Table of Contents

Certificateii	i
Acknowledgementsi	V
Abstract	/i
Table of Contentsi	X
List of Figuresxi	ii
List of Tablesxv	'n
List of Symbolsxv	ii
Chapter 1: Introduction	1
1.1 Background	2
1.1.1 GHG emission in the world by various sectors	4
1.1.2 Oil price and its consumption	4
1.1.3 Costs involved	5
1.1.4 Affordability	7
1.2 Motivation and Scope of Research	9
1.3 Objectives	0
1.4 Contributions of Thesis	0
1.5 Structure of Thesis12	2
Chapter 2: Literature Review1	3
2.1 Introduction	4
2.1.1 Market share	5
2.2 Architecture of HEV	7
2.3 Bidirectional DC/AC converter	1
2.3.1 Current Source Inverter	2
2.3.2 Voltage Source Inverter	3
2.3.3 Impedance Source Inverter	4
2.4 Hybrid energy storage system	6
2.5 Energy management strategies for HEVs	0
2.6 Summary	ŀ

Chapter 3: Adaptive SoC Estimation of Lithium-ion Battery and Development of		
Hybrid Energy Storage System for Hybrid Vehicle Applications	35	
Part-1	37	
3.1 SoC estimation	37	
3.1.1 Introduction	37	
3.1.1.1 Literature review on the SoC estimation methods	37	
3.1.1.2 Fixing the number of time constants (RC-branches)	39	
3.1.2 Equivalent circuit model	39	
3.1.3 Identification of battery model parameter	40	
3.1.3.1 State of charge estimation		
3.1.3.2 Simulations Results and Discussion		
3.1.4 The ANFIS based Optimized SoC		
3.1.5 Variation of SoC and OCV with temperature		
3.1.6. Hardware setup and Real-time results		
3.1.7 Summary		
Part-2		
3.2 Sizing of Hybrid energy storage system		
3.2.1 Introduction	60	
3.2.2 Proposed Methodology	63	
3.2.2.1 Circuit Layout	64	
3.2.2.2 Environment for software, hardware, and real-time simulations	64	
3.2.2.3 Battery and capacitor specifications	65	
3.2.2.4 Linearization and sizing of the HES system	65	
3.2.2.4.1 Sizing of battery module	67	
3.2.2.4.2 Sizing of the capacitor module	68	
3.2.2.5 Current limiting and voltage control		
3.2.2.6 SoH comparison	71	
3.2.3. Results and Analysis	72	
3.2.3.1 HES performance with and without regenerative braking	72	
3.2.3.2 Comparison of HES performance with and without using UCs	75	
3.2.3.3 Simulation of the proposed circuit design	76	
3.2.3.4 Justification of using multiple converters	78	

3.2.3.5 Contributions of the proposed method	80
3.2.4 Summary	81
Chapter 4: Fuzzy logic Tuned Energy Management Strategy to Improve Fuel Economy in an HEV	82
4.1. Introduction	83
4.2. Literature review based on fuzzy logic energy management strategy for HEVs	. 83
4.3. Series-Parallel configuration and its operation	86
4.3.1 EV and regeneration mode	86
4.3.2 Normal driving mode	86
4.3.3 Battery charging mode	87
4.3.4 Power boost mode	87
4.4. The vehicle dynamics, specifications and its components	87
4.4.1. Motor drive	89
4.4.2. Generator drive	90
4.4.3. Internal combustion engine (ICE)	90
4.4.4. The battery system and SoC estimation	92
4.5. Fuzzy logic-based energy management for an HEV	92
4.5.1. Driver logic	93
4.5.2. The energy management logic	93
4.5.3 Constraints	94
4.5.4. The Fuzzy logic controller (FLC)	95
4.6. Simulations and hardware results	98
4.7. Verification of proposed EMS on different other driving cycles	105
4.8. Summary	.107
Chapter 5: Elman Neural Network Tuned Energy Management Strategies to Improve the Fuel economy in an HEV	108
5.1 Introduction	109
5.1.1 Elman neural network-based energy management strategy	.109
5.2 Power-split HEV configuration and components specification	.110
5.3 Elman neural network-based EMS for HEV	111
5.3.1. Energy management logic	.111

5.3.2. Problem formulation and Constraints	.112
5.3.3 Mathematical interpretation of ENN based controller	.114
5.3.3.1 ENN Parameters can be selected by the following steps	.115
5.3.3.2. Estimation of Learning and Training Mechanism of ENN	.116
5.3.3.3. The formula of the adjusting weight	.116
5.3.3.4. The increment weight	.116
5.4 Simulations and Hardware Results	.119
5.5 Summary	. 126

Chapter 6 ANFIS Tuned Equivalent Consumption Minimization Strategy to Improve Fuel Economy in an HEV.

Improve Fuel Economy in an HEV.	127
6.1 Introduction	
6.2 Powertrain structure and its control	
6.2.1. ICE Speed Control Strategy	
6.2.2 Torque based control	
6.3 Proposed ANFIS based EMS	
6.3.1 Consumption cost	
6.4 Simulation results	137
6.5 Real-time (CHIL-setup) implementation	143
6.6 Summary	147

Chapter 7 Conclusion and Future Scope	149
7.1 Conclusion	
7.2 Future Work	

References	152
Appendix 1	181
List of Publications	182
Conferences	
Brief Biography of Candidate	184
Brief Biography of Supervisor	185
Brief Biography of Co-Supervisor	