Chapter 6

Template-Based Provenance
Querying : Towards Designing a

Provenance Query Language

6.1 Introduction

While Query Provenance in SQL and NoSQL (Graph and Key-Value Pair) databases, we
felt the need for a universal provenance query language (PQL) which is independent of
the underlying database model in which provenance data is stored. In Chapter 3, we
considered two scenarios. In the first scenario, both the data & the provenance data
was stored in RDBMS. And in the second scenario, the data was in the RDBMS, but the
provenance data was stored in graph database. In Chapter 4, both the data & provenance
data was stored in graph database. And in Chapter 5, Key-Value pair database was used
to store both the data & provenance data. While working with queries on provenance
data, stored in different data models, some common characteristics could be identified.
Based on these common characteristics, we have categorized provenance queries under

following two categories:

1. Provenance queries for query results: Justifying results of a query that tell how
any result is derived (Single-Depth or Multi-Depth provenance query from destina-

tion or derived result to source) and tracing all the results derived from particular

172

source at any time or within any specific time duration (Single-Depth or Multi-
Depth provenance query from source to destination or derived result). Following

types of provenance queries are identified in this category:

(@) Derivability of a result (Single-Depth or Multi-Depth provenance query): A
user may want to visualize how any query result is derived, what are its direct
sources, i.e., single-depth provenance query or what are its indirect sources
upto a certain depth, i.e., multi-depth provenance query. This may help in

knowing trustworthiness of data, investigation purpose, audit trail etc.

(b) To determine the relationship from particular source to any derived result
(Single-Depth or Multi-Depth provenance query): User may be interested in
knowing about what are the different query results which are derived from

certain source for different purposes like auditing, erroneous source data etc.

(c) To determine the relationship from particular source within some time range to
any derived result (Single-Depth or Multi-Depth provenance query): Further,
user may also want to know the query results derived from certain source, but
within a specified time range, to stop error propagation because of erroneous

source data in the given time span.

(d) To determine the complete provenance graph of a query: A user may want
to visualize complete provenance graph of a query, i.e., all sources which are

contributing towards result set and how they are contributing.

(e) To determine the complete provenance graph of a historical query, especially
in a dynamic database: It is very interesting to know about provenance graph
of a query which has been executed in the past in a dynamic database where
data is constantly changing. Because source data may have been updated after
execution of a particular query. It becomes very challenging to know about

source of any derived result in the past in a dynamic database.

2. Provenance queries for historical data: Querying provenance to know about differ-
ent versions of a data object, and instance of any data object any time in the past etc.

Following provenance query is identified in this category:

173

(a) To determine the different versions of a data object: One may also be interested
in knowing different versions of any data object like current version, version
anytime in the past, all versions till now since the value of data object exists or
versions within a given time range. This helps in knowing about all updates

which have been performed on any data object.

A few models are existing in literature for provenance storage and querying. How-
ever, issue of provenance querying has not been addressed much in an application and
database independent way. In DBNotes [28], an annotation based provenance model,
pSQL language is proposed to query data as well as provenance information in relational
database. It provides limited support for annotation querying over single values only.
In pSQL language, no provenance constructs are defined to access annotations directly,
thus it is not feasible to issue queries directly over generated provenance information in
the form of annotations. MONDRIAN, another annotation based provenance model [41]
in relational database using color annotations, proposed its own provenance query lan-
guage, CQL (Color Query Language) based on color algebra. The proposed color algebra
is well-suited for annotations applied by the users, but few of the propagation rules in
algebra are not suitable for provenance annotations specially in join queries. Further, Trio
system that supports provenance and uncertainty in databases, also proposed a query
language i.e. TriQL [31]. TriQL is based on SQL to query provenance and uncertainty in
databases. Lineage(R,S) predicate is used to query provenance. TriQL query is required
to be translated into various SQL queries and some user defined function calls because of
separate lineage tables, which degrades its performance. pSQL, CQL, and TriQL all are
applications specific and suitable for relational database only.

Further, ProQL (Provenance Query Language) [90] is proposed for querying derived
data in an application independent way but designed specifically for RDBMS only. An-
other issue is time-aware provenance models and query their provenance information.
Although, capturing information about updates as provenance information is very useful
in querying historical data, tracing the source of derived result whose source is modified
after its generation, but most of the existing models are considered "time" as an optional

parameter for provenance information. In line with provenance of updates, VQuel (Ver-

174

sion Query language) [126] is designed for querying different versions of data objects but
it is suitable for relational database only. TriQL [31] also supports for querying versioned
data object but it is also suitable for relational database only as VQuel.

Another important observation is that many organizations have multiple databases.
Almost 75% of organizations use a combination of SQL and NoSQL databases (refer to
Figure 1.4 in Chapter 1). It would be very convenient if users can seamlessly query prove-
nance in SQL and NoSQL databases using an abstracted provenance query language. A
query language which can abstract the underlying database models from the users.

Thus, to bridge the identified gaps above, in this work, we propose various provenance
query templates to query provenance information in all possible ways, independent of un-
derlying database and application, such as querying historical data and querying prove-
nance to justify a query result with varying depth. These provenance query templates
will contribute towards designing of an efficient provenance query language. The pro-
posed provenance query templates provide a standardised interface to support a variety
of provenance queries. The notations of these query templates are simple, unambigu-
ous, and easy to understand. All the functionalities are well defined and implemented
in such a way that an application user can express his/her own provenance queries to
obtain the required provenance information without the need to understand the underly-
ing database model. In Figure 6.1, we present the provenance query engine for executing
provenance query on top of any database. In this, user issues the provenance query in the

form of proposed provenance query templates as an input and retrieves the correspond-

Issued Provenance Query

Query Editor » Query Parser
g 7z 2
= 0 O o
S o oA
S 9588
= 5 = £ £
2 = S b8 &
o & = o :5 =
g = 9 5
A O D
A 4
~ - L4 .
Underlying < Query Rewriter
> Database Rewritten Provenance Query for
» o corresponding database

Figure 6.1: Provenance Query Engine

175

ing output. Initially, the user issues the provenance query via "Query Editor" and then
issued provenance query in the form of provenance query template is passed to query
parser. "Query Parser" parses the provenance query to obtain type of provenance query
i.e. justifying query results or historical data query, and different constructs to know in
detail about the provenance query i.e. forward tracing or backward tracing or depth of
provenance query or time range of historical data etc. The output from query parser is
then passed to query rewriter. "Query Rewriter" then rewrites a provenance query based
on input received from query parser into a query language supported by the underlying
database i.e. relational database, graph database, or key-value pair database. Finally, the
rewritten provenance query executes on underlying database and returns the result back
to the user.

Typically, query templates are extracted from a database query language. But, here we
are doing it the other way round. The main motivation behind this is that designing and
implementing a full fledged query language is a very tedious and long drawn process.
Moreover, a new query language always has acceptability issue. Keeping this points in
mind, a set of provenance query templates are proposed which cover a useful & practical
range of provenance queries. These templates have been designed based on our experi-
ence of working with provenance queries on different database models and applications
as part of the work done in Chapters 3, 4, & 5

In the previous chapters, we discussed a variety of provenance queries those are
mostly executed on various database management systems such as relational, graph, and
KVP databases. To design a flexible and dedicated provenance query language for ef-
ficient execution of a variety of provenance queries on a complex and very large size
datasets, we categorized these provenance queries in two categories as defined in Section
6.1. Both categories of provenance queries can be combined further for expressing a wide

variety of interesting queries on the provenance data.

6.2 Provenance Query Templates

In this section, we propose provenance query templates with the objective of facilitating

the users to query provenance data in a database and application independent way. Before

176

that, we propose a vocabulary/keywords for the provenance query language.

6.2.1 Vocabulary of PQL (Provenance Query Language)

Source: A source is a database object. It could be a cell, tuple, attribute, relation, user, or
view in relational database. In graph databases, it could be a node, property of a node, or a
link. It may be a row, column, column family, or keyspace in a key-value pair (KVP) database.

For example:

1. Determine the cell value from where the value is coming into result tuple (source -

cell value of a tuple in relational database).

2. Determine all the tuples which are contributing to a specific result tuple (source -

different tuples from different relations in relation database).

3. Determine all the relations which are accessed by any particular user (source - differ-

ent relations and particular user in relational database).

4. Determine all the fweets posted with hashtags used by a particular user (source - tweet
nodes, hashtag nodes, link between tweet and hashtag node, and link between user

and tweet node in graph database).

5. Determine all the columns of specific rows in a column family belonging to particular
keyspace which contributed towards a result row (source - column, row, column family,

and keyspace in key-value pair database).

Result: It is the result of a query. It is a set of tuples in relational database, a subgraph or

attributes in graph database, and rows in key-value pair database.
Destination: Destination is any derived result or result.

Attribute: Attribute is a specific column in relational and key-value pair database and

property /attribute of a node in graph database.

Depth: Indicates the depth of a provenance query. The concept of depth is mainly related
to graph database model as query can traverse up to any depth in a graph database. In

the relational database model also, we can perform multi-depth queries, but we may need

177

to specify the depth of query in query itself so that self join with provenance table can be

performed as many times. The default depth is 1. In key-value pair database, there is no

concept of depth as there are no join operations. Example queries are given below:

1. Determine all the results directly or indirectly derived up to depth=2 from a particu-

lar source. (Here depth=2 indicates all the results directly derived (i.e. upto default

depth=1) along with all the indirectly derived results (i.e. next level upto depth=2)

2. Determine all the tweets posted and retweeted by other users up to depth=2. (Here

depth=2 indicate all the original tweets posted (i.e. upto default depth=1) along

with the tweets further retweeted by other users (i.e. next level upto depth=2)

Time: It could be the current time, validity time of data, or time at which query was

executed. It could also be the time interval of interest in a query.

Contributed: All sources which contributed towards any specific result, either directly

(depth=1) or indirectly (depth >=2).

Version/Versions: All versions of a data object at any specific time or time interval.

Table 6.1 shows the main keywords with unique color codes. The color codes are used

in later sections to emphasize their use/role in query templates.

| SNo. | Keyword Color Code
1 Source Maroon
2 Destination Purple
3 Result Green
4 Attribute Plum
5 Depth Red
6 Contributed
7 Version/ Versions Blue
8 valid_on
9 valid_from
10 valid_to
11 NOW

Table 6.1: Keywords with Color Code

178

| SNo. | Query |

Q1 Trace all the sources which directly contributed (Depth=1) to a specific query
result.

Q2 Trace all the sources which directly or indirectly contributed (Depth=n) to a
specific query result.

Q3 Trace all the results which were directly derived (Depth=1) from a particular
source.

Q4 Trace all the results which were directly or indirectly derived (Depth=n)
from a particular source.

Q5 Trace the direct contributions (Depth=1) of a particular source towards any
result over a specific period of time.
Q6 Trace the direct or indirect (Depth=n) contributions of a particular source

towards any result over a specific period of time.
Q7 Trace all the sources which directly or indirectly contributed (Depth=n) to a
query executed at any particular time (historical query).

Q8 Determine all versions of a particular data object since its existence.

Q9 Determine all versions of a particular data object between any specific time
period.

Q10 | Determine the current version of a particular data object.

Q11 Determine the version of a particular data object at any specific time in the
past.

Table 6.2: Example Provenance Queries in English

6.2.2 Example Provenance Queries in English

Table 6.2 shows possible example provenance queries of both categories viz., Provenance

queries for query results, and Provenance queries for historical data.

Database Schema for provenance queries in relational database:

For provenance framework in relational database, we have used TPC-H Benchmark
schema (as given in Chapter 3). For ready reference, the schema is reproduced here in
Figure 6.2. In our corresponding Zero-Information Loss Relational Database (ZILRDB),
every updatable column in TPC-H Benchmark schema is modelled as a nested table com-
prising of column value, valid_from, and valid_to fields representing the validity time
of column value. Captured provenance information for further visualization is stored
in provenance table and query table in relational database and graph database as well.
Schema for provenance table (provtbll) and query table (querytabletpch) in relational
database are as follows:

provtbll (Resultid, Provenance)

179

PART (P_) PARTSUPF (P5_) LINEITEM (L_} DRDERS [D_)
SF-200,000 SF200,000 SF*E,000,000 SF*1,500.000
PARTKEY | | PARTKEY ORDERKEY ~=f——— | ORDERKEY
NAME —®= | SUPFKEY PARTKEY CUSTKEY
MFGR AVAILGTY SUPPKEY DORDERSTATUS
BRAND SUPFLYCOST LINENUMEER TOTALPRICE
TYFE COMMENT QUANTITY ORDERDATE
DRDER-
EXTENDEDFPRICE
SIZE, CUSTOMER (C_) ERIQRITY
CONTAINER SF-t50.000 DISCOUNT Ems
CUSTKEY T
RETAILPRICE TAX TR
MNAME
COMMENT BETURMFLAG PRICRITY
ADDRESS
LINESTATUS COMMENT
SUPPLIER {5_) i nATIONKEY
SF-10.000 SHIPDATE
— FHONE
SUPPKEY COMMITOATE
ACCTBAL
R RECEIFTOATE
MKTSEGMENT
BHEMNBESS SHIFINSTRUCT
MATIONKEY el COMMENT SHIPMODE
FHONE NATION (N_) COMMENT
ald
ACCTBAL
—— | MATIONKEY REGION (R_)
COMMENT g
NAME
— | REGIONKEY
—a—
REGIONKEY
MAME
COMMENT
COMMENT

Figure 6.2: Relational Database Schema

querytabletpch (QID, Query, Username, Validon)

The corresponding graph structure contains Source tuple nodes, Result tuple nodes,
Query nodes, and Operator nodes. Source tuple nodes are annotated with label "table
name", and have two properties viz. "tupleid" and "table name". Result tuple nodes in
provenance graph are annotated with label "resultuple”, and have two properties viz. "re-
sultid" as in relational database and "query execution time" that gives validity time of source
tuples. Query nodes in graph are also annotated with label "querytable", and have follow-
ing properties viz. "QID", "query", "user", and "time". Edges from source to result tuple via
operator node signify the sources which are contributing in the generation of this result
tuple and also explains how they are contributing. And edges from query node to result

tuple nodes signify that these are the tuples which are generated from this query.

Database Schema for provenance queries in graph database:

180

USER

+Usend:String
+IName:String

+Friends:Integer

+5creen Name:String
+Followers:Integer

COU\ITR‘L i FROM +Listed:Integer
+ Location: ST.n.ng B +8tatuses_Count:Integer
+Country: String +Account Created At:Date
+Walid_from:Date +Verified: String
+Valid to:Date +Profile URL:String Year
+Walid from:Date +Year:Integer
+WValid to:date -
/M = E
= = o
e | =
0 o=
Zlal |22 2 %
gl=| |22 B =
=2 | ElES
v 220 I = B Month
=< —|= o
= | Dz 5 +Month:Integer
= > 5 +Monthname: String
il Z
x|
Tweet E
+5tatus_id-String =
+Tweet_Text:String HAS TWEET N
HASHIAG +IsRetweeted:Boolean - D-av
—'-\Tar;leﬁm'n TAGGED | +IsQuote:Boolean [~Day:Integer
Sl g ~| TRetweet Count:Integer
+Valid from:Date = e
AVakid to-Date +Created At:Date
= +Source: String UEL
+Media_Tvpe:String URL_USED| +Url_Expanded Ul:String
+Year:Integer +MMedia Expaned Uil:String
+Month:Integer +Valid from:Date
+Day:Integer +Vald to:Date
+Valid from:Date
+Valid to:date

Figure 6.3: Graph Database Schema

For designing provenance framework in graph database, our Zero-Information Loss
Graph Database (ZILGDB) contains various labelled nodes (USER, COUNTRY, TWEET,
HASHTAG, URL, Day, Month, Year), properties of nodes, and relationships (FROM,
MENTIONED, POSTED, QUOTED, TAGGED, URL_USED, HAS_TWEET, HAS_DAY,
HAS_MONTH) between nodes, as shown in Figure 6.3

Our provenance graph contains nodes and relationships from source graph along with
result tuple nodes (labelled as ‘QUERYTUPLE’) and query nodes (labelled as ‘QUERY").
QUERY node is linked with QUERYTUPLE node via "TUPLE’ relationship. Further, each
result tuple node is associated with all source nodes contributed towards it via ‘prove-

nance’ relationship.

Database Schema for provenance queries in key-value pair database:

181

ewIayDG aseqele(] IreJ anfeA-Ady :F'9 2InSry

PO B - IV, - RO

=l

]
1 = fpoqiisam = = # =
1 alweu 12318 3 = hvclg FEEN } = W 1= e o
- Huy 3 SWeu”ys5us # T] Sl jesn Ismofio}
P @eppeiEen 1 = | e uoREda| = aBp palEain
1o, AuTEnRe p 2P pajeasn 1 swmyTIssnpusly 1 SUIBUTUSSUSTIamOl|0)
P =hEr paysignd o 1o Aurenpe Ay sjep pajesla i lﬂﬁcduwum =y
Kep paysngnd o D =, =1Ep pausygnd o oWen U238 pusyy o _mi“..._ﬂ.ﬁﬁ..
mEchﬂHmm _HUEI # |:EoE|_u0:mﬂ_n:n_ 1 SWEU uDaUIS Josn of iR T
=] = w.mI_Emr_J._.um.um R & [SR g
- = i LpUowW SR ENY SEeppumy _ k
_ﬂ_mlﬂﬁw] et sweu[UsaIas =1 e
= Piieemy S, o o - siamoja; | !
= i _p |, S— 1| = =) 2o 25
-llw_ BLUEY UssIIs m =) JG_ M_ = 1 m__._mm___._ US2I0E JFEn m
“besey Jeam oSN | £ - U . Mn - 4 1 swoly o
prjcam | E| = P 1Bamg o =] B m a_m.u_ Joamg ¢ 4. i 5
I =i
er plisgm A_m _uEm: RS = Pausey 2" plissmy Qo jsam) m m #
M_ a :E_.._\lnmw.aw T - = _W_ Pt Esm g, &
i =} H—H _|El 1 = =) | =
3 = = spuay g B
i1 _— M_H I 1 SWeU usams o m_ m_
@..:wcl:n@mmﬂ:oa:mE w Yy = Jesnns : = w
= U0t ! jepual . |)
ol = i =l 2 i SWEU M_w.m.__ 5 G
- uonusL jaam } EPW m
fpo 3= ST [qun - 3 =
= 4\ piTjsamy = _ SWwey usans £ =) .
Hjuy . & P @30 paean = # ZUN0IJAmDID)
@wulvﬁmﬁ.a 2 Hfuh il jempoe Ew S awel usauas o
Ui [emoe = "o 2Ep paysiand o = ooy
siEp paysiand - - $ +; Toumiusans « 2, Junoapusiy Junoasamailo}
woul paysiand « n T P leamy o] Bleu usssIs o @
suweu u2as o g =l = = &
: b UDRBULIOUITE}32M] wnoypualy . 1 |
UOW I8N)M .) aupul udars m
auweu| usaias . E 1 1 = = C Fo | ! 8
3 | L ik ._uam i alEu| udans .H
r 1 BweuTUSaIS | 1
g . SR -
=1 JSJUN0D I9SN Sjaam] =
| 1 fpoq s _ T eumiggn
g8 s =
3 e i = — o un
= o pifiosmg =) = = \ =
A p ABppajesd BWBUT USRS oUW —*y T
o L EERA - T J L » 1=
swey Yaans =l } 4= NIl [ETGIE # =l P 1 e =] HoREI
_ . sweu JsEn p e pays| o | Sluey USsIIs _ SlEQ palgssd
by JoEiEm € B e o of _ ! | R L .
w. AWBLTUSAIS ¢ # _Hnmmu uWﬁ_wﬂx_ = = = = pE— 1 w.._.-w: u2as o
=1 . i SWEeU USamE ¢ = — .
BeLS BRI - =1 g SpEjRp Jasn
=T =TV F JSSNT S150M] +
SuEU USRS %
o ! [
I I J

182

Our Zero-Information Loss Key-Value Pair Database (ZILKVD) contains a keyspace
named "NewTwitter_Keyspace" that consists of 20 column families. The various column
names of these column families with their row keys are shown in Figure 6.4.

Further, every row is added with valid_from and valid_to column as current date/time
which indicates validity time of data whenever any insert or delete operation occurs.

Along with the column families mentioned in Figure 6.4, captured provenance in-
formation is stored in 3 column families viz. query_table (contains information about
all queries executed), select_provenance (contains provenance information for select, ag-
gregate queries), and update_provenance (contains provenance information for update
queries) as follows:

query_table (queryid, query, time)
select_provenance (queryid, resulttupleid, provenance_paths, query, time)
update_provenance (queryid, column_type, new_value, old_value, old_value_

writetime, provenance_paths, query, rowkey, time)

6.2.3 Provenance Query Template Design

Now we are proposing the two classes of provenance query templates as discussed in
earlier section. First, we will write example provenance queries in all three databases
considered viz., RDBMS, GDBMS, and KVPDB, and then we will give the corresponding

provenance query template.

1. Provenance queries for query results

(@) How is any result derived? (Default Single-Depth (Depth=1) Provenance Query)
We may want to visualize the different ways a result can be derived—including
all the sources. This is like the provenance graph projection, containing all the
direct sources from which the result of interest is derivable, as well as their
derivations.

Example 1: Trace all the sources which directly contributed (Depth=1) to a

specific query result.

Example Provenance Query in Target Databases:

183

RDBMS: Trace all the sources directly contributing towards result tuple with
id “q1t1”.

(source - tuples of multiple relations and result - result tuple with id ‘q1t1".)
SQL Provenance Query: select provenance, validon, query, resultid from provtbl1

pt, querytabletpch gt where resultid = ‘qltl” and gt.qid=‘ql’;

Result of above provenance query in RDBMS is shown in Figure 6.5. Here *
denotes join operation and + denotes OR operation i.e. multiple derivations of

result tuple qltl.

Source Tuples Join

Ogerator

R

Operator
Result Tuple

Figure 6.5: Provenance Graph in RDBMS

GDBMS: Trace all the sources directly contributing towards the result node
with id “q1t1".

(source - nodes of source graph and result - result node with id ‘q1t1".)

Figure 6.6: Provenance Graph in GDBMS

184

Cypher Provenance Query: MATCH (n:QUERY)-[t: TUPLE]->(n1:QUERYTUPLE)-

[p:Provenance]->(a) where n.qid="ql” and nl.qtid = ‘q1t1’ return n,t,n1,p,a.

Result of above provenance query in GDBMS is shown in Figure 6.6, which
shows three nodes of source graph i.e. User (Green Node) named "Kashmir-
Cause_" from location “Kashmir" (Yellow Node) has posted the tweet (Red

Node) have contributed to desired result tuple.

KVPDB: Trace all the sources directly contributing towards result row with id
‘qltl’.
(source - rows of column family and result - result row with id ‘q1t1".)

CQL Provenance Query: select provenance_paths, query, time from select_

provenance where resulttupleid = ‘q1t1’;

Row Key

sunilthalia-8-Tue

Oct 08 11:37:56 IST
2019

sunilthalia-8-Tue
Oct 08 11:40:12 IST

2019

'\.._._‘_‘_‘_‘_-_._#_‘__J_,_/

sunilthalia-8-Tue
Oct 08 11:48:33 IST

Column 2019 ol Result
Keyspace Family, olumn —Row

sunilthalia-8-Tue
Oct 08 11:52:53 IST
2019

tweet_body @

NewTwitter tweets_user
Keyspace day

sunilthalia-8-Tue
Oct 08 14:22:04 IST
2019

sunilthalia-8-Tue
Oct 08 14:35:21 IST
2019

sunilthalia-8-Tue

Oct 08 15:31:46 IST
2019

Figure 6.7: Provenance Graph in KVPDB

185

Result of above provenance query is shown in Figure 6.7, which shows the
keyspace, column family, all rows and corresponding column contributed to

generate desired result.

Based on the above provenance query in different databases for explaining the
derivability of a result with single depth, we propose the following provenance

query template:

Provenance Query Template 1:

TRACE
Sources (S), Query (Q), Time (T)
Where Destination="$D" and Query_Id="$QID"

RETURN S, Q, T, D, QID

The above provenance query template returns all sources which are directly
contributing to given result with result id (D) along with how they are con-
tributing. Result of provenance query also includes query (Q), time of execu-
tion (T) of query producing result (D) to retrieve the value of sources at that

particular time as database is updatable.

(b) Knowing the sources of a derived result upto certain depth? (Multi-Depth

Provenance Query)

We may want to visualize the provenance of a query result with its direct as
well as indirect sources to track complete history of derived result. Thus, we

need to trace provenance of result upto required depth.

Example 2: Trace all the sources which directly or indirectly contributed (Depth

=n) to a specific query result.
Example Provenance Query in Target Databases:

RDBMS: Trace all the sources which directly or indirectly contributed (Depth=2)

to result tuple with id ‘q1t2".
(source - tuples of multiple relations and result - result tuple with id ‘q1t2".)

Provenance Query: select provenance from provtbll pt where resultid = ‘q1t2’

depth 2;

186

Here, direct source i.e. provenance polynomial can be retrieved from provtbll.
Provenance polynomial is then parsed for all source tuple ids at first level
(depth 1). Afterwards, the query is automatically written to get source of all
the tuple id’s retrieved at depth 1 via self table join.

Rewritten SQL Provenance Query: (select provenance from provtbll where
resultid = ‘q1t2") union (select pt2.provenance from provtbll ptl, provtbll pt2

where ptl.resultid = ‘q1t2” and ptl.provenance like ‘%" | | pt2.resultid | | * %’
);

GDBMS: Trace all the sources which directly or indirectly contributed (Depth=2)
to result node with id ‘q1t2” and how they have contributed.

(source - nodes of source graph and result - result node with id ‘q1t2".)

Cypher Provenance Query: MATCH (n:QUERY)-[t: TUPLE]->(n1:QUERYTUPLE)-

[p:provenance*l..2]->(a) where n.qid="Q1” and nl.qtid = ‘Q1t2’ return a, n1, p.

KVPDB: Currently, mutli-depth provenance query is not supported by pro-

posed framework.

Based on the above provenance query for explaining derivability of a particular

result with multi-depth, we propose the following provenance query template:

Provenance Query Template 2:

TRACE
Sources (S), Query (Q), Time (T)
Where Destination="$D" and Query_Id="$QID"
With Depth="n"

RETURN S, Q, T, D, QID

The above provenance query template returns all sources which are directly or
indirectly contributing to a given result with result id (D) and depth of prove-
nance query as n, along with how they are contributing. Result of provenance
query also includes query (Q), time of execution (T) of query producing result
(D) to retrieve the value of the sources at that particular time as database is

updatable.

187

(c) How and where any source has contributed to derive some results? (Prove-

nance query to track all derived results from a particular source)

It is a kind of relationships between source and derived result. User may also
be interested in restricting the set of derivations to those certain sources e.g., if
that source is known to be authoritative or error in particular source (to explain

the error propagation from source).

Example 3: Trace all the results which were directly derived (Depth=1) from a

particular source.
Example Provenance Query in Target Databases:

RDBMS: Trace all the result tuples directly derived from the source tuple P1

of part relation.
(source - tuple P1 of "part" relation.)

SQL Provenance Query: select resultid, query, validon from provtbl1 pt, query-
tabletpch qt where SUBSTR(pt.resultid, 0, INSTR(pt.resultid, 't')-1) like qt.qid

and provenance like "%P1%’;

GDBMS: Trace all the result nodes derived from source node labelled "COUN-

TRY" with location attribute value as "Jammu and Kashmir".

(source - node of source graph labelled as "COUNTRY" with value of location

attribute “Jammu and Kashmir".)

Cypher Provenance Query: MATCH (n:QUERY)-[t: TUPLE]->(n1:QUERYTUPLE
)-[p:Provenance]->(co:COUNTRY{location: "Jammu and Kashmir"}) RETURN

n, t,nl, p, co;

KVPDB: Trace all the result rows derived from source "tweets_user_month".
(source - Column Family named "tweets_user_month".)

CQL Provenance Query: select query, resulttupleid, time from select_provenance

where provenance_paths LIKE “%tweets_user_family%" allow filtering;

Based on the above provenance query, we propose the following provenance

query template:

188

Provenance Query Template 3:

TRACE
Destinations (D), Query (Q), Time (T)
Where Source="$S"

RETURN D, Q, T, S

The above provenance query template returns all results (D) directly derived

from given source (S) along with the query statement and its time of execution.

Example 4: Trace all the results which were directly or indirectly derived (Depth=n)

from a particular source.
Example Provenance Query in Target Databases:

RDBMS: Trace all the result tuples directly or indirectly derived (depth=2)
from source tuple P1 of part relation.

(source - tuple P1 is of "part" relation.)

Provenance Query: select resultid from provtbll pt where provenance like
“WP1%" depth 2;

Rewritten SQL Provenance Query: (select resultid from provtbll where prove-
nance like “%P1%’) union (select pt2.resultid from provtbll ptl, probtbll pt2

where ptl.provenance like “%P1%” and pt2.provenance like "%’ | | ptl.resultid
[%");

GDBMS: Trace all the result nodes directly or indirectly derived (depth=2)
from source node labelled "COUNTRY" with location attribute value as "Jammu
and Kashmir".

(source - node of source graph labelled as "COUNTRY" with value of location
attribute "Jammu and Kashmir".)

Cypher Provenance Query: MATCH (co:COUNTRY{location: "Jammu and

Kashmir"}) <-[p:provenance*l..2]<-(n1l: QUERYTUPLE) with co, p, n1 MATCH
(n: QUERY)-[t:TUPLE]->(n1) return n, t, n1, p, co;

KVPDB: Currently, mutli-depth provenance query is not supported by pro-

posed framework.

189

Based on the above provenance query, we propose the following provenance

query template:

Provenance Query Template 4:

TRACE
Destinations (D), Query (Q), Time (T)
Where Source="$S"
With Depth="$n"

RETURN D, Q, T, S

The above provenance query template returns all results (D) directly or indi-
rectly derived from a given source (S) upto a given depth (n) along with the

query statement and its time of execution.

(d) Where any particular source, with updates within a specific duration, has con-
tributed to some derived results? (Provenance tracing from source (with up-

dates in specific duration in past) to derive results of historical queries)

A kind of provenance for historical queries to check for authoritativeness, trust-

worthiness, auditing or error propagation.

Example 5: Trace the direct contributions (Depth=1) of a particular source to-

wards any result over a specific time period.
Example Provenance Query in Target Databases:

RDBMS: Trace all the result tuples derived from source tuple P1 of part rela-

tion between
(source - tuple P1 of "part" relation between 10/05/2015 to 15/05/2015.)

SQL Provenance Query: select provenance, validon, query, resultid from provtbll
pt, querytabletpch qt where SUBSTR(pt.resultid, 0, INSTR(pt.resultid, "t')-1)

like gt.qid and provenance like "%P1%" and (

);
GDBMS: Trace all the result nodes derived from source node labelled "USER"
with screen_name "Anubhav" between

(source - node of source graph labelled as "USER" with value of screen_name

190

attribute "Anubhav" between 19/10/2019 to 21/10/2019.)
Cypher Provenance Query: MATCH (n:QUERY)-[t: TUPLE]->(n1:QUERYTUPLE)-
[p:Provenance]->(u:USER) where u.screen_name= "Anubhav" and (

) returnn, t, nl, p, u.

KVPDB: Trace all the result rows derived from source "tweets_user_month"
between

(source - Column Family named "tweets_user_month" between 18/10/2019 to
20/10/2019.)

CQL Provenance Query: select query, resulttupleid, time from select_provenance
where provenance_paths LIKE "Y%tweets_user_family%" and (

) allow filtering;

Based on the above provenance query, we propose the following provenance

query template:

Provenance Query Template 5:

TRACE
Destinations (D), Query (Q)

Where Source="$S",

RETURN D, Q, S

The above provenance query template returns all results (D) directly derived
from a given source (S) within a specific time duration along with the query

statement that generates these results.

Example 6: Trace the direct or indirect (Depth=n) contributions of a particular

source towards any result over a specific period of time.
Example Provenance Query in Target Databases:

RDBMS: Trace all the result tuples directly or indirectly derived (depth=2)
from source tuple P1 of part relation between

(source - tuple P1 is of "part" relation between 10/05/2015 to 15/05/2015.)
Provenance Query: select provenance, resultid from provtbll pt, querytablet-

pch qt where SUBSTR(pt.resultid, 0, INSTR(pt.resultid, 't")-1) like qt.qid and

191

provenance like "%P1%" and (

) depth 2;
Rewritten SQL Provenance Query: (select provenance, validon, query, re-
sultid from provtbll pt, querytabletpch gt where SUBSTR(pt.resultid, 0, IN-
STR(pt.resultid, 't')-1) like qt.qid and provenance like "%P1%" and (

)) union (select pt2.resultid, ptl.
provenance, ptl.validon, ptl.query from provtbll pt2, (select provenance, vali-
don, query, resultid from provtbll pt, querytabletpch qt where SUBSTR(pt.resultid,
0, INSTR(pt.resultid, 't')-1) like qt.qid and provenance like "%P1%" and (

)) ptl) where pt2.provenance
like “%” | | ptl.resultid || * %");

GDBMS: Trace all the result nodes directly or indirectly derived (depth=2)

from source node labelled "USER" with screen_name "Anubhav" between

(source - node of source graph labelled as "USER" with value of screen_name
attribute "Anubhav" between 19/10/2019 to 21/10/2019.)

Cypher Provenance Query: MATCH (u:USER{screen_name: "Abubhav'"}) <-
[p:provenance*l.2]<-(nl: QUERYTUPLE) with u, p, n1 MATCH (n:QUERY)-
[6TUPLE]->(n1) where (

) return n,t, n1, p, u.

KVPDB: Currently, mutli-depth provenance query is not supported by pro-

posed framework.

Based on the above provenance query, we propose the following provenance

query template:

Provenance Query Template 6:

TRACE
Destinations (D), Query (Q)
Where Source="$S",
With Depth="$n"

RETURN D, Q, S

192

The above provenance query template returns all results (D) directly or indi-
rectly derived from a given source (S) within specific time duration upto a

given depth (n) along with the query statement that generates these results.

(e) Determine all the sources contributed to query executed at a particular time
It is a kind of provenance tracing from derived results to source tuples for

historical queries.

Example 7: Trace all the sources which directly or indirectly contributed (Depth=n)

to a query executed at any particular time (historical query).
Example Provenance Query in Target Databases:

RDBMS: Trace all the source tuples to result tuples of Query ql

on
SQL Provenance Query: select provenance, validon, query, resultid from provtbll
pt, querytabletpch gt where pt.resultid like ‘q1%” and qt.qid=‘ql” and

GDBMS: 'Trace all the source nodes contributed to result nodes of Query g6
on

Cypher Provenance Query: MATCH (n:QUERY)-[t: TUPLE]->(n1:QUERYTUPLE)-
[p:provenance]->(a) where n.qid = "q6" and () return

n, tnl, p, a.

KVPDB: Trace all the source rows contributed to result rows of query g3 on

CQL Provenance Query: select query, resulttupleid, provenance_paths, time
from select_provenance where queryid= "q3" and () al-

low filtering;

Based on the above provenance query, we propose the following provenance

query template:

193

Provenance Query Template 7:

TRACE
Source (S), Destinations (D), Query (Q)
Where Query_Id="$QID" and

RETURN S, D, Q

The above provenance query template returns sources (S) of all the results (D)

of a historical query with given queryid (QID) and Time (T).

2. Provenance queries for querying historical data

We have proposed extended query constructs in the three database models to query
on historical data as already explained in Chapters 3, 4 and 5. All the queries are

automatically rewritten before executing on the corresponding database.
Example 8: Determine all versions of a particular data object since its existence.
Example Provenance Query in Target Databases:

RDBMS: Trace all versions of address cell of supplier with supplier key = 1.
(source - address cell values of supplier with supplier key=1 in the supplier relation.)
SQL Provenance Query: select all s_address from supplier where supplier_key=1
GDBMS: Trace all versions of location attribute of user named ‘Anubhav’.

(source - location property of node "COUNTRY" linked with node "USER" whose

name property is ‘Anubhav’.)

Cypher provenance Query: MATCH all (1:USER)-[:FROM]->(c:COUNTRY) where
u.screen_name= ‘Anubhav’ return c.Location

KVPDB: Trace all versions of location column of user named ‘MemeBaaaz’.

(source - location column of user with user name = ‘MemeBaaaz’ in user_details

column family.)

CQL Provenance Query: select all location from user_details where screen_name=

'MemeBaaaz’ ;

194

Based on the above provenance query, we propose the following provenance query

template:

Provenance Query Template 8:

RETRIEVE
All Versions (V)
Of Attribute (3A)
Where Source="$X",

RETURN V

The above provenance query template retrieves all versions of given Attribute (A)

for a given source (X) till now since it exists.

Example 9: Determine all versions of a particular data object between any specific

period of time.
Example Provenance Query in Target Databases:

RDBMS: Trace all versions of address cell of supplier with supplier key = 1

(source - address cell values of supplier with supplier key=1 in the supplier relation.)
SQL Provenance Query: select all s_address from supplier where supplier_key=1

GDBMS: Trace all versions of location attribute of user named ‘Anubhav’

(source - location property of node "COUNTRY" linked with node "USER" whose
name property is ‘Anubhav’.)
Cypher provenance Query: MATCH all (1:USER)-[:FROM]->(c:COUNTRY) where

u.screen_name= ‘Anubhav’ return c.Location

KVPDB: Trace all versions of location column of user named ‘MemeBaaaz’

(source - location column of user with user name = ‘MemeBaaaz’ in user_details

column family.)

195

CQL Provenance Query: select all location from user_details where screen_name=

'MemeBaaaz’ ;

Based on the above provenance query, we propose the following provenance query

template:

Provenance Query Template 9:

RETRIEVE
All Versions (V)
Of Attribute (3A)
Where Source="$X",

RETURN V

Here [...] is optional. In case time T1 is supplied then all versions of Attribute A

since its existence in database till time T2 or NOW will be retrieved.

The above provenance query template retrieves all versions of given Attribute (A)

for a given source (X) till now or given time T2 since it exists or from time T1.
Example 10: Determine the current version of a particular data object.
Example Provenance Query in Target Databases:

RDBMS: Trace the current version of address cell of supplier with supplier key = 1.
(source - address cell values of supplier with supplier key=1 in the supplier relation.)
SQL Provenance Query: select instance s_address from supplier where supplier_key
=1 ;

GDBMS: Trace the current version of location attribute of user named ‘Anubhav’.

(source - location property of node "COUNTRY" linked with node "USER" whose

name property is ‘Anubhav’.)

Cypher provenance Query: MATCH instance (w:USER)-[:FROM]->(c:COUNTRY)

where u.screen_name= ‘Anubhav’ return c.Location

KVPDB: Trace the current version of location column of user named ‘MemeBaaaz’.

196

(source - location column of user with user name = ‘MemeBaaaz’ in user_details

column family.)
CQL Provenance Query: select instance location from user_details where screen_name=

'MemeBaaaz’ ;

Based on the above provenance query, we propose the following provenance query

template:

Provenance Query Template 10:

RETRIEVE
Instance Version (V)
Of Attribute (3A)
Where Source="$X",

RETURN V

The above provenance query template retrieves the current version of given At-

tribute (A) for a given source (X).

Example 11: Determine the version of a particular data object at any specific time in

the past.
Example Provenance Query in Target Databases:

RDBMS: Trace the version of address cell of supplier with supplier key = 1

(source - address cell values of supplier with supplier key=1 in the supplier relation.)
SQL Provenance Query: select instance s_address from supplier where supplier_key

GDBMS: Trace the version of location attribute of user named ‘Anubhav’

(source - location property of node "COUNTRY" linked with node "USER" whose

name property is ‘Anubhav’.)

Cypher provenance Query: MATCH instance (u:USER)-[:FROM]->(c:COUNTRY)

where u.screen_name= ‘Anubhav’ return c.Location

197

KVPDB: Trace the version of location column of user named ‘MemeBaaaz’ on

23/10/ 2019".

(source - location column of user with user name = ‘MemeBaaaz’ in user_details

column family.)
CQL Provenance Query: select instance location from user_details where screen_name=

'MemeBaaaz’ ;

Based on the above provenance query, we propose the following provenance query

template:

Provenance Query Template 11:

RETRIEVE
Instance Version (V)
Of Attribute ($A)
Where Source="$X",
RETURN V

The above provenance query template retrieves historical version of given Attribute

(A) for a given source (X) at given time (T).

In summary, all the proposed provenance query templates related to provenance
queries for justifying query results and provenance queries for querying historical data

are shown in Table 6.3.

6.3 Conclusions and Future Work

In this chapter, we proposed various provenance query templates for querying provenance
information in a way which is independent of underlying database and application. The
main motivation behind proposing the templates is to facilitate users to pose useful &
common provenance queries using the templates. The proposed templates will guide the

development of a full-fledged PQL which can be taken as a follow up work of the thesis.

198

| S. No. | Provenance Query Template

T1 TRACE

Sources (S), Query (Q), Time (T)

Where Destination="$D" and Query_Ild="$QID"
RETURN S, Q, T, D, QID

T2 TRACE
Sources (S), Query (Q), Time (T)
Where Destination="$D" and Query_Id="$QID"
With Depth="%n"

RETURN S, Q, T, D, QID

T3 TRACE
Destinations (D), Query (Q), Time (T)
Where Source="$S"

RETURN D, Q, T, S

T4 TRACE
Destinations (D), Query (Q), Time (T)
Where Source="$S"
With Depth="%n"

RETURN D, Q, T, S

T5 TRACE
Destinations (D), Query (Q)
Where Source="$S",
RETURN D, Q, S

T6 TRACE
Destinations (D), Query (Q)
Where Source="$S",
With Depth="%n"

RETURN D, Q, S

T7 TRACE
Source (S), Destinations (D), Query (Q)
Where Query_Id="$QID" and

RETURN S, D, Q

T8 RETRIEVE
All Versions (V)
Of Attribute ($A)
Where Source="$X",
RETURN V

T9 RETRIEVE
All Versions (V)
Of Attribute ($A)
Where Source="$X",
RETURN V

T10 RETRIEVE
Instance Version (V)
Of Attribute (3A)
Where Source="$X",
RETURN V

T11 RETRIEVE
Instance Version (V)
Of Attribute ($A)
Where Source="$X",
RETURN V

Table 6.3: Provenance Query Templates

Blue Color-Templates for Justifying Query Results.
Yellow Color-Templates for Querying Historical Data.

199

