APPENDIX-A

A.1 Dynamixel Motors

The mobile robot for used for experimental analysis utilizes two Dynamixel EX- 106
Motors for the purpose of actuation of the left wheel and the right wheel. The
omnidirectional castor wheel utilized by the robot is not actuated. The Dynamixel servo
motors use a precise closed loop DC motor mechanism with an independent
microcontroller for computation. Table A1 summarizes some important properties of the
Dynamixel motor which makes it suitable for use for the current application. The product

manual for Dynamixel EX-106 has been added as a hyperlink.

Table Al: Important characteristics of Dynamixel EX-106 motors

Sr. No. | Type of characteristic | Characteristic

1 Communication protocol | RS 485 Asynchronous serial communication

2 Command signal Digital packets of data

3 Motor mode required Wheel Mode

4 Baud rate 1 Mbps
5 Feedback available Load, Input voltage, position etc.
6 Resolution 0.07 degrees

A.1.1 Dynamixel Motors - Creating Packets

As mentioned earlier, the Dynamixel motors used a packet-based communication in
order to control the motor and make use of various inbuilt functionalities. For various
applications, different packets of data need to be sent to the motor. The communication

procedures can be explained by the following points: -

1) Control Table- Control table is an area reserved in the motors memory which
consists of information regarding the data present which controls various kind of
actions in the motor such as goal position, moving speed, present position, sensed
current etc. Some functionalities are located in the EEPROM memory, while others

are stored in the RAM. Using the hexadecimal address of these particular memory

151

Appendix A

locations, the users can send data packets in order to control or read the status of the

major functionalities involved with the motor.

2) Instruction Packet- The instruction packets are used to send a certain instruction to
the motor. This is done by sending an instruction packet with certain parameter data
values accompanied with the address to which the data has to be sent. Figure Al
shows the structure of an instruction packet labelled with what the different bits

represent.

[oxFA oXFF Dl LENGTH INSTRUCTION [PARAMETERY| ..]PARAMETER N|CHECK SUM

Figure Al: Structure of an instruction packet

3) Status Packet- The status packet is similar to the instruction packets in structure.
However, instead of executing a change in the data values in the control table, the
status packet is used to read and analyze the current values in the control table. Status
packets are used to check if the motor is running with optimum efficiency. An error
bit is also added in the status packet if data is not received efficiently. Figure A2

shows the structure of a status packet labelled with what the different bits represent.

[oXFF pXFF [ID] [LENGTH [ERROR| [PARAMETER1| [PARAMETER2].. PARAMETER N|

CHECK SUM

Figure A2: Structure of a status packet

Using this packet-based communication, MATLAB software is utilized to set up a
communication between the PC and Dynamixel motors. The PC hence acts as a
replacement for the embedded controllers. Multiple programs have been created in
MATLAB in order to allow the mobile robot to perform many common functionalities,
some of which are listed as follows:-

1) Move left and right

2) Moving in a straight line

3) Move circle clockwise and counter-clockwise

4) Read current speed in RPM

5) Set goal position

6) Pure rotation at a single position

152

Appendix A

Figure A3 and Figure A4 showcase MATLAB programs to create a circle in the counter-
clockwise direction and create a figure of 8 using the robot model respectively. The
following programs have been tested in real-time with the two-wheeled differential drive
robot model.

function [] = moveCircleCCW(radius, speed)
1 38; %wheel base
r 5.2; %wheel radius
wl = (speed)*(1-(38/(2*radius)))/r %angular speed of left wheel
wr = (speed)*(1+(38/(2*radius)))/r %an ar sp S ght wheel
lspeed = floor(wl*(60/(2*pi))/@©.111) %factor of ©.111 for rpm -> bytes
rspeed = floor(wr*(60/(2*%pi))/0.111)
movelLeft(@,lspeed);
moveRight (1, rspeed);
movelLeft(0,0);
movelLeft(@,lspeed);
n = 1;%the number of circles
t = 2*pi*radius*n/speed;
while(®)
getSpeed(9);
getSpeed(1);
end|
end

Figure A3: MATLAB program to create circle in counter-clockwise direction

function [] = figure8(radius, speed)
moveCircleCCh(radius,speed)
t = 2*pi*radius/speed;
pause(2*t);
stopAll();
moveCircleCW(radius, speed)
pause(2*t);
stopAll();

Figure A4: MATLAB program to make a figure of Eight
A.2 Flexible code in Matlab for close loop control of Dynamixel EX106+ actuator

%File Name: final. m%

Disp ('Mobile Robot'); % Project Title

loadlibrary ('dynamixel’, 'dynamixel.h'); % Load library files

libfunctions ('dynamixel'); % Load functions

calllib ('dynamixel’, 'dx]_initialize', 16, 1); % Set port and speed with check on
initialization

d=input("\nDistance to move in mm: '); % 1000

153

Appendix A

if (isempty(d)) % invalid input check

d=0; % distance zero for invalid input

end % end of if loop

s=input (\nSpeed Percentage: '); % 30

if (isempty(s)) % invalid input check

s=0; % speed zero for invalid input

end % end of if loop

h=abs (round((5265/575)*d)); % Hexadecimal distance for motor
s=abs (round ((s/100)*1023)); % Hexadecimal speed for motor
i=0; j=0; m=4; % i for distance counter, j for temporary variable & m for motor id
if h== % if zero distance input

elseif d<0 % if negative distance input

m=1; a=s; b=1023+s;
% set motor id 1 for reading, motor 1&2 counter clockwise, motor 3&4 clockwise
p=int32 (calllib ('dynamixel','dx]_read_word', m, 36)) ;

% read motor 'm' position

pause(0.0001); % delay

tx(a,b); % call packet transmission function
pause (0.0001); % delay

else % if positive distance input
a=1023+s;b=s;

% keep motor id 4 for reading, motor 1&2 clockwise, motor 3&4 counter clockwise

p=int32 (calllib('dynamixel’,'dx]_read_word',m,36)); % read motor m position

pause(0.0001); % delay

tx(a,b); % call packet transmission function
end % end of if loop

while i<h % while distance is reached

g=int32(calllib('dynamixel’,'dxl_read_word',m,36)); % read motor 'm' position

if g-p>0 % if positive difference
i=i+q-p; % add distance counter to original
else % if negative difference

i=i+q-p+65535;
% add distance counter to original with crossover maximum limit of motor encoder

end % end of if loop

154

Appendix A

pP=q; % new initial position
pause(0.0001); % delay

end % end of while loop
calllib('dynamixel','dx]_write_word',254,32,0); % transmit 0% speed to all motors

g=int32(calllib('dynamixel’,'dx]_read_word',m,36));

% read motor m position

calllib('dynamixel','dx]_terminate'); % Terminate
unloadlibrary('dynamixel’); % Unload library files

%File Name: tx.m%

function[]=tx(m12,m34) % declare function for packet

making and transmission

loadlibrary('dynamixel’, 'dynamixel.h'); % Load library files
libfunctions('dynamixel’); % Load functions
calllib('dynamixel’, 'dxl_initialize', 16, 1); % Set port and speed with check on
initialization

calllib('dynamixel','dxI_set_txpacket_id',254); % Broadcast id OXFE (254)

calllib('dynamixel','dx]_set_txpacket_length',16);

% Packet Length is 16 (L+1) x N+4 where 'L' is number of data to write and 'N' is
number of dynamiels
calllib('dynamixel','dxI_set_txpacket_instruction',131);

% SyncWrite instruction 0x83 (131)
calllib('dynamixel','dxI_set_txpacket_parameter',0,32);

% Starting address to write 0X20 (32)
calllib('dynamixel','dxI_set_txpacket_parameter',1,2);

% Length of data to write to each dynamixel = 4
calllib('dynamixel','dx]_set_txpacket_parameter',2,1);

% Parameter for syncwrite dynamixel id = 1

lowByte = calllib('dynamixel','dx]_get_lowbyte',m12);

% Low Byte Speed Percentage m12

highByte = calllib('dynamixel','dx]_get_highbyte',;m12);

% High Byte Speed Percentage m12
calllib('dynamixel','dxI_set_txpacket_parameter',3,lowByte);
% Set lowbyte Speed Percentage
calllib('dynamixel','dxI_set_txpacket_parameter',4,highByte);

155

Appendix A

% Set highbyte Speed Percentage
calllib('dynamixel','dx]_set_txpacket_parameter',5,2);

% Parameter for syncwrite dynamixel id = 2

lowByte = calllib('dynamixel','dx]_get_lowbyte',m12);

% Low Byte Speed Percentage m12

highByte = calllib('dynamixel','dxI_get_highbyte',m12);

% High Byte Speed Percentage m12
calllib('dynamixel','dxI_set_txpacket_parameter',6,lowByte);
% Set lowbyte Speed Percentage
calllib('dynamixel','dxI_set_txpacket_parameter',7,highByte);
% Set highbyte Speed Percentage
calllib('dynamixel','dx]_set_txpacket_parameter',8,3);

% Parameter for syncwrite dynamixel id = 3

lowByte = calllib('dynamixel','dx]_get_lowbyte',m34);

% Low Byte Speed Percentage m34

highByte = calllib('dynamixel','dx]_get_highbyte',34);

% High Byte Speed Percentage m34
calllib('dynamixel','dxI_set_txpacket_parameter',9,lowByte);
% Set lowbyte Speed Percentage
calllib('dynamixel','dxI_set_txpacket_parameter',10,highByte);
% Set highbyte Speed Percentage
calllib('dynamixel','dxI_set_txpacket_parameter',11,4);

% Parameter for syncwrite dynamixel id = 4

lowByte = calllib('dynamixel’,'dx]_get_lowbyte',34);

% Low Byte Speed Percentage m34

highByte = calllib('dynamixel','dx]_get_highbyte',34);

% High Byte Speed Percentage m34
calllib('dynamixel','dxI_set_txpacket_parameter',12,lowByte);
% Set lowbyte Speed Percentage
calllib('dynamixel','dx]_set_txpacket_parameter',13,highByte);
% Set highbyte Speed Percentage
calllib('dynamixel','dx]_tx_packet'); % Transmit Packet
calllib('dynamixel’, 'dxl_initialize', 16, 1);

% Set port and speed with check on initialization

156

APPENDIX-B

Robot Operating System (ROS)

The Robot Operating System (ROS) is a middleware/meta-operating system which not
only provides support for hardware-abstraction and low-level control, but also provides
support for various software-based tasks such as computer vision (OpenCV) and ROS
stacks for control (ros_control), navigation (ros_navigation) as well as third-party
libraries for Simultaneous Localization and Mapping (SLAM) from various different

institutions.

The primary advantage of a system like ROS is platform independence, modularity, and
portability. The network is device independent and can be setup up efficiently and
swiftly on a new platform. ROS also provides good support for 3-D simulation and 3-D
visualization environments like Gazebo and RViz which make it suitable for use. The
file-system of ROS also makes it efficient to distribute open-source software and build
custom packages as per needed using a catkin toolchain. Figure B1 shows how a

middleware layer adds to the layer of hardware abstraction.

f ApplicationSW

Application jt
Porting

\l :
Middleware
"\

Jt Middleware

Porting
/» Operating System
OLEBIM NN frosssms s ————_;

\ Firmware / Device Drivers

!

HW

05 Porting

Figure B1: Middleware for hardware abstraction

157

Appendix -B

ROS: Core Components

The core components of the ROS networking system which have been utilized have been

summarized as follows: -

1y

2)

3)

4)

5)

6)

Master: ROS Master provides a name registration service for various nodes and
hence allows nodes to internally communicate with each other using messages or
services.

Parameter Server: It is a multi-variable dictionary which is shared between nodes
and used to store static data like configuration parameters of various devices for
real-time operations.

Nodes: ROS Nodes are basic computational units in the ROS Computation graph.
These nodes can publish data to a topic or subscribe to data from a topic.
Messages: ROS Messages are simple data types which define the type of data
being sent between topics from one node to another.

Topics: ROS Topics act as data-buses which are used by nodes in order to send
messages of data. Publishers will publish data on the topic while the subscribers
will subscribe to a stream of data from a topic.

Bags: ROS Bags are typically used to store data from a topic in a serialized
fashion. Generally, sensor data from various sensors is stored in form of bags for
further analysis. Figure B2 shows the ROS Computational level graph with various

processes available.

ROS Computational Graph

Level

Figure B2: ROS computational level graph

158

APPENDIX-C

Camera Calibration

The concept of camera calibration and perspective projections comes into importance

when certain pixel coordinates have to be converted to real-world measurements which

can be used for a particular task. Camera calibration is the process of estimating the

extrinsic and intrinsic parameters of a camera using indirect methods. Camera calibration

allows the user to remove errors which appear due to radial distortion, noise and other

non-linear image distortions. The camera calibration approach involves the estimation of

two matrices: -

Y

2)

Extrinsic Parameters- The extrinsic parameters compute a general rigid body
transformation for points in some arbitrary world coordinate frame (X, Y, Z) to
points in the camera’s 3-D coordinate frame (X, y, z). Equation (c1) shows the matrix
representing the extrinsic parameters where R is the rotation matrix, t is the
translation matrix. In the matrix, r and t are the components of the rotation and

translation in different directions.

hy ha hs [
r. T r. t
o1 o iy b
[R/t]: (c)
Iy N, Iz I

Intrinsic Parameters- The intrinsic parameters compute a transformation for points
in the camera’s 3-D coordinate frame (X, y, z) to coordinates on the 2-D image plane
(u, v) via projections. Equation (c2) shows the matrix representing the intrinsic

parameters where the following parameters exist: -

a) f, & f, (focal lengths) are the distance between the pinhole camera and the
image plane.

b) ¢, & c, (principal offsets) are the distance between the point of intersection of
the perpendicular from the pinhole camera to the image plane (principal point)
and the origin of the image plane.

c) s 1is the axis skew which causes shear distortion. This particular value is more
prominent in camera with a fisheye lens or stereo cameras, rather than monocular
pinhole camera models.

159

Appendix C

f. s c,
K=10 f, ¢ (2)
0 0 1

Figure C1 summarizes the process of conversion from a point in world coordinate space
(X, Y, Z) to pixel coordinate space (u, v). The conversion involves the use of the
extrinsic and intrinsic parameters. Figure C2 shows a projection from 3-D coordinates of
a point in the world-coordinate frame to the 2-D coordinates in the pixel coordinate

frame of the camera.

World
coordinates

Pixel
coordinates

Camera
coordinates

[XY2Z] sRRERE [Xc Yo Zc]
1 1 L
1
Extrinsic Intrinsic
parameters parameters

Figure C1: Conversion from world to image coordinates

Y
P (X.Y,2)
.._D
P (w1
“enter of ¥ Principal Axis .

Projection Image Plane
X /

Figure C2: Projection from 3-D coordinates to 2-D pixel coordinates

Equation (c3) gives the simplified version of the entire equation to obtain the camera
matrix P. Equation (c4) gives the decomposed version of the entire equation to obtain the

camera matrix P (3x4 matrix).

P =K|[R/] (c3)

160

Appendix C

12 0
L0 e fe O O)° » “hny n, ns 4
P: O 1 Cy O fy O O 1 O r2,l rz)z r2)3 t2 (C4)
0 0 10 0 1Jj0 0 1|r, nr, rn; 4

Equation (c5) shows the entire equation required to convert a point in 3D world
coordinate frame (X, Y, Z) to a point in the image plane (u, v) where ‘s’ is the scale

factor and P is the camera matrix (3x4 matrix) as computed using Equation (c4).

X
! Y
wlvi=pP , (c5)
1
1

Figure C1 shows the code snippet which is used to estimate the real-world coordinates
from the image coordinates (u, v). MATLAB internally uses numerical optimization

methods in order to get the required result.

Detected points
Checkerboard origin
Reprojected points

Figure C3: Sample image for camera calibration

A sample image used for camera calibration is shown in Figure C3. Figure C4 shows the
re-projection errors for the 22 images which have been used for the process of calibration.
Figure C5 shows the views of the 22 checkerboard configurations in Euclidean space as

seen by the camera.

161

Appendix C

25 =
Drag to select outliers

2f

Mean Error in Pixels

15
1=
05'I I I II
ls ll
5 10

0

Illlllll i ——
15 20

Images

Figure C4: Re-projection error for the 22 images

300
350

X (om) ¢ Zem)

Figure C5: View of checkerboard configurations as seen from the camera

Hence, using the method of camera calibration, the (u, v) coordinate values of optimal path
are translated into real-world coordinates (x, y). These real-world coordinates are used to
provide actuation commands to the mobile robot in real world dimensions. Warning: The
checkerboard must be asymmetric: one side should be even, and the other should be odd.

Otherwise, the orientation of the board may be detected incorrectly.

162

25 30

Appendix C

% Graphical input of '2' points from mouse or cursor

[x,y] = ginput(2)

% Detect the checkerboard.

[imagePoints, boardSize] = detectCheckerboardPoints(im);

% Compute rotation and translation of the camera.

[R, t] = extrinsics(imagePoints, worldPoints, cameraParams);

% Exporting Rotation Matrix & Translation Vector to a txt file
dlmwrite('RotationMatrix.txt',R)
dlmwrite('TranslationMatrix.txt',t)

% Get the world coordinates of the two points.

imagePointsl = [x,y];

worldPointsl = pointsToWorld(cameraParams, R, t, imagePointsl);
% Compute the diameter of the coin in centimetersj

d = worldPointsl1(2, :) - worldPointsl(1l, :);

distance = hypot(d(1), d(2));

fprintf('Measured Distance between the two points = %@.2f cm\n', distance);

Figure C6: Code snippet for conversion from image to world coordinates

163

Appendix D

APPENDIX -D
D.1: D* Lite Pseudo Code

The following pseudo code has been adapted from [1].

Function CalculateKey(s)

{01} return [min(g(s), rhs(s)) + h(s_start, s) + km; min(g(s), rhs(s))];
Function Initialize()

{02} U=0;

{03} km = 0;

{04} for all s €S rhs(s) = g(s) = w;

{05} rhs(s_goal) = 0;

{06} U.Insert(s_goal, [h(s_start, s_goal); 0]);

Function UpdateVertex(u)

{07} if (g(u) !=rhs(u) AND u €U) U.Update(u,CalculateKey(u));
{08} else if (g(u) !=rhs(u) AND u/€U) U.Insert(u,CalculateKey(u));
{09} else if (g(u) = rhs(u) AND u €U) U.Remove(u);

Function ComputeShortestPath()

{10} while (U.TopKey() <CalculateKey(s_start) OR rhs(s_start) > g(s_start))
{11} u=U.Top();

{12} k_old = U.TopKey();

{13} k_new = CalculateKey(u));

{14} if(k_old<k_new)

{15} U.Update(u, k_new);

{16} else if (g(u) >rhs(u))

{17} g(u) = rhs(u);

{18} U.Remove(u);

{19} for all s €Pred(u)

{20} if (s !=s_goal) rhs(s) = min(rhs(s), c(s, u) + g(u));
{21} UpdateVertex(s);

{22} else

{23} g_old = g(w);

{24} g(u) = «;

{25} for all s €EPred(u) U{u}

{26} if (rhs(s) = c(s, u) + g_old)

{27} if (s !=s_goal) rhs(s) = min s'€Succ(s)(c(s, s') + g(s"));
{28} UpdateVertex(s);

Function Main()

{29} s_last = s_start;

{30} Initialize();

{31} ComputeShortestPath();

164

Appendix D

{32} while (s_start !=s_goal)

{33} /* if (g(s_start) = oc) then there is no known path */
{34} s_start = argmin s'€Succ(s_start)(c(s_start, s') + g(s"));
{35} Move to s_start;

{36} Scan graph for changed edge costs;

{37} if any edge costs changed

{38} km = km + h(s_last, s_start);

{39} s_last = s_start;

{40} for all directed edges (u, v) with changed edge costs
{41} c_old =c(u, v);

{42} Update the edge cost c(u, v);

{43} if (c_old>c(u, v))

{44} if (u != s_goal) rhs(u) = min(rhs(u), c(u, v) + g(v));
{45} else if (rhs(u) = c_old + g(v))

{46} if (u !=s_goal) rhs(u) = min s'€Succ(u)(c(u, s') + g(s"));
{47} UpdateVertex(u);

{48} ComputeShortestPath()

D.2: Setup Configuration for navigation Stack

max_obstacle_height: 0.60

assume something like an arm is mounted on top of the robot
robot_radius: 0.20

distance a circular robot should be clear of the obstacle (kobuki:0.18)
map_type: voxel

obstacle_layer:

enabled: true

max_obstacle_height: 0.6

origin_z: 0.0

z_resolution: 0.2

z_voxels: 2

unknown_threshold: 15

mark_threshold: 0

combination_method: 1

track_unknown_space: true

#true needed for disabling global path planning through unknown space
obstacle_range: 2.5

raytrace_range: 3.0

origin_z: 0.0

z_resolution: 0.2

z_voxels: 2

publish_voxel_map: false

observation_sources: scan bump

165

Appendix D

scan:
data_type: LaserScan

topic: scan

marking: true

clearing: true

min_obstacle_height: 0.25

max_obstacle_height: 0.35

bump:

data_type: PointCloud2

topic: mobile_base/sensors/bumper_pointcloud

marking: true

clearing: false

min_obstacle_height: 0.0

max_obstacle_height: 0.15

for debugging only, let's you see the entire voxel grid

#cost_scaling_factor and inflation_radius were now moved to the inflation_layer ns
inflation_layer:

enabled: true

cost_scaling_factor: 12.0

exponential rate at which the obstacle cost drops off

inflation_radius: 0.40

max. distance from an obstacle at which costs are incurred for planning paths.
static_layer:

enabled: true

D.3: LOCAL Planner Configuration (DWA Planner ROS)

Robot Configuration Parameters - Kobuki

max_vel_x: 0.15 # 0.55

min_vel _x: 0.0

max_vel_y: 0.0

diff drive robot

min_vel_y: 0.0

diff drive robot

max_trans_vel: 0.15

choose slightly less than the base's capability

min_trans_vel: 0.1

#This is the min trans velocity when there is negligible rotational velocity
trans_stopped_vel: 0.1

Warning!

Do not set min_trans_vel to 0.0 otherwise dwa will always think translational
velocities

Are non-negligible and small in place rotational velocities will be created.
max_rot_vel: 1.5 # choose slightly less than the base's capability

166

Appendix D

min_rot_vel: 0.4

This is the min angular velocity when there is negligible translational velocity
rot_stopped_vel: 0.4

Acceleration values:

acc_lim_x: 1.0 # maximum is theoretically 2.0

acc_lim_theta: 2.0

acc_lim_y: 0.0 # diff drive robot

Goal Tolerance Parameters

yaw_goal_tolerance: 0.3 # 0.05

xy_goal_tolerance: 0.15# 0.10

latch_xy_goal_tolerance: false

Forward Simulation Parameters

sim_time: 1.0

vx_samples: 6

vy_samples: 1

diff drive robot, there is only one sample

vtheta_samples: 20

Trajectory Scoring Parameters

path_distance_bias: 64.0

Weighting for how much it should stick to the global path plan
goal_distance_bias: 24.0

24.0 - weighting for how much it should attempt to reach its goal
occdist_scale: 0.8

0.01-weighting for how much the controller should avoid obstacles
forward_point_distance: 0.325

#0.325 - how far along to place an additional scoring point
stop_time_buffer: 0.2

(0.2 - amount of time a robot must stop in before colliding for a valid trajectory.
scaling_speed: 0.10

0.25 - absolute velocity at which to start scaling the robot's footprint
max_scaling_factor: 0.2

0.2 - how much to scale the robot's footprint when at speed.

Oscillation Prevention Parameters

oscillation_reset_dist: 0.05

how far to travel before resetting oscillation flags

Debugging

publish_traj_pc : true

publish_cost_grid_pc: true

global_frame_id: odom

Differential-drive robot configuration - necessary?

holonomic_robot: false

167

Appendix D

D.4: Code for kalman filtering:
Joexperiment test- 1 & 2

% X-cood

Q=[1.25 0;0 1.25];
R=[3.782 0;0 7.491];
kal_x(1,1)=tld_x_expl(1,1);
A=[10;0 1];

Pk=[11;1 1];

C=[10;1 0];

I=[10;01];

fori=2:1471

Yprediction step

Pk_prev=Pk;
pred_x=[kal_x(i-1,1)];

Pk=A*Pk_prev*A'+Q;
Joupdate step

end

InvMatrix=C * Pk *(C')+ R ;

Gk=Pk * C'/ InvMatrix;
Zk=[odo_x_expl(i,1) O;tld_x_expl(i,1) O];
updt_x=pred_x+Gk*(Zk-(C*pred_x));
kal_x(i,1)=updt_x(1,1);
Pk=(I-(Gk*C))*Pk;

% Y -cood

Q=[1.25 0;0 1.25];
R=[3.395 0;0 8.591];
kal_y(1,1)=tld_y_exp1(1,1);
A=[10;0 1];

Pk=[11;1 1];

C=[10;1 0];

I=[10;01];

fori=2:1471

Yprediction step

Pk_prev=Pk;
pred_y=[kal_y(G-1,1)];
Pk=A*Pk_prev*A'+Q;

Joupdate step

InvMatrix=C * Pk *(C')+ R ;

Gk=Pk * C'/ InvMatrix;
Zk=[odo_y_expl(i,1) O;tld_y_expl(,1) O];
updt_y=pred_y+Gk*(Zk-(C*pred_y));
kal_y(i,1)=updt_y(1,1);
Pk=(I-(Gk*C))*Pk;

plot(odo_y_expl,odo_x_expl,tld_y_expl,tld_x_expl,kal_y,kal_x)

168

