Chapter 5

An Efficient Method to Collect
Statistics in SDN Using Curvature

Based Sampling

5.1 Introduction

Network Monitoring is a fundamental task in network management. It consists of ser-
vices that carry out various entities” statistics collection in a network such as flows, de-
vices, ports, and links. Many important applications such as traffic engineering, dynamic
routing, network billing, anomaly detection, load balancing, Quality of Services (QoS)
management, and Service Level Agreement (SLA) enforcement heavily rely on these ser-
vices.

In Chapter 3, GlobeSnap collects consistent statistics and in Chapter 4, qMon measures
the link delay. In both the chapters, the controller polls the network statistics at a constant

rate. They do not provide any mechanism to decide the polling rate. In this chapter we

¢ Sandhya Rathee, Divesh Uttamchandani, K Haribabu, Ashutosh Bhatia. An Efficient Method to Collect
Statistics in SDN Using Curvature Based Sampling, In 2021 International Conference on Information
Networking (ICOIN), pp. 175-180. IEEE, 2021..

105

5.1 Introduction

propose a method that adjusts the polling rate dynamically based on the change in the
network traffic.

The SDN controller can receive the flow statistics without any additional overhead
with the help of PacketIn and FlowRemoved messages from the underlying switches
[57]. We call this push- based approach. In push-based approach, the controller does not
send any request message to the switches to collect the statistics. Instead, it uses control
messages or port mirroring [56] to get the network statistics. The problem with push-
based approach is that the controller has to wait for all the active flows to expire because
the controller can perform the measurements at a given time only after receiving the
FlowRemoved messages for all the active flows at that time. With port mirroring the issue
is that, if the mirrored traffic exceeds the port’s capacity then the packets start dropping
and can provide wrong measurements.

Another approach is pull-based approach, where the controller sends the statistics re-
quest messages to the network devices, and devices send the corresponding statistics re-
ply to the controller. Polling in pull-based approach can be performed in two ways, fixed
rate polling, e.g., OpenTM [55] and dynamic rate polling, e.g., CeMon [2]. In fixed rate
polling, the accuracy of the collected statistics depends on the polling interval. Polling at a
higher rate can provide a better measurement of the traffic but can have a large overhead.
Whereas, polling at a lower rate gives less overhead but may give inaccurate measure-
ments. Constant rate polling does not take into account the behaviour of the network
traffic. Whereas, dynamic rate polling adjusts the polling interval based on the behaviour
of the network traffic.

The existing pull-based dynamic rate polling methods use the change in the arrival rate
of the traffic as the metric to increase or decrease the polling rate [2, 4]. This approach
incurs higher overhead, especially when the change in measured/collected statistics is
linear. In this chapter, we propose a novel pull-based dynamic polling method using curva-
ture based sampling [163]. Additionally, instead of using fixed values for the parameters,
we tune them to achieve optimal results. Finally, we also provide a cost function to rank

different pull-based methods of statistics collection.

106

5.2 Related Work

5.2 Related Work

In literature, there exist many methods for network monitoring. The effectiveness of these
methods varies a lot in terms of cost, accuracy, and promptness. The breadth in these
methods is due to the diversity in the network architecture. Methods like sFlow[15] and
NetFlow[14] work in traditional networks for statistics collection. These methods require
installation of monitoring modules on the network devices, which incurs a considerable
cost in terms of time and effort required on the part of network administrator.

Two of the existing push-based approaches are FlowSense [57] and Planck [56]. FlowSense
[57], computes the link utilization using the information provided by PacketIn and FlowRe-
moved messages [32]. The measurements are not timely, as the link utilization calculation
at a given time requires that all the active flows at that time should expire and send a
FlowRemoved message to the controller. Moreover, the waiting time can vary depending
on the flow size. In Planck [56], traffic going through all the ports of a switch is mirrored
to one monitoring port, which is connected to a system called collector. The collector does
the job of analysing the statistics. The problem with this solution is that the switch starts
dropping packets if the traffic volume exceeds the mirrored port’s maximum capacity.

Now we discuss some of the existing works which come under pull-based approach.
OpenTM][55] is one of the initial works in the domain of network monitoring in SDN
which uses a fixed polling interval. It calculates the traffic matrix by polling the end
switches of a flow. Although polling the end switches for each flow is better in terms of
accuracy but can have more overhead on the end switches. To distribute the load evenly, it
suggests random polling and round-robin polling methods. Payless[127] proposes a high-
level RESTful stats collection API. It maintains a table of active flows along with timeout
of T ms. If the flow expires in T ms, the controller gets the statistics in FlowRemoved
message, else after T ms, the controller sends a flow statistics request message to collect
the statistics. They use a threshold of 100 MB to adjust the polling rate. In OpenSample
[128], the authors propose a mechanism which uses sFlow [15] to estimate the flow rate
and link utilization. However, the estimations provided by their method are dependent
on the TCP packet header. It uses the sequence number field of TCP to estimate the flow

rate by taking the difference of two sequence numbers in a given sampling interval.

107

5.3 Proposed Solution

CeMon [2] and MoMon [4] are pull-based methods, which provide solution for adaptive
polling. CeMon [2] maintains a window of historical stats and adjusts the window size
based on the change in the network traffic. The window keeps track of the network history
of a flow. When the traffic deviates significantly from the history (more than mean plus
twice of standard deviation), the algorithm decreases the window size by half to discount
the pass and also doubles the polling frequency. If the traffic is stable, then the polling
rate is decreased to half, and the window size is increased by one so that it gives more
weight to history. In [4], the authors propose a new method, MoMon !, to decide the
polling frequency in SDN network. Unlike CeMon [2], it uses the recent two polls data to
adjust the polling rate 2.

CeMon [2] and MoMon [4] both use fixed values for the factor by which they vary
the polling frequency. In MoMon [4], the authors consider 20% change as a significant

change. However, the authors did not mention the rationale behind choosing these values.

5.3 Proposed Solution

We propose a new pull-based method that adjusts the polling rate depending on the change
in the curve of the polled data. The problem of polling can be formulated as that of
sampling of a continuous curve into discrete points.

[163] highlights some popular sampling methods for curves. These include,
1. Arc length sampling, samples the curve at equal distances on the arc.

2. Curvature based sampling, samples the curve in proportion to the instantaneous

curvature of the curve.

3. Mixed sampling, uses a combination of both arc-based sampling and curvature

based sampling.

We cannot use the highlighted methods as it is for sampling network statistics because
arc-based sampling assumes the whole curve is available to find and divide the length of

the curve into equal parts. This is not possible in our case, as the aim is to get the

lwe are naming it as MoMon for ease of reference.
2we use polling rate and polling frequency interchangeably.

108

5.3 Proposed Solution

network statistics based on recently polled statistics. Also, curvature based sampling
needs instantaneous curvature to determine the next discrete point [163], which is not
available in case of network traffic. Thus, we substitute it with the difference of the recent
two average slopes of the metric (we call it curvature approximation).

The state-of-the-art methods MoMon [4], and CeMon [2], use the criteria “If the change
in measured statistics between two consecutive polls is more than some threshold" then
increase the polling frequency otherwise decrease the polling frequency. They consider
the linear increase and decrease in the statistics to dynamically adjust the polling rate.
However, in the proposed method, we use the criteria “If significant curvature is detected
between the polls then increase the polling frequency else decrease the polling frequency".
We approximate the curvature by considering the percentage change between the slopes
within three consecutive polls. In other words, the existing methods use “rate-of-change"
in measured metric to decide the polling frequency. Whereas, we consider “change in

rate-of-change" as the basis to adjust the polling frequency.

N

S

@ @ @ P P
] S S 3 3
=] = 2 = =
2 z z z z
E 3 3 E E
w %] %] w %]
9 =] = =
] g e g g
2 Z Z Z 2
< < < < <
E -———0— E E E E

S
Time Time Time Time Time

(a) (b) (©) () (e)

Figure 5.1: (a) shows constant curve with possible polls by CeMon [2], MoMon [4], and the
proposed method. The filled circles represent the polled points and dotted lines represent the
sampled curve. (b) shows a linearly increasing curve with possible polls by CeMon [2] and
MoMon [4]. (c) shows a linearly increasing curve with possible polls by the proposed method.
(d) shows a non-linear curve with possible polls by CeMon [2] and MoMon [4]. (e) shows a
non-linear curve with possible polls by the proposed method.

Consider Figure 5.1 (a), where we have a constant curve for the measured statistics.
That is, there is no change in the measured statistics. The polled points are shown with
filled circles on the curve, and the sampled curve is shown by dotted grey line. For con-
stant curve all three methods CeMon [2], MoMon [4], and the proposed method decrease
the polling frequency. For a linearly increasing curve as shown in Figure 5.1 (b), CeMon
[2] and MoMon [4] compares the difference between the measured statistics at recent two
points with a threshold. Based on the comparison, they either increase or decrease the

polling rate. The best strategy in such a case is to reduce the polling frequency. As the

109

5.3 Proposed Solution

change in the measured statistics is linear, reducing the polling frequency does not affect
the accuracy of the measured statistics and at the same time reduces the polling overhead.
The proposed method captures the “change in rate-of-change" by taking the percentage
change between two consecutive slopes over a curve. As the slope is constant for a linear
curve and percentage change in slopes is zero. Thus for the case shown in Figure 5.1
(b), the proposed method decreases its polling frequency and provides the same accuracy
with less overhead as shown in Figure 5.1 (c). Now consider the non-linear curve given in
tigures 5.1 (d) and (e). The existing methods may or may not change the polling frequency
as they consider the difference between the last two poll’s data and thus would not get a
good approximation of the actual curve, as shown in Figure 5.1 (d). Whereas, our method
increases the polling frequency if the slope of the curve changes by a significant amount
(i.e., more than A). This might increase the overhead but provides a good approximation

of the curve, as shown in Figure 5.1 (e).

5.3.1 Algorithm

The proposed algorithm has five parameters, m;, mr, A, t;, and t;. The polling interval
is bounded by m; and mT, where m;, and mt are the minimum and maximum polling
interval time respectively. The value of m; is taken as 0.5 sec (the same value is used by
CeMon [2] and MoMon [4]). The value of m7 is either 3 sec (from MoMon [4]) or 5 sec
(from CeMon [2]). The value of other three parameters, A, t;, and t;, are tuned over real
traffic. t;, and t; are the factors by which we increase or decrease the polling intervals,
respectively. A is the threshold. We compare the percentage change in slope with A to
adjust the polling frequency.

Initially, the polling interval is set to 1 second (line 1 of Algorithm 5.1). We need at
least three points to determine the slopes. A window is maintained to store the statistics of
last three polls (line 5-6 of Algorithm 5.1). We take the last three poll’s data and calculate
the slopes between two consecutive polls. slope; is calculated between the first and the
second polled point, and slope, is calculated between the second and the third polled
point (line 7 of Algorithm 5.1). We compare the percentage change between slope; and

slope; (which is an approximation of the curvature) with A. If the percentage change is

110

5.3 Proposed Solution

Algorithm 5.1: Curvature Based Sampling

Input : stat, stat_time // Polled stat and time of polling
Parameters: A, t;, t;, m;, mr
Output : Next polling time
// Set the initial values
1 polling_interval =1sec // initial polling interval
2 win_time < [];
// time at which data was polled
3 win_stat < [];
// stats data
4 win_dstat < [];
// slope between two consecutive stats
5 win_time.append(time);
6 win_stat.append(stat);
7 win_dstat.append((win_stat[n]-win_stat[n-1]) /(win_time[n]-win_time[n-1]));
// append rate of consecutive elements
8 if win_stat.length > 3 then
// only if sufficient entries in window
9 | if abs((win_dstat[n|/win_dstat[n —1]) —1) > A then

10 ‘ polling_interval = %{W;

11 else

12 | polling_interval = polling_interval * t;;
13 end

14 polling_interval <— max(min(mr, polling_interval), m;);
// bring in range my;:mp, where m; is minimum polling

interval, mr is maximum polling interval

15 end

16 SetTimeout(polling_interval, Curvature Based Sampling) // call the same
function after the timeout

more than A then we decrease the polling interval by a factor of t; (line 10 of Algorithm
5.1), which increases the polling frequency. Otherwise, the polling interval is increased

by a factor of t; (line 12 of Algorithm 5.1).

5.3.2 Cost Function

We compare our method with existing methods CeMon [2], and MoMon [4], in terms
of accuracy achieved and overhead incurred. Accuracy is measured using Normalized

Root-Mean-Square Error (NRMSE). That is,

N
NRMSE = % Y _((measured; — actual;) / (actual;))? (5.1)
i=1

111

5.4 Experiments and Evaluation

Control message count is used as a measurement of overhead. Cost function is defined
as,

Cost = NRMSE * Overhead (5.2)

We use the cost function for our evaluations and compare the methods by the ratio of the

costs.

5.4 Experiments and Evaluation

For the experiments we use the same dataset (given in [164]) as used in CeMon [2] and
MoMon [4]. Emulation of large networks becomes infeasible because of the large resource
requirements. Thus, we conduct the experiments in a simulator designed in python
(which is similar to CeMon [2] and MoMon [4]). The experiments are performed on
a machine with i5 processor 2.1GHz CPU processor and 6GB RAM, ubuntu 16.04 OS,
python3.7.

For parameter tuning we use a subset of the traffic from the dataset given in [164].
We compare our algorithm’s result with CeMon [2] and MoMon [4] for average cost.
Initially, we perform coarse tuning of parameters, t;, t;, and A, by varying the value of
each parameter at an interval of 0.5. After coarse tuning we perform fine tuning on best
parameter’s values found during coarse tuning by varying the values at an interval of 0.1.
While tuning t,,;, is always taken as 0.5 sec and t,,,, is either set to 5 sec (from CeMon
[2]) or 3 sec (from MoMon [4]). The final values of parameters obtained after tuning are
tmax = 3.0, A=0.5, t;=2.2, t;=1.1.

For evaluation, we use link utilization as the underlying metric. We take 60 seconds
trace from the data set which is not used in parameter tuning. Cemon [2] polls the net-
work for each flow individually and MoMon [4] does the grouping of flows to reduce the
overhead. We have two sets of experiments, first where we implement the Sliding Window
Based Tuning (SWT) algorithm (given in CeMon [2]) to poll each flow individually. In the
second experiment, CeMon polls the flows in groups. The proposed method and MoMon
[4] always poll the flows in groups. Thus, they always has less overhead compared to

CeMon [2].

112

5.4 Experiments and Evaluation

35k — Actual
—— MoMon
—— CeMon
301 —— Proposed
8 25F
0
=
& 20t
=
m
M
515}
e
=
|
10 H
5
0
0

Time (sec)

Figure 5.2: Link utilization, CeMon [2] polls the flows individually, and MoMon [4], and
proposed method poll the flows in group with same t;,5y value ie., 3.

B NRMSE*100 M Overhead M Cost (Overhead*NRMSE)

2094.45

1000
100
37.33
14.92
I 12.86 10.49 12.16

CeMon MoMon Proposed

=
o

Figure 5.3: Accuracy, overhead, and cost comparison, CeMon [2] polls the flows individually,
and MoMon [4], and proposed method poll the flows in group with same f;,,y value ie., 3.

In both the experiments, we have two different values of t,,,x 3 sec (from MoMon [4])

and 5 sec (from CeMon [2]). t,,, value is always .5 sec.

1. CeMon [2] polls each flow individually. Whereas, MoMon [4], and the proposed

method poll the flows in groups.

113

5.4 Experiments and Evaluation

e Case 1: Same f;;y
In this case, we use t;;,, = 3 for all three methods, CeMon [2], MoMon [4], and
the proposed method. The estimated link utilization by different methods is
given in Figure 5.2 and the accuracy, overhead, and cost comparison is shown
in Figure 5.3. The NRMSE value of CeMon [2] is .37 which is roughly 4 times
more than the proposed method. Also, the total number of polls done by
CeMon [2] are huge i.e., 5611, which results in more cost (approximately 172

times) compared to the proposed method.

e Case 2: Different f,,;,
In this case, we use ty.x = 5 for CeMon [2], and t;4x = 3 for MoMon [4] and
the proposed method. The estimated link utilization by different methods is
given in Figure 5.4 and the accuracy, overhead, and cost comparison is shown
in Figure 5.5. The NRMSE value of CeMon [2] is 0.36 which is roughly 3 times
more than the proposed method. The total number of polls done by CeMon

[2] are 4376, which results in more cost (approximately 128 times) compared to

the proposed method.
— Actual
35 | Ua
MoMon
—— (CeMon
301 —— Proposed
225}
=)
=
S 20t
=
m
N
515}
z 'k
c
3
10 -
5 h
D i i 1 i i
0 10 20 30 40 50 60

Time (sec)

Figure 5.4: Link utilization, CeMon [2] polls the flows individually, and MoMon [4], and
proposed method poll the flows in group with different t;,,x values i.e., t;ax = 5 in case of
CeMon and t;4x = 3 in case of MoMon [4] and proposed method.

114

5.4 Experiments and Evaluation

10000
4376

1566.01

1000

100

35.79

1 I

Figure 5.5: Accuracy, overhead, and cost comparison, CeMon [2] polls the flows individually,
and MoMon [4], and proposed method poll the flows in group with different ¢, values i.e.,
tmax = 5 in case of CeMon and ¢4 = 3 in case of MoMon [4] and proposed method.

B NRMSE*100 M Overhead M Cost (Overhead*NRMSE)
14.92 1045 12.16

116

CeMon MoMon Proposed

12.86

=
o

In both the cases, the total number of polls for both MoMon [4] and the proposed
method are 116 because the tuned value of the parameter ¢, matches with MoMon
[4]. The NRMSE values of MoMon [4] and the proposed method are 0.13 and 0.10,
respectively. The cost of MoMon and the proposed method are 14.92 and 12.16,
respectively. The proposed method outperforms both CeMon [2] and MoMon [2].
It is better than MoMon [4] by 23% in terms of accuracy and cost and better than
CeMon [2] by a huge margin (128 to 172 times) in terms of cost and roughly 3 to 4

times better in terms of accuracy.

2. All the three methods, CeMon [2], MoMon [4], and the proposed method, poll flows

in groups.

e Case 1: Same fy
In this case, we use t,,x = 3 for all three approaches, CeMon [2], MoMon [4],
and the proposed method. The link utilization estimated by different methods
is given in Figure 5.6 and the accuracy, overhead, and cost comparison is shown
in Figure 5.7. The total number of polls done by CeMon [2] are 27 which is
roughly 4 times less compared to the proposed method. But CeMon [2] misses
lots of spikes (see Figure 5.6), which results in less accuracy. The NRMSE of

CeMon [2] is .48 which results in 6.4% more cost compared to the proposed

115

5.4 Experiments and Evaluation

35k — Actual
—— MoMon
—— CeMon

301 —— Proposed

Link Utilization (Mbps)

Time (sec)

Figure 5.6: Link utilization, CeMon [2], MoMon [4], and proposed method poll the flows in
group with same t,, value i.e., 3.

B NRMSE*100 M Overhead M Cost (Overhead*NRMSE)

140

120 116 116
100
80
60
47.94
40
27
20 l 12.94 12.86 14.92 10.49 12.16
i] L1 m .
CeMon MoMon Proposed

Figure 5.7: Accuracy, overhead, and cost comparison, CeMon [2], MoMon [4], and proposed
method poll the flows in group with same ¢4 value i.e., 3.

method.

e Case 2: Different t,,,,
In this case, we use ty,x = 5 for CeMon [2], and t,x = 3 for MoMon [4] and
the proposed method. The link utilization estimated by different methods is

given in Figure 5.8 and the accuracy, overhead, and cost comparison is shown

116

5.4 Experiments and Evaluation

35k — Actual
—— MoMon
—— CeMon
301 —— Proposed
w
(=%
0
=
=
°
=
m
N
E
5
e
=
=
0 1 1 1 1 1

Time (sec)

Figure 5.8: Link utilization, CeMon [2], MoMon [4], and proposed method poll the flows in
group with different ¢,y valuesi.e., t;;0x =5 in case of CeMon and t;,,4x = 3 in case of MoMon
[4] and proposed method.

B NRMSE*100 mOverhead M Cost (Overhead*NRMSE)

140
120 116 116
100

80

60

40

35.8
19
20 I 12.86 14.92 10.49 12.16
6.8
. . - L1 BN

CeMon MoMon Proposed

Figure 5.9: Accuracy, overhead, and cost comparison, CeMon [2], MoMon [4], and proposed
method poll the flows in group with different ¢4, values i.e., t;;ax = 5 in case of CeMon and
tmax = 3 in case of MoMon [4] and proposed method.

in Figure 5.9. The total number of polls done by CeMon [2] are 19 which is

roughly 6 times less compared to the proposed method. But CeMon [2] misses

lots of spikes (see Figure 5.8), which results in less accuracy. The NRMSE of

CeMon [2] is 0.36 which is roughly 3 time inaccurate compared to the proposed

117

5.5 Summary

method.

In both the cases, the total number of polls for both MoMon [4] and the proposed
method are 116. The NRMSE of MoMon and the proposed method is 0.13 and
0.10, respectively. The cost of MoMon and the proposed method is 14.92 and 12.16,
respectively. We can see that the proposed method gives better results compared to
both CeMon [2] and MoMon [4] in terms of accuracy. We are better than MoMon
[4] by 23% in terms of accuracy and cost. We are better than CeMon [2] by 6.4% in
terms of cost when we use same t,,,, value. Although CeMon [2] is better (roughly 2
times) than the proposed method in terms of cost when we use different t,,,, values.
But in both the cases, the proposed method provides better accuracy (roughly 3 to 4

times) over CeMon [2].

5.5 Summary

In this chapter, we proposed a novel pull-based method to determine the polling fre-
quency with which an SDN controller should poll the switches to collect the statistics.
The proposed method considers the change in rate-of-change in the collected statistics
to adjust the polling frequency. Instead of using the fixed values for the parameters, we
tuned the parameters used in the proposed algorithm. We also provide a cost function to
evaluate the performance of different methods. The experiments show that the proposed
method is better than MoMon [4] by 23% in terms of accuracy and cost. When CeMon [2]
polls each flow individually, the proposed method is better than CeMon [2] roughly by 3
to 4 times in terms of accuracy and 128 to 172 times in terms of cost. When CeMon [2]
polls the flows in groups with same t,,,,, the proposed method is better by 6.4% in terms
of cost. Although CeMon is better than the proposed method in terms of overhead when
it polls the flows in groups with different f,,,,. But it misses lots of spikes in the traffic

thus falls behind the proposed method in terms of accuracy.

118

