Chapter 3

Provenance Framework for Relational

Databases

In various application domains such as data warehousing, data collaboration, scien-
tific experiments, curated databases, transactional (OLTP) systems, workflow manage-
ment etc., information about origin of any information is much needed. Most of the data
in these kinds of applications are generated from existing data by applying number of
transformations on that. To know about quality of data and some other decision making
aspects such as what is the source of resultant data, why this data is generated, how this
data is derived, who has created this data etc., fine-grained provenance information i.e.
data provenance is required. Data provenance provides detailed information about a data
element such as owner of data, its direct/indirect sources, history of data,transformations
applied on data etc [2, 9, 13, 149, 96]. Provenance information can serves different pur-
poses in relational database system such as incremental maintenance, update propagation

in collaborative environment, audit trail, data discovery, and justification of a query result

e Asma Rani, Navneet Goyal, and Shashi K. Gadia. 2015. Data Provenance for Histori-
cal Queries in Relational Database. In Proceedings of the 8th Annual ACM India Confer-
ence (Compute ‘15). Association for Computing Machinery, New York, NY, USA, 117-122.
DOTr:https://doi.org/10.1145/2835043.2835047

e Asma Rani, Navneet Goyal, and Shashi K. Gadia. 2016. Efficient Multi-depth Querying on Prove-
nance of Relational Queries Using Graph Database. In Proceedings of the 9th Annual ACM India
Conference (COMPUTE "16). Association for Computing Machinery, New York, NY, USA, 11-20.
DOL:https:/ /doi.org/10.1145/2998476.2998480

54

etc. This can be beneficial in various application domains such as bio-informatics, data

warehouse, data retention etc.

3.1 Provenance in Relational Databases

As the data in the world is growing at an unprecedented rate via different means like
scientific applications, OLTP systems, data warehousing etc., data provenance has become
an important topic of research. Data provenance is used to determine the veracity [103]
and the quality [83] of data. Capturing, storing, and querying the provenance data is
of paramount importance as it supports to trustworthiness [96], reliability, reputability,
accountability, privacy, and quality [83] of data. In the context of scientific experiments,
data provenance can be used in reproducing the experiments [124] and to determine the
quality of work. It empowers the auditing process, and helps in view maintenance [12],
update propagation [47, 48] without executing the query again. In addition to this, it also
provides scope for data analysis with less efforts in terms of time and volume of data
to be searched [103]. In business domain, it makes easier for the business to trust the
data that is transferred between trusted partners [30], and helps in decision making or
analyzing data. One of the most common examples of provenance information is data
citation, where a reference to a previous publication is mentioned [9]. In the context of
relational database, data lineage [12, 14] consists of relations, tuples, and attributes of
source data along with operators used in transformations i.e. Transformation Provenance
[86]. For large database applications, this life cycle can be quite tedious as data flows
from various files, to database tables, views, and curated databases, while going through
various transformation processes. So, tracking how a particular piece of data is derived
becomes very challenging. Therefore, an efficient provenance capturing and querying
framework in database systems plays a vital role in answering some decision making
aspects such as “What is the source of resultant data”?, “Why this data is generated”?, “How
this data is derived”?, “Who has created this data”?, “History of data”? etc.

Granularity of provenance information can be defined at the following two levels viz.,
coarse-grained and fine-grained. The first level tells us about which sequence of activi-

ties or operators are executed to generate a result set, and the second level gives more

55

detailed information about which source tuples contributed to a piece of data in result
set [30] respectively. In databases, data provenance is captured at fine-grained level as
it is more significant and explanatory. Fine-grained provenance is further classified into
three categories viz., Where-Provenance [13], Why-Provenance [13], and How-Provenance [46].
Where-Provenance identify the sources from where a value is copied into the result set as
shown in Figure 1.6 in Chapter 1. It only tells us about the cells from where the value is
coming, but not about the source tuples which are sufficient enough to generate the result
tuple by executing the query again on provenance information. DB-Notes [27, 28], MON-
DRIAN [41], BDBMS [40, 62, 79], and MMS [53, 54, 55] relational provenance frameworks
capture where-provenance via annotation propagation approach [30]. Why-Provenance
captures, why a result tuple has been derived. It generates the source tuples which con-
tributed to produce the result tuple, and are sufficient enough to produce the result tuple
by executing the same query again on provenance information. But, it does not provide
any information about the derivation process of a result tuple i.e. how these tuples in
provenance information have contributed towards the result tuple generation. PERM [86]
model captures why-provenance using query inversion approach [30]. How-Provenance
captures the complete derivation history of a result tuple in a form of provenance poly-
nomial. ORCHESTRA [29, 64, 47] framework captures how-provenance in collaborative
environment using provenance semiring approach [46, 104]. How-Provenance is a superset
of Where and Why Provenance. Figure 3.1 shows an example of Why and How Prove-
nance. Instance of database shown in Figure 3.1 contains two tables i.e. Part and Partsupp.
Part table contains information about all the Parts supplied, and Partsupp table contains
the Supplier Id of every part supplied. An example query is issued on database to retrieve
all the part names supplied by supplier with Supplier Id 2. Result of query is retrieved
as "Mouse". We are curious to know why this value appears in result set and how it is
derived? To answer these questions, we need to know about the provenance informa-
tion. Figure 3.1 shows Why-Provenance as <P1,PS3> and How-Provenance as <P1*PS3>.
Why-Provenance here shows tuple P1 and tuple PS3 are contributed towards result tuple
generation. How-Provenance here shows that the join operation on tuple P1 and tuple

PS3 is performed to generate the result tuple.

56

Table Part Table Partsupp
Tid Pid | Pname Tid Pid Sid
Pl 1 Mouse PS1 1 1
P2 2 HDD PS2 2 1
P3 3 Kindle PS3 1 2

Query: select Pname from Part p join Partsupp ps on p.Pid=ps.Pid where ps.Sid=2.
Query Result: Mouse
Why-Provenance=<P1, PS3>, How-Provenance= <P1*PS3>

Figure 3.1: Example : Why and How Provenance

3.1.1 Multi-Layer/Multi-Depth Provenance

Tracking how a particular piece of data is derived either directly or indirectly becomes
very challenging. It requires provenance capturing at various stages of the data life cycle.
This necessitates the need for Multi-Layer Provenance Capture [31, 73] and efficient Multi-
Depth Provenance Querying. Multi-Layer provenance captures more useful provenance
information, such as immediate as well as intermediate sources and origin of data. It
also provides information about where a piece of data has been used over time, either
directly or indirectly. This is possible by querying on provenance data with varying
traversal depths i.e. Multi-Depth Provenance querying. Multi-Depth provenance querying
is useful in various database applications such as auditing, debugging [96, 103], error
tracing, trustworthiness [48], quality assurance [9] etc.

Figure 3.2 shows an example of multi-layer provenance in relational database. Database
instances at different times i.e. at time t-2, t-1, and t are shown. Queries Q1 and Q2 are
executed on existing source tables to create new tables in database at different times. Ini-
tially, our database consists of three tables (source tables) viz., Part, Partsupp, and Supplier
at time t-2. Instances of all these source tables are also shown in Figure 3.2. Afterwards,
query Q1 is executed on source tables Part and Partsupp at database instance t-1, and in
result of that result table Part] is generated. Further, at database instance t, another query
Q2 is executed on tables Partl and Supplier, and corresponding result table Partsuppname
is generated. Here, we can see that the table Partsuppname is created from table Part]

which is further generated from tables Part and Partsupp. This shows Multi-Layer Prove-

57

ardwrexqg souruaA0I] IoAR-ONIA 1T°€ 9IMSI]

CALILAICRUAR |

7§ sanddng ape[ed Ksoy
| DdTeg | 2amsag 7 ojemo] ¢ g 70 A1andy=rweuddnsye g
aomeuar0g | 2wew ddng | Aoyddng | awew g | Aoy weg | pnusg
amreuddnsyre g
fsoy
gisg ddnsye g, ey ed T 0JETIO], y od
rqdmg, iy 1 uowa] I | I PR 10 A = fyeg
20UBT2A0I] foyddng | oweu weg | Aoy weq | puig
[HEd
tequnpy | apeped 2apsag 7 8
nRq sjue[diamog I 18
Qo ddng | owen ddng | Aeyddng | pus ddnspreq Hed
121jddng
{ £ £15d [apuelg {50y ojemo ¢ ¢d
[4 d repuelg | ededed mofax z d
! I 115d [gpuelg Toma] L]
Aayddng | Koy weq | pusd pueIq JiEq WU [eg
ddnsyreg eg anpddng /
ddnsyreg e ayddng ™Y
swenddnsyieg (< HIof |~ ddnsyeg [11jddng
: [Aso ojemo],, —amwen Jed'1d 2zaqpm s Jatjddns pg 1d pred
woy awen ddns*Aayddns*awen wed'£ay wed joajas se awenddnsired 21qe) 2jpar) 170 1Hed lﬂ/rw ey ddusueg
" Jpuelq,, =pueiq pred a5aym > uiop
sd ddnsyred pq d pred woxy Aayddns‘amen yredAay yred jaoas se Tyed 2qe) 2je21) 1) WEd Bl S
BRI Meg
_) aseqe)e(q :
[-) aseqele]

7-) aseqerR(

58

nance. Instances of all the derived tables i.e. Partl and Partsuppname including Provenance
Information, i.e., which and how tuples from source tables are contributing to generate the
resultant tuples, are shown in Figure 3.2. Here, we can see that the provenance of a tuple
(Psntl) in Partsuppname table is Partl.Pt2*Supplier.S2, i.e., tuple Pt2 of Partl table and
tuple S2 of Supplier table are contributed to generate it using Join operation. But, the
tuple Pt2 of Partl table is further derived from tuple P3 of Part Table and tuple Pst3 of
Partsupp table as shown in Partl table. This shows, tuple P3 of Part Table and tuple Pst3
of Partsupp table are indirectly contributing towards a tuple (Psntl) in Partsuppname ta-
ble. Figure 3.3 shows the complete multi-layer provenance graph of example shown in
Figure 3.2. Querying on this multi-layer provenance graph with varying traversal depths
i.e. Multi-Depth provenance querying is useful in various applications. This leads to the
requirement of an efficient multi-layer provenance framework. Furthermore, for the ap-
plications which can not afford to lose the data such as auditing, data discovery, error
tracing etc., provenance for historical queries are beneficial. TRIO [31, 73] and GProM
[121] captures the provenance for updates which further supports to capture provenance
for historical queries.

Provenance storage and querying are also critical requirements for all database ap-
plications, and must be supported by a provenance framework. Directed Acyclic Graph

(DAG) [93, 104] is a common way to represent provenance information, as this informa-

tion consists of various intermediate sources and/or origins of data in the form of a tree

Partsupp.Pstl

Partsupp.Pst3
Supplier.S2

Figure 3.3: Multi-layer Provenance Graph of Example in Figure 3.2

Partsuppname.Psntl

59

like structure as shown in Figure 3.2 and 3.3. Graphs can be nested, i.e. each data item
may be further described by a separate subgraph. Although, storing a graph in a relational
database is possible, but querying this is very inefficient as it requires several join oper-
ations [93]. Further, as the size of graph increases, execution time for queries increases
exponentially [93, 123]. Moreover, SQL queries for any graph operation is very complex
and prone to errors. On the other hand, graph databases allow easy expression of queries
on graphs which can be executed efficiently as compared to relational databases. Graph
databases can also scale to billions of nodes and can traverse thousands of relationships
efficiently. This leads to requirement of a provenance framework that can efficiently store
and query provenance information especially multi-depth provenance query.

From the available literature on provenance frameworks in relational databases, it is
evident that most of the existing data provenance frameworks either do not store the
provenance information at all (support querying provenance while generation), and even
if they store the provenance information, they store it in relational database for querying
and suffers from query performance issues. Few of the existing provenance frameworks
such as TRIO and ORCHESTRA supports multi-depth provenance queries but store the
captured provenance in relational database only. Although, relational databases can store
graph data such as provenance graph, but they are not efficient for multi-depth querying
on provenance. Because, with increase in data queries, the volume of provenance infor-
mation also increases, leading to increase in number of join operations for provenance
queries with varying depth. As discussed earlier, provenance for historical queries are
also very much needed for applications such as auditing and error tracing, but only TRIO

and GProM support provenance for historical queries.

3.1.2 DPHQ

To bridge the above identified gaps, we propose a provenance framework, Data Provenance
for Historical Queries (DPHQ), which supports multi-layer provenance generation and
multi-depth provenance querying. Qualitative analysis of existing provenance solutions
and our proposed DPHQ framework based on an evaluation matrix which includes type

and level of provenance generation, type of queries supported for provenance generation,

60

provenance storage, and provenance visualization support is shown in Table 1.2 of Chap-
ter 1 (page no. 33). DPHQ is capable of capturing the detailed provenance information us-
ing proposed extended relational algebra i.e. Provenance Relational Algebra (PRA) for ev-
ery result tuple of ASPJU (Aggregate, Select, Project, Join, Union) queries, including that
for historical queries. To capture provenance information for historical queries, we need
to efficiently maintain the complete history of all updates in the database. For this pur-
pose, we propose and implement Zero-Information Loss Relational Database (ZILRDB)
on top of a relational database. ZILRDB is based on the concept of Zero-Information Loss
Database (ZILD) [3]. ZILRDB is space efficient as for every update it only stores updated
value in nested table without storing the values of other attributes in new row, unlike
relational databases which use Type Il changes (new record approach). Further, a result
tuple for a query can be generated in multiple ways, thus the proposed DPHQ frame-
work captures the detailed fine-grained provenance information in the form of prove-
nance polynomial, which includes all the derivations to generate a given result tuple.
Further, to provide efficient multi-depth provenance query support, captured provenance
information about result tuples of queries as well as information about queries are stored
in both relational database and in Neo4j graph database. The salient features of DPHQ

framework are:

o Zero-Information Loss Relational Database (ZILRDB): ZILRDB is implemented on
top of relational database using object-relational database concepts like user-defined
data types and nested tables to maintain all updates efficiently without any loss
of information. ZILRDB supports data versioning to maintain history of all data
updates (i.e., insert, update, and delete query) as provenance information. It also
stores information about all queries, and can generate result of any query that was
executed in the past, i.e., historical query. The result will be the same as seen in the

past.

® Provenance Relational Algebra (PRA): Provenance Relational Algebra (PRA) which
is an extension of conventional relational algebra is proposed for capturing prove-
nance information for all queries executing on ZILRDB. PRA supports provenance

for ASPJU (Aggregate, Select, Project, Join, Union) queries. The proposed DPHQ

61

framework is implemented on top of ZILRDB and captures the detailed provenance
information using proposed PRA. Framework also supports Multi-Layer provenance

capture.

* Querying Current State: Proposed framework allows querying the current data ver-
sion and captures the provenance for the same. The captured provenance is stored

in both relational and graph database for further analysis.

* Querying Historical Data: It enables queries on archived historical data in nested
tables by using proposed extended SQL Constructs viz., "instance", "all", "validon
now", and "validon ‘date™ respectively. Framework also support for querying data

any time in the past as well as some time range as predicate specified in query.

* Provenance for Historical Queries: Proposed framework enables to trace the prove-
nance of each result tuple of query executed in the past i.e. historical query. Frame-
work supports to produce same result of a historical query executed any time later

even after the data is modified, which further helps in auditing applications.

* Provenance Visualization: Captured provenance information can be easily visual-
ized in both relational and graph database, i.e., how it is represented, what is prove-
nance for each result tuple of every query executed with varying traversal depths

i.e. multi-depth provenance querying for different purposes.

3.2 ZILD Architecture for Relational Database (ZILRDB)

In general, a Relational database D consists of a collection of relations {Ry,Ry,.....,R,} with
a pre-defined schema of each relation. Further, each relation schema consists of a list of
attributes {A;,A,,.....,A,} that contains a set of elements from their attribute domains A, of
particular data type (in-built or user-defined data types). In our work, we first implement
Zero-Information Loss Relational Database (ZILRDB) on top of a conventional relational
database using object-relational database concepts like user-defined data types and nested

tables. Salient features of ZILRDB are as follows:

e ZILRDB maintains all updates efficiently without any loss of information.

62

e ZILRDB provide data version support to maintain the history of all data updates

(i.e., insert, delete, and update operation) in form of provenance data.
* [t enables querying on historical data, i.e., retrieving different versions of data.
¢ It also supports provenance generation for historical queries.

A complete flowchart for creating ZILRDB schema from a given relational schema is
shown in Figure 3.4. Process initiates with identifying all the tables in database in which

data is updatable and historical data needs to be maintained as provenance information.

Find all the tables (TABLES [M]) of conventional database (D)
v

1=0

Add valid from, valid to,
tupleid Columns to
ZILRDB Table Schema.
¥
Analyze the column[J]
Create Table.
I++
1Add Column to ZILRDB T Clhean [i]
Table Schema. Undatable?
Ft pdatable?
Y
Create type TYPE1 which has Column[JT],
Valid from, Valid to members.
v
Create tvpe TY PE2 which is table of TYPE1
v
Create Column of TYPE2

Figure 3.4: ZILRDB Schema Design Flowchart

63

Afterwards, identifying all the columns of tables (identified in previous step) which are
updatable. If the identified column is not updatable then the column with corresponding
data type is added into ZILRDB schema, otherwise for every identified updatable column,
new type i.e. "TYPE1" is created that consists of "column name", "valid_from" and "valid_to"
attributes. Here, "column name" stores corresponding "column value", "valid_from" stores
"date/time" of existence of column value in database, and "valid_to" stores "date/time" of
expiry of corresponding column value in database respectively. For, the currently existing
column value "valid_to" stores "null". Afterwards, an another type i.e. "TYPE2" which is
a table of type "T'YPEI" is created. Thereafter, a corresponding updatable column with
user-defined data type "TYPE2" is added into ZILRDB Table Schema. Thus, a column of
user-defined data type "TYPE2" is a nested table in database which can store all updates
on corresponding column with its time of existence and time of expiry. Finally, "Tupleid",
"vaid_from", and "valid_to" attributes are added in Table Schema. "Tupleid" stores unique
value in every tuple which can identify the table and tuple with ease, that is further
used for generating provenance polynomial. Attributes "valid_from" and "valid_to" in every
tuple capture the "date/time" when a tuple is created (i.e. time of existence), and "date/time"
when a tuple is deleted (i.e. time of expiry). For all the currently valid tuples, their
"valid_to" attribute stores "null" value. Pseudo-code for designing ZILRDB schema is given
in Algorithm 1. The algorithm is explained using an example of TPC-H Schema [122] as
given below:

PART (partkey, name, mfgr, brand, type, size, container, retailprice, comment)

SUPPLIER (suppkey, name, address, nationkey, phone, acctbal, comment)

PARTSUPP (partkey, suppkey, availqty, supplycost, comment)

NATION (nationkey, name, regionkey, comment)

REGION (regionkey, name, comment)

CUSTOMER (custkey, name, address, nationkey, phone, acctbal, mktsegment, com-

ment)

ORDERS (orderkey, custkey, orderstatus, totalprice, orderdate, orderpriority, clerk,

shippriority, comment)

LINEITEM (orderkey, partkey, suppkey, linenumber, quantity, extendedprice, dis-

count, tax, returnflag, linestatus, shipdate, commitdate, receiptdate, shipinstruct, ship-

64

Algorithm 1 ZILRDB_Design: Design ZILRDB (Zero Information Loss Relational
Database) schema
Input: Conventional Relational Database Schema (D)

Output: Corresponding ZILRDB Schema

1: R < Retrieve all relations in D
2: forallr € R do
3: A + Retrieve all Attributes of r

4: ZILS < NULL //Zero-Information Loss Schema (ZILS) corresponds to r

5. ZILS < Add r_tid /fr_tid is an attribute for unique tuple id

6: forallac A do

7: if a is Updatable then

8: Create Tn //Tn is a Nested Table Type with attributes a, valid_from, valid_to
9: Create ZILA //ZILA is a Zero-Information Loss Attribute of type Ty

10: ZILS + Add ZILA

11: else

12: ZILS <~ Add a

13: end if

14: end for

15. ZILS < Add Valid_from, Valid_to

16: Generate Q. //Qc is a Create Query corresponds to ZILS
17: Execute Q.

18: end for

19: End

mode, comment)

Nested tables are created for all the updatable attributes in the ZILRDB schema to
capture all the data update information, as shown in Algorithm 1. Let us consider an
example of Region table in above TPC-H schema, which consists of regionkey, name, and
comment attributes, where regionkey is the primary key of table which is not updatable.
On the other side, values of attributes name, and comment are updatable. To store all the
update related to attribute name, we first create a nested table type i.e. Reg_Name for name

as shown below in Step 1 and Step 2:

Step 1:

create or replace type R_Name as object
(eR_Name varchar2(60),
valid_from timestamp,

valid_to timestamp);

Step 2:

65

create or replace type Reg_Name as table of R_Name;

In a similar fashion, nested table type i.e. Reg_Comment for attribute comment is also
created. Finally, in Step 3, we are creating Zero-Information Loss relational table corre-
sponds to Region table which consists of nested tables for attributes name, and comment

in our database (ZILRDB) as below:

Step 3:
create table Zero_Region
(R_RegionKey number(38) primary key,
r_Name Reg_Name,
r_Comment Reg_Comment,
r_valid_from timestamp,
r_valid_to timestamp,
R_tID varchar2(10))
NESTED TABLE r_Name store as rReg_Name_tab,
NESTED TABLE r_Comment store as rReg_Comment_tab;

In the same manner, all the tables are created in ZILRDB using nested table approach.
Here, the complexity of proposed Algorithm 1 depends on the following two factors;
First, how many relations 'r’ is being designed as zero-information loss in the database.
Second, how many attributes ‘a’ of a relation 'r” are being designed as a nested table for
capturing update information. Hence, theoretical complexity of Algorithm 1is O(r * a) i.e.
O(n?). However, number of relations 'r’ in a database are usually very less and a very few
attributes of relation are required to maintain updates in database. Therefore, in practical
this algorithm runs faster despite O(n?) complexity.

Now, whenever any insert, update, or delete operation is performed on the database,
it maintains complete history of data in ZILRDB, which supports querying current state,
querying historical data, querying through time, capturing provenance for historical queries,
and obtaining same result of historical query as in its previous executions. Algorithm 2
shows pseudo-code for capturing all necessary changes in ZILRDB whenever any data
update query is issued on database. Initially, the issued query is parsed to retrieve parsed

results along with the type of query (insert/update/delete) in line 1. If the issued query

66

Algorithm 2 ZILRDB_Gen: Generate ZILRDB (Zero Information Loss Relational
Database)

Input: ZILRDB (D), Query Q (Insert/Update/Delete Query)
Output: Updated ZILRDB (D) with history maintained

1: Parsed Result (P), Query Type (Q;) < Query_Parser (Q)
2: if Q¢ is Insert-Query then

3:

N o

R, PK, Vpi, A, V < Retrieve(P)

//R=Relation, PK=Primary Key of R, V=Value of primary Key of row to be inserted,
//A=Attributes, V=values of attributes A

Q; < Query_Rewriter(R,PK, VA, V)

//Q; is a rewritten insert query to insert values V of attributes A with "valid_from” of all
/fattributes, and "valid_from” of row to be inserted as "current date/time”

Execute Q;

else if Q; is Delete-Query then

R, PK, Vpi < Retrieve(D)
//R=Relation, PK=Primary Key of Relation R, V=Value of primary Key of row to be deleted

8: Qg < Query_Generator(R,PK,V)
//Qq is a corresponding update query to set "valid_to” of all attributes and "valid_to” of
//row to be deleted as "current date/time”

9: Execute Qq

10: else

11: R, PK, Vpk, A, U < Retrieve(P)
//R=relation, PK=Primary Key of R in update query Q, V=Value of primary Key for row
//to be updated, A=Attribute to be updated, U=Updated value

12: Qu « Query_Rewriter(R,PK,Vpk,A)
//Qu is rewritten update query to set “valid_to” of currently valid value of A as “current
date/time”

13: Execute Qy

14: Qi < Query_Generator(R,PK,V,,A,U)
//Q; is corresponding insert query to insert U (updated value of A) with "valid_from” and
//"valid_to” of Attribute A set as "current date/time” and “null” respectively

15: Execute Q;

16: end if

17: End

type is an "Insert Query", then a rewritten insert query is generated to insert a new row in

the corresponding table with "valid_from" and "valid_to" attributes of all columns as well as

row set as "current date/time" and null respectively and executed further (refer to lines 2 to

5). If the issued query type is a "Delete Query", then a corresponding update query is gen-

erated to set "valid_to" attributes of all columns as well as row as "current date/time" as time

of expiry of row and executed further (refer to lines 6 to 9). Thus, in this way, whenever

a delete operation occurs, its time of validity (i.e., time of expiry) is set as "current date/-

time", rather than to delete a row permanently from database. Now, if the issued query

67

type is an "Update Query", then a rewritten update query is generated first to set "valid_to"
attribute of currently existing value in corresponding column as "current date/time" and
executed further (refer to lines 11 to 13). After this, an insert query is generated to insert
a new value of column i.e. updated value in the corresponding nested table, and to set
values of "valid_from" and "valid_to" attributes of updated value as "current date/time" and
null respectively and executed further (refer to lines 14 and 15). Thus, in ZILRDB, when-
ever any update happens, it only stores updated value in nested table of corresponding
column without storing a complete row as a new tuple unlike relational databases Type
IT changes (new record approach). In this algorithm, insert operation takes O(1) time to
insert a new row in database, while delete or update operation takes O(n) times to search
a row to be deleted or updated in database. Therefore, overall complexity of algorithm 2

is O(n).

3.3 Data Provenance Framework using ZILRDB

In this section, we present the proposed DPHQ (Data Provenance for Historical Queries)
framework that is designed on top of ZILRDB. DPHQ framework supports to capture
provenance for ASPJU (Aggregate, Select, Project, Join, Union) queries along with his-
torical queries, and data update (insert, delete, and update) queries. Figure 3.5 shows
the architecture of proposed provenance framework. The architecture mainly consists
of following components viz., Relational Database, Query and Provenance Capturing Module
(QPCM), ZILRDB, and Graph Database. Initially a user issues a data retrieval query on the
conventional relational database in the form of simple SQL query, which is further sent
to QPCM layer. The major tasks of provenance generation are performed in QPCM layer.
First, QPCM layer rewrites the issued SQL query into a query which is to be executed
on ZILRDB. The query on ZILRDB requires join operations between nested tables of at-
tributes and relation mentioned in issued query statement. Second, query is required to
be rewritten as per the proposed Provenance Relational Algebra (PRA) (explained in next
subsection 3.3.1). PRA captures provenance information in the form of provenance poly-
nomial for all the result tuples of a query. The task of query rewriting as per the proposed

PRA is also performed in QPCM layer. Therefore, in the whole process, QPCM hides the

68

Querv Provenance Graph
Besult

Graph Database

11 11

ZILRDEB —

o

Query and Provenance Capturing Module ({QPCM}

1T

N Query Relational Database Provenance |e
Table Table
User Query

Figure 3.5: Proposed DPHQ Framework

complexity of the system by abstracting ZILRDB layer and provenance generation using
PRA from the user. In the end, the query information and the captured provenance poly-
nomials are stored in relational database in guery table (querytabletpch) and provenance table
(provtbl1), respectively, and also in a Neo4j graph database (provenance graph) for efficient
multi-depth provenance queries as shown in Figure 3.3.

Unlike any conventional relational database, DPHQ supports querying of historical
data that has been updated or deleted by using the attributes "valid_from" and "valid_to"
of nested tables as well as rows in ZILRDB. DPHQ also supports historical queries i.e. the
queries which are executed in the past and generates the same result in every subsequent
executions. This helps in auditing and data diagnostic applications. To support histori-

cal data queries and historical queries, we have extended SQL constructs with four new

"non m

user-defined constructs viz., "instance", "all", "validon now", and "validon ‘date” to retrieve

currently valid data and historical data. The concept of historical data query is explained

with an example query below:

Example Query: Display the partname supplied by supplier ‘Supplier#000000001” on
15/04/2015.

User Query: select instance p_name from part p, partsupp ps, supplier s where p.p_

69

partkey = ps.ps_partkey and s.s_suppkey= ps.ps_suppkey and s.s_name="Supplier#00000
001" validon "15-Apr-2015".

In the above example query, user issues the query using extended SQL constructs
"instance" and "validon date" to get historical data of any particular time in the past. The
issued query is further passed to QPCM that will automatically rewrite the query that can
be executed on ZILRDB.

3.3.1 Provenance Relational Algebra (PRA)

We introduce Provenance Relational Algebra (PRA), which is an extended relational algebra,
for capturing provenance information for all queries executing on ZILRDB. PRA is defined
in a way that every rule has corresponding natural Relational Algebra (RA) expression,
and can be easily translated into SQL queries. PRA comprises of 7 rules, as presented in
Table 3.1, which are required for provenance capturing in the proposed DPHQ framework.
Explanation of all rules in PRA with suitable example queries are given next. Instance
of relations for example queries Q1 to Q6 are shown in Tables 3.2 to 3.6.
Rule 1 (R1) : Conventional relational algebra gives complete relation (R) as a result, but
PRA gives complete relation (R) along with unique tuple id’s (Tid) to each tuple in result

set as provenance information.

Rule 2 (R2) : The tuples satisfying the predicate (c) on relation R are retrieved as part
of the result set using conventional RA expression, but PRA generates all result tuple’s
satisfying the predicate (c) on relation R along with the unique tupleid (Tid) for every
row as provenance information. Illustration of Rule 2 is shown with Example Query Q1

below:

Example Query (Q1): Display all the parts supplied by manufacturer name "Manufac-

turer#2".

SQL Query (with construct): select instance * from part where P_mfgr= "Manufacturer#2"

validon now;

Here, the above SQL query is first rewritten using rule R2 of PRA, and then executed

on ZILRDB to retrieve the result set. Result set includes all result tuples along with tuple

70

a|qeL e dpdwes :z'¢ a[qeL.

. 13pop
Td41S 29p umoliq
966 NMIA dVIAM 0C | A4LVId WNIddN cl#puelq T#IemORMURy | 98199 anbyue 9¢ 96d
AAd
-dOD adaHsN¥d 4Asox oyewo)
<g6 ovVd ddiN 6 AINONODH capuel] Zyrompeynuely | deop weand AYs [qad
YAIIOD AFHSIN uef> ededed mor
¥<6 ASVD dViIM 6l | Nd HOAVT 1g#pueLg Z#IRINORINUEN | -[94 Juru paypue[q 1 vad
TAMOIN AHHSIN a1dind [rayseas s
€96 OvVd ddIN ¢¢ | N9 ANONODH gaHpuelq ZH#IDINPRINURIA | -UI0> asor onbsiq €9 gad
NIL d9HSIN dosp A3s ade|
2S6 HSVD dVIM ¢ | ¥MNd AIVANVIS qeHpuelq gHIoIMPRIMUEY | JYSupnu uows| 14 cad
doudrejor—g Isureyuod—J | 9z1s—J odAy—g pueiq—J ISy dureuJ Aopred—g | pud
J) e1ge UOTJR[OY 90UBUSAOLJ ('€ d[qeL
Vd) eIGIFY uony| 19
A A A\Mv Q_Emm@\o\s mu:u:mang@@vm@%TO: X=Dpq A MC M@\O\Pv mu:::m;oixmm:d: AMD 885, @#ﬁmw.ﬂmmaﬂ N
AAA\M 97 \NC ET\mEH*\mEHm\MEV J)33v’ U\A\u uuzetma&mTﬁva@\m\ME GOy C@OH wﬁwﬁvﬁ o
A A A\m T \N: M&T\mn.ﬁ*\mwﬁ\m\mzu d)83v'o) u &:c:%o\ETﬁmvm@\m\x: v wiof Yo oy
AAA\m I \ND ETME&%MEH%%EV d)83v'0), vazgmg\iTﬁmvm@\m\mE Sy urof il
A v ?uzeiaﬁmTA@Evmmt\«\v: AND VI aum.mo.ﬁm oy
AA v &:c:mssmTEﬁmu:v Eb AND Gvb 199195)l
A\Mv ?u:u:maoiTEﬁmvE M | ssedoy /uedg R
uorssaxdxy 10jerddQ
uorssardxg vy ddueusrorg | VY TeurSuQ [euonedy | oMYy

71

| PS_tid | PS_partkey | PS_suppkey| PS_availqty | PS_supplycost |
PS216 54 7555 536 259
PS217 55 56 7874 611
PS218 55 2556 8460 236
PS221 56 57 241#2 855
PS220 55 5056 8278 134
PS219 55 7556 1289 130

Table 3.3: Sample Partsupp Table

| R_tid | R_regionkey | R_name |
R1 1 Africa
R2 2 America
R3 3 ASIA
R4 4 Europe
R5 5 Middleeast

Table 3.4: Sample Region Table

| S_tid | S_suppkey| S_name | S_address | S_acctbal| S_nationkey| S_phone
S6 6 Supplier# | tQxuVm7s7CnK 1365 14 24-696-
000000006 997-4969
S56 56 Supplier# | fUVtIUVal Gi- | -632 16 26-471-
000000056 | HBOuYoUQ 195-5486
XQINFNLQR3GI
52556 | 2556 Supplier# 285GS9PeiB9kow | 5211 21 31-134-
000002556 | ip yihvEtix- 4225382
taR4FplLGuUj0y
S5056 | 5056 Supplier# | jNR,eLOeczR3Q4 | 2017 16 26-945-
000005056 | xug3aW3K 772-6739
S7556 | 7556 Supplier# | illFclAmBLde -748 23 33-974-
000007556 | PCl6d 496-5278

Table 3.5: Sample Supplier Table

| N_tid | N_naionkey | N_name | N_regionkey |
N1 1 South Africa | 1
N2 2 Canada 2
N3 3 New York 2
N4 4 Toronto 2
N5 5 Jordon 5
N6 6 Nigeria 1
N7 7 Sweden 4
N8 8 Norway 4
N9 9 Sri Lanka 3
N10 10 India 3

Table 3.6: Sample Nation Table

72

id’s of source tuples which contributed to produce the corresponding result tuple as a

provenance information under "Provenance" attribute as shown in Table 3.7.

Result| P_ P_ P_mfgr | P_ P_type | P_ | P_ P_retail | Provenance
tu- partkey | name brand size | con- price
pleid tainer
qlt0 | 53 bisque Manufa- | Brand| ECON- | 32 | MED | 953 P53
rose cturer#2 | #23 oMY BAG
cornsilk BUR-
seashell NISHED
purple NICKEL
qlil 54 blanched | Manufa- | Brand| LARGE | 19 | WRAP | 954 P54
mint cturer#2 | #21 BURNI- CASE
yellow SHED
papaya COoP-
cyan PER
qlt2 | 55 sky Manufa- | Brand| ECON- | 9 MED | 955 P55
cream cturer#2 | #23 oMY BAG
deep BRUS-
tomato HED
rosy Ccor-
PER

Table 3.7: Example Query Q1 Result

Rule 3 (R3) : In Projection operation, a subset of attributes (A) of relation (R) are part of the
result set using conventional RA expression. But with PRA, Rule 3 generates Attributes
(A) as well as unique tuple id (Tids) of rows which are contributing towards A in the result
set of project query. If one result tuple is derived from more than one rows (source tuples),
then aggregation on all tupleid’s of source tuples are performed which are contributing
towards it using ‘+” operator between tuple id’s to generate the corresponding provenance
polynomial. It means that there are multiple derivations of a resultant value. Illustration

of Rule 3 is shown with Example Query Q2 & Q3 below:
Example Query (Q2): Display all the supplier names from nation with nationkey 16.

SQL Query (with construct): select instance s_name from supplier where s_nationkey=16

validon now;

Q2 is a project query to retrieve a selected list of attributes in its result set. Query is

first rewritten using Rule R3 of PRA expression, and then executed on ZILRDB to produce

73

the result set. Result set includes all the projected attributes from source table along
with tuple id’s of source tuples which contributed to produce result tuple as provenance

information under "Provenance" attribute as shown in Table 3.8.

Resulttupleid | S_name Provenance
q2t0 Supplier#000000056 S56
q2tl Supplier#000005056 55056

Table 3.8: Example Query Q2 Result

Example Query (Q3): Display different brands of all parts.
SQL Query (with construct): select instance distinct p_brand from parts validon now;

Q3 is also a project query, but with distinct values in a row. Query will remove the
duplicate rows from its result set. Thus, according to Rule R3, if a result tuple is derived
from more than one rows in the result set, then the tuple id’s of all source rows are
aggregated using ‘+" operator. Result of the above query is shown in Table 3.9 along with
provenance information of each result tuple. Here, we can see that result tuple q3t1 has
multiple derivations and is generated from two source tuples of Part relation individually
i.e. tuples with id P53 and P55. Thus, the provenance polynomial for corresponding result

tuple is "P53+P55" i.e. aggregation of all source tuples using ‘+" operator.

Resulttupleid P_brand Provenance
q3t0 Brand#35 P52

q3tl Brand#23 P53+P55
q3t2 Brand#21 P54

q3t3 Brand#12 P56

Table 3.9: Example Query Q3 Result

Rule 4 (R4) : If a query is a join query on two or more tables then using Rule R4, re-
sult tuples are generated after executing the query on ZILRDB, along with provenance

polynomial of each result tuple. Provenance polynomial aggregates all source tuple id’s

74

from different tables which are contributing towards each result tuple of query using “*
operator. Example Query Q4 below illustrates the join query using R4. Further, if any
result tuple is duplicated in result set then aggregation using ‘+" operator is performed
on provenance polynomials of all duplicated result tuples generated after join operation,
as in case of Rule R3. Illustration of removing duplicates in join query using Rule R4 is

shown in Example Query Q5.

Example Query (Q4): Find the supplier names currently supplying part ‘sky cream deep

tomato rosy’.

SQL Query (with construct): select instance s_name from part p, supplier s, partsupp ps
where p_partkey=ps_partkey and s_suppkey= ps_suppkey and p_name="sky cream deep

tomato rosy" validon now;

Result of the above query using PRA Rule R4 is shown below in Table 3.10. Here, we
can see that the first result tuple with id q4t0 is generated when source tuples with id’s
S56, P55 and PS217 of Supplier table, Part table and PartSupp table respectively, are joined

together. Here, provenance polynomial represents the join operation with "*” operator.

Resulttupleid | S_name Provenance

q4t0 Supplier#000000056 S56*P55*PS217
q4tl Supplier#000002556 S2556*P55*PS218
q4t2 Supplier#000005056 S5056*P55*°S219
q4t3 Supplier#000007556 S7556*P55*°S220

Table 3.10: Example Query Q4 Result

Example Query (Q5): Display all the region names of all nations.

SQL Query (with construct): select instance distinct r_name from nation n join region r

on r.r_regionkey= n.n_regionkey validon now;

Result of the above query using PRA Rule R4 is shown in Table 3.11. Here, we can
see that the first result tuple with id q5t0 is generated when source tuples with id’s R2

and N3, R2 and N2, R2 and N4 of region table and nation table respectively are joined

75

Resulttupleid | R_name Provenance

q5t0 America R2*N3+R2*N2+R2*N4
g5t ASIA R3*N9+R3*N10

q5t2 Europe R4*N7+R4*N8

q5t3 Middleeast R5*N5

q5t4 Africa R1*N6+R1*N1

Table 3.11: Example Query Q5 Result

together individually. Thus, region name "America" is having three different derivations
with provenance polynomials R2*N3, R2*N2, and R2*N4, so after removing duplicates all
these individual provenance polynomials of duplicated values are aggregated using '+’

operator, and generates complete provenance polynomial as R2*N3+R2*N2+R2*N4.

Rule 5, Rule 6 (R5, R6) : For left outer join and right outer join, Rule 5 and Rule 6 are

executed in same way as Rule 4 but with modified join operator.

Rule 7 (R7) : If a query is an aggregate query containing any aggregate function such as
count, sum, min, max etc., then the provenance polynomial of tuple id’s of all source rows
which contributing towards one aggregated value in result set is generated along with the
result tuple. To generate provenance polynomial, another aggregate function is applied
to aggregate source tuple ids. Aggregation on tuple id’s are represented using operator

&. Ilustration of provenance for aggregate query is shown in Example Query Q6 below:
Example Query (Q6): Display the number of suppliers of every part.

SQL Query (with construct): select instance ps_partkey, count(ps_suppkey) as num-

ber_of_suppliers from partsupp group by ps_partkey validon now;

The above query is an aggregate query to count total number of suppliers for each
part. The result of above aggregate query is shown below in Table 3.12. Here, result tuple
with id g6tl is generated by aggregating four source tuples of Partsupp table i.e. PS217,
PS218, PS219, and PS220. Thus, provenance polynomial for this result tuple is generated
as PS217 ® PS218 ® PS219 ® PS220.

76

Resulttupleid | PS_partkey | number_of_suppliers | Provenance

q6to 54 1 PS216
qoétl 55 4 PS217 © PS218 ® PS219 ® PS220
qot2 56 1 PS221

Table 3.12: Example Query Q6 Result

3.3.2 Provenance Generation

Proposed DPHQ framework captures the provenance information using proposed rules
in Provenance Relational Algebra (PRA) as explained in section 3.3.1. We will illustrate
the provenance generation in DPHQ framework for above Example Query Q4 with a
complete flow diagram as shown in Figure 3.6. The user issues a SQL query using user-
defined extended SQL constructs viz. "instance", "all", "validon now", and "validon date",
which is then automatically rewritten by Query and Provenance Capturing Module (QPCM)
for executing it on ZILRDB, and capturing the provenance polynomial as per Provenance
Relation Algebra. The rewritten query generated from QPCM layer executes on ZILRDB,
and query result set along with provenance information as provenance polynomials for
each result tuple in the result set are generated. In the whole process, the complexity of
rewriting the query as per PRA and ZILRDB schema is completely abstracted from the
user by the QPCM layer. ZILRDB returns the query result to the user which consists of
result tuples and corresponding provenance polynomial for each result tuple. In Figure
3.6, we can see that the query result displays all the supplier names which are currently
supplying the part with name ="sky cream deep tomato rosy". The corresponding prove-
nance in the form of provenance polynomial is also generated as shown in "Query Result".
Captured provenance is then stored in relational as well as graph database for later anal-
ysis. In a similar fashion, provenance for historical queries can also be captured easily
using extended SQL operators "instance" and "validon date" as shown in example query

below:
Example Query (Q3): Display different brands of all parts.

Let us consider the above query which was initially executed on 01/05/ 2021. This

77

¥ A1on) odurexy 10§ uoneISULY) 3dULULAOL] pue Sutf1en) : OHJIA 9°¢ 21n31g

JAsorojemno) deep team Ays,=oureu d
pue Aayddns sd=Aayddns™ s pue
wd 1€:+0:6 Aammed sd=£emmed daieym sdddnsyied
0CTSd#SCds9SELS €1 o10z-unl-gg 112501 ‘s 1arpddns *d yred woxy swew s pa[as +b
61CSd+EEd+95058 b amotumornea c=Aayddns sd pue
81 7SS Sdx9SSTS T1wh We TH 106 Hmmuummglmmuhmﬁ.amHmﬁoaBmmlo“am
LTTSdsSSds95S 014b fﬂr-%mﬁ-wr 1188 ed 019Z O] STRU mmuﬂﬁmld_ 109[as o1b
mdocige: (INI.=STTET T1aJaTMm
FONVNIAOU AL INSTA _mv Ex mm VICINT, N 1
o10z-1de-zz BIISE JIvdavHY, =emweu 1lasuorderaepdn 6b
AL AR TNLL qasn A¥AN0 a0
JIqEL AN
I ¥
foumeu s2'ss Aq dnois ,Aso1ojewo)]
doap wear Ays,=emmet d'ud pue [nusio) pieaud pue
0CCSd+CSd+95SLS OmmFDODOD#ﬁoJﬁmQ—.—W mu.w._u [Inu st O.ﬁlﬁm—m.ﬂ.mm puenu sI Owl_uﬂmb.lm— pue Owlﬁﬁmblw.&
61TSd«55d«9508S | 950500000431ddng b pueqnusio} prea spue Asyddns sd=~Aayddns s
R17Sd4SSdx9SSTS | 9557000004t ddns b TAATIZ puefemred sd=Aamyred dereymud (ewreu d d)erqe:
‘ss(ommen s's)ejqe} sdddnsyred o1ez ‘s serddns oxez °d

LTTSd%SSd%9SS | 950000000#1ddns 0rb

HONVNIAOEL SmweN S

aerdny

JMSIY AN

yed ooz wogg soteueAord (+.. (o (o ox| U sd'sd
P sdsdizian (.. /lpn d dpn ddgian|i(.llpn s's
“PIy §°S)TIAU WIMINEOUOY wim)adedal ‘atueu $2°5S 122[as

AIaN() WA

{AAOTUTOPIBA , £SOT01RUTO)

doap mea1o Ays,=sweu dpue Layddns sd=£Aaxyddns s
pue SLoyyred sd=Aamyred d ameym sd ddnspred
‘s Jorpddns ‘d j1ed wox sweu s 2oUe}SUI 103[as b

%

(INDdO) 2ANpoIN SUNLIMY A121)

78

is an example of historical query. Afterwards, some updates are performed on data. But
now, we desire to re-run the query for any reason such as auditing. To retrieve the same
result as in its previous executions (Example Query Q3 shown in section 3.3.1) as shown
in Table 3.9, query is issued using extended SQL operators "instance" and "validon date"

as shown below:

Extended SQL Query: select instance distinct p_brand from parts validon ‘01-May-
20217

The above extended SQL query is initially passed to QPCM layer, and rewritten as
per PRA and ZILRDB schema. Rewritten SQL query is passed further to ZILRDB and
retrieves the same results as in its previous executions and every subsequent executions
also. In this way, DPHQ framework supports to capture provenance for current as well as
historical queries.

The framework also supports multi-layer provenance generation as shown in Figures
3.2 and 3.3. For example, consider any create-select query (Q) which first retrieves the
result set as per select sub-query along with provenance polynomial of each result tuple,
and then creates a table (T) for the result set of select sub-query. Now, when we execute
any query QI on table T, then the provenance for result tuples of query Q1 will be the
tuples from table T because these are the source tuples directly contributing to result
of Q1. But, the tuples in Table T are further derived from other sources as per initial
Query Q. Provenance polynomial of all the contributed sources was generated and stored
in T while executing Q. Therefore, all the sources in provenance polynomial which are
contributing to tuples in T via Query Q, are indirectly contributing to result tuples of
Query Q1. Suppose, we execute a query Q1 on part table, and result of this query can be
stored in a new table, i.e., tablel, if required. The corresponding provenance information
is stored in provenance table. This is the Layer 1 provenance. Now, if we further execute a
query Q2 on tablel, it will generate the result tuples and their corresponding provenance
polynomial. Thus, in this way, the immediate source tuples which contributed to produce
the result set of query Q2 are from tablel (i.e. traversal depth 1). But, the tuples in
tablel are generated from part table via query Q1. So, the tuples of part table are at

traversal depth 2 for result of query Q2. Thus, this is Layer 2 provenance. In the same

79

way, framework supports to capture the provenance up to multiple layers and supports

multi-depth provenance querying.

3.3.3 Provenance Storage

The framework stores complete provenance information of each result tuple of a query
along with query statement and its related information. This provenance information
is used for further analysis, and to perform historical query execution as explained in
earlier section. As the provenance is a graph like structure, we are storing the captured
provenance information in both relational and graph database for efficient visualization

as explained below:

3.3.3.1 Provenance Storage in Relational Database

In relational database, provenance information is stored in two tables viz., "Query Table"
named "querytabletpch" and "Provenance Table" named "provtbll" as shown in Figure 3.6.
Information about all the queries are captured in a "Query Table", which contains QID,
Query, User, and Time attributes. A snapshot of "querytabletpch” in shown in Table 3.13.
This provenance information about queries is beneficial in re-execution of a query, and in
auditing such as by whom and when the query is executed.

Provenance information about all result tuples of a query is stored in "Provenance Table"
as shown in Figure 3.6. This provenance table contains Resultid (concatenation of QID and
TuplelD), and provenance (provenance polynomial). A snapshot of "provtbl1" is shown in
Table 3.14. This information allows tracing the origin of any data derived upto any depth,

error tracing, data diagnostics etc.

3.3.3.2 Provenance Storage in Graph Database

To provide efficient provenance query support, captured provenance information of all
the queries along with each result tuple is also stored as a provenance graph in Neo4;
graph database. This allows us to query the provenance in graph database in all possible
ways, without toggling between relational and graph databases. Provenance graph of

Example Query Q4 is shown in Figure 3.7. In provenance graph, edges are directed from

80

QID Query Username | Validon

q63 select instance p_name from partpartsupp | System 02-APR-16

where p_partkey = ps_partkey and 12.00.00.000000000
ps_suppkey=1 AM

q78 select instance p_name from part, supplier, | System 04-APR-16
partsupp where p_partkey = ps_partkey and 12.00.00.000000000
ps_suppkey = s_suppkey and s_name = 'Sup- AM
plier#000000007” and p_retailprice>100

q83 select instance p_name,s_name from part, | Tinu 26-APR-16
supplier, partsupp where p_partkey = 12.00.00.000000000
ps_partkey and s_suppkey = ps_suppkey AM
and ps_availqty>9900

q84 select all c_name from customer, lineitem, | Tinu 26-APR-16
orders, part where c_custkey = o_custkey 12.00.00.000000000
and o_orderkey = 1_orderkey and I_partkey = AM

p_partkey and p_name like "Y%chocolate%’ and
p_mfgr="Manufacturer#2’

q86 select instance s_name from supplier where | System 05-SEP-16
s_nationkey=6 12.00.00.000000000
AM

Table 3.13: Sample Query Table (querytabletpch) in Relational Database

Resultid Provenance
q78t0 S7*P90006*PS3600216
q78tl S7*P10006*PS40021

q84t20021 P94484*1.13161453*C65053*0790491

q84t20022 P100514*LI2290360*C65054*0572627

q83t0 S354*P42841*PS171364
q83t1 S5491*P87966*PS351864
q86t0 S70

q86t1 S90

Table 3.14: Sample Provenance Table (provtbll) in Relational Database

source as well as query node to result tuple. Source tuple nodes are annotated with label

"table name", and have two properties viz. "tupleid" and "table name". Result tuple nodes

81

Source Tuples
Join

Operator

Result
Tuples

Figure 3.7: Provenance Graph of Example Query 4

in provenance graph are annotated with label "resultuple”, and have two properties viz.
"resultid" as in relational database and "query execution time" that gives validity time of
source tuples. Query nodes in graph are also annotated with label "querytable", and have
following properties viz. "QID", "query", "user", and "time". Edges from source to result
tuple via operator node signify the sources which are contributing in the generation of
this result tuple and also explains how they are contributing. And edges from query node
to result tuple nodes signify that these are the tuples which are generated from this query.

It is observed that graph database incurred high storage overhead as compared to rela-
tional database, because it creates a separate node for every source, result, query, and op-
erator to store provenance information. In spite of high storage overhead, graph database
is very efficient for queries on provenance data, especially in multi-depth queries as com-
pared to relational database, as it organizes the relevant data using their relationships and
quickly respond to complex queries. The relational databases are generally efficient for
queries, where data is not highly connected. The performance of provenance queries in
relational database degrades with increase in number of join operations in highly inter-
connected provenance data. A detailed storage and provenance querying analysis in both

the databases are given later in section 3.4.2.

82

3.3.4 Querying Provenance

The DPHQ framework provides support for querying provenance in both relational and
graph databases using SQL and Cypher query language, respectively. Sample query table
("querytabletpch) and provenance table ("provtbl1") in relational database are shown in
Table 3.13 and Table 3.14, respectively. Sample provenance graph in Neo4j is shown in
Figure 3.7. In provenance graph, all the nodes viz. Query Node, Resultuple Node, and Source
Node have labels and properties as explained in section 3.3.3.2. Provenance information
can be queried in two perspectives viz. 1. provenance queries for justifying query results,
and 2. provenance queries for historical data. In perspective 1, provenance information is
queried for justifying answers of a query result that explains how any information is
generated (single-depth or multi-depth provenance query from destination to source).
It also includes querying provenance information to explore any result tuples derived
from a particular source (single-depth or multi-depth provenance query from source to
destination). It may further include the provenance queries like which data has been
accessed by any user for any purpose. In perspective 2, provenance information is queried
to know about different updates of data, or instance of any data any time in the past i.e.
historical data. Illustration of provenance querying from both perspectives in relational

as well as graph database are explained with example provenance queries given below:

Example Provenance Query (PQ1) : Display all the data accessed by the system user.
Provenance Query in Relational Database using SQL :
select distinct qt.qid, pt.resultid , pt.provenance, from provtbll pt, querytabletpch gt
where gt.username="system’ and SUBSTR(pt.resultid, 0, INSTR(pt.resultid, 't')-1) like
qt.qid;

In the above query, we want to find all the data which has been accessed by a particular
user such as "system" in this query, for any specific purpose such as authorization issue,
auditing etc. To retrieve the required result, there is a need to perform the join operation

between provenance table ("provtbl1l") and query table ("querytabletpch”) in relational

database. The above query requires search in the entire provenance data.

Provenance Query in Neo4j using Cypher :

83

MATCH (node: querytable {user:’system’})-[r]->(b)-[*..2]<-(a) RETURN node.qid,b,a;

The corresponding cypher query in Neo4j for the provenance query PQl is shown
above. This cypher query locates the starting node with label "querytable” having value
of property "user" as "system". It localizes the search space to query nodes only where
property "user" has value "system" instead of whole provenance database as in case of
relational database. After retrieving the starting node, it traces all the outgoing edges
from starting node upto depth 2 to get all result tuple nodes at depth 1, and then all
source nodes contributing towards result tuple nodes at depth 2.

This cypher query is efficient as compared to corresponding SQL query, as query is
localized to a subgraph of the complete provenance graph, by using any starting point

algorithm to find the start node in the graph.

Example Provenance Query (PQ2) : Find all the data derived from tuple p1l of part table
after 15/may /2016, assuming there is an error occurred.

Provenance Query in Relational Database using SQL :

select resultid from provtbl1 pt, querytabletpch qt where SUBSTR(pt.resultid, 0, INSTR(pt.
resultid, 't")-1) like qt.qid and provenance like "%P1%” and time=>"15-may-2016’;

Provenance Query in Neo4j using Cypher :

MATCH (node: part {tupleid:"p1’})-[*]-> (nodel:resulttuple {time>=date('15-may-2016")})
RETURN nodel;

The above cypher query is efficient as compared to the corresponding SQL query, as
it is localized to a subgraph of the complete provenance graph.
Example Provenance Query (PQ3) : Display all the tuples generated from tuple PS10 of
partsupp table up to traversal depth 2.
Provenance Query in Relational Database using SQL :

select resultid from provtbll pt where provenance like "%PS10%" union (select resultid
from provtbll , (select resulted rt from provtbll pt where provenance like "%PS10%")

depth1l where provenance like "%’+depthl.rt+'%’;
Provenance Query in Neo4j using Cypher :

84

MATCH (node: part {tupleid:"p1’})-[*..4]-> (nodel:resulttuple) RETURN nodel;

Example Provenance Query (PQ4) : Lets us consider the provenance graph shown in
Figure 3.7, find all source tuples which contribute to derive result tuple with resultid

‘q4tl” (To know about quality or trustworthiness of this Result).
Provenance Query in Relational Database using SQL :
select provenance from provtbll pt where resultid= ‘q4t1’;

The above query retrieves the provenance polynomial of result tuple with id ‘q4tl’,
which is further parsed to get source tuple id’s which directly contributed to generate
it. To further retrieve all the source tuple which are indirectly contributing to generate
result tuple with id ‘q4t1’, then the above query executes again on provtbl1 table for each
tupleid retrieved in previous step as resultid in this query. Thus, the query becomes quite

complex for performing multi-depth provenance query.
Provenance Query in Neo4j using Cypher :
match (tupleid: resulttuple {name:'q4t1’}) <-[*]-(b) RETURN tupleid, b;

The above cypher query performs backward tracing in provenance graph upto any
depth and retrieves all the source tuples which contributed to produce it either directly or
indirectly. This query is much efficient as compared to corresponding provenance query
in relational database.

The above provenance queries (from perspective 1) i.e. PQ1 to PQ4, explain about data
derivations via backward and forward tracing in provenance data to justify result tuples,
and exploring all the data dependent on any particular source tuple. These queries are
helpful in auditing, security, knowing trustworthiness of any derived data, and explor-
ing error tracing if any etc. Further, in perspective 2, the proposed DPHQ framework
provides support for historical data queries i.e. provenance querying on historical data,
by extending SQL query with four user-defined constructs, viz., "instance", "all", "validon
now", and "validon ‘date”™, to get instance of data at current time or any particular time in
the past, and to retrieve all updates on an attribute till now or any specific time range.
Now, we will illustrate the historical data queries with some example provenance queries

given below:

85

Example Provenance Query (PQ5) : Display the current region name for nation key=1.

User Query : select instance r_name from region r join nation n on n.n_regionkey=r.r_

regionkey where n.n_nationkey=1 validon now;

In the above example provenance query, extended SQL construct instance and validon

now are used to get currently valid data.

Example Provenance Query (PQ6) : Display the region name for nation key=1 on date
“15-Apr-2016".

User Query : select instance r_name from region r join nation n on n.n_regionkey=r.r_

regionkey where n.n_nationkey=1 validon "15-Apr-2016;

In the above example provenance query, extended SQL construct instance and validon

‘date” are used to get instance of data at any particular time in the past.

Example Provenance Query (PQ7) : Display all partnames supplied by supplier "Sup-
plier#000000001" till “15-Apr-2015".

User Query : select all p_name from part p, partsupp ps, supplier s where p.p_partkey=
ps.ps_partkey and s.s_suppkey= ps.ps_suppkey and s.s_name="Supplier#00000001" valid_
on “15-Apr-2015;

In the above example provenance query, extended SQL construct all and validon 'date’
are used to retrieve all updates on attribute partname supplied by supplier ‘Supplier#000000001’

within some particular time duration, since its existence.

Example Provenance Query (PQS) : Display all partnames supplied by supplier "Sup-
plier#000000001 till now.

User Query : select all p_name from part p, partsupp ps, supplier s where p.p_partkey=
ps.ps_partkey and s.s_suppkey= ps.ps_suppkey and s.s_name="Supplier#00000001" valid_

on now;

In the above example provenance query, extended SQL construct all and validon now
are used to retrieve complete history of all updates on attribute partname supplied by

supplier "Supplier#000000001" till now, since its existence.

86

3.4 Experimental Setup and Results

3.4.1 Experimental Setup

All the experiments are performed on Windows Machine with Intel i7 processor and
16GB RAM. Oracle 11g as the relational database management system and Neo4j graph
database has been used to perform the experiments. Data set of TPC-H benchmark [122]
is used and stored in relational database for executing queries, and capturing the prove-
nance for the same. ZILRDB is implemented on top of the relational database. Captured
provenance information for relational queries is stored in both relational as well as graph

database. Further, to perform queries on provenance, we used SQL for relational database

QID Query

Q1 Display all the orders placed by customer ‘Customer#000078002” before ‘01-
May-2014".

Q2 Display all the part names whose available quantity is more than 9900. Dis-

play the corresponding supplier name also.

Q3 Display the product names which are returned and corresponding customer
name also who returned it.

Q4 Display the part names which are shipped on highest priority basis.

Q5 Display the partname for products whose supplycost is more than 1000.

Q6 Display the part names which are shipped on lowest priority basis.

Q7 Update region name of region ‘Asia’.

Q8 Update price of Part named " sky cream deep tomato rosy" to 512 by supplier
Supplier#000007556.

Q9 Create table partl as select part_key,part_name,suppkey from part p < part-
supp ps where part_brand= "Brand#1";

Q10 Create table partsuppname as select part_keypart_name,suppkey,
supp_name from partl pl < supplier s where pl.part_name= "Tomato
Rosy";

Table 3.15: Sample Data Queries for Provenance Capture

87

and Cypher for Neo4j. We executed a set of twenty five different data retrieval queries in
the proposed DPHQ framework to capture the provenance of the query results. As the
framework supports Multi-Layer provenance, we captured provenance up to five layers
(as explained in previous section) for these experiments. A sample set of data retrieval
queries for provenance capture are shown in Table 3.15. We created five different prove-
nance data sets, which store the provenance of 5, 10, 15, 20, and 25 data retrieval queries,
respectively. We analyzed the proposed framework on different perspectives viz. 1. Stor-
age overheads of provenance data in relational and graph database, and 2. The average
execution time for queries on provenance in relational and graph databases. The queries
on provenance data are considered at different traversal depths in all five provenance data

sets created during provenance capturing.

3.4.2 Results and Discussions
3.4.2.1 Provenance Storage Analysis

As the number of data retrieval queries increase from 5 to 25, the volume of captured
data provenance is also increases from 12 to 284 MB in relational databases, and in graph
database it increases from 72MB to 1GB (refer to Figure 3.8). In relational database, prove-
nance for every result tuple is stored as provenance polynomial in a provenance table
(provtbll), and provenance information about the data queries is stored in query table
(querytabletpch). Corresponding provenance graph in Neo4j consists of 1529514 nodes
and 1913654 relationships among the nodes. It is clear from Figure 3.8, that the storage
requirement in relational database is consistently less than the graph database. A graph
database (i) creates the node viz., source tuple node, result tuple node, operator node,
and query node, (ii) stores all the information about relationship i.e. an edge in explicit
relationship store, and (iii) has properties and labels assigned with nodes and relation-
ship which are stored separately. Thus, storage requirement in Neo4j increases with the
increase in provenance data. Still, some optimization on storage requirement in graph
database is done, by not creating a source node, if it already exists. This optimization

further improves the performance of provenance query in graph database.

88

1200 -
1000 -
800 -
600
400 - 284
200

X Graph DB i

A Relational DB

751

Provenance Data (MB)

No of Data Queries

Figure 3.8: Storage Requirement for Provenance Data

QID Query

PQ1 | Display all the source data accessed by system user between dates "01-mar-
2016" and "18-apr-2016".

PQ2 | Display all the tuples derived from tuple P1 of part table on "20-apr-2016".

PQ3 | Display all the queries executed by system user on part table after "15-mar-
2016".

PQ4 | Display the time when Q76t3 tuple was generated.

PQ5 | Display all the sources who contributed to tuple q74t0.

PQ6 | Display all the sources who contributed to tuple q74t0 upto depth 2.

PQ7 | Display the current price of product named " sky cream deep tomato rosy"
supplied by supplier "Supplier#000007556".

PQ8 | Display the price of product named " sky cream deep tomato rosy" supplied
by supplier "Supplier#000007556" on "01-Apr-2016".

PQY9 | Display all the price updates of product named " sky cream deep tomato
rosy" supplied by supplier "Supplier#000007556" till now since it exists.

PQ10 | Display all price updates of product named " sky cream deep tomato rosy"

supplied by supplier "Supplier#000007556" till "01-Apr-2016" since it exists.

Table 3.16: Sample Queries on Provenance

89

3.4.2.2 Provenance Querying Analysis

In our experiments, first we executed sixty provenance queries with traversal depth one,
on all five provenance data sets. Sample queries on provenance data are shown in Ta-
ble 3.16. Afterwards, the same set of provenance queries are executed with different
traversal depths i.e. two, three, four, five, and six. Query on provenance with traversal
depth one and two are shown in example provenance queries PQ2 and PQ3, respectively
in section 3.3.4. Average execution time of all the queries on provenance for both rela-
tional and graph database are recorded. Referring to Figure 3.8, when the volume of
captured provenance data is small i.e. up to five data queries, provenance queries on
relational database are performing better than graph database as shown in Figure 3.9.
But, as the volume of provenance data increases, provenance query requires the search
on entire provenance data in case of relational database that gradually deteriorates the
query performance. Secondly, the provenance query may require join operation between
provenance table and query table for its execution, that is a quite expensive operation in
terms of execution time. This join operation may take longer execution time with increase
in data size. On the other hand, in graph database, the provenance queries are localized
to a subgraph in the whole provenance graph by using any starting point algorithm such
as label scan, all node scan etc. Queries also use indexes available on node and proper-
ties. After finding the starting node using any starting point algorithm, it only requires to

traverse the path starting from it. Further, in the graph database, there is no need of join

1600 7y Graph DB

1400 -| A Relational DB 1417
1200
1000 -
800
600 -

400

200

Average Execution Time (ms)

5 10 15 20 25
No of Data Queries

Figure 3.9: Average execution time of queries on provenance : Traversal Depth 1

90

operations, because predefined relationships in the form of edges already exist. Figure
3.9 shows the average execution time of queries on provenance with traversal depth one
in both databases . It is clear from the figure that the relational database performs better
when number of data queries are less (up to 10). But, as the number of data queries
increase (and consequently the size of provenance data increase), the graph database per-
forms much better. As expected, the performance gains increase with increase in data
queries.

Now, as we increase the traversal depth for queries on provenance from one to two
(example query shown in Example Provenance Query PQ3 in section 3.3.4), it is found
that the average execution time in graph database is almost same as for queries on prove-
nance with traversal depth one. But, in relational database, it increases slightly (refer to
Figure 3.10). This is because with increase in traversal depth, number of join operation in
relational query increases which degrades its performance.

As we further increase the traversal depth of queries on provenance to three, the
gap between graph database and relational database increases as can be seen in Figure
3.11. Although, there is a minor increase in average execution time in graph database as
compared to traversal depth two, but there is a significant increase in average execution
time of provenance queries in case of relational database.

In the same manner, as we further increase the traversal depth of queries on prove-

1600 -
% Graph DB 1507

1400 - A Relational DB

1200 -
1000 - 892
800 -
600 -

400

Average Execution time (ms)

200 -

5 10 15 20 25

No of Data Queries

Figure 3.10: Average execution time of queries on provenance : Traversal Depth 2

91

50 -
¥ Graph DB
45 1 A Relational DB

30 +
25
20 -

15 -

Average Execution time (Sec)

5 1046 0.642 0.851 1.094 1.382

5 10 15 20 25
No of Data Queries

Figure 3.11: Average execution time of queries on provenance : Traversal Depth 3

3000 -
¥ Graph DB
— A Relational DB
¥ = 2445837
@
E 2000 -
-
c
R
H 1500 - 1482.61
@
P}
o 1000 -
L%
s
@ 618.505
2 500 - 253.813
0.901 1.219 1.493
0 ¥=F553 K x K
5 10 15 20 25
Mo of Data Queries

Figure 3.12: Average execution time of queries on provenance : Traversal Depth 4

nance data to 4 and 5, there is a minor increase in average execution time of queries on
provenance in graph database, but there is exponential increase in relational database as
can be seen in Figure 3.12 and Figure 3.13 respectively.

As the provenance information is captured up to five layers, the average execution

time of queries on provenance in graph database at traversal depth six is same as traver-

92

6000

¥ Graph DB
o i 2390.5
& 5000 - A Relational DB
E
£ 4000 -
£
=
3 3000 -
'}
o
@ 2000 -
m
g
< 1000 -
1.623
0 #= X K
5 10 15 20 25

Mo of Data Queries

Figure 3.13: Average execution time of queries on provenance : Traversal Depth 5

sal depth five. This is because the graph does not traverse further. But, in case of relational
database, a sixth join operation will anyway be carried out, resulting in deteriorated per-

formance. This is evident from the results presented in Figure 3.14.

9000 - 8423.2
X Graph DB

8000 - A Relational DB

7000 -
6000 -
5000 -
4000 -
3000 -

2000 -

Average Execution Time (Sec)

1008 7 1.129 1.392 1.623

0 0601 K X L K
5 10 15 20 25

No of Data Queries

Figure 3.14: Average execution time of queries on provenance : Traversal Depth 6

It can be seen from the results that although the relational database has less storage
overheads, but its performance for queries on provenance data is far inferior as compared
to graph databases. The performance gains in graph database become more pronounced
as the traversal depth of queries on provenance increases. It can also be seen that the av-

erage execution time in case of relational databases increases exponentially with increase

93

in traversal depth, and also with increase in provenance data.

3.5 Application Scenarios

Many datasets like genomic data in bioinformatics, scientific experimental data, transac-
tional data etc. grows at an unprecedented scale over time. It is extremely ineffective
to process the whole dataset. By visualizing the provenance information, one can eas-
ily process the data increments instead of processing the entire dataset. Our proposed
framework is capable of generating and visualizing provenance information in different
scenarios such as auditing applications, bio-informatics applications, measuring trustwor-
thiness of any data for reliability purpose, data retention applications, data diagnostics

etc. Some of the application scenarios are discussed below:

1. Bio-Informatics: In bio-informatics applications different databases such as SWIS-
PROT, UniProt, Genome, and recent SARS-COV-2 Genome are available. For mean-
ingful analysis, it is required to exploit all the data resources altogether, to help
answer research questions which cannot be answered by any single data resource
alone. Also, scientists and researchers are generating new datasets from the pub-
lished data resources. These new databases may contain some results and analysis
derived by them. Here, provenance information will be very beneficial to analyse
the results of experiments. By applying the proposed framework, provenance infor-
mation can be captured with ease while generating the new datasets for experiments
from all the published data resources. The captured information can later be visu-
alized to know the direct or indirect source of any information with varying depths

using provenance graph.

2. Data Diagnostics: Using provenance information, data diagnostics can be done in
a systematic and efficient manner. One can easily map the result data of a query
with input data contributed towards it either directly or indirectly. This mapping
identifies how and when any data is generated, who has produced it, etc. Our

proposed framework is applicable for such kind of applications.
3. Data Retention: In some applications such as auditing or traceability, we desire to

94

retain the data that is expired /updated. Our framework efficiently maintains the
historical data, and is capable to capture and visualize the provenance for histor-
ical queries along with current queries. Thus, proposed provenance framework is

suitable for auditing applications also.

4. Information Discovery: Provenance information is very valuable in information dis-
covery. By visualizing provenance information, one can easily discover the sources
of any derived data or discard some of the data originated from some erroneous/-
suspicious sources. The proposed provenance framework can be efficiently applied
in information discovery applications by visualizing provenance graph from source
to destination (forward tracing) or destination to source (backward tracing) with

varying depths.

3.6 Conclusions and Future Work

In this work, we designed and implemented DPHQ (Data Provenance for Historical
Queries) framework for capturing, storing and querying the provenance data on top of
ZILRDB (Zero-Information Loss Relational Database). Provenance relational algebra for
ASPJ queries is proposed for capturing how-provenance for queries in the form of prove-
nance polynomial. Framework supports to capture provenance for ASPJU (Aggregate,
Select, Project, Join, Union) queries along with the queries executed in the past (historical
queries), and data update (insert, delete, and update) queries. The proposed framework
supports to capture provenance up to any layers (Multi-Layer provenance). The infor-
mation about the queries i.e. what was the query, when it was executed, and by whom,
are also stored in relational as well as graph database, this helps in executing the past
queries. The captured provenance information for query results is stored in both rela-
tional and graph databases for further analysis for different purposes like justifying the
result tuples via backward tracing, for auditing or identifying any error propagation’s via
forward tracing. We found that the graph databases offer significant performance gains
over relational databases for executing multi-depth queries on provenance. The perfor-
mance gains in graph database become much more pronounced with increase in traversal

depth and also with increase in provenance data. Querying on historical data is also sup-

95

ported in relational database using extended SQL user-defined constructs. In future, we
plan to extend it further for capturing the provenance information for complex queries

including nested queries and sub-queries.

96

