Chapter 1

Introduction

In the current technological world, data is envisaged as an authentic information used
for various qualitative and quantitative analysis. In the past few decades, data is grow-
ing exponentially at an unprecedented scale in diverse formats such as structured, semi-
structured, and unstructured in almost all domains. This exponentially increasing data
is consistently processed via different stages of its life-cycle operations such as data gen-
eration, pre-processing, extraction, storage, transmission etc. This constantly emerging
limitless data led to requirements of large storage capacity and computing power. More-
over, rapid evolution of social media and web-based communications have also led to
phenomenal growth in human-generated semi-structured/unstructured data related to
various fields of our day to day life. This exponential growth of data in various appli-
cation domains such as social media, 10T, scientific applications etc., require an efficient
data management. Although, the amount of data processed in these application domains
are collected from various sources, but the major part of this data is generated from dif-
ferent transformations applied on the existing data. To measure the data quality [9], and
its trustworthiness [47] for different perspectives such as audit trail, error tracing, data
diagnostics, fact investigations [171], and rumour detection [147] etc., a substantial meta-
data [84], i.e., "descriptive information about data" is much required. In addition to these
metadata, other significant information such as the owner of data, origin or direct/indi-
rect sources of data, derivation process and history of data is also required. Provenance
data is a kind of metadata information that gives the various significant information about

any data object such as owner of data, its origin and direct/indirect sources, different



transformations applied on data, history of data updates etc [9, 2, 13, 149, 96]. In its sim-
plest form, provenance can be described as a type of metadata about the data product.
Alternatively, provenance can be described by answering the questions how and where the
data is produced and when and by whom. Therefore, provenance information is much

essential to comprehend the credibility and quality of data [30].

1.1 Importance of Data and Big Data

The 21st Century will be known as the century of Data as it has witnessed an unprece-
dented growth of data in almost all domains. According to an IDC report [151], by 2025
we will have approximately 163 Zettabytes of data in the world which is almost four
times the current data. This phenomenal growth in data can be attributed to availability
of cheap digital storage and to the advancement in data sensing technology.

The term "Big Data" was coined by John Mashey in 1990 [8], although it caught the
fancy of the computing world in the early years of the present century. Big Data is
characterised by 7 V’s viz., Volume, Velocity, Veracity, Variety, Variability, Visualization,
and Value. Big Data renders computing infrastructure inadequate in quick time. This
can be attributed to increasing volumes of data coupled with shrinking response times.
The challenges and opportunities with Big Data are very comprehensively compiled in a
white paper by the leading computer scientists and industry researchers of the US in 2012

[101], a study initiated by Computing Research Association.

1.2 Journey of Database

1.2.1 SQL Database

Relational databases have been the mainstay of the data community for decades starting
from mid 1980’s. It was proposed by Edgar F Codd in 1970 [1]. Relational /SQL databases
are schema-oriented, i.e.,, we need to define the schema of the data in advance. They
are ideal for structured data and predictable workload. Their schema is largely rigid,
complex and require expensive vertical scaling from time to time. In vertical scaling, we

need to upgrade server in terms of increasing RAM, SSD, CPU, etc., in order to manage



the increasing load on the RDBMS. This approach is not scalable for handling Big Data
which encompasses not just structured data, but also semi-structured and unstructured

data. Not only this, the query workload is also unpredictable.

1.2.2 NoSQL Database

Not Only SQL (NoSQL) databases have been proposed as an alternative to SQL databases
to handle the challenges posed by Big Data, specifically by unstructured nature of the data.
NoSQL databases are characterised by flexible/dynamic schema and horizontal scaling,
therefore, suitable to create a flexible structure based on the requirement. Commodity
servers can be added in horizontal scaling as per requirement, thereby making NoSQL
databases easily scalable. NoSQL represents a family of databases in which each database
is quite different from others having literally nothing in common. The only commonality
is that they use a data model with structure that is different from the traditional row-
column relation model of RDBMSs. Graph, Document, Column-oriented, & Key-value
pair are the four kinds of NoSQL databases.

The growth of unstructured data has led to interest in NoSQL databases. Nearly,
80% of the expected growth in data is in unstructured data as shown in Figure 1.11.
Social media platforms are the major source of unstructured data in the current times.
Unstructured data is characterized by adhoc schema and therefore cannot be stored in
SQL databases. NoSQL databases are much better suited due to their flexible schema.
Text and multimedia are the most common forms of unstructured data. In addition to
this, time series sensor data is also growing rapidly.

Despite the march of NoSQL databases in the past decade, approximately 60% of
the world’s current data is still in SQL databases (refer to Figure 1.2%). Almost 44% of
the organizations use both of these kinds of databases for their data requirements (refer
to Figure 1.3%). It is expected that the two database technologies will converge into a
hybrid ecosystem (https://marketresearchmedia.com/nosql-market/). Already, 75% of
the organizations are having both SQL & NoSQL databases in their portfolio (refer to

Figure 1.4% ). Presence of different types of NoSQL databases in a single organization is

ISource: IDC The Digital Universe. Dec. 2012
2Source: https:/ /scalegrid.io/blog/2019-database-trends-sql-vs-nosql-top-databases-single-vs-multiple-
database-use/
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also becoming a common trend.

Continued growth of data has also led to research about another aspect of data — Data
Lineage/Provenance. In very simple terms, it is about tracing the transformations data
goes through from source to end-users. Data provenance has become critically important
as we are living and will continue to live in a data-driven world. We are therefore inter-
ested in knowing as much as we can about the data based on which we are taking our
decisions.

Veracity of big data that is defined as quality, accuracy and truthfulness of source
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of data is directly linked with data provenance. The provenance information for each
query result can be determined and then visualized further to trace the direct and indirect
sources of any data for different purposes such as auditing, error tracing, trustworthiness
of source etc.

In the thesis, we attempt to design and develop data provenance frameworks for
SQL, Graph, and Key-value pair databases which collectively store approximately 90%
of world’s data. The frameworks have been developed around the concept of a Zero In-
formation Loss Database (ZILD) [3]. By a Zero Information Loss Database, we mean that
no data value, no user, and no query and its result (seen at the time query was issued)

is ever lost. ZILDs are very useful in tracking any "data manipulations" that have taken



place in an organization.

Our proposed ZILD in different databases aims to maintain all data update (insert,
delete, and update) operations without any loss of information. It supports to perform
historical data queries. Historical data query is defined as the query to know all up-
dates/versions of a data object within any specific time range, or instance of a data object
at any particular time. It also assists to capture provenance for historical queries. Histor-
ical query is defined as the query that was executed in the past and generates the same

result (as seen in the past) in every subsequent execution.

1.3 Data Provenance

Data provenance, a kind of metadata information, describes the detailed, meaningful
information of a data. Provenance information, can be like, what is the source of data,
which tuples, nodes, attributes (i.e., fine-grained provenance) or relation/activity (coarse-
grained provenance) is contributed to produce a result set, which transformation or a
series of transformations (i.e., transformation provenance) are applied to generate the
resultant data, who created/generated a data object in database, what are the previous
versions of a data object if it is updated earlier and information about the execution
environment (such as query statement, database state at the time of query execution etc)
[9, 83, 13, 78].

The name "Provenance" mainly emanated from arts and humanities domain where it
is used to know about source of artwork for determining its authenticity. But nowadays
it is not limited to a specific domain rather commonly used in different domains also
like astronomy, computer science etc., with its predetermined meaning. Its origin is the
French verb ‘provenir’, which means to come forth, originate; and a Latin word ‘provenire’,
from pro means ‘forth’ + venire means ‘come’. The definition of provenance stated by
Merriam-Webster Online Dictionary is "The history of ownership of a valued object or
work of art or literature". As per Oxford Learning Dictionary, Provenance is "the place
that something originally came from."

In computer science domain, provenance (also referred as Lineage [12], Pedigree) is

mainly studied in two different perspectives viz., "Workflow Framework" and "Database



Management System" [30]. Provenance research issues and techniques in both the per-
spectives are different, i.e., provenance management technique in former one cannot be
applied in later one and vice versa. Provenance in workflow frameworks, i.e., "Workflow
Provenance" is a coarse-grained information that captures the information about process
and entities involved in the process as a black box which allows framework re-execution.
Whereas, provenance in database management systems named as "Data Provenance" cap-
tures the fine-grained information. Data provenance focuses on how any result is derived,
what queries are executed, what operations are performed on data. In this thesis, our fo-
cus is on "Data Provenance".

Different definitions are given by different authors for Data Provenance. Simmhan
et. al. defines data provenance as "A kind of metadata that pertains to the derivation
history of a data product starting from its original sources" [30]. Buneman et. al. defines
data provenance as "The description of the origins of data and the process by which it
arrived in the database" [9, 13]. Lanter defined provenance (lineage) of derived products in
GIS application domain as "The information that describes materials and transformations
applied to derive the data" [12]. Greenwood et. al. further stated the provenance as "The
metadata recording the process of experiment workflows, annotations, and notes about
experiments" [21].

In line with these definitions, we propose the definition of data provenance in the con-
text of database system as: "Data Provenance is the information about direct and indirect sources
of data which are contributing towards its generation along with the transformations applied on
data, and the history of data".

Provenance information can serve different purposes in a database system such as
audit trail, knowledge rediscovery, incremental maintenance, rumour identification, fact
investigation, justification of a query result etc [11, 12, 15, 30, 31, 48, 78, 147, 168]. In
recent years, a piece of information published in an article on social media is also facing
a critical challenge to determine its social provenance [156]. Provenance of a social data is
termed as social data provenance or social provenance which involves following three dimen-
sions viz., "What", "Who", and "When". What provides the descriptions about social media
posts, Who describes the correlations among social media users, and When characterizes

the evolution of users” behaviour over time. Like data provenance, social provenance also
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describes the ownership and origin of such information. The continuously growing so-
cial media data is the major source of big data. This large volume of social media data
is also termed as Big Social Data, and the provenance for Big Social Data is referred as
Big Social Data Provenance [142]. It describes the origin, derivation and transformations
of a social data element throughout its lifecycle. It is also categorized in following two
categories based on its granularity level viz., Fine-grained and Coarse-grained provenance.
In Social Data Analytics, the credibility of an analysis is generally depends upon the qual-
ity and truthiness! of input data which is assured by the Social Data Provenance. In this
way, social data provenance plays a major role in clarifying opinions to avoid rumors
[147], investigations [171] and explaining how and when this information is created and
by whom. But distillation of provenance information from such a huge amount of com-
plex data, however, is an extremely tedious task, due to its diverse formats. Not only the
provenance generation, but efficient provenance querying [90] also like forward tracing
(source to destination) upto any depth, backward tracing (destination to source) upto any
depth, querying historical data etc., is much needed. Querying provenance [90] aid to
solve different purposes such as error tracing, auditing, qualitative analysis, trustworthi-
ness of derived data etc. as shown in Figure 1.5, and can be further applied to different

applications domains such as bio-informatics, data diagnostics, information discovery etc.

1.4 Motivation

Efficient provenance capturing and querying framework in database systems plays a vital
role in answering some decision making aspects such as "What is the source of resultant
data"?, "Why this data is generated"?, "How this data is derived"?, "Who has created this
data"?, "History of data™ etc. This information may be used in number of application
domains such as Bio-Informatics, Data Analytics, Fact Investigations, Information Discov-
ery etc. One of the real-life case study of provenance is in handling the food scandal in
European food market in 2013 where provenance information was used to handle scandal
due to wrong ingredient used in several processed foods by some manufacturers [149].

Thus, an efficient provenance framework is much useful for data processing. The various

'Dictionary meaning: The quality of seeming to be true according to one’s intuition, opinion, or percep-
tion without regard to logic, factual evidence, or the like
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Figure 1.5: Overview of Provenance

issues in designing efficient provenance framework are as follows:

Diverse Data Formats: In current scenario, data is generated from diverse sources
in different formats such as structured, unstructured, and linked data but most of the
existing provenance frameworks are focusing on one kind of database only. Further, the
perspective of capturing, storing, and visualizing the provenance information are differ-
ent in all the existing provenance frameworks. Thus, it is not feasible to provide a unified
interface for different types of databases using existing provenance frameworks. There-
fore, it would be useful to design the provenance frameworks for various SQL and NoSQL
databases with a common approach using which a unified interface can be provided that
can work seamlessly across different kinds of databases present in same organization.

Time-aware Provenance Framework: For different applications such as audit trails,
data diagnostics etc., "Time-aware Provenance Frameworks" is much valuable to maintain
history of all updates without losing any information. Although, capturing provenance
information about updates is very useful in querying historical data, tracing the source
of derived data even after the source has been modified, but most of the existing frame-

works have considered "time" as an optional parameter for provenance information. The



time-aware provenance framework may assist users with the ability to understand the
analytical results and to repeat the analysis with different assumptions, parameters, or
data sets, and to maintain complete history of data even if it is updated many times by
anyone.

Social Data Provenance: Today’s Social Networking Sites (SNS) such as Twitter, Face-
book, Instagram etc. are based on the tenets of mobilization and de-contextualization
of information, where each user stands at the edge of a river of information to pick an
independent data object for either repost or sharing with other users without including
ownership and description of the content. It is difficult to know from where does this
information has come, how it has been generated, or updated since its existence. In this
sense, reliability of social data plays a major role in determining the quality [162], and
credibility of an analysis. Several illegitimate activities are engendered by misusing these
social content to accomplish various objectives. One of the main causes behind these ille-
gitimate activities on social media is the separation of digital content from its provenance
[138]. In Social Data Analytics, the credibility of an analysis generally depends upon the
quality [172] and truthfulness of input data which can be assured by the Social Data Prove-
nance or simply Social Provenance [117, 138, 152, 154, 153]. Most of the existing approaches
in social media environment provide very limited provenance support as a coarse-grained
provenance information.

Capturing provenance for big data applications is very challenging because of the high
volume and unstructured data. A number of challenges are presented for provenance
support in big data applications by different authors [103, 146, 128, 108] like automatic
provenance capture, different granularity levels at which provenance need to be captured,
provenance capturing overhead, and analyzing data via querying provenance etc. Distil-
lation of provenance information from such a huge amount of complex data, however, is
an extremely tedious task, due to its diverse formats. Therefore, the necessity to capture
and query the provenance information about Big Social Data (BSD) has raised a growing
interest in the era of social data analytics with several remarkable challenges. The rapidly
growing large sized human-generated social data is termed as the Big Social Data. Prove-
nance for Big Social Data is referred as Big Social Data Provenance. All of the existing

provenance frameworks in big data environment are focusing on workflow provenance
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and capturing coarse-grained provenance information only except one.

Provenance Visualization: Along with provenance generation, provenance visualiza-
tion support is also much needed. Different application domains such as error tracing,
auditing etc., requires Multi-Depth Provenance queries to know about direct or indirect
sources of any information. Although, a few existing systems support multi-depth prove-
nance queries but are not efficient, as provenance is stored in relational database in such
systems that deteriorate the query performance with varying traversal depth. Secondly,
the issue of provenance querying has not been addressed much in an application and
database independent way. Proposed languages in literature for querying provenance
cannot be used for provenance query in other database systems. Thus, it would be use-
ful to design a provenance query language that can support almost all possible type of
provenance queries efficiently in application and database independent way.

The above issues motivate the development of time-aware provenance frameworks
using Zero-Information Loss Database [3] concept for different database systems viz., Rela-
tional Database, Graph Database, and Key-Value Pair (KVP) Database. These frameworks can
provide a unified interface which can work seamlessly across different databases. Pro-
posed provenance frameworks capture provenance information for all queries executed on
database including historical queries (i.e., queries executed in the past producing same re-
sults in every subsequent execution), provenance for data updates (i.e., insert, delete, and
update queries). Provenance visualization support in frameworks such as forward tracing
(i.e., querying provenance from source to destination), backward tracing (i.e., querying
provenance from destination to source), and historical data queries (i.e., querying histor-
ical data for knowing all updates within any specific time range or instance of a value
at any particular time) can be applicable to different applications domains such as bio-

informatics, auditing, information discovery etc.

1.5 Research Foci

The foci of this thesis are to design the provenance frameworks that support to capture
and query the provenance information for different type of databases. The frameworks

should assist users with the ability to understand the analytical results generated by vi-
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sualizing the provenance information and to maintain complete history of data even if it
is updated many times by anyone. More specifically the research objectives of this thesis

are:

RO1: Zero-Information Loss Database Design — Design Zero-Information Loss Databases
(ZILDs) on top of different databases (i.e., Relational Database, Graph Database, Key-
Value pair Database) which further support to develop time-aware provenance frame-
works. ZILD supports data versioning to maintain history of all data updates as a prove-

nance information. It also enables provenance capturing for historical queries.

RO2: Design and Development of Provenance Frameworks — Develop provenance frame-
works on top of specialized Zero-Information Loss Databases designed for three different
types of databases as mentioned in RO1. Provenance frameworks should capture prove-
nance information for all queries executing on database and should also support Multi-
Layer provenance generation. It should also support provenance generation for historical

queries, and provenance for updates.

RO3: Provenance Visualization — Mere capturing provenance information is of no use,
until it is queried /visualized efficiently. So, another objective is to provide provenance
query support in all three databases for different purposes like justifying answers of a
query statement, identifying error propagation, auditing, investigation etc., via different
operations like forward tracking, backward tracking, and querying historical data for
knowing all updates within any specific time range or instance of a value at any particular
time (i.e., present or past). The frameworks should also support Multi-Depth provenance
query with varying depth to know about direct or indirect sources contributed to a specific

result, and how a specific source directly or indirectly contributing to any derived result.

RO4: Provenance Query Templates — Our another objective is to design various prove-
nance query templates that may support to query provenance information in all possible
ways independent of underlying databases and application. The main motivation behind
proposing the templates is to facilitate users to pose useful & common provenance queries
using the templates. These provenance query templates will guide the development of a

full-fledged PQL in future.
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1.6 Related Work on Data Provenance

Data management is the major concern in different application domains like bio-informatics,
data discovery, social media, big data analytics etc., those are processing large amount
of data collected from different sources/applications or generated from transformations
applied on existing data. Applications are automatically generating metadata which de-
scribe the data like type and size of data, time of data creation etc., and maintaining the
operation logs. Provenance information is also a kind of metadata that not only describe
the data by adding some meaningful information to it [84], but also specifies the source
of data [30], derivation history of data starting from its source, deriving process of data
[13], and transformations applied on data [30]. It also captures the details about how data
is updated over time [81]. It describes the complete production process of final product
[149] which can be a digital entity or a physical entity. In [149], overview of provenance
techniques with main focus on applications of provenance (What for?), types of prove-
nance (What form?) and system requirements/resources for provenance (What from?)
are presented.

Provenance information is essential to know about credibility of a piece of data, and
for any decision making aspects. Using provenance information, one can determine the
quality of data [9], trustworthiness [64] of data, explore direct/indirect sources of data,
and reproduce [124] the experiments. Some other applications of capturing and visu-
alizing provenance information are attribution, replication [149], collaboration, rumour
detection [147], fact investigation [171], audit trails etc. Some real-life use cases of prove-
nance [149] are 1) handling scandal due to wrong ingredient used in several processed
foods by some manufacturers in European food market in 2013, 2) re-running of scientific
experiments (ATLAS at CERN) in large volume of data by preserving both the data and
procedure used to analyze them and relying provenance, 3) in complex data processing
where pipeline comprise of cycle involving writing code, testing, analyzing result, refine
code to have expected result, test again and so on till desired result is not obtained.

Provenance information is classified in four main types as a provenance hierarchy [149]
containing 1) provenance metadata, 2) information system provenance, 3) workflow provenance

and 4) data provenance. In this provenance hierarchy, provenance metadata is the most
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general provenance type with little instrumentation required for capturing, whereas data
provenance is at the most specific domain level requiring highest level of instrumentation
to capture. From this hierarchy, Workflow Provenance and Data Provenance are mostly stud-
ied in literature. Workflow provenance systems are process-oriented [30] which generally
capture provenance information at coarse-grained level like which process/activities, en-
tities, transformations are involved in result set generation. In scientific domain, workflow
provenance is very essential as it helps in reproducing the scientific experiments. Some of
the workflow provenance systems are Taverna [25], Karma [72], Kepler [34], RAMP [100],
HadoopProv [106] etc. On the other hand, data provenance is captured at fine-grained
level, i.e., which sources like cell, tuple, attribute, relation etc. in relational database,
nodes or links in graph databases, and keyspace, column family, rows in key-value pair
database etc.) and how they are contributed to generate any query result.

Further, two main approaches used in existing provenance systems for capturing
or representing provenance information are Annotation Propagation, and Inverse Queries
(Query Inversion) [30]. In Annotation Propagation approach, annotations in the form of tex-
tual comments, labels, colors etc. are applied on data objects those are propagated from
source to derived result during query execution. Provenance information is available in
the form of annotations applied just after the query execution, thus this approach is also
named as Eager approach. In Figure 1.6, some attribute values of relations PART and PART-
SUPP are annotated with textual comments like Mouse is Hardware which can be wired
or wireless etc. When query executes on these annotated relations, annotations applied
on attributes are also propagated in result set. In the result set, we can see the Mouse
supplied by Supplier S1 is annotated with Hardware as well as Wired, whereas it is anno-
tated with Hardware as well as Wireless in case of Supplier S2. Depending on application
requirements, these annotations are propagated which can be union or intersection of all.

On the other side, in Query Inversion approach, query/derivation-process/user-defined
functions/methods are inverted to get source of any derived data. Query inversion ap-
proach is also named as Lazy approach because the provenance is computed whenever it
is required, not during query execution itself as in annotation approach. For example,
consider the PARTSUPP relation shown in Figure 1.6, display the total number of parts

supplied by each supplier. The corresponding SQL query is:
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Figure 1.6: Annotation Propagation

SQL Query: select sid, count(partsuppname) from PARTSUPP group be sid;

Assuming some unexpected tuple appears in result. To analyse why it is appeared in
result, inverse query is generated as below:

Inverse SQL Query: select * from PARTSUPP where sid in (select sid from PARTSUPP
group by sid);

The above query will generate all the sources which are contributing to generate all
results including unexpected result also. Although, query inversion approach represents
provenance in a compact form just using a single inverse query/process/function for
whole derived data, but all queries/process/functions are not invertible [30].

Data provenance for query results are further classified into three main categories viz.,
Where-Provenance, Why-Provenance, and How-Provenance [30, 149, 13].

Where-Provenance (Derivation basis [13]): Where-Provenance explains from which
location in database instance any value in query result is copied, i.e., where does a piece of
data comes from [13]. It means where-provenance refers to specific cells of a table in case

of relational database systems [149]. In Figure 1.6, annotations applied on attribute values
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are automatically propagated from source to result tuples whenever query executes. By
examining the annotations on result tuple attributes, we can say that in result set attribute
value Mouse in first and second tuples is copied from attribute Pname of first tuple with
Tuple-id (Tid) Pt1 of PART table. Attribute value P1 in first result tuple is copied from
attribute Partsupplied of first tuple with Tuple-id (Tid) PSt1 of PARTSUPP table, whereas
attribute value P1 in second result tuple is copied from attribute Partsupplied of second
tuple with Tuple-id (Tid) PSt2 of PARTSUPP. Thus, in where-provenance, we can identify
the source tuple attributes from where the values in result tuple attributes are copied
using annotations on source and result tuple attributes. Although, where-provenance
captures the source information "from where the value in result set is coming", but it
cannot justify why any value is present in result tuple like first result tuple in result set
in Figure 1.6 is present because of tuple Ptl and Pstl of PART and PARTSUPP tables
respectively.

Why-Provenance (Wit or Witness Basis [13]): It identifies all the sources contributed
towards generation of any query result, and explains why any result is present in result
set. Why-provenance explains the justification of an existing result, thus capturing more
useful information as compared to where-provenance. Given a query Q and a Relational
Database Instance D, Q(D) generates all result tuples along with the set of source tuples
D’ € D (as Why-Provenance) which are contributing towards result tuples generation.
Set of source tuples, D" are sufficient enough for generating the same result set of Query
Q executed on D’ as in Q(D). For example, the query shown in Figure 1.6, the source
tuples Ptl1 and PStl are contributing towards first result tuple generation. Similarly, the
source tuples Ptl and PSt2, source tuples Pt2 and PSt3, are contributing towards second
and third result tuple generation respectively. Table 1.1 shows Why-Provenance of each
result tuple along with result tuples of example query given in Figure 1.6. Thus, we can
say, why-provenance identifies the sources those contributed to produce the query result
and are sufficient enough to produce the result by executing the same query again on
provenance information only. Although, why-provenance justify the existence of a query
result, but it does not provide any information about the derivation process of a result,
i.e., how these sources in provenance information are contributing towards any result.

How-Provenance: It not only identifies the contributing sources towards any query
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Sid Pname Partsupplied | Why-Provenance | How-Provenance

S1 Mouse P1 <Ptl, PStl1> <Pt1*PStl>
S2 Mouse P1 <Ptl1, PSt2> <Pt1*PSt2>
S2 Anti-Virus | P2 <P12, PSt3> <Pt2*PSt3>

Table 1.1: Why-Provenance and How-Provenance for query in Figure 1.6

result generation as in why-provenance, but also explains about how these sources are
contributing to derive the result. How-provenance is a superset of where and why Prove-
nance. Semiring based provenance [46, 104] framework is proposed by Green et. al. which
annotates tuples with elements from semiring to capture how-provenance which is further
used in [97, 160]. When query executes, annotations for operators (like ‘+” for disjunction,
OR and " for disjunction, join) are propagated along with annotation of tuples which fi-
nally annotate result tuple with provenance polynomial. Table 1.1 shows how-provenance
as provenance polynomial like <Pt1*PSt1> for example query presented in Figure 1.6. It
shows that the first result tuple is generated by joining Pt1 and PSt1 source tuples. Thus,
how-provenance captures more meaningful information as compared to why-provenance,
i.e., it not only captures the contributing sources as why-provenance does, but also how
they contributed to derive the result.

Provenance Storage and Querying: Volume of provenance information can grow largely
even more than the size of data with the increase in number of queries executed on
database. Thus, there should be a systematic approach to store the captured provenance
information so that system should provide efficient provenance queries. Few of the exist-
ing systems does not store provenance information [86, 112, 41], but provide provenance
query support while capturing it. On the other side, some of the systems store complete
provenance information in relational database for querying it later [31, 73, 28, 27], and a
few store for specific use cases only but not for all [121]. Analysis of provenance storage
and querying in relational and graph database is presented in [93, 123]. As provenance is
a graph like structure, they found graph database more suitable for storing and querying

provenance information especially for multi-depth provenance queries.
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Open issues: A number of challenges and open problems are discussed in literature
for provenance capturing and querying. One of the problems discussed in [81] is to
build a general workbench for data analysis that should use provenance information for
detecting and correcting errors by identifying the sources of errors, and then fixing them
by propagating corrections. Another challenge discussed is to use eager/lazy approach or
hybrid of these two for provenance generation. One of the major open challenges in data
provenance is providing more versatile provenance query set [81] like querying updates
along with justifying answers of queries, combining different type of provenance (where-
provenance, how-provenance) which is beneficial in number of applications. For querying
updates, there is a need to efficiently store all updates without losing any information,
and query it methodically. Few of the existing provenance systems in relational database
[31, 73, 121] supports historical data queries, but are not efficient for querying. As of
now, none of the provenance frameworks in graph database and key-value pair database
support historical data querying. Some of the challenges in big data environment are
presented in [103, 108, 128, 139, 136, 146, 170] like tracing and storing provenance in a
distributed heterogeneous environment, securing provenance etc.

Related work for provenance models in relational databases, graph databases, and

key-value databases are presented in the following sub-sections.

1.6.1 Relational Databases

Allison Woodruff et. al. presented a fine-grained data lineage model [6] to support
visualization in databases using inverse functions. They represented transformations as
functions from one attribute domain to another. Groth presented a model for representing
the user interactions with the system as a set of annotations [23], and present the whole
activities as a DAG (Directed Acyclic Graph), i.e., a provenance graph. The users can then
navigate forward or backward in the provenance graph to rediscover the information.
Provenance in curated database [38] is presented by Buneman et. al. In the proposed
model, the data collected from different sources is presented as a tree like data structure,
and then copy-paste-database (CPDB) operations are performed on tree without deleting

or updating any value in place, for generating different versions of data in database. A
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query language is also proposed for querying the versioned data in generated tree. Later,
they presented a use-case scenario of framework for archieving scientific data [22] by
applying unique keys for every data object to identify different versions of data.

Some of the existing systems use annotation approach (shown in Figure 1.6) for prove-
nance generation in relational database, in which annotations applied in different forms
on source data are propagated from source to query result during its execution. One of
the systems using annotation approach for provenance capture is DB-Notes [27, 28] in
which zero or more textual annotations are applied on every attribute value. These anno-
tations propagate from source to result set when query executes (i.e., Eager Approach) as
"Where-Provenance". A Provenance Query Language, pSQL (an extended SQL version)
is also developed to query data as well as provenance information. It provides limited
support for annotation querying over single values only. Another annotation oriented
provenance model MONDRIAN [41] is proposed by Floris Geerts et. al. It is an en-
hancement of DB-Notes, and is based on the concept of block as a group of values that
span multiple attributes of one tuple. They assigned annotations on blocks in a form
of colors, where different color specifies different annotations. It supports SPJU queries
but with some limitations in the predicates of select and join queries. A query language,
i.e.,, Color Query Language (CQL), based on Color Algebra is also proposed to support
querying data as well as provenance in the model. The provenance model BDBMS [79,
62, 40] for maintaining biological databases is proposed by Eltabakh et. al. BDBMS is
an extension of PostgreSQL, permit annotations on group of values that span multiple
attributes of one tuple as in MONDRIAN as well as spanning multiple tuples also, but
in predefined order on tuples in the relation. Separate annotation tables are created to
store all annotations applied on each relation. So, during query processing both relations
with applied annotations as well as corresponding annotation tables need to be specified
in a query. Afterward, query rewrites by joining the tables specified in original query for
propagating annotations along with result set which is a complex process. MMS [53, 54,
55] is an annotation based provenance model for metadata management by relating data
with metadata using SQL queries as data values (referred as g-type values). The result of
SQL query finds all attributes those are associated with specific annotation. But, the sys-

tem does not provide support for automatic annotation propagation as in DB-Notes and
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MONDRIAN. Although DB-Notes, MONDRIAN, BDBMS, and MMS provenance models
use annotation approach to capture provenance, but it is a quite tedious process to assign
annotations on each value or group of related values, and causing storage overhead also.
In line with annotation propagation for provenance generation, Green et. al. proposed
provenance semiring [46] for representing How-Provenance by applying annotation on
tuples with values in semiring. Further, concept of relational query containment with
annotation propagation is proposed in [20, 97].

Some methods are proposed in literature for provenance of updates and deletes [56,
15, 16]. Jennifer Widom et. al. [31, 35, 33, 74, 26, 36, 43, 44, 49, 51, 92, 50, 68, 66, 73, 67,
44] proposed the Trio system that support provenance and Uncertainty Lineage Database
(ULDB). It is the first system to manage data, its accuracy, and lineage for uncertain
relational databases using query inversion approach. They defined the lineage on mate-
rialized view in a data warehouse as the maximal set of tuples from source tables those
contributed to it. They interpreted the view as a query tree in which input tables and
algebra operators are represented as leaf nodes and internal nodes of tree respectively.
Query tree is evaluated in a bottom-up manner where the algebra operators accept the
result set from its child nodes, and generate the result set for its parent node. Provenance
is generated for ASP] (Aggregate,Select,Project,Join) views by inverse queries in Trio. In-
verse queries generate the provenance for each tuple that is further stored in a special
lineage table. Lineage table includes following attributes, i.e., tuplelD, derivation-type,
time, how derived, lineage-data etc. This model is suitable for capturing historical lineage
from the expired portion of database, i.e., the data which is not valid now. They also im-
plemented a query language called TriQL(Trio Query Language) which is based on SQL
to support provenance and uncertainty in databases. But it has high storage overhead as
it stores complete lineage information for every tuple in lineage table. In WHIPS model
[5], provenance of views in data warehouse using query inversion approach is captured
lazily (on-demand) as compared to eager approach (automatic during query execution)
in annotation propagation. Provenance is captured as per Lineage-CS semantics [7, 11,
12, 10, 14]. The proposed algorithm is suitable to capture lineage for set-ASPJ] queries.
For every provenance computation, model requires execution of various SQL queries and

user-defined functions which increases the complexity of system and deteriorates its per-
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formance. Another issue is the relation between result tuples and their provenance are
not preserved.

Glavic et. al. proposed Provenance Extension of the Relational Model (PERM) [80,
86, 112]. They identified Perm Influence Contribution Semantics (PI-CS) based on why-
provenance model. Perm generates the provenance for ASP] (Aggregate, Select, Project,
Join) queries, and is suitable for both set-semantics and bag-semantics queries. It is built
upon PostgreSQL and capture provenance information on demand. It uses query inver-
sion approach [30] to capture why-provenance. Result of query inversion contains actual
result set including provenance information as annotations in separate fields. Perm uses
PostgreSQL properties for querying, storing and query optimization. It also uses an SQL
language extension called SQL-PLE to enable a user to issue provenance queries while
capturing but does not store provenance information at all. Bahareh et. al. [121] proposed
GProM (Generic Database Provenance Middleware) provenance model, which uses query
inversion approach to capture provenance information. This model is capable to capture
transaction and historical provenance using audit log. Although, it requires a very com-
plex query rewriting to capture the provenance for past queries using audit log, yet it
may not capture all the information in audit log. It does not store provenance information
explicitly for further querying. The model stores the provenance information for a few
use cases only where provenance reconstruction is not possible from audit log. Glavic et.
al. further developed a debugging tool TRAMP (i.e., TRAnsformation Mapping Prove-
nance) [87] implemented over PERM. TRAMP includes all the features of PERM model,
and also traces schema mapping (i.e., Mapping Provenance) and transformation queries
(i.e., Transformation Provenance).

Under schema mapping provenance, Green et. al. presented an ORCHESTRA [29,
47, 64, 48, 88] data model. It is developed as per the need of collaborative data sharing
between different users. It can efficiently manage the exchange of updates performed
by any user in a group (i.e., peer-to-peer network) using schema mapping, and cap-
tures how-provenance to describe the updates which are represented as functions in the
semiring provenance model [97, 46, 104]. The model also supports trust management
by annotating result tuple generated after every transformation with a trust level of a

user. Users can annotate each tuple and transformation with T (to Trust) or D (Not to
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Trust). As updates are exchanged with other users, it gets filtered based on trust con-
ditions that uses the provenance data in updates. A provenance query language ProQL
[90], is also proposed for provenance graph, based on provenance semiring. This model
is suitable for small dataset only because of high communication overhead with frequent
update exchanges. Another system for provenance in data exchange [32] is proposed by
Velegrakis et. al. Provenance information for mapping derived data from source data is
generated along with the transformation applied to derive the data. Annotations on data
values are applied to associate data values with their meta-data information which can
be further queried along with data values. An extended query language, i.e., Meta-data
extended Query Language (MXQL) is proposed for querying provenance and mapping

information.

Few workflow systems also provide support for provenance (i.e., workflow prove-
nance) capturing and querying. Workflow provenance systems generally capture coarse-
grained provenance information such as which processes/activities, entities, transforma-
tions involved in result set generation, but not the detailed fine-grained provenance infor-
mation as in case of data provenance. One of the workflow provenance system, Taverna
[21, 18, 19, 17, 24, 25] is developed under myGrid for capturing provenance for e-science
experiments. It represents provenance as RDF triplets. Another provenance manage-
ment system Karma for Data-Driven workflows is proposed with three different versions,
i.e.,, Karma 1 [72], Karma 2 [71], and Karma 3 [77]. In this, workflow comprises of dif-
ferent services which can generate their provenance if participating in any activity, and
store it further in relational database. A generic provenance framework for popular sci-
entific workflow management system, Kepler [34, 37, 75, 76, 65, 58, 82, 42] is proposed
for capturing provenance for result data as well as processes involved in experiment via
Provenance Recorder (PR). It also enables efficient rerun of a workflow by querying stored
provenance data using Smart Rerun Manager (SRM). Anand et. al. [75, 76] introduced
fine-grained provenance generation for COMAD (Collection-oriented modelling and de-
sign) developed in Kepler workflow which is not supported in other workflow systems.
It also supports query language for querying provenance based on XPath. VisTrails [63,

52, 60, 70, 69, 61, 39], another workflow management system captures the history and
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provenance of workflow execution which is further stored in Relational or XML database.
Correspondingly, vtPQL (VisTrail Provenance Query Language) query language is pro-
posed for querying provenance of execution and different versions.

Vicknair et. al. [93] suggested the need of graph database for storing and query-
ing data provenance. They analyzed the performance of MySQL and Neo4j from a data
provenance perspective. They used DAGs (Directed Acyclic Graph) to store provenance
information. They reported that querying on character data is efficient in Neo4j as com-
pared to MySQL. Further, they reported that the performance of provenance queries in
MySQL deteriorated with increase in provenance data size. Kirby et. al. [123] compared
the performance of Neo4j and MariaDB for synthetic pedigree data set generated by pop-
ulation generator. Dataset includes persons (birth date, death date) and their marriages.
Related persons and marriages are linked with each other. This linkage is a kind of
provenance information. They analyzed both the databases in terms of scalability, query

execution time, and ease of query expression.

1.6.2 Graph Databases

Social media is a group of web based applications build on technological and ideological
foundations of Web 2.0, and Social Networking Sites (SNS) are applications through which
users can create and exchange the information with others including short messages,
blogs, images, multimedia files etc [89]. Among all social media networks, Twitter has
become one of the most popular social networking /micro-blogging sites, allowing users to
share their thoughts with massive audience. Its popularity as a huge source of information
has led to research in various domains. Researchers and practitioners can obtain this
information from twitter through public APIs without any cost [99].

The term data model is widely used in the field of data science and analytics. The
definition of data model is defined in [4] as a set of conceptual tools used to model
real world entities and their relationships. In line with the data model concepts and
ever increasing technological advancements, a time-varying social network data [107] is
proposed, in order to preserve temporal information using Neo4j (NoSQL graph database)

[157, 134]. In Neo4j, the collected data are represented by a property graph where nodes
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are used to represent individual entities, while edges represent the interactions among
them, and nodes and edges may have their own properties in the form of key-value pair.
Cypher query language (CQL) is used to analyze a huge social network datasets, imported
from twitter network [154, 171]. These research works explores the suitability of Neo4;
graph database for efficient storage and to perform fast data analytics [165, 57, 155], and
recommendation in social network datasets.

In social data analytics, the accountability of an analysis is largely relying on the data
quality and trustworthiness of input data. Recently, social data provenance [156] has
gained a lot of attentions, as this helps in identifying sources of a given piece of informa-
tion propagating through a social media network. Baeth et. al. in [144, 142] identified the
significance of social data provenance [156] for various applications like tracking source of
data, assessing data quality, risk-awareness [102], mapping trustworthiness of data, data
management, and big data analytics [136] etc. Further, they also explored the effectiveness
of a standalone centralized social provenance system as per scalability and responsiveness
to manage a large sized social provenance data. In this way, Social Feed Manager (SFM),
an open source tool, is proposed in [167]. SFM is developed to capture only metadata
information of a tweet as provenance information that is inadequate for an effective social
provenance framework. Social provenance [117] can be integrated with social comput-
ing system [152] to support transparency in data propagation, updates etc. A theoretical
framework to realize a provenance model for social media with the capability to capture
sufficient amount of provenance data in social media by using social media information
itself is proposed in [94].

In this way, social data provenance is playing a vital importance in various data re-
lated activities including data management, database validation, big data analytics [103,
136] etc. Several existing systems which support social computation [152] are suffering
from lack of transparency which can be addressed by integrating social data provenance
in such systems [117]. From last few years, social media has become one of the most
growing communication medium for peoples. Social provenance associated with social
media can help in fake claims, fact checking, dispel rumors and to clarify opinions. How-
ever, neither social media nor application developers explicitly provides such provenance

information to the recipient users to verify the credibility of a statement appeared in the
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social media. Determining and tracking provenance data for a social media environment
is a challenging task as social media is a decentralized and dynamic environment. In
literature, mostly two provenance models viz., open provenance model (OPM) and World
Wide Web Consortium (W3C) PROV model are used for provenance management in so-
cial media.

Social data provenance in graph database model: Ranganath et. al. [114, 118] devel-
oped a web based tool that captures information about pre-defined provenance attributes
such as name, gender, religion, location etc., from different social accounts associated
with a particular twitter user. Although, these provenance attributes capture complete
details of a social media user, but it neither provides a provenance path nor a propaga-
tion history and updates of a piece of information published on a social media platform.
Further, a provenance path algorithm [113] is proposed to capture provenance paths of
an information, to explain how this information propagates in a social network. In [110],
an approach based on provenance graph is proposed to identify the malicious node in a
distributed network. Provenance graphs are generated by applying some derivation rules
on provenance logs of network. These graphs are further analyzed for discovering high
compression substructures to identify common execution pattern and malicious nodes
as well. The proposed method is deemed fit for a static network but not for a dynamic
network where provenance graphs would constantly change during execution. Secondly,
the logs have an ad-hoc structure, not readily available for effectively querying and may
not capture complete provenance information. To reconstruct and integrate provenance
of messages in social media, a workflow provenance model PROV-SAID [129, 135, 163]
based on W3C PROV data model is proposed. Although, the proposed solution identifies
the posted tweets those are copied from other published tweets without giving credit to
original tweeter like a retweet, but it is suitable for a small dataset only. The work of [143]
introduced a topic-focused trust model to assess trustworthiness of both tweet and the
user who posted that tweet related to a specific event in Twitter’s network. This model
first extracts trustworthiness features from news articles on a given topic, and then rank
the tweets with a trust level based on similarities found in previous tweets on same topic.
Afterward, trust further propagates to evaluate trustworthiness of that tweet.

A python library toolkit [130] is proposed to capture provenance for workflows that
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collect provenance about every process in the workflow, but not suitable to capture prove-
nance at fine-grained level, i.e., how an element has been generated in the result set etc. A
provenance framework based on algebraic structure of semirings, for three specific graph
algorithms is presented in [160], to compute provenance of regular path queries (RPQ)
over graph database via applying annotations like labels and weight functions which
is a quite complex process. A provenance model for vertex centric graph computation
and a declarative data-log based query language is presented in [169], to capture and
query graph analytics provenance for both online and offline mode. In some other way,
a Q-Chase based algorithm is introduced in [168] for efficient implementation of a query

chasing process and to compute query rewrite.

1.6.3 Key-Value Pair (KVP) Databases

Social data analytics is a research field that integrates social communications with data
analytics. It extracts meaningful insight from extensively large data sets. It can be used
to understand the user’s behavior, and to model social interactions among social media
users. Big Social Data [161] is mainly characterizes by Volume, Velocity, Variety, Veracity
where volume means rapidly growing social data, velocity is related to the dissemina-
tion of data with tremendous speed, variety refers to diverse formats of social data, and
veracity refers to quality, accuracy and truthfulness of source of data. Veracity of big
data is directly linked with data provenance. The volume, velocity, and variety of Big So-
cial Data further introduced the challenges of capturing provenance [138] and evaluating
trustworthiness [172] of social data [89].

Several research works are carried out to identify the suitability of NoSQL database to
manage big social data with efficient storage, fast querying, and horizontal scalability [85,
91, 105, 141]. Wang et. al. [105] describe the basic principles of NoSQL databases such
as CAP, BASE, and Eventual Consistency theorems as the foundation stones. It revealed
some facts about Apache Cassandra as a part of some popular social networking sites
such as Twitter, Facebook etc., and demonstrated an online trading system design based
on Cassandra. An architectural overview of Apache Cassandra [85] is presented to explore

the suitability of Cassandra for efficient storage and querying on high volume of airline
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flight’s distributed database. It's a distributed storage system used to manage a high
volume of structured data spread across several nodes, and provides high performance,
scalability, wide applicability, and high update throughput with low latency [91].

Different approaches are proposed to model a huge volume of Twitter data set in
Apache Cassandra NoSQL database for an efficient querying [125, 127, 131, 159, 141].
Due to ever increasing technological advancements, NoSQL databases have become the
favourable choice of several application developers for schema design in big data era, still
schema design/data modeling for a column store is a challenging task that depends on
the data model of that application, and a set of queries on that data. To address this
challenge, a systematic approach on database schema design in NoSQL column store is
presented in [125] that rated and ordered a schema design based on a scoring function.
Another query driven big data model design for Apache Cassandra [127] is proposed us-
ing data nesting and data duplication. The proposed model also defined mapping rules
and patterns for logical data models design in Cassandra by demonstrating a data model-
ing tool that automates entire modeling process. Another query driven data model design
for Cassandra is proposed in [131] that parses and analyze each query before its execution,
and if any query language constructs related to schema modification such as CREATE,
ALTER, DROP etc. is found, then the metadata is updated with new information. A query
driven data model is proposed in [159] for twitter dataset to perform efficient read and
write operations on massively stored tweets, and to maintain user’s timeline in Apache
Cassandra. Because of Cassandra’s high performance and availability, its future scope in
implementing relationships among twitter users and their friends and followers are also
suggested. To explore the suitability of NoSQL databases in storing massive amount of
discrete time series datasets, few data modeling schemas are presented in [141] that em-
phasis on sequential data storage and flexible schema design in Cassandra and MongoDB
respectively. In line with NoSQL database, a performance comparison between relational
and NoSQL database are presented in [140] that investigate the performance of NoSQL
database in a scalable distributed environment in terms of processing speed, query lan-
guage support, fault tolerance, and flexible schema design.

The importance of social data provenance in social media is also presented in [156,

117, 152] with several key challenges such as measuring quality and truthiness of social

27



data, provenance storage, provenance querying etc [146, 108, 128, 139, 103, 170, 136].
Boris Glavic [103] identified an essential requirement of Big Provenance in the field of Big
Data Analytics for auditing, debugging, transforming, modeling and evaluating quality
and trust in big data. He examined that big data benchmarking can be used to measure
system’s capabilities, performance bottleneck and metrics. He also stated that querying
and storing provenance in a distributed heterogeneous environment is a big challenge
in big data provenance research. Dunren et. al. [108] presented an overview of various
platforms and frameworks used for big data processing, mining and management. They
addressed several challenges in the era of big data research including provenance tracing
which directly contributed to trustworthiness and accuracy of source data and derived
data. Alfredo Cuzzocrea [128, 139] identified some major challenges and issues in the era
of big data provenance research including provenance data model design for a heteroge-
neous environment, and to develop provenance querying and visualization tool. Wang
et. al. [136] identified that the huge volume, variety and veracity of big data have become
the obstructions in big provenance design. Reference architecture for big data provenance
in workflows is also presented to address these challenges and opportunities. The work
of [146, 170] focuses on current methods and approaches in big data provenance research
and suggested a need of further research in all aspects of big data provenance including
provenance storage, recording, querying, securing etc.

Provenance in Key-Value Pair System: A provenance data model for data intensive
workflows is proposed in [95] to capture provenance information for Map Reduce work-
flows using Kepler-Hadoop framework. The proposed provenance model is a good initi-
ation for scientific workflows; however it is not much efficient in terms of storage space
and query execution overhead. In line with the provenance data model for scientific work-
flows, RAMP model is proposed in [98, 100] for Generalized Map and Reduce Workflows
(GMRWs) using a wrapper based approach for provenance capturing and tracing. In
this model all the transformations are either map or reduce functions rather than having
one map function followed by one reduce function. Next, HadoopProv model [106] is
introduced for provenance tracking in Map Reduce workflows, where provenance track-
ing takes place in Map and Reduce phases separately and construction of provenance

graph is deferred at query stage, to minimize the temporal overhead. Applications of
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standard PROV-DM model is proposed in [150] to manage provenance data for bioinfor-
matics workflows in a cloud computing environment using different families of NoSQL
databases.

To satisfy the need of Big Data Provenance, a rule based framework for provenance
identification and collection from log files is proposed in [111]. Although, the proposed
framework reduces the source code instrumentation yet raises several questions about
completeness of provenance information, as logs may not capture complete information
including derivation process. Another big provenance framework is proposed in [109]
for provenance collection and storage in an unstructured or semi-structured format, for
scientific applications. The proposed framework is light weighted and built on multi
layered provenance architecture that supports a wide range of provenance queries. A
provenance model for Apache Cassandra, i.e., a key-value pair database, is proposed in
[115, 116] to capture provenance information using provenance policies. In this model,
provenance querying is performed through resource expressions and a set of predefined
operators. The proposed model is implemented on a small sized patient information
system and uses legacy thrift APIs rather than CQL3 that makes it difficult to write a
query. Various change data capture (CDC) schemes are investigated in [133] for Apache
Cassandra to track modifications in source data. The logic of each scheme is implemented
in Cassandra by combining a Map Reduce framework with distributed computing. A
layer based architecture for provenance collection and querying in scientific applications
is presented in [120], which stores semi-structured provenance documents in MongoDB
in a BSON format. The proposed architecture is prominent for simple queries but not

efficiently respond to complex queries.

1.7 Research Gaps

From the available literature on provenance frameworks in relational databases, it is evi-
dent that most of the existing data provenance frameworks either do not store the prove-
nance information at all (support querying provenance as it is generated), and even if they
store the provenance information, they store it in relational database for querying and

suffers from query performance issues. Another issue is Multi-Layer Provenance capture
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and Multi-Depth Provenance query. Tracking how a particular piece of data is derived
directly or indirectly becomes very challenging that requires provenance capturing at var-
ious stages of data life cycle. This results in the need of Multi-Layer Provenance Capture
and efficient Multi-Depth Provenance Querying. Few of the existing provenance frameworks
such as TRIO and ORCHESTRA supports multi-depth provenance queries but store the
captured provenance in relational database only. Although, relational databases can store
graph data such as provenance graph, but they are not efficient for multi-depth querying
on provenance. Because, with increase in data queries, the volume of provenance infor-
mation also increases, leading to increase in number of join operations for provenance
queries with varying depth. As discussed earlier, provenance for historical queries are
also very much needed for applications such as auditing and error tracing, but only TRIO
[31, 73] and GProM [121] support provenance for historical queries.

It is obvious from available literature that most of the existing approaches for prove-
nance in graph databases are not scalable to track provenance metadata for social media
efficiently. Existing frameworks primarily focused on workflow provenance that captures
coarse-grained provenance only rather than detailed fine-grained provenance informa-
tion. Although, a few frameworks support data provenance that capture fine-grained
provenance information, but they do not support all type of queries for provenance cap-
ture. As per our knowledge, none of the existing frameworks support provenance for
historical queries and provenance for data updates.

Most of the existing provenance frameworks for big data environment are suitable to
capture provenance for workflows that do not capture detailed provenance information.
Secondly, some of them are not suitable to capture provenance information for a large
sized data set including all types of query sets.

In the last, issue of provenance querying has not been addressed much in an ap-
plication and database independent way. Proposed languages in literature for querying
provenance cannot be used for provenance query in other database systems. Thus, it
would be useful to provide common provenance templates to design a provenance query
language that can support almost all possible type of provenance queries efficiently in

application and database independent way.
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1.8 Research Contributions

This thesis makes number of contributions to provenance frameworks in different databases.

Following are the main contributions of this research work:

1.8.1 Zero-Information Loss Database Design

We first propose zero-information loss database design for different databases as follows:

1.8.1.1 Relational Database

ZILRDB (Zero-Information Loss Relational Database) is developed on top of conventional
relational database using object-relational database concepts like user-defined data types
and nested tables to maintain all updates efficiently without any loss of information.
ZILRDB supports data versioning to maintain history of all data updates as provenance
information that further supports in querying historical data (i.e., knowing all updates
on data within any specific time range or instance of a value at any particular time).
It also enables provenance generation for historical queries (i.e., queries executed in the
past producing same results in every subsequent executions and capturing provenance

information for the same).

1.8.1.2 Graph Database

ZILGDB (Zero-Information Loss Graph Database) is implemented on top of Neo4j Graph
Database that supports data versioning to maintain history of all data updates (i.e., insert,
update, and delete) as provenance information. It also enables provenance for historical

queries in graph database along with querying historical data.

1.8.1.3 Key-Value Pair (KVP) Database

ZILKVD (Zero-Information Loss Key-Value Pair Database) is designed on top of Key-
Value Pair (Cassandra) database that maintains information about all data updates (i.e.,
insert, update, and delete) without any information loss as provenance information. It

also supports provenance for historical queries along with querying historical data.
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1.8.2 Design and Development of Provenance Framework
1.8.2.1 Relational Database

We designed and implemented DPHQ (Data Provenance for Historical Queries) frame-
work on top of ZILRDB to capture provenance for all queries including historical queries,
provenance for data updates etc. Qualitative analysis of existing provenance solutions and
our proposed DPHQ framework based on an evaluation matrix including type and level of
provenance generation, type of queries supported for provenance generation, provenance
storage, and provenance visualization support is shown in Table 1.2. Main contributions

for this work are:

1. Provenance Relational Algebra (PRA): Provenance Relational Algebra (PRA) which
is an extension of traditional Relational Algebra is proposed for capturing prove-
nance information for all queries executing on ZILRDB. PRA supports provenance

for ASPJU (Aggregate, Select, Project, Join, Union) queries.

2. Multi-Layer Provenance Capture and Multi-Depth Provenance Query: DPHQ sup-
ports Multi-Layer provenance capture for generating complete provenance infor-
mation. That means, it not only captures direct contributions towards result tu-
ple generation but indirect contributions also. Framework also supports efficient
Multi-Depth provenance queries by storing provenance of relational queries in Neo4j

Graph Database also.

3. Querying Current State: Proposed framework allows querying the current data ver-
sion and captures the provenance information for the same. The captured prove-

nance is stored in both relational as well as graph database for further analysis.

4. Querying Historical Data: It enables querying historical data by querying nested
tables using extended SQL constructs viz., "instance", "all", "validon now", and "vali-

don ‘date™.

5. Provenance for Historical Queries: Proposed framework supports to generate prove-

nance for historical queries.

6. Provenance Visualization: Captured provenance can be easily visualized in both
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relational and graph database, i.e., how it is represented, what is provenance for

each result tuple of every query executed.

1.8.2.2 Graph Database

We designed and implemented SDP (Social Data Provenance) framework on top of ZIL-
GDB which efficiently captures provenance of all queries including historical queries in
social media data, and generates a provenance graph database for further querying. Qual-
itative analysis of existing provenance solutions and our proposed SDP framework based
on an evaluation matrix including level of provenance granularity, type of queries sup-
ported for provenance generation, provenance visualization, and its applicability is shown

in Table 1.3. Main contributions of this work are:

1. Modelling Social Media (Twitter) Data in Neo4j Graph Database: We propose to
model twitter data from CSV files in Neo4j Graph Database using timeline approach

for efficient query execution.

2. Multi-Layer Provenance Capture and Multi-Depth Provenance Query: Proposing
an algorithm to generate provenance information for a query set including select
queries, aggregate queries, and historical queries, and to store it in Provenance
Graph Database (PGDB). Framework also supports Multi-Layer provenance capture
and efficient Multi-Depth provenance query as in DPHQ framework in relational

database.

3. Querying Current State: Proposed framework allows querying the current data ver-
sion and captures the provenance for the same. The captured provenance is stored

in Provenance Graph Database for further analysis.

4. Querying Historical Data: It enables querying historical data by extending Neo4;

Cypher Query with following constructs viz., "instance", "all", "valid_on now", and

"valid_on ‘date’".

5. Query through Time: It also supports for query data any time in the past as well as

some time range as predicate specified in query statement.

34



sromawer] Jds pasodoid yym sseqejeq ydein 105 suonnjos soueussold jusiapip jo sisAjeue aanejeng) :¢€°L d[qeL

((d@s) a>ueu
(uonegnsaaur -aA0I] e
oepe JSLIOX [E100S) >I0M
-I9) ur  ased -durerj pasod
asn)  OIIaUen) S9X SOK SOK SOX SOX SoX SOK SoX SOX | [oA9T poureIn-aul] | -01J mQ
sonAjeuy (euiyo
ydero o pue  aul [691]
-ue)) Xo}oA ON sax | -uQ) SOk oN ON oN oN oN SOX | [9A9T paureIn-auT] aueperry
SuImpjLI
o3 yderd [091]
ogwads  samypy dueUdA0I]
10§ poyrury OoN SOX SOK ON OoN OoN oN oN SOX | [9A9T paureIny-aur] Sunmuag
oyadg [€91 ‘SET ‘6CL]
uonediddy ON SOA SOA ON ON ON ON ON SOA [9A97] MO[JIIOM | dIVS-AOUd
(>promisu
ur  apou Bur
-Aeyagstwr - Ajn
-uopy) oypadg [oLT] Sutury
uoryeorddy oN oN SOK ON OoN OoN oN OoN SOX poseg S0 | amnjonysqng
[€LL] syred
ERIIEY R |
dTIoUDN) ON SOK SOX oN ON oN oN oN SOX | [9A9T paureIn-aur] Suppeag
(19sn erpawr
[eos jo samqri [T
(poxr -te paugep-ai]) | ‘4IIl  [0OL
dTIoUDN) oN | -wr) sex SOK ON OoN OoN oN OoN SOX | Toa9T paureIny-aur] paseg-qam
(399M1 JO uOTIRULIOT
(paxt -ur ejepeRN AuQ)
o adat®) ON | -wIT) sox SOA ON ON ON ON ON SOA | [9A97] paulely-doul] [291] INAS
S)MSIY
ele(q AdnQ | Suifdng | Any | Lwdny | L0PnH A1d3nQH A1dnQ | £1dnQH
urewo( | reor10)sTy | Suiyusn( |adueuanrorg | 321 | MaIsuf | ayepdn ([feowroysty |23e82138y | 309[9g Ajureuern) [PPOIN
uonedrddy UOTJEZI[ENSIA dDUBUIAOL] amyde) adurudr0I] DUBUDAOL] JdurudA0Ig

35



6. Provenance for Historical Queries: Proposed framework enables to trace the prove-

nance of each query result of a query executed in the past, i.e., historical query.

7. Provenance Visualization: Captured provenance can be easily visualized in graph,
i.e., how it is represented, what is provenance for each result of every query exe-

cuted.

8. Applicability of Framework: Applicability of proposed framework in terrorist attack
investigation by identifying suspicious persons and their linked communities is also

presented.

1.8.2.3 Key-Value Pair (KVP) Database

We designed and implemented BSDP (Big Social Data Provenance) framework on top of
ZILKVD. Qualitative analysis of existing provenance solutions and our proposed BSDP
framework based on an evaluation matrix including data modelling, provenance granular-
ity level, type of queries supported for provenance generation, provenance visualization,

and its applicability is shown in Table 1.4. Main contributions of this work are:

1. Modelling Real-Time Streaming Twitter Data: We propose an algorithm to fetch a
huge volume of real life social data from Twitter’s network through live streaming

by using Twitter Streaming API’s.

2. Key-Value Pair (KVP) data model: We design an efficient Key-Value Pair (KVP) data
model based upon a query driven approach to correlate this large size data through
relationships and dependencies, in appropriate formats so that it makes sense for

further analysis.

3. Querying Current State: Proposed framework allows querying the current data ver-
sion and captures the provenance for the same. The captured provenance is stored in
two column families viz., "select_provenance" and "update_provenance" for further

analysis.

4. Querying Historical Data: An algorithm is proposed to query historical data by
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extending Cassandra Query Language (CQL) with following constructs viz., "in-

non

stance", "all", "validon now", and "validon date".

5. Provenance Generation in ZILKVD: Algorithms are proposed to generate prove-
nance information for all queries including select, aggregate, historical, and data
update queries with insert, delete and update operations, and to store captured

provenance in ZILKVD.

6. Provenance Visualization: Framework also supports provenance visualization via
querying provenance information for audit purpose, tracking all updates, and any

other suitable application.

1.8.3 Provenance Query Templates

We propose the various provenance query templates to design an efficient provenance
query language suitable for all types of databases without knowing anything about their

internal data structures and implementation techniques.

1.9 Organization of Thesis

Chapter 2: Design and Development of Zero-Information Loss Databases This chapter
explains the zero-information loss database concept with suitable examples. It also briefly
describes about implementation of zero-information loss database in different databases
i.e ZILRDB in relational database, ZILGDB in graph database, ZILKVD in key-value pair

database.

Chapter 3: Provenance Framework for Relational Database This chapter presents the
proposed DPHQ (Data Provenance for Historical Queries) framework on top of Zero-
Information Loss Relational Database (ZILRDB). It provides the details about how ZIL-
RDB is implemented, PRA (Provenance Relational Algebra) for provenance capture of
relational queries, provenance storage in relational as well as graph database. It also
provides details of Multi-Layer provenance capture and Multi-Depth provenance query

support with suitable example queries.
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Chapter 4: Provenance Framework for Graph Database Social Data Provenance (SDP)
Framework on top of Zero-Information Loss Graph Database (ZILGDB) is presented in
this chapter. It provides insight of modelling twitter data from csv file to Neo4j Graph
Database, provenance capturing for query results including select, aggregate, data update
queries, and querying provenance. Applicability of proposed framework in terrorist at-
tack investigation by identifying suspicious persons and their linked communities is also

presented in this chapter.

Chapter 5: Provenance Framework for Key-Value Pair (KVP) Database In this chapter,
we propose an algorithm for modelling live streaming real-life Twitter data related to a
specific event using Twitter Streaming API’s efficiently in Apache Cassandra Key-Value
Pair (KVP) Database. Big Social Data Provenance (BSDP) framework on top of Zero-
Information Loss Key-Value Pair Database (ZILKVD) is presented in this chapter. For this,
algorithms are proposed to design ZILKVD, and for capturing and storing provenance
for select queries, aggregate queries, and historical queries. Provenance visualization
support in proposed provenance framework via querying provenance information is also

presented. An algorithm is also proposed for querying historical data efficiently.

Chapter 6: Template Based Provenance Querying In this chapter, we propose the prove-
nance query templates based on all possible provenance queries in different databases,
those may be used for implementing a provenance query language in future that can
support almost all type of provenance queries efficiently in application and database in-

dependent way.

Chapter 7: Conclusion and Future Work In this chapter we conclude the thesis work and

also present future directions for further work.
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