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Chapter 5                                                                        

 
 

This chapter focuses on optimal energy sharing between the internal combustion engine 

and the battery-powered electric motor in a HEV. For this purpose the Elman neural 

network has been proposed. This chapter presents a literature review on the  eleman neural 

network based EMS, energy management logic for ENN, problem formulation and 

constraints, mathematical interpretation of ENN based controller, weight assigning 

process in ENN, structure of ENN, simulation and hardwarte result analysis and summary. 

The input parameters to ENN based controller are torque demand, battery state of charge, 

and regenerative braking. The proposed strategy aims to maximise the fuel economy while 

maintaining the battery health. A power-split HEV along with EMS is designed, modelled 

and simulated in MATLAB/Simulink first and then the whole system is validated in real-

time using controller hardware in the loop testing platform (CHIL). The FPGA based 

MicroLabBox CHIL has been employed to test the system behaviour in real-time. The 

proposed EMS have been compared with conventional strategies and the comparison 

reveals that the Elman neural network-based method results in higher fuel economy, faster 

response, and minimal mismatch between desired and attained vehicle speeds. 
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5.1 Introduction 

The HEVs are comprehended by two energy sources, i.e., internal combustion engine (ICE) 

and electric motor (EM) which can work together or separately. These vehicles are 

characterized by low gasoline consumption, low toxic emissions and low-cost mode of 

transportation. The development of efficient miniature size motors, converters and 

controllers are key to boost the HEVs advancement. A good controller ensures that the 

energy demand of the vehicle is met with minimal consumption of gasoline without 

deteriorating the vehicle performance. Therefore, intelligent and fast controllers are 

required to achieve optimal energy sharing between the available energy sources in an 

HEV. 

ENN, is predictive in nature, offers higher structural complexity and global optima and has 

not been explored extensively in the HEV applications. Here, an attempt is made to check 

the vehicle performance with these two contrary approaches. The ENN used here to ensure 

that both the sources (ICE and EM) operate in their efficient region with optimal power 

split. The below section provides a brief review of ENN-based energy management 

strategies (EMS) for HEVs. 

5.1.1 Elman neural network-based energy management strategy 

The ANN can be categorised into three different forms i.e. Back propagation neural 

network (BPNN), Radial basis function neural network (RBFNN) and Elman neural 

network (ENN). BPNN is associated with the problems like a) slow training rate b) trapping 

in local minima, c) complex structure for large size network and, d) usage of hit and trial 

method for choosing the neurons in a hidden layer. RBFNN is used to overcome the slow 

learning rate and has comparatively less chances to trap in local minima. For further 

improvement in forecasting accuracy, ENN is applied due to its virtue of dynamic 

adaptability. It comprises of 4 layers viz. input, hidden, context and output layers. Context 

layer works as a short-term memory layer and provides previous state output of the hidden 

layer. The weights of the context layer are kept unity. Thus, this kind of network is 

adaptable to deal with the dynamic behaviour of a system. The ENN controller is made of 

the enormous number of interconnected parallel processed elements and offers a quick 

response with no extra time-delay as in case of BPNN and RBFNN which makes it a perfect 

choice for responding to driver demand.  
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In [279], [280] an ANN-based trip model was developed for a highway to improve model 

accuracy and the fuel economy of the vehicle. In [185], deep learning techniques have been 

used to identify the driver-specific vehicle speed profile over a repeated drive cycle, which 

has been used to minimize the amount of fossil fuel. In [281], ANN-based EMS was used 

for an HEV considering the speed of the vehicle, power at the wheels, and the SoC of UC 

as inputs to ANN. 

A deep reinforcement learning framework for HEV power management aiming to improve 

fuel economy has been presented in [282]. The energy optimization of plug-in hybrid 

electric vehicles (PHEV) based on ANN for an unknown trip has been discussed in [283]. 

In [284], ANN-based optimization has been used with parameters like FC power, SoC, and 

forecasted power demand with output as the FC power. The modelling and control of the 

HEV traction system are presented in [285], [286] using NN. In [186], [287], ANN-based 

EMS was applied to a PHEV having three accessible inputs, current demanded power, ratio 

of the distance travelled to the total distance and SoC. Here, Pontryagin's minimum 

principle has also been used to get prior knowledge in terms of data sets. In [288], ANN-

based EMS was applied to an HEV having inputs as load current, load power, energy and 

velocity. In [289], ENN based optimization was carried out on a parallel-HEV with input 

parameters as torque, speed and SoC.  The main contribution of the presented work was to 

reduce the control reaction time greatly and overcomes the disadvantage of the poor real-

time performance of the instantaneous optimal control strategy.

5.2 Power-split HEV configuration and components specification

The Power-split HEV configuration have been employed in this work. The block diagram 

of this configuration has been shown in Fig. 5.1. 

Fig. 5.1. Power-split hybrid electric vehicle 
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The ON/OFF of the ICE/EM is subjected to the efficient region of their operation, which 

can be derived from the power versus speed graph given in Fig 4.3 (c) of chapter 4. The 

motor should be utilized at the beginning (section1-low speed). During this region, the 

vehicle is in gear position either 1 or 2 and its effectiveness is very high during this tenure. 

ICE ought to be utilized in section 2. There are some conditions where simultaneous use 

of EM and ICE is beneficial as shown in section 3. The vehicle and other component 

specification have been provided in the previous chapter.  

5.3 Elman neural network-based EMS for HEV 

Energy management logic, boundary constraints and the adopted technique play a critical 

role in achieving an optimal power split between the available energy sources and are 

explained below. 

5.3.1. Energy management logic 

The objective of any EMS is to regulate the flow of energy in a way that the expected speed 

of the HEV can be achieved. The block diagram of the proposed system is shown in Fig. 

5.2. A proportional-integral (PI) block behaves as the driver and generates the requirement 

of acceleration, braking and driving torque which is fed to the controller. The controller 

then takes the SoC available from the battery, torques available with the ICE, EM, and 

generator along with their efficient operating region (Fig. 4.3) and certain other constraints 

as mentioned in section 5.3.2 below. The controller processes this information as per the 

EMS, and outputs the torque to be supplied from ICE, EM and generator and the position 

of ICE throttle. Therefore, the designed EMS decides the ICE, EM, and generator ON/OFF 

conditions to fulfil the driving torque requirement. This would also ensure that ICE, EM, 

and generator operate in their efficient region and smooth operation of the vehicle is 

achieved.  
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Fig. 5.2. Block diagram of the setup

5.3.2. Problem formulation and Constraints

The problem is formulated to reduce fuel consumption.

                                                                                                                                                      (5.1)                                                                   

m ft is the total fuel consumption in a driving cycle. m ft is the time rate of fuel consumption 

and is written as

                                                                                                                             (5.2)                  
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Pengine is the engine power, ge is the specific fuel consumption, f  is the mass density of 

fuel (kg/l). 

The total consumption in the driving cycle is given by  

        
                                                                                                                          (5.3)                                                         

          
                                                                                                       (5.4)  

Fuel consumption is inversely proportional to the battery power Pbat. A greater battery 

power will cause the vehicle to consume lesser fuel and vice-versa. Pbat is directly 

proportional to battery SoC as given below:  
          

                                                                                                                             

Where SoC  is the rate of change of SoC, OCV is open-circuit voltage, Pb is the battery 

power, R is the resistance offered by the battery cell, Qbat is the battery capacity.                                          

Where OCV is open-circuit voltage, is the rate of change of SoC, Qbat is the battery 

capacity, Ibat is the battery current and Rbat is the internal resistance of the battery. 

The relation between mg1, mg2, ICE, and requested torques Tmg1, Tmg2, Te, Treq and speeds 

mg1, mg2, e, req can be understood from the following equations. 

  
     

                                                                                                                             (5.5)                                                                      

 

                                                                                                              (5.6)                                          

 

                                                                                         (5.7)

                                                                                                          
                                                                                                                (5.8)

                                                                                                                             In the above equations, R and  represent the gear ratio of Planetary gear set and the final 

drive ratio respectively. 
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                                                                            (5.9)                                                                  

For any smart control design, it is necessary to satisfy the constraints given in equation 

(5.10) below.

          
                         (5.10)

Where, , , , , , , , , and are 

the minimum and maximum values of speed and torque of the engine, motor and generator 

set, and SoC respectively. FLC and ENN-based algorithms are developed considering the 

constraints to achieve the power demand of HEV.

5.3.3 Mathematical interpretation of ENN based controller.

The inputs to ENN are the torque demand, brakes, and SoC value of battery and outputs 

are EM, generator and ICE torque respectively. The number of hidden neurons is to be 

selected on the basis of least Mean Square Error (MSE) as in Table 5.1. The ENN mainly 

consists of the input layer, hidden layer, context (undertaken) layer, and output layer. 

The input vector is a three dimensional denoted by vector u and output layer is also a three-

dimensional vector and is denoted by . The output vector of the hidden layer is -

dimensional vector . The output vector of the context layer is -dimensional vector . The 

connective weights (w) of the hidden layer are 1, w2 and w3, is the driving function 

of the output neurons, is the driving function of the hidden layer, is the net input 

driving function of a certain layer; 

represents the input layer; B represents the context layer and shows the iterative 

sequence. A brief mathematical modelling of ENN is given below:

If, functions 
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                                                    (5.11) 

   

                   (5.12)                      

Then input and output functions of the hidden layer are 

                    (5.13) 

Input and output functions of undertaken layer are 

                  (5.14)        

and input and output functions of the output layer are 

                                                             (5.15)        

5.3.4.1 ENN Parameters can be selected by the following steps.  

The number of neurons used in ENN is estimated by  

                    (5.16)                      

where j is the number of the input vector;  is the neuron number of the output vector;  

is a constant. 

The excitation function of ENN of the feedback layer selects the Tansig  function  

                                                               (5.17)                      
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5.3.4.2. Estimation of Learning and Training Mechanism of ENN

ENN is trained by Levenberg- Marquardt algorithm. The error-index function of 

Levenberg- Marquardt arithmetic is

            (5.18)

where is the sample number; is the systemic error; is the actual output of the 

network.

5.3.4.3. The formula of the adjusting weight is

           (5.19)

      

5.3.4.4. The increment weight is

           (5.20)                      

where is learning rate; is the unit matrix; ( ) is the Jacobian matrix. Consider

                                                (5.21)                                
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The Fig. 5.3 demonstrate the weight adjusting process of ENN. 

 

Fig. 5.3. Weight assigning process in ENN 

ENN requires prior knowledge in the form of a data set. Here, the input data comprises of 

SoC, brakes, torque requirement, torque available and efficient region of operation of 

sources. The output is the torque to be delivered from motor, generator, and ICE. This data 

is fed to the ENN, which trains this data to obtain the optimal torque/power split among 

available sources while these operate in their efficient regions. The structure of the NN for 

the proposed work is shown in Fig. 5.4(a). 
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(a) Structure of the ENN 

 

(b) Mathematical model of ENN 

Fig. 5.4 Structure of the ENN and the mathematical model of ENN. 

Where:  

 is the input fed to the ENN having size  

1b  is considered as the threshold vector of the feedback layer with size  
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where W is the connective weight vector, and I is input vector of the input layer with 

size is .  

 is the middle operational result of the feedback layer, namely, weighted sum of the 

connective weight vector and the threshold vector, and its size is   

 in the k iteration and its size is   

is the feedback node.  In the similar manner the parameters , , and  are 

related to the output layer. 

The specification of the ENN used here are given in Table 5.1. 

Table 5.1 The ENN Specifications 

Training based on Levenberg-Marquardt 

Performance Mean-squared error 

Iteration 227 

Learning ratio 0.1 

Number of hidden layer nodes 10 

5.4 Simulations and Hardware Results 

The simulation has been carried out in Simulink/MATLAB. The whole system is validated 

in real-time on CHIL testing platform using FPGA based MicroLabBox. The CHIL 

laboratory setup for the validation of the simulated results is shown in Fig. 5.5. The result 

obtained through simulation and real-time CHIL are provided with the explanatory 

inference below in Fig. 5.6 and Fig. 5.7. 
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Fig. 5.5. CHIL Setup of the System 

**In Fig. 5.6 and Fig. 5.7, S and H represent the simulation and the CHIL results respectively. The real-time results are in 

close resemblance to simulation results. All abscissa axis is for t=500s. The result shown is only for 500s as the sampling time 

of the DSO is 50s, so at a time in one screen it can display the result for 500s. 

The proposed method is tested on many driving cycles, but the results and analysis 

presented here is for New European driving cycle (NEDC).  

Figs. 5.6 (S1) and (H1) demonstrate the SoC variation with various control strategies. It is 

observed that ENN effectively regulates the charging/discharging of the battery 

maintaining higher SoC as compared to other techniques. The fuel consumption is 

measured in Mileage (Km/L) and Miles per gallon (mpg) in simulation results. As shown 

in Fig. 5.6 (S2) and Fig. 5.6 (S3) and Fig. 5.6 (H2) and Fig. 5.6 (H3) the ENN-based 

approach provides higher fuel economy over the same driving cycle as compared to FLC 

based and conventional approaches. The CHIL results also show a close resemblance with 

simulation results, which holds the accuracy and integrity of the work done. 

 

(S1) SoC with ENN, RBFNN, FLC, and Conventional Strategy 
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(H1) SoC with ENN, RBFNN, FLC, and Conventional Strategy 

 

(S2) Fuel economy Kilometer/Litre with ENN, RBFNN, FLC, and Conventional Strategy 
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(H2) Fuel economy Kilometre/Litre with ENN, FLC, and Conventional Strategy 

 

(S3) Miles per Gallon consumed with ENN, RBFNN, FLC, and Conventional Strategy 

 

(H3) Miles per Gallon consumed with ENN, FLC, and Conventional Strategy 

Fig. 5.6 The comparison of the SoC and fuel economy in (Km/L and Miles per Gallon).  

Vehicle speed must encounter the expectation of the driving cycle. If the achieved vehicle 

speed matches with the driving cycle, leaving no trace and completely coinciding, then it 

is considered an ideal condition. An efficient algorithm always checks that the desired 

speed is achieved. Fig. 5.7 (S1) depict the achieved and desired speeds by FLC strategy. 

missing can be seen in these speeds. Fig. 5.7 (S2) depicts the desired and achieved speed 

graphs using the ENN controller. These speed graphs are almost coinciding, i.e., leaving 
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no trace missing. This proves that the proposed ENN-based method offers better drivability 

of the vehicle. 

 

(S1) 

overlap each other, leaving a miss trace) 

 

(H1) Desired and achieved speeds of the vehicle using FLC 
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(S2) Desired and achieved speeds of the vehicle using ENN (the red and blue lines 

overlap each other, leaving no miss trace) 

 

(H2) Desired and achieved speeds of the vehicle using ENN 

Fig. 5.7 The comparison speed trace miss between FLC and ENN 

A comparison of the fuel economy obtained using the proposed methods and the methods 

available in the literature is shown in Table 5.2. The fuel economy obtained using proposed 

ENN and FLC is far better than the conventional controllers. Also, the proposed ENN-

based strategy yields the highest fuel economy over other similar methods. 
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Table 5.2 Comparison of fuel economy and optimisation methods for power-split HEV   

EMS used in the proposed work Claimed outcomes  
Conventional strategy The fuel consumption is    

NEDC - 13.49 Km/L and 31.72 mpg  

UDDS - 20.5 Km/L and 48.4 mpg 

FTP - 61.13 Km/L and 143.7 mpg 

FLC The fuel consumption is  

NEDC - 20.31Km/L and 47.77 mpg 

UDDS - 23.2 Km/L and 54.61 mpg 

FTP    -  63.33 Km/L and 148.9 mpg 

RBFNN The fuel consumption is  

NEDC- 20.81Km/L and 48.95 mpg 

UDDS  24.8 Km/L and 58.73 mpg 

FTP      -  65.53 Km/L and 154.1 mpg 

ENN The fuel consumption for  

NEDC- 25.56 Km/L and 60.11 mpg. 

UDDS- 25.5 Km/L and 60.17 mpg. 

FTP     - 69.88 Km/L and 164.3 mpg 

5.5 Summary  

This investigation presents the design, modelling, and real-time validation of ENN based 

energy management strategies in HEV. The simulations have been carried out in 

Simulink/MATLAB environment first and their validation in real-time has been carried out 

on a controller-hardware-in-the-loop testing setup. The FPGA based MicroLabBox 

hardware controller has been used to execute the real-time instructions.  The strategies are 

fed with the primary input parameters like driving torque demand, battery SoC, 

regenerative braking, and several other constraints, including the efficient region of 

operation for sources. The inputs and constraints fed to EMS, decide the optimal energy 

sharing among electric motor, IC engine and generator and accordingly decide their turning 

ON/OFF on board. These strategies regulate the torque in such a way that the engine and 

electric motor operate in their efficient operating regions. The comparison of the EMS 

yields that the ENN based strategy offers better fuel economy and faster response with 

minimal mismatch and achieves the desired speed.  There was an improvement of fuel 

economy in NEDC- from 31.72 mpg to 60.11 mpg, UDDS- 48.4 mpg to 60.17 mpg and 

for FTP from 143.7 mpg to 164.3 mpg.  


