	List of Figures	
#	Title	Page
Fig. 1.1	Share of obese adults in 2016 (A) and share of obese	2
	associated deaths in 2017 (B)	
Fig. 1.2	Structure of the proposed ABCD systems	4
Fig. 1.3	Structures of approved drugs for the treatment of obesity	6
Fig. 1.4	The physiological role of PL in lipid digestion.	8
Fig. 1.5	Representation of open and closed lid forms of human PL	10
Fig. 1.6	Mode of action of Orlistat	11
Fig. 1.7	Structure of Cetilistat	12
Fig. 2.1	USFDA approved natural product/inspired drugs in 2019 (with	17
	their clinical condition)	
Fig. 2.2	General classification of polyphenol-based PL inhibitors	19
Fig. 2.3	Chemical structures of polyphenols isolated from tea	21
Fig. 2.4	Chemical structures of polyphenols isolated from various	24
	plants	
Fig. 2.5	Chemical structures of polyphenols containing prenyl/geranyl	25
	substitutions	
Fig. 2.6	Chemical structures of stilbene type polyphenols having PL	26
	inhibition potential	
Fig. 2.7	Chemical structures of benzofuran type polyphenols with PL	27
	inhibition activity	
Fig. 2.8	Chemical structures of various saponins with PL inhibitory	29
	activity	
Fig. 2.9	Chemical structures of various alkaloids with PL inhibitory	30
	activity	
Fig. 2.10	Chemical structures of various terpenoids with PL inhibitory	31
	activity	
Fig. 2.11	Chemical structures of various β-lactone containing microbial	32
	metabolites with PL inhibitory activity	
Fig. 2.12	Various monascus pigments and their PL inhibitory activity	33
Fig. 2.13	Boronic acids and phosphonates based PL inhibitors	35
Fig. 2.14	5-Methoxy- <i>N</i> -3-phenyl substituted-1,3,4-oxadiazol-2(3H)-	35
C		

List	of	Figures

ones and 5-Alkoxy-*N*-3-(3-phenoxyphenyl)-1,3,4-oxadiazol-2(3H)-one based PL inhibitors

Fig. 2.15	Benzyltetrahydroisoquinoline scaffold-based PL inhibitors	36
Fig. 2.16	Benzimidazole, benzimidazole with perimidine,	37
	bisbenzimidazole, quinazoline-coumarin and triazole-	
	coumarin hybrid analogues based PL inhibitors	
Fig. 2.17	Carbazolyl/indolyl oxoacetamide based PL inhibitors	37
Fig. 2.18	Thiazolidinedione and rhodanine based PL inhibitors	38
Fig. 3.1	Superimposition of the re-docked pose of MUP (Grey) with	
	the co-crystallised pose (Green).	
Fig. 4.1	Representative image of A. scholaris leaves and stem barks	56
Fig. 4.2	Representative examples of various phytochemicals isolated	
	from A. scholaris	
Fig. 4.3	Schematic representation of bioassay guided fractionation of	58
	methanol extract prepared from continuous hot percolation	
	technique	
Fig. 4.4	Structure of Echitamine	59
Fig. 4.5	A) Spectral scan chromatogram of echitamine highlighting the	62
	λ_{max} at 294 nm; B) HRMS spectrum of echitamine	
Fig. 4.6	A) TLC of echitamine (Track 2) and different extracts (Track	63
	1,3 and 4) prepared from different extraction techniques,	
	derivatized used anisaldehyde-sulphuric acid; B) HPTLC	
	chromatograms of echitamine, different extracts and scanned	
	densitometrically at 530 nm.	
Fig. 4.7	Regression plot representing the linearity of the validated	64
	HPTLC method.	
Fig. 4.8	Representation of PL inhibitory activity (IC ₅₀) (A) and	67
	extractive yield of echitamine (B) from extracts prepared via	
	different extraction techniques in the stem bark of A. scholaris	
	on dry weight basis	
Fig. 5.1	2-D interaction diagram of Orlistat and Echitamine with the	71
	active site of PL (1LPB)	

Fig. 5.2 Structures of some indole and TZD containing analogues 72

reported for metabolic disease (insight represent the pharmacophoric design of the target analogues). 73 Fig. 5.3 Rationale for the designing of the hybrid analogues Fig. 5.4 Double reciprocal Lineweaver-Burk plots of analogues 5r, 5t 88 and orlistat Fig. 5.5 Structure-activity relationship of synthesized Indole-TZD 89 hybrid analogues (5a-5ag) Fig. 5.6 (A), (B) The fluorescence spectra of PL in the presence of 5r 90 and **5t** at various concentrations (pH 7.4, T = 298 K); (C), (D) Stern–Volmer plots for the quenching of **5r** and **5t** on the PL at 300 K Fig. 5.7 Binding pose and 2D interaction diagram of **5r** (A) and **5t** (B) 95 in the active site of PL (1LPB) Fig. 5.8 RMSD of Ligands and Radius of gyrations retrieved from 20 96 ns MD simulations of the PL-ligand complex (A)- 5r; (B)-5t. **Fig. 6.1** (A) 3D poses of orlistat and **5r** highlighting the distance of 104 reactive carbonyl from Ser152 (3.02 and 3.25 Å, respectively); (B) 2D interactions of orlistat and 5r **Fig. 6.2** Rationale for designing series II Indole-TZD analogues as PL 105 inhibitors. The interaction distance has reduced from 3.25 Å in **5r** (A) to 3.16 Å by the incorporation of an additional carbon linker (B) 118 Fig. 6.3 Double reciprocal Lineweaver-Burk plots of analogues 6d and **6e** Fig. 6.4 Structure-activity relationship of synthesized Indole-TZD 119 hybrid analogues (6a-6ab) Fig. 6.5 (A), (B) The fluorescence spectra of PL in the presence of 6d 120 and **6e** at various concentrations (pH 7.4); (C), (D) Stern–Volmer plots for the quenching of **6d** and **6e** on the PL at 300K Fig. 6.6 Binding pose and 2D interaction diagram of **6d** (A) and **6e** (B) 125 in the active site of PL (1LPB) Fig. 6.7 126 RMSD of Ligands and Radius of gyrations retrieved from 20 ns MD simulations of the PL-ligand complex (A)- 6d; (B)- 6e.

Fig. 7.1	Overlay diagram indicating the importance of linker extension	131
	and indole scaffold. 6d (Brown); A- Extension of linker by	
	phenyl and phenethyl functionality; B- Extension of linker by	
	phenethyl and ethyl indole functionality	
Fig. 7.2	Structures of prenyl/geranyl containing natural products.	132
Fig. 7.3	Rationale for the designing of the hybrid analogues	132
Fig. 7.4	Double reciprocal Lineweaver-Burk plots of analogues 7m	144
	and 7r	
Fig. 7.5	Structure-activity relationship of synthesized Indole-TZD	145
	hybrid analogues (7a-7u)	
Fig. 7.6	(A), (B) The fluorescence spectra of PL in the presence of 7m	146
	and 7r at various concentrations (pH 7.4); (C), (D)	
	Stern–Volmer plots for the quenching of 7m and 7r on the PL	
Fig. 7.7	Binding pose and 2D interaction diagram of $7m$ (A) and $7r$	148
	(B) in the active site of PL (1LPB)	
Fig. 7.8	2D docking poses of 7m (A), 7r (B), 7s (C), 7t (D), 7u (F)	149
	highlighting the distance of the reactive carbonyl from Ser	
	152; F- 6 methoxy substituted analogue.	
Fig. 7.9	RMSD of ligands and radius of gyrations retrieved from 20 ns	152
	MD simulations of the PL-ligand complexes (A)-7m and (B)-	
	7r	
Fig. 8.1	Results of the OTTT summarizing the serum triglyceride	163
	levels at various time points.	
Fig. 8.2	Increment in body weights of various groups during the	164
	treatment period.	
Fig. 8.3	Various biochemical parameters determined after the treatment	165
	period.	
Fig. 8.4	Faecal triglyceride levels determined from various groups.	166

#	Title	Page
Table 1.1	Summary of BMI based classification for overweight and	3
	obesity in different age groups.	
Table 1.2	Currently approved anti-obesity medications	5
Table 1.3	Current status of various antiobesity investigational new drugs	7
Table 2.1	Polyphenols reported from tea with PL inhibitory activity	20
Table 2.2	Polyphenols reported from various plants with PL inhibitory	23
	activity	
Table 2.3	Prenyl/ geranyl substituted polyphenols with PL inhibitory	25
	activity	
Table 2.4	Stilbene based PL inhibitors	26
Table 2.5	Saponin based PL inhibitors	28
Table 2.6	Alkaloid based PL inhibitors	30
Table 2.7	Terpenoid based PL inhibitors	31
Table 4.1	PL inhibitory activity of 90 extracts obtained from 15 plants	55
Table 4.2	Taxonomical classification of A. scholaris	56
Table 4.3	Summary of the validated HPTLC parameters for echitamine.	63
Table 4.4	Summary of intra- and inter-day accuracy and precision	64
	studies	
Table 4.5	Recovery study of the developed method summarizing the %	65
	recovery values	
Table 4.6	Summary of robustness results of the developed method.	66
Table 5.1	In-vitro PL inhibitory activity of the synthesized analogues	87
	(5a- 5ag)	
Table 5.2	K_m, V_{max} and K_i values of ${\bf 5r}$ and ${\bf 5t}$ retrieved from the PL	88
	enzyme kinetics.	
Table 5.3	Bimolecular quenching constant (K _q), binding constant (K _b)	92
	and the number of binding sites (n) at different temperatures	
	for 5r and 5t	
Table 5.4	Mol Dock scores (in kcal/ mol) and the interaction summary	93
	of the synthesized analogues (5a- 5ag) with the human PL	
	active site of 1LPB	
	active site of TLFD	

List of Tables

- Table 5.5Various interactions exhibited by 5r and 5t during the 20 ns97MD run
- **Table 6.1**In-vitro PL inhibitory activity of the synthesized analogues117(6a- 6ab)
- **Table 6.2**Km, Vmax and Ki values of 6d and 6e retrieved from the PL118enzyme kinetics
- **Table 6.3**Bimolecular quenching constant (Kq), binding constant (Kb)121and the number of binding sites (n) at different temperaturesfor 6d and 6e
- **Table 6.4**Mol Dock scores (in kcal/ mol) and the interaction summary122of the synthesized analogues (**6a- 6ab**) with the human PLactive site of 1LPB
- Table 6.5Various interactions exhibited by 6d and 6e during the 20 ns127MD run
- **Table 7.1**In-vitro PL inhibitory activity of the synthesized analogues143(7a-7u)
- **Table 7.2**Km, Vmax and Ki values of **7r** and **7m** retrieved from the PL144enzyme kinetics
- Table 7.3 Bimolecular quenching constant (K_q), binding constant (K_b) 147 and the number of binding sites (n) at different temperatures for 7m and 7r
- **Table 7.4**Mol Dock scores (in kcal/ mol) and the interaction summary150of the synthesized analogues (7a- 7u) with the human PLactive site of 1LPB
- **Table 7.5**Various interactions exhibited by 7m and 7r with PL during153the 20 ns MD run
- **Table 8.1**Summary of various groups and drugs administered for the *in-*160*vivo* experiments
- **Table 8.2**Composition of the HFD used in the *in-vivo* experiments.160
- **Table 8.3**Summary of ADMET parameters predicted for the potential162analogues from each series along with echitamine and orlistat

#	Title	Page
Scheme 5.1	Synthesis of the series I analogues (5a - 5ag).	74
Scheme 6.1	Synthesis of series II analogues (6a - 6ab).	105
Scheme 7.1	Synthesis of series III analogues (7a-7u).	133
Formula 1.1	Body Mass Index	3
Formula 3.1	PL inhibition	50
Formula 5.1	Stern–Volmer equation	91
Formula 5.2	Modified Stern-Volmer equation	92
Formula 8.1	Low-density lipoprotein-cholesterol	161

List of Schemes and Formulae

List of Abbreviations and Symbols

%	Percentage
% CV	Percent coefficient of variation
% RSD	Percent relative standard deviation
% v/v	Percent volume by volume
% w/v	Percent weight by volume
Å	Angstrom
°C	Degree celsius
δ	Delta
μg	Microgram
μL	Microliter
μΜ	Micromolar
4-NPB	4-nitrophenyl butyrate
5-HT _{2C}	5-Hydroxytryptamine type 2C receptor
ADMET	Absorption, Distribution, Metabolism, Excretion and Toxicity
ARF	Alkaloid rich fractions
BBB	Blood Brain Barrier
BMI	Body Mass Index
CB_1	Cannabinoid type 1 receptor
CHARMM	Chemistry at Harvard Macromolecular Mechanics
СМ	Cold Maceration
CNS	Central Nervous System
Conc.	Concentration
СҮР	Cytochrome P
Da	Dalton
DCM	Dichloromethane
DMF	Dimethyl formamide
DMSO	Dimethyl sulfoxide
e.g.	Example
ESI	Electrospray ionization
eV	Electron volt
FDA	Food and drug administration
FTIR	Fourier Transform Infrared

G	gram
GABA	Gamma aminobutyric acid
GI	Gastro-Intestinal
GLP-1	Glucagon like peptide type 1 receptor
GROMACS	GROningen Machine for Chemical Simulations
Н	Hour
HCl	Hydrochloric acid
HDL	High-density lipoproteins
HFD	High Fat Diet
HP	Hot Percolation
HPLC	High Performance Liquid Chromatography
HPTLC	High Performance Thin Layer Chromatography
HQC	High quality control
HRMS	High Resolution Mass Spectrometry
i.e	That is
IC ₅₀	Half maximal inhibitory concentration
ICH	International Conference on Harmonization
IEAC	Institutional animal ethics committe
Kcal/mol	Kilocalorie per mole
Kg	kilogram
КОН	Potassium hydroxide
LCMS	Liquid Chromatography Mass Spectrometry
LD ₅₀	Half maximal Lethal Dose
LDL	Low-density lipoproteins
LINCS	Linear Constraint Solver
LOD	Limit of Detection
LOQ	Limit of Quantification
m.p.	Melting point
MD	Molecular Dynamics
mg	Milligram
min	Minutes
mL	Millilitre
mM	Millimolar

MM2	Molecular Mechanics 2
MQC	Mid quality control
MUP	Methoxyundecyl phosphinic acid
ng	Nanogram
NMR	Nuclear Magnetic Resonance
NP	Natural Product
NPD	Normal Pellet Diet
NPT	No. of particles, Pressure and Temperature
ns	not significant
NVT	No. of particles, Volume and Temperature
OTTT	Oral Triglyceride Tolerance Test
PDB	Protein Data Bank
Pgp	P-glycoprotein
PL	Pancreatic lipase
RMSD	Root Mean Square Deviation
rpm	Rotations per minute
RSD	Relative Standard Deviation
RT	Room Temperature
S.E.M	Standard error of mean
SD	Standard Deviation
STEPS	STEPwise Approach to Surveillance
TC	Total cholesterol
TCM	Traditional Chinese Medicine
TEA	Triethylamine
TG	Triglycerides
THF	Tetrahydrofuran
t.i.d	ter in die
TLC	Thin Layer Chromatography
UE	Ultrasonic Extraction
US	United States
UV	Ultraviolet
WHO	World Health Organization
WHR	Waist-Hip Ratio