Abbreviations

ACI American Concrete Institute

ASCE American Society of Civil Engineers

ASTM American Society for Testing and Materials

BFRP Basalt Fiber Reinforced Polymer

BS British Standard

CDP Concrete-damaged Plasticity

CFRP Carbon Fiber Reinforced Polymer

CSA Canadian Standards Association

CTM Compression Testing Machine

DFRCC Ductile Fiber Reinforced Cementitious Composite

ECC Engineer Cementitious Composite

FE Finite Element

FEMA Federal Emergency Management Agency

FRC Fiber Reinforced Concrete
FRP Fiber Reinforced Polymer

GFRP Glass Fiber Reinforced Polymer

HPRCC High Performance Fiber Reinforced Cementitious Composites

IS Indian Standard

ISIS Intelligent Sensing for Innovative Structures

JSCE Japan Society Of Civil Engineers

NSM Near Surface Mounted NZS New Zealand Standard

PE Polyethylene

PPC Portland Pozzolana Cement

PPD-T Polypara-Phenylene- Terephthalamide

POLY Polyester

PVA Polyvinyl Alcohol

RC Reinforced Concrete

TRM Textile-Reinforced Mortars

URM Unreinforced Masonry

UTM Universal Testing Machine

WWF Welded Wire Fabric

A₁ Area of left side joint

A₂ Area of right side joint

D Maximum deflection of the axis of the beam, mm

E_b Modulus of elasticity of brick

E_{bn} Modulus of elasticity in bending, MPa

E_c Chord modulus of elasticity, MPa

E_m Modulus of elasticity of masonry prism

F_{bs} Flexural bond strength (MPa)

K_c Ratio of the second stress invariant on the tensile meridian to that on the

compressive meridian at initial yield for any given value of the pressure

invariant

K_{nn} Normal stiffness

K_{ss} Shear stiffness in first direction

K_{tt} Shear stiffness in second direction

L Span of the specimen

L_s Support span

L₁ Distance from center of prism to loading point (mm)

L₂ Distance from center of prism to centroid of loading arm (mm)

M Maximum bending moment

P Maximum applied load (N)

P_{SB} Load carrying capacity of strengthened/reinforced masonry beam

PCB Load carrying capacity of respective control masonry beam

Pu Axial load carrying capacity

Pus Load carrying capacity of strengthened wall

P_{uc} Load carrying capacity of unstrengthened/control wall

Pu, exp Experimental load carrying capacity

P_{u,anl} Analytical load carrying capacity

 \mathbf{P}_1 Weight of loading arm (N) \mathbb{R}^2 Coefficient of determination S_1 Stress corresponding to a longitudinal strain (ε_1), MPa S_2 Stress corresponding to 40 % of ultimate load, MPa Width of the specimen b Cross-sectional width of the mortar-bedded area b_{c} Depth of the specimen d Uniaxial damage variables for compression d_{c} Cross-sectional depth of the mortar-bedded area d_{m} Uniaxial damage variables for tension d_t fb Compressive strength of brick fbo/fco Ratio of the initial biaxial compressive yield stress to initial uniaxial compressive yield stress f_{ct} Split tensile strength f_i Compressive strength of mortar f_{m} Compressive strength of masonry prism Compressive strength of confined masonry fMC f_{MO} Compressive strength of unconfined masonry f_{mcd} Design compressive strength of confined column f_{md} Compressive strength of unconfined column fı Lateral confining pressure fl.eff Effective lateral confining pressure h Total depth of the strengthened specimens k_1 **Empirical** constant k, Dimensionless confinement coefficient 1 Length of the specimen Slope of the tangent to the initial portion of the load deflection curve, N/mm m Nominal traction stress vector t Maximum mid-span deflection of the specimen Wmax **Empirical** constant α α^1 Dimensionless coefficients

σ_{f}	Flexural stress, MPa
$\sigma_{\rm C}$	Compressive strength
σ_{lu}	Confining stress at failure
3	Eccentricity
\mathcal{E}_{c}	Total compressive strain
$oldsymbol{\widetilde{\mathcal{E}}}_c^{in}$	Inelastic or crushing strain
$oldsymbol{\widetilde{\mathcal{E}}}_c^{~pl}$	Plastic strains in compression
$oldsymbol{\mathcal{E}}^{el}_{oc}$	Elastic strain corresponding to the undamaged material
$oldsymbol{\widetilde{\mathcal{E}}}_t^{ck}$	Cracking strain
$\mathcal{E}_{_t}$	Total tensile strain
$oldsymbol{\mathcal{E}}_{ot}^{el}$	Elastic strain corresponding to the undamaged material
$\widetilde{\mathcal{E}}_{_{t}}^{^{\;pl}}$	Plastic strains in tension
E _{fo}	Flexural strain in the outer surface, mm/mm
ϵ_{t1}	Transvers strain at mid-height of the specimens produced by stress $S_1, \\$
	mm/mm
Et2	Transvers strain at mid-height of the specimens produced by stress S2,
	mm/mm
E 1	3.45E-7 (longitudinal strain in mm/mm)
E 2	Longitudinal strain produced by stress S2, mm/mm
$ au_{bs}$	Shear bond strength of the masonry
μ	Poisson's ratio
μ_v	Viscosity parameters
δ_s	Mid-span displacement of strengthened wall
$\delta_{\boldsymbol{u}}$	Mid-span displacement of unstrengthened/control wall
δ_{SB}	Mid-span deflection of strengthened/reinforced masonry beam
δ_{CB}	Mid-span displacement of respective control masonry beam
Ψ	Dilation angle