List of Figures

1.1	In traditional networks each switch has its own controller. Whereas, in SDN		
	the controller is centralized and logically connected to each switch	3	
1.2	SDN Architecture	3	
1.3	Logical Design of Controller	4	
1.4	Controller configuration	5	
1.5	Mechanism to measure Link delay	10	
1.6	Hybrid SDN network, traditional and SDN switches co-exists	14	
1.7	Thesis contribution and summarization	19	
2.1	Example to illustrate challenges in consistent statistics collection	22	
2.2	(a) OpenFlow Switch, (b) Detailed diagram of two switches directly con-		
	nected to each other.	27	
2.3	Illustrating that OpenSnap gives consistent statistics in all 3 cases ((a) M_1		
	incident on source switch S_1 (b) M_1 incident on destination switch S_3 (c)		
	M_1 incident on intermediate switch S_2) when the flow is going from switch		
	S_1 to switch S_3	32	
2.4	Topology for consistency evaluation	36	
2.5	Comparing consistency of statistics (a) OpenSnap and OpenNetMon in		
	FIFO network (b) OpenSnap and Simple Polling in FIFO network (c) Open-		
	Snap and Simple Polling in Non-FIFO network. λ represents the difference		
	between packets sent from the source switch and packets received at the		
	destination switch. The shaded region represents area with inconsistent		
	statistics	38	

2.6	(a) Percentage of consistency achieved by OpenSnap, OpenNetMon and	
	Simple Polling in FIFO network. (b) Percentage of consistency achieved by	
	OpenSnap and Simple Polling in Non-FIFO network	39
3.1	Illustrating the limitation of OpenSnap for OpenFlow based networks with	
	Non-FIFO channels	43
3.2	An example to illustrate the working of GlobeSnap on a link between two	
	switches	46
3.3	Network parameter estimation	57
3.4	Illustrating the correctness of GlobeSnap for OpenFlow based networks	
	with Non-FIFO channels.	61
3.5	Processing of incoming packets using multiple flow tables in an OpenFlow	
	switch	66
3.6	Processing of packets in GlobeSnap using two pipelines	68
3.7	Topology used for consistency evaluation	69
3.8	Comparison of GlobeSnap with simple polling, and OpenNetMon [1] with	
	Non-FIFO channels. The shaded area represents the inconsistent statistics.	70
3.9	Comparison of GlobeSnap with CeMon [2], and OpenSnap [3] with Non-	
	FIFO channels for consistency. The shaded area represents the inconsistent	
	statistics	71
3.10	(a), (b), and (c) show the comparison of GlobeSnap with OpenSnap [3] with	
	FIFO channels for consistency. The shaded area represents the inconsistent	
	statistics. (d) shows the percentage of consistency achieved by each method	72
3.11	Synchronicity of GlobeSnap	73
3.12	Topology for bottleneck link and packet loss evaluations	73
3.13	Bottleneck link identification in the network using GlobeSnap	75
3.14	Packet loss measurements on each link of the network by GlobeSnap and	
	actual packet loss provided by queues statistics	75
4.1	Active delay monitoring in SDN networks	81
4.2	Number of switches vs Number of probe/control packet	83
4.3	Queues in the ingress and egress path of the packet	84

4.4	A TC queue	87
4.5	A topology with 3 switch, 2 hosts and controller connected in a linear fash-	
	ion for evaluating the proposed method	90
4.6	(a) Average queue length (b) Average link bandwidth utilization (ρ) for the	
	traffic scenarios considered	92
4.7	qMon versus ping round trip times (RTT) for poisson traffic, ps = packet	
	size, λ = mean packet arrival rate	93
4.8	Low pass delay signals for qMon versus ping RTT for poisson traffic, ps	
	= packet size, λ = mean packet arrival rate. Ping RTT signal is offset by	
	+70ms for better visibility	93
4.9	90% confidence interval for qMon RTT for poisson traffic, ps = packet size,	
	λ = mean packet arrival rate	94
4.10	qMon versus ping round trip times (RTT) for bursty traffic	95
4.11	Low pass delay signals for qMon versus ping RTT for bursty traffic	96
4.12	90% confidence interval for qMon RTT for bursty traffic	97
5.1	(a) shows constant curve with possible polls by CeMon [2], MoMon [4],	
	and the proposed method. The filled circles represent the polled points and	
	dotted lines represent the sampled curve. (b) shows a linearly increasing	
	curve with possible polls by CeMon [2] and MoMon [4]. (c) shows a linearly	
	increasing curve with possible polls by the proposed method. (d) shows a	
	non-linear curve with possible polls by CeMon [2] and MoMon [4]. (e)	
	shows a non-linear curve with possible polls by the proposed method	109
5.2	Link utilization, CeMon [2] polls the flows individually, and MoMon [4],	
	and proposed method poll the flows in group with same t_{max} value i.e., 3	113
5.3	Accuracy, overhead, and cost comparison, CeMon [2] polls the flows indi-	
	vidually, and MoMon [4], and proposed method poll the flows in group	
	with same t_{max} value i.e., 3	113

5.4	Link utilization, CeMon [2] polls the flows individually, and MoMon [4],	
	and proposed method poll the flows in group with different t_{max} values	
	i.e., $t_{max} = 5$ in case of CeMon and $t_{max} = 3$ in case of MoMon [4] and	
	proposed method	114
5.5	Accuracy, overhead, and cost comparison, CeMon [2] polls the flows indi-	
	vidually, and MoMon [4], and proposed method poll the flows in group	
	with different t_{max} values i.e., $t_{max} = 5$ in case of CeMon and $t_{max} = 3$ in case	
	of MoMon [4] and proposed method	115
5.6	Link utilization, CeMon [2], MoMon [4], and proposed method poll the	
	flows in group with same t_{max} value i.e., 3	116
5.7	Accuracy, overhead, and cost comparison, CeMon [2], MoMon [4], and pro-	
	posed method poll the flows in group with same t_{max} value i.e., 3	116
5.8	Link utilization, CeMon [2], MoMon [4], and proposed method poll the	
	flows in group with different t_{max} values i.e., $t_{max} = 5$ in case of CeMon and	
	$t_{max} = 3$ in case of MoMon [4] and proposed method	117
5.9	Accuracy, overhead, and cost comparison, CeMon [2], MoMon [4], and pro-	
	posed method poll the flows in group with different t_{max} values i.e., t_{max} =	
	5 in case of CeMon and $t_{max} = 3$ in case of MoMon [4] and proposed method	.117
6.1	Classification based on architecture and components	125
6.2	Various Hybrid SDN Models classified based on architecture and component	3126
6.3	Fibbing Work-Flow	138
6.4	HAL implementation framework over Alien hardware devices	142
7.1	Waypoint enforcement in Hybrid SDN network	153
7.2	Example of Hybrid SDN network with seven switches (including both SDN	
	and legacy). (a) Physical network with solitary Confinement Trees (SCTs)	
	for each SDN $_c$ port. (b) The logical view of SDN controller	157
7.3	An example of path update in Hybrid SDN network using Telekinesis. (a)	
	Native path from source A to destination B. (b) Change in path from source	
	A to destination B through SDN switch	158

7.4	Examples to illustrate the limitations of Telekinesis. (a)Path Updates (b)	
	Legacy network with communication pairs H_1 - H_3 and H_2 - H_3 (c) Effect of	
	updating in MAC learning table of switch LS ₃	160
7.5	An example of path update in Hybrid SDN network using Magneto frame-	
	work. (a) Native path from source A to destination B. (b) Change in path	
	from source A to destination B through SDN switch	162
7.6	An example of path update in Hybrid SDN network. (a) Native path from	
	source A to destination B. (b) Change in path from source A to destination	
	B through SDN switch	164
7.7	Percentage of packets reaching to SDN switch	165
7.8	Overhead caused by the gARP packets	165
7.9	Path setup in Hybrid SDN network	167
7.10	Topology for GNS3 emulations	168
7.11	Router R_1 and R_2 configuration for one-to-one mapping model	169
7.12	Router R_3 and R_4 configuration for one-to-one mapping model	169
7.13	OVS1 configuration for one-to-one mapping model	169
7.14	OVS1 Configuration for cell block based mapping model	171
7.15	Router R_1 and R_2 configuration for subnet based mapping model	172
7.16	OVS1 configuration for subnet based mapping model	173
7.17	3-tier Network Topology	175
7.18	Load on the links at each layer	180
7.19	Average path length with respect to number of SDN switch	181
7.20	Percentage of Waypoint Enforcement Achieved. (a) When the access traffic	
	is dominating (i.e., $T_c = .0354$, $T_d = .0795$, $T_a = .8851$) (b) When the dis-	
	tribution traffic is dominating (i.e., $T_c = .0354$, $T_d = .8851$, $T_a = .0795$) (c)	
	When core traffic is dominating (i.e., $T_c = .8936$, $T_d = .0918$, $T_a = .0146$)	183
7.21	Normalized average path length. (a) When the access traffic is dominating	
	(i.e., $T_c = .0354$, $T_d = .0795$, $T_a = .8851$) (b) When the distribution traffic is	
	dominating (i.e., $T_c = .0354$, $T_d = .8851$, $T_a = .0795$) (c) When core traffic is	
	dominating (i.e., $T_c = .8936$, $T_d = .0918$, $T_a = .0146$)	184

List of Tables

2.1	List of symbols used in consistency statistics collection	30
2.2	Flow entries corresponding to Marker M_1 and Marker M_2	36
3.1	Network configurations for consistency evaluation experiments	69
3.2	Network configurations for experiments to identify the bottleneck link and	
	number of packets lost on a link	74
4.1	Pearson co-efficient for all the experiments	94
6.1	Comparison of different models in terms of hybrid SDN pillars	134
6.2	Summarized overview of hybrid SDN papers	136
6.3	Summarized overview of problems in Hybrid SDN and works done to solve	
	them	144
7.1	Summary of used Variables	154
7.2	One-to-One mapping	168
7.3	Cell lock based mapping	170
7.4	Subnet based mapping	171
7.5	List of symbols used in framework 1	176
7.6	Load on links without waypoint enforcement	178
7.7	With waypoint Enforcement	178
7.8	SDN_DC _{load} with waypoints	178
7.9	LEGACY DC _{load} with waypoints	178

List of Algorithms

2.1	OpenSnap Algorithm for Switch S_i	31
3.1	Controller Side	49
3.2	SwitchSidePacketProcessingProcedure(Packet P)	52
5.1	Curvature Based Sampling	111
7.1	Algorithm to identify the diversion point	155

List of Abbreviations/Symbols

	List of symbols used in Chapter 1	
Notation	Definition	
STP	Spanning Tree Protocol	
TRILL	Transparent Interconnection of Lots of Links	
RIP	Routing Information Protocol	
ICMP	Internet Control Message Protocol	
OSPF	Open Shortest Path First	
SDN	Software Defined Networking	
API	Application Programming Interface	
VoIP	Voice over Internet Protocol	
SLA	Service Level Agreement	
ForCES	Forwarding and Control Element Separation	
TCP	Transmission Control Protocol	
LLDP	Link Layer Discovery Protocol	
TLV	Type Length Value	
FIFO	First-In-First-Out	
QoS	Quality of service	
S_i	<i>i</i> th switch in the network	
T_{total}	Total time taken by the probe packet through the link and back to the controller	
$T_{cntltoS_1}$	Delay from the controller to switch S_1	
$T_{cntltoS_2}$	Delay from the controller to switch S_2	
$Delay_{S_1toS_2}$	Link delay	
MTU	Maximum transmission unit	
tc	traffic control	
SDN_c	SDN-controller port	
$non - SDN_c$	Legacy port	
MAC	Media Access Control	
gARP	Gratuitous Address Resolution Protocol	
ARP	Address Resolution Protocol	
RTT	Round Trip Time	

List of symbols used in Chapters 2 & 3	
Notation	Definition
SLA	Service level agreement
E_1 , E_2 , E_3 , and E_4	Events in the network
S_i	<i>i</i> th switch in the network
k_i	Number of interfaces in switch S_i
I_i^j	j^{th} interface of switch S_i
MCPS	Maximum Coverage Polling Scheme
AFPS	Adaptive Fine-Grained Scheme
DAPR	Dynamic Adjust and Periodical Reconstruction
SWT	Sliding Window Based Tuning
QoS	Quality of Service
FIFO	First-In-First-Out
STP	Spanning Tree Protocol

RSTP	Rapid STP
WFQ	Weighted Fair Queueing
PQ	Priority Queueing
f^k	Flow
SF_i	Set of flows going through switch S_i
f_i^l	l^{th} flow going through i^{th} switch, where $1 \le l \le SF_i $
$IN(f_i^l)$	Ingress interface for flow f_i^l at switch S_i
$sent(f_i^l)$	Number of packets sent for flow f_i^l by switch S_i
C^l	Number of packets of l^{th} flow present in the channel connecting switch S_i and
C_{ij}^l	switch S_j
Q_{iq}^l	Number of packets of l^{th} flow queued in q^{th} queue of switch S_i for transmission
$OUT(f_i^l)$	Egress interface for flow f_i^l at switch S_i
$recv(f_i^l)$	Number of packets received for flow f_i^l by switch S_i
$drop(f_i^k)$	Number of packets of <i>l</i> th flow dropped before queuing
M_1, M_2	Marker 1, Marker 2 respectively
Δ_{real}	Actual packet loss
Δ_{meas}	Measured packet loss
BFS	Breadth First Search
CBR	Constant bit rate
λ	It is the measure to compare the consistency achieved by different methods
OVS	Open vSwitch

List of symbols used in Chapter 4	
Notation	Definition
SDNs	Software-defined Networks
QoS	Quality of Service
TX	Transmit
TC	Traffic Control
ICMP	Internet Control Message Protocol
NIC	Network Interface Card
RX	Receive
DMA	Direct memory access
qdiscs	Queueing disciplines
HTB	Hierarchical Token Bucket
CBQ	Class Based Queueing
TBF	Token Bucket Filter
SFQ	Stochastic Fairness Queueing
RTT	Round trip times
L	Average number of packets in the queue
λ	Average arrival rate
W	Average waiting time
t_1 and t_2	two consecutive polling epochs
λ_{av}	Average rate of arrival of packets in the queueing system
glen _{av}	Average queue length
\overline{W}	Average waiting time for packets in the queue
$\overline{qlen}(t_1, t_2)$	Mean queue length in the interval $[t_1, t_2]$
$\overline{\lambda}(t_1,t_2)$	Mean arrival rate of the packets in the interval $[t_1, t_2]$
$\overline{W}_{\overline{qlen},\overline{\lambda}}(t_1,t_2)$	Mean waiting time of a packet in the queue in the interval $[t_1, t_2]$

tx_packets	transmitted packets through the queue
$qlen_{t_1}$, $qlen_{t_2}$	Queue lengths at time t_1 and t_2 respectively
$[t_0, t_1], [t_1, t_2],, [t_n]$	m consecutive estimation intervals $[n-1, t_m]$
$\overline{D}_{\overline{qlen},\overline{\lambda}}(t_1,t_2)$	Estimator for the mean link delay $\overline{D}(t_1, t_2)$ in the interval $[t_1, t_2]$
С	Calibration constant
f_c	Cut-off frequency
b	Transition band
N	Length of the filter

List of symbols used in Chapter 5		
Notation	Definition	
QoS	Quality of Services	
SLA	Service Level Agreement	
SDN	Software Defined Networking	
NRMSE	Normalized Root-Mean-Square Error	
SWT	Sliding Window Based Tuning	
m_t , and m_T	minimum and maximum polling interval time respectively	
Δ	Threshold	
t_i , and t_d	Factors by which we increase or decrease the polling intervals respectively	

List of symbols used in Chapter 6		
Notation	Definition	
SDN	Software Defined Networking	
API	Application Programming Interface	
ISP	Internet Service Provider	
IGP	Interior Gateway Protocol	
OSPF	Open Shortest Path First	
LSAs	Link-state Advertisements	
ACL	Access Control List	
BGP	Border Gateway Protocol	
MAC	Media Access Control	
UDP	User Datagram Protocol	
SD-WAN	SDN in a Wide Area Network	
iBGP	Internal Border Gateway Protocol	
RCP	Routing Control Platform	
DEFO	Declarative and Expressive Forward Optimizer	
SDN_c	SDN-controlled	
SCTs	Solitary Confinement Trees	
HNM	Hybrid Network Manager	
ILP	integer linear programming	
VM	Virtual Machine	
OVS	OpenvSwitch	
HAL	Hardware Abstraction Layer	
CHPL	Cross-Hardware Platform Layer	
HSL	Hardware-Specific Layer	
IBSDN	IGP-as-a-Backup	
gARP	gratuitous ARP	

OSPF	Open Shortest Path First
SNMP	Simple Network Management Protocol
LLDP	Link layer discovery protocol
TCP	Transmission Control Protocol
ACC	AutoConfClient
ACS	AutoConf Server
ISC	Intermediate Switch Configurator
GPIA	Generic Path Inconsistency Avoider
TE	Traffic Engineering
SOTE	SDN/OSPF Traffic Engineering
DAG	directed acyclic graph

List of symbols used in Chapter 7		
Notation	Definition	
gARP	gratuitous Address Resolution Protocol	
ARP	Address Resolution Protocol	
SCT	Solitary confinement tree	
STP	Spanning Tree Protocol	
GNS3	Graphical Network Simulator-3	
ACL	Access Control List	
DNS	Domain Name Server	
C_i	Indicates <i>i</i> th core switch in the network	
D_i^j	Indicates a legacy distribution switch, such that D_i^j is j^{th} distribution switch of i^{th} core switch	
$A_{i,j}^k$ $h_{i,j}^{k,l}$	Indicates an access switch, such that $A_{i,j}^k$ is k^{th} access switch of D_i^j distribution switch	
$h_{i,j}^{k,l}$	Indicates a host machine l connected to $A_{i,j}^k$	
SDN_i^j	Indicates an SDN switch at distribution layer, such that SDN_i^j is the j^{th} SDN	
SDN_i^2	distribution switch of i^{th} core switch	
D_{pt}	Indicates diversion point	
$N_{-}P(N_1,N_2)$	Indicates a native path between node N_1 and node N_2 in the network	
$EP(N_1, N_2)$	Indicates extended path between node N_1 and node N_2 in the network	
S_c	Number of core switches	
S_d	Number of distribution switch pairs	
S_a	Number of access switches connected to one distribution switch pair	
A_h	Number of hosts connected to one access switch	
T_a	Percentage of total traffic resolved at access layer	
T_d	Percentage of total traffic resolved at distribution layer	
T_c	Percentage of total traffic resolved at core layer	
HA_{load}	Load on the links in host-access layer	
AD_{load}	Load on the links in access-distribution layer	
DC_{Load}	Load on the links in distribution-core layer	
N	Total number of distribution switches.	
S	Total number of SDN switches at distribution layer	
L	Total number of legacy switches at distribution layer	
A _{plen}	Average path length of all traffic	
AT _{plen}	Average path length of access traffic	
DT _{plen}	Average path length of distribution traffic	

CT_{plen}	Average path length of core traffic
SDN_{dc}	SDN Distribution-Core link
Legacy _{dc}	Legacy Distribution-Core link
$P(D_X)$	Probability that packet of a given traffic type X is diverted for waypoint enforcement
DP_{plen}	Diverted path length
NP_{plen}	Native path length
$AT_{plen}, DT_{plen},$	Average path lengths of access traffic, distribution traffic, and core traffic,
and CT _{plen}	respectively
$P(D_a), P(D_d),$	Probability of divergence of access layer traffic, distribution layer traffic, and core
$P(D_c)$	layer traffic, respectively
P_{WPA}	Percentage of waypoint enforcement achieved
$P_{SDN_switches}$	Number of packets going through the SDN switches
P_{total}	Total number of packets in the network
LBNL	Lawrence Berkeley National Laboratory