Chapter 1

Introduction

1.1 Traditional Networks

Traditional computer networks consist of various special purpose devices like routers,
switches, firewalls, etc. Each device has a specific role in the network. It is the network
operator’s responsibility to configure these devices as per the defined policies to handle
network events and traffic. The problem with traditional devices is that each device comes
with a proprietary interface for control and configuration. Thus, devices from different
vendors make the network operator’s task more complicated and difficult. The network
operator has to configure these devices carefully to ensure that the network policies are
adequately implemented.

Traditional devices come as a black box with a coupled control plane and data plane.
The control plane is the brain of the black box. All the decisions related to network man-
agement are taken/defined by the control plane. These decisions are applied in the data
plane in the form of forwarding rules. To define the forwarding rules, some routing pro-
tocols require the network devices to share the topology information among themselves.
The forwarding rules are simple match-action pairs. The header field of every incom-
ing packet is checked against the match-field of forwarding rules until a match is found.
Once a match is found, the corresponding action is performed. In traditional networks,
the control plane is embedded in each device and devices are distributed over the net-
work. This makes it difficult to have an updated global view of the network topology and

take optimal network-wide decisions [5, 6, 7].

1.2 Software Defined Networking

Network operator has to configure the layer-2 switches and layer-3 routers for rout-
ing. Network operator is allowed to use only certain protocols, for example, at layer-2,
switches support STP (Spanning Tree Protocol), TRILL (Transparent Interconnection of
Lots of Links) [8], etc. and at layer-3, routers support Open Shortest Path First (OSPF)
[9] protocol, Routing Information Protocol (RIP) [10], Internet Control Message Protocol
(ICMP) [11], etc. The network operator cannot implement a new routing protocol in the
control plane of the existing devices. Thus, traditional networks impede innovation [12].

Another important aspect in networks is monitoring. Network monitoring is impor-
tant because defining or changing network policies requires timely and consistent net-
work statistics. Traditional tools such as tcpdump, JFlow [13], Netflow [14], and sFlow
[15] use packet sampling and provide flow based measurements. These passive measure-
ment tools are hardware based and need to be configured on individual devices in the
network. Another problem with these passive tools is that they require access to the net-
work devices, which can raise security concerns. Also, to collect the statistics, the network
operator has to deal with heterogeneous devices and has to do per device configuration.

Which can be a headache for the network operator.

1.2 Software Defined Networking

Software Defined Networking (SDN) is an emerging paradigm that provides unified con-
trol over the underlying network devices by decoupling the control and the data plane.
In SDN, devices are programmable and are managed by a centralized controller. Open
Networking Foundation (ONF) [16] defines SDN as follows,

SDN is an emerging network architecture where network control is decoupled from forwarding
and is directly programmable [17].

Figure 1.1 shows the transition from traditional network to SDN. The control func-
tionality is moved from the traditional devices, and logically centralized at the controller.
In SDN, it is the controller’s responsibility to manage the network by performing vari-
ous functions such as, route network traffic, avoid congestion, handle network failures,
network monitoring, load balancing, etc. The controller defines the network policies and

communicates them to the switches. The switches are special purpose hardware devices

1.2 Software Defined Networking

Controller

< -->» Control link
é Data link

Contro] plane Data plane "

" n AN
’ n AN
. n
e n AN
/’ Y. RN
[N
1 AN
1 N
| N
' S
B 1
1 =
=== ' ===
1
'
1
‘ /
% *

(a) Traditional Network

S

@

(b) SDN Network

Figure 1.1: In traditional networks each switch has its own controller. Whereas, in SDN the
controller is centralized and logically connected to each switch

that implement the commands given by the controller in the form of forwarding rules
Each forwarding rule has two fields a match and corresponding action/s. These rules are
stored in flow tables in the data plane. The action can be to forward the packet on an

interface, drop the packet, modify the packet header field/s, or send the packet to the
controller.

Application Layer
AL Az A 13 £3 NI Az A 13 £3
Network Application Network Application
Northbound API
| I
Control Layer Control Plane
Network Service
Southbound API

(OpenFlow, ForCES, etc.)

Network Device Network Device

Data Plane

Infrastructure Layer

Network Device Network Device

Figure 1.2: SDN Architecture

1.2 Software Defined Networking

1.2.1 SDN Architecture

SDN architecture is shown in Figure 1.2. It comprises of three layers, Application layer,
Control layer, and Infrastructure layer. The application layer allows the network oper-
ator to develop applications related to network security, network automation, network
monitoring, etc. The infrastructure layer consists of multiple forwarding devices (i.e.,
SDN compatible switches). Switches in SDN have two major functions. One, they are re-
sponsible for forwarding the network traffic based on the rules defined by the controller.
Two, they store the network status temporarily and send it to the controller. The control
layer acts as a bridge between the infrastructure and the application layers. The com-
munication between the control and the infrastructure layers is accomplished using the
southbound Application Programming Interface (API). There are many options available
for southbound API such as OpenFlow [18], NetConf [19], Forwarding and Control Ele-
ment Separation (ForCES) [20] [21] [22] [23], Locator /ID Separation Protocol [24], etc. The
most popular among these is OpenFlow [23, 5]. For the purpose of this thesis, we have
used OpenFlow as southbound API. The communication between the application and the

control layers takes place through northbound APIL

Policy Global L
- Application Layer

High Level Network Statistics
Language Access
Control Layer
Forwarding Rules Network Statistics
Update collection
Q Infrastructure Layer
[Forwarding Rules] [Network State]

Figure 1.3: Logical Design of Controller

The control layer mainly deals with two functions. One is related to the translation
of network policies, defined at the application layer, into packet forwarding rules for the

infrastructure layer. Another one is related to collection of network statistics. It collects

1.2 Software Defined Networking

the network statistics, which can be used by the application layer for tuning network
decisions. As shown in Figure 1.3, in the downward direction, the control layer takes the
application requirements and translates them into forwarding rules for the infrastructure
layer. In the upward direction, the control layer takes the network statistics and provides a

network view to the application layer so that the application layer can define the network

policies accordingly.

1.2.2 Controller Configuration

There are many options available for SDN controller such as, Ryu [25], Floodlight [26],
POX [27], OpenDaylight [28], NOX [29], etc. A controller can be configured in two ways,

1. Out-of-band Configuration: In out-of-band configuration, the controller is con-
nected to every switch through a dedicated link, as shown in Figure 1.4 (a). These

links are called control links. Control links are used to send control messages be-

tween the controller and the switches.

2. In-band Configuration: In in-band configuration, the controller does not require
dedicated links to every switch. Instead, it uses the data links (connecting two

switches) to send control traffic, as shown in Figurel.4 (b).

Controller Controller
A N yv
OpenFlow protocol OpenFlow prllotocol
Eg-\
K .
=== \ ==
EQE.
€------ » Control link Data link €------ » Control link — Datalink
(a) Out-of-band (b) In-band

Figure 1.4: Controller configuration

Both configurations have some pros and cons. Out-of-band is more secure compared

to in-band, as it has a dedicated link to the controller [30]. But it requires additional

5

1.3 Benefits of SDN

deployment cost and is difficult to manage. Whereas, in the case of in-band configuration,
the control traffic is sent through the data links. Thus it has no extra deployment cost, but
it can degrade the network’s performance. In an in-band configuration, the link failure
can affect both data plane and control plane communications. In the case of out-of-band
configuration, if a dedicated control link fails, it disconnects the controller from a switch
and affects the communication between them [31]. So, there exists a trade-off between

in-band and out-of-band controller configurations.

1.3 Benefits of SDN

1.3.1 Easy to Configure

Prevalence of multiple devices in traditional networks poses a considerable challenge to
the network operator. In traditional networks, each device has to be configured separately.
In SDN, the unified control provides flexibility to the network administrator to program-
matically configure all kinds of devices, for example, the controller can use southbound
API for configuring each network device. This makes the network operator’s job easier as

she does not have to configure the network devices manually.

1.3.2 Global Topology View

When a switch joins an SDN network, it establishes a Transmission Control Protocol (TCP)
connection with the external controller. When a connection is first established between the
controller and the switch, they send OFPT_HELLO message to negotiate the OpenFlow
version. Once the negotiation is done, a connection is established. Then the controller
sends a FEATURE_REQUEST_MESSAGE to the switch as part of initial handshake, and
the switch replies with a FEATURE_REPLY_MESSAGE. The FEATURE_REPLY_MESSAGE
includes fields such as switch ID, number of active ports with their MAC addresses, num-
ber of tables supported, etc. [32] [33]. Link discovery is done by the controller using Link
Layer Discovery Protocol (LLDP). An LLDP packet is encapsulated in a Packet-Out mes-
sage and is sent to each active port of every switch in the network. The Packet-Out mes-

sage installs a flow entry in the switch to forward the encapsulated LLDP packet through

1.3 Benefits of SDN

the port mentioned in the Type Length Value (TLV) field of the LLDP packet [33]. When
an adjacent switch receives the LLDP packet through a port different from the control
port, it sends the LLDP packet to the controller as a Packet-In message. The Packet-In
message contains information such as switch ID, port on which the switch received the
LLDP packet, etc. [33]. Using this information, the controller is able to build the com-
plete topology of the network. The controller maintains a database to store the network

topology, which gets updated whenever a switch joins or leaves the network.

1.3.3 Minimization of Management Cost

In network management, network statistics play an important role in defining network
policies, QoS assurance, load balancing, etc. Unlike traditional networks, SDN does not
require specialized tools for statistics collection. In SDN, every switch maintains counters
for every interface and flow entry in the switch. The controller can poll the switches by
sending the statistics request messages, and the switches send back the corresponding
statistics reply. The statistics can be polled at different granularity like per-flow statis-
tics, aggregate flow statistics, per-port statistics, and queue statistics. Thus, the network

operator gets rid of installing and configuring of monitoring tools.

1.3.4 Flexibility

In traditional networks, the switches and routers support a set of pre-defined protocols.
Traditional devices do not provide the flexibility to change the behavior of existing proto-
cols. For example, TCP/IP provides best-effort delivery, and it does not guarantee QoS.
Security is not an inherent part of TCP/IP. To solve these issues, overlay solutions are pro-
vided. Also, the network operator cannot implement a new routing protocol or solution
in the traditional devices [34, 5, 35, 36]. SDN provides the flexibility to change the policies
and algorithms on the fly to adapt to the dynamic needs of the end-users. In SDN, the
network operator can implement a new routing protocol at the centralized controller, and

forwarding tables of all the switches get updated as per the new protocol.

1.4 Contribution of the Thesis

1.4 Contribution of the Thesis

Though SDN provides many advantages over the traditional networks, but many chal-
lenges still exists in SDN [37]. This section lists various challenges identified in SDN,
their state-of-the-art, and identified research gaps. We also provide a brief description
of the solutions proposed in this thesis to handle each of the identified challenges. The

identified challenges can be broadly classified into two categories,

1. Efficient statistics collection in SDN

2. Waypoint enforcement in Hybrid SDN

1.4.1 Efficient Statistics Collection

We have identified three problems related to efficient statistics collection, that are very

crucial for network management,

* Globally consistent statistics collection.
* QoS parameters measurement.

¢ Optimal polling frequency.

1.4.1.1 Globally Consistent Statistics Collection

In SDN, the controller manages the underlying network dynamically. The underlying
network consists of switches that are distributed geographically. Each switch maintains
statistics counters for each flow, port, and queue. These statistics can be polled by the
SDN controller using statistics request messages, and switches send the corresponding
statistics reply to the controller. The benefits of a centralized controller can be realised
if the controller can take management decisions dynamically based on the current state
of the network. Since the switches are distributed and have varying distances from the
controller, it becomes very important to maintain consistency in network’s statistics col-
lection. There exists a solution, SpeedLight [38], that provides a mechanism to collect
consistent statistics in P4 [39] based networks. Though SpeedLight does not always pro-
vide consistent statistics. It has to recollect the statistics in case it finds inconsistencies in

the collected statistics. Thus, the solution is not efficient.

8

1.4 Contribution of the Thesis

We propose two methods, OpenSnap and GlobeSnap, to collect consistent statistics
in OpenFlow based SDN networks. OpenSnap takes Chandy-Lamport algorithm [40, 41]
as a base to design a new algorithm for consistent statistics collection. It assumes that
the switches are connected with First-In-First-Out (FIFO) channels, that is the packets are
transmitted based on their order of arrival. It also assumes that the network does not con-
tain any loop. In OpenSnap, the order of statistics collection is maintained using marker
packets. The controller initiates the statistics collection by sending a marker packet to one
of the switches. The switch sends the statistics to the controller and broadcasts the marker
packet. Since the network does not contain any loop, the statistics collection algorithm
terminates once the controller receives statistics from all the switches. For a network with
Non-FIFO channels, it requires multiple runs to collect the statistics consistently. To im-
prove the efficiency and robustness of OpenSnap, we propose GlobeSnap, a time-efficient
and robust method to collect globally consistent statistics for OpenFlow networks. It
provides consistent statistics in a single run even for a network with Non-FIFO channels.
GlobeSnap does not require any additional marker packet for statistics collection. Instead,

it uses the network traffic itself to ensure consistency.

1.4.1.2 QoS Parameters Measurement

Over the years, there is a huge increase in multimedia applications such as VoIP (Voice
over Internet Protocol), video conferencing, online gaming, etc. It is the responsibility
of the network operator to meet the SLA (Service Level Agreement) and guarantee QoS
(Quality of service) for these applications. Improving QoS in turn requires an effective
and efficient measurement of QoS parameters (such as bandwidth, delay, jitter, and packet
loss) and routing of traffic based on these parameters. In literature, there exist multiple
works to estimate the QoS parameters. In this thesis, we focus on measuring link delay.
Delay measurements can be categorized into two types, active delay measurement and

passive delay measurement.

1. Active delay measurement involves sending a time-stamped probe packet through
the datapath. For example as shown in Figure 1.5, the controller sends a probe

packet to switch S; to measure the link delay from switch S; to switch S;. The

1.4 Contribution of the Thesis

Controller

Probe\LLDP

packet sent Probe\LLDP

packet back

Probe\LLDP packet
forwarding

Figure 1.5: Mechanism to measure Link delay

controller guides switch S; to forward the probe packet to switch S;. When the
packet is received by switch S, it sends the probe packet to the controller as Packet-
IN. The controller takes the difference between the arrival time of the probe packet
from switch S; and the time when the controller sent the probe packet to switch S;.
This gives the total time taken by the probe packet through the link and back to the
controller (let’s say Tjos1). To measure the link delay, the delay from the controller
to switch Sy (let’s say Tipsit0s,) and switch Sy (let’s say Tu45,) is subtracted from
Tiotar- Controller measure Tp1405, and Teys1405, using Echo monitoring. It sends Echo
request messages to both the switches to measure their respective RTT (Round Trip
Time) from the controller. To get T,,u1105, and Tipsitos,, it takes half of the RTT of the

corresponding links. The formula to calculate the link delay is,

DelaySﬁoSz = Tiota1 — (Tcntlt051 + Tcntltosz) (1.1)

10

1.4 Contribution of the Thesis

Most of the existing methods given in [42, 43, 44, 45, 46, 47, 48, 1, 49, 50, 51, 52], use

probe-packet based method (discussed above) to compute per-link and path delays.

. Passive delay measurement methods measure delay by observing network traffic.
They do not require additional probe packets to measure delay. Instead, the net-
work statistics are polled by the SDN controller. To the best of our knowledge, not
much work has been done on passive delay measurements in SDN. In [53], authors
propose a solution to measure average queueing delay. But their solution works

only for TCP flows.

Active delay measurement methods are not efficient as they suffer from,

¢ Data plane footprint, due to injection of probe packets into the data plane.

* Monitoring overhead, due to the processing required at the controller to create

probe packets and receive them.

* Scalability issues, due to increase in the number of probe packets required with

the increase in number of switches, links and queues at the egress path.

Also, there is no passive delay measurement method that can provide a good ap-

proximation of link/path delay for real-world network traffic.

Assuming that queueing delay is a significant contributor to variations in link de-
lay. We propose an efficient passive delay estimation method, qMon, to monitor
queueing delay in OpenFlow networks that leverages a queue statistics OpenFlow
message. The controller polls queue statistics from Open vSwitches [54] at regular
intervals. And then, using queueing theory, it estimates the average waiting time
of packets. We further use the obtained queueing delay to measure the link/path
latency. The proposed method solves the issues related to active delay measurement
methods, stated earlier. It depends entirely on the queue statistics messages from
the switches and, as a result, has zero data-plane footprints. gqMon is scalable with
respect to number of switches in the network, it requires only one queue statistics re-
quest message per switch to measure the queueing delay. Also, it is exempted from

probe packet construction, thus monitoring and processing overheads are reduced.

11

1.4 Contribution of the Thesis

1.4.1.3 Optimal Polling Frequency

Statistics collection is important for network monitoring. There exist a few solutions
to collect network statistics such as OpenTM [55], Planck [56], FlowSense [57], CeMon
[2], MoMon [4], etc. These solutions can be grouped into two categories, push-bashed
approaches such as Planck [56] and FlowSense [57] and pull-based approaches such as
OpenTM [55], CeMon [2], and MoMon [4].

In push-based approaches, the controller does not request the switches for statistics
instead, the switches send the statistics to the controller. OpenFlow based switches do
not have the capability to decide when to send the statistics to the controller. The re-
searchers have provided workarounds for this, for example, FlowSense [57], and Planck
[56]. FlowSense [57], sends the statistics to the controller in FlowRemoved message when
a flow expires. This does not provide real-time statistics as there will be a sparse number
of FlowRemoved messages in case of a large number of elephant flows. Planck [56] uses
port mirroring to monitor the network traffic. Mirroring of network’s traffic makes this
solution less secure.

In Pull-based approaches, the controller collects the statistics by sending the statistics
request messages to the underlying switches. The controller can request the network
statistics at different granularity by polling the underlying switches. The polling rate can
be constant or can be adjusted dynamically by the controller. Polling at a higher rate
provides better accuracy but also increases the polling overhead. Whereas polling at a
lower rate reduces the overhead but might decrease the accuracy. For a dynamic polling
rate, it is vital to determine an optimal polling rate so that the controller can maintain
the accuracy of the collected statistics with least polling overhead. Existing pull-based
solutions, CeMon [2], and MoMon [4], consider the rate of change in measured statistics as
a metric to update the polling frequency. They increase the polling frequency if the change
in measured statistics is more than a threshold. In case the measured statistics changes
linearly, they might increase the polling frequency. Increasing the polling frequency for
the above case does not add much to the accuracy but increases the polling overhead. If
the change in measured statistics is linear, the change in rate of change is zero. Thus,

polling at a lower/same rate would also provide the same accuracy. Taking this as a

12

1.4 Contribution of the Thesis

motivation, we propose a new pull-based method that adjusts the polling rate depending
on the change in the curvature of the polled data. The proposed solution provides the
best trade-off between the accuracy and polling overhead compared to the state-of-the-art

methods.

1.4.2 Waypoint Enforcement in Hybrid SDN

Over the past few years, SDN has evolved to give a new direction to computer networks.
It has been widely adopted by companies such as Google to maintain their backbone
network infrastructure [58], NTT to provide automated cloud-gateway [59], Microsoft to
achieve high utilization [60]. It offers many advantages over traditional networks such as
flexibility, fine-grained control on flow scheduling, global view of the network, etc. These
benefits and adoption of the SDN network by the enterprise give the motivation for SDN
deployment.

The transition from traditional networks to SDN cannot happen overnight. There exist
a few challenges in this transition. First, it requires a considerable amount of investment
to buy SDN hardware. In addition to this, when it comes to architectural updates, it re-
quires hiring experienced SDN programmers to design, debug, update, and operate the
SDN network [61, 62, 63]. Second, even after complete deployment, it requires some time
to build a production-level SDN controller. Third, SDN implementation is not stable yet.
Different researchers propose different design schemes that have led to lack of standard-
ization in SDN. Therefore, a direct and sudden transition from traditional networks to
pure SDN seems unlikely.

A hybrid deployment of SDN can be one of the plausible intermediate paths, primarily
because it provides an environment where both legacy and SDN nodes can work together.
Thus, an incremental deployment strategy to deploy SDN would be the right choice.
Further, Hybrid SDN can provide benefits of both the traditional networks and the SDN
paradigm.

Hybrid SDN network is defined as a network which consists of both traditional and SDN
devices [64], as shown in Figure 1.6.

In literature there exist many solutions for incremental deployment of SDN like [65, 66,

13

1.4 Contribution of the Thesis

Controller
11 L Tl
\\ _______ >
' ===
% Legacy switch E===0 SDNswitch

Figure 1.6: Hybrid SDN network, traditional and SDN switches co-exists

67, 68, 69,70, 71]. We discuss all these works in detail in Chapter 6. It has been shown that
incremental deployment of SDN provides better network management, traffic engineering
[72,73,72,74]. Deployment of SDN switches in the network alone cannot help much until
the network traffic pass through an SDN switch. To leverage the power of SDN, traffic has
to be diverted through an SDN switch. This is defined as waypoint enforcement in the
literature [68]. A varying degree of waypoint enforcement can be achieved using methods
proposed in [66, 67, 68]. Once a packet reaches an SDN switch, it is subjected to the
security policies installed by the network controller in the SDN switches. This control
over packets is desirable because it helps to leverage the power of SDN. All the existing
methods to achieve waypoint enforcement, provide only partial waypoint enforcement.
In this thesis, we propose a novel framework to bring the entire network’s traffic under
the SDN controller by redirecting the traffic such that every packet goes through at-least
one SDN switch. Our method achieves full waypoint enforcement even with a single SDN
switch. We utilize unused IP addresses as virtual IP addresses to achieve full waypoint
enforcement. These virtual IP addresses are accessible only via SDN switch. The idea
is, when a source wants to communicate with a destination in the network, the source is
provided with the virtual IP address of the destination. And the network is configured

such that any packet with a virtual IP address is forwarded towards an SDN switch.

14

1.5 Other Challenges in SDN

1.5 Other Challenges in SDN

This section lists a few more challenges in SDN other than the one discussed in the pre-

vious section.

1. Scalability: SDN architecture pushed all the control functionalities to a centralized
controller. It provides flexibility to develop new control applications and makes pol-
icy enforcement easier [75]. As the network size increases, the load on the controller
also increases and it can become a bottleneck. As a result, researchers developed

many solutions at the control plane and data plane to improve SDN scalability.

Researchers have proposed many high performance controllers like NOX-MT [76],
Maestro [77], Beacon [78], Kandoo [79], Maple [80]. A performance evaluation of
these controllers is given in [78]. These controllers mainly use well-known tech-
niques from high performance computing, computer architecture, and networking
such as pipelining, buffering, and parallelism to improve control plane performance.
To improve the scalability, it is suggested to distribute the logically centralized con-
troller [23, 81]. Kandoo [79], Onix [82], HyperFlow [83] have used this approach to
scale the control plane. Distribution of controllers also has issues like inconsisten-
cies in decision making, controller placement problem, and load distribution among
the controller. In [84], the authors propose a solution for controller placement prob-
lem by considering the latency between the controller and switches as metrics. In
[85], the authors propose ElastiCon, an architecture that dynamically increases or
decreases the controller pool based on the traffic conditions. For better utilization
of controller resources, some switches” control is dynamically migrated from one
controller to another. In [70], two separate controllers are used in a network, edge
controller, and fabric controller. The Edge controller controls the ingress and egress

switches, whereas the fabric controller controls the fabric switches.

DevoFlow [86] and [87] reduce the control plane overhead by delegating a few works
to data plane. In DevoFlow [86], forwarding decisions for short flow are taken
locally by the switches. If a switch identifies an elephant flows, it is forwarded to
the controller, and the controller provides a least congested path for the flow. In

[87], the counters are removed from ASIC and shifted to a general purpose CPU.

15

1.5 Other Challenges in SDN

Thus improve programmability. To reduces the controller overhead, DIFANE [88]

proactively pushes the flow entries to the switches.

. Northbound API: The communication between the controller and switches is well
researched and is defined in protocols [23]. But the communication between the
application layer and controller is not standardized yet. The controllers such as
Opendaylight [28], FloodLight [26] Onix [82], and Nox [29] have developed their
own Northbound APIs [12, 89, 90]. It is not easy to propose a single northbound
API because each application has different requirements [12]. To address this issue
the discussions about standardization of northbound API have already begun [91,
92, 89, 93, 94, 95, 96]. Several proposals have been initiated like Nettle [97], Frenetic
[98], NetCore [99], Pyretic [100], Procera [101], NetKAT [102], etc.

. Security: In any network, security is a top concern because compromising a network
component could be very damaging. An adversary may steal sensitive information
or even bring the whole network down. Cyber-attacks have become the top concerns
around the globe [12, 103, 104, 105, 106, 107]. Security is not an inherent part of
SDN architecture. Thus, it is vulnerable to attacks. A list of common threats is
given in [108], which also includes threats in SDN networks. OpenFlow based SDN
networks are subjected to various dependability and security issues like tampering

[109], spoofing [109], repudiation [109], denial of service [109, 110, 111].

. Resilience: In an SDN network, it is the responsibility of the controller to ensure
full-time service even in case of a failure. OpenFlow 1.2 provides the provision
of master-slave controller configuration to ensure resilience in case of a controller
failure [75]. [112] lists various challenges in designing a resilient network. Many
works have been proposed in the literature to achieve resilience [75]. The proposed
works mainly use network overlaying [113, 114, 115], replication [116], multi-path

networking [117, 118, 119], and multihoming [120] to ensure resilience.

16

1.6 Thesis Organization

1.6 Thesis Organization

The thesis is divided into two parts, part I is dedicated to pure SDN, and part II is ded-
icated to Hybrid SDN. A pure SDN network consists of only SDN compatible switches

and SDN controller/s. In part I we have four chapters.

* The first two chapters are dedicated to consistent statistics collection in OpenFlow
based SDN networks. In Chapter 2 on page 21, we propose OpenSnap, an algo-
rithm to collect consistent statistics in OpenFlow based network where switches are
connected through a FIFO link/channel. In Chapter 3 on page 41, we present,
GlobeSnap, a time-efficient, robust, and synchronous method to collect globally
consistent statistics for OpenFlow based networks. GlobeSnap collects consistent
statistics for all flows in a single round and is, therefore, time-efficient. Moreover,
GlobeSnap is robust since it resumes the statistics collection process from where it
left in case of an interruption. GlobeSnap also provides a near-synchronous snap-
shot of statistics of the switches traversed by a given flow. We also propose a mecha-
nism to persistently store switch states in OpenFlow based networks using registers,
multiple flow tables, and multiple pipelines. We find that GlobeSnap outperforms
the state-of-the-art approaches in consistency evaluation. We also compare all these
solutions in terms of the percentage of consistency achieved. We define the per-
centage of consistency as the number of rounds providing consistent statistics out
of the total number of rounds of statistics collection. OpenSnap [3] with Non-FIFO
channels provides least consistency whereas, simple polling, CeMon [2], and Open-
NetMon [1] provides 59.89%, 52.25%, and 43.19% consistent statistics respectively.
Both OpenSnap with FIFO channels [3] and GlobeSnap provides 100% consistent
statistics. Further, we present two use-cases that are sensitive to inconsistent flow

statistics, that is, computing packet loss and identifying bottleneck links.

* In Chapter 4 on page 77, we propose an efficient passive delay estimation method,
qMon, to measure link delay in SDN networks. Existing approaches to dynamically
obtain delay measurements in SDNs, are based on calculating the transit time of
a specially constructed control packet (probe packet) that travels through the data

links. These approaches are not efficient as the probe packet injected into the data

17

1.6 Thesis Organization

plane incurs considerable overhead. Additionally, a separate probe packet is re-
quired to measure the delay of each queue if more than one queue is present on
the egress port of a switch. Thus, these approaches are not scalable. The proposed
method, qMon, leverages the OpenFlow protocol to obtain queue statistics from
OpenFlow switches at regular intervals, which are further employed to estimate the
mean queueing delay for each interval. Thus, the proposed approach differs from
the existing active probing based approaches as no packet is injected into the data
plane to measure delay. The results show that for poisson traffic and for bursty
traffic with large ON intervals, the Round Trip Time (RTT) values estimated using
gMon and ping utility demonstrate high correlation when the measured RTT value

is considered as time-series data.

¢ In Chapter 5 on page 105, we propose a new method for dynamic polling, which
provides the best trade-off between the accuracy and polling overhead. We use
curvature-based sampling as the basis for our method and compute the change in
rate of change of the polled statistics to decide the polling frequency. We use real
traffic traces for the experiments. The experimental results demonstrate that the
proposed method provides better accuracy compared to MoMon [4] and CeMon [2].
The proposed method achieves 23% accuracy over MoMon [4] and has roughly three

to four times better accuracy than CeMon [2].

In part II, we have two chapters. The details of each chapter are given below,

¢ In Chapter 7 on page 151, we propose a method to achieve 100% waypoint en-
forcement in Hybrid SDN networks. The proposed framework leverages unused
IP addresses as virtual IP addresses to divert the network traffic towards the SDN
switches. In Chapter 6 on page 120, we provide a detailed survey on Hybrid SDN
papers with different dimensions like co-existence of both the paradigm at the con-
trol plane only and co-existence of both the paradigm at control plane as well as on

data plane. We also present the pros and cons of each.

The overall contribution and organization of this thesis is summarized in Figure 1.7.

18

1.6 Thesis Organization

Thesis
Contributions
Statistics Collection Waypoint Enforcement
in SDN in Hybrid SDN
Waypoint Hybrid SDN
Consistent Delay Optimal Polling| | Enforcement Survey
Statistics Collection Measurement Frequency (Chapter 6) (Chapter 7)
OpenSnap GlobeSnap gMon Curvature Based Sampling
(Chapter 2) (Chapter 3) (Chapter 4) (Chapter 5)

Figure 1.7: Thesis contribution and summarization

19

