Chapter 5

Provenance Framework for Key-Value

Pair (KVP) Databases

The term "Big Data" is characterised by 7 V’s viz., Volume, Velocity, Veracity, Vari-
ety, Variability, Visualization, and Value. Veracity of big data that is defined as quality,
accuracy and truthfulness of source of data is directly linked with data provenance. Cur-
rently, big data and social media are deeply interconnected, as a major portion (over 90%)
of the total data in the world is produced through several social media platforms in an
unstructured format. Social media is the best example of volume, variety, velocity, and
complexity; those are usually concerned with big data [161]. In Big Social Data Analytics,
the credibility of an analysis generally depends upon the quality [172] and truthiness of
input data which can be assured by the Big Social Data Provenance [153]. In big data ap-

plications, provenance information can be used to provide justification for query results.

* Asma Rani, Navneet Goyal, and Shashi K. Gadia. 2021. Twitter Data Modelling and Provenance
Support for Key-Value Pair Databases. In: Qiao M., Vossen G., Wang S., Li L. (eds) Databases The-
ory and Applications. ADC 2021. Lecture Notes in Computer Science, vol 12610. Springer, Cham.
https://doi.org/10.1007 /978-3-030-69377-0_8.

135

5.1 Introduction to Key-Value Pair (KVP) Database

Nowadays, NoSQL databases are frequently used to provide the solutions for various
problems related to big data analytics, as these databases efficiently supports to a low
latency, horizontal scalability, efficient storage, high availability, high concurrency, and
reduced operational costs [45, 59, 140]. Although, there are over 150 different database
products that belong to the NoSQL community, yet an increasing attention is being paid
to the Key-value pair (KVP) databases. The KVP databases are not only flexible, but
efficient also. The key strengths of KVP databases lies in simplicity, scalability, and a
very efficiently streamlined architecture. They have the capability to perform extremely
fast read and write operations, but querying is very limited. The basic architecture of a
KVP database consists of a two column hash table in which each row contains a unique
id known as a "key", and a "value" associated with this key. A Key-Value Pair (KVP)
database is just like a dictionary in which each key is a word entry and corresponding
definition of that word is a value. KVP database is also indexed by the key that directly
points to the corresponding value without performing any search, no matter how much
data exists in the database.

In KVP databases, an associated matrix is represented by row and column indices to
values (i.e., row keys and column label associated with value indexed). Let ‘A" is a ‘m x
n’ order matrix, such as:

A:{l,.m}x{l,.n}—-V

Here, set of integers {1,.., m} represents row indices, set of integers {1,..n} represents
column indices and set of values ‘V’ form a semiring (V,®, @, 0, 1). with addition @,
multiplication ®, additive identity 0, and multiplicative identity 1. The dimensions of
above matrix are ‘m.n’.

Associative Array is an abstract data type that includes a collection of key identifiers
and a set of values such as a hash table, dictionary or symbol table. It is just like a map
that associates keys to values (i.e. a mapping with a finite domain). An associative array
is generalized representation of an array, which maps a key identifier to its associated
data value.

The KVP databases are a good choice to handle extremely high volumes of data in a

136

distributed processing environment as they have a built-in redundancy, which is capable
of handling loss of storage nodes. Apache Cassandra [85] is one of the most popular KVP
database that comes under the ambit of NoSQL databases. It is a schema-free, horizon-
tally scalable, distributed, column-family store in which each column is a data structure
that contains a key, value, and a timestamp, thus it is also named as a key-value pair
column-oriented data store (refer to Figure 5.1). It is used in application development by
Facebook, Twitter, Cloudkick, and Mahalo etc [105]. The brief introduction of elementary

components of information in Apache Cassandra are given below:

Column: Column is a smallest unit of information that contains a key, value, and times-
tamp.

Super Column: Super Column or Composite Column is a group of similar columns, or
columns likely to query together with common name. Like name which consist of first
name, last name, middle name.

Row: A Row is a group of orderable columns i.e. columns are stored in sorted order by

their column names, with a unique row key/primary key that can uniquely identify data.

Column Row
Key/Column Column Column
Key/Column Name Key/Column Name
Value Row
Kev Value Value
Timestamp
Timestamp Timestamp
Column Family

Row Key Column Column

Row Key Column Column
Row Key Column Column Column

Figure 5.1: Cassandra Column, Row & Column-Family Structure

137

Column Family: Column Family is similar to the table in relational database but no
pre-defined schema, and also provides flexibility to have different number of columns in
different rows. Column families are stored in separate files on the disk.
Keyspace: Keyspace is the highest level of information in Apache Cassandra, analogues
to the database in relational database, which is the set of related column families. It also
maintains the information about data replication, and replication strategy on nodes.
Apache Cassandra is a schema-less database which does not store null values of the
columns, thus consume much less memory space as compared to relational database.
As data is stored in columns in a sorted order of primary/row key of the column, it is
efficient for search operations including range queries. Unlike SQL queries, Cassandra

does not support complex constraints and join operations on column families.

5.2 Provenance in KVP Databases

Capturing provenance for big data applications is very challenging because of the high
volume and unstructured nature of data. A number of challenges are presented for prove-
nance support in big data application by different authors [103, 128, 139, 146] like auto-
matic provenance capture, different granularity levels at which provenance needs to be
captured, provenance capturing overhead, and analysing data via querying provenance
etc.

A number of provenance models for key-value pair databases exist in the literature
those capture the whole system provenance [120, 109, 111], and provenance for work-
flows [106, 95, 150, 98, 100]. To the best of our knowledge, there is only one data prove-
nance model for a key-value pair system [116], which captures fine-grained provenance
information for Cassandra database. Existing provenance model for Cassandra is suitable
for a small database, and is application specific. It is suitable for provenance of update
queries only. There is no support for provenance of select and aggregate queries. More-
over, it uses the Thrift API, an older version of Cassandra Query, which makes expressing
queries quite tedious.

To bridge the above identified gaps, we propose a Big Social Data Provenance (BSDP)
framework build upon Zero-Information Loss Key-Value Pair Database (ZILKVD). Qualita-

138

tive analysis of existing provenance solutions and our proposed BSDP framework based
on an evaluation matrix which includes data modelling, provenance granularity level,
type of queries supported for provenance generation, provenance visualization, and its
applicability is shown in Table 1.4 of Chapter 1 (page no. 37). Our proposed provenance
framework efficiently captures provenance for all queries including select, aggregate, his-
torical, and data update queries with insert, delete and update operations. ZILKVD is
developed based on the concept of Zero-Information Loss Database ZILD [3]. The pro-
posed framework facilitates tracing out the origin and derivation history of a query result.
It also supports provenance querying for historical data. The salient features of the BSDP

framework are:

* Streaming real-time social data: Fetching a huge volume of real life social data such

as Twitter’s network through live streaming by using Twitter Streaming API’s.

e Key-Value Pair (KVP) data model design: Efficient KVP data model is designed
based upon a query driven approach to correlate large size data through relation-
ships and dependencies in appropriate formats so that it makes sense for further

analysis.

¢ Zero-Information Loss Key-Value Pair Database (ZILKVD): ZILKVD supports data
versioning to maintain history of all the updates as a provenance information along

with the provenance of insertion and deletion operations.

® Provenance for Current Queries: Proposed provenance framework enables query-
ing the current snapshot of data and captures the provenance for all the results of
queries including select, aggregate and data update queries with insert, delete and up-
date operation. The captured provenance information is stored in respective column

families for visualization.

* Provenance for Historical Queries: Proposed framework supports past or histor-
ical queries i.e. it generates same results of historical query in every subsequent

execution and traces the provenance for the same.

* Querying Historical Data: Proposed framework also allows querying historical data

by introducing four new query constructs viz. “instance", "all", "validon now", and

139

”m

"validon ‘date” as extended Cassandra Query Constructs. It supports querying a
data element with a given time in the past and with a time range specified in the

query statement.

* Provenance Visualization: Stored provenance information can be further analyzed
for various purposes such as justifying the result tuple of a query, querying historical

data, audit-trail etc.

5.3 ZILD Architecture for Key-Value Pair Database (ZILKVD)

ZILKVD is designed using the concept of Zero-Information Loss Database [3], to maintain
all the insert, delete, and update operations without losing any information as a prove-
nance data. The architecture of ZILKVD consists of following components viz., Query
Parser, Query Rewriter, Query Generator, Processing Module, and KVP Database (refer to Fig-
ure 5.2). When user issues a query, it is sent to the Query Parser to parse the query
and to identify the type of that query i.e. Insert (I), Update (U), or Delete (D) query. If
issued query type is an "Insert Query" (i.e. To insert a new row in database) then the
parsed results are sent to the Query Rewriter as mentioned in step I; and correspond-
ing Rewritten Insert Query (Q;) is generated in step I,. Here, "valid_from" column of this
new row in corresponding column family is being set to the "current date/time" and then

it is sent to the KVP database for further execution. If issued query type is a "Delete

1 Issued Query
4 | Li: Parsed Resuh:I Query Rewriter Iz: Rewritten Insert Query
J

Insert Query (I) D:z: Corresponding Update Query

Di: Parsed Result Uz: Select Query
Delete Query (D) v Usa: Result Set

Query Generator
Uta: Parsed Result Us: Insert query to update provenance % ZILKVD

Uz: Insert query to query table

A 4

Yy v

Update Query (U) ». KVPDB

T Uy: ProvPathExp
uery Parser T1b: Pa ;
e Lh: Parsed Resuh: Processing Module | Usb: Result Set

Us: Original Update Query *

Figure 5.2: ZILKVD Architecture

140

Query" (i.e. To delete an existing row from the database) then the parsed results are sent
to the Query Generator as mentioned in step D; and corresponding Update Query (Qy)
is generated in step D,. Here, the value of "valid_to" column of the row to be deleted
from the corresponding column family is being set to the "current date/time" and then it
is sent to the KVP database for further execution. If issued query type is an "Update
Query" (i.e. To update an existing row in database) then the parsed results are sent to
both Query Generator and Processing Module in steps Uj, and Uy, respectively. Then, in
step Uy, corresponding Select Query (Qs) generated from Query Generator is executed on
KVP database, to retrieve the following information viz., value of primary key columns
of the row to be updated, old value of column before performing update, and its write
time in database. This information is sent to the Processing Module in step Usp, to gen-
erate corresponding Provenance Path Expression (ProvPathExp) in the following format
i.e. "Key- space/Column_Family/RowKey/Update_Column_ Name", and then sent back to the
Query Generator in step Us. Now, in step Us, Query Generator generates an insert query
(@) to insert the following information in "update_provenance" column family viz., Query
statement, ProvPathExp, old_value, old_value writetime (i.e. its valid_from time), new_value,
current Date/Time etc., for further execution on KVP database. After this, both the queries
(i.e. generated insert query Q; and issued update query U) are executed on KVP database
in step Us and Uj respectively, to maintain the complete history of data update operations.
Finally, the following information viz., Query Id, Query Statement, its time of execution etc.,
are also inserted in "query_table" column family through an insert query executed on KVP
database in step Uj.

The implementation code for ZILKVD is given in Algorithm 5 and 6. Two inputs
to Algorithm 5 are 1) A KVP Database (Dy,) and 2) A query Q (i.e. insert, delete or
update query), and output of the algorithm is a ZILKVD database with complete history
maintained. According to Algorithm 5, the issued input query Q is first parsed to retrieve
the required information, i.e., parsed result R, and to identify the query type, ie., Q;
(refer to line 1). If QQ; is an insert query, then a corresponding rewritten insert query
is generated and executed on Dy, (refer to lines 3 and 4). If Q; is a delete query then a
corresponding update query Q, is generated and executed on Dy, (refer to line 6 and 7).

If Q; is an update query then Algorithm 6 i.e. UpdateCassProv is called (refer to line

141

9). Following two inputs i.e. query Q and its parsed result R, are passed to the Algorithm
6 and provenance path expression (Pp) of updated columns and updated "query_table" and
"update_provenance" column families are obtained as outputs of the Algorithm 6. Accord-
ing to Algorithm 6, all the required information such as KS, CF, PK, CN,, CV,, CT,, etc.,
are retrieved form R, (refer to line 1). If Q contains a "Where Clause" in its query statement,
then value of Vpy is retrieved and assigned to RK to uniquely identify a row (refer to lines
2 to 4). Afterwards a corresponding select query Qs is generated and executed to retrieve
old value of column before update, and its write time in database i.e. CV, and CVut
respectively (refer to lines 5 and 6). Now, provenance path P, (i.e. KS/CF/RK/CNy) is
generated and column family "update_provenance" is updated with updated values of Qiq4,
Q, Pp, CV,, CVout, CVy, CTy, and current date/time (refer to lines 7 and 8). Similarly,
if Q does not contain a "Where Clause" then again Qs is generated and executed to store
all the query results in RS (refer to line 11). Now, for each result tuple r of RS, value of
following parameters i.e. Vpy, CVo, CVoyt etc., are retrieved and value of Vi is assigned
to RK. After this, corresponding provenance path P}, (i.e. KS/CF/RK/CNu) is generated
and column family "update_provenance" is updated with updated values of Qiq4, Q, Py, CV,,
CVowt, CVy, CTy, and current date/time (refer to lines 12 to 16). Finally, Q is executed and
column family "query_ table" is also updated with updated values of following parameters

ie. Qiq, Q, current date/time etc (refer to lines 19 and 20). In respect of complexities of

Algorithm 5 ZILKVD Design: Design ZILKVD (Zero Information Loss Key-Value Pair
Database)
Input: Key-Value Pair Database (D), Query Q (Insert/Update/Delete Query)
Output: Zero Information Loss Key-Value Pair Database with history maintained
1: Parsed Result (Rp), Query Type (Qt) < Query Parser (Q)
. if Q; is Insert-Query to insert a new row then
Generate Q; //Where Q; is rewritten insert query with "valid_from” column set as
//"current date/time”

W

=

Execute (Dy,, Qj)
5: else if Q; is Delete-Query to delete an existing row then
Generate Q //Where Q,, is corresponding update query with "valid_to” column set
/fas "current date/time”
Execute (Dy,, Qu)
8: else
9: UpdateCassProv(Q,Rp)
10: end if
11: End

142

Algorithm 6 UpdateCassProv(QRy): ZILKVD with Update Management

Input: Query Q (Update Query), Rp(Parsed Results)
Output: ProvPathExp (P,) of updated tuples, updated column families viz.,

non

"query_table", "update_provenance"
1: KS,CF,PK,CN,,CV,,CT, < Retrieve(R)
//Where KS=Keyspace, =~ CF=Column_Family, =~ PK=Primary Key of CF,
//CNy=Update column name, CV,,=Update column value, CT,= Update column type
2: if Q contains where clause then

3: Retrieve V) < Parse where clause //Where V. = Values of PK
4 RK <+ Vi //Where RK is RowKey
5: Generate Q; // Qs is a select query corresponding to Q for retrieving old value
/fand write time of CN,,
6. CV,, CVyy < Execute Qg //Where CV, = Old column value, CVyy =0Id
/fcolumn value WriteTime
P, < KS/CF/RK/CN,, //Where P, is provenance path

. update_provenance < Insert Qy4, Q, Py, CV,, CVouwt , CV,,CT,, current date/time
9: else

10: Generate Qs // Qs is a select query corresponding to Q for retrieving old value,
// write time of CN,, and values of PK
11: RS < Execute Q; //RS is result set of query Qs

12: forall r € RS do

13: Obtain Vpk ,CVyo, CVoy =1
14: RK <= Vi

15: P, < KS/CF/RK/CN,

16: update_provenance < Insert Q;q, Q, Pp, CV,, CVout , CV,,CT, , current date/-
time

17: end for

18: end if

19: Execute <+ Q
20: query_table < Insert Q;q, Q, current date/time
21: End

Algorithms 5 and 6, search operation is efficient in Cassandra as data are stored into the
column in a sorted order of primary key of the column. Therefore, insert operation in
algorithm takes O(log(n)) times to find a location where to insert new row. Delete opera-
tion also takes O(log(n)) to search a row to be deleted and setting valid_to time as current
date/time. Update operation takes O(log(n)) time when primary key is given in query
statement to search a row and to perform update operation. Otherwise, it takes O(n)
time to search all the rows to be updated. Therefore, overall complexity of Algorithms
5 and 6 are O(log(n)) and O(n), respectively. A demonstration of above algorithms with
illustrative example query 1 is given below:

Example Query 1: Update location of the user with name "DDNewsAndhra".

143

Cassandra Query 1: update user_details set location= ‘Andhra’ where screen_name=
‘DDNewsAndhra’;

Initially, the above Example Query 1 is passed as an input query (Q) to the Algorithm
5. Where, the query is parsed to identify its type (i.e. Update Query) and to retrieve the
required information. Now, both query (Q) and its parsed results (R) are passed as inputs
to the Algorithm 6. Here, the provenance path expression (i.e. ProvPathExp) of updated
tuples along with the updated column families viz., "query_table" and "update_provenance"
of underlying KVP database is obtained as outputs of above algorithm. A snapshot of

"update_provenance" column family is shown in Figure 5.3.

Operation | Query | Query Column _ Old_ Old_value | New_ Provenance path | Row_ | Time
Id type value writetime | value exp key

update q23 update user_details VARCHAR | Andhra | 2019-12-17 | Andhra | NewTWitter Keys | screen | 2019-
set location=* Pradesh | 08:30:01 pace/user details/* | name | 12-17
Andhra’ where DDNewsAndhra 9:16:4
screen._name=" "/Location
DDNewsAndhra *

update q25 update user details VARCIIAR | MY 2019-10-17 | Reality | NewTWitter Keys | sereen | 2019-
set user name= SHOW | 09:07:54 Show pacefuser details/* | name | 12-17
‘Reality Show’ MY myshowmytalks’/u 9:18:3
where screen_name= TALKS ser_name
‘myshowtalkies’

Figure 5.3: A Snapshot of "update_provenance" Column Family

5.4 Big Social Data Provenance Framework using ZILKVD: Twit-

ter Case Study

5.4.1 Twitter Data Model using Key-Value Pair Database

Over the past few years, more than 90% of total data are contributed by various social
media platforms. Several leading social media platforms such as Twitter, Facebook, Insta-
gram, WhatsApp etc., are responsible for this unprecedented growth of data. Out of these
social media platforms, Twitter is one of the most popular platform which allows users to
share their thoughts with worldwide audience. It is tuned for very fast communications
over internet with more than 200 million daily active users publishing approximate 500
million tweets daily. A twitter user can either create its own tweet or can retweet the
information that has already been tweeted by some other user. A twitter user can choose
to follow other users also. For instance, if a user A follows user B, then user A can see

B’s tweets in his ‘timeline’. Twitter’s popularity as a massive source of information has

144

led to research in various domains [132]. Researchers can obtain this information from
twitter through publically available Twitter APIs. These APIs are categorized in following
two categorise; first is REST APIs for conducting specific searches, reading user profile or
posting new tweets, and second is Streaming APIs to collect a continuous stream of public
information. In our framework, we are using Streaming APIs to continuously stream the
tweets and related information whenever the new tweet is published as shown in Figure
5.4.

Twitter provides an open standard for authorization known as Open Authentication
(OAuth). This authentication mechanism allows controlled and limited access to pro-
tected information. Traditional authentication mechanism is vulnerable to theft, while
OAuth mechanism provides a more secure approach without using user’s username and
password. By using a three-way handshaking, it allows users to grant third party access
to their data. As user’s password for his/her twitter account is never shared with this
third-party application, therefore, user’s confidence in the application is also improved.
Twitter APIs can only be accessed by a twitter application using OAuth authorization
mechanism.

To get the authorization for accessing the protected data, user first creates a twitter

User Request to Access

Tweets and other relevant Streaming Connection
information related to — Opens to Twitter Server
Particular Event

Tweets and other relevant l

: : Tweets Streamed at Real-
mform'flnon fetched at g B

Real-Time Ime

Streaming Connection

Closes at Twitter Server

y

Pre-processing of tweets
like Convertto UTF
Format, extract hashtags,
mentioned users etc

Pre-processed Data
— Stored in Cassandraas
per Data Model

Figure 5.4: Twitter Data Streaming

145

application which is also known as consumer. After registering this application on twitter,
a consumer key and a consumer secret key is issued to the application by twitter that will
uniquely identify this application. By using this consumer key and consumer secret key,
application creates a unique twitter link through which user authenticate him/her self
to twitter. After verifying the user’s identity, twitter issues an OAuth verifier to the user.
Application uses this OAuth verifier to request an Access Token and Access Token Secret that
is unique to the user. Now, twitter application authenticates the user on twitter by using
these Access Token and Access Token Secret, and make API calls on behalf of the user
(refer to Figure 5.5). By using these Access Credentials, we fetched all the tweets related
to a specific event through live streaming to design an efficient key-value pair data model
as explained in Algorithm 7 (i.e. TweetCassandra). The two inputs to the algorithm are
1) Twitter API Access Credentials i.e. Consumer Key (Cy), Consumer Secret Key (Cgy),
Access Token (A;), Access Token Secret (Ay); and 2) Event name (E) for which related
tweets are required to be fetched. While an efficient query driven KVP data model in
Apache Cassandra is obtained as an output of this algorithm.

After successful authorization on Twitter’s Network using access credentials, tweet set
(T) related to input event (E) is fetched through live streaming of social data (refer to line
1). Then, on every fetched tweet (t) of tweet set, pre-processing is performed to extract the

following information viz. User (U) who posted the tweet, Hashtags (H) and Mentioned

User registers Application on Twitter to get Access to Streaming API’s

A 4

Generate & Return Consumer Key and Consumer Secret key for Registered Application

A

User enter Consumer Key and Consumer Secret key for validation

v

Validation Successful

A

Generate and Return OAuth Verifier

USER

A

TWITTER

Request Access Token & Secret using Consumer Key, Consumer Secret Key & OAuth Verifier

A 4

Generate & Return Access Token and Access Token Secret for Registered Application

'y

User request for Streaming Data using Access Token and Access Token Secret

h 4

Twitter Stream Access Successful and Provide Data Access

'y

Figure 5.5: Open Authentication Process for Twitter

146

Algorithm 7 TweetCassandra: Cassandra Data Model creation for Twitter Streaming Data
Input: Twitter API Access Credentials (A, Ay, Cy, Cis) and Twitter Event (E)
//Where Ay=Access Token, A= Access Token Secret, Cy=Consumer Key, Cg= Consumer Secret
Key
Output: Cassandra Data Model (CDM)

1: Fetch Tweet Set T of Event E

2: forallt € T do

3 U,H,M, Ur, T, TW; < Preprocess(t)

4 F,, F,, Ui« Fetch U //Where F,=User’s friend list, Fy=User’s follower list,

U;=other user information

5. forallf € F,do

6: F, g Fetch f //Where F,;=User’s friend details

7. end for

8 forallf e F,; do

9: F g Fetch f //Where F,3=User’s follower details

10: end for

11: Cg < Insert (Extracted Data)

12: Update C //Cs = Cassandra column-families
13: end for '

14: End

Users (M) in the Tweet, Tweet Body (T) in UTF-encoding, and other related information
etc (refer to lines 2 and 3). Simultaneously, for each User (U) following related information
viz., list of user’s friends (F,), list of user’s followers (F,) and user’s profile attributes (U;)
such as user_name, screen_name, profile created date, twitter id, location etc., are also
extracted from User’s Twitter profile (refer to line 4). Similarly, Friend Details (F,q) and
Follower Details (F,14) of each user are also extracted (refer to lines 5 to 10). Finally, all the
extracted information is stored in corresponding column families of Apache Cassandra in
appropriate format. This information is continuously streamed and populated in different
column families to build an effective query driven KVP data model for efficient queries.
Although, Apache Cassandra is known for flexible data management to manage world’s

biggest datasets on clusters of several nodes deployed at different data centres. However,
one of the major challenges that big social data applications face when choosing Apache
Cassandra is data model design that is significantly different from traditional data model
design methodologies. Traditional data model design methodology like the one used in
relational databases, is purely a data driven approach. On the contrary, data model de-
sign for Cassandra begins with application specific queries and is purely a query driven

approach. Several SQL constructs such as data aggregation, table joins etc., are not sup-

147

ported by Cassandra Query Language (CQL). Therefore, data modelling in Cassandra re-
lies on denormalization of database schema which enable a complex query to execute on
a single column family only, to retrieve the required information. In this way, data dupli-
cation is common in Cassandra column families to support a variety of queries. Database
schema design for big social data in Cassandra requires not only the understanding of
relationships and dependencies among social data, but also the understanding of needs
to access this data through a query driven approach.

In this work, we applied a query driven methodology in KVP data model design. By
a query driven, we mean designing a data model on the basis of what type of queries
our database will be required to support. This approach provides not only the sequence
of tasks, but also aids in determining what type of data will be needed and when? In
our proposed framework, we designed a query driven data model based on frequent
queries required to execute on Twitter dataset as shown in Figure 5.6. Initially, all the
tweets posted by different Twitter users in the response of a particular event are fetched
through Twitter’s Streaming APIs. However, all such information is not useful for our
data model, therefore, only required information viz., tweet id, tweet text, tweet pub-
lished date, hashtags, user_name, screen_name, profile created date, twitter id, location,
friend list, follower list etc., are extracted from the input list of tweet objects. Simultane-
ously, pre-processing on extracted data is performed to convert them in a required format.
Afterwards, all such pre-processed data are stored in different column families of Apache
Cassandra. The structure of such extracted information is given below:

tweet_id: The tweet identification number assigned by twitter.
tweet_body: The text content of the tweet.

published_date: Date on which tweet was published on twitter.
screen_name: User’s screen name on twitter.

user_name: User’s profile name on twitter.

twitter_id: Identification number of user/author of the tweet.

created_date: Creation date for the user account.

location: The geolocation of the user/author of the tweet.

148

[PPOIN le(eIpuesse)) :9°S a3y

PO B - IV, - RO

-
-—

i}
=l 1 =
L = m_uam Ham = = =) # =1 e
il i ' feodTisom u o T
Vo= Ny] Sweu U238 # (P =my] SweLL e ISmofo)
P _Wmul_uﬂuu.a] =) Hu e uogedo| f= 2180 pajealn
1= Jul"[enjae P ﬁwulvﬂmws 1 u..__nw___lﬁﬂ._l_s.ﬂ..m_ 1 SUIEUTUS2UIST IaMmOjI0)
P _mlﬂwulvu..._m._ﬁ_.x_ . 1 =5 uiTEnE =] Fep pajesid] lﬂ...ﬁ:l_._ua..um J=En
fepTpaysngnd o P = =lep pausygnd | HWBUT US235 pUsLy _.Wﬂinvr....uiiﬁ..
mEchﬂHmm _HUEIEH! # ||:EoE “pausignd o uImEE._ USauas1osn iR T
= C s) = LU S19aM = spEiap pUaL £
—- Dejysey 2 A T 4 = &
=T] o aweul usais = £
o PIm S, o o - siamoja; | -
— N W E = | Lo 5
m BlBL USSI8 - m = b m_ = 1 m_E.m___._ USEuds Jesn m
lumme_mﬂ_l e @ = un | Hn A —
e © e} . B . 'S e M g i r §1 L 8
pi jaam 2 = B Pam = 2 B_m_u Ta0M] ¢ .,* 5
L g piisgm A_Mu:.ﬂ: LFFLETE = Pewsey 2" plrissmy pn joam m m 2
M_ a :E_.._\lnmw.aw LnTjEamyisEn _W_ Pt Esm g, &
i =} H—H _|El 1 = =) | =
3 = = spuay g B
i1 _— M_H I 1 SWeU usams o m_ m_
@..:wcl:n@mmﬂ:oa:mE w Yy = Jesnns : = w
= U0t ! jepual . |)
ol = i =l 2 i SWEU M_w.m.__ 5 G
- uonusL jaam 5 . } EPW m
Apod 12 — | — Ky - B =
= 4\ pi lsam) = _ Sey usae e =
Kuy L m P 2%P pajea = -3 _H:_..ou Jamojjoy
@wulvﬁmﬁ.a 2 Hfuh il jempoe Ew S awel usauas o
AUyl [erae = il _ﬂwulﬁﬁ_ﬁﬁ L § = =] l_miun_#
ep paysiand o - m |” TR W___I_._uman = JUNCa T pUaLy
wou paysiand o » 1.#[. P leamy o u,_lmEm..__ [1E=-00E- m
suweu u2as o s =] = =)
5 uojBULOMITEAaM wRoITpUAY .| g
UOW I8N)M . aupul udars m
swfeu] usalas \ E 1 = =] e | | w
3 | L ik i alEu| udans .H
r ﬂ BBUTUSIIS | 1
=) i=
| : ..HEE lzsn s N i I_mEm_._|| 5
o .EE_W»T_! : . i
m i = pifioamg =) \ 5 } =l un
L. p ﬂn_ _”_uﬁm._u e :wu_._m_zon_ﬁE # ﬂln__l_ﬁ_._z
sweu yoans | =] l i EmE = = Peem g Pz, uogeso
= BLUBU 1SN -~ Po=eR Tpaysignd o 1 BBL USIUIS mM.EmﬂlquEu
= " = . i
L BB USBIIS | # Hnm.wu paysyand = = = pE— 1 w.._.-w: (F=ET L
= 1 slweu uoams ¢ g’ = v
Egg} = g ‘sjejep Jasn
=T =TV F JSSNT S150M] +
SuEU USRS %
o ! [
\ \ J

149

url: The list of urls contained in the tweet.

hashtag: The list of hashtags contained in the tweet.

mention: The list of mentioned users contained in the tweet.

friends: The list of friends that user is following.

friends_details: Details of all friends of user i.e. Screen_name, User_name, location etc.

friend_count: The number of friends that user is following.

followers: The list of followers of the user.

followers_details: Details of all followers of user i.e. Screen_name, User_name, location etc.

follower_count: The number of followers of the user.

tweet_user_count: The total number of tweets that the user has published over time.

Proposed data model contains a keyspace named "NewTwitter_Keyspace" that consists
of 20 Column Families. The various column names of these column families with their
row keys are also mentioned in Figure 5.6. All the 20 column families are organized on
the basis of social data set fetched from the Twitter’s network to support different query
sets for capturing, storing and querying provenance. Cassandra Query Language (CQL) is
used for querying and to communicate with Apache Cassandra. For example, to retrieve

the total number of tweets posted by a given user on a particular day, we can issue the

following CQL statement to the proposed data model i.e.

"select count(*) from tweets_user_day where screen_name="sunilthalia’ and published_day=8 and

published_date>= ‘2019-10-08" and published_date< ‘2019-10-09" group by screen_name;"

5.4.2 Provenance Generation

We designed and implemented three provenance generation algorithms for select, aggre-
gate, and historical queries, respectively. The high level details of all the algorithms along

with their illustrative example queries are given in the following subsections:

5.4.2.1 Provenance Generation for Select Queries

150

Proposed framework supports to capture provenance information for select queries.
The high-level details of provenance generation algorithm for select queries i.e. "Select-
Prov" are given in Algorithm 8. In proposed algorithm, a select query (Qs) and its query
id (Qiq) is passed as inputs and a comma separated list of provenance path expression
(P) for each value exists in the result tuple of a query result along with the following up-
dated column families viz., "select_provenance", and "query_table" are obtained as outputs
of the algorithm. Initially, Qs is parsed and following information viz., KS, CF, PK, CN
etc., are retrieved from the query statement in the form of parsed result R, (refer to lines
1 and 2). Then, a rewritten select query Q; is generated by appending a predicate (i.e.
"valid_to") in the query statement (refer to line 3). The value of this predicate is being
set to the Null to retrieve currently existing rows. After this, Q is executed and all its

result tuples are stored in record set (RS) (refer to line 4). Now, for each result tuple r of

Algorithm 8 SelectProv: Provenance Generation for Current Select Query

Input: Query Q, (Select Query), Qiq (Query Id)
Output: ProvPathExp (p;) with each value in result set, updated "select_provenance" and
"query_table" column families

1: Rp < Parse Qs

2: KS,CF,PK,CN <+ Retrieve(Ry) //Where KS=Keyspace, CF=Column_Family,
//PK=Primary Key of CF, CN=Column names in Qs
3: Generate Q; //Qy is rewritten select query for retrieving values of

//Pk and appending predicate with "valid_to” as Null

4: RS + Execute Q,
5. k=0
6: for all r € RS do
70 Thg = Qut '+ k /riiq s unique id of each result tuple of Q,
8 Set P =Null
9: Obtain v, /fopx=Values of PK
10: RK <= vy //RK is Row Key
11: fori=1ton do
12: pi < KS/CF/RK/C; //Where n=number of non-key columns in CN, C;eCN
/fand C; is a non-key column, p; is provenance path of C;
13: r < Add p; //Adding provenance of C;’s value in r
14: P < Append p; //P is comma separated list of provenance paths of all C;’s in v

15: end for

16: select_provenance <— Insert ry4, Qs, P, current date/time
17: Increment k

18: end for

19: query_table < Insert Q;q, Qs, current date/time

20: Return RS

21: End

151

result set, a unique result tuple id is generated by using Qg (refer to lines 5,7 and 17).
Initially, the value of P for all columns of each result tuple is being set to the null (refer to
line 8). Then the value of Vp is retrieved from result tuple and assigned to RK (refer to
lines 9 and 10). After this, for each non-key column C; of 1, provenance path expression
pi is generated (i.e. KS/CF/RK/C;) and added in the corresponding r and further ap-
pended in P (refer to lines 11 to 14). A provenance path expression consists of a keyspace
name, column family, row key, and column name in the following form; "keyspace/colum-
nfamily/rowkey/columnname”. Provenance path expression provides a detailed provenance
for each of the result tuple exists in the query result at different granularity levels, i.e.,
How a value in result tuple is derived? Finally, column families "select_provenance”" and
"query_table" are also updated (refer to lines 14 to 20). With respect to complexity of
algorithm, select query takes O(log(n) time to retrieve result set ‘RS’. In addition, for each
column c (except primary key columns) of result tuple r€RS, generation of provenance
path expression p; takes O(r*c) time. Therefore, theoretical complexity of Algorithm 8 is
O(log(n)) + O(r*c). However, its practical complexity is slightly different as it depends on
the number of columns ‘c’. In most cases, the proposed algorithm runs comparatively fast
as only a small number of columns exist in the result set. Demonstration of Algorithm 8
with illustrative example queries 2 and 3 are given below:
Example Query 2: Display the location of user with Screen_Name ‘Gagan4041’.
Cassandra Query 2: select location from user_details where screen_name="Gagan4041’;
Query result of the above select query contains following two columns viz. "LOCA-
TION" and "LOCATION_PROVENANCE" with values "India" and "[NewTwitter_Keyspace/
user_details/Gagan4041/ location]" respectively. Here, the value under the column name
"LOCATION_PROVENANCE" justifies the query result i.e. "India". It explains that the
value in result set is derived from keyspace: NewTwitter_Keyspace, column family: user_
details, row key: Gagan40041, column: location.
Example Query 3: Display all the hashtags used in the tweets posted by a user with
Screen_Name ‘mkzangid’.
Cassandra Query 3: select hashtag from user_tweet _hashtag where screen_name= ‘mkza-
ngid’;

Query result of the above query is shown in Figure 5.7, which shows that the user

152

"mkzangid" used hashtag "Vikramlander" in two of his tweets with tweet id’s "118151081737-
7767426" and "1181512471518990342". Provenance path expression under column "Hash-
tag_Provennace" shows the derivation process of the value present in result set i.e. value
"Vikramlander" in result set is derived from two different rows with row key (composite pri-
mary key of screen_name and tweet id) "mkzangid-118151081737- 7767426" and "mkzangid-
1181512471518990342".

Hashtag Hashtag Provenance

[Vikramlander] | [NewTWitter Keyspace/user tweet hashtag/
mkzangid-1181510817377767426/hashtag]

[Vikramlander] | [NewTWitter Keyspace/user tweet hashtag/
mkzangid-1181512471518990342/hashtag]

Figure 5.7: Example Query 3 Result

5.4.2.2 Provenance Generation for Aggregate Queries

Proposed framework supports the capturing of provenance information for aggregate
queries too. The high-level details of provenance generation algorithm for aggregate
queries i.e. "AggreProv" are given in Algorithm 9. According to this algorithm, an Ag-
gregate Query (Q,) with its Query Id (Qiq) is passed as an input and a comma separated
list of Provenance Path Expressions pv[i] for each of its result tuple exists in query result
are obtained as an output in Provenance Vector (pv). The provenance path expression
consists of all the source rows and column names of a column family in a keyspace that
contributed to generate the corresponding result tuple. All the steps of this algorithm
are very similar to Algorithm 8§, i.e. "SelectProv" except the concept of provenance vector.
Although, Provenance path is generated in the same way as in Algorithm 8, however the
iteration is performed on all source rows which contributed to produce one result row in
result set to generate pv[i] of all source rows (refer to lines 13 to 21). Further, provenance
of result tuples and corresponding aggregate query are stored in "select_provenance" and
"query_table" column families respectively. In respect of complexity of algorithms, select

queries in step 4 and 5 take 2 * O(log(n)) time for execution. In addition, for each column ¢

153

Algorithm 9 AggreProv: Provenance Generation for Current Aggregate Query
Input: Query Q, (Aggregate Query), Qig (Query Id)
Output: Comma separated list of ProvPathExps (po[i]) with each value in result set, up-
dated "select_provenance" and "query_table" column families
1: Ry < Parse Q,
2: KS,CF,PK,CN + Retrieve(Rp) //Where KS=Keyspace, — CF=Column_Family,
//PK=Primary Key of CF, CN=Column names in Q,
3: Generate Q; //Qy is rewritten aggregate query for retrieving values of
//Pk and appending predicate with "valid_to” as Null

4: RS + Execute Q,
5: RS1 < Execute Q;
6: k=0
7: while RS1 != Null do
8: rl=Iterate over RS1
9: forall r € RS do
10: Iig = Qg+ '+ k /riiq is unique id of each result tuple of Q,
11: Set P = Null
12: Vector pv = Null //pv is a vector to store all provenance paths of r
13: for all r1 € RSI till value of aggregate attribute in rl is same as in r do
14: Obtain Upk from r1 //vpszal ues of PK
15 RK ¢ v //RK is Row Key
16: for i=1 ton do
17 pr + KS/CF/RK/C; //Where n=number of non-key columns in CN, C;€CN
/fand C; is a non-key column, pr is provenance path of C;
18: poli] <~ Append pr /fpoli] is comma separated list of all provenance path of
//Ci’s value in r
19: P < Append pr //P is comma separated list of provenance paths of
/all C's inr
20: end for
21: end for
22: r < Add pv // Adding provenance vector of all C;’s value in r
23: select_provenance <— Insert 14, Q,, P, current date/time
24: Increment k

25: end for

26: end while

27: query_table < Insert Q;q, Q,, current date/time
28: Return RS

29: End

(except primary key columns) of result tuple r€RS, generation of provenance path expres-
sion pvl[i] takes O(r*c) time. Therefore, theoretical complexity of Algorithm 9 is O(log(n))
+ O(r*c). However, practical complexity is slightly different, as it depends on the number
of columns ‘¢’ in the result set ‘r’. In case of aggregate queries, the proposed algorithm
runs fast as the number of columns is usually one. Demonstration of Algorithm 9 with

illustrative example queries 4 and 5 are given below:

154

Example Query 4: Display the total no of tweets posted by a user "sunilthalia" on "08/10/
2019".

Cassandra Query 4: select count(tweet_body) from tweets_user_day where screen_name=
‘sunilthalia” and published_day=8 and published_date>= ‘2019-10-08" and published_date
<'2019-10-09" group by screen_name allow filtering;

The above query is an example of aggregate query to retrieve the total number of
tweets posted by a specific user on a given day. This aggregate query efficiently exe-
cutes on "tweets_user_day" column family with composite primary key i.e. "screen_ name,
published_day, and published_date". Figure 5.8 shows the partial result of above aggregate
query where the total number of tweets posted by the given user on 08/10/2019 are 7
(mentioned under the column name "SYSTEM.COUNT(TWEET_BODY)") along with a
comma separated list of provenance path expressions for all the 7 rows with the name
of column families that have contributed to the result set under the column name "SYS-

TEM.COUNT(TWEET_BODY)_PROVENANCE".

SYSTEMLCOUNT | SYSTEM.COUNT(TWEET BODY)
(TWEET BODY) | PROVENANCE

7 [NewTwitter Keyspace/tweets user da
v/sunilthalia-8-Tue Oct 08 11:37:56
IST 2019/tweet body,

NewTwitter Keyspace/tweets user da
y/sunilthalia-8-Tue Oct 08 11:40:12
IST 2019/tweet_body.

NewTwitter Keyspace/tweets user da
y/sunilthalia-8-Tue Oct 08 11:48:33
IST 2019/tweet body,

NewTwitter Keyspace/tweets user da
vi..]

Figure 5.8: Example Query 4 Result

Example Query 5: Display the total no of tweets posted on each day in month of October,
2019.
Cassandra Query 5: select published_day, count(tweet _body) from tweets_day where
published_date>="2019-10-01" and published_date<2019-11-01" group by published_day
allow filtering;

The above aggregate query executed on "tweets_day" column family with composite

primary key i.e. "published_day, published_date", and counts the total number of tweets

155

posted on each day of October, 2019. Partial result of above aggregate query is shown
in Figure 5.9, where the total number of tweets posted on each day is shown under the
column name "SYSTEM.COUNT (TWEET_BODY)", along with the tweets posted day, and
a comma separated list of provenance path expression for all the rows that contributed

towards aggregated result under the column name "SYSTEM.COUNT (TWEET_BODY)_

PROVENANCE".
PUBLISHED DAY SYSTEM.COUNT SYSTEM.COUNT(TWEET _BODY) PROVENANCE
(TWEET_BODY)
23 5 [NewTwitter Keyspace/tweets day/23-Wed Oct 23 12:35:17 IST

2019/tweet_body,

NewTwitter Keyspace/tweets day/23-Wed Oct 23 12:38:14 IST
2019/tweet_body,

NewTwitter Keyspace/tweets day/...]

5 34 [NewTwitter Keyspace/tweets day/5-Sat Oct 05 00:01:18 IST
2019/tweet_body,

NewTwitter Keyspace/tweets day/5-Sat Oct 05 04:46:01 IST
2019/tweet_body,

NewTwitter Keyspace/tweets day/...]

10 8 [NewTwitter Keyspace/tweets day/10-ThuOct 10 01:09:32 IST
2019/tweet_body,

NewTwitter Keyspace/tweets day/10-ThuOct 10 07:03:30 IST
2019/tweet_body,

NewTwitter Keyspace/tweets_day/...]

30 1 [NewTwitter Keyspace/tweets_day/30-Wed Oct 30 14:23:14 IST
2019/tweet_body]

[NewTwitter Keyspace/tweets_day/13-SunOct 13 00:37:02 IST
2019/tweet_body,

NewTwitter Keyspace/tweets day/13-SunOct 13 10:51:20 IST
2019/tweet_body]

13

(=)

Figure 5.9: Example Query 5 Result

5.4.2.3 Provenance Generation for Historical Queries

Proposed framework also supports to capture provenance information for historical queries
using data versioning support in ZILKVD. The high-level details of provenance generation
algorithm for historical queries i.e. "HistProv" are given in Algorithm 10, where a Histor-
ical Query (Qy) along with its Time of Execution(t) is passed as an input and a comma
separated list of Provenance Path Expressions (p;) for all result tuples are obtained as
an output. Initially, query Qy, is parsed to retrieve following information viz., Keyspace,
Column Family, Column Names, Primary Key etc (refer to lines 1 and 2). Afterwards, a
Rewritten Select Query (Qy) is generated to retrieve Row Key (RK) i.e. values of primary
key column of column family, and each result tuple with predicate "valid_to". The value

of this predicate is set to time "t" (i.e. given in input) and then query Q; is executed on

156

Algorithm 10 HistProv: Provenance Generation for Historical Query

Input: Query Q) (Historical Query), t (Time of Execution)
Output: ProvPathExp (p;) for each value of result set.
1: Rp < Parse Q,
2: KS,CF,PK,CN < Retrieve(R) //Where KS=Keyspace, =~ CF=Column_Family,
//PK=Primary Key of CF, CN=Column names in Qy,
3: Generate Q; //Q, is rewritten select query for retrieving values of Pk and
/fappending predicate with "valid_to” as "t”

4: RS <+ Execute Q,
5. for all r € RS do

6: Obtain vy /fopk=Values of PK
7. RK « vy //RK is Row Key

8 forall vinrdo

9: if writetime(v)<=t then

10: pi < KS/CF/RK/C //Where v is value of column C in r and C € CN,

//pi is provenance path of C

11: r < Add p; //Adding provenance of C;’s value in r

12: else

13 Generate Qq //Qs is rewritten select query for retrieving value of C (v.) from

/update_provenance column family with predicate "valid_to” as "t"
14: RS1 + Execute Qg

15: pi, Uc < Retrieve from RS1 //Where p; is provenance path of value v, of column C
16: r + Update v with v, in r

17: r < Add p;

18: end if

19: end for

20: end for

21: Return RS

22: End

database (refer to lines 3 to 7). Now, for every value in result set of Q;, its "writetime" (time
of existence in database) is compared with "t". If "writetime" is less than or equal to "t" then
provenance path expression (p;) is generated with corresponding source row and column
contributed towards its generation and further, added in result tuple (refer to lines 9 to
11). But, if "writetime" is greater than "t" then corresponding column value and provenance
path is retrieved from "update_provenance" column family (refer to lines 13 to 15). In the
end, the value of column and provenance path expression that retrieved from "update_
provenance" column family are updated in result set and finally, updated result set along
with provenance information is obtained (refer to lines 16 to 21). In proposed algorithm,
select query takes O(log(n)) time to retrieve required result set ‘RS’. In addition, for each

column ¢ (except primary key columns) of result tuple r€RS, generation of provenance

157

path expression p; takes O(r*c) or O(r*log(n)) time. Therefore, theoretical complexity of
this algorithm is O(log(n)) + O(r*c). However, practical complexity is slightly different, as

it depends on the number of updates performed.

5.4.3 Provenance Storage

In the proposed framework, all the captured provenance is stored in the following three
column families of Apache Cassandra for further analysis viz. "query_table", "select_proven-
ance", and "update_provenance" (refer to Figure 5.10). Provenance information of all the ex-
ecuted queries with their query id and time of executions is stored in "query_table" column
family. Provenance path expressions for all the result tuples of select/aggregate queries
are stored in "select_provenance" column family along with their query statement, result
tuple id and time of executions as shown in Figure 5.11. Similarly, the column family "up-
date_provenance" keeps the provenance information about all the update operations along
with following attributes i.e. query statement, provenance path expression, old value and its
write time, new value, column type, and time of update (current date/time) (refer to Figure 5.3).
The captured provenance is used in source tracing, update tracking, and in querying his-
torical data. Further, the visualization of this provenance data is helpful in analysing and

determining the truthiness of a query result.

query_table

queryid text t

) p query - fextt

(_p time Simestamp d

T

3 < quelyid =
O = update_provenance

select_provenance . query ! operation) text t
queryid text t] queryid : text t
resulttupleid text t column Type text t
provenancejaths list<text> new_value ; text t
query ; text t old_value "~ text t
time timestamp d old_value_'\.:vr'rtetime timestamp d
provenance paths text t
query text t
rowkey text t
time = timestamp d

Figure 5.10: Provenance Storage

158

Query Query Result Provenance path exp Time

Id tupleid

q6 select location from user_details where q6tl [NewTwitter Keyspace/u | 2019-12-16
screen_name='Gagan4041' ser_details/Gagan4041/loc | 05:02:12

ation’]

q7 select screen_name, published day, q7tl [‘NewTWitter Keyspace/t | 2019-12-18
count(tweet body) from tweets_user day where weets user day/barrotchet | 04:54:02
published day=8 and published date>=2019- an999-8-Tue Oct 08
10-08° and published date<*2019-10-09° group 01:38:10 IST
by screen name allow filtering 2019/tweetbody’]

q7 select sereen_name, published day, q7t2 [NewTWitter Keyspace/t | 2019-12-18
count(tweet_body) from tweets_user_day where weets user day/asifawan8 | 04:54:02
published day=8 and published date>=*2019- 080780-8-Tue Oct 08
10-08° and published date<<*2019-10-09° group 01:38:10 IST
by screen name allow filtering 2019/tweetbody’]

q7 select screen_name, published day, q7t3 ['NewTWitter Keyspace/t | 2019-12-18
count(tweet_body) from tweets_user day where weets_user day/ahmedtanz | 04:54:02
published day=8 and published date>=*2019- eel105-8-Tue Oct 08
10-08° and published date<<*2019-10-09° group 01:38:10 IST
by screen name allow filtering 2019/tweetbody’]

Figure 5.11: A Snapshot of "select_provenance” Column Family

5.4.4 Querying Provenance

The proposed framework also supports querying of provenance information for various
purposes. Provenance querying on captured provenance are carried out to achieve the
following two objectives; First, How any result tuple of select query is derived? i.e. query-
ing provenance to know about the source of information, and Second, How to track all
the updates performed on a given data?, i.e., querying provenance for historical data. The
framework provides following two column families to accomplish the above tasks viz.,
"select_provenance" and "update_provenance". Provenance path expressions for all the result
tuples of select/aggregate queries along with their query statement, result tuple id and
time of executions are stored in "select_ provenance" column family. This provenance in-
formation is used in provenance querying to know about the source of information, as
shown in Figure 5.11. Similarly, the column family "update_provenance" stores the prove-
nance information about all the update operations performed along with the following
parameters i.e. query statement, provenance path expression, old value and its write time,
new value, column type, and time of update (current date/time). This provenance infor-
mation is used in provenance querying for historical data (refer to Figure 5.3). In addition
to above column families, one more column family i.e. "query_table" is also used in prove-
nance querying to obtain the information about all the queries executed till a particular

date with their time of execution. The illustrative examples of provenance querying are

159

given below:
Example provenance Query PQ1: Explain how result tuple q6tl of query g6 (as shown in
Figure 5.11) is derived?

The above query is executed on "select_provenance" column family to retrieve prove-
nance path expressions for result tuple q6t1 of query g6 along with its time of execution.
Here, provenance path expression of resultant tuple is "[NewTwitter_Keyspace/ user_details/
Gagan4041/location]" and time of query execution is "2019-12-16 05:02:34.266000+0000".
This indicates that the source keyspace name of required tuple is "NewTwitter_Keyspace",
name of column family is "user_details", row key is "Gagan4041", column name is "location"
and time of query execution is "2019-12-1605:02:34.26600 0+0000". Now, "user_details"
column family is queried with this row key, column name and execution time to retrieve
all the rows that contributed to produce the result tuple t1 of query g6 which justify the
resultant tuple. However, if the source has been modified after query execution, in that
case, the original source can still be devised through querying historical data. To sup-
port provenance querying for historical data, we designed following four User-Defined
CQL Constructs (UDCSs) viz., "all", "instance", "validon now", and "validon date". These con-
structs are further categorized in following two categories viz., T1("all", "instance") and
T2 ("validon now", "validon date").

The high level details of provenance querying algorithm for historical data i.e. "Query-
Prov_HistData" are given in Algorithm 11, in which an Extended Query (Qg) (i.e. a CQL
query with UDCs) is passed as an input and a corresponding Result Set (RS) of historical
data is obtained as an output. In the beginning, Qg is sent to the Query Parser to retrieve
all the UDCs (T1 and T2) used in Qg along with the CQL Query Q (i.e. CQL query with-
out UDCs) and parsed result (R) (refer to lines 1 and 2). In addition to this, some other
information such as Keyspace Name (KS), Column Family (CF), Primary Key (PK), and
Column Name (CN) associated with Qg are also extracted from Ry, (refer to line 3). Now,
query Q executes on the related column families to retrieve required historical data as per
the following conditions mentioned in lines 4 to 16. If UDC T1 and T2 are "instance" and
"validon now" type constructs respectively, then query Q executes on the column families
mentioned in issued query statement only (refer to lines 4 and 5). If UDC T1 and T2 are

"instance" and "validon date" type constructs respectively, then the "write time" of current

160

Algorithm 11 QueryProv_HistData: Querying Provenance for Historical Data

Input: Query Qp (Provenance Query with extended user-defined constructs T1,T2)
Output: RS(Result Set) of Qg

1: Rp, T1, T2 <« Parse Qg /IR, is parsed query result, T1="instance”/"all”,
//T2="validon now”/"validon date”
2: Generate Q //Q is the corresponding query to Qp without user-
//defined constructs

3: KS,CF,PK,CN < Retrieve Ry,
//Where KS=Keyspace, CF=Column_Family,
//PK=Primary Key of CF, CN=Column name in Q

4: if (T1 = instance) AND(T2 = validonnow) then
5. RS < Execute Q on CF //Where RS is ResultSet
6: else if (T1 = instance) AND (T2 = validondate) then
7. Generate Q, //Qy is a rewritten select query corresponding to Q with Time T2 to
//retrieve value of CN from update_provenance(UP) Column Family
8: RS + Execute Q, on UP
9: if RSisNull then
10: RS < Execute Q on CF
11: end if
12: else
13: Generate Q; //Qr is a rewritten select query corresponding to Q with Time T2 to

//retrieve value of CN from update_provenance(UP) Column Family
14: RS < Execute Q, on UP
15: RS1 < Execute Q on CF
16: RS <~ Append RS1
17: end if
18: Return RS
19: End

value is first fetched and compared with "validon date". If the "write time" of current value
is lesser than "validon date" then query Q executes on the column families mentioned in
issued query statement only, otherwise it executes on "update_proven- ance" (refer to lines
6 to 10). If UDC T1 and T2 are "all" and "validon now" type constructs respectively, then
query Q executes on both "update_provenance" and the column families mentioned in is-
sued query statement to retrieve the complete history of all the updates of a column value
(refer to lines 13 to 16). Similarly, If UDC T1 and T2 are "all" and "validon date" type con-
structs respectively, then again "write time" of current value is fetched and compared with
"validon date". If the "write time" of current value is lesser than "validon date" then query Q
executes on both "update_provenance" and the column families mentioned in issued query

statement otherwise it executes only on "update_provenance" (refer to lines 13 to 16). In

161

proposed algorithm, issued select query takes O(log(n)) time to search required informa-
tion in respective column family as mentioned in its query statement and O(log(n)) time
is taken to search in "update_provenance" column family. In this way, the theoretical com-
plexity of this algorithm is O(log(n)). Demonstrations of Algorithm 11 with illustrative

examples of provenance queries 2, 3, 4 and 5 are given below:

Example Provenance Query PQ2: Display all the location updates of a specific user named

‘MemeBaaaz’ till now.

Extended CQL Query Qg: select all location from user_details where screen_name="MemeBaaaz’

validon now;

The above Qy is parsed first to retrieve all the UDCs used in this extended query i.e.
"all" and "validon now" respectively. Now, CQL query Q is executed on "user_ details" and
"update_provenance" column families to retrieve all the location updates of the given user

"MemeBaaaz". The query result of above provenance query is shown in Table 5.1.

LOCATION VALID_FROM

Meme Ki Duniya, India Wed Oct 02 13:33:27 IST 2019
Kolkata Wed Oct 23 08:20:18 IST 2019
Mumbeai 2019-12-17 10:22:22.0

Table 5.1: Example Provenance Query PQ2 Result

Example Provenance Query PQ3: Display all the location updates of a specific user named
‘MemeBaaaz' till 23/10/2019 9:50AM.

Extended CQL Query Qg: select all location from user_details where screen_name="MemeBaaaz’

validon 2019-10-23 09:50:16.

The query result of above provenance query is shown in Table 5.2, i.e. all the location

updates till 2019-10-23 09:50:16".

162

LOCATION VALID_FROM

Meme Ki Duniya, India Wed Oct 02 13:33:27 IST 2019

Kolkata Wed Oct 23 08:20:18 IST 2019

Table 5.2: Example Provenance Query PQ3 Result

Example Provenance Query PQ4: Display the current location of a specific user named *Merme-

Baaaz’

Extended CQL Query Qg: select instance location from user_details where screen_name="MemeBaaaz’

validon now.

The above provenance query generates current location of user as 'Mumbai’ that is
y

valid from ’2019-12-17 10:22:22.0" as shown in Table 5.3

LOCATION VALID_FROM

Mumbai 2019-12-17 10:22:22.0

Table 5.3: Example Provenance Query PQ4 Result

Example Provenance Query PQ5: Display the location of a specific user named ‘MemeBaaaz’

on date 23/10/2019 8:22:16 AM.

Extended CQL Query Qg: select instance location from user_details where screen_name="MemeBaaaz’
validon 2019-10-23 08:22:16.

The above query generates location of user at 23/10/2019 8:22:16AM as "Kolkata"
which is valid from "Wed Oct 23 08:20:18 IST 2019" as shown in Table 5.4.

LOCATION VALID_FROM

Kolkata Wed Oct 23 08:20:18 IST 2019

Table 5.4: Example Provenance Query PQ5 Result

163

5.5 Experimental Setup and Results

5.5.1 Experimental Setup

To evaluate the performance of proposed framework, all the experiments are performed
on a single node Apache Cassandra Cluster on Intel i7-8700 processor @ 3.20GHz with
16GB RAM, and 1TB disk. Apache Cassandra version 3.11.3 has been used for the exper-
iments. In the proposed framework, data is fetched from the Twitter’s network through
live streaming and modelled in Apache Cassandra. This big social data consists of around
2.4 lakh twitter users, 2.1 lakh user’s friends, 1.8 lakh user’s followers, and their related
information such as tweet’s body, tweet’s id, tweeter’s screen name, tweet created date,
user’s personal information etc. The proposed key value data model contains a keyspace
named "NewTwitter_Keyspace" that consists of 20 Column Families those are used to store
this huge volume of social data. On execution of each query the provenance informa-
tion is captured and stored in the following three column families viz. "select_provenance",
"update_provenance", and "query table" that gradually increases the size of database. Java
version 8 has been used as front-end programming language to interact with Cassandra,
and Twitter’s network. Cassandra Query Language (CQL) is used for querying and to

communicate with Apache Cassandra.

5.5.2 Results and Discussions

The performance analysis of proposed framework in terms of provenance capturing over-
head and provenance query execution time for different query sets including, select, ag-

gregate, data update and provenance queries are presented below.

5.5.2.1 Provenance Capture Analysis

To perform an experimental analysis of provenance capture, several query sets of various
queries including select, aggregate, and data update queries are executed on ZILKVD
architecture. A sample set of select queries are shown in Table 5.5. All the queries are
executed 12 times without provenance support and then, the same sets of queries are
again executed 12 times with provenance support. To calculate the average execution

time of each query, we dropped the minimum and the maximum execution times, and

164

| QId | Query

Q1 Find location of user with Screen_Name=" Gagan4041’.

Q2 Display all tweets by user with screen_name= ‘SunilThalia’.

Q3 Display all hashtags used by a user in one tweet.

Q4 Display all hashtag used by a user in all tweets posted by a user.
Q5 Display all tweets posted by a user on one particular day.

Table 5.5: Sample Select Queries

then taken the average of remaining 10 values. Average execution times of all the queries
are mentioned in milliseconds (ms). The execution performance of all the select queries
is shown in Figure 5.12, where it is found that the performance overheads in terms of
execution time for the queries with provenance support is very limited with respect to the
queries without provenance support, except for query Q8. As the proposed framework
captures and stores the provenance information of all the result tuples which exist in the
result set of a query, the execution time increases with the increase in the number of result
tuples. That’s why the query Q8 with provenance support is taking longer to execute, as
it is producing a large number of result tuples.

The proposed framework also provides the provenance support for several aggregate
queries those are using various aggregate functions such as count, max, min etc. A sample

set of aggregate queries are shown in Table 5.6. The performance analysis of aggregate

Provenance Capturing Overhead @ Without Provenance
1300 B With Provenance
1200
1100
1000

Q00

S TITLTHTTTTT

01 a2 Q3 Q4 a5 a6 QY QB Q8 Qi0 Ql1 Q12 Q15 Q14 Ql5 Q16

Average Execution Time (ms)

Select Queries

Figure 5.12: Performance of Select Queries without and with Provenance

165

| QId | Query |

Q1 Display total no of tweets posted by a user on one particular day of a
month.

Q2 Display total no of tweets posted by a user in one month.

Q3 Display total tweets posted in one specific month.

Q4 Display all the users with tweets count in a specific month in descend-
ing order.

Q5 Display total no of tweets posted every day of a specific month.

Table 5.6: Sample Aggregate Queries

queries in terms of average execution time with and without provenance support is also
shown in Figure 5.13. Although, the framework efficiently captures and stores provenance
information for aggregate queries such as query Q1, Q2, and Q4, yet it takes more time
to execute for the queries in which aggregation is performed on a large number of input
tuples, such as queries Q3, and Q5. For example, let’s consider the case of query Q3:
"count the total number of tweets posted in one month". Here, as the aggregation is
performed on all the tweets of that month, which requires capturing and storing the
provenance information of all such rows which have contributed to the result set. As a
consequence, execution overhead increases.

The provenance capturing for data update queries is also supported by the pro-
posed framework using ZILKVD. A sample set of data update queries are shown in
Table 5.7. We executed a set of data update queries to capture and store their prove-
nance information in "update_provenance" column family. The following parameters are

"won non

used to capture the provenance information such as "value_type", "old_value", "new_value",

1600 -
1500 -
1400 -
1300 -
1200 -

1100 - _
1000 - m Without Provenance

Provenance Capturing Overhead

900 -

® With Provenance
800 -
600 - ; . . . i

ai Qz as Q4 as
Aggregate Queries

Average Execution Time (ms)

Figure 5.13: Performance of Aggregate Queries without and with Provenance

166

| QId | Query

Q1 Update location of user with screen_name "DDNewsAndhra".

Q2 Update location of friend named "Ashutosh" of user with screen_name
"Bandho".

Q3 Update url of user with screen_name "myshowmytalks".

Q4 Delete user with screen_name "DDNewsAndhra".

Q5 Insert a posted tweet in tweetset.

Table 5.7: Sample Update Queries

_— Provenance Capturing Overhead

B850 -

BOD - o Without Provenance
g B With Provenance
700 4— — —— T T =

at Q2 a3 a4 as

Data Update Queries

Average Execution time (ms)

Figure 5.14: Performance of Update Queries without and with Provenance

"old_value_writetime", and "provenance_path_expression" etc. These parameters can be used
for historical data queries, and queries executed in the past at any specific time i.e. his-
torical queries as explained in previous section 5.4.2.3. Like select, and aggregate queries,
the proposed framework also supports efficient provenance capturing and storing for data
update queries with a very little execution time overhead (refer to Figure 5.14).
Ultimately, the overall execution performance of all types of queries with and without
provenance capturing support is shown in Figure 5.15. The average query execution time
for all "update", "select", and "aggregate" queries with and without provenance support are
mentioned in milliseconds. The proposed framework is very efficient for "update", and

"select" queries, while a small overhead is associated with "aggregate" queries (refer to

Figure 5.16).

5.5.2.2 Provenance Querying Analysis

The performance analysis of querying provenance information stored in Apache Cassan-

dra is presented in this section. A set of different provenance queries are executed for

167

1600 Provenance Capturing Overhead

1000 B Without Provenance
900 = With Provenance

Average Execution Time (m

58838585883555555555888888

Figure 5.15: Overall Query Performance without and with Provenance

1200 4 Provenance Overhead for 1124
Different Query Set

E 1000 - 866
- 838
E 782 788 794
= 800 -
c
.0
2 e B Without Provenance
1]
& p— B With Provenance
i
o
E 200 -

Update Select Queries Aggregate
Queries Queries

Figure 5.16: Provenance Overhead for Different Query Sets

analysis of provenance querying. A sample set of provenance queries are shown in Table

5.8. Initially, all the provenance queries are executed 12 times. To calculate the average

| Queryld | Query |

Q1 Display all the rows contributed to produce result tuples of query Q2.

Q2 Display the row keys of all the rows those are contributed to produce
result tuple t1 of query Q11.

Q3 Display all location updates of a specific user till now.

Q4 Display all location updates of a specific user till time 22/10/2019
8:00AM.

Q5 Display the location of a specific user at time 22/10/2019 8:00AM.

Table 5.8: Sample Provenance Queries

168

2000 -
1800 -
1600 -
1400 ~

12000 4
1000 -
ED0 -
4000
200
o A ==
a1 a2 a5 Qe av as o5 410

a3 04
Provenance Queries

Average Execution Time (ms)
g

Figure 5.17: Provenance Querying

execution time of each query, we dropped the minimum and the maximum execution
times, and then taken average of remaining 10 values. Average execution times of all the
provenance queries are mentioned in milliseconds (ms) (refer to Figure 5.17. It shows that
the proposed framework efficiently supports provenance querying for both source/origin

tracing and historical data queries.

5.6 Application Scenarios

Several illegitimate activities are engendered by misusing these social contents to accom-
plish various, sometimes ignoble, objectives. One of the main causes behind these illegit-
imate activities on social media is the separation of digital contents from its provenance.
The credibility of an analysis generally depends upon the quality and truthiness of input
data which can be assured by the Big Social Data Provenance. Our proposed big social
data provenance framework is capable to generate and visualize the provenance infor-
mation in different scenarios such as social data analytics, preserving progressive user

profiles etc. Some of the application scenarios are listed below:

1. Information Discovery: Provenance information is very much valuable in informa-
tion discovery. By visualizing provenance information, one can easily discover the
sources of any derived data or discard some of the data originated from some er-
roneous/suspicious source. The proposed provenance framework can be efficiently

applied in information discovery applications by visualizing provenance informa-

169

tion from source to destination or vice versa. The proposed framework can be easily
extended further for multi-layer provenance generation and multi-depth provenance

querying to visualize the provenance with varying depths.

2. Preserving Progressive User Profiles: A social media user can update his/her pro-
file or may add new information or remove any existing information at any time.
For data analytics purpose, application may require when any data is inserted, up-
dated, or removed along with maintaining all the data updates performed. Our
proposed framework is applicable for such kind of applications where progressive

user profile maintenance is needed.

5.7 Conclusions and Future Work

In this chapter, we designed and implemented a Zero-Information Loss Key-Value Pair
Database (ZILKVD) on top of which a Big Social Data Provenance (BSDP) Framework has
been developed to capture and querying provenance for live streamed Twitter data set.
The proposed framework is capable to capture fine-grained provenance for various query
sets including select, aggregate, and data update queries with insert, delete, and update
operations. It also supports to capture provenance for historical queries using data version
support in ZILKVD. The proposed ZILKVD architecture and KVP data model leads to an
adequate design methodology that provides a flexible provenance management system
for social data.

The proposed framework is efficient in terms of average execution time for capturing
and storing provenance for select, and data update queries. However, a small execution
overhead is measured for some aggregate queries, where the aggregation is performed
on a larger number of input tuples. Proposed framework supports efficient provenance
querying for both justifying answers of a query result, and historical data queries. Our
provenance capturing and querying algorithms prove to be very promising; retrieving
more precise information with an acceptable latency.

However, our framework has following limitations. It provides single layer provenance
support (i.e. Tracing out direct sources that contributed to a query result) at this stage.

Second, currently BSDP framework is implemented for a single node Apache Cassandra

170

rather than for several distributed nodes in a cluster.

In the future, we plan to extend BSDP framework for multi-layer provenance support
(i.e. Tracing out both direct and indirect sources that contributed to a query result) by
using multi-depth provenance querying. We also plan to further extend our framework
for a distributed environment, where data is redundantly stored across multiple nodes in

a cluster.

171

