorithm should be both exploratory as well as exploitatory in nature. In case 

of robot failures or when substantial new information is available, the plan should be 

revised. To overcome some of the limitations of the above discussed algorithms the 

proposed approach finds an appropriate motion plan for the robots based on the context of 

already covered frontiers. Dispersion of robots is vital for efficient coverage and is an 

emergent behavior. In that sense the robots are not sent to cover the unknown region 

immediately. In fact, they exploit the knowledge of the known frontier cells first. As the map 

unfolds and more frontiers are discovered the robots start exploring aggressively. The 

efficacy of the proposed approach is tested in simulation and on a multi-robot test-bed. The 

suggested approach performs better than some state of the art approaches [Burgard 2005], 

[Puig 2011], [Yamauchi 1998] and is well suited for an indoor environment for the purpose 

like floor cleaning etc.  

4.5 TARGETS FOR TERRAIN COVERAGE  

For multi-robot terrain coverage, most of the approaches suggested in the literature advocate 

generating a set of coverage targets, intelligently club these targets together to form task 

subsets, and assign these task subsets to the robots [Viguria 2007, Viguria 2008]. A coverage 

target is nothing but some specific location(s) in the environment which is to be traversed by 

a robot. In order to cover a target, the robot has to physically traverse its location and 

perform some task, for example, cleaning the target.  

The representation of the environment has a profound impact on the process of generation of 

coverage targets. An occupancy grid map discretizes the environment into grid cells [Elfes 

1989] and is a popular representation. The state of each cell, of being occupied or free, is 

estimated by the application of binary Bayes filter. In the beginning each cell is initialized as 

unknown. It is only after the POSTERIOR measurements are integrated that the occupancy 

of each cell is determined and is characterized as either occupied (if the sensed area contains 

the obstacle) or free (if it is a free space). One of the earliest works, by Brian Yamauchi 

[Yamauchi 1998] makes use of the occupancy grid based maps for robot exploration and 

takes into account the sensor measurements defining the region of the map that is sensed and 

what is still unknown. The cells that sit on the boundary of the known and the unknown 

regions are referred to as frontier cells and are potentially good targets for the robot to 

proceed for exploration. Moreover, each cell in the exploration task can be in one of the four 

states i.e., unknown, explored, obstacle, and frontier. Figure 4.2 gives an illustration of 

frontier based exploration using multiple mobile robots. It is already known that while 
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exploring the robots scan their surroundings and all the unknown cells within the sensing 

range of the robots are declared to be explored and are eliminated from being an exploration 

target for the robots. On the other hand, terrain coverage requires the robots to physically 

traverse the entire free space, be it in the known or the unknown region and therefore an 

additional flag variable, henceforth referred to as visited, is attached with every cell in the 

free space. The visited flag of a particular cell is set to true when the robot physically 

traverses it. As the robots continue with the coverage task, they sense their surroundings 

discovering new frontiers. The state of all the frontier cells which have been discovered in 

the past and are yet to be covered by the robot changes to explored but their visited flag 

remains false. These cells will continue to exist as potential targets for coverage. 

 

Figure 4.2 Frontiers based exploration 

4.6 PREPARATION OF TASK-SUBSETS 

In continuation to the discussion that was carried out in Section 4.3 it is evident that instead 

of allocating the frontier cells to the robots if the environment is decomposed into multiple 

segments/ regions and then assigned to the robots, the terrain coverage task can be achieved 

in more efficient manner i.e., with reduced time of task completion and reduced overlapping 

coverage. It is mainly because the robots would be doing coverage in mutually exclusive 

regions. Let us refer to these segments as task subsets. In this thesis, for the preparation of 

task subsets, the K-means algorithm is used for clustering the known frontier cells, hereafter 

referred to as frontier clusters. The frontier clusters thus obtained are allocated to the robots 

using an optimal task allocation algorithm (discussed in Section 4.7). We have also 
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discussed previously that conventional K-means algorithm uses Euclidean distances, that 

causes undesirable effects when frontier cells are separated by obstacles. It results in robots 

travelling longer distances to visit cells in their allotted frontier clusters. This situation is 

described in Figure 4.3. It can be seen that three frontier clusters are formed wherein the 

frontiers cells are separated by obstacles and are far apart. The trajectories of two robots R1 

and R3 that are allocated these frontier clusters are shown in green and dark blue colors. 

Another issue is that since only three frontier clusters are formed they are allocated to three 

robots R1, R2, and R3. The other two robots R4 and R5 are not allocated anything and 

remain idle, which is a waste of resources. In order to ensure that the frontier cells in a 

particular frontier cluster are not separated by obstacles and are close to the robot to which 

this cluster is allotted, geodesic distance [Asgharbeygi 2008] is used in the proposed 

approach. The effect is clearly evident in Figure 4.4. Five different frontier clusters are 

formed and are allocated to all the five robots. The trajectories of all the robots are shown in 

different colors. The task allocation mechanism is explained in the next section. 

 

Figure 4.3 Frontier clusters formed with the application of conventional K-means 

algorithm  



80 
 

 

Figure 4.4 Frontier clusters formed with the application of Geodesic K-means 

algorithm  

4.7 THE HUNGARIAN METHOD FOR TASK ASSIGNMENT 

After the frontier clusters are obtained they are required to be allocated to the robots. 

Previously iterative and batch assignment approaches have been used for this purpose. In 

iterative method, the robots are assigned targets in a sequential manner one after the other 

[Burgard 2005]. On the other hand, in the batch assignment the robots are optimally assigned 

the targets at once [Ko 2003]. In our approach, one of the famous combinatorial optimization 

algorithm known as Hungarian method [Kuhn 1955] for task assignment is used. Given a 

fixed cost matrix, the Hungarian method optimally allocates a set of jobs to a set of 

machines. The final assignment always results in minimizing the overall cost. This algorithm 

takes as input a square matrix (n×n) representing the cost of assigning n jobs to n machines.  

The steps of the algorithm are summarized below: 

1. First of all, a reduced cost matrix is computed by subtracting the minimal element imin 

of the ith row from all the elements of the ith row. After that the same operation is 

carried out on all the columns.  

2. Next, it is required to find out the minimal number of lines, both horizontal and 

vertical (referred to as cut-lines), that are sufficient to strike of all the zeros in the 

cost matrix. If exactly n lines are required, then an optimal assignment can be derived 
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by following the positions of all the zeros that are covered by the n lines. Otherwise 

follow the next step is followed. 

3. Within the reduced cost matrix, we find out the smallest non zero element which is 

not covered by the cut-lines and subtract it from all the elements of the cost matrix 

that are not covered by the cut-lines. Further this value is added to all the elements 

which are covered by the cut-lines. Go back to step-2. 

The overall complexity of the algorithm is O(n3) [Stachniss 2006]. The most expensive part 

of the algorithm is computing the number of horizontal and vertical lines covering all zeros 

in the cost matrix (i.e. Step-2). However, it is shown to work well with the team size of more 

than hundred robots and similar number of tasks [Gerkey 2004a]. In the proposed approach 

we have used this algorithm for assigning frontier clusters to the individual robots in the 

multi-robot system. The detailed mechanism is formally discussed in Section 4.8.1. 

4.8 THE PROPOSED APPROACH 

We consider the task of terrain coverage using a homogeneous team of n robots which can 

reliably communicate with a central planner. The terrain is decomposed into a grid of square 

cells using approximate cell decomposition method [Latombe 1991]. Each robot is equipped 

with sensors to detect whether or not its neighboring cells are occupied by obstacles. The 

robots are initialized at arbitrary locations. The multi-robot terrain coverage problem can 

formally be stated as follows: 

Definition 1: Given a set R of n robots and an unknown grid like two dimensional 

environment E consisting of a finite set of connected free cells C, find a set of coordinated 

moves for each robot r ∈ R with initial location c ∈ C, so that each cell c ∈ C is visited by 

at least one robot within a finite amount of time and the overall time for coverage is 

minimized. 

The proposed solution proceeds in the following manner: First, the central planner populates 

a list of frontier cells, performs K-means clustering on them so as to create frontier clusters, 

and allocates each frontier cluster thus obtained to a unique robot. The robot then computes 

a motion plan to pass through all frontier cells in its assigned frontier cluster. A pseudo code 

describing the algorithm is provided in Algorithm 4.1 referred to as CAC_Planner and 

Algorithm 4.2 referred to as CAC_Robot. A more detailed explanation of the approach 

follows in the subsequent sub-sections. 
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4.8.1 Allocation of Robots to Frontier Clusters to Robots 

Let rj be the jth robot (0 ≤ j < n, j ∈ Z) and its current location be pj. Let ci be the coordinates 

of the centroid of the ith cluster (0 ≤ i < k, j ∈ Z), where k is the parameter of K-means, 

which denotes the number of clusters desired. An efficient allocation of robots to clusters has 

the following desirable properties: 

 The sum of the distances between the clusters and their allocated robots should be 

minimized. Specifically, it is the distance of a robot from the centroid of its allocated 

cluster. 

 Optimal results should be obtained even when the number of clusters is less than the 

number of robots. 

The cost sij of assigning rj to the ith cluster is defined as follows: 

sij = path(ci, pj)     (4.10) 

Here, path(a, b) is a function that returns the shortest path joining two points a and b, with 

respect to the given map (i.e., considering the locations of the known obstacles). It returns 

infinity if there is no path between a and b. The task allocation problem is formulated as the 

problem of finding an assignment matrix A = [aij], where 

𝑎𝑖𝑗 =  {
1     𝑖𝑓 𝑐𝑖 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑟𝑗

0                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (4.11) 

 

such that the following expression is minimized. 
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To obtain an optimal solution for this problem in time polynomial to the number of robots, 

we use the Hungarian Method discussed in Section 4.7. This method takes as input a cost 
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matrix, describing the cost of allocating each robot to each cluster, and outputs an 

assignment that minimizes the total cost. The cost matrix CM is given by: 

CM = [cmij] where,    (4.15) 

cmij = sij     (4.16) 

There are two exceptions here; first, the Hungarian method requires that we have an equal 

number of tasks and workers. However, in the proposed algorithm, the number of clusters is 

sometimes less than the number of robots to be assigned. This case is handled by simply 

appending zero rows to the cost matrix and second, as the coverage task progresses towards 

the end, the number of frontier cells available may become lesser than the number of robots. 

In this case, we set the number of clusters desired equal to the total number of frontier cells 

available.  

It makes more sense to explain this process with the help of an example. Let us consider the 

scenario presented in Figure 4.6. We have a set of five robots, R = { r1, r2, r3, r4, r5 }, and a 

set of five frontier clusters, F = { f1, f2, f3, f4, f5 }. Each robot has to be assigned a unique 

frontier cluster to be covered. The cost matrix is simply generated by computing the distance 

(i.e., the shortest path) between the centroids of the frontier clusters and the current positions 

of the individual robots as shown in Figure 4.5. In the current situation the Hungarian method 

finds exactly five horizontal and vertical lines that are sufficient to cover all the zeros and hence 

optimal assignment of robots to a unique frontier cluster is possible. The transformed cost matrix is 

shown in Figure 4.7 and the final assignment of robots to different frontier clusters is shown in 

Figure. 4.8. 

 f1 f2 f3 f4 f5 

R1 25 15 12 18 2 

R2 13 4 1 10 9 

R3 1 14 18 24 19 

R4 10 6 5 12 10 

R5 14 12 9 13 2 

Figure 4.5 Cost/Assignment Matrix of Robots to Frontier Clusters 



84 
 

 

Figure 4.6 Five frontier clusters are to be allocated to five different robots 

 f1 f2 f3 f4 f5 

R1 19 8 6 5 0 

R2 12 2 0 2 12 

R3 0 12 17 16 22 

R4 5 0 0 0 9 

R5 8 5 3 0 0 

Figure 4.7 Transformation of cost matrix using Hungarian method. The allocated 

frontier clusters are colored cells containing zeros 

4.8.2 The Central Planner (or CAC_Planner) 

The central (global) planner executes the sequence of instructions described in Algorithm 4.1 

for CAC_Planner. First, it populates the list of frontier cells. Subsequently, it determines the 

value of K, and performs clustering and task allocation (lines 2-14). It then waits for all the 

robots to transmit task completion message (line 16). After receiving all task completion 

messages, the global planner issues a special endActivation message, which indicates that 

task reallocation would soon occur. The robots then stop exploration and transmit their latest 

maps to the planner (Algorithm 4.2, lines 34-36, 42-44, 48). The planner then updates the 

global map so that its data is consistent for subsequent re-clustering and task reallocation. 

Each cycle of clustering, allocation, and coverage is referred to as an activation cycle. The 
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activation cycle is repeated until no new frontiers are discovered, upon which the planner 

terminates the algorithm by sending a termination message (line 20). 

 

Figure 4.8 Final assignment of robots to different frontier clusters using Hungarian 

method 

-------------------------------------------------------------- 

Algorithm 4.1 CAC_Planner 
-------------------------------------------------------------- 

1:  repeat 

2:   populate frontier cell list 

3:   if numberOfFrontierCells < n then  /* n = number of robots */ 

4:    k ← numberOfFrontierCells 

5:   else 

6:    k ← n 

7:   end if 

8:   Apply k-means and obtain K clusters 

9:   CM ← computeCostMatrix()  /* CM is the cost matrix */ 

10:   if K < n then 

11:    Append (n- k) zero rows to CM 

12:   end if 

13:   Apply Hungarian method for task allocation 

14:   Dispatch allocation messages to the robots 

15:   Broadcast latest global map 

16:   Wait until all robots send task completion message 

17:   Broadcast endActivation message 

18:   Update global map 

19:  until no frontiers are visible 

20:  Send termination message to all robots   

-------------------------------------------------------------- 
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4.8.3 Local Planner (or CAC_Robot) 

The local planner (or CAC_Robot) corresponds to the instructions to be followed by 

individual robots locally once a task is allocated to them. Algorithm 4.2 describes the 

method that each robot adopts to cover its allotted cluster. Robots wait for an allocation 

message from the planner (line 1). They then update their maps according to a global map 

broadcast by the planner (line 2). The allocation message contains the list of frontier cells in 

the allotted frontier cluster, referred to as allottedList (line 4). In addition to allottedList, 

each robot maintains two more lists - extendedList and bonusList - both of which are initially 

empty (lines 5-6). To reduce the distance travelled by robots, the robots continue moving to 

the nearest cell in the cluster from their current location. However, if this greedy strategy is 

adopted, the length of the path required to cover all the cells in the cluster is determined by 

the first cell in the cluster they move to. If this cell is not one of the end-points of the cluster, 

it increases the length of the path taken by the robot to cover all cells in the cluster. To 

prevent this drawback caused by the greedy strategy, we also consider the frontier cells 

adjoining the cells in the cluster. Using these additional frontier cells (referred to as extended 

frontier cells), robots can generate trajectories that cover the cells in the cluster with reduced 

redundancy. Following this strategy, the robots first move to the closest point on the allotted 

frontier cluster, from where, they reach one end of the cluster. The nearest available allotted 

frontier now lies in the chunk connecting the opposite end of the allotted frontier cluster to 

the cell from which coverage of this cluster started. To reach this cluster, robots can simply 

make use of the adjoining frontier cells discovered until this point, rather than taking the 

shortest path that passes through already explored territory. This strategy was incorporated in 

the proposed approach in the manner shown in Algorithm 4.2 (lines 7-26). The algorithm 

exploits the inherent order in which individual grid cells are stored in the robot’s (or 

planner’s) memory. In all nearest frontier choices involved (lines 8, 9), frontier cells with the 

same distance are ordered by their coordinates (either row-major or column-major order 

could be used). Moreover, when the nearest cells exist in both allottedList and extendedList, 

a cell from allottedList is preferred (lines 19-23). 

---------------------------------------------------------------- 

Algorithm 4.2 CAC_Robot 
---------------------------------------------------------------- 

1:  Wait for allocation message from planner 

2:  Receive latest global map from planner 

3:  while termination message not received do 

4:   allottedList ← list of cells in allotted cluster 
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5:   extendedList ← empty list 

6:   bonusList ← empty list 

7:   while there is an unvisited cell in allottedList or in extendedList do 

8:    Ca ← first nearest cell in allottedList 

9:    Ce ← first nearest cell in extendedList 

10:    if Ce is nearer than Ca then 

11:     chosenCell ← Ce 

12:   else 

13:     chosenCell ← Ca 

14:    end if 

15:    while chosenCell is not visited do 

16:     make a move towards chosenCell 

17:     Fnew ← list of frontiers newly discovered 

18:     for f ∈ Fnew do 

19:      if f is a neighbor of any c (cell) ∈ allottedList then 

20:       append(extendedList, f) 

21:      else 

22:       append(bonusList, f) 

23:      end if 

24:     end for 

25:    end while 

26:   end while 

27:   Dispatch completion message to planner 

28:   while endActivation message not received do 

29:    if there is an unvisited cell in bonusList then 

30:     chosenCell ← first nearest cell in bonusList 

31:     while chosenCell is not visited do 

32:      Make a move towards chosenCell 

33:      append(bonusList, newly discovered frontiers) 

34:      if endActivation message received then 

35:       break 

36:      end if 

37:     end while 

38:    else 

39:     chosenCell ← first nearest frontier cell visible 

40:     while chosenCell is not visited do 

41:      Make a move towards chosenCell 

42:      if endActivation message received then 

43:       break 

44:      end if 

45:     end while 

46:    end if 

47:   end while 

48:   Send latest map to the central planner 

49:  end while 
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The manner in which the proposed path planning strategy works on each of the robots is 

illustrated in Figure 4.9 and Figure 4.10. Here, the cells in blue indicate the allottedList and 

the cells in green indicate the extendedList. Cells in black are obstacles. The robot is 

currently located in a cell which is colored yellow. After all frontier cells in allottedList and 

extendedList are visited, the robot dispatches a completion message to the planner, indicating 

that it has completed its share of work. When the planner receives completion messages 

from all robots, it performs map updates and begins the next iteration. Until then, each robot 

that dispatched a completion message visits the remaining frontier cells it discovered, which 

are stored in bonusList. During this process, if any new frontier cells are discovered, they are 

added to bonusList, and subsequently covered (lines 29-37). If a robot runs out of frontier 

cells in bonusList and still does not receive an allocation message, it moves towards the first 

nearest frontier it can find (lines 38-46). This ensures that, upon subsequent reception of an 

allocation message, the robot is close to new areas being explored. This also ensures that the 

resources (here robots) of the multi-robot system are utilized effectively. 

 

Figure 4.9 The proposed Motion Planning Strategy (without obstacles) 

 

Figure 4.10 The Proposed Motion Planning Strategy (with obstacles) 

4.9 EXPERIMENTAL RESULTS AND ANALYSIS  

The three state of the art representative approaches discussed in Section 4.3 and the proposed 

approach have been implemented and extensively evaluated both in simulation and in a 

controlled laboratory setting on a team of four Firebird V [Firebird 2016] robots. The 

proposed approach is compared with the other three approaches by varying the number of 
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robots, and the complexity of the map. In Section 4.9.1, the architecture of the multi-robot 

system is described. The quantitative results obtained from the simulation and from the 

actual experiments are discussed in Section 4.9.2 and Section 4.9.3 respectively.  

4.9.1 System Architecture 

The architecture of the system is shown in Figure 4.11. The central planner and robots are 

composed of multiple layers, with each layer responsible for the execution of a well-defined 

set of tasks. Both the central planner and the robots have two layers in common i.e., the 

coordination layer and the planning layer. The coordination layer is responsible for 

facilitating communication between the central planner and the robots. From the central 

planner the following messages are sent to the robots: 

 Task allocation message containing the set of frontiers to be covered. 

 Global map updates are sent immediately after the task assignment. 

 End activation message indicating the start of the re-clustering operation. 

 Termination message indicating the end of the coverage task. 

The robots send the following messages to the central planner: 

 Task completion message indicating that the assigned task T is complete. The robot 

begins the coverage of those frontier cells which it has discovered on its own accord 

while pursuing the previously assigned task T. 

 Local map updates are sent only when the end activation message is received from 

the central planner.  

Whenever there is a communication received from either side the message is serviced by the 

respective entity as soon as it finishes the operation it is currently executing.  

For the central planner the planning layer is responsible for various high level tasks. Its 

primary responsibilities are:  

 Path planning - Jump point search algorithm [Harabor 2011] is used for this purpose. 

 Geodesic K-means clustering - clusters the frontier cells and creates frontier clusters 

based on distances obtained from the path planner. 

 Task Allocation - executes the Hungarian method for finding optimal assignment of 

robots to frontier clusters. 
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 Map maintenance - updates the global map after receiving the completion message 

from all the robots. 

The planning layer of the robot is responsible for the following tasks: 

 Map maintenance - updates the local instance of the global map after receiving map 

updates from the global planner and after sensing its neighborhood using its range 

sensors i.e., the eight connected cells surrounding the robot's current position. 

 Strategy selection - when the robot finishes the assigned task before receiving the end 

activation message from the planner (which means the allottedList and the 

extendedList are empty) the strategy selector intimates the motion planner, which 

then begins to generate trajectories from robots to the cells in the bonusList. 

The low-level controller layer is responsible for generating control signals. In the presented 

architecture, each layer communicates directly only with the layer immediately preceding or 

succeeding it. Arrows in the figure indicate the direction of communication among various 

modules. 

 

Figure 4.11 Architecture of the Multi-Robot System 

4.9.2 Simulation Results  

Terrains of various dimensions and obstacle distributions are used in simulation. The 

completion time and redundancy in coverage is recorded. The proposed approach is 

compared with [Burgard 2005], [Yamauchi 1998], and [Puig 2011]. Figure 4.12 shows three 

different simulated terrain maps used for terrain coverage. The walls and obstacles are 
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represented by black areas and the free space that needs to be covered is represented by the 

white areas. Figure 4.12(a) is a completely free region devoid of any walls and obstacles. 

Figure 4.12(b) is a representation of some outdoor cluttered environment with lots of 

obstacles lying here and there. The map in Figure 4.12(c) is a sort of an office map with door 

openings in connected rooms and long walls. In all the maps it is assumed that the free space 

to be covered is a one single connected component. The set of robots R = {2, 4, 6, 8, 10} are 

considered for the simulation purpose in each map. In each map a minimum of 25 simulation 

runs is conducted by increasing the number of robots from 2 to 10. In each simulation run 

the robots are made to start from random initial positions.  

 

Figure 4.12 Three different terrains used for simulation (dimensions: 50 x 50 cells)   

The behavior of the proposed approach is assessed in a quantitative manner on the basic of 

the results obtained from computer simulation. The discussion presented below is based on 

the completion time and percentage redundancy graphs of different approaches considered 

for evaluation and are shown in Figure 4.13 to 4.15 and Figure 4.16 to 4.18 respectively. 

In [Burgard 2005], the robots are dispersed locally because the movement of robots is 

restricted in a manner that they maintain non-overlapping sensing impressions. The robots 

tend to choose targets that are in close vicinity of each other. The robots start from random 

initial positions. After a while they come close to each other and do not spread out further as 

a result overlap in coverage and coverage completion time increases. Increasing the number 

of robots does reduce the time to complete coverage but the percentage redundancy increases 

drastically.  

In [Puig 2011], global dispersion is targeted and the robots are sent to the targets far from 

each other in the unknown region. Since the map of the terrain is not known beforehand and 

forward planning is not possible therefore Euclidean distances are used. The robots leave 

behind many uncovered cells that were discovered while they were getting dispersed and 

      (a) Free World           (b) Outdoor Map   (c) Office Map 
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return to cover these frontier cells later. The robots have to plan their paths through the 

already covered cells on several occasions and the approach is not able to take the advantage 

to global dispersion. The task allocation mechanism used in this approach is not able to 

exploit the information generated by the robots in real-time. As a result, coverage 

completion time is increased. After re-planning is introduced in this approach it gives better 

performance than [Burgard 2005].  

In [Yamauchi 1998], the authors have suggested a purely greedy approach i.e. the robots 

select the nearest frontier cell for coverage. The robots do not coordinate with their peers 

when selecting a frontier cell for coverage. The approach does not confine the robots in a 

limited sensing range. This results in some robots choosing the same frontier cell for the 

coverage if they are operating in a close vicinity. This results in increased overlapping 

coverage. It is shown in a comparative study of different exploration algorithms [Juliá 2012] 

that [Yamauchi 1998] gives better performance than [Burgard 2005]. Also [Yamauchi 1998] 

performs better than the [Puig 2011] because the robots are greedy and do not run very far 

from the frontier cells discovered in the recent past. 

The proposed approach (CAC) completes coverage faster than the other approaches in all the 

maps and by increasing the number of robots. This is because of the path planning scheme 

that results in shorter paths for coverage. Furthermore, the Hungarian method ensures an 

optimal assignment of robots to clusters. The robots do not remain idle after completing their 

assigned task, therefore, increasing the overall utilization of the system resources (robots).  

Following are three important observations based on the simulation results: 

(a) It is evident from the Figure 4.13, 4.15 and 4.17 that, irrespective of the nature of the 

map and the terrain coverage approach considered for evaluation, the team of mobile 

robots performs better in terms of completion time as the number of robots are increased.  

(b) It is evident from the Figure 4.14, 4.16 and 4.18 that, irrespective of the map and the 

terrain coverage approach considered for evaluation, increasing the number of robots 

results in increased redundant coverage. Redundancy is estimated by counting the 

number of steps that the robots take which do not result in a new cell being covered.  

(c) The percentage improvement of the proposed approach over other representative 

approaches in terms of coverage completion time and redundant coverage are presented 

in Table 4.1, 4.2, and 4.3 for the Free World, Outdoor and Office maps respectively. It 
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can be observed that, irrespective of the terrain map and the robot team size, proposed 

approach always performs better than the other state-of-the-art approaches.     

 

Figure 4.13 Completion time measured in the Free World map 

 

Figure 4.14 Percentage Redundancy measured in the Free World Map 
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Table 4.1 Comparison of CAC with different approaches in Free World map 

M
A

P
 

R
O

B
O

T
S

 

CAC vs. 

PERCENTAGE IMPROVEMENT 

IN COVERAGE COMPLETION 

TIME 

PERCENTAGE IMPROVEMENT 

IN NON-OVERLAPPING 

COVERAGE 

F
R

E
E

 W
O

R
L

D
 M

A
P

 

2 

Burgard 20 65.45 

Puig 12.73 52.5 

Yamauchi 7.69 38.71 

4 

Burgard 17.7 49.57 

Puig 9.09 31.37 

Yamauchi 7.41 26.78 

6 

Burgard 16.56 45.89 

Puig 11.69 36.12 

Yamauchi 7.17 24.8 

8 

Burgard 24.41 51.89 

Puig 13.9 35.04 

Yamauchi 4.9 14.7 

10 

Burgard 22.57 46.78 

Puig 15 34.74 

Yamauchi 4.1 11.43 

 

 

Figure 4.15 Completion time measured in the Outdoor map  
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Figure 4.16 Percentage Redundancy measured in the Outdoor Map 

Table 4.2 Comparison of CAC with different approaches in Outdoor map 

M
A

P
 

R
O

B
O

T
S

 

CAC vs. 

PERCENTAGE IMPROVEMENT 

IN COVERAGE COMPLETION 

TIME 

PERCENTAGE IMPROVEMENT 

IN NON-OVERLAPPING 

COVERAGE 

O
U

T
D

O
O

R
 M

A
P

 

2 

Burgard 20.22 51.16 

Puig 9.25 29.63 

Yamauchi 7.36 24.72 

4 

Burgard 27.42 59.04 

Puig 16.8 43.51 

Yamauchi 11.4 32.93 

6 

Burgard 25.94 54.28 

Puig 18.82 44 

Yamauchi 13.97 35.51 

8 

Burgard 24.63 50.25 

Puig 16.91 38.6 

Yamauchi 12.67 30.95 

10 

Burgard 16.6 32.09 

Puig 12.55 25.41 

Yamauchi 6.7 14.55 
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Figure 4.17 Completion time measured in the Office map  

 

 

Figure 4.18 Percentage Redundancy measured in the Office Map 
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Table 4.3 Comparison of CAC with different approaches in Office map 

M
A

P
 

R
O

B
O

T
S

 

CAC vs. 

PERCENTAGE IMPROVEMENT 

IN COVERAGE COMPLETION 

TIME 

PERCENTAGE IMPROVEMENT 

IN NON-OVERLAPPING 

COVERAGE 

O
F

F
IC

C
E

 M
A

P
 

2 

Burgard 11.98 28.68 

Puig 7.45 19.22 

Yamauchi 4.6 12.47 

4 

Burgard 11.17 22.59 

Puig 5.51 11.92 

Yamauchi 1.88 4.25 

6 

Burgard 10.13 20.13 

Puig 4.8 10.12 

Yamauchi 3.21 6.9 

8 

Burgard 13.25 25.04 

Puig 8.72 17.27 

Yamauchi 4.64 9.61 

10 

Burgard 13.41 24.5 

Puig 10.15 19.15 

Yamauchi 7.36 14.29 

 

Dispersion of robots across the map is not an explicitly expressed goal of the proposed 

approach. Rather, it is an emergent behavior. This inference is evident from the graph of 

Figure 4.19. This plot shows the sum of variances of cluster centroids as exploration 

progresses in a free map, using nine robots that start as a cluster at the center. It can be 

understood that, although the degree of dispersion is initially local (confined to a particular 

region of the map), as the coverage task progresses, it becomes global (spread across larger 

portions of the map).  Figure 4.20 shows the volume of cells to be clustered in each 

activation cycle by the proposed approach when compared with [Puig 2011]. The proposed 

approach spends very less time doing clustering because the number of cells to be clustered 

are very few. 
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Figure 4.19 Nature of dispersion (Free World, Office, and Outdoor maps) 

 

Figure 4.20 Volume of Cells Clustered (Free World map, 8 Robots) 
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4.9.3 Experimental Results  

To demonstrate the feasibility of the proposed approach, it was also implemented on a team 

of Firebird V robots [Firebird 2016]. Each robot in the team has an AVR ATMega2560 

microcontroller. 2.4 GHz XBee modules were used for communication among robots and 

the central planner. These modules allowed for communication without interference on 16 

different channels. For localization purposes, a visual marker based positioning system was 

deployed. This positioning system was used to communicate each robot’s location to the 

central planner and to the robot itself. The robots were equipped with infrared-based 

proximity sensors in eight directions to detect obstacles in each neighboring cell. These 

sensors could reliably detect obstacles within a distance of 40 cm. Figure 4.21 shows three 

different settings for the purpose of comparison of different approaches considered for 

evaluation. The maps are discretized into 10×10 square grid cells of size equal to the 

footprint of the robot which is 0.2 m2. The actual time taken by the robots to complete the 

coverage task (in seconds) is shown in the graphs of Figure 4.22 to 4.24. The proposed 

approach (CAC) is compared with [Yamauchi 1998] and [Burgard 2005]. [Puig 2011] is not 

evaluated in experiments because it targets global dispersion, the effect of which is visible 

only in bigger maps.  

 

Figure 4.21 Three different maps used in terrain coverage experiment 

The completion time trends and percentage redundancy trends observed in experiments are 

no different than what we have seen in the simulations. Following are the observations that 

are made regarding the completion time from Figures 4.22, 4.24, and 4.26 and percentage 

redundancy graphs shown in Figures 4.23, 4.25, and 4.27.  

  (a) Circular Maze Map       (b) Bar Maze Map     (c) Living Room Map 
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It can be inferred from Figure 4.22 that the proposed approach (CAC) performs better than 

[Burgard 2005] and [Yamauchi 1998] in terms of completion time for a Circular Maze Map. 

This is due to the complexity of the Circular Maze map wherein it is observed that for 

[Burgard 2005] and [Yamauchi 1998] algorithms the robots just follow each other while 

trying to reach their chosen frontier cells. Also, as seen in Figure 4.23, in the Circular Maze 

map the percentage redundancy for [Burgard 2005] and [Yamauchi 1998] algorithms are 

higher than that for CAC. The percentage improvement of CAC over [Burgard 2005] and 

[Yamauchi 1998], both in terms of completion time and non-overlapping coverage is shown 

Table 4.4. 

 

Figure 4.22 Completion time measured in the Circular Maze map 
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Figure 4.23 Percentage Redundancy measured in the Circular Maze map 

Table 4.4 Comparison of CAC with different approaches in Circular Maze map 

M
A

P
 

R
O

B
O

T
S

 

CAC vs. 

PERCENTAGE IMPROVEMENT 

IN COVERAGE COMPLETION 

TIME 

PERCENTAGE IMPROVEMENT 

IN NON-OVERLAPPING 

COVERAGE 

C
IR

C
U

L
A

R
 M

A
Z

E
 

2 
Burgard 6.29 9.41 

Yamauchi 3.4 7.64 

3 
Burgard 7.17 6.38 

Yamauchi 5.69 5.04 

4 
Burgard 10.17 8.37 

Yamauchi 6.55 7.14 

5 
Burgard 7.22 4.97 

Yamauchi 6.72 2.68 

 

The completion time graphs of Bar Maze map and Living Room map are shown in Figure 

4.24 and Figure 4.26 respectively. It is inferred that the performance of CAC has improved 

for less complex maps since there are more number of unobstructed frontier cells to cover. 

As the number of robots are increased all approaches starts performing better in their own 

comparison. The percentage redundancy in Bar Maze map and Living Room map is shown 

in Figure 4.25 and Figure 4.27. It can be observed that coverage achieved by CAC is the 

least redundant in these two maps. As a general trend it can be noticed that irrespective of 

the number of robots used, the percentage redundancy for all the approaches decreases as the 
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complexity of the maps is reduced. On the other hand, it is also observed that irrespective of 

the map used, the percentage redundancy increases with the increase in the number of robots. 

The percentage improvement of CAC over [Burgard 2005] and [Yamauchi 1998], both in 

terms of completion time and non-overlapping coverage is shown Table 4.5 and Table 4.6 

for Bar Maze and Living Room maps respectively.  

 

Figure 4.24 Completion time measured in the Bar Maze map  

 

Figure 4.25 Percentage Redundancy measured in the Bar Maze map 
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Table 4.5 Comparison of CAC with different approaches in Bar Maze Map 
M

A
P

 

R
O

B
O

T
S

 
CAC vs. 

PERCENTAGE IMPROVEMENT 

IN COVERAGE COMPLETION 

TIME 

PERCENTAGE IMPROVEMENT 

IN NON-OVERLAPPING 

COVERAGE 

B
A

R
 M

A
Z

E
 

2 

Burgard 9.77 15.05 

Yamauchi 7.22 12 

3 

Burgard 9.68 8.56 

Yamauchi 7.16 7.19 

4 

Burgard 11.82 5.01 

Yamauchi 7.62 3.71 

5 

Burgard 14.29 6.87 

Yamauchi 10.08 5.5 

 

 

Figure 4.26 Completion time measured in the Living Room map 
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Figure 4.27 Percentage Redundancy measured in the Living Room map 

 

Table 4.6 Comparison of CAC with different approaches in Living Room Map 

M
A

P
 

R
O

B
O

T
S

 

CAC vs. 

PERCENTAGE IMPROVEMENT 

IN COVERAGE COMPLETION 

TIME 

PERCENTAGE IMPROVEMENT 

IN NON-OVERLAPPING 

COVERAGE 

L
IV

IN
G

 R
O

O
M

 

2 

Burgard 6.67 4.76 

Yamauchi 4.26 1.45 

3 

Burgard 8.08 5.61 

Yamauchi 6.67 4.33 

4 

Burgard 7.21 6.1 

Yamauchi 5.56 3.99 

5 

Burgard 5.77 7.47 

Yamauchi 5.08 4.15 
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Figure 4.28 Three Firebird V Robots Executing the CAC Algorithm 
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4.10 CHAPTER SUMMARY 

In this chapter the problem of online terrain coverage using multiple mobile robots is 

considered. Terrain coverage requires the robots to physically traverse the entire terrain i.e., 

whole of the un-obstructed and connected region. The approach proposed in this chapter is a 

centralized approach, comprising of a central planner that is responsible for multi-robot 

coordination.  Preparation of the task subsets, optimal task allocation, map maintenance and 

re-planning are some of the vital functionalities of the central planner. On the other hand, 

individual robots sense their surroundings and maintain their own local map with respect to 

the task subset allocated to them. The robots periodically update the central planner and 

carry out motion planning. Approximate cell decomposition has been used as a terrain 

decomposition method. Three Firebird V robots are used for experiments.  

It is assumed that the terrain is bounded, however, neither the map of the terrain nor the 

bounds of the terrain are known a priori. The location of each robot with respect to some 

global coordinate system is known to the central planner and to the robots themselves. The 

robots can communicate with the central planner at all times. The suggested algorithm 

proceeds with the minimal knowledge of the already explored region and the frontier cells. It 

creates clusters of frontier cells (task subsets) which are apportioned to the robots using an 

optimal assignment scheme. Coverage is then performed using a path planning technique 

that results in lesser overlapping coverage. The proposed algorithm performs better than 

some of the state of the art approaches that are representative of multi-robot terrain coverage 

and exploration. The main motivation behind this research comes from the fact that many 

frontier propagation algorithms like [Burgard 2005] and [Yamauchi 1998] are more 

exploitatory in coverage and highly conservative in exploring new regions. These algorithms 

thus result in local dispersion. On the other hand, approaches which partition the 

environment into bigger regions i.e., [Puig 2011] are more exploratory and in search of new 

regions for coverage leave behind uncovered regions. The approach proposed in this chapter 

completely exploits its knowledge of the frontier cells and does not leave behind any 

uncovered cells. Dispersion is not explicitly targeted rather; it is an emergent behavior. As 

the map unfolds the robots starts exploring faster. The improvement obtained by the 

proposed approach over the state-of-the-art approaches is as a result of proper coordination 

between the central planner and the multi-robot team. The central planner conducts global 

planning and allows the individual robots to completely execute the task assigned to them. 

The individual robots execute their local plan and at the same time optimize upon their 
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motion plan such that the overlapping coverage is minimized. However, the proposed 

approach does not handle failures and is not robust. In the next chapter we present a 

completely decentralized fault tolerant algorithm for online terrain coverage which follows a 

structured trajectory approach. 
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CHAPTER 5 

SYNCHRONOUS FRONTIER ALLOCATION FOR SCALABLE 

ONLINE MULTI-ROBOT TERRAIN COVERAGE 

 

5.1  INTRODUCTION 

Online terrain coverage is a problem which has gathered substantial attention from the multi-

robot systems research community. The nature and complexity of the problem was explained 

in Chapter 4. It is evident that multiple yet simple mobile robots can traverse the terrain 

much faster than using a single monolithic mobile robot [Juliá 2012]. We have further seen 

in Chapter 4 that most of the terrain coverage algorithms employ some form of dispersion, 

either local or global, to ensure effective utilization of robots. Local dispersion allows robots 

to spread out, but confines them within a fixed communication range [Mukhija 2010]. On 

the other hand, global dispersion spreads out the robots to span much larger areas and aims 

to gather more information in lesser time. Global dispersion demands either a centralized 

solution or greater inter-robot communication range. One limitation of the existing 

approaches which was not addressed until recently is that, these approaches cover the terrain 

in an irregular fashion [Dasgupta 2009, Puig 2011, Sheng 2006]. They do not consider the 

usability of the already covered region. For example, in the task of floor cleaning in an office 

building, these approaches do not ensure the cleanliness and thus usability, of large unbroken 

regions until the bulk of the coverage task is accomplished. In this chapter, we debate and 

demonstrate that faster completion of coverage can be attained by using structured trajectory 

approaches without explicitly targeting dispersion. Following are the major contributions of 

this chapter: 

 We propose, Frontier Allocation Synchronized by Token Passing (FAST), a 

completely distributed, algorithm for online terrain coverage, that can be deployed in 

a static terrain and which achieves complete coverage even in the case of (multiple) 

robot failures, on the assumption that one robot survives till the end.  

 FAST covers the terrain in a regular and contiguous fashion, thereby immediately 

leaving the covered portions of the terrain accessible and usable. Moreover, the 

recovery protocol in case of robot(s) failure ensures that no information concerning 

the already covered regions is lost and reorganization time is also less. 
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 A scheme for dissemination of information is proposed, using which robots can 

exchange map data by sending and receiving messages. This scheme enables robots 

to map arbitrarily complex and large terrains and still maintain a low-memory-

footprint for communication, with messages having a space complexity of O(N), 

where N is the number of robots. 

 We have proposed, Back Tracking Spiral Algorithm - Coordinated Multi-Robot 

Improved (BSA-CMI). This is an algorithm for multi-robot coverage and extends a 

structured trajectory approach suggested in [Gerlein 2011]. It is demonstrated that 

BSA-CMI works better than many existing approaches. However, it is slower 

compared to FAST. 

 Two distinct approaches [Gautam 2015, Gerlein 2011] representative of the state-of-

the-art have been implemented and evaluated, both in simulation and on actual 

robots. Terrains of varying complexity (in terms of obstacle distribution) have been 

used. Statistically it is shown that FAST outperforms all the other approaches in 

terms of coverage completion time and lesser redundant coverage. To the best of our 

knowledge, such an evaluation across approaches for exploration and coverage has 

not been performed previously. 

In FAST, known frontier cells at a given time instant are chosen to be covered by the robots 

in a mutually exclusive manner using a token passing mechanism. Each robot maintains a 

local instance of the global terrain map in the form of an occupancy grid map [Elfes 1989] 

which is periodically updated. Robots can explicitly send and receive messages to and from 

their peers. We assume that robots work in a noise-free environment for any communication 

loss to occur, as the use-case considered here is that of floor cleaning in an indoor 

environment. However, the robots themselves can fail. A fault-tolerance mechanism is 

proposed to handle robot failures. The remainder of this chapter is organized into ten 

sections. The main motivation behind this research is discussed in Section 5.2. A brief 

discussion on a set of representative approaches for multi-robot terrain coverage that are 

compared with FAST is presented in Section 5.3. The description of the terrain coverage 

task and the robot model is presented in Section 5.4 and Section 5.5 respectively. The 

proposed approach i.e., FAST, is detailed in Section 5.6. Section 5.7 presents the mechanism 

of handling robot(s) failures. In Section 5.8, we have proposed a weakly centralized 

algorithm for online terrain coverage referred to as BSA-CMI by extending BSA-CM 

[Gerlein 2011]. Simulation results and the results of real world experiments across a 
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spectrum of approaches are discussed in Section 5.9. Chapter summary is presented in 

Section 5.10.  

5.2 RESEARCH MOTIVATION 

One limitation of the existing terrain coverage approaches which was noticed in our research 

is that, many of these approaches cover the terrain in an irregular fashion, without 

considering the usability of the already covered region. For instance, consider the task of 

floor cleaning in an office building. These approaches do not guarantee the cleanliness of 

large unbroken areas until a majority of the task is complete. FAST on the other hand, 

incrementally traverses the terrain generating structured trajectories for each robot. 

Following a structured trajectory for coverage path planning is proven to be a very powerful 

approach in the literature [Gonzalez 2003]. This renders large portions of the terrain usable 

even before the completion of the coverage task. The map representation techniques used in 

FAST render it scalable to large terrains, without affecting the volume of communication in 

the multi-robot system. The distributed nature of FAST allows incorporation of fault-

tolerance mechanisms. Empirical investigations on maps of varied complexities and sizes 

both in simulation and on an experimental test-bed demonstrate that the proposed algorithm 

performs better than some of the benchmark approaches in terms of coverage completion 

time and less redundant coverage. 

5.3 DISCUSSION ON REPRESENTATIVE APPROACHES  

In this section, a set of approaches that are representative of the state of the art in multi-robot 

terrain coverage and exploration are discussed. We conducted a detailed discussion on 

[Yamauchi 1998], [Burgard 2005], [Puig 2011], and [Gautam 2015] in Chapter-3. Therefore, 

in this chapter the discussion is restricted to a single robot structured trajectory approach 

known as BSA [Gonzalez 2003] and its multi-robot variant BSA-CM [Gerlein 2011]. 

5.3.1 BSA: A Coverage Algorithm  

BSA stands for Backtracking Spiral Algorithm and it works for a single robot [Gonzalez 

2003]. It assumes an occupancy grid based decomposition of the environment where size of 

each cell is equal to the footprint of the robot. Also whole of the free space is assumed to be 

a single connected component. This algorithm decomposes the free space into more than one 

structured spiral trajectories. The algorithm ensures complete coverage of all the free cells in 

the grid map. The main strategy of BSA can be divided into two parts: 
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 Covering the free grid cells using structured spiral trajectories and creation of simple 

regions 

 Using backtracking mechanism to link various simple regions 

The simple regions are incrementally constructed as the robot navigates the free space by 

following the structured spiral trajectories. All grid cells are initially unknown. When the 

robot traverses a particular cell it is marked as a "virtual obstacle" which cannot be accessed 

by the robot as it follows the spiral path. Other cells which are obstructed are marked as "real 

obstacles". As a result of following a spiral structured trajectory concentric ring like paths 

are formed that bring forth an unbroken route from the region’s periphery to a central point 

of spiral termination. The robots are initialized close to an obstacle either real or virtual. The 

obstacle should be located at the Reference Lateral Side (RLS) which refers to the direction 

in which robots should seek for obstacles while navigating and spiraling in. The opposite of 

Reference Lateral Side (RLS) is Opposite Lateral Side (OLS). The robots reactively execute 

Algorithm 5.1, the BSA Coverage algorithm to generate spiral trajectories.  

-------------------------------------------------------------- 

Algorithm 5.1 BSA Coverage 

-------------------------------------------------------------- 

1:  if obstacles all around then 

2:   backtrack 

3:  else if no obstacle in RLS then 

4:   turn to RLS 

5:   move forward 

6:  else if obstacle in front then 

7:   turn to OLS 

8:  else move forward 

9:  end if 

-------------------------------------------------------------- 

Some of the important properties of Algorithm 5.1 are listed below: 

 When executing the instructions specified by the algorithm virtual obstacles and real 

obstacles are treated alike.  

 When the algorithm terminates the cells that are marked as virtual obstacles represent 

unobstructed covered cells. 

 Along the spiral path while the robot is executing the algorithm backtracking points 

representing an alternate route are identified and recorded.  
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 When the algorithm terminates the robot adopts a shortest path to reach the nearest 

backtracking point. From this point onwards the robot again starts spiraling in. 

 The robot stops executing the algorithm when all backtracking points are exhausted 

from its list. This also indicates that no free and uncovered cells are left.   

The execution of the basic BSA algorithm is shown in Figure 5.1. The three spirals are 

shown with black colored lines. The robot, shown in maroon colored circle, always starts 

from a cell with an obstacle on its reference lateral side. It can be seen that when the robot is 

at position# 3, on its reference lateral side are green colored cells that are already covered 

and are treated as a virtual wall. 

 

Figure 5.1 Basic BSA Algorithm in Execution 

Although the algorithm is very simple and completely covers the terrain, it has a limitation 

in the sense that the robots are always required to start from a position adjacent to a wall on 

its reference lateral side. The authors have extended this algorithm for multi-robot a system 

in [Gerlein 2011] discussed next.  

5.3.2 BSA-CM  

In [Gerlein 2011], the authors have proposed, Coordinated Multi-Robot Backtracking Spiral 

Algorithm (BSA-CM) by extending BSA [Gonzalez 2003]. In this algorithm also the robots 

execute Algorithm 1 suggested for backtracking spiral coverage. In BSA-CM every robot 

after reaching to the end of its spiral path negotiates with other robots for one of the 
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remaining backtracking points in a distributed manner using auctions. Following are the 

crucial properties of this algorithm: 

 Every robot knows the initial position of all the other robots. 

 Each robot has a local instance of the global map which is updated every time some 

robot(s) makes a move and a cell(s) is modified. This information is broadcasted to 

all the robots. 

 Robots can be in one of the possible three states i.e., inactive, spiral, or return. 

 It is necessary for each robot to know the state of all the other robots. This is also 

achieved through broadcasts. 

 The robot that has won a backtracking point in a most recent auction cannot 

participate in the subsequent auction. This is done to introduce fairness in the system. 

But, this requires the robots to keep track of the timings of the auctions.  

Conflicts arise as the robots intersect the trajectories of other robots, this particularly 

happens in corridors and halls when the robots are in return state. This problem is tackled by 

employing a reservation mechanism wherein each robot under conflict broadcasts its state, 

current position on the map, next cell it is going to move to and the list of recently 

discovered backtracking points. There are two limitations of the BSA-CM algorithm. The 

first limitation is that, each robot has to maintain a lot of information about all the other 

robots and the environment. Moreover, as the coverage task progresses this information is 

updated in real-time requiring all robots to continuously send broadcast messages in order to 

maintain most recent and consistent information about the state of the environment and the 

state of the other robots. Even in moderate sized maps the volume of communication is 

going to remain very high. The second limitation is that, the method used by robots for 

selecting backtracking is purely greedy and does not disperse the robots effectively. This 

causes a problem in the sense that, when the robots are not dispersed enough, their spirals 

intersect and they have to backtrack. When backtracking they again end up choosing 

backtracking points in close proximity of each other eventually requiring the robots to follow 

redundant trajectories and the process repeats frequently almost after each auction. 

5.4 PROBLEM STATEMENT 

The task of terrain coverage using a homogeneous team of n robots is considered. The terrain 

is split into a number of equal-size square grid cells, with each such cell having an expanse 
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equal to the footprint of a robot. Robots are initialized at arbitrary locations on the terrain. 

Each robot is equipped with sensors that can sense obstacles lying within a space of one cell 

from the robot. Robots can reliably communicate with each other. By reliable, we refer to the 

fact that messages sent from a sender definitely reach the receiver, unless the receiver is out 

of reach. Further, a sender is able to detect whether or not the receiver is reachable. 

Formally, the terrain coverage task is stated as follows:  

Given N robots and a bounded terrain T composed of grid cells, assign a finite set of 

moves to each robot in a manner that each grid cell in T is visited by at least one robot, 

and within a finite number of time steps. 

5.5 ROBOT MODEL 

Each robot in the multi-robot team is modeled as a finite-state machine (FSM) as shown in 

Figure 5.2. The team can then be viewed as a set of equivalent and independent FSMs that 

interact by passing messages and are made to function in a synchronized fashion by using a 

special message referred to as the token. The FSM model of each robot has five states, viz. 

Sense Neighboring Cells, Wait for Token, Critical Section, Move Towards Target, and 

Handle Timeout. In the Sense Neighboring Cells state, the robot fires its sensors and 

determines the occupancy of its neighboring cells (if the occupancy is not already known to 

the robot) and transits to the Wait for Token state. In this state, the robot waits until it 

receives the token. If the token is not received until a specified deadline, a timeout is said to 

have occurred. The robot handles this timeout by transiting to the Handle Timeout state, after 

which it returns to the Sense Neighboring Cells state. In case the timeout does not occur, the 

robot transits from the Wait for Token state to the Critical Section state after receiving the 

token. At any particular time instant only one robot from the team is allowed to be in the 

Critical Section. Frontier selection and map updates are performed by the robots in the 

Critical Section. After releasing the token, the robot transits to the Move Towards Target 

state, where it takes one step closer to the target cell it has chosen, after which the robot 

returns to the initial state, viz. Sense Neighboring Cells. 
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Figure 5.2 Finite State Machine model of a robot 

5.6 FAST: SYNCHRONIZED FRONTIER ALLOCATION 

In this section, we detail, FAST (Frontier Allocation Synchronized by Token passing) to 

synchronize the allocation of a unique frontier cell to each robot in a particular time step. 

5.6.1 The Need for Synchronization 

The problem of terrain coverage is equivalent to that of allocating frontier cells, until all 

frontiers are exhausted. Based on the taxonomy presented in [Gerkey 2004a], the frontier 

cell allocation problem considered here falls under the ST-SR-IA (Single Task - Single 

Robot - Instantaneous Assignment) category of multi-robot task allocation problems. Here, 

each robot can take up the task of visiting only one frontier cell at a time (Single Task) and 

each frontier cell can only be allotted to one robot (Single Robot). This (re)allocation of 

frontier cells to robots occurs at each time step (Instantaneous Assignment). Moreover, 

robots perform target selection locally. To ensure that multiple robots do not select the same 

frontier, synchronized frontier selection is necessary.  

5.6.2 Synchronized Frontier Selection 

In FAST, the multi-robot system is analogous to a distributed computing system, where 

synchronization and mutual exclusion are achieved through token passing. Each token has a 

sequence number that serves as a timestamp to distinguish new tokens from old ones. A 

token also carries the map updates with respect to a global map which is shared by all the 

robots and is used for synchronized frontier selection. Each robot is assigned a unique 

integer id, referred to as the rank. The robots set up a virtual token ring network, with the 
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robot having the lowest rank assuming the role of a monitor. A token is circulated in the 

network, starting from the monitor, and reaches all robots in the increasing order of their 

ranks. The only exception to this rule is the monitor, which receives the token from the robot 

with the highest rank in the ring. The underlying physical topology of the (wireless) network 

allows for the transmission of broadcast messages. The information carried by the token is 

shown in Figure 5.3. Each token contains a sequence number, which indicates the recency of 

the token, and the ranks of the sending and the receiving robots. In addition to this, the token 

carries a compact representation of the map updates that is discussed in Section 5.5.4. 

 

Figure 5.3 Structure of the Token 

The algorithm that each robot runs is outlined in Algorithm 5.2. Each robot could be 

executing one of the three sections of this algorithm, viz. entry section, critical section, or 

remainder section. In its entry section, each robot waits for a token until a predetermined 

timeout period (Algo. 5.2, lines 3-4). Only after receiving the token, it can enter its critical 

section. If the token is not received before the timeout, a failure is identified and is handled 

by calling the IssueBeacon procedure (Algo. 5.2, lines 5-9). The exact mechanism of 

handling failures is described in Section 5.7. The selection of a frontier cell is to be made by 

each robot in its critical section, using the SelectNextTarget procedure (Algo. 5.2, line 16). 

Each robot maintains a local instance of the global map, which is updated and exchanged 

with other robots, along with the token. Hence, map updates are also done in the critical 

section (Algo. 5.2, lines 14, 17). The robot then exits the critical section, and in the 

remainder section, makes a move that takes it one cell closer to its selected frontier cell 

(Algo. 5.2, lines 18-19). The algorithm terminates when no more frontier cells are visible to 

the robot (Algo. 5.2, line 20). 

-------------------------------------------------------------- 

Algorithm 5.2 FAST 

-------------------------------------------------------------- 

1:  {Algorithm to be run on each robot} 

2:  repeat 

3:   start token timer with timeout τ1   ► Entry section 

4:   while token not received do     

5:    if tokenTimeout then 

6:     stop token timer 

7:     call IssueBeacon() 
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8:     goto line 3 

9:    end if 

10:    if beaconReceived then 

11:     call AcknowledgeBeacon() 

12:    end if 

13:   end while 

14:   read token and update map    ► Critical section 

15:   update token sequence number and frontier cell list 

16:   call SelectNextTarget() 

17:   flag selected target on token as allotted 

18:   release token 

19:   move a step closer to target    ► Remainder section 

20:  until no more frontiers are reported on the map 

-------------------------------------------------------------- 

The monitor is responsible for the creation and maintenance of the token. Initially, the 

monitor generates a token, updates the sequence number of the token, and uses the token to 

select a frontier cell. It then releases the token and performs its move. The token, then 

circulates in the network. 

5.6.3 Synchronized Move Selection 

Let the coordinates of a given robot in the global frame of reference be r. Also, let θP be the 

global preferred direction. The direction in this context does not have any real world 

reference or sensor measurement. It only refers to the direction of the map. For Example, 

North in a grid based map would be the direction in which the row coordinates decrease and 

column coordinate remains unchanged. The preferred direction is corresponding to the 

global from which usable area is to be created, and is common for all the robots. For 

example, if the preferred direction is set to cover north, all robots begin coverage by 

proceeding to the north edge. After reaching the north edge, they keep moving down, 

covering each row, until they reach the south edge. The distance ρ from the robot to any cell 

with coordinates c, is defined in equation 5.1 as 

ρ = path(r, c)                                                          (5.1) 

where path(r, c) denotes the length of the shortest path between robot r and cell c. While 

computing the shortest path, the locations of known obstacle cells are also taken into account 

by the path function. Also, for a cell c, we define the direction of c, denoted by θc, as the 

orientation of the position vector of the cell with respect to the global X axis. 
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In its critical section, as shown in Algorithm 5.2, a robot examines the map it received with 

the token and updates its local map instance (Algo. 5.2, line 14). It then increments the 

sequence number of the token and updates its list of newly discovered frontier cells (Algo. 

5.2, line 15). A new frontier cell is selected by calling the SelectNextTarget procedure as 

shown in (Algo. 5.2, line 16). The selected cell is flagged with the robot's rank (Algo. 5.2, 

line 17). In the SelectNextTarget procedure shown in Algorithm 5.3, a robot examines the 

frontier cells in its updated local map and makes a list L of the closest un-allotted frontier 

cells (Algo. 5.3, line 2). It then examines all frontier cells F ∈ L. If any cell F is found with 

θF = θP, that cell is selected (Algo. 5.3, line 3). If no cell satisfies this criteria, the robot 

computes δ  = |θF - θP| for each F ∈ L (Algo. 5.3, lines 4-5). The frontier cell with the least 

value of δ is selected (Algo. 5.3, line 6). Ties are broken arbitrarily. If a robot is not allotted 

any frontier cell, but it sees that the map contains some frontier cells allotted to other robots, 

it selects its current location as its target position. 

-------------------------------------------------------------- 

Algorithm 5.3 SelectNextTarget 

-------------------------------------------------------------- 

1:  make a list L of closest un-allotted frontiers 

2:  if  ∃F ∈ L such that θF  = θP, select F 

3:  if ∄ such F then 

4:   ∀F ∈ L, compute δ  = |θF - θP| 

5:   select the first frontier cell with the least δ 

6:  end if 

-------------------------------------------------------------- 

5.6.4 Map Representation 

In FAST, the instance of the map of the environment stored by each robot is represented by a 

thresholded occupancy grid, with the following discrete states - visited, flagged, unvisited, 

frontier, occupied. In most of the existing distributed algorithms for terrain coverage, there is 

also the notion of a global map [Sheng 2006]. The global map integrates the data from all 

local maps into a single consistent representation. However, in FAST, there is no single 

global map. There exist only map updates that are generated in the following fashion. Let N 

be the number of robots and 
1t

iM be the local map of robot i at the end of iteration t-1. In 

iteration t, robot i scans its neighboring cells and updates its local map. Upon receiving the 

token, the robot performs further map updates, followed by frontier selection (the details of 

which are presented in the following section). Then, the robot updates the map by marking 
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its selected frontier cell. Let this map be denoted by
t

iM . Now, the robot performs an 

exclusive-OR of 
1t

iM with 
t

iM  as shown below: 
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The XOR operation shown in equation 5.2 will leave only those frontier cells whose state has 

changed in the previous iteration. The set of these cells and their corresponding states 

Ni

iU )%1( 
, where % denotes the modulus operator, is the set of map updates passed from 

robot i to its Nearest Downstream Neighbor (NDN). The robot then passes these map 

updates along with the token. Since all robots follow this process, and because the token is 

drawn in a synchronized fashion, the local map of each robot is consistent with the global 

position, albeit with a time lag of one iteration. 

This method of passing map updates also results in the invariance of the space complexity of 

the message with the size of the map. In any particular iteration (except the first iteration), 

each robot can find at most seven frontier cells. This is reasoned as follows. A cell Cij can 

have at most eight neighboring frontier cells. Taking for granted that it is not the first time 

instant, the robot must have moved into Cij from some other cell. But, to reach Cij, the robot 

must pass through at least one of the neighbors of Cij, which leaves at most seven 

neighboring cells as frontier cells. Further, a robot can mark one cell as flagged and one cell 

as visited. Hence, in the worst case, the update set 
Ni

iU )%1( 
can contain a maximum of 9N 

values. Since this update set occupies the most of the space of the token, the space 

complexity of messages passed is linear in the number of robots. Since this complexity is 

independent of the size of the map, FAST is scalable to large terrains. 

5.6.5 Map Updates 

When a robot receives a token and enters its critical section, it scans the token and updates 

the map (Algo. 5.2, line 14). Precisely speaking, the following marking operations are 

performed by robot i on its local map and on the map updates carried along with the token.  

 The frontier cells that are already selected by other robots who have received the 

token before robot i are marked as flagged. 

 The sequence number of the token is incremented. 



120 
 

 The frontier cells that robot i moved to just before it began the current iteration is 

marked as visited. 

 The new frontier cells discovered by robot i in the course of the movement are 

marked as frontiers. 

 The cells that all robots j (j≠i) which have moved to in the previous iteration are 

marked as visited. 

 The new frontier cells discovered by all robots j (j≠i) are marked as frontiers. 

The robot then chooses its next frontier cell by calling the SelectNextTarget procedure as 

shown in Algorithm 5.2 and 5.3. It again updates the map by marking as flagged the frontier 

cell chosen by the SelectNextTarget procedure. 

5.7 FAULT TOLERANCE AND ROBUSTNESS 

In this section, we present the fault-tolerant mechanisms incorporated in FAST that makes it 

robust to failure of one or more robots. 

5.7.1 Network Setup 

As mentioned in the previous section, the logical robot-to-robot network topology is 

modeled as a variant of the token ring topology. In this topology, robots pass messages in a 

circular fashion, with each robot sending messages to the next robot in the ring, referred to 

as its Nearest Downstream Neighbor (NDN), and receiving messages from the previous 

robot in the ring, referred to as its Nearest Upstream Neighbor (NUN). When a monitor sets 

up a network, it also passes the network configuration information to every robot in the 

network. This configuration information specifies the rank of each robot, and helps 

determine the NUN and the NDN for each robot. It must be noted that this is only a logical 

topology used for inter-robot communication and should not be confused with the 

underlying physical topology. 

5.7.2 Fault-Tolerance Mechanism 

There are two kinds of failures in the token ring topology considered in this work - token 

loss, and robot failure. Since reliable inter-robot communication is assumed in our setup, 

token loss does not occur unless some robot fails while holding the token. In our fault-

tolerance mechanism, we assume that one or more robots can simultaneously fail. Moreover, 

a failed robot may or may not be the monitor of the token ring. In FAST, both single and 
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multi-robot failures are handled using the same mechanism, as shown in Algorithm 5.4 and 

5.5. Each robot has complete knowledge of the network topology (by virtue of the 

configuration information received from the monitor, during the network setup phase). In 

their entry sections, all robots start of a timer, referred to as the token timer, which counts 

down to zero from a predetermined initial value τ1 (Algo. 5.2, line 3). This value τ1 is set to 

the maximum time (determined empirically in Section 5.9.2) in which any robot should 

definitely receive a token back, after releasing it. In the event of a failure, some robot will 

experience a timeout of the token timer. This robot will then broadcast a special signal, 

referred to as the beacon signal (Algo. 5.4, line 1) and wait for a stipulated amount of time τ2 

(determined empirically in Section 5.9.2) for all the responses (Algo. 5.4, line 2).  

-------------------------------------------------------------- 

Algorithm 5.4 IssueBeacon 

-------------------------------------------------------------- 

1:  transmit a beacon signal 

2:  gather all received acknowledgements upto time τ2 

3:  if monitorIsAlive then 

4:   send results to monitor 

5:   start beacon timer with timeout period τ2 

6:   while new network not set up do 

7:    if beaconTimeout then 

8:     goto line 2 

9:    end if 

10:   end while 

11:   {network setup successful} 

12:  else 

13:   become monitor 

14:   set up network of alive robots 

15:  end if 

16:  receive map from NAUN 

17:  {resume normal operation} 

18:  return 

-------------------------------------------------------------- 

When other robots receive this beacon signal, they call the AcknowledgeBeacon procedure 

(Algo. 5.2, lines 10-12). Their token timers stop, and another timer, known as the beacon 

timer, starts on each robot (Algo. 5.5, lines 1-2). These robots then send an 

acknowledgement to the beacon sender (Algo. 5.5, line 3). This acknowledgement carries the 

rank of the robot and the sequence number of the most recently received token. After 

collecting all the responses, the beacon sender determines if the monitor is alive by 
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examining the responses (Algo. 5.4, line 3). If the monitor is alive, the beacon sender sends 

all the responses to the monitor and starts a beacon timer (Algo. 5.4, lines 4-5). The monitor 

then establishes the token ring using the ranks of each respondent. Now, the beacon sender 

receives the token from the Nearest Active Upstream Neighbor (NAUN) identified by the 

monitor (Algo. 5.4, lines 16-17). All robots clear their beacon timers and resume normal 

operation.  

-------------------------------------------------------------- 

Algorithm 5.5 AcknowledgeBeacon 

-------------------------------------------------------------- 

1:  stop token timer 

2:  start beacon timer with timeout τ2 

3:  send acknowledgement to beacon sender 

4:  while new network not set up do 

5:   if beaconTimeout then 

6:    wait for (n * τ2) / 2  (milliseconds), where n = rank of the robot 

7:    call IssueBeacon() 

8:   end if 

9:   if beaconReceived then 

10:    goto line 3 

11:   end if 

12:  end while 

13:  {resume normal operation} 

14:  return 

-------------------------------------------------------------- 

If the monitor is not found to be alive, the node that first experienced a token timeout and 

hence transmitted the beacon signal assumes the role of the monitor and sets up the network 

(Algo. 5.4, lines 13-14). The beacon timer is initialized to a value that would suffice for all 

acknowledgement transmissions, and new token ring setup time. The token timer is 

initialized to a value that would suffice for all token transmissions and robot movements. 

Whenever a beacon timer expires, a robot waits for some finite time proportional to its rank 

and issues a beacon signal (Algo. 5.5, lines 5-8). This is done to ensure that at any time 

instant; only one robot issues a beacon signal. An important aspect to ensure is the 

correctness of a token after the network is re-established. It is needed so that no frontier cell 

is left unvisited. We have seen that when a robot fails, the token that is circulated in the new 

network is the version of the token with the highest sequence number. To ensure complete 

coverage, we need the frontier cells that are left unvisited, since they were chosen by a robot 

which has failed to visit them. However, since the robot has failed, we have no way of 
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knowing whether or not the chosen frontier was actually visited. In FAST, we assume that it 

has not been visited. To enforce this assumption, the monitor that re-establishes the network 

clears the marked cells in the map that were chosen by the robots which have failed. 

Although this strategy may lead to redundancy, it ensures complete coverage even in the 

face of failure of robots. 

5.8 BACKTRACKING SPIRAL COVERAGE – COORDINATED MULTI-ROBOT 

IMPROVED (BSA-CMI) ALGORITHM 

In this section we propose, Coordinated Multi-Robot Backtracking Spiral Algorithm 

Improved (BSA-CMI) which is an improvement over BSA-CM proposed in [Gerlein 2011]. 

In particular, we have addressed the second limitation of BSA-CM which is that of 

redundant coverage due to local dispersion (details are in Section 5.3.2). In order to ensure 

faster completion of coverage, in BSA-CMI, the selection criteria of backtracking point is 

modified. This approach is weakly centralized in the sense that, a central station maintains a 

global list of backtracking points and provides access of this list to the robots, whilst 

ensuring mutual exclusion. Also, each robot receives map updates at the end of every time 

step from every other robot. Whenever any robot reaches the center of its spiral, it contacts 

the central station to access the list of backtracking points. The proposed algorithm 

associates with each backtracking point a constant penalization value. The cost of selecting a 

backtracking point is then defined as the sum of the distance to the backtracking point from 

the robot's current position and the penalization value. The backtracking point with the least 

cost (nearest in terms of Manhattan distance) is chosen. The chosen point (say ∆) is removed 

from the global list of backtracking points so that no other robot selects the same point. 

Further, all backtracking points within the radius σ = 5 (an empirically determined constant) 

of ∆ are penalized by a high constant value δ = 100. This causes the robots to disperse and 

ensures that not many robots are close to each other. Hence their spirals do not intersect. A 

high value of σ does not allow some robots to select a backtracking point rather they will be 

pulled by random cells in the free space that are still uncovered. Therefore, these robots will 

have to travel longer distances and still they will contribute to increased redundant coverage. 

When compared with BSA-CM we have got improved results for BSA-CMI in terms of 

reduced time to complete coverage and reduced overlapping coverage. The spiraling 

algorithm used in BSA-CMI is exactly the same as the one used in BSA-CM. The simulation 

and experimental results are presented in Section 5.9. 
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5.9 EXPERIMENTS AND RESULTS 

The proposed approach has been evaluated extensively in simulation as well as on real 

multi-robot test-bed. In this section, we provide a description of the experiments performed 

and analyze the results obtained. 

5.9.1 Simulation Results 

To evaluate the performance of FAST, we consider two benchmark approaches for multi-

robot terrain coverage [Gautam 2015, Gerlein 2011]. In Chapter 4, we have proposed a 

centralized approach, referred to as CAC, for online multi-robot terrain coverage. CAC 

outperforms three state of the art approaches [Yamauchi 1998], [Burgard 2005], and [Puig 

2011]. Therefore, CAC is considered as a representative of approaches that perform frontier 

allocation followed by re-planning. A structured trajectory based online multi-robot 

coverage approach is suggested in [Gerlein 2011], referred to as BSA-CM. In this chapter a 

modified approach referred to as BSA-CMI is proposed by extending BSA-CM. Both BSA-

CM and BSA-CMI are considered as a representative of structured trajectory approaches. 

We have compared FAST with CAC, BSA-CM, and BSA-CMI to establish it as a new 

benchmark.  

All the approaches have been evaluated on maps of different sizes, complexities, and varied 

team size of the multi-robot system. To provide a consistent comparison among all the 

approaches, a multi-robot simulation framework is developed in python. In all our 

experiments the robot's sensing range is restricted to one cell i.e., the eight cells surrounding 

the robot's current position. The empirical performance evaluation is based on the following 

metrics:  

 Completion time - It is measured in terms of total number of iterations for complete 

coverage of the terrain. An iteration is defined as the time period in which each robot 

of the team chooses a cell and moves to it.  

 Percentage redundancy - It is measured in terms of occupancy grid cells. If there are 

X number of free cells to be covered and the sum of the total number of moves made 

by each robot is Y, such that, Y > X, then extra moves made by the robot team is ∆X = 

Y-X. Then percentage redundancy is computed as follows: 

% Redundancy = [(X + ∆X) / X] * 100   (5.3) 
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The maps used for evaluating the algorithms are shown in Figure 5.4. Figure 5.4(a) is a Free 

World map without any obstacles. Figure 5.4(b) is an Outdoor map with many small 

obstacles arbitrarily scattered in the whole region. Figure 5.4(c) represents an Office type 

environment wherein there are many rooms with door openings connecting them to other 

rooms and corridors. The obstacles in Office map are long walls spanning across whole of 

the environment. The three maps shown in Figure 5.4(a), 5.4(b), and 5.4(c) are large maps 

with a dimension of 50×50 cells. Also, one important property of the three maps shown in 

Figure 5.4 is that, the entire free space is a single connected component. Figure 5.5, 5.6, and 

5.7 show snapshots of the progress of FAST on different terrains in a simulation 

environment. In all simulations, the preferred direction was set to North (the top edge of the 

map). The emergent behavior of creating large, usable chunks of connected visited cells can 

be observed. 

 

Figure 5.4 Three different terrains used for simulation (dimensions: 50 x 50 cells) 

For each map and different sizes of the robot team, the simulation was run 25 times, with 

random initial positions of the robots. In each case, the time in terms of number of iterations 

for complete coverage and percentage redundancy is measured. As a general trend it can be 

observed for all the approaches considered for evaluation that, irrespective of the map, if the 

number of robots are increased the completion time starts reducing. This is shown in Figures 

5.8, 5.10, and 5.12. On the other hand, the percentage redundancy starts increasing as shown 

in Figures 5.9, 5.11, and 5.13. Next, we discuss the consolidated results of the completion 

time graphs shown in Figures 5.8, 5.10, and 5.12 and percentage redundancy shown in 

Figures 5.9, 5.11, and 5.13. 

      (a) Free World           (b) Outdoor Map   (c) Office Map 
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Figure 5.5 Progress of the algorithm in the Free World map with 4 robots 

 

 

Figure 5.6 Progress of the algorithm on the Outdoor map with 4 robots 
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Figure 5.7 Progress of the algorithm in the Office map with 4 robots 

From Figures 5.8-5.13 it can be inferred that CAC does not perform better than any of the 

structured trajectory approaches viz., BSA-CM, BSA-CMI, and FAST. BSA-CM on the 

other hand, generates structured trajectories and does not leave behind uncovered cells and 

hence it performs better than CAC. Since BSA-CMI ensures better selection of next target 

cell by robots when compared to BSA-CM, it performs better, especially if the number of 

robots are more. FAST performs better than all the other algorithms since it exploits the best 

of the both worlds, a motion planning scheme which ensures that at each time instant (except 

when the number of frontier cells are less than the number of robots), every robot has a 

frontier to move to, and also it follows a structured trajectory. Some other important 

observations are as follows: 

 Both the completion time and the percentage redundancy for all the approaches 

increase as the complexity of the map increases. This is evident from the completion 

time graphs of Figure 5.8, 5.10 and 5.12 and redundancy graphs of Figure 5.9, 5.11, 

and 5.13. 

 The percentage improvement (in terms of coverage completion time and non-

overlapping coverage) of FAST over other approaches is shown in Tables 5.1, 5.2, 

and 5.3 with respect to Free World, Outdoor and Office Maps respectively. It can be 

easily inferred that FAST outperforms all the approaches irrespective of the 

complexity of the map used for evaluation.  
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Figure 5.8 Completion Time measured in the Free World Map 

 

 

Figure 5.9 Percentage Redundancy measured in the Free World Map 
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Table 5.1 Comparison of FAST with different approaches in Free World Map 
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2 

CAC 15.8 66.9 

BSA-CM 10.4 55.7 

BSA-CMI 5.3 37.8 

4 

CAC 21.1 51.7 

BSA-CM 15.9 43.1 

BSA-CMI 7.1 29.9 

6 

CAC 23.4 50.5 

BSA-CM 17.3 40.8 

BSA-CMI 10.8 25.6 

8 

CAC 23.6 49.3 

BSA-CM 17.7 38.7 

BSA-CMI 9.4 21.7 

10 

CAC 20.9 43.9 

BSA-CM 16.7 35.2 

BSA-CMI 5.7 15.2 

 

 

Figure 5.10 Completion Time measured in the Outdoor Map 
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Figure 5.11 Percentage Redundancy measured in the Outdoor Map 

Table 5.2 Comparison of FAST with different approaches in Outdoor Map 

M
A

P
 

R
O

B
O

T
S

 

FAST vs. 

PERCENTAGE IMPROVEMENT 

IN COVERAGE COMPLETION 

TIME 

PERCENTAGE IMPROVEMENT 

IN NON-OVERLAPPING 

COVERAGE 

O
U

T
D

O
O

R
 M

A
P

 

2 

CAC 13.7 37.3 

BSA-CM 11.04 31.48 

BSA-CMI 4.4 20.63 

4 

CAC 17 35.8 

BSA-CM 12.63 32.88 

BSA-CMI 6.53 14.65 

6 

CAC 22.7 33.3 

BSA-CM 13.78 24.42 

BSA-CMI 7.76 13.95 

8 

CAC 19.9 31.12 

BSA-CM 13.06 20.95 

BSA-CMI 6.23 12.63 

10 

CAC 16.4 24.5 

BSA-CM 9.02 13.96 

BSA-CMI 4.22 6.66 
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Figure 5.12 Completion Time measured in the Office Map 

 

Figure 5.13 Percentage Redundancy measured in the Office Map 
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Table 5.3 Comparison of FAST with different approaches in Office Map 

M
A

P
 

R
O

B
O

T
S

 

FAST vs. 

PERCENTAGE IMPROVEMENT 

IN COVERAGE COMPLETION 

TIME 

PERCENTAGE IMPROVEMENT 

IN NON-OVERLAPPING 

COVERAGE 

O
F

F
IC

C
E

 M
A

P
 

2 

CAC 13.85 36.8 

BSA-CM 12.47 33.33 

BSA-CMI 6.82 21.73 

4 

CAC 18.7 33.9 

BSA-CM 13.69 28.2 

BSA-CMI 6.9 16.83 

6 

CAC 21.7 31.7 

BSA-CM 15.22 22.72 

BSA-CMI 8.27 11.85 

8 

CAC 18.74 27.7 

BSA-CM 13.44 18.07 

BSA-CMI 7.2 11.62 

10 

CAC 17.1 25.5 

BSA-CM 11.65 20.41 

BSA-CMI 4.14 9.48 

 

We now consider another advantage of FAST, i.e., its ability to handle the failure of one or 

more robots. To validate the same, simulations were performed (on the Free World, Outdoor 

and Office maps) where one robot from the team was randomly selected and stopped 

(indicating failure) in its current cell after every 250 iterations. FAST, [Burgard 2005], and 

[Yamauchi 1998] have been evaluated in this respect. Other approaches i.e., CAC, BSA-

CM, and BSA-CMI were not evaluated, as they do not make any claims of fault-tolerance. It 

can be seen from Figure 5.14, 5.15 and 5.16 that FAST completes coverage in lesser number 

of iterations as compared to the other approaches, even when the robots fail. It is because the 

algorithm FAST follows structured trajectories and do not leave unvisited frontier cells in a 

haphazard fashion, allowing other robots to take over the remaining work of the failed 

robot(s). In a nutshell, FAST achieves faster coverage compared to all approaches 

considered for evaluation and for all the maps, robot team sizes, and random distribution of 

robots. Also, FAST performs less redundant coverage than the other approaches because, in 

each iteration, every robot makes a move, and in most cases, the move results in robots 

moving to uncovered cells.  
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Figure 5.14 Completion time measured in the Free World map with one robot failing 

every 250 iterations (until only one robot is alive) 

 

Figure 5.15 Completion time measured in the Outdoor map with one robot failing 

every 250 iterations (until only one robot is alive) 
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Figure 5.16 Completion time measured in the Office map with one robot failing every 

250 iterations (until only one robot is alive) 

5.9.2 Physical Experiments 

The proposed approach has also been tested on a multi-robot system comprising of Firebird 

V robots [Firebird 2016]. The robots use an ATMEGA2560 AVR microcontroller and are 

equipped with an on board 2.4 GHz XBee wireless module with communication rate up to 

115.2 Kbps. The XBee modules could be set at 16 different frequency separated channels. 

On each channel, simultaneous communications without interference is possible. For 

localization of the robots, a visual marker tracking system was used to uniquely identify each 

robot and provide it with its global position on the terrain. In all the above experiments, the 

values of 𝜏1  and 𝜏2 are determined experimentally, to suit the Firebird V robots. To 

determine the value of 𝜏1, two experiments were conducted:  

(a) In the first experiment, a token was passed on a network of 5 robots, for 50 iterations. 

It was found that reading the token, updating the local map and frontier selection 

takes 0.589 seconds in the worst case (profiling is done for Algo. 5.2, line 14-17). 

Therefore, each robot, upon receiving a token, held it for 0.654 seconds (also 

accounting for packet transmission delay of 65.84 milliseconds) and then transmitted 

the token to the next robot in the ring. The time for a token to come back to the robot 

that has generated the token was noted as t1 and is 3.27 seconds.  
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(b) In the second experiment, a single robot was made to move randomly from its current 

location to one of its neighboring cells for 50 iterations. The average time taken by 

the robot to make a move was noted as t2 and is no more than 6 seconds in the worst 

case. From these two experiments, 𝜏1 was estimated as follows: 

𝜏1 =  21 tt       (5.4) 

Estimating 𝜏2 is a two-step process which is described below: 

(a) First of all, the packet delay in the XBee network is measured. One robot is 

programmed to send a message m of size 10 bytes to the coordinator of the XBee 

network (a module attached to a desktop computer) for 50 iterations spaced at an 

interval of 5 seconds. The robot then waits for the response from the coordinator i.e., 

an acknowledgement packet. Therefore, the delay is defined in terms of the RTT. In 

case the ACK is not received by the robot from the coordinator, retransmission is 

done. On our multi-robot test-bed, the XBee module is connected to the ATMEGA 

2560 onboard the robot. This device sends the message m to the coordinator of the 

XBee network and waits for the ACK. It was observed that the delay was between 64 

milliseconds (lower bound) and 67 milliseconds (upper bound). The average of 50 

iterations (say t3) was found to be 65.84 milliseconds.   

(b) The network setup time in the presence of robot(s) failure is computed. The virtual 

token ring network of five Firebird V robots is established afresh in 50 iterations. In 

each iteration one or more robot fails with a locally controlled probability and the 

network is reconfigured. Here failure of a robot in a particular iteration means that 

the robot voluntarily stops responding to any message received in that iteration. The 

reconfiguration process is in accordance with Algorithm 5.4 and Algorithm 5.5, 

suggested for handling failure. It was found that the multi-robot system is able to 

gracefully recover from failures in time less than 200 milliseconds (upper bound) in 

all the iterations. Therefore, network setup time (say t4) is set to 200 milliseconds. 

From these two experiments,  𝜏2 was estimated as follows: 

𝜏2 =  43 tt       (5.5) 

In order to validate the simulations and also to demonstrate the feasibility of the proposed 

approach, physical experiments were conducted by considering the multi-robot team size of 

2, 3, 4, and 5 robots on three different terrains, as shown in Figure. 5.17. The maps are 
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discretized into 10×10 square grid cells of size equal to the footprint of the robot which is 

0.2 m2. Two performance metrics have been considered for evaluation of the considered 

approaches: 

 Completion time - is measured in seconds and is calculated by starting a timer as 

soon as the multi-robot system is activated to perform coverage. The start time is 

recorded as t1. The timer stops as soon as the last robot in the multi-robot system 

finishes its coverage task. The end time is recorded as t2. The completion time is the 

difference of end time and the start time i.e., t2-t1. 

 Percentage redundancy - is measured in the same way as measured in simulation 

(refer to Section 5.9.1). 

 

Figure 5.17 Three different maps used in terrain coverage experiment 

Figures 5.18, 5.20, and 5.22, show the completion time (in seconds) of CAC, BSA-CM, 

BSA-CMI, and FAST on physical robots for three different maps, viz. Circular Maze, Bar 

Maze, and Living Room respectively. Irrespective of the terrain map and the coverage 

algorithm, increasing the number of robots results in reduced completion time. The proposed 

algorithm (FAST) performs better than all the other state-of-the-art approaches. In BSA-CM 

and BSA-CMI, the robots select a nearest backtracking point in an iterative manner and 

covers them first and as a result it takes the two algorithms more time to complete the 

coverage task.  

The performance of a coverage approach is also dependent on overlapping coverage 

generated by the robots. Overlap in the coverage results in suboptimal utilization of the 

system resources. Referring to the redundant coverage graph of Circular Maze map, Bar 

Maze map and Living Room map as shown in Figure 5.19, 5.21 and 5.23 respectively, it can 

be observed that increasing the number of robots results in increased redundant coverage. In 

  (a) Circular Maze Map       (b) Bar Maze Map     (c) Living Room Map 
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spite of that, for the proposed algorithm (FAST) the increase in redundant coverage is the 

least when compared with other approaches. The exact percentage improvement of FAST 

over other algorithms (in terms of completion time and non-overlapping coverage) is given 

in Tables 5.4, 5.5, and 5.6 for Circular Maze, Bar Maze, and Living Room respectively. 

 

Figure 5.18 Completion Time measured in the Circular Maze Map 

 

Figure 5.19 Percentage Redundancy measured in the Circular Maze Map 
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Table 5.4 Comparison of FAST with different approaches in Circular Maze Map 

M
A

P
 

R
O

B
O

T
S

 
FAST vs. 

PERCENTAGE IMPROVEMENT 

IN COVERAGE COMPLETION 

TIME 

PERCENTAGE IMPROVEMENT 

IN NON-OVERLAPPING 

COVERAGE 

C
IR

C
U

L
A

R
 M

A
Z

E
 

2 

CAC 18.5 25 

BSA-CM 12.3 18.18 

BSA-CMI 6.89 10 

3 

CAC 20.3 30.2 

BSA-CM 13.66 23.07 

BSA-CMI 7.33 9.09 

4 

CAC 20.6 27.7 

BSA-CM 15.11 20.93 

BSA-CMI 7.47 10.52 

5 

CAC 25.2 20 

BSA-CM 17.89 15.38 

BSA-CMI 9.05 6.38 

 

 

Figure 5.20 Completion Time measured in the Bar Maze Map 
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Figure 5.21 Percentage Redundancy measured in the Bar Maze Map 

Table 5.5 Comparison of FAST with different approaches in Bar Maze Map 

M
A

P
 

R
O

B
O

T
S

 

FAST vs. 

PERCENTAGE IMPROVEMENT 

IN COVERAGE COMPLETION 

TIME 

PERCENTAGE IMPROVEMENT 

IN NON-OVERLAPPING 

COVERAGE 

B
A

R
 M

A
Z

E
 

2 

CAC 22.9 24.2 

BSA-CM 17.11 16.66 

BSA-CMI 9.2 10.71 

3 

CAC 21.7 25 

BSA-CM 15.26 18.91 

BSA-CMI 9.19 11.76 

4 

CAC 20.3 26.7 

BSA-CM 14.12 19.5 

BSA-CMI 7.87 10.81 

5 

CAC 26.8 20.8 

BSA-CM 19.39 16 

BSA-CMI 12.11 10.63 
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Figure 5.22 Completion Time measured in the Living Room Map 

 

Figure 5.23 Percentage Redundancy measured in the Living Room Map 
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Table 5.6 Comparison of FAST with different approaches in Living Room Map 

M
A

P
 

R
O

B
O

T
S

 

FAST vs. 

PERCENTAGE IMPROVEMENT 

IN COVERAGE COMPLETION 

TIME 

PERCENTAGE IMPROVEMENT 

IN NON-OVERLAPPING 

COVERAGE 

L
IV

IN
G

 R
O

O
M

 

2 

CAC 18.3 32.14 

BSA-CM 13.25 24 

BSA-CMI 6.8 13.63 

3 

CAC 19.16 31.42 

BSA-CM 13.51 25 

BSA-CMI 7 14.28 

4 

CAC 20.4 26.31 

BSA-CM 14.34 20 

BSA-CMI 7.94 12.5 

5 

CAC 23.8 20 

BSA-CM 16.9 14.28 

BSA-CMI 8.43 7.69 

 

Snapshots of the Firebird V robots executing the proposed algorithm at different stages of 

execution can be seen in Figure 5.24, 5.25, and 5.26. The map of the environment is not 

known initially. The status of the white colored cells is not known to the robots. Rather, the 

robots use their range sensors to detect the status of the eight cells surrounding their current 

position. In Figure 5.24, three robots are shown to perform coverage of an environment free 

of obstructions. The preferred direction is set to the north edge of the map. As the robots 

proceed with the coverage task they generate structured trajectories which results in 

contiguous coverage of the unknown region. In our experiment as the robots incrementally 

traverse the frontier cells those cells are marked as covered and are shown in light yellow 

color. The trajectories of the three robots are shown in three different colors, i.e. blue, 

purple, and red. In Figure 5.25, three robots are shown to perform coverage in an 

environment with two randomly placed obstacles. Again, it can be seen that the robots 

complete the coverage task by contiguously covering all the cells. A similar situation is 

shown in Figure 5.26 wherein three robots are dispatched to cover the terrain with two 

obstacles randomly placed in the environment, but this time except one, the other two robots 

are programmed to fail (stop) after every six iterations. Figure 5.26(c) shows the failure of 

one robots and Figure 5.26(g) shows the failure of the second robot. In spite of the failure of 
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two robots one robot (with the blue trail) still completes the terrain coverage task. Also, it 

can be seen that the terrain coverage pattern is still contiguous.  

 

Figure 5.24 Three Firebird V Robots Executing the Algorithm FAST in a Free Space 

 

Figure 5.25 Three Firebird V Robots Executing the Algorithm FAST in an Obstructed 

Environment 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (k) (l) (j) 
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Figure 5.26 Three Firebird V Robots Executing the Algorithm FAST in an Obstructed 

Environment. One Robot Fails after Every Six Steps 

5.10  CHAPTER SUMMARY 

A completely distributed approach, Frontier Allocation Synchronized by Token Passing 

(FAST), is proposed in this chapter. It is a frontier propagation approach wherein the robots 

use token passing for mutually exclusive selection of the frontier cells. FAST is capable of 

handling failures of multiple robots. Prior approaches cover the terrain in an irregular 

fashion without considering the usability of already covered regions. FAST on the other 

hand, enforces the robots to follow a structured trajectory which is proven to be a powerful 

approach for coverage path planning method in the literature. The robots have a common 

notion of a global preferred direction, such that, a robot always selects and moves to a 

frontier cell in that direction (if an unvisited frontier cell exists). This renders large portions 

of the terrain usable even before the completion of the coverage task. An information 

dissemination strategy for map data fusion among the robots is suggested that makes FAST 

scalable on larger terrains and team sizes. Also, a multi-robot extension of an existing 

structured trajectory approaches BSA-CM [Gerlein 2011], referred to as BSA-CMI, and is 

proposed in this paper. The performance of FAST is compared with four different 

approaches which are representative of the state of the art both in simulation and on a real 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
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multi-robot test-bed. The empirical results thus obtained substantiate the fact that the 

performance of FAST is better than other approaches.  

The team of mobile robots executing the proposed algorithm (FAST) exhibits coordination 

by way of message passing for the purpose map building, task allocation (frontier selection) 

and handling failure. Therefore, FAST effectively coordinates the robots by carefully 

synchronizing the robots in their critical sections. As a result, the algorithm FAST is more 

efficient when compared with the other state-of-the-art approaches. One important aspect of 

coordination in a multi-robot system is load balanced distribution of the workload which has 

been paid least attention. In the next chapter, the problem of decomposition of the unknown 

region is considered. A multi-robot coordination algorithm is proposed which creates 

balanced partitions of the unknown region to be processed by each robot. 
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CHAPTER 6 

BALANCED PARTITIONING OF AN UNKNOWN REGION FOR 

EFFICIENT MULTI-ROBOT COORDINATION 

 

6.1 INTRODUCTION 

Autonomous navigation of a mobile robot in an unknown environment is one of the most 

fundamental tasks. It is evident from the literature that the use of multiple mobile robots 

increases the efficiency of the task by speeding up the task completion time while at the same 

time it increases the robustness of the system and makes it fault tolerant [Guzzoni 1997]. The 

redundancy offered by multi-robot system is often taken advantage of to compensate for 

sensor uncertainties when overlapping sensor data of different robots is fused to generate a 

common consistent representation of the world [Juliá 2012]. On the contrary researchers have 

also studied the risks of interference of active sensor like, ultrasound, IR, laser [Goldberg 

1997], [Schneider-Fontán 1998], [Boada 1998] in a multi-robot scenario. Increasing the 

number of robots only aggravates the problem and robots spend a lot of time in avoiding 

collisions. Another challenging problem faced when coordinating a group of mobile robots to 

achieve some common objective is to decompose a bigger task into smaller task subsets and 

then assigning these task subsets to individual robots in such a way that all robots finish their 

tasks almost at the same time. In other words, we can say that the multi-robot system should 

be harnessed to its true potential by load balancing. For instance, consider the task of cleaning 

a floor in an office building on a regular basis. It is truly advantageous if the multi-robot 

system only requires a floor plan to execute its mission. The multi-robot system should 

autonomously segment this floor plan into elementary units or simple regions, like, rooms, 

halls, and corridors. Further, these elementary units should be combined to create nearly 

balanced partitions (i.e., partitions of the map that are almost equal in size in terms of area). 

This goal can only be achieved efficiently if the operational domain of the robot is properly 

segmented. To this end, there are two commonly used methods to decompose the unknown 

region into smaller regions. The first method is grid based decomposition [Elfes 1989] and 

the second method is polygon/ topological decomposition [Wu 2007]. The later method is 

shown to be more efficient than [Elfes 1989] when it comes to reduced task completion time 

and reduced sensor interference between the robots [Wurm 2008]. In fact, grid based maps 
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are not appropriate for navigation and path planning since they have greater reliance on the 

position of the robots. Also it is difficult to manage and maintain grid based maps especially 

in bigger regions due to their large memory and computational demands. On the other hand, 

topological maps are simple and inherently suitable for robot navigation and path planning.  

Furthermore, the produced maps are translated into graph data structure in which the vertices 

correspond to the regions like, rooms, halls, and corridors, and edges represent the 

connectivity of these regions with each other. The topological maps allow application of 

several algorithms used in graph theory for efficient planning by decoupling the planning 

algorithm from the absolute and accurate positions of the robots [Portugal 2013]. Richard et. 

al. [Bormann 2016] has conducted an excellent survey, and have given empirical comparison 

of four different approaches, that are, Voronoi graph based segmentation, morphological 

segmentation, distance transform based algorithm and feature-based partitioning. Given the 

floor plan these four approaches are commonly used for room segmentation. The authors 

have shown that Voronoi graph based segmentation method is best both qualitatively and 

quantitatively because of its compact clusters. This is the primary reason why several 

researchers have relied on the said method in different applications of multi-robot systems 

including but not limited to terrain coverage [Breitenmoser 2010], area exploration [Haumann 

2010], patrolling [Fazli 2013], and search and rescue [Fu 2009]. But, Voronoi graphs do not 

produce balanced partitions and therefore many approaches using them are incapable of 

producing even assignments of the task subsets to individual robots. As a result, some robots 

have to process large portions of the unknown region while others stay idle. This 

underutilization of the resources and imbalance of workload in multi-robot system opens up 

opportunities for further research.  

In this chapter, we suggest an approach for creating balanced partitions of an unknown 

region which are then assigned to multiple robots so that each robot can process their 

assigned regions in a mutually exclusive manner without interference. The proposed method 

requires the robots to use minimalistic sensors to first determine the skeleton of the unknown 

region which is then converted into a weighted connected graph. Further, this graph is 

partitioned into sub-graphs that are maximally balanced using genetic algorithm. These sub-

graphs are optimally assigned to the available robots using an optimal assignment 

method. To the best of our knowledge this is the first attempt in this direction. The rest of 

this chapter is organized into eight sections. A discussion on approaches based on polygonal 

partitioning of the unknown region is presented in Section 6.2. Primary motivation for this 
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research is presented in Section 6.3. The contributions of this research are presented in 

Section 6.4. Problem statement and assumptions are detailed in Section 6.5. Section 6.6 

provides a detailed description of the proposed approach. In Section 6.7, the problem of 

maximally balanced connected partitioning of the topological graph using genetic algorithm 

is discussed. The simulation environment and results are presented in Section 6.8. Chapter 

summary is presented in Section 6.9. 

6.2 A DISCUSSION ON REPRESENTATIVE APPROACHES 

In this section, three different region segmentation based approaches for online exploration 

and coverage are discussed. 

6.2.1 Clustering Unknown Space using K-means for Multi-Robot Exploration 

Solanas and Garcia [Solanas 2004] have suggested an algorithm for multi-robot exploration 

in an unknown environment. The bounds of environment are known and no communication 

restrictions are imposed on the robots. The environment is represented as an occupancy grid 

map [Elfes 1989]. The cells in the unknown region are clustered using the K-means 

algorithm to obtain as many partitions as the number of robots. These partitions are allocated 

to the robots for further exploration. As any one robot reaches the centroid of its assigned 

cluster the remaining unknown space is re-clustered and the process continues until the 

whole environment is explored. In Figure 6.1, eight robots are shown to perform exploration 

of an unstructured working space populated with scattered obstacles. The black areas are the 

already-found obstacles and the irregular spots and rectangles in the background are 

obstacles that have not been found yet. This is a centralized approach which is 

computationally expensive. Moreover, the multi-robot system conducts uneven exploration. 

6.2.2 Voronoi based Space Partitioning for Multi-Robot Exploration 

Wu et. al., [Wu 2007] has extended the previously discussed approach [Solanas 2004]. They 

strongly criticize the use of occupancy grid maps and K-means clustering for region 

partitioning and suggest the use of polygonal decomposition i.e., the Voronoi diagrams for 

spatial partitioning of the unknown region. The rest of the algorithm is similar to [Solanas 

2004]. In Figure 6.2, an example of partitioning sequence of an unknown region using 

Voronoi diagrams with eight robots (K=8) is shown. It is not necessary to know the bounds 

of the environment and no communication restrictions are imposed on the robots. It is also a 

centralized approach which is shown to perform better than [Solanas 2004] in terms of the 

time it takes for the multi-robot system to create partitions of the unknown region as shown 
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in Figure 6.3. This approach does not guarantee balanced partitioning of the region to be 

explored by multi-robot system. 

 

Figure 6.1 K-means clustering of an unknown region suggested in [Solanas 2004] 

 

Figure 6.2 Voronoi based spatial clustering of an unknown region suggested in [Wu 2007] 

 

Figure 6.3 Partitioning times during the exploration of a big-size blank map of 400x400 

cells with 8 robots [Wu 2007] 
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6.2.3 Voronoi graph based Segmentation for Multi-Robot Exploration 

A Voronoi graph based segmentation method is suggested in [Wurm 2008]. The map of the 

environment is not known beforehand. However, the bounds of the environment are known. 

No communication restrictions on the robots are imposed. A Voronoi graph of critical points 

on the doorways and the narrow spaces is constructed, as shown in Figure 6.4. These critical 

points are assigned to the robots using an optimal allocation algorithm for further exploration. 

The suggested approach is compared and shown to be performing better than the basic 

frontier based exploration algorithm suggested in [Yamauchi 1998]. This approach is a 

centralized approach and it also does not make any claims regarding balancing the workload 

of multi-robot system. 

 

Figure 6.4 Vornoi graph based segmentation of the environment [Wurm 2008] 

6.3 MOTIVATION FOR RESEARCH 

Our primary motivation for conducting this research comes from the algorithm suggested in 

[Hungerford 2014, Hungerford 2016] (henceforth referred to as KH-Algorithm). The robots 

are required to perform area coverage and for that they traverse the boundaries of their 

Voronoi regions. It is shown that some portion of the robot's partition becomes inaccessible 

due to the presence of obstacles as shown in Figure 6.5(a). The inaccessible patches once 

identified are auctioned to other robots in the adjoining regions. Initially the robots are 

sufficiently dispersed in the unknown environment and only after that the Voronoi 

partitioning is done. The main problem is that the partitions thus created are of uneven sizes. 
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If the robots are allowed to process the partitions right away it will be an unbalanced 

utilization of system resources because some robots will have to process larger regions. The 

problem is further aggravated when some portions of the robot's partition becomes 

inaccessible due to the presence of obstacles as shown in Figure 6.5(b). The imbalance in 

workloads of the robots i.e., the size of the region that each robot has to process leaves certain 

robots idle leading to underutilization of the resources. This factor is not considered in KH-

Algorithm. The proposed approach extends KH-Algorithm for balanced partitioning and 

allocation of the unknown region to the multi-robot system. Our approach is particularly 

suitable for indoor environments like office buildings, hospitals, department buildings in 

universities etc. Such environments comprise of a series of rooms, corridors, waiting halls, 

lobbies etc. The proposed approach successfully produces balanced spatial partitions in such 

environments. 

 

Figure 6.5 (a) Two robots have a portion of their Voronoi partitions inaccessible (b) 

The inaccessible portions are auctioned to the robots in the adjoining partitions 

[Hungerford 2016] 

6.4 OUR CONTRIBUTION 

1. The KH-Algorithm is solely based on Voronoi partitioning and auctioning for spatial 

partitioning of the unknown environment. We have implemented this algorithm and 

analyzed the imbalance in the spatial partitioning of the unknown environment. 

2. We have extended the KH-Algorithm by constructing a topological graph on top of 

the partitions produced, by using the algorithm suggested in [Thrun 1998], which is 

one of the seminal works in mobile robot navigation. 
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3. A significant contribution of the proposed approach is that the spatial partitioning 

process is independent of the initial position of the robots. On the other hand, the size 

and shapes of the partitions produced by many approaches [Wu 2007], [Wurm 2008], 

[Solanas 2004], [Fu 2009], and [Fazli 2010] including the KH-Algorithm depends on 

the initial positions of the robots and therefore produce uneven partitions.   

4. The topological graph thus obtained is partitioned into maximally balanced and 

connected partitions using genetic algorithms [Cincotti 2002] which are then assigned 

to the individual robots using the Hungarian method [Kuhn 1955].  

5. This leads to fair division of the workload among the robots i.e., almost balanced 

partitions in terms of the area that is to be processed by each robot and as a result the 

multi-robot system is harnessed to its true potential. 

6.5 PROBLEM  STATEMENT 

6.5.1 Robot's Workload Defined 

The workload of the robot is defined as the size of the region each robot needs to process for 

the purpose of cleaning, exploration, search, patrolling and variety of other tasks. The 

proposed approach aims at partitioning the unknown environment into n different partitions 

(where n is the number of robots) and then assigns each region to unique robots. The number 

of robots to be dispatched completely depends on the capabilities of the robots and the size of 

the workspace and is decided by the user. Further, each partition of the unknown environment 

should be of equal size in ideal situations.    

6.5.2 Settings and Assumptions 

We have assumed that the unknown region is bounded and has polygonal boundary, however, 

the bounds are not known initially. It is also assumed that the unknown region consists of 

polygonal obstacles and whole of the free space is a single connected component. The multi-

robot team with the following capabilities is considered: 

1. All robots are homogeneous and are equipped with 12 short range sensors evenly 

spaced at 30 degrees (for e.g. Infrared) for obstacle detection.    

2. There are no communication constraints and every robot is able to communicate with 

all other robots within the bounds of the unknown region. This allows the robots to 

exchange information relating to the task completion status of their assigned regions 

with other robots. 
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3. The robots share a common global reference frame and are equipped with sensors to 

localize themselves in it. This allows the robots to exchange information relating to 

the skeleton of their assigned regions with their peers. 

The detailed description of the proposed approach for balanced partitioning of the unknown 

region for efficient multi-robot coordination and task completion is discussed in the next 

section.  

6.6 PROPOSED APPROACH 

For efficient utilization of the system resources (i.e., the robots) a task must be evenly divided 

amongst the members of the multi-robot system. The unknown region is decomposed into 

several smaller partitions that are again intelligently merged to create balanced partitions. The 

proposed approach is represented with the help of a flow-chart shown in Figure 6.6. 

Subsequently each processing step of the flow chart is explained separately. 

Step1: The first step relates to dispersing the robots in an unknown environment. The 

proposed approach makes no assumption that the robots are already dispersed inside the 

unknown region, rather the robots start from a compact initial configuration. It is necessary 

because the robots are going to partition the unknown environment with respect to a common 

global reference frame. The dispersion of robots is achieved by using the potential field based 

approach suggested in [Howard 2002] where it is used for deploying a mobile sensor network 

in an unknown environment. 

Step2: Once the robots are sufficiently dispersed in the unknown environment, Voronoi 

partitioning is used for decomposing the unknown region into smaller partitions by 

considering the position of the robots as Voronoi generator. 
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Start

Disperse the robots in an unknown 

region

Voronoi partition the region with 

robots position as generator

Robots wall follow their Voronoi 

regions to discover inaccessible 

regions

Each robot bid inaccessible regions 

to other robots 

If all robots are left with only 

accessible regions?

NO

Each robot wall follow their 

extended Voronoi regions 

YES

Each robot now has 

complete knowledge of 

the skeleton (i.e., 

rooms, doors and 

corridors) of their 

Voronoi + extended 

region

On the known skeleton a Voronoi graph is 

constructed i.e., all points which are 

equidistant from at least two obstacle 

points  

Compute critical points on the Voronoi 

graph i.e., all points which minimizes the 

distance to the closest obstacles locally

Connect the critical points to the their 

closest obstacle. This will close all the 

doors and narrow spaces 

Partition the large regions i.e., corridors 

and halls

Find which regions are connected and 

construct a topological graph 

Find maximally balanced connected 

partitions of the topological graph

Optimally assign each partition to a unique 

robot

End

 

Figure 6.6 Flowchart of the proposed balanced partitioning approach 

Step3: The Voronoi partitioning leaves only one robot inside each smaller partition. In 

computational geometry, this partition is nothing but the region of dominance of each 

generator (robot in this case) and is referred to as dom(r). Every robot is supposed to process 

its own partition in a mutually exclusive manner. The partitions of two robots may become 

inaccessible due to the presence of obstacles as shown in Figure 6.5(a). We start with 

dispatching each robot to follow wall and boundary of the allotted region to discover the 

skeleton and the inaccessible portions of their respective partitions (we refer to this as goal-1). 

At any instance of time, the robots only use their infrared sensors. These sensors are simple 

with relatively low cost and good for the tasks of obstacle avoidance and wall following in an 

unknown environment. Moreover, these sensors have faster response time and can easily be 
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integrated on variety of platforms. For achieving goal-1, Bug-2 algorithm is used. Bug 

algorithms have proven termination conditions [Choset 2005] and are frequently used for 

robot navigation in an unknown environment. This algorithm moves the robot on the line 

joining the robot’s present position and the goal (referred to as m-line), unless an obstacle is 

encountered. If an obstacle is encountered the robot switches to wall following behavior 

around the obstacle until the motion towards the goal on the m-line is allowed once again. 

However, one movement restriction is imposed on the robots i.e., the robots should not move 

outside of their Voronoi partitions. Therefore, the Voronoi region of one robot is considered 

as obstacle by other robots. The output of this step is shown in Figure 6.7. 

 

Figure 6.7 Boundaries of respective Voronoi partitions as discovered by robots 

Step4: At this stage the robots have knowledge of the skeleton of their respective partitions 

i.e., the accessible and inaccessible portions of their Voronoi partitions. The robots 

sequentially start auctioning the inaccessible portions of their territories to other robots. All 

the other robots who can access the inaccessible regions in the current auction respond with 

a finite bid. The bid value is equal to the size of the area already allocated to the bidder 

robot. The auctioneer robot then assigns the inaccessible region to the robot with the lowest 

bid. The process is repeated until all the robots are left with only accessible regions. As a 

result of this auctioning the territories of some robots is extended. The bounds of the 

extended territories are mapped again by executing wall following behavior. At the end of 

this stage, every robot has complete knowledge of the skeleton (the boundaries of different 

rooms, doors and corridors) of their Voronoi partitions. The output of this step is shown in 

Figure 6.8. 
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Step5: This point onwards we have implemented the algorithm for the construction of 

topological maps suggested in one of the seminal works for indoor mobile robot navigation 

[Thrun 1998]. The author has introduced the concept of critical lines, representing narrow 

passages, such as doorways, that are found by analyzing the skeleton of the environment. The 

free space is denoted by C and the occupied space is denoted by C̅. Each point <x, y> ∈ C has 

one or more nearest points in the occupied space C̅. These points are referred to as basis 

points of <x, y>. The distance between <x, y> and its basis points is referred to as clearance 

of <x, y>. Considering the skeleton of the unknown region derived in the previous step, a 

Voronoi graph (GVG) is constructed by computing a set of points <x, y> ∈ C which are 

equidistant from at least two different basis points as shown in Figure 6.9. 

 

Figure 6.8 Territories of robots after auctioning the inaccessible portions of their 

respective partitions 

 

Figure 6.9 Voronoi graph as computed on the skeleton of the unknown environment 
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Step6: We compute "critical points" for partitioning the free space. Basically, critical points 

<x, y> ∈ GVG locally minimize the clearance of <x, y> [Thrun 1998]. The output of this step 

is shown in Figure 6.10. These points are shown in white color and are mostly discovered at 

narrow passages and doorways. Some critical points are discovered in succession and are 

referred to as Clines. They are found mostly in the regions representing rooms and corridors.  

Step7: The critical points thus computed are connected to their basis points, and the resulting 

lines are referred to as critical lines [Thrun 1998]. These critical lines virtually close all the 

doors and narrow spaces as shown in Figure 6.11. This partitions the workspace into simple 

regions i.e., rooms, halls and corridors. 

Step8: It is possible that some of the simple regions (for example, corridors, meeting rooms, 

waiting rooms, dining halls etc.) may be large in size. They are again partitioned using two 

different strategies, one for corridors and another for the large rooms. Corridors are detected 

when critical points constitute more than two consecutive cells in the area; refer to Clines as 

shown in Figure 6.10. These lines of critical points lead to inaccessible regions when the 

critical points are connected to their basis points. To prevent such situations, only the mid-

point of the Clines is retained and all the other critical points on this line are deleted as shown 

in Figure 6.12. It ensures that the corridors are represented by only one critical point resulting 

in two different partitions of the corridor. Maps with large rooms that can only be allocated to 

one robot creates imbalance i.e., the area of the rooms is greater than the area that each robot 

would get, if the total available area is equally divided between the available robots. 

Therefore, such regions are also required to be decomposed in a manner that no region has an 

area greater than total area/number of robots. When such regions are detected in the 

partitioned map, our algorithm finds two points (2Xl+Xm/3, 2Yl+Ym/3) and (Xl+2Xm/3, 

Yl+2Ym/3), where (Xl, Yl) are the lowest X and Y coordinates respectively and (Xm, Ym) are the 

highest X and Y coordinates respectively in the region under consideration. Such regions are 

then partitioned into two different regions by Voronoi partitioning the area with the two 

points as generators. This process is repeated till all the regions in the map have areas less 

than the limit. The output of this stage is shown in Figure 6.13. 
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Figure 6.10 Critical points which locally minimize the clearance of some point on 

Voronoi graph  

 

 

Figure 6.11 Critical points are connected to their basis points  
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Figure 6.12 All Clines are reduced into a single critical point as shown in white color 

 

 

Figure 6.13 The unknown region is partitioned into simple regions labeled from 1 to 44 

Step9: Each simple region thus found corresponds to a vertex of a graph. An edge connecting 

two simple regions corresponds to a critical line separating the two regions. This is motivated 

by the fact that whenever a robot has to travel from one region to the other region it will have 

to pass through the narrow passages and the doorways. The output of this step is a topological 

graph (GT) which is shown in Figure 6.14. 
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Step10: The graph (GT) is required to be partitioned into maximally balanced connected 

partitions (henceforth referred to as MBCP) on the basis of vertex weights, where the weight 

of each vertex corresponds to the area of the region that this vertex encompasses. We want to 

find as many partitions as the number of robots. Finding MBCP is proven to be NP hard 

[Chlebíková 1996]. For this purpose, we have used genetic algorithms. Further details are 

provided in Section 6.7. In the process of finding MBCP, many simple regions are merged 

into one partition. The output of this step i.e., the partitions we have obtained are shown in 

Figure 6.15. The partitions as shown in Figure 6.13 are merged with respect to the graph 

partitioning process. The final results are shown in Figure 6.16. 

Step11: Once the partitions of the graph are obtained they are assigned to the individual 

robots using an optimal assignment algorithm i.e., using the Hungarian method. Both 

centralized [Kuhn 1955] and distributed [Giordani 2010] implementations of the Hungarian 

method are available. 

 

Figure 6.14 The partitioned unknown region as shown in Figure 6.12 is converted into 

a topological graph (GT) 
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Figure 6.15 The topological graph (GT) is partitioned into five different maximally 

balanced partitions for K=5 robots 

 

Figure 6.16 The partitioned regions as shown in Figure 6.13 are merged with respect to 

the partitions of the topological graph as shown in Figure 6.15 

The robots can now start processing their respective partitions. We want to stress on the fact 

that variety of multi-robot tasks can be performed without much interference of the robots 

with each other. For example, terrain coverage for the purpose of cleaning, mapping and 

exploration, searching for some objects of interest, patrolling etc. 
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6.7 MAXIMALLY BALANCED CONNECTED PARTITIONING OF THE  

TOPOLOGICAL GRAPH 

Let us denote the topological graph obtained in Step 9 of the previous section as GT (V, E, Wi), 

such that, V = { V1, V2, V3,.. ,Vm  } be the number of vertices and |V| = m, E be the set of 

undirected edges connecting the two vertices Vi and Vj and Wi be the weight of vertex Vi ∈ V. 

All the edges have weight equal to one. Here each vertex Vi ∈ V represents a simple region 

discussed earlier, and the weight (Wi) of the vertex (Vi) is the area that this vertex 

encompasses. The maximally balanced connected partitioning (MBCP) of the topological 

graph GT (V, E, Wi) is to partition the graph into n non-empty partitions (where n is the 

number of robots) P = { P1, P2 ,... ,Pn  } such that, the sub-graphs induced by each partition Pi 

∈ P is connected and the difference between the sum of the weights of the vertices of each 

partition is minimum. Formally, the problem is defined in [Cincotti 2002] as graph 

partitioning problem and is stated as follows: 

 V =  Pi and Pi   Pj = ∅ for i ≠ j 

 W(Pi) ≡ W/n where W(Pi) and W are the total sum of the weights of vertices in 

partition Pi and the total sum of the weights of the vertices in V respectively. 

 Minimum cut objective: The sum of the weights of the edges crossing between the 

partitions, called the edge separators, is minimized. 

 Let us normalize the vertex Wi weights to sum up to 1: ∑ 𝑊𝑖
𝑚
𝑖=1 =1. The balancing 

factor in accordance with the minimum cut objective is defined as: 

n.𝑚𝑎𝑥𝑙∈𝑃 ∑ 𝑊𝑗𝑗=𝑙 ≤t    (6.1) 

The left hand side of the inequality in eq. 7.1 is the ratio of the biggest partition in 

terms of cumulative normalized vertex weight to the desired equal partition size. 

Perfectly balanced partitions are obtained for t=1 but this value is chosen to be 

slightly higher than 1 i.e., 1.05 to allow 5% imbalance. 

We have used the balancing factor in equation 6.1 as a fitness measure of the genetic 

algorithm which is used for the purpose of graph partitioning and is adopted from [Cincotti 

2002]. 
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6.8  RESULTS AND DISCUSSIONS 

In this section, the description of the simulation framework is presented in section 6.8.1 

followed by simulation results in section 6.8.2. 

6.8.1 The Simulation Framework 

The proposed approach has been implemented in simulation using Matlab R2015a on an Intel 

Core-i5 machine with 8 GB of RAM. The resolution of the three maps is set to 0.05 meter per 

grid cell. The ground area of the three maps is 500 m2, 750 m2 and 1000 m2 for Banquet Hall, 

Office Map and Hospital Map respectively. The robots are simulated as a point mass 

equipped with 12 IR based proximity sensors evenly spaced at 300 to detect obstacles and 

walls. It is assumed that the robots are able to accurately localize themselves and their peers. 

The authors in [Vasisht 2016] have demonstrated accurate localization in decimeter range 

using a single WiFi access point. It is also assumed that the robots are able to communicate 

with each other across all positions of the map. The graph partitioning algorithm explained in 

the previous section is implemented in Java using [GraphStream 2016] which is a graph 

handling Java library used for the purpose of visualization of the topological graph (GT ) and 

its partitions (P).    

6.8.2 Simulation Results 

The proposed algorithm has been evaluated through a series of simulation runs on three 

different types of indoor environments as shown in Figures 6.17, 6.18 and 6.19. The 

algorithm is compared with KH-Algorithm which is a recent representative of Voronoi based 

decomposition approaches. Figure 6.17 is a hospital map with rooms and corridors of 

different size and width. Figure 6.18 is an office map with equal sized rooms and corridor of 

the same width. Figure 6.19 is a banquet hall with four big rooms each of equal size and a 

wide corridor.  

Since the spatial partitioning process of the proposed approach is independent of the position 

of the robots the partitions are deterministically computed. Tables 6.1, 6.2 and 6.3 show the 

results of partitioning the Hospital map, Office map and the Banquet Hall respectively. Since 

the size of the partitions is strictly dependent on the initial positions of the robots in KH-

Algorithm, we have conducted a hundred simulation runs with random robot positions and 

have computed the average results. For the KH-Algorithm, Tables 6.4, 6.5 and 6.6 show the 

average standard deviation, average area of the biggest partitions, and average area of the 

smallest partitions respectively, for three different maps for different number of robots.   
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Figure 6.17 Hospital map with rooms and corridors of different size and width 

 

Figure 6.18 Office map with 20 rooms of same size and corridor 
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Figure 6.19 Banquet Hall with four large rooms and corridor 

It can be observed from Table 6.7 that the standard deviation of the areas of different 

partitions in three different maps and for different size of the robot team is significantly lesser 

for the proposed approach when compared with the KH-Algorithm. The low standard 

deviation indicates that the proposed approach creates balanced partitions.  

Tables 6.1, 6.2, and 6.3 show the area of the biggest partition (MAX_AREA) and the area of 

the smallest partition (MIN_AREA) for the proposed approach for three different maps and for 

different sizes of the robot team. In the case of KH-Algorithm, for hundred simulation runs 

and random placement of robots we have computed the average area of the biggest partition, 

as shown in Table 6.5 and the average area of the smallest partition as shown in Table 6.6. 

The primary requirement of balanced partitioning is that the difference between the area of 

the biggest partition and all the other partitions should be minimum. For the proposed 

approach and the KH-Algorithm the difference between the areas of the biggest partition and 

the smallest partition for the three different maps is computed after varying the number of 

robots from R = 4 to R = 7, as shown in Table 6.8. It is clearly evident that this difference is 

significantly lower when compared with the KH-Algorithm. This difference is a good 

indicator of imbalance in the KH-Algorithm and better balancing in case of the proposed 

approach. 
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Table 6.1 Standard Deviation, Area Of The Biggest Partition, And Area Of The 

Smallest Partition For Hospital Map  
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P1 3729 4174 3625 1403 

P2 5977 2801 3586 2627 

P3 4339 3586 1341 2936 

P4 3625 4482 3350 1341 

P5   2627 3141 2388 

P6     2627 3625 

P7       3350 

SD 1086.32 817.15 865.99 889.71 

MAX_AREA 5977 4482 3625 3625 

MIN_AREA 3625 2627 1341 1341 

 

Table 6.2 Standard Deviation, Area Of The Biggest Partition, And Area Of The 

Smallest Partition For Office Map 
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P1 2713 2153 1848 951 

P2 2618 2075 1911 1962 

P3 1962 1103 1962 1108 

P4 1848 1848 1399 1046 

P5   1962 1314 1399 

P6     707 827 

P7       1848 

SD 443.23 421.49 484.52 446.28 

MAX_AREA 2713 2153 1962 1962 

MIN_AREA 1848 1103 707 827 
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Table 6.3 Standard Deviation, Area Of The Biggest Partition, And Area Of The 

Smallest Partition For Banquet Hall Map 
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P1 2249 2842 2644 3178 

P2 1605 1605 1692 1223 

P3 2644 1779 1799 1799 

P4 3178 1692 1522 1560 

P5   1758 1605 1375 

P6     1320 1128 

P7       1692 

SD 662.87 511.43 172.64 313.48 

MAX_AREA 3178 2842 1799 1799 

MIN_AREA 1605 1605 1320 919 

 

Table 6.4 Average Standard deviation of Partitions of Hundread Simulation Runs of 

the KH-Algorithm  

Average Standard Deviation for KH-Algorithm 

No. of Robots R=4 R=5 R=6 R=7 

Hospital Map 2959.5 2259.4 2214.8 2040 

Office Map 1312.3 1140 1154 921.58 

Banquet Hall 1619 1270 1218.7 849.2 

 

Table 6.5 Average of the Areas of the Biggest Partition for Hundread Random 

Placements of Robots in Three Different Maps 

Average MAX_AREA for KH-Algorithm (all partition 

sizes are in m2)  

No. of Robots R=4 R=5 R=6 R=7 

Hospital Map 7747.1 7072.5 6147.9 6130.5 

Office Map 3690.9 3244 3237 2820.3 

Banquet Hall 4394 3755 3755 2975 
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Table 6.6 Average of the Areas of Smallest Partition for Hundread Random 

Placements of Robots in Three Different Maps 

Average MIN_AREA for KH-Algorithm (all partition 

sizes are in m2) 

No. of Robots R=4 R=5 R=6 R=7 

Hospital Map 1432.8 1296.4 581.3 583.3 

Office Map 765.8 570.4 359 293.7 

Banquet Hall 813.3 781.5 514.1 474.6 

 

Table 6.7 Comparision Based on the Standard Deviation of the Partitioned Areas 

No. of    Robots 
Hospital Office Banquet Hall 

KH PROPOSED KH PROPOSED KH PROPOSED 

R=7 2040 889.71 921.58 446.28 849.2 313.48 

R=6 2214.8 865.99 1154 484.52 1218.7 172.64 

R=5 2259.4 817.15 1140 421.49 1270 511.43 

R=4 2959.5 1086.32 1312.3 443.23 1619 662.87 

 

Table 6.8 Comparision of the Difference Between the Areas of the Biggest and the 

Smallest Partition  

No. of    Robots 

Hospital Office Banquet Hall 

KH PROPOSED KH PROPOSED KH PROPOSED 

All partition 

sizes are in 

m2 

R=7 5547.2 2352 2526.6 865 2500.4 1573 

R=6 5566.6 1855 2878.2 1050 3240.9 1237 

R=5 5776.1 2284 2673.9 1255 2973.4 459 

R=4 6314.3 2284 2925.1 1135 3580.6 860 
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6.9  CHAPTER SUMMARY 

In this chapter we considered the task of partitioning of an unknown region into sub-regions 

which are then apportioned to a multi-robot system for further processing. It is evident from 

the literature that polygonal decomposition of workspace is superior than the grid based 

decomposition. Many existing approaches are based on Voronoi partitioning. However, they 

produce unbalanced partitions resulting in uneven distribution of the workload to individual 

robots. The approach proposed in this chapter creates balanced partitions of the unknown 

region so that the regions to be processed by individual robots are almost equal in area. This 

type of partitioning can be especially useful in applications like floor cleaning, surveillance, 

and patrolling, wherein fair distribution of the workload between the agents is important. 

The proposed approach requires the robots to use minimalistic sensors to determine the 

boundaries of the unknown region which is then converted into a weighted connected graph. 

This graph is then partitioned into maximally balanced sub-graphs using genetic algorithm. 

These sub-graphs are then optimally assigned to the available robots. The proposed approach 

makes it possible to create balanced partitions of the unknown environment by allowing the 

robot team to coordinate and exchange different forms of information (bounds, inaccessible 

portions of the partitions of each robot, size of the partitions etc.) about the unknown 

environment. This information is locally generated/ discovered by the robots. The robots 

communicate with their peers for creating load balanced partitions by way of auctioning. The 

proposed approach substantiates the argument that an efficient coordination algorithm 

improves the efficiency of the multi-robot system in solving a common objective. 
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Chapter 7 

Conclusion and Future Scope of Work 

 

7.1 CONCLUSIONS 

In many situations it has been observed that multiple robots cooperate to perform complex 

tasks that would otherwise be impossible or difficult for one single powerful robot to 

accomplish. The concept behind using multi-robot systems for solving complex problems 

requires smaller sub-problems to be assigned to individual robots while allowing the robots to 

interact with each other for sharing information. Simple robots can be built easily and made to 

cooperate with each other to achieve some common objective. Multi-robot systems are very 

cost effective compared to building a single costly robot with many capabilities. As these 

multi-robot systems are usually decentralized and inherently redundant, they are fault tolerant 

and thus improve the reliability and robustness of the system. The simplicity of multi-robot 

systems has led to its wide set of applications. However, this simplicity also brings additional 

challenges in setting up and deploying such systems. In this thesis, we have studied 

coordination algorithms for multi-robot systems in three different domains namely, geometric 

pattern formation, online terrain coverage, and balanced area partitioning/ decomposition. 

The primary contributions of the thesis for each of these domain are listed below. 

Geometric pattern formation by multiple mobile robots is a problem that has gained 

considerable attention because of its wide applicability in variety of tasks i.e. multi-robot 

formations can act as sensor arrays for monitoring the state of the environment, area 

exploration etc. In fact, specific roles can be assigned to individual robots if they can in a 

decentralized manner develop common consensus on the position of individual robots and 

their peers. In this respect, uniform circle formation problem has been investigated by the 

researchers in theoretical computer science. Simplified assumptions have been considered for 

designing distributed solutions that are proven to be sound and complete. These algorithms 

have not been validated experimentally and therefore cannot be compared with other 

empirical approaches. Following are the contributions of the thesis in solving the geometric 

pattern formation problem: 
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(a) Found approximate solutions to various abstract assumptions considered in one of the 

representative algorithms i.e. the Défago and Konagaya's (DK) algorithm [Défago 2002, 

Défago 2008] for solving the uniform circle formation problem.  

(b) The DK algorithm is experimentally validated on a multi-robot test-bed comprising of 

five e-puck robots.  

(c) Proposed a distributed algorithm i.e. the STATE algorithm [Gautam 2016a] for solving 

the uniform circle formation problem. The STATE algorithm has also been implemented 

on our experimental test-bed and was found to perform better than the DK algorithm in 

terms of reduced number of activation steps and reduced time of convergence. Two 

important findings from the experimental results are as follows: 

 Irrespective of the activation probability and the placement scenario chosen for the 

DK algorithm, the percentage improvement achieved by the STATE algorithm over 

DK algorithm increases as the size of the circle increases. For instance, for a 

activation probability Pr = 0.5 and worst placement scenario for DK algorithm, the 

percentage improvement achieved by the STATE algorithm (in terms of average 

activation steps) is 27.6%, 29.14%, and 31.18% and it is 18.32%, 22.75%, and 

27.42% in terms of average completion time for the circles with diameter of 1 meter, 2 

meters, and 3 meters respectively.  

 Irrespective of the activation probability chosen for the DK algorithm and the size of 

the circle to be formed, the percentage improvement shown by the STATE algorithm 

over DK algorithm increases when the initial placement of the robots is made worse 

i.e. from best to random and from random to worse placement. For example, if we 

consider a large circle with a diameter of 3 meters and fix the activation probability Pr 

= 0.5 for the DK algorithm, the STATE algorithm performs 25.18%, 28.97%, and 

31.18% better (in terms of average activation steps) for the best, random and worst 

placement respectively. Further the STATE algorithm performs 20.66%, 22.59%, and 

27.42% better (in terms of average completion time) than the DK algorithm for the 

best, random and worst placement.   

(d) Setup a multi-robot test-bed that provides real-time localization of mobile robots.  

(e) Proposed a scheme for asynchronous and non-blocking inter-robot communication.  
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Online terrain coverage is yet another critical task which can be solved by using multi-robot 

systems. The primary requirement of the task is to completely cover an unknown terrain. 

Frontier based exploration has become a de-facto standard in multi-robot exploration and 

coverage. Under this head  

(a) We have identified the limitations of various frontier propagation algorithms for online 

terrain coverage.   

(b) We have suggested two online terrain coverage algorithms. The first algorithm is a 

centralized algorithm [Gautam 2015] referred to as Cluster, Allocate, Cover (CAC) and 

the second algorithm is completely decentralized algorithm [Gautam 2016b] referred to as 

Frontier Allocation Synchronized by Token Passing (FAST). The CAC algorithm is 

shown to perform better than some of the state of the art algorithms [Yamauchi 1998, 

Burgard 2005, Puig 2011] both in simulation and on a multi-robot test-bed. For example, 

in an outdoor map using a team of six robots the percentage improvement shown by CAC 

(in terms of completion time) over [Burgard 2005], [Puig 2011], and [Yamauchi 1998] is 

25.94%, 18.82%, and 13.97% respectively. Also, the percentage improvement of CAC (in 

terms of non-overlapping coverage) over [Burgard 2005], [Puig 2011], and [Yamauchi 

1998] is 54.28%, 44%, and 35.51% respectively. The dispersion of mobile robots is an 

emergent phenomenon in CAC and therefore it is also suitable for multi-robot exploration 

task. One limitation of CAC is that it is a centralized approach and is not robust to failure 

of robots. FAST overcomes this limitation of CAC as it deals with robot failures in a 

graceful manner. The algorithm FAST is based on the concept of following structured 

trajectories that is proven to be a powerful approach for terrain coverage in the literature. 

(c) FAST and other representative approaches like [Gerlein 2011], referred to as BSA-CM, 

and its extension that is proposed in this thesis, referred to as BSA-CMI, are implemented 

both in simulation and on a multi-robot test-bed. FAST is shown to outperform all the 

other approaches both in terms of reduced time to complete coverage and reduced 

overlapping coverage whereas BSA-CMI works better than original BSA-CM and the 

CAC algorithm. For instance, in a Living Room map using a team of five robots the 

percentage improvement shown by FAST (in terms of completion time) over CAC, BSA-

CM, and BSA-CMI is 23.8%, 16.9%, and 8.43% respectively. Also, the percentage 

improvement of FAST (in terms of non-overlapping coverage) over CAC, BSA-CM, and 

BSA-CMI is 20%, 14.28%, and 7.69% respectively.  
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Area partitioning/ decomposition is one of the fundamental tasks in mobile robotics. It is 

important to build and maintain the map of the environment for a mobile robot to successfully 

navigate and plan its path from source to destination. The map thus created is represented in 

the robot’s memory in either of the two forms (a) grid based maps or (b) topological maps. It 

is easier to obtain, represent, and maintain grid based maps but they have a limitation in the 

sense that most planning and navigation algorithms using grid based maps have high memory 

and computational requirements. On the other hand, if polygonal decomposition of the 

environment is done it can easily be translated into topological maps that are graph like maps 

allowing more efficient planning and navigation. Many recent state-of-the-art approaches 

have employed polygonal decomposition of the environment based on Voronoi diagrams [Wu 

2007, Wurm 2008, Hungerford 2014] and Delaunay triangulation [Fazli 2010, Fazli 2013] and 

constructed a topological map of the environment. Later, the map is segmented into different 

partitions that are allocated to different robots for processing. In this thesis 

(a) The problem of balanced partitioning of the unknown region using multi-robot system is 

addressed. The environment decomposition method and the task allocation method that 

are used by previous approaches results in unbalanced partitions.  

(b) We have proposed an algorithm that determines the skeleton of the unknown region first 

and then creates a topological representation of the environment. This topological graph is 

partitioned using genetic algorithm into as many maximally balanced partitions as the 

number of robots. These partitions can be optimally allocated to the individual robots.  

(c) The proposed approach for balanced partitioning is compared in simulation with one of 

the most recent approaches [Hungerford 2016], referred to as KH algorithm. The KH 

algorithm uses Voronoi diagrams for partitioning the environment for a multi-robot 

coverage task. The proposed approach is found to perform better than the KH algorithm in 

terms of creating balanced partitions and therefore ensuring better utilization of the multi-

robot system. Smaller the standard deviation of the areas of all the partitions, better the 

partitions are balanced. For instance, in a hospital map for seven robots, seven partitions 

are created. The standard deviation of the partitions created by the proposed algorithm is 

889.71 and that of the KH algorithm is 2040 which is a significant difference. Simulation 

results in maps of different sizes and robot team size substantiate our claim of balanced 

partitioning.    
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This thesis extends the state-of-the-art in three different multi-robot application domains. The 

algorithms proposed in this thesis have been compared with some of the representative state-

of-the-art approaches and are shown to perform better on different cost measures both in 

simulation and on a multi-robot testbed. It is shown that efficient coordination amongst the 

robots helps in finishing the task in lesser time while reducing resource wastage/ 

underutilization. 

7.2 SCOPE FOR FUTURE WORK 

The problem of Geometric pattern formation requires the robots to accurately localize their 

peers. Multi-robot localization for solving the arbitrary pattern formation problem demands 

attention. Neighbor referenced [Fredslund 2002, Mead 2009] and leader-follower [Monteiro 

2010] approaches have been successfully tested in the past. The efficiency of these algorithms 

in terms of energy consumptions is required to be quantified.  

Limited communication range of robots and its impact on the performance of the coverage 

algorithm is one aspect we have not explored in this thesis. Although we have proposed a 

fault tolerant algorithm (FAST) for online coverage of a terrain but it is designed for the 

purpose of indoor office like maps and tested in a controlled laboratory setting. The approach 

can be extended to account for message losses due to noise in the environment.  

The proposed algorithm for load balanced partitioning of the workspace needs to be 

implemented on a team of physical mobile robots. Multiple robots can be dispatched for the 

purpose of exploration of unknown region. The effect of balanced partitioning on the 

performance of the exploration algorithm can be quantitatively measured and compared with 

other approaches. Also fault-tolerance is a vital aspect that is required to be incorporated in 

the load balancing algorithm.  

  



174 
 

REFERENCES 

1. [Agmon 2008] Agmon, N., Hazon, N., & Kaminka, G. (2008). The giving tree: 

constructing trees for efficient offline and online multi-robot coverage. Annals of 

Mathematics and Artificial Intelligence, 52(2-4), 143-168. 

http://dx.doi.org/10.1007/s10472-009-9121-1 

2. [Amato 2015] Amato, C., Konidaris, G., Anders, A., Cruz, G., How, J., & Kaelbling, 

L. (2015). Policy Search for Multi-Robot Coordination under Uncertainty. Robotics: 

Science and Systems XI. http://dx.doi.org/10.15607/rss.2015.xi.007 

3. [Ando 1999] Ando, H., Oasa, Y., Suzuki, I., & Yamashita, M. (1999). Distributed 

memoryless point convergence algorithm for mobile robots with limited visibility. 

IEEE Trans. Robot. Automat., 15(5), 818-828. http://dx.doi.org/10.1109/70.795787 

4. [Andries 2013] Andries, M. & Charpillet, F. (2013). Multi-robot exploration of 

unknown environments with identification of exploration completion and post-

exploration rendezvous using ant algorithms. 2013 IEEE/RSJ International 

Conference on Intelligent Robots and Systems. 

http://dx.doi.org/10.1109/iros.2013.6697164 

5. [Antonelli 2007] Antonelli, G., Arrichiello, F., Chakraborti, S., & Chiaverini, S. 

(2007). Experiences of formation control of multi-robot systems with the Null-Space-

based Behavioral Control. 2007 IEEE International Conference on Robotics and 

Automation. http://dx.doi.org/10.1109/robot.2007.363126 

6. [Antonelli 2009a] Antonelli, G., Arrichiello, F., & Chiaverini, S. (2009). 

Experiments of Formation Control with Multirobot Systems Using the Null-Space-

Based Behavioral Control. IEEE Transactions on Control Systems Technology, 

17(5), 1173-1182. http://dx.doi.org/10.1109/tcst.2008.2004447 

7. [Antonelli 2009b] Antonelli, G., Arrichiello, F., & Chiaverini, S. (2009). Flocking 

for multi-robot systems via the Null-Space-based Behavioral control. Swarm Intell, 

4(1), 37-56. http://dx.doi.org/10.1007/s11721-009-0036-6 

8. [Arkin 1998] Arkin, R. (1998). Behavior-based robotics. Cambridge, Mass.: MIT 

Press. 



175 
 

9. [Asgharbeygi 2008] Asgharbeygi, N. & Maleki, A. (2008). Geodesic K-means 

clustering. 2008 19th International Conference on Pattern Recognition. 

http://dx.doi.org/10.1109/icpr.2008.4761241 

10. [Durrant-Whyte 2006] Durrant-Whyte, H. & Bailey, T. (2006). Simultaneous 

localization and mapping: part I. IEEE Robotics & Automation Magazine, 13(2), 99-

110. http://dx.doi.org/10.1109/mra.2006.1638022.  

11. [Bailey 2006] Bailey, T. & Durrant-Whyte, H. (2006). Simultaneous localization and 

mapping (SLAM): part II. IEEE Robotics & Automation Magazine, 13(3), 108-117. 

http://dx.doi.org/10.1109/mra.2006.1678144 

12. [Balch 1998] Balch, T. & Arkin, R. (1998). Behavior-based formation control for 

multirobot teams. IEEE Trans. Robot. Automat., 14(6), 926-939. 

http://dx.doi.org/10.1109/70.736776 

13. [Balch 1999] Balch, T. (1999). The impact of diversity on performance in multirobot 

foraging. Autonomous Agents.  

14. [Barnes 1991] Barnes, D. & Gray, J. (1991). Behavior synthesis for cooperative 

mobile robot control. International Conference on Control.  

15. [Boada 1998] Boada, B., Moreno, L., & Salichs, M. (1998). Sensor Coordination for 

Multi Mobile Robots Systems. Distributed Autonomous Robotic Systems 3, 13-22. 

http://dx.doi.org/10.1007/978-3-642-72198-4_2 

16. [Bormann 2016] Bormann, R., Jordan, F., Li, W., Hampp, J., & Hagele, M. (2016). 

Room segmentation: Survey, implementation, and analysis. 2016 IEEE International 

Conference on Robotics and Automation (ICRA). 

http://dx.doi.org/10.1109/icra.2016.7487234 

17. [Breitenmoser 2010] Breitenmoser, A., Schwager, M., Metzger, J., Siegwart, R., & 

Rus, D. (2010). Voronoi coverage of non-convex environments with a group of 

networked robots. 2010 IEEE International Conference on Robotics and Automation. 

http://dx.doi.org/10.1109/robot.2010.5509696 

18. [Bruce 2000] Bruce, J., Balch, T., & Veloso, M. (2000) Fast and inexpensive color 

image segmentation for interactive robots. Proceedings. 2000 IEEE/RSJ International 

Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113). 

http://dx.doi.org/10.1109/iros.2000.895274 



176 
 

19. [Burgard 2005] Burgard, W., Moors, M., Stachniss, C., & Schneider, F. (2005). 

Coordinated multi-robot exploration. IEEE Trans. Robot., 21(3), 376-386. 

http://dx.doi.org/10.1109/tro.2004.839232 

20. [Candea 2001] Candea, C., Hu, H., Iocchi, L., Nardi, D., & Piaggio, M. (2001). 

Coordination in multi-agent RoboCup teams. Robotics and Autonomous Systems, 

36(2-3), 67-86. http://dx.doi.org/10.1016/s0921-8890(01)00137-3 

21. [Cannata 2011] Cannata, G. & Sgorbissa, A. (2011). A Minimalist Algorithm for 

Multirobot Continuous Coverage. IEEE Trans. Robot., 27(2), 297-312. 

http://dx.doi.org/10.1109/tro.2011.2104510 

22. [Cao 1997] Cao, Y., Fukunaga, A., & Kahng, A. (1997). Autonomous Robots, 4(1), 

7-27. http://dx.doi.org/10.1023/a:1008855018923 

23. [Carvalho 2013] Carvalho, F., Cavalcante, R., Vieira, M., Chaimowicz, L., & 

Campos, M. (2013). A Multi-robot Exploration Approach Based on Distributed 

Graph Coloring. 2013 Latin American Robotics Symposium and Competition. 

http://dx.doi.org/10.1109/lars.2013.71 

24. [Castello 2013] Castello, E., Yamamoto, T., Nakamura, Y., & Ishiguro, H. (2013). 

Task Allocation for a robotic swarm based on an Adaptive Response Threshold 

Model. 2013 13th International Conference on Control, Automation and Systems 

(ICCAS 2013). http://dx.doi.org/10.1109/iccas.2013.6703905 

25. [Chand 2013] Chand, P. & Carnegie, D. (2013). Mapping and exploration in a 

hierarchical heterogeneous multi-robot system using limited capability robots. 

Robotics and Autonomous Systems, 61(6), 565-579. 

http://dx.doi.org/10.1016/j.robot.2013.02.009 

26. [Chang 2004] Chang, F., Chen, C., & Lu, C. (2004). A linear-time component-

labeling algorithm using contour tracing technique. Computer Vision and Image 

Understanding, 93(2), 206-220. http://dx.doi.org/10.1016/j.cviu.2003.09.002 

27. [Chatzigiannakis 2004] Chatzigiannakis, I., Markou, M., & Nikoletseas, S. (2004). 

Distributed Circle Formation for Anonymous Oblivious Robots. Experimental and 

Efficient Algorithms, 159-174. http://dx.doi.org/10.1007/978-3-540-24838-5_12 

28. [Cheikhrouhoua 2014] Cheikhrouhou, O., Koubaa, A., & Bennaceur, H. (2014). 

Move and improve: A distributed multi-robot coordination approach for multiple 



177 
 

depots multiple travelling salesmen problem. 2014 IEEE International Conference on 

Autonomous Robot Systems and Competitions (ICARSC). 

http://dx.doi.org/10.1109/icarsc.2014.6849758 

29. [Chlebíková 1996] Chlebíková, J. (1996). Approximating the maximally balanced 

connected partition problem in graphs. Information Processing Letters, 60(5), 225-

230. http://dx.doi.org/10.1016/s0020-0190(96)00175-5 

30. [Choset 2005] Choset, H. (2005). Principles of robot motion. Cambridge, Mass.: 

MIT Press. 

31. [Christensen 2009] Christensen, A., O'Grady, R., & Dorigo, M. (2009). From 

Fireflies to Fault-Tolerant Swarms of Robots. IEEE Transactions on Evolutionary 

Computation, 13(4), 754-766. http://dx.doi.org/10.1109/tevc.2009.2017516 

32. [Cianci 2006] Cianci CM, Raemy X, Pugh J, Martinoli A (2006) Communication in a 

swarm of miniature robots: the e-puck as an educational tool for swarm robotics. 

Infoscience, EPFL's scientific publications. 

https://infoscience.epfl.ch/record/100015/files/44330103.pdf. Accessed 13 June 2016 

33. [Cincotti 2002] Cincotti, A., Cutello, V., & Pavone, M. (2002). Graph partitioning 

using genetic algorithms with ODPX. 2002 Congress on Evolutionary Computation. 

CEC'02 (Cat. No.02TH8600). http://dx.doi.org/10.1109/cec.2002.1006268 

34. [Damer 2006] Damer, S., Ludwig, L., LaPoint, M., Gini, M., Papanikolopoulos, N., 

& Budenske, J. (2006). Dispersion and exploration algorithms for robots in unknown 

environments. Unmanned Systems Technology VIII. 

http://dx.doi.org/10.1117/12.668915 

35. [Dasgupta 2009] Dasgupta, P. and Cheng, K. (2009). Distributed coverage of 

unknown environments using multi-robot swarms with memory and communication 

constraints. Technical Report No. cst-2009-1, Department of Computer Science, 

University of Nebraska at Omaha.  

36. [Debest 1995]  Debest, XA. (1995). Remark about self-stabilizing systems. 

Communications of the ACM, 38(2), 115-117.  

37. [Défago 2002] Défago, X. & Konagaya, A. (2002). Circle formation for oblivious 

anonymous mobile robots with no common sense of orientation. Second ACM 



178 
 

International Workshop On Principles of Mobile Computing - POMC '02. 

http://dx.doi.org/10.1145/584490.584509 

38. [Défago 2008] Défago, X. & Souissi, S. (2008). Non-uniform circle formation 

algorithm for oblivious mobile robots with convergence toward uniformity. 

Theoretical Computer Science, 396(1-3), 97-112. 

http://dx.doi.org/10.1016/j.tcs.2008.01.050 

39. [Dieudonné 2007] Dieudonné, Y. & Petit, F. (2007). Circle formation of weak robots 

and Lyndon words. Information Processing Letters, 101(4), 156-162. 

http://dx.doi.org/10.1016/j.ipl.2006.09.008 

40. [Dieudonné 2008] Dieudonné, Y., Labbani-Igbida, O., & Petit, F. (2008). Circle 

formation of weak mobile robots. ACM Trans. Auton. Adapt. Syst., 3(4), 1-20. 

http://dx.doi.org/10.1145/1452001.1452006 

41. [Dieudonné 2009] Dieudonné, Y., Dolev, S., Petit, F., & Segal, M. (2009). Brief 

announcement. 28th ACM Symposium on Principles of Distributed Computing - 

PODC '09. http://dx.doi.org/10.1145/1582716.1582781 

42. [Dijkstra 1959] Dijkstra, E. (1959). A note on two problems in connexion with 

graphs. Numer. Math., 1(1), 269-271. http://dx.doi.org/10.1007/bf01386390 

43. [Dissanayake 2001] Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H., & 

Csorba, M. (2001). A solution to the simultaneous localization and map building 

(SLAM) problem. IEEE Trans. Robot. Automat., 17(3), 229-241. 

http://dx.doi.org/10.1109/70.938381 

44. [Ducatelle 2009] Ducatelle, F., Forster, A., Caro, G. D., and Gambardella, L. (2009). 

New task allocation methods for robotic swarms. 9th IEEE/RAS Conference on 

Autonomous Robot Systems and Competitions 

45. [Dudek 1996] Dudek, G., Jenkin, M., Milios, E., & Wilkes, D. (1996). A taxonomy 

for multi-agent robotics. Autonomous Robots, 3(4). 

http://dx.doi.org/10.1007/bf00240651 

46. [Elfes 1989] Elfes, A. (1989). Using occupancy grids for mobile robot perception and 

navigation. Computer, 22(6), 46-57. http://dx.doi.org/10.1109/2.30720 



179 
 

47. [Elor 2011] Elor, Y. & Bruckstein, A. (2011). Uniform multi-agent deployment on a 

ring. Theoretical Computer Science, 412(8-10), 783-795. 

http://dx.doi.org/10.1016/j.tcs.2010.11.023 

48. [Fabrice 1993] Noreils, F. (1993). Toward a Robot Architecture Integrating 

Cooperation between Mobile Robots: Application to Indoor Environment. The 

International Journal of Robotics Research, 12(1), 79-98. 

http://dx.doi.org/10.1177/027836499301200106 

49. [Fagiolini 2008] Fagiolini, A., Pellinacci, M., Valenti, G., Dini, G., & Bicchi, A. 

(2008). Consensus-based distributed intrusion detection for multi-robot systems. 

2008 IEEE International Conference on Robotics and Automation. 

http://dx.doi.org/10.1109/robot.2008.4543196 

50. [Fagiolini 2009] Fagiolini, A., Babboni, F., & Bicchi, A. (2009). Dynamic distributed 

intrusion detection for secure multi-robot systems. 2009 IEEE International 

Conference on Robotics and Automation. 

http://dx.doi.org/10.1109/robot.2009.5152608 

51. [Farinelli 2004] Farinelli, A., Iocchi, L., & Nardi, D. (2004). Multirobot Systems: A 

Classification Focused on Coordination. IEEE Trans. Syst., Man, Cybern. B, 34(5), 

2015-2028. http://dx.doi.org/10.1109/tsmcb.2004.832155 

52. [Fax 2002] Fax, J. & Murray, R. (2004). Information Flow and Cooperative Control 

of Vehicle Formations. IEEE Transactions On Automatic Control, 49(9), 1465-1476. 

http://dx.doi.org/10.1109/tac.2004.834433 

53. [Fazli 2010] Fazli P, Davoodi A, Pasquier P, Mackworth AK. (2010). Fault-Tolerant 

Multi-Robot Area Coverage with Limited Visibility. In: ICRA Workshop: Search 

and Pursuit/Evasion in the Physical World 

54. [Fazli 2013] Fazli, P., Davoodi, A., & Mackworth, A. (2013). Multi-robot repeated 

area coverage. Autonomous Robots, 34(4), 251-276. 

http://dx.doi.org/10.1007/s10514-012-9319-7 

55. [Ferranti 2007] Ferranti, E., Trigoni, N., & Levene, M. (2007). Brick& Mortar: an 

on-line multi-agent exploration algorithm. 2007 IEEE International Conference on 

Robotics and Automation. http://dx.doi.org/10.1109/robot.2007.363078 



180 
 

56. [Ferranti 2009] Ferranti, E., Trigoni, N., & Levene, M. (2008). Rapid exploration of 

unknown areas through dynamic deployment of mobile and stationary sensor nodes. 

Auton Agent Multi-Agent Syst, 19(2), 210-243. http://dx.doi.org/10.1007/s10458-

008-9075-4 

57. [Firebird-V 2016] Fire Bird V ATMEGA2560 Robotic Research Platform - Nex 

Robotics. (2016). Nex-robotics.com. Retrieved 21 August 2016, from 

http://www.nex-robotics.com/products/fire-bird-v-robots/fire-bird-v-atmega2560-

robotic-research-platform.html 

58. [Flocchini 1999] Flocchini, P., Prencipe, G., Santoro, N., & Widmayer, P. (1999). 

Hard Tasks for Weak Robots: The Role of Common Knowledge in Pattern 

Formation by Autonomous Mobile Robots. Algorithms and Computation, 93-102. 

http://dx.doi.org/10.1007/3-540-46632-0_10 

59. [Flocchini 2005] Flocchini, P., Prencipe, G., Santoro, N., & Widmayer, P. (2005). 

Gathering of asynchronous robots with limited visibility. Theoretical Computer 

Science, 337(1-3), 147-168. http://dx.doi.org/10.1016/j.tcs.2005.01.001 

60. [Flocchini 2008] Flocchini, P., Prencipe, G., & Santoro, N. (2008). Self-deployment 

of mobile sensors on a ring. Theoretical Computer Science, 402(1), 67-80. 

http://dx.doi.org/10.1016/j.tcs.2008.03.006 

61. [Fredslund 2002] Fredslund, J. & Mataric, M. (2002). A general algorithm for robot 

formations using local sensing and minimal communication. IEEE Trans. Robot. 

Automat., 18(5), 837-846. http://dx.doi.org/10.1109/tra.2002.803458 

62. [Fu 2009] Fu, J., Bandyopadhyay, T., & Ang, M. (2009). Local Voronoi 

Decomposition for multi-agent task allocation. 2009 IEEE International Conference 

on Robotics and Automation. http://dx.doi.org/10.1109/robot.2009.5152829 

63. [Galceran 2013] Galceran, E. & Carreras, M. (2013). A survey on coverage path 

planning for robotics. Robotics and Autonomous Systems, 61(12), 1258-1276. 

http://dx.doi.org/10.1016/j.robot.2013.09.004 

64. [Gamma 1995] Gamma, E. (1995). Design patterns. Reading, Mass.: Addison-

Wesley. 



181 
 

65. [Gao 2006] Gao, P. & Cai, Z. (2006). Multi-robot task allocation for exploration. 

Journal of Central South University of Technology, 13(5), 548-551. 

http://dx.doi.org/10.1007/s11771-006-0085-6 

66. [Garg 2004] Garg VK (2004) Resource Allocation. In: Concurrent and Distributed 

Computing in Java, Wiley-IEEE Press, pp 138-141. 

67. [Gautam 2012] Gautam, A., Mohan, S., & Misra, J. (2012). A practical framework 

for uniform circle formation by multiple mobile robots. 7th IEEE International 

Conference on Industrial and Information Systems. 

http://dx.doi.org/10.1109/iciinfs.2012.6304765 

68. [Gautam 2013a] Gautam, A., Mohan, S., & Shekhawat, V. (2013). A token passing 

approach for circle formation by multiple mobile robots. 6th IEEE International 

Conference on Contemporary Computing. 

http://dx.doi.org/10.1109/ic3.2013.6612251 

69. [Gautam 2013b] Gautam, A. & Mohan, S. (2013). A distributed algorithm for circle 

formation by multiple mobile robots. IEEE International Conference On Control, 

Automation, Robotics and Embedded Systems. 

http://dx.doi.org/10.1109/care.2013.6733699 

70. [Gautam 2014] Gautam, A., Saxena, A., Mall, P., & Mohan, S. (2014). Positioning 

multiple mobile robots for geometric pattern formation: An empirical analysis. 

Seventh IEEE International Conference on Contemporary Computing. 

http://dx.doi.org/10.1109/ic3.2014.6897242 

71. [Gautam 2015] Gautam, A., Murthy, J., Kumar, G., Ram, S., Jha, B., & Mohan, S. 

(2015). Cluster, Allocate, Cover: An Efficient Approach for Multi-Robot Coverage. 

IEEE International Conference on Systems, Man, and Cybernetics. 

http://dx.doi.org/10.1109/smc.2015.47 

72. [Gautam 2016a] Gautam, A. & Mohan, S. (2016). STATE: Distributed Algorithm for 

Uniform Circle Formation by Multiple Mobile Robots. Journal of Intelligent Service 

Robotics. http://dx.doi.org/10.1007/s11370-016-0205-6  

73. [Gautam 2016b] Gautam, A., Jha, B., Kumar, G., Murthy, J. K., Ram, S. P. A. & 

Mohan, S. (2016). FAST: Synchronous Frontier Allocation for Scalable Online 



182 
 

Multi-Robot Terrain Coverage. Journal of Intelligent Robotic Systems. 

http://dx.doi.org/10.1007/s10846-016-0416-2 

74. [Gautam 2016c] Gautam, A., Thakur, A., Dhanania, G., & Mohan, S. (2016). A 

Distributed Algorithm for Balanced Multi-Robot Task Allocation. In 2016 IEEE 11th 

International Conference on Industrial and Information Systems (ICIIS 2016).  

75. [Gerkey 2002] Gerkey, B. & Mataric, M. (2002). Sold!: auction methods for 

multirobot coordination. IEEE Trans. Robot. Automat., 18(5), 758-768. 

http://dx.doi.org/10.1109/tra.2002.803462 

76. [Gerkey 2004a] Gerkey, B. (2004). A Formal Analysis and Taxonomy of Task 

Allocation in Multi-Robot Systems. The International Journal of Robotics Research, 

23(9), 939-954. http://dx.doi.org/10.1177/0278364904045564 

77. [Gerkey 2004d] Gerkey, B.P. and Mataric, M.J. (2004). A formal framework for the 

study of task allocation in multi-robot systems. International Journal of Robotics 

Research, vol. 23(9), pp. 939–954, 2004. 

78. [Gerlein 2011] Gerlein, E. & Gonzalez, E. (2011). Multirobot Cooperative Model 

Applied to Coverage of Unknown Regions. Multi-Robot Systems, Trends and 

Development. http://dx.doi.org/10.5772/13241 

79. [Giordani 2010] Giordani, S., Lujak, M., & Martinelli, F. (2010). A Distributed 

Algorithm for the Multi-Robot Task Allocation Problem. Trends in Applied 

Intelligent Systems, 721-730. http://dx.doi.org/10.1007/978-3-642-13022-9_72 

80. [Goldberg 1997] Goldberg, D. and Mataric, M. (1997). Interference as a tool for 

designing and evaluating multi-robot controllers. In Proceedings, AAAI-97 

81. [Gonzalez 2003] Gonzalez, E., Alarcon, M., Aristizabal, P., & Parra, C. BSA: a 

coverage algorithm. 2003 IEEE/RSJ International Conference on Intelligent Robots 

and Systems (IROS 2003) (Cat. No.03CH37453). 

http://dx.doi.org/10.1109/iros.2003.1248885 

82. [GraphStream 2016] GraphStream - GraphStream - A Dynamic Graph Library. 

(2016). Graphstream-project.org. Retrieved 21 August 2016, from 

http://graphstream-project.org/ 

83. [Gutiérrez 2009] Gutierrez, A., Campo, A., Dorigo, M., Donate, J., Monasterio-

Huelin, F., & Magdalena, L. (2009). Open E-puck Range &#x00026; Bearing 



183 
 

miniaturized board for local communication in swarm robotics. 2009 IEEE 

International Conference on Robotics and Automation. 

http://dx.doi.org/10.1109/robot.2009.5152456 

84. [Guzzoni 1997] Guzzoni, D., Cheyer, A., Julia, L., & Konolige, K. (1997). Many 

Robots Make Short Work: Report of the SRI International Mobile Robot Team. AI 

Magazine, 18(1), 55. Retrieved from http://dx.doi.org/10.1609/aimag.v18i1.1274 

85. [Hao 2005] Hao, Y. & Agrawal, S. (2005). Planning and control of UGV formations 

in a dynamic environment: A practical framework with experiments. Robotics and 

Autonomous Systems, 51(2-3), 101-110. 

http://dx.doi.org/10.1016/j.robot.2005.01.001 

86. [Harabor 2011] Harabor, D.D., Grastien, A. (2011). Online graph pruning for path 

nding on grid maps. In Proceedings, AAAI-2011 

87. [Haumann 2010] Haumann, A., Listmann, K., & Willert, V. (2010). DisCoverage: A 

new paradigm for multi-robot exploration. 2010 IEEE International Conference on 

Robotics and Automation. http://dx.doi.org/10.1109/robot.2010.5509993 

88. [Hazon 2005] Hazon, N. & Kaminka, G. (2005). Redundancy, Efficiency and 

Robustness in Multi-Robot Coverage. 2005 IEEE International Conference on 

Robotics and Automation. http://dx.doi.org/10.1109/robot.2005.1570205 

89. [Heap 2012] Heap, B., Pagnucco, M. (2012). Repeated sequential auctions with 

dynamic task clusters. In Proceedings, AAAI (2012) 

90. [Heap 2013] Heap, B. & Pagnucco, M. (2013). Repeated Auctions for Reallocation 

of Tasks with Pickup and Delivery upon Robot Failure. Lecture Notes in Computer 

Science, 461-469. http://dx.doi.org/10.1007/978-3-642-44927-7_35 

91. [Heron USV 2016] Heron Unmanned Surface Vessel for Bathymetry. (2016). 

Clearpath Robotics. Retrieved 22 August 2016, from 

https://www.clearpathrobotics.com/heron-bathymetry-unmanned-surface-vessel/ 

92. [Howard 2002] Howard, A., Matarić, M., & Sukhatme, G. (2002). Mobile Sensor 

Network Deployment using Potential Fields: A Distributed, Scalable Solution to the 

Area Coverage Problem. Distributed Autonomous Robotic Systems 5, 299-308. 

http://dx.doi.org/10.1007/978-4-431-65941-9_30 



184 
 

93. [Howard 2004] Howard, A. (2004). Multi-robot mapping using manifold 

representations. IEEE International Conference on Robotics and Automation, 2004. 

Proceedings. ICRA '04. 2004. http://dx.doi.org/10.1109/robot.2004.1308933 

94. [Howard 2006] Howard, A. (2006). Multi-robot Simultaneous Localization and 

Mapping using Particle Filters. The International Journal of Robotics Research, 

25(12), 1243-1256. http://dx.doi.org/10.1177/0278364906072250 

95. [Hungerford 2014] K. Hungerford, P. Dasgupta, & K. R. Guruprasad. (2014). 

Distributed, complete, multi-robot coverage of initially unknown environments using 

repartitioning. In AAMAS, IFAAMAS-2014. 

96. [Hungerford 2016] Hungerford, K., Dasgupta, P., & Guruprasad, K. (2016). A 

Repartitioning Algorithm to Guarantee Complete, Non-overlapping Planar Coverage 

with Multiple Robots. Springer Tracts in Advanced Robotics, 33-48. 

http://dx.doi.org/10.1007/978-4-431-55879-8_3 

97. [Husky UGV 2016] Husky UGV - Outdoor Field Research Robot by Clearpath. 

(2016). Clearpath Robotics. Retrieved 22 August 2016, from 

https://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/ 

98. [Hussein 2014] Hussein, A., Adel, M., Bakr, M., Shehata, O., & Khamis, A. (2014). 

Multi-robot Task Allocation for Search and Rescue Missions. Journal of Physics: 

Conference Series, 570(5), 052006. Retrieved from http://dx.doi.org/10.1088/1742-

6596/570/5/052006 

99. [Juliá 2012] Juliá, M., Gil, A., & Reinoso, O. (2012). A comparison of path planning 

strategies for autonomous exploration and mapping of unknown environments. 

Autonomous Robots, 33(4), 427-444. http://dx.doi.org/10.1007/s10514-012-9298-8 

100. [Kalra 2006] Kalra, N. & Martinoli, A. (2006). Comparative Study of Market-Based 

and Threshold-Based Task Allocation. Distributed Autonomous Robotic Systems 7, 

91-101. http://dx.doi.org/10.1007/4-431-35881-1_10 

101. [Kapanoglu 2012] Kapanoglu, M., Alikalfa, M., Ozkan, M., Yazıcı, A., & 

Parlaktuna, O. (2010). A pattern-based genetic algorithm for multi-robot coverage 

path planning minimizing completion time. J Intell Manuf, 23(4), 1035-1045. 

http://dx.doi.org/10.1007/s10845-010-0404-5 



185 
 

102. [Ko 2003] Ko, J., Stewart, B., Fox, D., Konolige, K., & Limketkai, B. (2003) A 

practical, decision-theoretic approach to multi-robot mapping and exploration. 

Proceedings 2003 IEEE/RSJ International Conference On Intelligent Robots and 

Systems (IROS 2003) (Cat. No.03CH37453). 

http://dx.doi.org/10.1109/iros.2003.1249654 

103. [Krick 2009] Krick, L., Broucke, M., & Francis, B. (2009). Stabilisation of 

infinitesimally rigid formations of multi-robot networks. International Journal of 

Control, 82(3), 423-439. http://dx.doi.org/10.1080/00207170802108441 

104. [Krishnanand 2005] Krishnanand, K. & Ghose, D. (2005). Formations of minimalist 

mobile robots using local-templates and spatially distributed interactions. Robotics 

and Autonomous Systems, 53(3-4), 194-213. 

http://dx.doi.org/10.1016/j.robot.2005.09.006 

105. [Krontiris 2011] Krontiris, A., Louis, S., & Bekris, K. (2011). General dynamic 

formations for non-holonomic systems along planar curvilinear coordinates. 2011 

IEEE International Conference on Robotics and Automation. 

http://dx.doi.org/10.1109/icra.2011.5980450 

106. [Kube 1993] Kube, C. & Hong Zhang. (1993). Collective Robotics: From Social 

Insects to Robots. Adaptive Behavior, 2(2), 189-218. 

http://dx.doi.org/10.1177/105971239300200204 

107. [Kuhn 1955] Kuhn, H. (1955). The Hungarian method for the assignment problem. 

Naval Research Logistics Quarterly, 2(1-2), 83-97. 

http://dx.doi.org/10.1002/nav.3800020109 

108. [Latombe 1991] Latombe, J. (1991). Approximate Cell Decomposition. Robot 

Motion Planning, 248-294. http://dx.doi.org/10.1007/978-1-4615-4022-9_6 

109. [Leonard 2010] Leonard, N., Paley, D., Davis, R., Fratantoni, D., Lekien, F., & 

Zhang, F. (2010). Coordinated control of an underwater glider fleet in an adaptive 

ocean sampling field experiment in Monterey Bay. Journal of Field Robotics, 27(6), 

718-740. http://dx.doi.org/10.1002/rob.20366 

110. [Liu 2014] Liu, C. (2014). Multi-Robot Task Allocation for Inspection Problems 

with Cooperative Tasks Using Hybrid Genetic Algorithms. Kassel, Hess: Kassel 

University Press. 



186 
 

111. [Lizi 2016] Lizi. (2016). Retrieved 30 August 2016, from 

http://www.gaitech.hk/proimg/RoboTiCan%20Mobile%20Platforms/Lizi%20Robot.

pdf 

112. [Marino 2013] Marino, A., Parker, L., Antonelli, G., & Caccavale, F. (2012). A 

Decentralized Architecture for Multi-Robot Systems Based on the Null-Space-

Behavioral Control with Application to Multi-Robot Border Patrolling. Journal of 

Intelligent & Robotic Systems, 71(3-4), 423-444. http://dx.doi.org/10.1007/s10846-

012-9783-5 

113. [Marshall 2006] Marshall, J., Fung, T., Broucke, M., D’Eleuterio, G., & Francis, B. 

(2006). Experiments in multirobot coordination. Robotics and Autonomous Systems, 

54(3), 265-275. http://dx.doi.org/10.1016/j.robot.2005.10.004 

114. [Mataric 1995a] Matarić, M. (1995). From Local Interactions to Collective 

Intelligence. The Biology and Technology of Intelligent Autonomous Agents, 275-

295. http://dx.doi.org/10.1007/978-3-642-79629-6_11 

115. [Mataric 1995b] Mataric, M., Nilsson, M., & Simsarin, K. (1995). Cooperative multi-

robot box-pushing. Proceedings 1995 IEEE/RSJ International Conference on 

Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots. 

http://dx.doi.org/10.1109/iros.1995.525940 

116. [Mataric 1997] Mataric, M. (1997). Behaviour-based control: examples from 

navigation, learning, and group behaviour. Journal of Experimental & Theoretical 

Artificial Intelligence, 9(2-3), 323-336. http://dx.doi.org/10.1080/095281397147149 

117. [Mead 2009] Mead, R., Long, R., & Weinberg, J. (2009). Fault-tolerant formations of 

mobile robots. 2009 IEEE/RSJ International Conference on Intelligent Robots and 

Systems. http://dx.doi.org/10.1109/iros.2009.5353996 

118. [Meltzer 2004] Meltzer, J., Gupta, R., Ming-Hsuan Yang, & Soatto, S. (2004). 

Simultaneous localization and mapping using multiple view feature descriptors. 2004 

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE 

Cat. No.04CH37566). http://dx.doi.org/10.1109/iros.2004.1389616 

119. [Michael 2008] Michael, N., Zavlanos, M., Kumar, V., & Pappas, G. (2008). 

Distributed multi-robot task assignment and formation control. 2008 IEEE 



187 
 

International Conference on Robotics and Automation. 

http://dx.doi.org/10.1109/robot.2008.4543197 

120. [Mondada 2009] Mondada F, Bonani M, Raemy X, Pugh J, et al (2009) The e-puck, 

a robot designed for education in engineering. Infoscience, EPFL's scientific 

publications. https://infoscience.epfl.ch/record/135236/files/epuck-robotica2009.pdf. 

Accessed 13 June 2016 

121. [Monteiro 2010] Monteiro, S. & Bicho, E. (2010). Attractor dynamics approach to 

formation control: theory and application. Autonomous Robots, 29(3-4), 331-355. 

http://dx.doi.org/10.1007/s10514-010-9198-8 

122. [Montemerlo 2003] Montemerlo, M. & Thrun, S. (2003). Simultaneous localization 

and mapping with unknown data association using FastSLAM. 2003 IEEE 

International Conference on Robotics and Automation (Cat. No.03CH37422). 

http://dx.doi.org/10.1109/robot.2003.1241885 

123. [Moravec 1985] Moravec, H. & Elfes, A. (1985). High resolution maps from wide 

angle sonar. Proceedings. 1985 IEEE International Conference on Robotics and 

Automation. http://dx.doi.org/10.1109/robot.1985.1087316 

124. [Mukhija 2010] Mukhija, P., Krishna, K., & Krishna, V. (2010). A two phase 

recursive tree propagation based multi-robotic exploration framework with fixed base 

station constraint. 2010 IEEE/RSJ International Conference on Intelligent Robots and 

Systems. http://dx.doi.org/10.1109/iros.2010.5649864 

125. [Nunes 2015] Nunes, E., Gini, M. (2015). Multi-robot auctions for allocation of tasks 

with temporal constraints. In Proceedings, AAAI-2015 

126. [Ozkan 2010] Ozkan, M., Kirlik, G., Parlaktuna, O., Yufka, A., & Yazici, A. (2010). 

A Multi-Robot Control Architecture for Fault-Tolerant Sensor-Based Coverage. Int J 

Adv Robotic Sy, 1. http://dx.doi.org/10.5772/7252 

127. [Parker 1993] Parker, L. (1993). Designing control laws for cooperative agent teams. 

Proceedings. 1993 IEEE International Conference on Robotics and Automation. 

http://dx.doi.org/10.1109/robot.1993.291842 

128. [Parker 1995] Parker, L. (1998). ALLIANCE: an architecture for fault tolerant 

multirobot cooperation. IEEE Trans. Robot. Automat., 14(2), 220-240. 

http://dx.doi.org/10.1109/70.681242 



188 
 

129. [Parrot ARdrone-2.0 2016] AR.Drone 2.0 official site – AR.Freeflight: Fly with 

iPhone and iPad. (2016). Parrot.com. Retrieved 23 August 2016, from 

http://www.parrot.com/usa/products/ardrone-2/ 

130. [Pini 2011] Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., & Birattari, M. 

(2011). Task partitioning in swarms of robots: an adaptive method for strategy 

selection. Swarm Intell, 5(3-4), 283-304. http://dx.doi.org/10.1007/s11721-011-0060-

1 

131. [Portugal 2013] Portugal, D. & Rocha, R. (2013). Retrieving Topological 

Information for Mobile Robots Provided with Grid Maps. Communications in 

Computer and Information Science, 204-217. http://dx.doi.org/10.1007/978-3-642-

36907-0_14 

132. [Premvuti 1990] Premvuti, S. & Yuta, S. (1990). Consideration on the cooperation of 

multiple autonomous mobile robots. IEEE International Workshop on Intelligent 

Robots and Systems, Towards a New Frontier of Applications. 

http://dx.doi.org/10.1109/iros.1990.262369 

133. [Prencipe 2001] Prencipe, G. (2001). CORDA: Distributed coordination of a set of 

autonomous mobile robots. 4th European Research Seminar on Advances in 

Distributed Systems (ERSADS 2001). 

134. [Prencipe 2002] Prencipe, G. (2002). Distributed coordination of a set of autonomous 

mobile robots. Ph.D. Thesis, Università di Pisa 

135. [Puig 2011] Puig, D., Garcia, M., & Wu, L. (2011). A new global optimization 

strategy for coordinated multi-robot exploration: Development and comparative 

evaluation. Robotics and Autonomous Systems, 59(9), 635-653. 

http://dx.doi.org/10.1016/j.robot.2011.05.004 

136. [Radchuk 2013] Radchuk, D. (2013). Boost.Asio C++ Network Programming 

Cookbook. Packt Publishing. 

137. [Raghavan 2007] Raghavan, S. & B, R. (2007). Homogeneous Hierarchical 

Composition of Areas in Multi-robot Area Coverage. Lecture Notes in Computer 

Science, 300-313. http://dx.doi.org/10.1007/978-3-540-73580-9_24 

138. [Rekleitis 2001] Rekleitis, I., Dudek, G., & Milios, E. (2001). Annals of Mathematics 

and Artificial Intelligence, 31(1/4), 7-40. http://dx.doi.org/10.1023/a:1016636024246 



189 
 

139. [Rekleitis 2004] Rekleitis, I., Lee-Shue, V., Ai Peng New, & Choset, H. (2004). 

Limited communication, multi-robot team based coverage. IEEE International 

Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004. 

http://dx.doi.org/10.1109/robot.2004.1308789 

140. [Renzaglia 2010] Renzaglia, A. & Martinelli, A. (2010). Potential field based 

approach for coordinate exploration with a multi-robot team. 2010 IEEE Safety 

Security and Rescue Robotics. http://dx.doi.org/10.1109/ssrr.2010.5981557 

141. [Reynolds 1987] Reynolds, C. (1987). Flocks, herds and schools: A distributed 

behavioral model. Proceedings of the 14th Annual Conference on Computer 

Graphics and Interactive Techniques - SIGGRAPH '87. 

http://dx.doi.org/10.1145/37401.37406 

142. [Reynolds 1999] Reynolds C.W. (1999). Steering behaviors for autonomous 

characters. In Proceedings of Game Developers Conference, San Francisco, CA 

143. [Reynolds 2000] Reynolds C.W. (2000). Interaction with a group of autonomous 

characters. In Proceedings of Game Developers Conference, San Francisco, CA  

144. [Rhoad 1984] Rhoad, R. (1984). Tests for Geometry for enjoyment and challenge. 

Evanston, Ill.: McDougal, Littell. 

145. [Rooker 2007] Rooker, M. & Birk, A. (2007). Multi-robot exploration under the 

constraints of wireless networking. Control Engineering Practice, 15(4), 435-445. 

http://dx.doi.org/10.1016/j.conengprac.2006.08.007 

146. [Russell 1995] Russell, S. & Norvig, P. (1995). Artificial intelligence. Englewood 

Cliffs, N.J.: Prentice Hall. 

147. [Schneider-Fontan 1998] Schneider-Fontan, M. & Mataric, M. (1998). Territorial 

multi-robot task division. IEEE Trans. Robot. Automat., 14(5), 815-822. 

http://dx.doi.org/10.1109/70.720357 

148. [SciStatCalc 2016] SciStatCalc: Wilcoxon Signed Rank Test Calculator. (2016). 

Scistatcalc.blogspot.in. Retrieved 21 August 2016, from 

http://scistatcalc.blogspot.in/2013/10/wilcoxon-signed-rank-test-calculator.html 

149. [Senthilkumar 2012] Senthilkumar, K. & Bharadwaj, K. (2012). Multi-robot 

exploration and terrain coverage in an unknown environment. Robotics and 

Autonomous Systems, 60(1), 123-132. http://dx.doi.org/10.1016/j.robot.2011.09.005 



190 
 

150. [Sharpe 1998] Sharpe, R. & Webb, B. (1998). Simulated and situated models of 

chemical trail following in ants. 1998 International Conference on Simulation of 

Adaptive Behavior.  

151. [Shell 2006] Shell, D. & Mataric, M. (2006). On foraging strategies for large-scale 

multi-robot systems. 2006 IEEE/RSJ International Conference on Intelligent Robots 

and Systems. http://dx.doi.org/10.1109/iros.2006.281996 

152. [Sheng 2006] Sheng, W., Yang, Q., Tan, J., & Xi, N. (2006). Distributed multi-robot 

coordination in area exploration. Robotics and Autonomous Systems, 54(12), 945-

955. http://dx.doi.org/10.1016/j.robot.2006.06.003 

153. [Sit 2007] Sit, T., Liu, Z., Ang Jr., M., & Seah, W. (2007). Multi-robot mobility 

enhanced hop-count based localization in ad hoc networks. Robotics and 

Autonomous Systems, 55(3), 244-252. http://dx.doi.org/10.1016/j.robot.2006.08.005 

154. [Skyum 1991] Skyum, S. (1991). A simple algorithm for computing the smallest 

enclosing circle. Information Processing Letters, 37(3), 121-125. 

http://dx.doi.org/10.1016/0020-0190(91)90030-l 

155. [Solanas 2004] Solanas, A. & Garcia, M. (2004). Coordinated multi-robot 

exploration through unsupervised clustering of unknown space. 2004 IEEE/RSJ 

International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. 

No.04CH37566). http://dx.doi.org/10.1109/iros.2004.1389437 

156. [Souissi 2004] Souissi, S., Défago, X., Katayama, T. (2004). Convergence of a Self-

Stabilizing Circle Formation Algorithm for Cooperative Mobile Robotics. In 

Proceedings of Scientific French-speaking Workshops (JSF'04). Tokyo, Japan. 

157. [Stachniss 2006] Stachniss, C. (2006). Exploration and Mapping with Mobile 

Robots. PhD thesis, University of Freiburg, Department of Computer Science, April 

2006 

158. [Sugihara 1996] Sugihara, K. & Suzuki, I. (1996). Distributed algorithms for 

formation of geometric patterns with many mobile robots. J. Robotic Syst., 13(3), 

127-139. http://dx.doi.org/10.1002/(sici)1097-4563(199603)13:3<127::aid-

rob1>3.0.co;2-u 



191 
 

159. [Suzuki 1999] Suzuki, I. & Yamashita, M. (1999). Distributed Anonymous Mobile 

Robots: Formation of Geometric Patterns. SIAM J. Comput., 28(4), 1347-1363. 

http://dx.doi.org/10.1137/s009753979628292x 

160. [Svennebring 2004] Svennebring, J. & Koenig, S. (2004). Building Terrain-Covering 

Ant Robots: A Feasibility Study. Autonomous Robots, 16(3), 313-332. 

http://dx.doi.org/10.1023/b:auro.0000025793.46961.f6 

161. [Tanner 2003] Tanner, H., Loizou, S., & Kyriakopoulos, K. (2003). Nonholonomic 

navigation and control of cooperating mobile manipulators. IEEE Trans. Robot. 

Automat., 19(1), 53-64. http://dx.doi.org/10.1109/tra.2002.807549 

162. [Thrun 1998] Thrun, S. (1998). Learning metric-topological maps for indoor mobile 

robot navigation. Artificial Intelligence, 99(1), 21-71. 

http://dx.doi.org/10.1016/s0004-3702(97)00078-7 

163. [Trebi-Ollennu 1999] Trebi-Ollennu, A., & Dolan, J. M. (1999). An autonomous 

ground vehicle for distributed surveillance: cyberscout. Technical Report ICES-04-

09-99. School of Computer Science, Carnegie Mellon University. 

164. [Turtlebot 2016] TurtleBot. (2016). Turtlebot.com. Retrieved 23 August 2016, from 

http://www.turtlebot.com/ 

165. [Vasisht 2016] Vasisht, D., Kumar, S., & Katabi, D. (2016). Decimeter-level 

localization with a single WiFi access point. 13th USENIX Symposium on 

Networked Systems Design and Implementation 

166. [Viguria 2007] Viguria, A., Maza, I., & Ollero, A. (2007). SET: An algorithm for 

distributed multirobot task allocation with dynamic negotiation based on task subsets. 

Proceedings 2007 IEEE International Conference on Robotics and Automation. 

http://dx.doi.org/10.1109/robot.2007.363988 

167. [Viguria 2008] Viguria, A., Maza, I., & Ollero, A. (2008). S+T: An algorithm for 

distributed multirobot task allocation based on services for improving robot 

cooperation. 2008 IEEE International Conference on Robotics and Automation. 

http://dx.doi.org/10.1109/robot.2008.4543692 

168. [Wang 1991] Wang, P. (1991). Navigation strategies for multiple autonomous mobile 

robots moving in formation. J. Robotic Syst., 8(2), 177-195. 

http://dx.doi.org/10.1002/rob.4620080204 



192 
 

169. [Wang 2005] Wang, Z., Liu, L. & Zhou, M. (2005). Protocols and Applications of 

Ad-hoc Robot Wireless Communication Networks: An Overview. International 

Journal of Intelligent Control Systems, 10(4), 296- 303 

170. [Weitzenfeld 2006a] Weitzenfeld, A., Vallesa, A., & Flores, H. (2006). A 

Biologically-Inspired Wolf Pack Multiple Robot Hunting Model. 2006 IEEE 3rd 

Latin American Robotics Symposium. http://dx.doi.org/10.1109/lars.2006.334327 

171. [Weitzenfeld 2006b] Weitzenfeld, A., Martinez-Gomez, L., Francois, J., Levin-Pick, 

A., Obraczka, K., & Boice, J. (2006). Multi-Robot Systems: Extending RoboCup 

Small-Size Architecture with Local Vision and Ad-Hoc Networking. 2006 IEEE 3rd 

Latin American Robotics Symposium. http://dx.doi.org/10.1109/lars.2006.334328 

172. [Witkowski 2008] Witkowski, U., El-Habbal, M., Herbrechtsmeier, S., Tanoto, A., 

Penders, J., Alboul, L. & Gazi, V. (2008). Ad-hoc network communication 

infrastructure for multi-robot systems in disaster scenarios. International Workshop 

on Robotics for Risky Interventions and Surveillance of the Environment  

173. [Wu 2007] Wu, L., García García, M., Puig Valls, D., & Solé Ribalta, A. (2007). 

Voronoi-based space partitioning for coordinated multi-robot exploration. Journal of 

Physical Agents (Jopha), 1(1), 37-44. http://dx.doi.org/10.14198/jopha.2007.1.1.05 

174. [Wu 2010] Wu, L., Puig Valls, D., & García García, M. (2010). Balanced multi-robot 

exploration through a global optimization strategy. Red De Agentes Físicos. 

Retrieved from http://dx.doi.org/10.14198/JoPha.2010.4.1.06 

175. [Wurm 2008] Wurm, K., Stachniss, C., & Burgard, W. (2008). Coordinated multi-

robot exploration using a segmentation of the environment. 2008 IEEE/RSJ 

International Conference on Intelligent Robots and Systems. 

http://dx.doi.org/10.1109/iros.2008.4650734 

176. [Xiong 2010] Xiong, N., He, J., Yang, Y., He, Y., Kim, T., & Lin, C. (2010). A 

Survey on Decentralized Flocking Schemes for a Set of Autonomous Mobile Robots 

(Invited Paper). Journal of Communications, 5(1). 

http://dx.doi.org/10.4304/jcm.5.1.31-38 

177. [Yamada 2001] Yamada, S. & Saito, J. (2001). Adaptive action selection without 

explicit communication for multirobot box-pushing. IEEE Trans. Syst., Man, Cybern. 

C, 31(3), 398-404. http://dx.doi.org/10.1109/5326.971668 



193 
 

178. [Yamashita 2003] Yamashita, A., Arai, T., Jun Ota, & Asama, H. (2003). Motion 

planning of multiple mobile robots for cooperative manipulation and transportation. 

IEEE Trans. Robot. Automat., 19(2), 223-237. 

http://dx.doi.org/10.1109/tra.2003.809592 

179. [Yamauchi 1997] Yamauchi, B. (1997). A frontier-based approach for autonomous 

exploration. 1997 IEEE International Symposium on Computational Intelligence in 

Robotics and Automation CIRA'97. 'Towards New Computational Principles for 

Robotics and Automation'. http://dx.doi.org/10.1109/cira.1997.613851 

180. [Yamauchi 1998] Yamauchi, B. (1998). Frontier-based exploration using multiple 

robots. 2nd International Conference on Autonomous Agents - AGENTS '98. 

http://dx.doi.org/10.1145/280765.280773 

181. [Yan 2013] Yan, Z., Jouandeau, N., & Ali, A. (2013). A Survey and Analysis of 

Multi-Robot Coordination. Int J Adv Robotic Sy, 1. http://dx.doi.org/10.5772/57313 

182. [Yang 2009] Yongming Yang, Changjiu Zhou, & Yantao Tian. (2009). Swarm robots 

task allocation based on response threshold model. 2009 4th International Conference 

on Autonomous Robots and Agents. http://dx.doi.org/10.1109/icara.2000.4803959 

183. [Yang 2011] Yang, Y., Souissi, S., Défago, X., & Takizawa, M. (2011). Fault-

tolerant flocking for a group of autonomous mobile robots. Journal of Systems and 

Software, 84(1), 29-36. http://dx.doi.org/10.1016/j.jss.2010.08.026 

184. [Yazıcıoğlu 2013] Yazıcıoğlu, A., Egerstedt, M., & Shamma, J. (2013). A Game 

Theoretic Approach to Distributed Coverage of Graphs by Heterogeneous Mobile 

Agents. IFAC Proceedings Volumes, 46(27), 309-315. 

http://dx.doi.org/10.3182/20130925-2-de-4044.00034 

185. [Zavlanos 2008] Zavlanos, M., Spesivtsev, L., & Pappas, G. (2008). A distributed 

auction algorithm for the assignment problem. 2008 47th IEEE Conference on 

Decision and Control. http://dx.doi.org/10.1109/cdc.2008.4739098 

186. [Zheng 2008] Taixiong Zheng, & Liangyi Yang. (2008). Optimal ant colony 

algorithm based multi-robot task allocation and processing sequence scheduling. 

2008 7th World Congress on Intelligent Control and Automation. 

http://dx.doi.org/10.1109/wcica.2008.4593859 



194 
 

187. [Zheng 2010] Zheng, X., Koenig, S., Kempe, D., & Jain, S. (2010). Multirobot 

Forest Coverage for Weighted and Unweighted Terrain. IEEE Trans. Robot., 26(6), 

1018-1031. http://dx.doi.org/10.1109/tro.2010.2072271 

188. [Xu 2009] Xu, Z., Xia, F., & Zhang, X. (2009). Multi-Robot Dynamic Task 

Allocation Using Modified Ant Colony System. Artificial Intelligence and 

Computational Intelligence, 288-297. http://dx.doi.org/10.1007/978-3-642-05253-

8_32 

189. [ZhiDong 2003] ZhiDong Wang, Nakano, E., & Takahashi, T. (2003). Solving 

function distribution and behavior design problem for cooperative object handling by 

multiple mobile robots. IEEE Transactions on Systems, Man, and Cybernetics - Part 

A: Systems and Humans, 33(5), 537-549. 

http://dx.doi.org/10.1109/tsmca.2003.817396 

190. [Zlot 2002] Zlot, R., Stentz, A., Dias, M., & Thayer, S. (2002). Multi-robot 

exploration controlled by a market economy. 2002 IEEE International Conference on 

Robotics and Automation (Cat. No.02CH37292). 

http://dx.doi.org/10.1109/robot.2002.1013690 

  



195 
 

APPENDIX 

The appendix is attached as a CD containing three videos of the experiments we have 

conducted in simulation and on a multi-robot test-bed in a laboratory setting. Following is 

the description of each of the video files: 

(a) VID-1_STATE.mp4 – This video demonstrates the execution of the proposed STATE 

algorithm in Chapter 3 of the thesis. Initially the robots move to some random positions 

on the floor. All robots find the smallest enclosing circle (SEC) in their own local 

coordinate system. The center of the SEC coincides and the robots transform their local 

reference frame to a global reference frame while considering the center of the SEC as 

the origin. The robots then move to the circumference of the SEC. Once all the robots are 

positioned on the SEC, each robot locally starts executing the STATE algorithm. It can 

be seen that the team of five e-puck robots eventually make a uniform circular formation.  

(b) VID-2_CAC.mp4 – This video demonstrates the execution of the proposed CAC 

algorithm in Chapter 4 of the thesis. The robots start from a common entry point and 

starts covering the terrain. The emergent dispersion of the robots is visible in the video. It 

can be noticed in the beginning that the robot with the red trail deliberately leaves one 

cell uncovered in the lower left-hand corner of the terrain. This cell is marked as a home 

cell. In the end when the entire terrain is covered and only the home cell is left all the 

robots return to home.  

(c) VID-3_FAST.mp4 – This video demonstrates the execution of the proposed FAST 

algorithm in Chapter 5 of the thesis. The FAST algorithm has a property that it creates 

large unbroken segments while covering the terrain. This property is demonstrated in 

simulation. Besides FAST, the execution of two other state-of-the-art algorithms in 

simulation is also shown. It can be observed that the other two algorithms cover the 

terrain in a haphazard manner. Subsequently, the execution of the algorithm FAST on an 

experimental test-bed is demonstrated. Three robots are shown to cover the terrain 

without failing. Later, three robots cover the terrain while one robot fails after every six 

steps (it was stopped intentionally). It can be seen that the last robot with the blue trail 

covers remaining terrain and completes the terrain coverage task.  
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