Chapter 3

Approach for Tracking of Mobile Robot with
Vision Sensor

3.1 Introduction

Robotics research has been using vision sensors in a wide variety of applications such as
surveillance, vehicle navigation and autonomous robot navigation. These applications
involve detection and tracking of the moving object accurately in real time. Accurate
detection i.e. localizes the appearance of object in the current frame and tracking is
prerequisite for successful navigation in real time environments, particularly when global
models are available such as maps, topological descriptions etc. The basic strength of
vision sensor lies in solving the detection and tracking problem of captured image or
video of the environment and hence building of a real-time map of its surrounding
environment through which the mobile robot is directed to navigate through desired path.
The problems related to object localization, object recognition, object presence
classification, and pose estimation can be solved using different object detection
techniques [Astua et al. (2014), Deori and Thounaojam, (2014)]. For above activities,
object detection method should be robust and accurate to detect the moving object
because the mobile robot would be used for realistic navigation [Jung & Sukhatme,
(2010)]. There has been in-depth research on computer vision for mobile robot
navigation since it offers relatively large amount of environmental information from an
image or video which can be extracted [Culler and Long, (2016)]. Detection and tracking
of mobile robot with vision sensor facilitates passive sensing of the environment and
provide valuable information about the scene that is unavailable through other sensors.
There is no single algorithm which can meet all kinds of robot path tracking control.
Many scholars have put forward the corresponding path tracking control algorithm
according to different robots and environment condition [Wu et al. (2013), Luo et al.

(2015)]. Tracking of mobile robot is challenging due to poor illumination, shadows and
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parallax effect. In order to reduce the above effects, reasonable tracking accuracy with
low false alarm and missing detection rates are necessary. Therefore, Kalman Filter
process is integrated into the online tracking process to improve the tracking
performance. Therefore, the vision based navigation offers promising results considering
the limitations of existing systems like inertial sensors, GPS, range sensors [Coito et al.
(2014)]. In this work the focus is to track a mobile robot which was detected earlier using
Viola Jones algorithm. A new framework has been proposed to solve the tracking
challenges such as noise in an image, difficult object motion, imperfect object occlusions
and complex objects structures; which is based on KLT and Kalman filtering approach.
Here the aim is to infer the status of mobile robot which is being tracked, to estimate its
current state and to make predictions about its future states. This technique has been used
in the present work to operate a mobile robot autonomously and track it through the
desired path. A detailed error analysis on track estimator based on ground truth data for
KLT and Kalman filter have been provided. In the experimental evaluation, the
implementation of above method provides reliable detection and tracking estimation that
can handle a variety of different conditions. Consequently, the robot can communicate

the information with controller for navigation.

The rest of this chapter is organized as follows: Section 3.2 gives a systematic method to
detect and track mobile robot. In Section 3.3, the system descriptions and experimental
setup is explained, subsequently in Section 3.4, experimental results are analyzed and

presented. The conclusions are given in Section 3.5.

3.2 Methods to Detect and Track Mobile Robot

In this work a systematic method combining Viola Jones, KLT and Kalman Filter based

algorithms is discussed to track and detect a mobile robot.
The steps used to detect and track a mobile robot are discussed below:

Step1 Opens a mobile robot image and place a bounding box around the mobile robot
by rescales to mxn pixels then Saves the rescaled mobile robot as an image.

(start of V-J Algorithm)
Step2 Positive and Negative images are captured and used as input for classification.

Step3 Each stage in the cascade was trained using a Positive and Negative images (with

specified Region of Interest).
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Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Step 13

Step 14

Threshold values of false alarm rate and number of cascading stages are chosen

for better detection of mobile robot.

The classifier returns the coordinates of the corners of the bounding box, which

encloses the detected mobile robot. (end of V-J Algorithm)

Initialize the tracking process to specify the initial locations of the points and the

initial moving frame. (start of KLT Algorithm)

The frames of the detected mobile robot within the bounding box are scanned for
feature points to initialize the tracking process to specify the initial locations. The
output feature points contain an Mx2 array of [x, y] coordinates that correspond

to the new locations in the input frame.

The eigenvalue criterion is used to select the corners against the vague features in
window, where the intensity patterns are very irregular. The background, as well

as the relatively uniform areas in window, contains no features.

To determine A (predetermine threshold), first measure the eigenvalues for
images of a region of approximately uniform brightness, taken from the camera

for tracking.

If the number of feature point decrease below the minimum eigenvalue then the

detection process goes to step 8 and repeats the process.

A tracker object is created which read, displays and tracks these feature points
through the subsequent frames as long as a minimum number of feature points

are available. (end of KLT Algorithm)

The measured location of the mobile robot is taken as the centroid of the detected
bounding box which is used as measured input to the Kalman filter. (start of

Kalman Filter Algorithm)

The location of the specified path is used as the predicted input to the Kalman
filter.

An optimal estimate of the current location of mobile robot is determined using

the Kalman filter. (End of Kalman Filter Algorithm)

The details of each of the algorithms i.e. Viola Jones, KLLT and Kalman Filter, used for

above task are discussed in subsequent sections.
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3.2.1 Viola Jones Algorithm

Object detection proposed by Viola and Jones is the robust approach for real-time object
detection [Viola & Jones, (2001)]. This algorithm has four important stages: (i) Haar feature
Selection, (ii) Creating an Integral Image, (iii) Adaboost Training and (iv) Cascading
classifiers [Felzenszwal et al. (2010), Ehsan et al. (2015), (Bineesh & Simon, 2012), Yang et
al. (2013)]. The integral image is a step for quick and efficient calculation for the sum of
intensity values in a rectangular subset of an image [Guennouni et al. (2015)]. The integral

image is defined as:

i, y)= Y, i(x’,y) (3.1)

X<x,y’<y
where ii(x, y) the integral is image and j(x", y") is the original image. This computational
advantage enabled scaling the features for multi-scale detection at no additional cost because
it requires the same number of operations despite of size. This approach utilizes the
Adaboost algorithm which selects a sequence of rectangle features that indicate the presence
of a mobile robot. Here the weak learner is designed to select the feature which best
separates the positive and negative images. A weak classifier h(x, f, p, ) is defined as:

1 <

A :{ Y o= pi (32)
0 otherwise

where f is a feature from the huge set spanning different sizes of the Haar like features, p

is a polarity indicating the direction of the inequality, & is a threshold and x is a training

sub window of size mxn pixel. The Adaboost is used both to select features and to train

the classifier.

The cascade of classifiers [Shaikh et al. (2014)] is used to combine increasingly more
complex classifiers successively which allows background regions of the image to be
quickly discarded while spending more computation on promising object-like regions. The
object detection method belongs to the single detection window method based on applying
an object detector for all possible sub-windows in a given image. In [Zhu et al. (2006)], an
efficient detector applicable to videos was built using a cascade of Adaboost classifiers
relying also on Haar descriptors but extracted from spatio-temporal difference. It was
extended in [Dalal and Triggs, (2005)] to videos using histograms of differential optical flow
features in addition to HOG. The HOG features focuses on the structure or the shape of an
object. The HOG feature [Tian et al. (2013)] has been used successfully for object detection,

which allows real-time detection comparable to the rectangular Haar-like detectors used by
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Viola-Jones. HOG feature have more discriminative capacity than Haar features and
covariance matrix. The HOG features are chosen to provide a good representation of object
contour, invariant to illumination changes and small image movements and can be computed
in a constant time. The HOG features are calculated by taking orientation histograms of
image intensity in a local region. Integral image method for HOG features with fixed cell
size is used for detection. In the present work, the goal is to detect and track the mobile robot

in real time using captured images from stationary camera.

3.2.2 Kanade-Lucas-Tomasi Algorithm

Tracking objects can be complex due to loss of information caused by projection of the 3D
world on a 2D image, noise in images, complex object motion, partial and full object
occlusions, scene illumination changes, and real-time processing requirements etc. In general,
many tracking algorithms use a combination of visual features like color, edges, optical flow
and texture. In order to avoid tracking of all pixels in the resulting image and within a given
foreground object, many techniques for tracking based on a limited set of feature points have
been proposed in literature. Out of these techniques Kanade-Lucas-Tomasi (KLT) method has
been chosen [Morlier & Michon, (2010)]. The KLT tracks an object in two steps; it locates the
trackable features in the initial frame and then tracks each one of the detected features in the
rest of the frames by means of its displacement [Bernes et al. (2014)]. In this work, the selected
trackable features is used and subsequently the whole set of features are tracked together
instead of tracking each feature separately. Stages in the cascade are constructed by training

classifiers using Adaboost and then adjusting the threshold to minimize false negatives.

The aim is to track a region of interest in the image plane. The shape of this region is fixed a
priori through the definition of a zero-centered window W. It can be an ellipse or a rectangular
box as shown in Figure 3.1. In this case, there is no restriction on the class of shapes that can be
used. Image gradients provide information about the linear intensity of image texture; thus the
selection of “trackable features” can rely on texture. Texture pattern exists when multiple
pixels in a certain area have different distinguishable values [Yilmaz et al. (2006)]. The
features to be tracked can be precisely defined by the texture within a finite size window. The
window size would determine the number of features detected. For each pixel in the window,

the pixel gradient values ¢., ¢y are calculated to form a 2x1 gradient vector, ¢ = | NN y.

2
Thus, ool =| P Py (33)

- 2
PxPy Py
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Figure 3.1: Flowchart for mobile robot detection, tracking and denoising using
Kalman filter
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By considering all pixels within the window, matrix w is defined as follows:

w = Z Z ¢ij¢ijT G4

i=1 j=1
Equation (3.4) forms the first part of the KLT tracking equation. The matrix w contains
pure texture information. By analyzing the eigenvalues of w, the texture in the window
can be classified. The KL T algorithm has been used to continuously track the mobile
robot with the help of the frames which results in the decreased number of feature
points being tracked. The rationale behind the big enough eigen values is to detect the
presence of a feature points. Thus, it is critical to set up a threshold for the eigen
values, which depends on the environment where tracking is performed. For
experimental purposes, the threshold for A1 and 42 were found by trial and error and
set to 1000. This caused reduction in the number of feature points as many points
become invalid after being tracked through several frames. To detect the presence of a
feature point, it is important to determine when the eigenvalues are big enough. Thus it
is critical to set up a threshold for the eigenvalues, which depends on the environment
where tracking is performed. In addition, it is also critical to keep the number of
features to a minimum level. This is to ensure a reduction of the amount of calculations
performed by the system for real-time purposes. The detected features are represented
by white (+) symbols on the mobile robot as shown in Figure 3.2. Once the features are
extracted, the tracking step begins. In tracking, the location of the object is determined
in the scene by means of its detected features. The reason for tracking is to estimate the
target objects in video sequences over an interval. However, issues related to tracking
undermine the performance and the efficiency of tracking algorithms. The two
fundamental issues associated with tracking are (i) determination of the spatial location
of target object; and (ii) variations in lighting and sensor related noise. Additional
issues may arise when the moving object is occluded and separation if any. Due to
these issues, the contextual information of moving object is lost which results in
uncertainty during tracking [Morlier et al. (2010), Yang et al. (2013)].

Figure 3.2: Detected feature of mobile robot
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3.2.3 Kalman Filter Algorithm

The Kalman Filter (KF) has been widely used for mobile robot navigation [Casanova et
al. (2008), Li et al. (2010), Chen (2012)] which is a set of mathematical equations that
provides an efficient computation, recursive, and solution to the method of least-squares.
In tracking systems, there are two problems which must be analyzed: prediction and
correction. Prediction problem: predict the location of an object being tracked in the next
frame which identifies a region of interest where the probability of finding object is high.
Correction problem: identifies the object in the next frame within designated region. A
well-known solution for prediction is Kalman filter, which is a recursive estimator of

state of a dynamic system [Ghandour et al. (2015)].

The Kalman filter is an estimator that provides an efficient recursive method to estimate the
state of a linear process, in a way that minimizes the mean of the squared error [Welch &
Bishop (2006)]. The Kalman filter uses the time update (prediction) and the measurement
update (correction). Time update is to advance the state based on state equation until the
next measurement is obtained. Measurement update is to incorporate the measurement from
sensors based on measurement equation. The mobile robot is supposed to move in a 2D
coordinate system. So Kalman filter estimates the position, (x, y) in the frame, of object to
be tracked. Since the standard Kalman filter uses one correct measurement, data association
should be considered to classify true measurement and false measurements. Therefore,

Kalman filter is configured as follows:

X, =Ax,_, +w, (3.5)
1 0 ¢ 0
where x—[ v v]r A—O Lo H—1 000
» kT WPx Py Pxo Vy 001 0f 010 0
000 0

p,»>p,represent the center position of x-axis, the center position of y-axis and
v,,v,are the velocity of x-axis and y-axis. Matrix A represents the transition matrix,

matrix H is the measurement matrix, and ¢ is the time interval between two adjacent

frames. w,,v are the Gaussian noises with the error co-variances Q,and R, . These

noise values are entirely dependent on the system that is being tracked and adjusted

empirically. The step by step implementation of Kalman filter is discussed below.
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Step 1: Time update of the state estimate is

Xy = Hx oy 3.7

Step 2: The predicted measurement
Tp-1 = Hx (3.8)
Step 3: The Time update of the state error covariance
Py = APy, AT 40, (3.9)
Step 4: The data association process and determination Kalman Gain:
K, =Py H (HR, H +R)" (3.10)

Kalman gain depends on the accuracy of a measurement. If an accuracy of the
measurement is high, the Kalman gain has high value. Otherwise, the Kalman gain has

relatively low value.

Step 5: Measurement update of the state error covariance
P, =U-KH)P, . _, (3.11)
where, I is a 4 X4 unit matrix.

Step 6: Measurement update of the state estimate

Xpw = Xppor T K3 (20 = Zppy) (3.12)

3.3 System Description

The experiments have been carried out using a three wheeled mobile robot. This
mobile robot consists of two independently driven wheels in the rear, one
unpowered unidirectional wheel in the front. The servo motor (Dynamixel) motor is
chosen because it has many advantages compared to the other motors like dc motor,
BLDC motor. Enhanced speed, a good dynamic response, longer operating life,
noiseless operation, and high torque ranges etc. are few to mention [User's manual
Dynamixel Ex-106 ROBOTIS]. The rear wheels are driven by EX-106 Dynamixel
motor (Appendix Al) with No load speed: 69.9 rpm at 18.5V. These wheels are
actuated by using on board computer Surface-3 with 1.6-GHz quad-core Intel

processor, 4GB of RAM and 64GB onboard storage with MATLAB 2015b installed
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software. A reliable and fast algorithm is developed (Appendix A2) to follow all
types of motions such as, forwards, reverses, right, and so on. A flexible code with
‘distance’ and ‘Speed’ as user input is made which makes the robot to move in
either forward or reverse direction. Algorithm basically converts the distance and
speed into decimal format of hexadecimal input readable for actuator. Distance is
calculated based on user input, circumference and hexadecimal degrees for one
turn. Speed setting is actually the torque control of motor and exceeding certain
limit changes the direction of rotation which is effectively utilized in single code.
The EX-106 Dynamixel motors are operated simultaneously by an USB2Dynamixel
converter using a chain-wire link with a suitable battery. It has three configurations
for RS-232, RS-485 and TTL type of protocols for communication. Dynamixel EX-
106 with a unique ID is controlled by serial packet communication on a BUS and
supports network such as RS 485 asynchronous serial communication. To control
EX-106 with PC, the USB2Dynmixel converter is used [User's manual Dynamixel
Ex-106 ROBOTIS].

To capture the moving scenes an USB based web camera (iball-roboK20) is
mounted overhead which is 365cm from the surface. The 640x480 pixels images
are acquired and the information is sent to the laptop with configuration Core i5
3470 3.2 GHz/4GB-250GB with Intel HD Graphics/4400 with windows operating
system. The scene observed is setup with 2D planes patterns, from which the
features are extracted and matched to estimate the current and target images. The
acquired image data is processed using the MATLAB programming. During the
navigation, the system performs the tracking of the image using KLT and Kalman

filter algorithm.

3.4 Experimental Results

This work focuses on the detection and tracking of a mobile robot moving on a
specified path. The process of feature points based object tracking of the mobile robot
begins with its detection. The Viola-Jones object detection framework has been
implemented. In this application, a window of size 4x4 pixels is used (§x8 and 16x16
pixels can be used but the number of detected features will decrease as the pixels

sizes increase).
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Figure 3.3 (a-f): Positive images for detection

To discriminate between the mobile robot and non- mobile robot image several feature
images are used for training and those images will be selected as the stage classifier
for the current stage. The Viola-Jones stage classifier training iteration ends on the
false alarm rate reaching a predefined threshold. But for a certain set of training
samples, the false alarm rate does not reach the predefined threshold based on this
experiment. In the training process of the cascade classifier, approximately 200
images were added to reduce false positive rate to 0.2 which indicate a high detection
of ROIs. The training set of mobile robot images was generated and classified into
‘positive’ and ‘negative’ images. The images which classified as ‘positive’ were the

ones that contain the mobile robot Figure 3.3 (a-f).

The images which were devoid of the mobile robot were classified as ‘negative’ shown
in Figure 3.4 (a-f). This figure depicts a few positive images, with Figure 3.4 depicting
the negative ones. The training set had 62 positive images and 144 negative images. The
above said detection framework was implemented with the help of Viola Jones library
functions in MATLAB scripts. The results obtained after training met expectations and
effectively improved the performance of its implementation in tracking of the mobile

robot on the specified path using KLT.
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(b)

Figure 3.4 (a-f): Negative images for detection

After the mobile robot was successfully detected, a yellow bounding box was
positioned over the detected region for visualization. The position and size of this
bounding box would be updated as it moves forward with the tracking procedure. The
KLT algorithm tracks the mobile robot in two steps; it locates the trackable features
in the detected bounding box region of the initial frame, and then tracks each one of
the detected features in the rest of the frames by means of its displacement. The
feature points being tracked were initially detected by the use of the minimum
eigenvalue algorithm. The KLT algorithm continuously tracks the object through the
frames which results in the decrease of the number of feature points being tracked.
To detect the presence of a feature point, it is important to determine when the
eigenvalues are big enough. Thus, it is critical to set up a threshold for the
eigenvalues, which depends on the environment where tracking is performed. For
experimental purposes, the threshold for %; and > is set to 1000. The number of
feature points decrease because many points become invalid after being tracked

through several frames.
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) (e) ()

Figure 3.5 (a-f): Results of mobile robot tracking using KLT algorithm

The experimental brightness of mobile robot feature is constant over time. Number of
mobile robot feature in the image plane moves in a similar manner since the velocity
smoothness constraint. When the number of feature points being tracked becomes
less than the set threshold, the detection algorithm gets activated again and then a
new set of feature points are tracked again. The following Figure 3.5 (a-f) shows
KLT tracking process, in which the ‘yellow’ bounding box is the detected object

being tracked and the feature points being marked with ‘+’sign.

In this work, mobile robot being tracked is depicted visually by a surrounding
bounding box in the shape of a ‘yellow’ rectangle. The size of the rectangle is
determined according to the feature points detected near the object. The measured
position (location) of the mobile robot in the filter is taken to be the centroid of the
depicted rectangle in the image. The initial Kalman filter parameter values have been
calculated experimentally with Q = 0.5, R = 0.6, A= 0.9. The motion vectors are used
in depicting the ‘motion’ of the measured position of the mobile robot. Here motion
vector depict the offset of the measured position of the mobile robot from the
reference coordinates, which has taken as the upper left corner of the image.

Figure 3.6(a-f) shows a case where the measured location (green circle) has suddenly
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shifted upward because of the high density in the detected features at the top of the
object. The Kalman predicted location (red circle) has accurately detected the sudden
change and located the object at the right place using the information from previous
frames. A plot of the x-coordinate and y-coordinate of the motion vectors is
displayed. The distinction between the measured and filtered (estimated) path can be

observed clearly.

(b) ()

) (e) ()

Figure 3.6 (a-f): Results after applying Kalman filter algorithm

The experimental map area on the ground is approximately140cmx200cm. The resolution

of the image of the map obtained is 480x640. So approximately, the side of each pixel in
the image can be taken as 0.302085 cm on the ground. Using this assumption, the
velocity vs. frames plot was found out from the experiments presented in Figure 3.6(a-f).
The velocity refers to the displacement of the mobile robot through two consecutive
frames. Instead of time, the velocity was found with respect to frames, because the frame
rate of the camera was not constant throughout the experiment. The data from a five sets
of experiments was taken to test the performance of proposed algorithms. The results of

the computed xy co-ordinates of KLT tracking with respect to time and after Kalman

filtering with respect to time are described below.
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Error calculation: For the purpose of calculation of errors in experiments a
mathematical model was formulated. For error calculation model, a self-determined error

circle was taken. The Figure 3.7 illustrates this modeling procedure.

]

!

;

|
Error radTJs
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i
Figure 3.7: Cartesian coordinates of mobile robot and its error calculation

Here, mobile robot is considered as a square of side 30 cm. So, it’s diagonal

(d)= 300/2 cm. The self-determined ‘error radius’ as shown above is half of the

diagonal. So, error radius r=d/2=15v2=21.2132cm. 1t is calculated

1 pixel = 0.091125 cm?. So, one side of each pixel is 0.301869 cm. So the number of

pixels in this ‘error radius’ = 21.2132/0.301869 = 70.273 pixels. KLT Algorithm
provides features in the form of 3 matrices: X, y, and values with each having dimensions
of n*f where ‘n’ is the number of features tracked and ‘f” is the number of frames in the
video. Each (i, j) of x and y matrices contain the coordinates or position of the feature in
the image in a particular frame. If the KLT Measured coordinates are at the boundary of
the error circle, then error = 100%. If the KLT Measured coordinates are at the centroid

of the error circle, then error = 0%.

The results of the computed xy co-ordinates of KLT tracking with respect to time and
after Kalman filtering are shown in Figure 3.8 (a-e). KLT tracker has some shortcoming
owing to the lack of texture away from the central feature of the image thus feature
points on image may not yield successful tracking. That is the reason why KLT tracking
path is observed to be away from the specified path. Though this approach provides a
reasonable measure of tracking accuracy, it does not explicitly derive the covariance

from the image gradients. By applying Kalman filtering algorithm consistent covariance
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bounds are obtained. This implementation results in tracking of mobile robot path closer

to the specified path.
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Figure 3.8 (a-e): Tracking results of the desired path using KLL'T and Kalman filtering

algorithm

For five experiments, the average current position of the mobile robot is determined
after implementation of the KLT and Kalman filter algorithms. The measured legend
in Figure 3.9 is depicted by a surrounding bounding box in the shape of a ‘yellow’
rectangle. The size of the rectangle is determined according to the feature points
detected near the object. The measured position (location) of the mobile robot in the
filter is taken as the centroid of the depicted bounding box for the image. The Y-axis
represents the percentage of error in tracking using KL T algorithm w.r.t. frame ‘Red’.
Similarly, percentage of error in tracking using KLT with Kalman filtering w.r.t. frame
‘Blue’ has been presented on Y-axis. For average position, average specific x-
coordinate and average specific y-coordinate were calculated using the formula given

in Equation 3.13.

<

. 5 y.
z=z L ;y:Z?l
, -

=1 i

il

(3.13)
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Likewise, Ax=x,—x and Ay=y —Yy where x, andy, are the coordinates of specified
path. Now, error % in x-direction is computed using following formula,

Error % in x (¢,)=(Ax/r)x100% . Similarly, the error % in y-direction is computed

as, Error% in y (€)= (Ay/r)x100% . Subsequently, the error % in positional error is

computed using the following formula presented in Equation 3.14 below:

Error % in positional error (AP) = 1l(é'x)2 + (€, )2 (3.14)

Five different sets of experiments of specified path tracking using Kalman filter and
KLT tracking have been analyzed. The experiment was implemented using
MATLAB 2015° on Microsoft Windows 7 and [Intel® CORE i5 CPU] with 16GB
RAM. The resolution of each frame was 480x640. Based on the real-time results
obtained, some interesting findings have been achieved in Figure 3.9 (a-e).
Percentage error using KLT tracking and Kalman filtering with respect to frames
provides more error in KLT tracking where it has been experiencing 70 to 80 %

error due to unsteady velocity and change in the direction of the mobile robot.

The observed error using KLT or KLT with Kalman filtering can be attributed to

1. Motion of mobile robot (which is affected by operation hours), wheel diameter and
its circularity and interaction between wheel and ground.

2. Steadiness of Vision sensor (depends on type of mounting); the overhead web
camera was cable mounted and had some oscillation during experiment.

3. Associated error due to image processing (MATLAB software).

4. Associated due to image intensity noise and corresponding errors in the original

feature detection.

Kalman filter provides better results with respect to KLT tracking. The proposed
algorithm exhibited good performance in the tracking of the mobile robot on the

specified path correctly.
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Figure 3.9 (a-e): Percentage error using KLT and Kalman filtering

3.5 Conclusion

In this work, feature points based object detection and tracking method have been
investigated for mobile robot perception using Kalman filter in a real-time environment.
Tracking of mobile robot in a displacement sequence has been carried out using KLT
algorithm whereas Viola-Jones is used for detecting mobile robot features. The mobile
robot’s image position with homography constraints was computed and a ROI window
was set up with position in each frame to continue this tracking process. The whole
tracking procedure has been completely automated and the system would recover on its
own when the tracking information is lost. First, to establish Kalman filter motion model,
KLT algorithm is used to choose centroid and tracking window as the features. The use
of matching results, update the model of moving mobile robot, then updates the model as
the next frame of the input parameters, so that continuous tracking of mobile robot is
achieved. Here Kalman filter is used for prediction of matching and tracking in the case
of mobile robot moving on a specified path. The motivation here is to create a visual
surveillance system with real-time moving object detection, tracking, and activity
analysis capabilities. In the future, this framework needs to detect and track objects in the
complex real-time environment. The proposed algorithm has been validated for
effectiveness and robustness using selected experiments with different specified path

scenes. These experiments show accuracy ranging from 0.5% to 10%.
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