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Chapter 5   
 

Flexural Study of Beams: Analytical Modelling 

 

5.1 Introduction 

This chapter deals with the determination of flexural characteristics of FRP I-beams with and without 

stiffening elements. There are no code provisions for designing of FRP beams with stiffening elements. 

Hence, equation to calculate the deflection of beams with different stiffening elements is derived using 

Castigliano's theorem. In order to get the better understanding of failure of FRP beams, various formulae 

for beams without stiffening elements available in design manuals are incorporated in the analytical model 

for prediction of failure load and mode. The flexural response of the beams in terms of deflection, critical 

local and lateral buckling loads, crippling load, and delamination is predicted using self-derived equations 

and those available in codes. Accuracy of the different analytical formulae available in codes is verified by 

comparing with experimental results. In this analytical model, material nonlinearity is not incorporated, 

because the load-deflection response of the beams obtained from experimental investigation is linear till 

the failure of specimens. The results obtained from analytical model give the good comparison of results 

with experimental investigation. Furthermore, a failure criterion is recommended for prediction of failure 

load of beams with and without stiffening elements. In this chapter, analytical equations to find the flexural 

response of the beams are presented, and the comparison of analytical response with experimental and 

numerical responses is presented in Chapter 6. 

5.2 Analytical approach 

In this study, flexural behavior of the FRP I-beams with and without stiffening elements is investigated 

under three-point bending. Timoshenko’s first order shear deformation beam theory is used to determine 

the deflection of beams. Critical buckling load of flange, web and beam, and failure criterion based on 

strength are used to calculate the failure load of beams. Fig. 5.1 shows the flow chart of different steps of 

the computational model. An integrated computer program is developed to simulate the flexural behavior 

of FRP I-beams. Step-by-step procedure to determine the response of beams using analytical equations are 

discussed in the following sections. 

 

https://en.wikipedia.org/wiki/Castigliano%27s_method
https://en.wikipedia.org/wiki/Timoshenko_beam_theory
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Fig. 5.1. Flow chart of the computational model of FRP I-beam. 

5.3 Kinematic formulation 

A cartesian coordinate system (x, y and z) is considered for representation of the beam as shown in Fig. 

5.2. The x-axis is parallel to the beam, while y and z-axis coincides with principal axis of the beam. 

Displacement of the beam along the x, y and z coordinates is expressed as 

0 xu u z                              (5.1) 

0 yv v z                            (5.2) 

0w w                            (5.3) 
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where, uo, vo and wo are the displacements of the mid-plane of the laminate. The rotation of transverse 

normal about x and y-axis is represented by ϕy and ϕx, respectively. The strain-displacement relationship is 

given by  
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Fig. 5.2. Coordinate system of I-beam. 

According to the Timoshenko’s beam theory, cross-section of the beam does not remain perpendicular to 

neutral axis after deformation. It is because of transverse shear strains produces in the cross-section. Hence, 

the slope of the neutral plane (
𝜕𝑤𝑜

𝜕𝑥
) is not equal to the rotation of cross-section (ϕx) as shown in Fig. 5.3. 

The difference of the slope of neutral axis and rotation of the cross-section gives the shear strain as given 

next. 

xxz
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w
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 0

                  (5.7) 

Similarly, transverse shear strains produced along the y-axis is given by Eq. (5.8). 
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Fig. 5.3. Shear deformation of I-beam. 

For a beam loaded with transverse loading, the resultant moments (Mxx, Myy and Mxy) and shear forces (Qx 

and Qy) produced in a symmetric laminate are given by Eqs. (5.9) and (5.10), respectively (Reddy, 2003 

and Jones, 1975). 
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where, Dij is the coefficient of bending stiffness matrix, Aij is the coefficient of shear stiffness matrix and 

zK is the shear correction factor (0.83). The inverse form of the Eqs. (5.9) and (5.10) can be written as  
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In case of in-plane bending of the beams, Myy = Mxy = Qy= ϕy= 0. As a result of this assumption, the relation 

between curvature and bending moment of a particular laminate is defined as 

'
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x
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                              (5.13) 

Here 𝐷11
′  is the bending stiffness of a panel. In order to use Eq. (5.13) for I-beams, bending stiffness (Dy) 

of I-section is determined by adding the stiffnesses of each panels. Mechanics of laminated beam theory 

(Davalos et al., 1996) is used to predict the bending stiffness of I-beams. The bending stiffness of beam 

(Dy) having symmetrical layup and geometry about minor axis is calculated by Eq. (5.14). 
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where, z is the distance from the center of the flange to the centroid of the cross-section (see Fig. 5.4), bf 

and hw is the flange width and depth of web of I-section, respectively. While Af = [A11]f and Df  = [D11]f are 

elements of extensional and bending stiffness matrix of flange, respectively. Similarly, Aw = [A11]w is the 

element of extensional stiffness matrix of web panel. The shear force resultant over the thickness of 

laminate is given by 
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where, 𝜏𝑥𝑧 is the shear stress over the laminate and is given by 𝜏𝑥𝑧 = 𝐺𝑥𝑧𝛾𝑥𝑧. Putting the expression of 

shear stress in Eq. (5.15) and integrating it with respect to thickness, yields 
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Fig. 5.4. Typical cross-section of I-beam 

Using the beam theory, shear force can be written in terms of bending moment as 
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Combining Eqs. (5.16) and (5.17), and rearranging it yields 
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5.3.1 Beam with bearing plate 

For accurate measurement of flexural response, it is essential to consider loading from bearing plate as 

uniformly distributed load (UDL) instead of concentrated load. Hence, deflection equation of beam with 

bearing plate is derived by considering the UDL (q) of length ‘a’ (length of bearing plate) applied on the 

mid-span of the beam. Bending moment equation for simply supported beam loaded by bearing plate is 

given by 
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where, P is the load applied on bearing plate. Substituting for Mxx in Eq. (5.13) and integrating with respect 

to x, ϕx can be written as 
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where, 𝐸𝑥𝑥 =
𝐷𝑦

𝐼𝑦𝑦
 Substituting for ϕx in Eq. (5.19) and integrating with respect to x, deflection of the beam 

at distance x from the left support can be determined by Eq. (5.22). 
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(5.22) 

where, G is the shear modulus of the beam. 

5.3.2 Beam with bearing plate and stiffening element 

Stiffening elements not only increase the crushing strength of web-flange junction but also add stiffness to 

the beams. Therefore, the sections where bearing stiffeners is provided, beam have different flexural 

rigidities than other portion of the beam. In other words, flexural rigidity is not constant on each section of 

the beam as shown in the Fig. 5.5. Eq. (5.22) is based on the constant flexural rigidity throughout the length 

of beam, i.e., prismatic beam. Hence, the Castigliano's theorem is used to derive the deflection equation of 

beam by considering the different flexural rigidity at different sections of beam. Flexural rigidity of 

composite section (beam and stiffening element) is determined by using transformed area method, i.e., 

dimensions of stiffening element are transformed by multiplying it with modular ratio. Further, parallel axis 

theorem is used to evaluate the combined flexural rigidity of the composite section. 

The strain energy (U) stored in the beam due to bending moment (M) and shear force (V) is expressed as 
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Deflection of beam (w) under the point of application of loading ‘P’ is determined by differentiating the 

strain energy (U) w.r.t. ‘P’ and it is evaluated as  
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 (c) Longitudinal stiffening element 

Fig. 5.5. Schematic of beams with stiffening elements.
 

5.3.3 Beam with bearing stiffeners 

The flange of T- or L-shaped bearing stiffener increases the flexural stiffness of beam. Bearing stiffeners 

over supports have negligible effect on enhancing the stiffness of the beam. Hence, the deflection equation 

of beam is derived with consideration of flexural rigidity of load bearing stiffeners in span only. Using Eq. 

(5.23), the strain energy of I-beam with T-shaped bearing stiffener at web-flange junction under the bearing 

plate is given by 
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where, x is the distance from left support, while the flexural rigidities (EI1 to EI3) and shear rigidities (GA1 

& GA2) are the rigidities at different sections of the beam, i.e., at locations where beam is stiffened and 

unstiffened as shown in Fig. 5.5(a). After integration of Eq. (5.25) and putting the updated expression of 

strain energy into Eq. (5.24), the equation to determine the maximum deflection (at mid-span) of the beam 

with T-shaped bearing stiffener is obtained as 
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where, btf and ttw are the flange width and web thickness of T-shaped bearing stiffener, respectively. The 

maximum deflection (mid-span) of the beam with L-shaped bearing stiffener under the loading is calculated 

by Eq. (5.27). 
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where, blf and tlw are the width of connecting leg and the thickness of outstanding leg of angle section, 

respectively. The flexural rigidities (EI1 to EI3) and shear rigidities (GKzA1 and GKzA2) of stiffened and un-

stiffened section of the beam are illustrated in Fig. 5.5(b). 

5.3.4 Beam with longitudinal stiffening elements
 

Aforementioned Eqs. (5.26) and (5.27) are used to determine the structural response of beams loaded by 

bearing plate and stiffened by vertical stiffeners under the loading and over supports. Stiffening elements 

installed along the length of the beams (longitudinal stiffeners or cover plate) increases the flexural strength 

and stiffness of beams. Therefore, load-deflection equations are derived by calculating the effective 

stiffness at the location where beam is stiffened and unstiffened. The maximum deflection of beam, i.e., at 

the mid-section with stiffening element and bearing plate is derived as 
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               (5.28) 

where, Ls denotes the length of bearing stiffener, flexural rigidities (EI1 and EI2) and shear rigidities (GKzA1 

and GKzA2) at different sections of the beam are shown in Fig. 5.5(c). 

5.4 Failure load 

From the experimental investigation, it is observed that the failure mode of the beams with bearing plate 

was crushing of web below the web-flange junction under the load bearing plate. The crushing of the web 

may be due to the lateral-torsional buckling of beams, local buckling of the web or crippling of the web. As 

per Borowicz and Bank (2011), the web-flange junction failure of the beam having L/d ratio 3 with bearing 

plate is due to the local buckling of web. Therefore, it is necessary to determine the critical lateral-torsional 

buckling or local buckling load of the beam to study the failure of beam with bearing plate under three-

point bending. In case of beams with stiffening elements, failure load observed from experimental 

investigation is local buckling of compression flange or tearing of the web-flange junction. Correia et al. 

(2011) reported that the beam having L/d ratio 7, failed by local buckling of the compression flange and 

the failure mode is different for different L/d ratios. Hence, it is necessary to include the local and lateral-

torsional buckling equations in analytical model for predicting the actual mode of failure and failure load 

of the beam. Here in this study, buckling equations given in various standards (Clarke, 1996; Pultrusions, 

2013; CNR DT-205, 2007; ASCE, 2011).) and in other literature are used to determine the failure load of 

beams and are compared with the experimental results. This study is also helpful in checking the accuracy 

of proposed formulae given in literature. 

5.4.1 Buckling of beams 

There are two types of buckling which are possible in beams, i.e., lateral-torsional and local buckling of 

beams. Equations to determine critical buckling load from different design manuals and other equations 

suggested by researchers are explained next: 

5.4.1.1 European code 

Buckling of compression flange 

Clarke (1996) determined the critical buckling stress of the compression flange under flexural loading by 

considering the flange as a long plate. The longitudinal free edge of the flange of I-beam is considered as 
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the free edge of the plate, while other longitudinal edges connected to web is assumed as pinned. The critical 

buckling stress is determined from flexural rigidity of the flange in longitudinal direction (D11) and in-plane 

shear rigidity of the flange (D66) and it is given as 
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Author (Clarke, 1996) has considered the laminate (web or flange) as single orthotropic layer. Therefore, 

the local flexural rigidities of the beam are given as 
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Critical buckling flexural stress of web under in-plane bending 

The in-plane bending of the beam produces flexural stresses in the web. Therefore, web of I-beam is prone 

to buckling during flexural deformation. Hence, the depth of web is considered as a column, therefore 

effective length is taken as depth of the web and critical buckling stress is given by Eq. (5.31). 
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If web is assumed as clamped with flange, k’= 50 otherwise k’ = 20. 

Critical shear stress in web 

Like flexural stresses, in-plane shear stresses are also produced in the web of I-beam, during three-point 

bending. The critical in-plane buckling shear stress is calculated by Eq. (5.32). 
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Lateral-torsional buckling load of the beam 

The lateral-torsional buckling equation (Eq. 5.33) of FRP I-beams given in European code (Clarke, 1996) 

is the buckling equation of the isotropic beams. This equation includes the effect of warping of the cross- 
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section and shear rigidity of the beam and is expressed as  
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where, J is the torsion constant, k is the effective length factor, Izz is the polar moment of inertia, Iw is the 

warping moment of inertia, C1 is the factor depends on the loading and support conditions. Euler buckling 

load (Pey) is computed by 
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5.4.1.2 Italian code (CNR DT-205, 2007) 

Critical buckling stress of compression flange 

The critical buckling stress of flanges presented in Italian code (CNR DT-205, 2007) is based upon the 

study of Kollar and Springer (2003). In this code (CNR DT-205, 2007), the connection of flange with web 

is considered as rotational springs. The critical buckling stress of flanges is determined by considering the 

rotational constraints provided by web on flanges and is given by Eqs. (5.35) and (5.36). 
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The parameters (K, ζ, ρ, & η) used to determine the critical buckling load is defined as 
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The rotation stiffness constraint (𝑘̃) of the web to flange is determined by  
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In Eq. (5.38), 𝜎𝑐𝑟,𝑓
𝑠𝑠  and 𝜎𝑐𝑟,𝑤

𝑠𝑠  are the critical buckling stresses of flanges and web, respectively. These 

critical stresses are determined separately, by assuming flange and web as simply supported plates. Critical 

buckling stress of flange and web plates assuming simply supported is given as 
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Buckling stress in web 

In order to calculate the critical buckling stress of web, Italian code has considered the web of beam as a 

short column, having length equal to depth of the column. The critical buckling stress of web of I-section 

under flexural loading is given by Eq. (5.41). 
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Lateral-torsional buckling of beam 

Alike the buckling equation of European code, Italian code also considers the effect of torsional and 

warping deformation of the beam. Along with, Italian code also includes the effect of shear deformation, 

which is missing in equation of European code and Pultex design manual (Pultrusions, 2013). As per the 

Italian code, the equation to determine the lateral-torsional buckling moment of beam has the following 

form (Bulson and Allen, 1980). 
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where, Δ is the distance between load and centroid of I-beam (see Fig. 5.4), Ncr,z is the critical buckling load 

of beam, when beam buckles in the x-z plane as shown in Fig. 5.6(a). The critical torsional warping load of 

the beam (see Fig. 5.6(b)) is represented by Ncr,ω and is given by Eq. (5.45). 
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In the Italian code, the flexural (EIyy and EIzz) and torsional stiffness (EA) is determined from Eq. (5.46). 
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where, (a11)f and (d11)f  are the elements of compliance matrix of flange. While (a11)w and (d11)w are the 

elements of compliance matrix of web. 

     

(a) Buckling in x-y plane                                 (b)  Torsional about x-axis 

Fig. 5.6. Modes of failure of I-section. 
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5.4.1.3  Pultex design manual 

Local buckling stress of compression flange 

In the Pultex design manual, the equation to determine the critical buckling stress of the flange is expressed 

as 
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The longitudinal, transverse, shear modulus are represented by Exx , Eyy and Gxy, respectively. Poisson’s 

ratio of the beam is denoted by vxy. The constants q’ and p are based upon the coefficients of restraints of 

web-flange junction and are introduced in the following expressions 
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Lateral-torsional buckling of the beam 

The buckling Eq. (5.49) is derived based on the assumption that beam is adequately laterally supported. 

The code considered the effect of different supports and loading condition provided on the beam by 

multiplying with a coefficient Cb. The critical torsional buckling moment of the beam is given by 
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5.4.1.4 ASCE code 

Local buckling of the compression flange 

As per the ASCE code, local buckling of FRP pultruded beams bent about strong axis is given by 
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Local buckling of web 

As per the ASCE code, the local buckling stress of web is given as 
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5.4.2  Failure load based on strength  

During the bending of beams, flexural, shear and bearing stresses are produced. Failure other than buckling 

occurs when the stresses produced from loading exceeds the strength of the beams. European and American 

code have analytical equations to determine the crushing or crippling strength of the beams. 

5.4.2.1 European code 

The beams without bearing stiffener have chances to fail by crushing of web. According to the European 

code, the crushing of beams occurs when the applied compressive stresses exceed the compressive strength. 

Therefore crushing failure load (Vy) depends on the bearing length and transverse compressive strength (Stc) 

of the web and is determined as 

 y w w tcV a h t S                                                       (5.54) 

5.4.2.2 ASCE code 

Like crushing, crippling also occurs in the beams due to transverse loading and in the absence of bearing 

stiffeners. The local crippling failure load (Rn) of beams is given by 
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where, Sxz is the interlaminar shear strength of the members and tbp is the thickness of bearing plate. 
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5.5  Delamination failure criterion 

Under the flexural loading, FRP I-beams deforms in-plane and/or out-of-plane. After a certain deformation, 

beam have chances to fail by delamination of web-flange joint, crushing of web, ply failure or buckling of 

compression flange or web. A quadratic delamination criterion proposed by Brewer and Lagace (1988) is 

used to determine the failure load of stiffened and un-stiffened beams. This criterion is also used by Bai 

and Wu (2013) to predict the web-flange junction failure of FRP beams. From experimental investigation 

(Chapter 4), it is observed that response of the beam is linear until failure; it means that not a single ply 

failed just before the ultimate failure of the beam. It is also noted that the beam without bearing stiffener 

failed due to the interlaminar shear failure which leads to the crushing of the web under the bearing plate, 

while beams with stiffening element failed due to the delamination of fiber layers under web-flange junction 

due to bearing stress produced by bearing plate. In each unstiffened beam, high bearing stresses are 

produced by bearing plate and is resisted by the junction of web-flange. Therefore, the transverse 

compressive strength as well as shear strength of web plays the vital role in resisting the bearing stress of 

the bearing plate. It is also observed that the strength of beams increases with decrease in the L/d ratio. 

Hence, failure criterion includes the longitudinal compressive stress, transverse compressive stress and 

shear stresses produced due to the bending of the beam and is given by Eq. (5.56). 
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where, σlb, σtc and τxz are the longitudinal compressive bending stress, transverse compressive stress (bearing 

stress) and shear stress, respectively. Corresponding strengths such as bending compressive, transverse 

compressive and shear strengths are represented by Stb, Stc and Sxz, respectively. The crushing of web is due 

to the diagonal bearing stresses produced from the bearing plate. Therefore, like stiffened steel beams, 

bearing stresses are determined at vertical distance of “tf+R” from bottom of flange and at slope of 1:2.5 as 

shown in Fig. 5.7. Here R is the radius of curvature of web-flange junction. In Eq. (5.56), bearing stresses 

produced in beams by bearing plate are determined by Eq. (5.57). 
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For the stiffened beams, the effective area (Aef) depends on the cross-section of the stiffening element under 

compression flange as shown in Fig. 5.8. Using the elementary theory of solid mechanics, the shear stress 

at web-flange junction of I-beam is given by 
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where, V is the shear force in the beam and Iyy is the moment of inertia of the beam about y-axis. 

 

Fig. 5.7. Distribution of bearing stress in beam. 

 

          

 

(a) T-shaped stiffener           (b) L-shaped stiffener (c) web of cover angle or web plate 

 

Fig. 5.8. Bearing area of beam with different stiffening elements. (Top view of I-beam without flanges) 
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