- 1. Jagadish, K. S. (2015), "Structural masonry", *I.K. International publishing house Pvt. Ltd.*, New Delhi, pp.1-7.
- Gururaj, K. D. (2015), "Retrofitting and strengthening of masonry structures with advanced composite fiber wrap system", *Ph.D thesis*, Department of Civil Engineering, Savitribai Phule, Pune University, Pune, India, pp.1-119.
- 3. Drysdale, R. G., Ahmad A. H., and Lawrie R. B. (1994), "Masonry structures: behavior and design", *Prentice Hall*, pp. 1-50.
- 4. Anand, S. A. (2008), "Seismic assessment of masonry buildings", *Journal of South Asia disaster studies*, Vol. 1, No. 1, pp.23-43.
- Kusky, T. M. (2003), "Geological hazards a sourcebook", *Greenwood Press*, ISBN: 1– 57356–469–9, pp.1-312.
 - 6. Murty, C. V. R. (2005), "IITK-BMTPC Earthquake tips: Learning earthquake design and construction", *National information center of earthquake engineering, Indian Institute of Technology, Kanpur*, India, pp.1-55.
- Rai, D. C., Singhal, V., Raj, S. B., and Sagar, S. L. (2015), "NICEE IIT Kanpur reconnaissance survey of the 2015 Gorkha (Nepal) earthquake of April 25", *National information center of earthquake engineering, Indian Institute of Technology, Kanpur*, India, pp.1-2.
- 8. ElGawady, M. A., Lestuzzi, P., and Badoux, M. (2003), "Rehabilitation of unreinforced brick masonry walls using composites", *Carbon*, Vol. *93*, pp. 1-11.
- 9. Emily, B. (2012), "Why the most environmental building is the building we've already built", *The Atlantic cities*, pp.1-5.
- ElGawady, M., Lestuzzi, P., and Badoux M. (2004), "A review of conventional seismic retrofitting techniques for URM", 13th International brick and block masonry conference, Amsterdam, Netherlands, pp.1-10.

- Anand, S. A. (2006), "Guidelines for repair, restoration condition assessment and seismic, strengthening of masonry buildings", *Draft second revision of IS 13935*, pp. 16-35.
- 12. ElGawady, M. A., Lestuzzi, P., and Badoux, M. (2006), "Retrofitting of masonry walls using shotcrete", *In 2006 NZSEE Conference*, No. 45, pp.1-9
- 13. Ghavami, K. (2005), "Bamboo as reinforcement in structural concrete elements", *Cement and concrete composites*, Vol. 27, pp. 637–649.
- 14. Maras, M. M. and Kilinc, H. C. (2016), "Comparison on repair and strengthening techniques for unreinforced masonry structures" *International journal of engineering research and application*, Vol. 6, No. 11, pp. 1-5.
- Amiraslanzadeh, R., Ikemoto, T., Miyajima, M., and Fallahi, A. (2012), "A comparative study on seismic retrofitting methods for unreinforced masonry brick walls", *15th World Conference on Earthquake Engineering (WCEE)*, Lisbon, Portugal, pp. 1-9.
- Sheppard, P., Tercelj, S., (1980), "The effect of repair and strengthening methods for masonry walls", 7th World Conference on Earthquake Engineering (WCEE), Istanbul, Turkey, Vol. 6, pp. 255-262.
- Hamid, A. A., Mahmoud, A. D. S., and El-Magd, S. A. (1994), "Strengthening and repair of unreinforced masonry structures: state-of-the-art", *Proceeding: 10th International brick and block masonry conference*, Vol. 2, pp. 485-497.
- Ballesteros, P. and Reyes, P. R. (1991), "Seismic finite element analysis of masonry buildings reinforced with Ferrocement", *The finite element method in the 1990's*, Springer Berlin Heidelberg, pp. 99-108.
- 19. Ferrocement Wikipedia (https://en.wikipedia.org/wiki/Ferrocement)
- Smith, A. and Redman, T. (2009), "A critical review of retrofitting methods for unreinforced masonry structures", *Proceeding of EWB-UK research conference*, University of Bristol, England, pp.1-19.
- Calvi, G. and Magenes, G. (1994), "Experimental results on unreinforced masonry shear walls damaged and repaired", 10th International Brick and Block Masonry Conference (IB²MaC), Calgary, Canada, pp. 509-518.

- Schuller, M., Atkinson, R., and Borgsmiller, J. (1994), "Injection grouting for repair and retrofit of unreinforced masonry", 10th International Brick and Block Masonry Conference (IB²MaC), Calgary, Canada, pp. 549-558.
- 23. IS 13935 (1993), "Seismic evaluation, repair and strengthening of masonry buildings-Guidelines", *Bureau of Indian standards*, India.
- 24. Eurocode-8 (2005), "Design of structures for earthquake resistance, Part 3", *European committee for standardization*, Brussels, Belgium.
- 25. FEMA 273 (1997), "NEHRP guidelines for the seismic rehabilitation of buildings", Washington DC, USA.
- 26. Karantoni, F. and Fardis, M. (1992), "Effectiveness of seismic strengthening techniques for masonry buildings", *Journal of structural engineering*, Vol. 118, No. 7, pp. 1884-1902.
- 27. ACI 440R (2007), "Report on fiber-reinforced polymer (FRP) reinforcement for concrete structures", *American concrete Institute*, USA, pp. 1-100.
- 28. Bacon, R. and Tang, M.M. (1964), "Carbonization of cellulose Fibers-I. Low temperature pyrolysis", *Carbon*, Vol 2, pp. 211-214.
- 29. Choudhury, S. C. (2012), "Flexural and shear strengthening of RC beams with FRP-an experimental study", *M. Tech thesis*, NIT Rourkela, India, pp. 1-81.
- Meier U., Deuring M., Meier H., and Schwegler G. (1993), "Fibre-reinforced-plastic (FRP) reinforcement for concrete structures: Properties and applications", *Elsevier Science*, Netherlands, pp.1-20.
- Rizkalla, S., Hassan, T., and Hassan, N. (2003), "Design recommendations for the use of FRP for reinforcement and strengthening of concrete structures", *Progress in structural engineering and materials*, Vol. 5, No. 1, pp.16-28.
- 32. Madappa, S. V. R. (2011), "Response and micromechanics based design of engineered cementitious composite structure", *Ph.D thesis*, BITS Pilani, 2011, pp. 1-110.
- 33. Correia, J. R. (2013), "The new FRP materials for civil engineering structural applications", *57th meeting of the European council of Civil Engineers (ECCE)*, Lisbon, Portugal, pp.1-10.

- 34. ACI 440.4R-04 (2004), "Prestressing concrete structure with FRP tendons" *American concrete Institute*, USA, pp. 1-35.
- 35. ACI 440.1R-06 (2006), "Design and construction of structural concrete reinforced with FRP bars", *American concrete Institute*, USA, pp. 1-44.
- JSCE (1997), "Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials", *JSCE*, Tokyo, Concrete engineering series 23, pp.1-325.
- FIB 9.3 Task Group (2001), "Externally bonded FRP reinforcement for RC structures", *International Federation for Structural Concrete*, Lausanne, Switzerland, pp.1-130.
- 38. ISIS Canada Design Manuals, (2001), "Strengthening reinforced concrete structures with externally-bonded fibre reinforced polymers", Ontario, Canada, pp.1-215.
- ACI 440.7R-10 (2010), "Guide for design and construction of externally bonded FRP systems for strengthening unreinforced masonry structures", *American concrete Institute*, USA, pp.1-46.
- Li, V. C. and Leung, C. K. Y. (1992), "Steady state and multiple cracking of short random fiber composites", *ASCE Journal of engineering mechanics*, Vol. 118, No.11, pp.2246-2264.
- Rathod, J. D. and Patodi, S. C. (2010), "Interface tailoring of polyester-type fiber in engineered cementitious composite matrix against pullout", *ACI materials journal*, Vol. 107, No. 2, pp.114-122.
- Li, V. C. (1998), "Engineered cementitious composites-tailored composites through micromechanical modeling", Fiber Reinforced Concrete: present and the future (Eds N. Banthia, A. Bentur and A. Mufti). *Canadian society of Civil Engineers*, Montreal, Canada, pp.64-98.
- Kanda, T. and Li, V. C. (1998), "Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix", *Journal of material in Civil Engineering*, Vol. 10, No. 1, pp.5-13.

- 44. Fakharifar, M., Dalvand, A., Arezoumandi, M., Sharbatdar, M. K., Chen G., and Kheyroddin, A. (2014), "Mechanical properties of high performance fiber reinforced cementitious composites", *Construction and building materials*, Vol. 71, pp.510–20.
- 45. Li, V. C. (1992), "Large volume, high-performance application of fibers in civil Engineering", *Journal of Polymer Science*, Vol. 83, No. 2, pp.660-686.
- Li, V. C. and Wu, H. C. (1992), "Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites", *Journal of applied mechanics review*, Vol. 45, No. 8, pp.390-398.
- 47. Engineered cementitious composite Wikipedia <u>https://en.wikipedia.org/wiki/</u> Engineeredcementitiouscomposite (cited on 14 January 2018).
- 48. Li, V. C. (2006), "Bendable composites ductile concrete structure", *Structure Magazine*, pp.45-48.
- Jagadish, K. S., Raghunath, S., and Rao, K. N. (2003), "Behaviour of masonry structures during the Bhuj earthquake of January 2001", *Journal of Earth System Science*, Vol. 112, No. 3, pp.431-440.
- 50. Enginsal, M. A. (2009), "Applications of FRP in reinforcing and strengthening concrete masonry beams", *MS Thesis*, Concordia University Montreal, Quebec, Canada, pp.1-85.
- 51. Triantafillou, T. C. (1998), "Strengthening of masonry structures using epoxy-bonded FRP laminates", *Journal of composites for construction*, Vol. 2, pp.96-104.
- 52. Kiss, R. M., Kollar, L. P., Jai, J., and Krawinkler, H. (2002), "Masonry strengthened with FRP subjected to combined bending and compression, Part II: Test results and model predictions", *Journal of composites for construction*, Vol. 36, pp.1049-1063.
- Bajpai, K. and Duthinh, D. (2003), "Bending performance of masonry walls strengthened with near-surface mounted FRP bars", 9th North American Masonry Conference, Clemson, USA, pp.1-4.
- 54. Hao, Z., Bindiganavile, V., Cheng, J. R., and Elwi, A. (2009), "Evaluation of masonry deep beams externally strengthened with CFRP sheets", *Journal of composites for construction*, Vol. 14, No.2, pp.152-161.

- 55. Galal, K. and Enginsal, M. A. (2011), "Flexural behavior of GFRP-reinforced concrete masonry beams" *Journal of composites for construction*, Vol. 15, No.1, pp.21-31.
- Kyriakides, M. A. and Billington, S. L. (2008), "Seismic retrofit of masonry-infilled nonductile reinforced concrete frames using spray-able ductile fiber-reinforced cementitious composites", 14th World Conference on Earthquake Engineering, Beijing, China, pp.1-7.
- 57. Kyriakides, M. A., Hendriks, M. A. N., and Billington, S. L. (2012), "Simulation of unreinforced masonry beams retrofitted with engineered cementitious composites in flexure", *Journal of materials in Civil Engineering*, Vol. 24, No. 5, pp.506-515.
- Shrive, N. G., Masia, M. J., and Lissel, S. L. (2001), "Strengthening and rehabilitation of masonry using fiber reinforced polymers", *Historical construction*, pp.1047-1056.
- 59. Bieker, C., Seim, W., and Sturz, J. (2002), "Post-strengthening of masonry columns by use of Fiber-Reinforced Polymers (FRP)", *3rd International conference of composites in infrastructure*, San Francisco, CA, USA, pp.1-5.
- 60. Krevaikas, T. D. and Triantafillou, T. C., (2005), "Masonry confinement with fiberreinforced polymers", *Journal of composites for construction*, Vo. 9, No. 2, pp.128-135.
- 61. Corradi, M., Grazini, A., and Borri, A., (2007), "Confinement of brick masonry columns with CFRP materials", *Composites science and technology*, Vol. 67, No. 9, pp.1772-1783.
- Aiello, M. A., Micelli, F., and Valente, L. (2007), "Structural upgrading of masonry columns by using composite reinforcements", *Journal of composites for construction*, Vol. 11, No. 6, pp.650-658.
- 63. Aiello, M. A., Micelli, F., and Valente, L. (2008), "FRP-confined masonry: From experimental tests to design guidelines", *Fourth international conference on FRP composites in Civil Engineering*, Zurich, Switzerland, pp.1-7.
- 64. Aiello, M. A., Micelli, F., and Valente, L. (2009), "FRP confinement of square masonry columns", *Journal of composites for construction*, Vol. 13, No. 2, pp.148-158.
- 65. CNR DT 200 (2004), "Guide for the design and construction of externally bonded FRP systems for strengthening existing structures", National research council, Rome, Italy.

- Alecci, V., Bati, S. B., and Ranocchiai, G. (2009), "Study of brick masonry columns confined with CFRP composite", *Journal of composites for construction*, Vol. 13, No. 3, pp.179-187.
- 67. Ludovico, D., D'Ambra, M., Prota, A., and Manfredi, G., (2010), "FRP confinement of tuff and clay brick columns: experimental study and assessment of analytical models", *Journal of composites for construction*, Vol. 14, No. 5, pp.583-596.
- 68. Witzany, J., Cejka, T., and Zigler, R. (2011), "Problems of masonry strengthening with carbon and glass fibre fabric", *Procedia Engineering*, Vol. 14, pp.2086-2093.
- 69. Galal, K., Farnia, N., and Pekau, O. A., (2011), "Upgrading the seismic performance of reinforced masonry columns using CFRP wraps", *Journal of composites for construction*, Vol. 16, No. 2, pp.196-206.
- 70. Lignola, G. P., Angiuli, R., Prota, A., and Aiello, M. A. (2014), "FRP confinement of masonry: analytical modeling", *Materials and structures*, Vol. 47, No. 12, pp.2101-2115.
- Witzany, J. and Zigler, R. (2016), "Stress state analysis and failure mechanisms of masonry columns reinforced with FRP under concentric compressive load", *Polymers*, Vol. 8, No. 5, pp.176.
- 72. Fossetti, M. and Minafo, G. (2017), "Comparative experimental analysis on the compressive behaviour of masonry columns strengthened by FRP, BFRCM or steel wires", *Composites Part B: Engineering*, Vol.112, pp.112-124.
- Alotaibi, K. S. and Galal, K. (2017), "Axial compressive behavior of grouted concrete block masonry columns confined by CFRP jackets", *Composites Part B: Engineering*, Vol. 114, pp.467-479.
- Richart, F. E., Brandtzaeg, A., and Brown, R. L. (1928), "A study of the failure of concrete under combined compressive stresse", *Bulletin No. 185, Engineering Experimental Station*, University of Illinois, Urbana, USA, pp. 3-102
- Toutanji, H. and Deng, Y. (2002), "Strength and durability performance of concrete axially loaded members confined with AFRP composite sheets", *Composites Part B: Engineering*, Vol. 33, No. 4, pp. 255-261.

- 76. Borri, A. and Grazini, A. (2004), "Masonry column strengthening with FRP materials", Proceeding of the 2nd National symposium on mechanics of masonry structures strengthened with FRP materials, Italy, pp.193-202.
- Rao, K. N. and Pavan, G. S. (2014), "FRP-confined clay brick masonry assemblages under axial compression: Experimental and analytical investigations", *Journal of composites for construction*, Vol. 19, No. 4, pp.04014068.
- Saadatmanesh, H. (1994), "Fiber composites for new and existing structures", ACI Structural Journal, Vol. 91, No. 3, pp.346-354.
- 79. Schwegler, G. (1994), "Strengthening of masonry with fiber composites", *PhD thesis*, Federal institute of technology, Switzerland, pp.1-50.
- 80. Oliveira, D. V., Ghiassi, B., and Lourenço, P. B. (2014), "Bond behaviour and durability of FRP composites applied externally to masonry structures", 9th International Masonry Conference, Guimarães, Portugal, pp.1-21.
- 81. Ehsani, M. R. and Saadatmanesh, H. (1996), "Seismic retrofit of URM walls with fiber composites", *The masonry society journal*, Vol. 14, No.2, pp.63-72.
- Ehsani, M. R., Saadatmanesh, H., and Al-Saidy, A. (1997), "Shear behavior of URM retrofitted with FRP overlays", *Journal of composites for construction*, Vol. 1, No.1, pp.17-25.
- 83. Ehsani, M. R., Saadatmanesh, H., and Velazquez-Dimas, J. I. (1999), "Behavior of retrofitted URM walls under simulated earthquake loading", *Journal of composites for construction*, Vol. 3, No. 3, pp.134-142.
- Papanicolaou, C. G., Triantafillou, T. C., Papathanasiou, M., and Karlos, K. (2008), "Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading", *Materials and structures*, Vol. 41, No. 1, pp.143-157.
- 85. Cheng, L. and McComb, A. M. (2010), "Unreinforced concrete masonry walls strengthened with CFRP sheets and strips under pendulum impact", *Journal of composites for construction*, Vol. 14, No. 6, pp.775-783.

- 86. Valluzzi, M.R., Da Porto, F., Garbin, E., and Panizza, M. (2014), "Out-of-plane behaviour of infill masonry panels strengthened with composite materials", *Materials and structures*, Vol. 47, No. 12, pp.2131-2145.
- 87. Bernat-Maso, E., Gil, L., and Escrig, C. (2015), "Analysis of brick masonry walls strengthened with fibre reinforced polymers and subjected to eccentric compressive loads", *Construction and building materials*, Vol. 84, pp.169-183.
- Elsanadedy, H. M., Al-Salloum, Y. A., Al-Zaheri, Z. M., Alsayed, S. H., and Abbas, H. (2016), "Behavior and design aspects of FRP-strengthened URM walls under out-of-plane loading", *Journal of composites for construction*, Vol. 20, No.6, pp.1-16.
- 89. Gattesco, N. and Boem, I. (2017), "Out-of-plane behavior of reinforced masonry walls: Experimental and numerical study", *Composites part B: Engineering*, Vol. 128, pp.39-52.
- 90. Hamid, A. A. (1996), "Strengthening of hollow block masonry basement walls with plastic reinforcing bars", *The masonry society journal*, pp.29-33.
- Tumialan, J. G., Galati, N., Namboorimadathil, S. M., and Nanni, A. (2002), "Strengthening of masonry with FRP bars", *Third international conference on composites in infrastructure (ICCI 2002)*, San Francisco, CA., USA, pp.1-8.
- 92. Tumialan, J. G., Galati, N., Nanni, A., and Tyler, D. (2003), "Flexural strengthening of masonry walls in q high school using FRP bars", *ACI special publication*, pp.413-428.
- Korany, Y. and Drysdale, R. (2006), "Rehabilitation of masonry walls using unobtrusive FRP techniques for enhanced out-of-plane seismic resistance", *Journal of composites for construction*, Vol. 10, No.3, pp.213-222.
- Galati, N., Tumialan, G., and Nanni, A. (2006) "Strengthening with FRP bars of URM walls subject to out-of-plane loads", *Construction and building materials*, Vol. 20, pp.101-110.
- 95. Babatunde, S. A., (2017), "Review of strengthening techniques for masonry using fiber reinforced polymers", *Composite structures*, Vol. 161, pp. 246-255.

- Turco, V., Secondin, S., Morbin, A., Valluzzi, M. R., and Modena, C. (2006), "Flexural and shear strengthening of un-reinforced masonry with FRP bars", *Composites science and technology*, Vol. 66, No. 2, pp.289-296.
- 97. Galal K. and Sasanian, N. (2010), "Out-of-plane flexural performance of GFRP-reinforced masonry walls" *Journal of composites for construction*, Vol. 14, No. 2, pp.162-174.
- Mahmood H. and Ingham J. M. (2011), "Diagonal compression testing of FRP-retrofitted unreinforced clay brick masonry wallettes", *Journal of composites for construction*, 2011, Vol. 15, pp.810-820.
- Griffith M. C., Kashyap J., and Ali M. S. M. (2013), "Flexural displacement response of NSM FRP retrofitted masonry walls", *Construction and Building Materials*, Vol. 49, pp.1032-1040.
- 100. Dizhur, D., Griffith, M., and Ingham, J. (2014), "Out-of-plane strengthening of unreinforced masonry walls using near surface mounted fibre reinforced polymer strips", *Engineering Structures*, Vol. 59, pp.330-343.
- 101. Mendola, L., Accardi, M., Cucchiara, C., and Licata, V. (2014), "Nonlinear FE analysis of out-of-plane behaviour of masonry walls with and without CFRP reinforcement", *Construction and building materials*, Vol. 54, pp.190-196.
- 102. Al-Jaberi, Z., Myers, J. J., and Elgawady, M. (2015), "Influence of near-surface mounted (NSM) FRP on the out-of-plane behavior of reinforced masonry walls", 12th North American Masonry Conference, Denver, Colorado, USA, pp.1-8.
- Billington, S. L., Kyriakides, M. A., Blackard, B., Willam, K., Stavridis, A., and Shing, P. B. (2010), "Evaluation of a sprayable, ductile cement-based composite for the seismic retrofit of unreinforced masonry infills", *In Improving the seismic performance of existing buildings and other structures*, pp.823-834.
- 104. Maalej, M., Lin, V.W.J., Nguyen, M.P., and Quek, S.T. (2010), "Engineered cementitious composites for effective strengthening of unreinforced masonry walls", *Engineering structures*, Vol. 32, No. 8, pp.2432-2439.

- 105. Lin, Y. W., Biggs, D., Wotherspoon, L., and Ingham, J.M. (2014), "In-plane strengthening of unreinforced concrete masonry wallettes using ECC shotcrete", *Journal of structural engineering*, Vol. 140, No. 11, pp.1-13.
- Lin, Y., Lawley, D., Wotherspoon, L., and Ingham, J. M. (2016), "Out-of-plane testing of unreinforced masonry walls strengthened using ECC shotcrete", *Structures*, Vol. 7, pp. 33-42.
- 107. Lourenço, P. B., Rots, G., and Blaauwendraad, J. (1998), "Continum model for masonry: Parameter estimation and validation", *Journal of structural engineering*, Vol. 124, No. 6, pp.642-652.
- 108. Tarque, N., Espacone, E., School-iuss, R., Varum, H., Camata, G., Spacone, E., and Blondet, M. (2010), "Numerical modelling of in-plane behaviour of adobe walls", *Proceeding of 8th conference on seismology and earthquake engineering*, Lisbon, Portugal, pp.1-12.
- 109. Parker, M. A. (2006), "Flexural response of masonry elements strengthened with epoxybonded elastomeric fiber reinforced films", *Ph.D thesis*, Georgia Institute of Technology, USA, pp.1-30.
- Laurenco, P. B., Rots, J. G., and Blaauwendraad, J. (1995), "Two approaches for the analysis of masonry structures: micro and macro-modeling", *Heron*, Vol. 40, No. 4, pp. 313-340.
- Felix, I. (1999), "Compressive strength and modulus of elasticity of masonry prisms", *M.E. thesis*, Carleton University Ottawa, Ontario, Canada, pp.52-80.
- 112. Bolhassani, M., Hamid, A. A., Lau, A. C. W., and Moon, F. (2015), "Simplified micro modeling of partially grouted masonry assemblages", *Construction and building material*, Vol. 83, pp.159-173.
- 113. Lourenço, P. B., Zucchini, A., Milani, G., and Tralli, A. (2006), "Homogenization approaches for structural analysis of masonry buildings", *Proceedings of the international Conference on structural analysis of historical construction (SAHC'2006)*, New Delhi, India, pp.59-75.

- 114. Ghaderi, M., Maleki, V. A., and AndalibI, K. (2015), "Retrofitting of unreinforced masonry walls under blast loading by FRP and spray on polyuria", *Cumhuriyet science journal*, Vol. 36, No. 4, pp.462-477.
- 115. Kyriakides, M. A., Hendriks, M. A. N., and Billington, S. L. (2012), "Simulation of unreinforced masonry beams retrofitted with engineered cementitious composites in flexure", *Journal of material in Civil Engineering*, Vol. 24, No. 5, pp.506-515.
- 116. ElGawady, M. A., Lestuzzi, P., and Badoux, M. (2006), "Shear strength of URM walls upgraded with FRP", *Engineering structures*, Vol. 28, No. 12, pp.1658-1670.
- 117. Kabir, M. Z. and Kalali, A. (2013), "In-plane numerical modelling of strengthened perforated masonry walls using FRP under cyclic loading", *Asian journal of Civil Engineering (BHRC)*, Vol. 14, No. 1, pp.161-179.
- 118. Daniel, A. J. and Dubey, R. N. (2015), "Finite element simulation of brick masonry building under shock loading", *Coupled system mechanics*, Vol. 4, No. 1, pp.19-36.
- 119. Noor-E-Khuda, S., Dhanasekar, M., and Thambiratnam, D. P. (2016), "Out-of-plane deformation and failure of masonry walls with various forms of reinforcement", *Composite structures*, Vol. 140, pp.262-277.
- 120. Wang, X., Ghiassi, B., Oliveira, D. V., and Lam, C. C. (2017), "Modelling the nonlinear behaviour of masonry walls strengthened with textile reinforced mortars", *Engineering structures*, Vol. 134, pp.11-24.
- Rai, D. C. (2005), "Review of design codes for masonry buildings", Document No: IITK-GSDMA-EQ10-V1.0, *IITK-GSDMA Project on Building Codes*, IIT Kanpur, India, pp.1-23.
- IS 1905 (1987), "Code of Practice for Structural use of Unreinforced Masonry", (Third Revision), Bureau of Indian Standards, New Delhi, India.
- 123. Eurocode 6 (2005), "Design of masonry structures Part 1-1: General rules for reinforced and unreinforced masonry structures", European Committee for Standardization, Brussels, Belgium.

- 124. Eurocode 6 (2005), "Design of masonry structures Part 1-2: Structural fire design", European Committee for Standardization, Brussels, Belgium.
- 125. Eurocode 6 (2005), "Design of masonry structures Part 2: Selection and execution of masonry", European Committee for Standardization, Brussels, Belgium.
- 126. Eurocode 6 (2005), "Design of masonry structures Part 3: Simplified calculation methods for unreinforced masonry structures", European Committee for Standardization, Brussels, Belgium.
- 127. Eurocode 8 (2005), "Design of structures for earthquake resistance", European Committee for Standardization, Brussels, Belgium.
- 128. International Building Code 2000. (2012), International Code Council (ICC), Virginia, USA.
- 129. ACI 530-02/ASCE 5-02/TMS 402-02. (2002), "Building code requirements for masonry structures", Masonry Standards Joint Committee, USA.
- 130. NZS 4230 (2004), "Design of reinforced concrete masonry structures", New Zealand Standard.
- 131. S304.1-04 (2004), "Design of masonry structures", Canadian Standards Association.
- 132. IS 13828 (1993) (Reaffirmed 2008), "Improving earthquake resistance of low strength masonry buildings guidelines", Bureau of Indian Standards, New Delhi, India.
- 133. IS 4326 (1993), "Code of practice for earthquake resistance design and construction of buildings", Bureau of Indian Standards, New Delhi, India.
- 134. FEMA 547 (2006), "*Techniques for seismic rehabilitation of existing buildings*", Federal Emergency Management Agency, USA.
- 135. ACI 440M 2004: ACI 440M Guide Draft-1 (2004), "Guide for the design and construction of externally bonded FRP system for strengthening unreinforced masonry structures", ACI Committee 440, USA.
- 136. JSCE (2008), "Recommendation for design and construction of high performance fiber reinforced cement composite (HPFRCC) with multiple fine cracks", Japan Society of Civil Engineers, Concrete Engineering series 82, Japan.

- 137. IS 3495 (1976), "Indian standard methods of test for burnt clay building bricks", Bureau of Indian standards, New Delhi, India.
- 138. ASTMC 67-03a (2003), "Standard test method for sampling and testing bricks and structural clay tile", American society for testing and material, Pennsylvania, USA.
- 139. IS 2250 (1981), "Code of Practice for preparation and use of masonry mortars", Bureau of Indian standards, New Delhi, India.
- 140. ASTM C 1314-00a (2001), "Standard test method for compressive strength of masonry prisms", In masonry test methods and specifications for the building industry, 4th edition, American society for testing and materials, Pennsylvania, USA.
- 141. ASTM C1072-13e1 (2000), "Standard test method for measurement of masonry flexural bond strength", American society for testing and material (ASTM), Pennsylvania, USA.
- 142. Rilem MS-B.4 (1996), "Determination of shear strength index for masonry unit/mortar junction", *Material structure*, Vol. 29, No. 8, pp. 459-475.
- 143. <u>https://assets.master-builders-solutions.basf.com/Shared%20Documents/PDF/English%2</u> <u>0(Bangladesh)/basf-MasterGlenium-SKY-8777-v1-tds.pdf</u> (cited on 14 January 2018).
- 144. ASTM C39/C 39M-03 (2003), "Standard test method for compressive strength of cylindrical concrete specimens", American society for testing materials, USA.
- 145. IS 516-1959 (2006), "Methods of tests for strength of concrete", Bureau of Indian standards, New Delhi, India.
- 146. ASTM C469/C469M-14 (2002), "Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression", American society for testing materials, USA.
- 147. IS 5816 (1999), "Splitting tensile strength of concrete-method of test", Bureau of Indian standards, New Delhi, India.
- 148. BS 1881: Part 117 (1983), "Testing concrete method for the determination of tensile splitting strength", British Standard Institute, London, UK.
- 149. ASTM D790-15e2 (2015), "Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials", American society for testing materials, USA.

- 150. ASTM D7565 (2010), "Standard test methods for determining tensile properties of fiber reinforced polymer matrix composites used for strengthening civil structures", American society for testing materials, USA.
- 151. ASTM D 3039 (2014), "Standard test method for tensile properties of polymer matrix composite materials", American society of testing and materials, Philadelphia, USA.
- 152. ASTM D7205/D7205M-06 (2011), "Standard test method for tensile properties of fiber reinforced polymer matrix composite bars", American society for testing materials, USA.
- 153. Sutcliffe, D. J., Yu, H. S., and Page, A. W. (2001), "Lower bound limit analysis of unreinforced masonry shear walls", *Computers and Structures*, Vol. 79, No. 14, pp.1295-1312.
- 154. Lourenço, P. B. (1994), "Analysis of masonry structures with interface elements: Theory and applications", *Report 03-21-22-0-01*, Delft University of Technology, Delft, Netherlands.
- 155. Lubliner, J., Oliver, J., Oller, S., and Oñate, E. (1989), "A plastic-damage model for concrete", *International Journal of solids and structures*, Vol. 25, pp.229-326.
- 156. Lee, J. and Fenves G. L., (1998), "Plastic-Damage Model for Cyclic Loading of Concrete Structures", *Journal of engineering mechanics*, Vol. 124, pp.892-900.
- 157. Dassault Systèmes Simulia Corporation. (2017), "ABAQUS analysis user's manual", Providence (RI): ABAQUS Inc. USA.
- 158. Kupfer, H., Hilsdorf, H. K., and Rusch, H. (1969), "Behavior of concrete under biaxial stresses." *ACI Journal*, Vol. 66, No. 52, pp.656-66.
- 159. Ghiassi, B., Oliveira, D. V., Lourenço, P. B., and Marcari, G. (2013), "Numerical study of the role of mortar joints in the bond behavior of FRP-strengthened masonry." *Composite Part B: Engineering*, Vol. 46, pp.21-30.