List of Figures

Figure 1.1: Total production of automobiles in India
Figure 1.2: GHG production by various sector
Figure 1.3: Oil consumption by various sector
Figure 1.4: Price fall status of hybrid vehicles
Figure 1.5: Flow chart of the thesis
Figure 2.1: Medium- and long-term sale of Hybrid vehicles
Figure 2.2: Methodology adopted for carrying out the Literature review17
Figure 2.3: Various architectures of a HEV
Figure 2.4: Block diagram of PVHEV19
Figure 2.5: Patterns of power flow
Figure 2.6: Various possible configuration of UC and battery integration
Figure 2.7: Classification of the optimization strategies used in HEVs30
Figure 3.1.1: Time constant comparison by curve fitting method
Figure 3.1.2: The equivalent circuit battery model
Figure 3.1.4: Flow chart of estimation of parameters
Figure 3.1.5: The data of the battery and the located pairs due to R0 and RC
Figure 3.1.7: The parameter obtained for the 3-RC circuit The obtained parameters have been optimized utilizing "lsqnonlin" function provided in MATLAB
Figure 3.1.8: The optimized parameter obtained for the 3-RC circuit
Figure 3.1.9: The new and original SoC comparison and their variation with respect to time
Figure 3.1.10: The MATLAB/Simulink circuit used to simulate and analyze SoC
Figure 3.1.11: Structure of ANFIS
Figure 3.1.12: Flowchart showing the operation of an adaptive neuro-fuzzy inference system (ANFIS) algorithm

Figure 3.1.13: A) Training data, B) Epochs and test data error, and C) Training data testing
Figure 3.1.14: SoC comparison with 3-RC and ANFIS optimized & without 3-RC circuit, OCV versus SoC curve
Figure 3.1.15: Effect of temperature on SoC and voltage of battery A and battery B57
Figure 3.1.16: Hardware setup and SoC comparison
Figure 3.2.1: Ragone plot of various storages devices
Figure 3.2.2: HES topologies
Figure 3.2.3: Proposed circuit diagram
Figure 3.2.4: Indian driving cycle - power requirements
Figure 3.2.5: Simulation and real-time testing equipment Setup
Figure 3.2.6: Current requirement of the driving cycle $(0 - 500s)$
Figure 3.2.7: Proposed energy management
Figure 3.2.8: Battery voltage with and without enabling regenerative braking
Figure 3.2.9: HES performance with and without regenerative braking74
Figure 3.2.10: Comparison of HES performance with and without ultra-capacitors75
Figure 3.2.11: Comparison of battery performance with and without ultra-capacitors76
Figure 3.2.12: Power levels of the battery modules
Figure. 3.2.13: Current through various components
Figure. 3.2.14: Proposed multiple converters arrangement
Figure 3.2.15: Voltage on DC-DC line during four continuous driving cycles
Figure 3.2.16: Comparison of usage of multiple converters
Figure. 3.2.17: SoC Comparison
Figure 4.1: Series-Parallel Configuration of HEV
Figure 4.2: (a) Torque-Speed characteristic of the motor (b) Power and Torque vs. Speed curve for ICE and (c) Generalized Operating regions of EM and ICE
Figure 4.3: Block diagram of the simulation with input & output parameters
Figure 4.4: Input and Output variables with their membership function
Figure 4.5: HIL Setup of the System
Figure 4.6: The simulated and HIL results of vehicle speed, SoC, engine speed, engine torque, engine power, generator speed, generator torque, motor speed, and motor torque

Figure 4.7: The simulated and HIL results of motor current, battery current, generated current, motor power battery power, and generator power	
Figure 4.8: The simulation and HIL results	105
Figure 4.9: The simulation and HIL results of driving cycle & vehicle speed, SoC an Fuel consumption (Km/L) with FLC for FTP-75	
Figure 4.10: The simulation and HIL results of driving cycle & vehicle speed, SoC a fuel consumption (Km/L) with FLC for WLTP driving cycle	
Figure 5.1: Power-split hybrid electric vehicle	111
Figure 5.2: Block diagram of the setup	112
Figure 5.3: Weight assigning process in ENN	117
Figure 5.4: Structure of the ENN and the mathematical model of ENN	118
Figure 5.5: CHIL Setup of the System	120
Figure 5.6: The comparison of the SoC and fuel economy in (Km/L and Miles per Gallon)	123
Figure 5.7: The comparison speed trace miss between FLC and ENN	125
Figure 6.1: Power-split hybrid architecture of Toyota Prius HEV	129
Figure 6.2: Efficient operating region of the sources	131
Figure 6.3: Flowchart of the ANFIS algorithm operation	136
Figure 6.4: Schematic diagram of the proposed ANFIS Based EMS	136
Figure 6.5: Block diagram of the vehicle used in the study	137
Figure 6.6: Various Results obtained for Toyota Prius using default EMS as in ADVISOR	139
Figure 6.7: Generator behaviour using ANFIS	140
Figure 6.8: Motor behaviour using ANFIS	140
Figure 6.9: Energy storage system behaviour using ANFIS	141
Figure 6.10: Fuel converter behaviour using ANFIS	141
Figure 6.11: Amount of energy released by available sources at the various instant o speed requirement/driving cycle	
Figure 6.12: CHIL Setup of the System	144
Figure 6.13: Results obtained from CHIL setup of the system	146
Figure 6.14: CHIL Results of battery SoC and motor power	147

List of Tables

Table 1.1 : Cost break-down for different powertrain options	6
Table 1.2: Comparison chart for various existing hybrid vehicles	8
Table 2.1: Saving in fuel consumption in some top models	16
Table 2.2: Summary of architecture & their application	21
Table 2.3: Comparison of emission for different driving cycle	21
Table 2.4: Summary on architecture.	21
Table 2.5: Comparison of various topologies of the HESS	29
Table 2.6: Comparison chart for various existing hybrid vehicles	30
Table 3.1.1: Specification of the Li-ion battery	40
Table 3.2.1: Specifications of LiFePO4 and UC cell	67
Table 3.2.2: SoC comparison of proposed method and conventional method	80
Table 4.1: Vehicle parameters	88
Table 4.2: ICE, EM and Generator parameters.	92
Table 4.3: Battery parameters.	92
Table 4.4: The control rule table of EMS based on FLC.	97
Table 4.5: The fuel economy of the FTP-75 driving cycle	106
Table 4.6: The fuel economy of the WLTP driving cycle	107
Table 5.1: The ENN Specifications	119
Table 5.2: Comparison of fuel economy and optimization methods for power-split	
HEV	126
Table 6.1: Vehicle component specification (Toyota Prius)	133
Table 6.2: Curse of dimensionality for fuzzy set with three linguistic variables	137
Table 6.3: Emissions (Toyota Prius)	139
Table 6.4: Energy usage in the vehicle by various component (kJ)	142
Table 6.5: Fuel Economy comparison in mpg by various EMS with same paramet	ers
and over the same vehicle	145
Table 6.6: Fuel economy of various driving cycle based on ANFIS EMS	147

a.c	Alternating current
$ ho_j^{ m l}$	Membership grade for <i>x</i> and <i>y</i>
$\overline{p_i}$	Firing strength
a_0	Battery terminal voltage when $SoC = 0\%$
a ₁	Battery terminal voltage when $SoC = 100\%$.
A_1, A_2, B_1 and B_2	Linguistic variables
ABS	Antilock braking system
ADVISOR	Advanced vehicle simulator
A-ECMS	Adaptive equivalent consumption minimization strategy
AFEMS	An adaptive fuzzy logic-based EMS
a_i , b_i and c_i	Premise parameters
ANFIS	An adaptive network-based fuzzy inference system
ANN	Artificial neural network
ASCI	Auto-Sequential Commutated mode single-phase inverter
BEVs	Battery driven electric vehicle
BLDC	Brushless DC motor
BMEP	Brake mean effective pressure
BMS	Battery management system
BP	Back propagation
BWS	Battery working state
C ₁	Capacitor of the branch R_1C_1
C ₂	Capacitor of the branch R_2C_2
C ₃	Capacitor of the branch R ₃ C ₃
CC	Coulomb counting
CD	Charge depletion
CDFIM	Cascaded-DFIM
CF-qZSI	Current-fed quasi-ZSI
CHIL	Controller hardware-in-Loop
CMPPT	Centralized-MPPT
C _p	Battery capacity in Ah

CS	charge sustaining
CSI	Current source inverter
CS-PMSM	Compound-structure PMSM
CVT	Continuous variable transmission
d.c	Direct current
DDP	Deterministic Dynamic Programming
DEKF	Dual extended Kalman filter
DFIM	Doubly fed induction motor
DP	Dynamic programming
DRM	Double rotor machines
DSO	Digital storage oscilloscope
Ea	Activation energy
ECMS	Equivalent consumption minimization strategy
e-CVT	Electronic continuous variable transmission
EKF	Extended Kalman filter
EM	Electric motor
EMS	Energy management system
ESS	Energy storage system
EV	Electric vehicle
FC	Fuel cell
FC	Fuzzy control
FCEVs	Fuel cell vehicles
FEM	Finite element method
FIS	Fuzzy inference system.
FL	Fuzzy logic
FLC	Fuzzy logic control
FOC	Field oriented control
FPGA	Field-programmable gate array
$\mathbf{f}_{\mathbf{r}}$	Rolling resistance coefficient
g	Acceleration constant
GA	Genetic algorithm
GT	Game theory
HESS	Hybrid energy storage system

HEV	Hybrid electric vehicle
HIL	Hardware-in-Loop
Ι	Current flowing in the circuit
I&C	Incremental conductance
$I_{\rm A}$	Armature current
I _{bat}	Current of battery
ICE	Internal combustion engine
ICV	Internal combustion vehicle
IEMA	Intelligent energy management agent
IM	Induction motors
IMCCR	Induction motor with compound cage rotor
IPMSM	Interior permanent magnet synchronous motor
I _{sc}	Incremental short circuit current
IWO	Invasive weed optimization
J _{rot}	The inertia of rotational components.
K_0	Reaction constant
KF	Kalman filter
ККТ	Karush–Kuhn–Tucker
LC	Inductor capacitor
LP	Linear programming
М	Vehicle Mass
MF	Membership function
MFM-BDRM	Magnetic-field-modulated brushless double-rotor machine
mg	Motor generator
MHE	Moving horizon estimation
MPC	Model predictive controller
MPG	Miles per gallon
mpgge	Miles per gallon gasoline equivalent
MPP	Maximum power point
MPPT	Maximum power point trackers
MRAC	Model reference adaptive controller
M-SRM	Modular- Switched reluctance motors
NEDC	New European driving cycle

NN	Neural network
NPC	Neutral point clamped
OCV	Open circuit voltage
©e	Speed of engine
© _{mg1}	Speed of motor-generator set 1
Omg2	Speed of motor-generator set 1
Øreq	Requested speed
P&O	Perturb & Observe
PAM	Pulse amplitude modulation
P _{bat}	Battery power
P _{bat}	Battery power
PGS	Planetary gear set
PHEV	Plug-in HEV
PI	Proportional integral
p_i, q_i, r_i	Consequent parameters
PM	Permanent magnet
PMBLDC	Permanent magnet BLDC
PMP	Pontryagin's minimum principle
PMSM	Permanent magnet synchronous motors
PSO	Particle swarm optimization
PV	Photovoltaic
PV-HEV	Solar driven-HEV
PWM	Pulse width modulation
Q _b	Battery capacity
R	Gas constant
R ₀	Internal resistance of battery
R ₁	Resistance across C ₁
R ₁	Resistance across C ₂
R3	Resistance across C ₃
R _b	The internal resistance of the battery
RC	Resistance capacitator
r _{dyn}	Dynamic radius of the tyre
rpm	Revolutions per minute

SA	Simulated annealing
SBP	Synergetic battery pack
SDP	Stochastic dynamic programing
SoC	State of charge
SoC*	Rate of change of state of charge
SoE	State of energy
SoF	State of function
SoH	State of health
SRM	Switched reluctance motors
STA	Super twisting algorithm
T_1 , T_2 and T	Various time instant of the waveform
ТСО	Total costs of ownership
T _d	The torque developed by the motor
T _e	Torque of ICE
T_{em}	Operating temperature
T_{mg}	The torque of the motor-generator
T_{mg1}	The torque of the motor-generator set 1
T_{mg2}	The torque of the motor-generator set 2
$T_0 T_0^-$ and T_0^+	Initial condition
T_{req}	Requested torque
TTR	Through-the-road
UC	Ultra-capacitor
UDDS	Urban Dynamometer Driving Schedule
UKF	Unscented Kalman filter
V	Vehicle speed
V_0	Voltage across R ₀
V_1	Voltage across R ₁
V_{1zero} , V_{2zero} and V_{3zero}	Zero input response of voltages V_1, V_2 and V_3
V_2	Voltage across R ₂
V2G	Vehicle to grid
V ₃	Voltage across R ₃
VF-ZSI	Variable frequency- Impedance source inverter
$V_{\rm H}$	High-speed region

V _L	Low-speed region
V _{mot}	Voltage across motor
V _{oc}	Open circuit voltage
V _{oc}	Open circuit voltage
VSI	Voltage source inverter
V _{ter}	Voltage across terminal of battery
<i>x</i> and <i>y</i>	Crisp inputs
XEVs	(BEVs, HEVs & PHEVs)
XHEVs	Full HEVs and PHEVs
ZSI	Impedance source inverter
α	Road angle
δ	Mass factor
η_{mg}	The efficiency of the motor-generator set
\Sec: Fresistance	Total resistive force
ΣF_t	Total tractive force
$ au_1$	Time constant of the branch R_1C_1
$ au_2$	Time constant of the branch R_2C_2
$ au_3$	Time constant of the branch R ₃ C ₃
Omg	The angular speed of the motor-generator set
V	Vehicle speed in m/s
g	Gear ratio
i_g	The gear ratio of the transmission,
<i>İmw</i>	Gear ratio of traction motor to the driven wheels
<i>i</i> _{rw}	Gear ratio of the ring gear to drive train wheels
$n_{e_{\max}}$	Maximum allowable RPM of ICE
n_{e_\min}	Minimum allowable speed
$n_{m/g}$	Speed of motor-generator set
n_{tm}	EM speed
r_w	wheel radius