Chapter 4

Queueing Delay Monitoring in

OpenFlow Based SDN Networks

4.1 Introduction

OpenFlow enables the separation of control plane and data plane in Software-defined
Networks (SDNs) by providing an interface to programmatically modify or retrieve the
switch configuration. As such, it provides a holistic view of the network topology at the
controller and enables fine-grained monitoring of the network links. A more precise view
of the network provides opportunities for improving the efficiency of routing algorithms.

In recent years, many organisations have been encouraging their employees to use real-
time applications such as remote access, voice and video conferencing to make the work
environment flexible and increase the work output. This is also fueled by natural disasters
such as a pandemic, due to which employees prefer working from home. With the rapid
increase in usage of real-time applications, demands for meeting QoS agreements have
increased proportionally [143]. IP networks provide best-effort service, i.e., all efforts are

made to deliver data but with no guarantee of successful delivery. Real-time applications

¢ Sandhya Rathee, Shubham Tiwari, K Haribabu, Ashutosh Bhatia. gMon: A Method to Monitor Queueing
Delay in OpenFlow Networks, Submitted for review 39th IEEE International Performance, Computing
and Communications Conference.

77

4.1 Introduction

need a guarantee of timely arrival of data, which must be provided by the routers and not
just the network edges (or the hosts) [144]. Therefore, it is necessary to implement QoS
strategies at the network routers to ensure better user experience. In SDNs, this is made
possible by taking the QoS decisions at the controller, and enforcing the QoS policies at
the switches using OpenFlow [18]. To make efficient routing decisions, the delay should
be monitored continuously.

In SDNs, there are various approaches to measure delay [43, 52, 145, 1, 146, 147]. Most
of them are active measurement methods, i.e., they construct a specialized control packet
(probe packet) and use OpenFlow protocol to inject the probe packet into the data plane.
The probe packet physically travels the network links in the datapath and is forwarded
back to the controller by a switch at the end of the path. The time taken by the packet to
travel the path is used to calculate the delay. This approach suffers from: 1) Data plane
footprint, due to injection of probe packets into the data plane 2) Monitoring overhead,
due to the processing required at the controller to create probe packets and receive them
and 3) Scalability issues, due to increase in the number of probe packets required with
the number of switches, links and queues at the egress path. Details about the current
approaches for delay measurement and their issues are discussed in Section 4.2.

By studying network traces, authors in [148] have shown that queueing delay can be
significant in todays networks. With this motivation, we propose a queueing delay mon-
itoring mechanism (qMon) in OpenFlow based SDNs that leverages a slightly modified
OpenFlow message to collect queue statistics. Queue statistics from Open vSwitch [54]
are polled at regular intervals and queueing theory is applied at the controller to the ag-
gregated queue statistics to obtain the estimated average waiting time of packets in the
queue over a given time interval. Under some assumptions (discussed in Section 4.3),
the estimated queueing delay can then be used to further estimate the link latency. This
approach addresses most of the issues related to the active delay measurement techniques
discussed earlier. The proposed approach relies on the queue statistics message, and no
packets are injected into the data plane. Further, qMon can be integrated with existing
traffic monitoring modules that poll for queue statistics to estimate traffic load. The pro-
posed approach is scalable, as it requires sending only a single queue statistics request

message for estimating link latency at each switch, irrespective of the number of transmit

78

4.2 Issues and Related Work

(TX) ports and queues at the TX ports at each switch. Thus, qMon is scalable with respect
to number of switches, TX ports, and queues at the TX ports. A detailed discussion on the
issues related to the probe packet based methods, and how qMon addresses these issues

are given in Section 4.2.

4.2 Issues and Related Work

Delay measurements can be categorized into active and passive types [149]. Active delay
measurement involves constructing a special timestamped control packet (called a probe
packet) and injecting it into the datapath. At the end of the path, the receiving node
estimates the path delay by calculating the transit time of the probe packet through the
path. There are several issues associated with the active delay measurement methods in

SDNs:

1. Data plane footprint: The probe packets injected into the data plane consume the
bandwidth of the links involved in the path. The bandwidth consumption increases
with an increase in packet injection frequency, leading to a decrease in the available

bandwidth and the possibility of change in the traffic behavior [150].

2. Monitoring overhead and Scalability: Active delay measurement methods require cre-
ation of probe packets, injecting them into the data plane, and processing the probe
packets at the switches on receiving them. Current active probing methods do not
consider the possibility of multiple TC (Traffic Control) queues at the switch’s egress
ports. For measuring link delay for each of the TC queues, it would be required to
send a separate probe packet through each of the queues. With the increase in the
number of TC queues at the egress ports and the number of switches, the number of
probe packets required increases multiple-folds. This in turn increases the processing
overhead on the controller. When measuring end-to-end delay, the number of probe
packets increases with an increase in the number of flows. In both the cases, probe
packets might be queued at the controller on arrival [151], waiting to be processed.
The waiting time of the probe packets at the controller leads to inaccurate link delay

measurements.

79

4.2 Issues and Related Work

Passive delay measurements revolve around 1) analytical /statistical methods to model
the flow of traffic to estimate delay, or 2) time stamping the existing traffic in the datapath
[149]. Limitations of passive methods are inaccuracies in estimating delay. This is due to
the assumptions made while employing statistical methods to model the traffic, as it is
challenging to have a single model that holds for all traffic distributions. Use of existing
traffic in the data plane to measure delay is infeasible in OpenFlow enabled SDN, as it
requires time stamping packets in the data plane and comparing their transit times across
two end-points. In OpenFlow it is not possible to tag selective packets with timestamp
[1].

Next, we discuss the existing works on measuring the delay in SDN using active and

passive measurement methods.

4.2.1 Active Delay Monitoring Methods

Authors in [43, 52, 145, 1, 146, 147] have proposed active delay monitoring schemes in
SDNs. The method proposed in OFMon [43] uses OpenFlow to send a time-stamped
ethernet frame through a link (say, S; — Sz, where S; and S, are switches), and back to
the controller as shown in Figure 4.1. The link delay is calculated by subtracting the
summation of link delays between controller to switch S; and Sy, and a small processing
offset introduced by the controller, from the total transit time of the probe packet. The link
delay between controller and switches can be estimated by measuring the RTT of statistics
request and statistics reply messages. Whereas, the processing offset is calculated for the
underlying hardware by measuring the latency on an unused link. Although the size of
the probe packet used (24 bytes) is less as compared to Internet Control Message Protocol
(ICMP) (196 bytes, request/reply 98 bytes each [43]), the number of packets injected into
the data plane increases with the frequency of measurement, leading to an increase in
data plane footprint. The method being an active probe method also suffers from active
measurement issues such as monitoring overhead and scalability.

In [52, 50, 51], authors use timestamped LLDP packets (which are used for topology
discovery by the SDN controllers) to measure the link delay. The method to calculate the
link delay is mostly similar to the method described in OFMon [43]. LLDP-looping [145]

80

4.2 Issues and Related Work

Controller

3. Probe\LLDP
packet back

1. Probe\LLDP
packet In

2. Probe\LLDP
packet forwarding

—

Switch Switch
s1 s2

Figure 4.1: Active delay monitoring in SDN networks.

is an extension of LLDP [52], which modifies Open vSwitch to enable looping of LLDP
packets between source and destination to measure link RTT with high accuracy. While
the methods reuse LLDP packets to reduce the data plane footprint, but since the LLDP
packet generation is coupled to the controller’s topology discovery module, thus their
measurement frequency is limited. With an increase in the packet injection frequency, the
method is similar to OFMon [43] and has the same limitations.

OpenNetMon [1] monitors the path delay by injecting a probe packet at the ingress
switch and installs the flow entries such that the probe packet travels the monitoring
path and the egress switch sends the probe packet back to the controller. Path delay
is calculated by subtracting the link delays of the controller to source switch and the
controller to destination switch from the difference of probe packet’s departure time and
arrival time. The controller to switch delay is measured by sending separate probe packets
from the controller to both the ingress and the egress switches, which sends the probe
packet back to the controller immediately. The works given in [45, 46, 47, 48, 49] use
a similar method to measure the path delay. The only difference in [49] is that here
every switch mirrors the probe packet and sends it to the controller. Upon receiving the
mirrored probe packets, the controller sorts them by their arrival time and estimates the
path delay.

GRAMI [146] inserts probe packets from selected nodes in the network to measure

81

4.2 Issues and Related Work

RTT for a single link or between any two switches in the network. It is resource efficient
as it does not require involvement of the controller for online RTT monitoring and requires
only four flow entries to be installed at every switch. TTL-Looping [147] actively measures
end-to-end one-way delay with microsecond precision for flow by multiple iterations of
the probe packet along the flow path. This is made possible by storing the required
number of iterations in the probe packet’s counter field. The flow entries along the path
decrease the value of the counter and forward the packet to the next-hop switch. The last
switch in the path reverses the direction of the packet. This continues until the counter
value becomes zero and the packet matches the flow entry that sends it to the controller.
The transit time of the packet is divided by the number of iterations to calculate the RTT.
The RTT is then used to compute a one-way delay using the traffic proportion in each

direction.

4.2.2 Passive Delay Monitoring Methods

To the best of our knowledge, not much work has been done on passive delay mea-
surements in SDNs. Authors in [53] propose a queueing model for measuring average
queueing delay of TCP flows in SDN. The parameters required as input to the method,
such as - packet length, buffer size, and link bandwidth, can be computed by querying the
switches through OpenFlow. With a growing demand for streaming services, which use
UDP as the underlying protocol, the network traffic might contain a high percentage of
UDP flows or a heterogeneous mix of multiple flows. Method proposed in [53], however,
works only for multiple TCP flows. Approaches like [152] assume that the inter-arrival
time of the packets is exponentially distributed, and propose a queueing model for es-
timating end-to-end delay. However, this method focuses on modeling network nodes
for computing the required parameters for network design and planning, and does not
propose a method for real-time delay monitoring.

In this chapter, we propose a passive method to measure link delay in SDN networks,
without making any assumptions about the traffic distribution. The proposed method
solves the issues stated earlier. It depends entirely on the queue statistics messages from

the switches and, as a result, has zero data-plane footprint. Monitoring overhead is re-

82

4.3 System Model

—— ¢gMon ---- Probe packet based methods
% 300 B
S 250 PtEee
& JPte
8, -
5 200 [123t
s T
e 150 |~ PR
8 o T
5 100 |- et
I IR coy
8 80 [
I s
0= | | |

0 10 20 30 40 50
Switches

Figure 4.2: Number of switches vs Number of probe/control packet

duced considerably as estimation of queueing delay only requires an application of the
Little’s formula over the queue statistics received. Delay calculation can, therefore, be
implemented inline with other QoS related modules, and does not require a dedicated
controller module. The controller is now exempt from creating probe packets and receiv-
ing them, thus considerably reducing the processing overhead. Queue statistics message
received from a switch includes the queueing information for all the queues at each of the
ports. Therefore, queueing delay for each of the queues can be computed with the infor-
mation from a single queue statistics message. Thus, the proposed method is scalable, as
it requires sending of a single queue-statistics request message to each of the switches to
monitor queueing delay at all the links in the network. This is in contrast to the existing
active probe packet based methods which require sending a probe packet to each of the
output port queues in all the switches to measure the queueing delay. Figure 4.2 shows
the number of probe packets injected by active probe based methods versus the number
of control packets required in qMon to measure the queueing delay at all the output ports

for a given number of switches in the network.

4.3 System Model

We apply queueing theory to model the flow of packets through Open vSwitch [54] on a

linux datapath. Open vSwitch supports different datapaths on different platforms: Linux

83

4.3 System Model

upstream, Linux OVS tree, Userspace, Hyper-V (Windows datapath) [153]. However, only
Linux upstream and Linux OVS tree support QoS-shaping. For evaluating the current

work, we worked on Linux OVS tree datapath, provided by Open vSwitch v2.11.1.

4.3.1 Delays

We define link delay as the time required to transmit a packet in its egress path, which
is the sum of processing, queueing, transmission and propagation delay. Throughout
this chapter, we assume, that processing, transmission, and propagation delays remain
constant. Most of the modern routers are capable of processing the packets at almost the
line rate. In SDN networks, a packet may not match any flow entry and is consequently
sent to the controller (slow path). Although such packets experience larger processing
delays than usual, they are usually the first packet of a flow and help the controller in
establishing flow entries on the switches in the flow path. Therefore delay experienced by
such packets is not representative of the delays experienced by majority of the packets that
match the flow entries and are forwarded through the fast path. It is therefore assumed
that each packet takes almost the same amount of time to get processed. Transmission
delay is the time required to inject all the bits of a packet so that it can be transmitted
over the physical medium, and is a function of the packet length. Assuming that the
packet length remains constant on an average, transmission delay can also be assumed to
be constant. Propagation delay is a function of the path length, which remains constant

for a given system configuration.

ring buffe Linux Traffic Control — Linux Traffic Control
" (e

c > IIIIII > pr(i)cz?isllzg >I htb (—)lIIAIII]

Ingress queue l pIp J T—Fffo

» <
> «<

NIC

A
\4

Ingress path Egress path

Figure 4.3: Queues in the ingress and egress path of the packet.

Queueing delay is the time for which a packet is enqueued in a queue before it is
transmitted. Figure 4.3 illustrates the ingress and egress path of a packet through Open
vSwitch on a linux datapath: packets are queued at the Network Interface Card (NIC)

ring buffer on receive (RX) path, ingress queue of the RX interface, egress queue of the

84

4.3 System Model

transmit (TX) interface and the NIC ring buffer on the TX path. The NIC ring buffer is also
known as the driver queue or the direct memory access (DMA) ring buffer and is a part
of the NIC. The ingress and egress queues are a part of the Traffic Control (TC) subsystem
of the linux kernel [154, 155]. TC allows traffic shaping at the egress queues, while only
traffic policing is possible at the ingress queues. It is assumed that for most of the time,
the CPU is capable of processing the packets at the input port so that there is no buffering
at the ingress queue. It is also assumed that the TC egress queues are configured so that
the total bandwidth allocated to them does not exceed the line-rate of the underlying
physical layer. Under this assumption, packets are buffered at the TC queues and no
buffering takes place at the egress driver queue. Link latency due to buffering at the TC
queues is a function of the traffic distribution arriving at the queues. The next section
summarises the queueing of packets in linux traffic control and the linux-htb queueing

discipline to illustrate the same.

4.3.2 Queueing in Traffic Control and linux-htb

The linux TC consists of various queueing disciplines (qdiscs) which fall under two cat-
egories: classless and classful. The default queueing discipline in the traffic control is
pfifo_fast [156], which can be changed through userspace TC utility. Classful qdiscs are
flexible, that is, classful or classless child qdiscs can be attached to them, and can share
bandwidth with other classful qdiscs, when possible. Leaf classes have a classless qdisc
attached to them. The queues managed by the classless qdiscs (attached to classful qdiscs)
is where the packets finally get enqueued or dequeued, by the algorithm corresponding
to that class. Examples of classful qdiscs are HTB (Hierarchical Token Bucket) and CBQ
(Class Based Queueing) [157]. Classless qdiscs are elementary qdiscs and are rigid in the
sense that they cannot have children, nor can they share bandwidth with other classes.
They maintain a queue, from which the packets get enqueued or dequeued by the algo-
rithm corresponding to the qdisc. Examples of classless queueing disciplines are: pfifo,
bfifo, Token Bucket Filter (TBF), Stochastic Fairness Queueing (SFQ) , pfifo_fast (default
used by linux TC) [157].

Linux-htb (from now on referred to as HTB) [158] is a classful queueing discipline,

85

4.3 System Model

which means child qdiscs can be attached to it, which forms a tree like structure. Each
HTB class has a token bucket associated with it, which are filled with tokens at a rate
which is determined by the rate assigned to the class. To dequeue a packet, HTB charges
certain amount of tokens proportional to the size of the packet from the bucket associated
with the class. If there are not enough tokens, then the class tries to borrow tokens from
the sibling classes. If enough tokens are not available, the packet has to wait until the
bucket has enough tokens. Thus, bandwidth is limited by throttling the packets, which is
also known as shaping.

When a packet originating from a child class is dequeued from its parent class, a
number of tokens depending on the size of the packet is charged from the bucket of the
parent class. These tokens then will not be available for packets originating from other
child classes. This ensures that child classes cannot have a rate more than their parent
class. While enqueueing and dequeueing, the kernel interacts only with the root qdisc. To
enqueue a packet, kernel calls htb—enqueue () located in /net/sched/sch_htb.c,
which further calls htb—htb_classify () to classify the packet into one of the child
HTB classes. It walks the tree and enqueues to a classless qdisc attached to one of the
leaf nodes. To dequeue a packet, the kernel calls dequeue () on the root qdisc, which
calls dequeue function of the child classes, and so on, until a packet is dequeued from
the leaf class, and is passed on to the parent classes, charging tokens from the buckets in
the process, until it is dequeued from the root qdisc. The dequeued packet is then placed
onto the driver queue for transmission. Open vSwitch does not support multiple levels
of hierarchy in classful queueing disciplines. It is therefore only possible to configure
multiple HTB queues at the first level. Borrowing of tokens can still take place among
the queues at the first level. By default, the leaf nodes have a pfifo qdisc attached to
them, with a queue length of t xgeueuelen, which is a parameter associated with each
interface. It has a default value of 1000 packets, which can be changed with the iproute2
userspace utility. The queue length plays a significant role during burst traffic, i.e., when
there is a large amount of traffic in a short period of time, this can lead to queues getting
filled up in a very short span of time. If a queue gets filled up beyond its maximum
size then the incoming packets are dropped. Throughout the chapter, we have assumed a

single queue at each of the output port.

86

4.3 System Model

4.3.3 Queueing Model

Queueing delay is a function of the packet arrival and service rate distributions. Due to
the nature of the packet scheduler (HTB), the service rate distribution is a function of
the packet size. Internet traffic, however, is dynamic in nature which makes it tough to
categorize the traffic into a known distribution [159]. Therefore, our objective is to model
the TC queues as a single queue and a single server queueing problem, and solve it for a

general packet arrival and service rate distribution using Little’s Law,
L=AW (4.1)

where L is the average number of packets in the queue, A is the average arrival rate, and

W is the average waiting time.

pfifo

-~
<>

glen

Figure 4.4: A TC queue

Figure 4.4 shows a TC queue modelled as a single queue, single server queueing sys-
tem. To meet end-to-end QoS requirements of latency-sensitive applications, it becomes
necessary to estimate delay at short intervals of time. So that the routing decisions can be
taken to adapt the current load conditions and QoS requirements. Let the polling interval
for the queue-statistics be t. Let t; and ¢, be two consecutive polling epochs. Our objective
is to obtain the average waiting time of packets in the finite time interval [t;,t;], where t;
-t =t

Given A, as the average rate of arrival of packets in the queueing system and aver-
age queue length (glen,,) as the average number of packets in the system over infinitely
large time, the average waiting time for packets in the queue can be obtained by us-
ing Little’s law as W = qlen,,/A4. The equality however does not necessarily hold true

over finite time intervals due to interval edge effects [160]. Let glen(ty,t2) be the mean

87

4.3 System Model

queue length, A(t1,t2) be the mean arrival rate of the packets, and WM’X(tl,tz) be the
mean waiting time of a packet in the queue in the interval [t1,t;]. Authors in [160] re-
gard ql?(tl, t2)/A(ty,) = WM,X<t1' ty) as an estimator of the underlying true average.
They also suggest taking a statistical approach to estimate the waiting times, and using
the method of batch means to apply the estimator WM’X(tl, ty) to estimate a confidence

interval for W(tl, tp). Section 4.3.5 discusses how to apply batch means method.

4.3.4 Estimator for W(t(, ;)

Our estimation of waiting time relies on queue statistics obtained by sending an OpenFlow
queue-stats request message from controller to the switches. OpenFlow v1.3 queue-stats
reply message has a counter of the number of transmitted packets (tx_packets) through
the queue. Let t; and t; be two consecutive times at which the controller receives the
queue statistics. For a stable system, A(t1,t,) is equal to the mean throughput over the

interval [t1, 2], and can be estimated using equation 4.2.

A(t1, t2) = (tx_packets;, — tx_packetsy,)/ (t2 — t1) 4.2)

Queue statistics reply message however does not contain any field with the queue
length information. We observed that the current length of each queue is maintained in
the TC subsystem of the kernel. By modifying netdev-1inux.c in Open vSwitch 2.11,
queue statistics reply message can be modified to include queue length. As such, the
queue statistics message reply after modification contains the following fields: (queue_id,
tx_bytes, tx_packets, qlen, errors, time). ql?(tl,tz) can then be obtained in the following

way:

glen(ty, tz) = (qleny, + qleny,)/2 (4.3)

Where, glen;, and glen;, are the queue lengths at time t; and f;, respectively.

Estimator for W, in the interval [f1, ;] can then be obtained by Little’s law as:

Wt o) = glen(ty, t2) /At 1) (4.4)

88

4.3 System Model

4.3.5 Confidence Intervals for W(t, ;)

Consider m consecutive estimation intervals [to, t1], [t1, 2], ..., [fm—1,tm]. Let the estimated
waiting times in the intervals be WM,X<t0f t), qu’x(tl, £2), o WM’X(tm,l, tm). Confi-
dence intervals for the mean waiting time over the union of the intervals [to, t1] U [t1, t2] U
v Utm_1,tm] = [to,tm], W(to, tm) can be calculated by applying the formulas given by
[160]. We consider batches of size m = 5, by taking m consecutive intervals. The 90%

confidence interval can then be calculated by formulas (24) in [160].

wr(m) 1 ¢
WqWX to, tm) = m ; 7 (te—1,),
g _ . T (m) 2 45
S(m)<t0’tm - Z glen, A (-1, t) — WMK<t0/tm)) ’ (4.5)

_ t 1S (to, tm) — t 1S (to, t
W (to, tm) — 0.025,m-15m (to m),W%X(to,tm)%— 0.025,m—15m (to, tm)

glen,A N Vm

The corresponding formulas for the current use case is given by Equation (4.5) above.

It is based on Student’s t-distribution. For tg 05,1 = to0254 = 2.132.

4.3.6 Calculation of Calibration Constant and Delay

Assuming that packet’s length and the system configuration remain constant; processing
delay, transmission delay and propagation delay remain constant and can be calculated

as constants by sending probe packets through the link. Let D72 57 (t, 1) be the estimator
for the mean link delay D(t;, ;) in the interval [ty, t]. D: (tl, ty) is given by Equation
(4.6).

Dt t2) = Wopm3(h, 12) +C (4.6)

where C is the calibration constant. The confidence interval for W(t,t,) and hence,
5(t1,t2) can be found out by batch interval method as discussed.

For demonstration purpose, consider Figure 4.1. To measure calibration constant, C,
for the link S; — S, a probe packet is sent from controller (Cp) to switch S1. Flow entry
at switch S; sends the probe packet on the link S; — S;. From switch S, the packet is

sent back to the controller. The total time taken by the probe packet to traverse Co —

89

4.4 Experimental Setup and Evaluation Criteria

S1 — S2 — Cp is calculated by subtracting the arrival and the departure time of the packet
at the controller. To obtain the calibration constant for the link S; — S, the control link
delays, Cyp — S1 and Cp — Sy, are subtracted from the total transit time of the probe packet.
Control link delay between the controller and a switch is calculated by sending a statistics
request message from the controller to the switch. The time elapsed between sending of
the stat request message and receiving the corresponding reply at the controller is halved
(assuming symmetric delays) to get the one way delay on control link. The control link
delays, Cp — S1 and S, — Cy, are subtracted from the total time to traverse Co — S — S2 — Cy
to get the delay on link S; — Sy. The calibration constant is obtained by averaging over the
delays obtained from several iterations of the method discussed above. Similar procedure

is used to obtain the calibration constant for the experimental topology.

Controller
Co

L/ 10 9.9 N
A A A
Mbps R Mbps
s s
Host Switch Switch Switch
H1 81 82 83

Figure 4.5: A topology with 3 switch, 2 hosts and controller connected in a linear fashion for
evaluating the proposed method.

4.4 Experimental Setup and Evaluation Criteria

We evaluate the performance of qMon on a testbed consisting of three systems installed
with the patched version of Open vSwitch v2.11.1 connected in a linear topology. A
host is connected to each edge switch, and all the switches are directly connected to the
controller. The topology for the testbed is shown in Figure 4.5. The link bandwidth is
set to 10 Mbps on link S1-S; and 9.9 Mbps on link S»-S3. Bandwidth for link S,-S3 is less
than link $1-S; to ensure buffering of packets on link S>-S3. Each of the systems has the
following capabilities - Processor: Intel(R) Core(TM) i5-4590 CPU @3.30GHz, RAM: 32

90

4.4 Experimental Setup and Evaluation Criteria

GiB (8 GiBx4), OS: Ubuntu 18.04 LTS (Linux 4.15.0-91-generic), NIC: 1 Gbits/s between
two switches or hosts, 100 Mbits/sec between controller and switches.

We use D-ITG [138], to generate traffic from host hl to host h2. For each experiment,
the traffic rate is set at a value to enable moderate buffering at TC queues. The evaluation
is performed over two kinds of traffic distributions: bursty with exponential ON/OFF pe-
riods and Poisson with exponentially distributed packet length. For bursty traffic, packet
length is set to 512 bytes with varying ON/OFF ratio in different experiments. The ex-
periments are named as B — X — Y, where B means bursty traffic, X is ON time, and Y is
OFF time in ms. For Poisson traffic, mean packet length is set to 930 bytes and 512 bytes
for experiments pois-1 and pois-2 respectively. However, since RTT measurements are
running parallelly, the observed mean packet size and arrival rates are 936 and 1362, 525
and 2362 for pois-1, and pois-2 experiments respectively.

The delay per link is estimated using qMon. The round trip time is estimated by
adding the estimated link latencies at the links S; — S», S — S3,S53 — S2, S2 — S1. The delay
trends obtained from the gqMon RIT are compared with ping RTT measurements. Ping
has been used as a standard tool for RTT measurements in IP networks. It is therefore
a reliable measure of RTT. Although ping measurements are active RTT measurements,
it will not change the traffic behavior in the current setup, since a traffic generator is
being used to generate traffic of a fixed distribution. It is complicated to compare two-
time series data due to the high frequency of variations in measurements. It is, therefore,
desirable to visualize and compare the low-frequency component of the delay variations.
We consider the delay measurements as discrete signals and apply a low pass filter to the
delay signals. This will help us to compare the low-frequency components of gMon and
ping RTT signals.

We use windowed-sinc as our low pass filter [161]. For constructing the filter, two
parameters are required: cut-off frequency(f.) as a fraction of the sampling rate and tran-
sition band (b) as a fraction of the sampling rate. The length of the filter N can be deter-

mined by the formula (Equation 4.7).

N =4/b (4.7)

91

4.4 Experimental Setup and Evaluation Criteria

The low frequency signals are obtained by convulsing the sinc function(co(n)) with the

delay signal. The sinc function is constructed as shown in Equations 4.8, 4.9, and 4.10.

c1(n) = sinc(2* fex (n— (N —1)/2)) (4.8)

window(n) = 0.42 — 0.5 % cos(2 * pixn/(N —1))

+0.08 x cos(4 xpixn/(N —1)) (4.9)

co(n) = c1(n) x window(n) (4.10)

We set the cut-off frequency (f.) at 1% of the sampling rate and the transition band-
width (b) at 8% of the sampling rate. Quantitative evaluation of the trend match between
qMon and ping RTTs has been done by comparing Pearson’s correlation coefficient be-
tween the low-pass delay signals. Pearson’s correlation coefficient measures the linear
synchrony between two signals. Values between -1 and 0 indicate a negative correlation,
0 and +1 indicate a positive correlation. In the current use case, it is already known that
there is no implicit co-relation between qMon and ping RTT signals. However, the cor-
relation values are an indication of the similarity between the signals. Figures 4.6 (a),
and (b) compare the average queue length and average link bandwidth utilization for the

experiments conducted.

800

600

400

Average queue length
Link bandwidth utilization

() (b)

Figure 4.6: (a) Average queue length (b) Average link bandwidth utilization (p) for the traffic
scenarios considered.

92

4.5 Results

______ ping-rtt pois-1 ps=936, A=1362 ----- ping-rtt pois-2 ps=525, A=2362
- B e T TN T o~ - J i T e
g - \“,,« “"M N . \"I g :"‘\"J"\;" \".-."‘\\r" “4.‘.;."‘«""

4 I N TN FUUOOS TN NN OO PO o ST VL A T T T
% — qMonrit % — qMonrit

2500 ©1000

900
time(s) time(s)

() (b)

Figure 4.7: gMon versus ping round trip times (RTT) for poisson traffic, ps = packet size, A =
mean packet arrival rate

pois-1 ps=936, A=1362 pois-2 ps=525, A=2362
— T ping-rtt-low-pass e ping-rtt-low-pass
1750 i 750 |
w B)
) - E [
- g
[} [-
o o o
frequency(rad/s) frequency(rad/s)
(@) (b)

Figure 4.8: Low pass delay signals for gMon versus ping RTT for poisson traffic, ps = packet
size, A = mean packet arrival rate. Ping RTT signal is offset by +70ms for better visibility.

4.5 Results

Results have been organised into two sections. Section 4.5.1 discusses the delay trends
between gMon and ping RTT for poisson traffic. Section 4.5.2 discusses the same for

bursty traffic.

4,5.1 Poisson traffic

Figure 4.7 (a) and (b) show the graph of estimated RTT value with respect to the time,
for two different types of Poisson traffics (pois-1, pois-2), using, qMon and ping-rtt
methods. It can be observed from Figure 4.8 (a) and (b) that low frequency qMon and

ping RTT signals in traffics pois—1 and pois-2 closely coincide. The ping RTT signals

93

4.5 Results

delay(ms)
[y
8 °
S

i
12 |] | J

aggregate qMon-rit

[~ wo- Fad
o sk #’*M =
z...m-o%o-&”!c A -

]] | | | | | | |]

900
time(s)

(a)

______ aggregate ping-rtt pois-2 ps=525, A=2362
2 I ~oa r'\"‘/\"v”‘r‘r‘,\\\ N :;\\'ﬂ~"l"lv"|‘ I’f“r’ “f\,‘l\l.\
g o WV ¥
B TN NOVUN T, SN NN N R N
% © aggregate qMon-rtt
1000
i i T relE
o - I T o
- At o %
L drmeanimccc [| : | I
900
time(s)
(b)

Figure 4.9: 90% confidence interval for gMon RTT for poisson traffic, ps = packet size, A =
mean packet arrival rate.

in Figure 4.8 have been offset by +70ms for better visibility of qMon and ping RTT signals.

Table 4.1 shows that the correlation values for pois-1 and pois-2 traffics are quite

high (> .99). The trend match can be attributed to the fact that queueing system is

in steady state. Since the input traffic rate is Poisson distributed and packet sizes are

exponentially distributed, the queueing system can be approximated as M/M/1/K with

K (buffer capacity) = 1000 packets. The queueing system therefore reaches a steady state

with Poisson distributed traffic. Smaller value of 90% confidence intervals in Figure 4.9

(a), and (b) also indicate that average waiting time estimations are fairly accurate in case

of Poisson traffic.

Table 4.1: Pearson co-efficient for all the experiments

Experiment Name Correlation coeffi-
cient
pois-1 99
pois-2 99
B-2000-500 .97
B-1000-500 .87
B-200-200 84
B-500-1000 .60
B-500-2000 74
B-100-1000 32

94

4.5 Results

""" ping-rtt ----- ping-Ttt
[) b o} -
) i : T) I .&
é I“J‘mMM”r“«H‘u)] “‘M Hﬂi’w 'th«m}ﬂl " \h é _Mxidjfa,n Hﬁ.&'dm;”qhm '&kaw Mumfw
g~ GMonttt % — qMonrit
'U 800 kel 800
600 600
time(s) time(s)
(a) (b)
""" ping-rt - ping-rtt
-~ i | ':\ l 'i 'I' 1 ' h‘/ ! l i
) Y Bt R e oo @
g . MM mm bbbt g
o —_— g
3 gqMon-rtt 3
© 600 T
600
time(s)
(c) ()
""" ping-rtt - ping-rtt
] : l | 2 B | .
E’, Jﬂu i i n b ikl é mA.UJ.J..iJmJl.i._.:,';'._.ua.L.:i.Lh-.u.h_nnn.WLM;NJ,L.
§ — @Monttt ¥ — qMonrit
o 800 e] 600
M MM‘ Ml A‘LLL MM
700 600
time(s) time(s)
(e) f)

Figure 4.10: gMon versus ping round trip times (RTT) for bursty traffic
4.5.2 Bursty traffic

Figure 4.10 (a) - (f) illustrate the delay vs time plot for the RTT obtained by qMon and

ping rtt methods for bursty traffic. It can be observed from Figure 4.11 (a) and (b) that

95

4.5 Results

B-2000-500 B-1000-500
—— gMon-rtt-low-pass - ping-rtt-low-pass —— gMon-rtt-low-pass - ping-rtt-low-pass
500 [350
s ool
% 350 |- 2 250 |
8 300 - 8 200 -
Tk % iso|
S 150 | $ 100 |
50 50 -
0t 0k
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 1400
frequency(rad/s) frequency(rad/s)
(a) (b)
B-200-200 B-500-1000
—— gMon-rtt-low-pass - ping-rtt-low-pass —— gMon-rtt-low-pass - ping-rtt-low-pass
300 100
250
‘@ 200 0
ﬁ 150 ﬁ 50
= - = L
% 100 %
L] L]
50 -
0k 0k bl
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 1400
frequency(rad/s) frequency(rad/s)
(c) (d)
B-500-2000 B-100-1000
—— gMon-rtt-low-pass - ping-rtt-low-pass —— gMon-rtt-low-pass - ping-rtt-low-pass
150 150
E 100 E 100
g g
° 50 [° 50 [~
0Lt 0L h
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200
frequency(rad/s) frequency(rad/s)
(e))

Figure 4.11: Low pass delay signals for qMon versus ping RTT for bursty traffic.

low frequency gMon and ping RTT signals in B-2000-500 and B-1000-500 closely co-
incide. Table 4.1 shows that the correlation values for B-2000-500 and B-1000-500 are
quite high. For B-200-200, B-500-1000, B-500-2000 and B-100-1000, the correla-
tion values decrease with a decrease in the ratio of ON/OFF periods, with the exception
of B-500-2000. High correlation values for B-2000-500 and B-1000-500 can be at-
tributed to the steady state of the queueing system due to generation of traffic at a constant
rate during ON periods. Since the ON periods are of larger duration than OFF periods for
B-2000-500 and B-1000-500, the queue is in a steady state for a larger duration lead-

ing to accurate waiting time estimations. As the ratio of ON/OFF period decreases, the

96

4.5 Results

------ aggregate ping-rtt ------ aggregate ping-rtt
K :'“ Au ' B :‘\ f 'l
9 | ,i , ;4 ‘ | A ak L "\'\;‘\fé.:'.; :I:l' Eoh
é |v,\vv\! iy u,\."' A ",‘,'i »‘"x\m\.vl,\ ""JA (‘\:" Y V‘yﬁ"lr,'h r:'\' ‘\ :)’ é - i‘hﬁ [‘J""?W} Ay ““.U,l'ﬂ“'/\"")'u""b'kl W 'll‘w‘f,‘“'l”\,u‘ &..A,,"fv_‘l'll)“\’"*\"\w
% © aggregate qMon-rtt % © aggregate qMon-rtt
T 800 T 600
R 5 . : 8 B |
e I £T i ‘I:‘EII“EI ; ,, {
-lIIIthII‘I «tzoy 7y “IJI:EE“‘II = 'f“Iz ‘iIII i III‘i IIITI tIII‘I‘FmI
600 600
time(s) time(s)
(@) (b)
------ aggregate ping-rtt ------ aggregate ping-rtt
TR
2 bbb b [
Ti § 5“4"”“"""\;‘ Wil "““W" Wi #”"'ﬂ' "“f" -"A'}‘ ’W" F"'”' §’, bbb bt ot L
‘T‘: o aggregate qMon-rtt ‘T‘: o aggregate qMon-rtt
T 600 T 400
I I 1 Il i
II IE} I{ I}:s‘ IIII II I}
600
time(s) time(s)
(0) (d)
------ aggregate ping-rtt ------ aggregate ping-rtt
~ F | i L
a = J\,:rlv»\.'A_.\'l..-:-'...u::.‘.'.-‘ T30 N ” radoh ;:n. 2 i . '
é I I i I I i I é [A et A
‘T‘: o aggregate qMon-rtt ‘T‘: o aggregate qMon-rtt
° °
400 | 400
TI{I‘FI*IIT - ﬂilo-*o-o-zle-oia r-é-In:olltmI r-e- TI@—‘E oelle-e-e+uioe-16 fe-@o%i}ef eills
700 600
time(s) time(s)
(e))

Figure 4.12: 90% confidence interval for gMon RTT for bursty traffic.

duration for which the queue is in a steady state decreases (Table 4.1), with the exception
of B-500-2000. Higher correlation value of B-500-2000 than B-500-1000 may be a

result of (1) same length of ON periods and measurement interval (500ms), which might

97

4.6 Implementation Details

lead to synchronization of OFF periods and the measurement epochs. Probability of this
happening is less because ON/OFF periods are exponentially distributed, and (2) Longer
mean OFF period (2000ms) in B-500-2000 than in B-500-1000 (1000ms). Longer OFF
period lead to steadiness in the system, leading to higher correlation between estimated
and measured RTT. Low correlation value in B-100-1000 is expected as the ON period
(100ms) is very less as compared to the measurement interval (500ms), because (1) Even
though the ON/OFF periods are exponentially distributed, because of very low mean ON
period (100ms) there is a high probability of measurement epochs synchronizing with the
OFF periods. (2) Even when the measurement intervals are synchronized with the ON
period, the burst of traffic happens only for 100ms, but the average of all burst packets
is taken over a time interval of 500ms, leading to a inaccurate and numerically low es-
timated TX_rate. The numerically low estimated TX_rate leads to very high estimated
values of waiting time by Little’s Law. This is apparent on observing Figure 4.11(f). Fig-
ure 4.12(a)-(f) show the 90% confidence interval plots for experiments with bursty input.
Confidence interval plots indicate a similar trend. B-2000-500 and B-1000-500 have
narrow confidence intervals on an average as compared to B-200-200, B-500-1000,

B-500-2000 and B-100-1000.

4.6 Implementation Details

The proposed queueing delay monitoring approach, qMon, requires a slight modifica-
tion of Open vSwitch v2.11.1 and Ryu running on Ubuntu 18.04 LTS as the underly-
ing operating system. Open vSwitch leverages RTNETLINK to communicate with the
Traffic Control (TC) subsystem of the Linux kernel to add/remove or get a queueing
discipline [162]. To get queue-statistics, ovs switch makes a RTNETLINK request mes-
sage (RTM_GETQDISC). The corresponding RTNETLINK reply received from the kernel
is parsed into st ruct gnet_stats_basic and struct gnet_stats_queue defined
in 1inux/gen_stats.h. The sturucture is given below for reference,

(linux/gen_stats.h)

/%%

* struct gnet_stats_basic - byte/packet throughput statistics

98

4.6 Implementation Details

* @bytes: number of seen bytes
* @packets: number of seen packets
*/

struct gnet_stats_basic {

__u64 bytes;

__u32 packets;

}i

/% *
* struct gnet_stats_gqueue - queuing statistics
* @glen: queue length
* @backlog: backlog size of queue
* @drops: number of dropped packets
*+ @requeues: number of requeues
*+ @overlimits: number of enqueues over the limit
*/
struct gnet_stats_queue {
u32 glen;

__u32 backlog;
__u32 drops;
u32 requeues;

_ u32 overlimits;

}i

(ovs/include/openflow/openflow-1.3.h)

/* Body of reply to OFPMP13_QUEUE request =*/

struct ofpl3_gueue_stats {
struct ofpll_gueue_stats gs;
ovs_be32 duration_sec; /+* Time queue has been alive in seconds. x/
ovs_be32 duration_nsec; /* Time queue has been alive in nanoseconds

beyond duration_sec. */

The struct netdev_queue_stats defined in ovs/lib/netdev.h represents queue-stats
reply. OpenFlow 1.3 queue-stats reply does not have a field for queue length. Open

vSwitch v2.11.1 therefore does not include a field for queue length in struct netdev_queue_stats.

99

4.6 Implementation Details

We observed that for experimental purposes, we can add a queue length field (*uint64_t
glen’) to struct netdev_queue_stats. The field glen is populated with queue
length received in the struct gnet_stats_queue and is propagated up to the con-

troller as the queue-statistics reply. Structs that have changed are given below,

Before: (ovs/include/openvswitch/ofp-queue.h)
struct ofputil_gqueue_stats {
ofp_port_t port_no;

uint32_t queue_id;

/* Values of unsupported statistics are set to all-1-bits (UINT64_MAX) .
*/

uint64_t tx_bytes;

uint64_t tx_packets;

uint64_t tx_errors;

/* UINT32_MAX if unknown. =*/
uint32_t duration_sec;

uint32_t duration_nsec;

After: (ovs/include/openvswitch/ofp-queue.h)
struct ofputil_gqueue_stats {
ofp_port_t port_no;

uint32_t queue_id;

/* Values of unsupported statistics are set to all-1-bits (UINT64_MAX) .
*/

uint64_t tx_bytes;

uint64_t tx_packets;

uint64_t tx_errors;

/* glen parameter =/

uint64_t glen;

/* UINT32_MAX if unknown. =*/

100

4.6 Implementation Details

uint32_t duration_sec;

uint32_t duration_nsec;

Before: (ovs/lib/netdev.h)
struct netdev_queue_stats {
/* Values of unsupported statistics are set to all-1-bits (UINT64_MAX) .
*/
uint64_t tx_bytes;
uint64_t tx_packets;

uint64_t tx_errors;

/+ Time at which the queue was created, in msecs, LLONG_MIN if unknown.
*/

long long int created;

After: (ovs/lib/netdev.h)
struct netdev_queue_stats {
/* Values of unsupported statistics are set to all-1-bits (UINT64_MAX) .
*/
uint64_t tx_bytes;
uint64_t tx_packets;
uint64_t tx_errors;
/* glen parameter =/

uint64_t glen;

/* Time at which the queue was created, in msecs, LLONG_MIN if unknown.

*/

long long int created;

4.6 Implementation Details

Before: (ovs/include/openflow/openflow-1.1.h)
struct ofpll_qgueue_stats {

ovs_be32 port_no;

ovs_be32 queue_id; /% Queue id. =/

ovs_beb64d tx_bytes; /* Number of transmitted bytes. =/
ovs_beb64 tx_packets; /+* Number of transmitted packets. */
ovs_bebd tx_errors; /* # of packets dropped due to overrun. =/

After: (ovs/include/openflow/openflow-1.1.h)
struct ofpll_qgueue_stats {

ovs_be32 port_no;

ovs_be32 queue_id; /* Queue id. x/

ovs_beb64d tx_bytes; /+* Number of transmitted bytes. x/
ovs_beb64 tx_packets; /+* Number of transmitted packets. */
ovs_bebd tx_errors; /* # of packets dropped due to overrun. =*/
ovs_be64 glen; /* glen parameter =/

Since the queue-stats reply is modified to include queue length, minor modifications
were made to Ryu controller, so that it can recognize the new field as queue length.

Accordingly, the following minor changes were made to Ryu,

In file ’'ryu/ofproto_vl_3.py’:

The struct pack string and the size of the struct were changed:

OFP_QUEUE_STATS_PACK_STR = ’IIQQQII’

OFP_QUEUE_STATS_SIZE=40

102

4.6 Implementation Details

OFP_QUEUE_STATS_PACK_STR = ' IIQQQQII’

OFP_QUEUE_STATS_SIZE=48

In file ’'ryu/ofproto_vl_3_parser.py’:
added "glen’ to 'ofproto_parser.namedtuple()’ for ’"OFPQueueStats’, so that

the new field is recognized as ’'glen’:

class OFPQueueStats (ofproto_parser.namedtuple (' OFPQueueStats’, (
"port_no’, ’"queue_id’, 'tx_bytes’, ’'tx_packets’, ’'tx_errors’,

"duration_sec’, ’'duration_nsec’))):

class OFPQueueStats (ofproto_parser.namedtuple (' OFPQueueStats’, (
"port_no’, ’queue_id’, 'tx_bytes’, ’'tx_packets’, ’'tx_errors’, ’'qglen’,

"duration_sec’, ’'duration_nsec’))):

The delay monitoring module in the controller makes queue-statistics request mes-
sages to all the switches in the network at fixed intervals. We fixed the time interval to
500ms. For the time interval [t1, 2], (Where t, — t; = 500ms) the module uses the queue
statistics received at time f; and t; to estimate the mean queueing delay for the interval
[f1,t2]. The module can optionally store the estimated mean queueing delay for the last m
intervals to calculate a 90% confidence interval for the union of these intervals. In [160] the
authors suggest the value of m be equal to 5, which is the value considered in the evalua-
tion section. The implementation of qMon does not require any modification in the packet
processing pipeline of Open vSwitch. If the target switches are hardware switches, it only
requires changes to the software/firmware of the switches to support qMon. Enterprise
infrastructure administrators/engineers can request the switch vendors to customize the

software/firmware of the switches to meet their needs for QoS optimizations.

103

4.7 Summary

4.7 Summary

In this chapter, we proposed an efficient passive method, gMon, to monitor the average
queueing delay in OpenFlow networks. gMon has no data plane footprint as it solely de-
pends on the queue statistics messages from the switches. The controller is now exempt
from creating and processing probe packets, thus the monitoring overhead is considerably
reduced. Queue statistics message received from a switch includes the queueing infor-
mation for all the queues at each of the interfaces. Therefore, queueing delay for each of
the queues can be computed with the information from a single queue statistics message.
Thus, the proposed method is scalable with respect to number of switches, ports, and
queues at ports. The experimental results show that RTT estimation made by qMon has a
high similarity with ping-based estimation. The results show a high correlation between
gMon and ping RTT values for Poisson traffic and bursty traffic with large ON intervals.
However, the method does not work well for the bursty traffic with burst intervals smaller
than the current polling interval. The proposed method can be used to improve QoS.
Using gMon the controller can measure queueing delay, but it has to poll queue statis-
tics from underlying switches. Therefore, it is very important to determine an optimal
polling rate which minimizes the monitoring overhead without compromising with the
accuracy of collected statistics. In the next chapter, we address this issue and propose a

method to determine optimal polling rate/frequency.

104

