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Chapter 2

Collection of Globally Consistent
Statistics in Software Defined

Networks

2.1 Introduction

To perform various network management tasks, the SDN (Software Defined Networking)
controller needs to have an up-to-date and globally consistent snapshot of the network.
This snapshot is then used to estimate load on the links, to identify the bottleneck links,
and to measure packet losses in the network. Accurate estimate of these parameters
is essential to perform various network management tasks such as load balancing, QoS
assurance, meeting the SLA (service level agreement) requirements etc [121]. The global
state of the network is said to be consistent if a packet belonging to a flow is recorded as
"received" at a switch then the same packet must have also been recorded as "sent" by all

the preceding switches with respect to the flow [41]. Failing to collect a consistent global

¢ Sandhya Rathee, Rahul Sharma, Piyush Kumar Jain, K Haribabu, Ashutosh Bhatia , Sundar Balasubra-
maniam. OpenSnap: Collection of Globally Consistent Statistics in Software Defined Networks, In 2019 11th
International Conference on Communication Systems & Networks (COMSNETS), pp. 149-156. IEEE,
2019.
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2.1 Introduction

snapshot can lead to the poor estimation of various network parameters such as queue
depth, load on links [38].

Controller

<o _-

h, S S, h,

Figure 2.1: Example to illustrate challenges in consistent statistics collection.

Prevalent network monitoring methods focus on per flow or per port statistics collec-
tion [1] [2]. These statistics, when viewed across the switches, are likely to be inconsistent
if a specific order is not enforced while collecting them. A traditional method to collect
global state in an SDN network is to get flow statistics from all the switches by polling
them with a specific polling rate. Due to the delay variations between controller and
switches, polling based statistics do not guarantee a consistent global state [3]. For exam-
ple, consider a network as shown in Figure 2.1, in which a packet P is transmitted from
switch S to switch S;. Also, consider that there is no packet loss in the network. We

define the following four events,

E;: Packet P arrives at switch S; and matches! with a flow entry.
e E,: Packet P arrives at switch S, and matches with a flow entry.

* Ej: Switch S; receives statistics request message from the controller and sends the

statistics to the controller.

* E,: Switch S, receives statistics request message from the controller and sends the

statistics to the controller.

Now depending on the order of these events w.r.t time, there can be three possible

cases. (i) The occurrence of the events is in the order E;, E,, E3, and E4. In this case,

!When a packet matches with a flow entry in OpenFlow switch, it increments the packet counter of the
matched flow entry.
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the packet P is counted in sent statistics of switch S; and is also counted in received
statistics of switch S;. Thus, it gives consistent statistics. (ii) The occurrence of the events
is in the order Es, Eq, Eo, E4. Here, the packet P is counted in the received statistics of
switch S, but not in the sent statistics of switch S;. Thus, it gives inconsistent statistics.
(iii) The occurrence of the events is in the order Ej, E3, E4, E;. That is, the packet P is
recorded as sent at switch S; but not as received at switch S,. This can lead the controller
to a wrong conclusion that the packet is lost. The wrong or inconsistent statistics can
lead the SDN controller to make erroneous decisions, especially in case of load balancing
[38] and bottleneck link identification. Here we considered a single packet, even with
large number of packets it will give similar results. The effect of the order of events will
remain same as inconsistency in collected statistics is not related to time duration but to
the order of occurrence of events. Thus consistency of the collected statistics depends on
the order in which the switches receive the statistics request from the controller and send
the corresponding statistics reply to the controller. This order can not be enforced by the
SDN controller due to variations in delays on the control and data links. Therefore, we
need a protocol to enforce the order of statistics collection to collect statistics in a globally
consistent manner.

State of the network is a collection of states of switches and links. It can be measured
by querying switches. When a part of the state across the switches is causally related i.e.,
an attribute in one switch is causally affected by the same attribute of another switch. Such
a state needs to be measured preserving this causal relation. For example, packet counters
or byte counters in a switch are causally related to the same counters in the predecessor
switch with respect to a flow. In certain applications such as congestion prediction, trace
recording [122], applying updates consistently on all switches [123], dynamic visualiza-
tion of network traffic patterns [124], a measurement that preserves this causal order is
expected to yield accurate results.

In this chapter, we propose an algorithm, OpenSnap, that provides consistent statistics
for each flow in OpenFlow based SDNs. The idea is inspired by Chandy-Lamport Algo-
rithm [40] [41]. Chandy-Lamport algorithm is a well known algorithm to determine the
global state of a distributed system. The algorithm works by sending a special marker

message through the links in underlying network. The nodes have the ability to record
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their state when they receive the marker. After recording the state, the node forwards the
marker to all out-going links. The algorithm obtains a globally consistent state even when
the state of all the nodes are not recorded at the same instant. The marker packet delin-
eates the packets which are recorded in the global snapshot and which are not recorded
in the global snapshot.

Though the idea is inspired by Chandy-Lamport Algorithm [40], there are a few dif-
ferences conceptually and in implementation when applied to OpenFlow based SDNs.
(i) Chandy-Lamport algorithm requires storage space on the nodes to store the snapshot
and channel state. OpenFlow enabled switches do not have the capability to save their
state locally at a given time. The switches maintain the cumulative counters for statistics.
OpenFlow switches support sending flow statistics upon receiving a flow statistics request
from the controller. Our algorithm requires that switches should send the statistics to the
controller on receiving a marker packet. But OpenFlow (as for the current OpenFlow
[18] Standard) does not have any action which sends the flow statistics on the arrival of
a particular packet. Thus, to solve this issue, we use Experimenter action field to extend
OpenFlow protocol. We implement a new action called "send_stats" in Open vSwitch [54].
On arrival of the marker packet at a switch send_stats action is performed, the switch
then sends statistics of all of its flows to the controller. The statistics collection process is
over when the SDN controller receives the statistics from all the switches in the network.
(ii) Chandy-Lamport algorithm assumes that the channels have infinite buffers. But this
might not be the case in a network of switches. (iii) Chandy-Lamport Algorithm uses
single marker packet. OpenSnap algorithm uses two marker packets to avoid looping
over a link and to ensure the termination of the algorithm. To the best of our knowledge,
this is the first work to provide consistent statistics in OpenFlow based SDNs. The results
show that, OpenSnap outperforms the state-of-the-art approaches in consistent statistics

evaluation.

2.2 Related Work

In this section, we discuss the existing approaches related to statistics collection in SDN

networks.
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OpenNetMon [1] is a network monitoring open-source software that monitors all the
flows in a network. OpenNetMon polls the edge switches of every flow and collects
the statistics. The collected statistics are used to monitor per-flow metrics, especially
delay, throughput, and packet loss. The polling frequency increases when new flows are
added and reduces when the flow rate becomes constant. This adaptive rate of sampling
reduces the network and switch overhead. OpenTM [55] provides a traffic matrix of SDN
networks, representing the volume of traffic between the source and destination pairs of
all the flows in the network. It presents different strategies to select switches for polling.
There is a trade-off between the measurement accuracy and the maximum load on each
switch. OpenTM demonstrates that better performance is accomplished by using a non-
uniform distribution querying strategy as it selects the switches which are near to the
destination in contrast to uniform schemes.

CeMon [2] proposes two schemes for polling the network, namely, Maximum Cover-
age Polling Scheme (MCPS) and Adaptive Fine-Grained Scheme (AFPS). MCPS globally
optimizes the polling cost. It proposes a greedy strategy to select the switches in a cost-
effective manner so that all flows are covered. It proposes a heuristic called Dynamic
Adjust and Periodical Reconstruction (DAPR), which dynamically handles the arrival of
new flows. If the current polling scheme covers the new flow then no action is taken oth-
erwise it adds one polling for the currently arrived flow. If a flow expires then the expired
flow is removed from the polling scheme. AFPS is a complementary scheme for MCPS,
that aims at providing a solution when to poll the switch for a given flow. AFPS deploys
various schemes to decide the polling frequency for a given flow on a given switch. But
the most optimal among the proposed schemes is Sliding Window Based Tuning (SWT).
This scheme queries the switches for a flow and calculates the difference between the last
two readings. This difference is used to dynamically tune the sampling frequency.

FlowRadar [125], is a better version of NetFlow [14]. In case of high traffic where
data processing needs to happen at a very fast rate, NetFlow is unable to keep up with
the rate and therefore in some of its implementations, it monitors only a subset of pack-
ets. FlowRadar overcomes this limitation by using less bandwidth and small memory
overhead. It encodes the per-flow counters in a constant time using little memory of the

switches. The decoding and analysis of the network-wide flow occur at a remote con-

25



2.2 Related Work

troller. LossRadar [126] provides a solution to detect the packets lost in the data center
networks independent of their root causes (i.e., congestion, persistent black holes, tran-
sient black holes, and random drops). LossRadar installs meters in all the switches to
capture unidirectional traffic. It checks for packet loss and reports to the controller imme-
diately. To capture the packet header information of the lost packet, LossRadar provides
traffic digest at every switch which stores the information about the lost packet header.

PayLess [127] proposes an adaptive monitoring algorithm. When a PacketIN message
is received at the controller, it adds a new flow in active flow table along with its expiry
time t. If the flow expires in time t, then the controller gets the statistics of the flow in
FlowRemoved message. Otherwise, when the time-out event occurs, the controller sends
the flow statistics request message to the switches for that flow. If the difference between
the previous byte count and the current byte count is not above the threshold, then the
time out is multiplied by a small constant. If the difference is above the threshold, then
the time out is divided by a small constant. FlowSense [57] measures the link utiliza-
tion in the network with zero measurement cost. It uses control messages like PaketIN
and FlowRemoved to estimate the network metrics. But the performance metrics estima-
tions are far from the actual values as large flows generate sparse FlowRemoved packets.
FlowSense works well only when there are large number of small duration flows. Open-
Sample [128] is a sampling-based measurement method. It uses one out of N packets for
sampling. The network performance metrics are estimated by the sampled packets. This
works well in case of elephant flows only. In [129], the authors proposed a solution to
create a snapshot of the network at a given time in the history. To create a snapshot in the
history, they logged the OpenFlow messages between the SDN controller and switches.
Their main goal is to identify the root cause of a problem using history. Whereas, our
method provides a consistent snapshot of the current state of the network that would
help to take decisions in both present and future.

All the solutions discussed above use different strategies to collect statistics and use
the collected statistics to compute network throughput, link utilization, packet loss, and
blackholes in the network. Capturing and monitoring the global network state is impor-
tant for efficient routing, performance monitoring, Quality of Service (QoS) assurance etc.

The goal of the solutions is to analyse the performance of the network. They does not
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guarantee consistent statistics collection.

In-band Network Telemetry (INT) [130] can be used to collect per flow or per path

statistics. Though it is possible to record consistent statistics for a given flow but it is

not trivial to collect globally consistent statistics for the entire network. SpeedLight [38]

collects per-port statistics. However, it does not guarantee consistent statistics collection

in every run of the proposed protocol. This scenario occurs when the channel state is

considered and difference between the snapshot ID and ID of the upstream neighbor/s

is more than 1. If any inconsistency is detected in the collected statistics, the controller

has to run the protocol again. Thus SpeedLight is not time-efficient. In addition both INT

[130] and SpeedLight [38] require a programmable data plane. In this chapter, we propose

an algorithm to collect the consistent statistics in OpenFlow based SDN network.
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2.3 OpenSnap

2.3.1 System Model

We consider a SDN network with OpenFlow 1.3 compatible switches containing multiple
ports each connected to a switch or a host where each port supports multiple queues [131].
Figure 2.2 (a) depicts the internals of a switch. A switch consists of multiple flow tables
and each flow table consists of multiple flow entries with their counters. Each switch
contains multiple ports each connected to a switch or a host and each egress port supports
multiple queues [131]. Figure 2.2 (b) shows two switches S; and S; connected to each
other through a data channel C;;. Flow entries at each switch are defined using input port,
source host address, and destination host address. It is assumed that all packets of a given
flow go through the same path. The network supports different forwarding classes i.e.,
flows are assigned to different queues based on their priority or QoS requirements (refer
Figure 2.2). The flow to queue mapping is dynamically done by the SDN controller. Now
depending on the queue scheduler the order in which packets are transmitted through
egress port can be different from the order in which they are received at the ingress port.
This introduces non-FIFO (First-In-First-Out) order to the transmission of the packets with
respect to the order in which they are received at the switch.

The underlying switches are connected through links/channels. The forwarding of
packets from one end of a link to another end can happen in FIFO or Non-FIFO order. In
OpenFlow networks with FIFO channels, the outgoing packets for transmission are scheduled
based on order of their arrival at the switch. Whereas, in OpenFlow networks with Non-
FIFO channels the outgoing packets for transmission could be scheduled irrespective of
the order of their arrival. OpenFlow network with FIFO channels has only a single queue
at every output port of the underlying network switches whereas in OpenFlow network
with Non-FIFO channels, the switches can have multiple queues configured at the output
ports and order of packet transmission depends on the queuing scheduler.

Communication between SDN controller and the underlying switches can happen
in two ways: out-of-band and in-band. In an out-of-band controller configuration, the
switches are directly connected to the SDN controller through dedicated links. Whereas,

in an in-band controller configuration the controller is not connected to each switch
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through a dedicated link. The controller is just like any other host in the network. There
are some advantages of out-of-band configuration like, the communication is more se-
cure, low communication delay between the switches and SDN controller [132]. However,
there are some disadvantages also: (i) costs involved in laying dedicated links are huge
(ii) scaling can be an issue when new switches are added. Due to these limitations, an
in-band controller is preferred. We are considering an in-band controller configuration.
Globally consistent statistics is a set of statistics collected from all the switches for a
given flow such that every packet that is recorded as sent at a switch must have been
recorded as either received at the next switch or present in the channel ! or in the queue
or is dropped. In OpenFlow packet processing sequence, the packet counter of a flow
entry is updated as soon as the packet matches the flow entry. Once the packet exits the
processing pipeline, the packet is queued into its respective queue. If the queue does not
have enough space, then the packet may be dropped. Similarly, the next switch maintains
packet counters for each flow entry. Consider a network with N switches and X number
of flows. Also consider I number of queues are configured in every switch. Let S be the
set of switches in the network, S = {S51,S,,S3,...,Sn}, and F be the set of flows in the
network, F = {fi, 2, f3, ..., fx}. Given a flow fi, 1 <k <X, from switch S; to switch §j, 1
<1i,j <Nandi # j, the packet counters for flow f; are labelled as sent(f¥) and recv(f]k)

on switch S; and §; respectively. The relationship between them is defined as,

sent(fF) = recv(f]k) + Q{-(q + Cf-‘]- + drop(fF) (2.1)

where Cf-‘]- is the number of packets of k" flow present in the channel connecting switch
S; and switch §;, Q{-‘q is the number of packets of k" flow queued in ¢, 1 < q <1,

queue of switch S; for transmission and drop(fF) is the number of packets dropped before

k

queueing. Since Cj;,

Qf-‘q, and drop( flk) are always > 0, Equation 2.1 can be written as,

sent(fF) > recv(f]k) (2.2)

1We use channel and link interchangeably in this thesis.
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2.3.2 Algorithm

We assume a multi-VLAN enterprise network which uses Spanning Tree Protocol (STP)
(802.1d) or Rapid STP (RSTP)(802.1w) [133]. Let there be N switches in the network
labelled as S1, Sy, ..., Sy. Assuming that the i" switch has k; number of interfaces, we label
these interfaces as I},Il-z,..., If‘i. The switches in the underlying network are connected
through bidirectional links and the traffic is going in both directions. Let SF; be the set
of flows going through switch S;. For every I" flow, f!, on switch S;, we define IN(f})
and OUT(f!), the ingress interface for flow f! and egress interface for flow f! respectively.
The number of packets sent and received from/at switch S; for flow f! are recorded as
sent(f!) and reco(f!) respectively. A summary of the symbols used is provided in Table

2.1.

Table 2.1: List of symbols used in consistency statistics collection

Symbol  Meaning

S; i" switch in the network
ki Number of interfaces in switch S;
1 j" interface of switch S;

SF; Set of flows going through switch S;
! I™" flow going through i switch, where 1 < < |SF]
IN(f!)  Ingress interface for flow f! at switch S;

ij Number of packets of " flow present in the channel con-
necting switch S; and switch §;
qu Number of packets of I flow queued in g queue of

switch S; for transmission
OUT(f!) Egress interface for flow f! at switch S;
sent(f!)  Number of packets sent for flow f! by switch ;
reco(f!)  Number of packets received for flow f/ by switch S;
drop(f¥)  Number of packets of [ flow dropped before queuing
Mi, My  Marker 1, Marker 2 respectively

OpenSnap makes use of two special packets called marker packets denoted by M; and
M,. Marker M is used to record the statistics of the flows that reached the switch and
marker Mj is used to record the statistics of the flows in the channel. To start the network
statistics collection, the controller sends marker M; to one of the switches. Each switch
runs OpenSnap Algorithm 2.1. When a switch S; receives M; on its interface I{ , it records
sent statistics for all the flows which are forwarded through it (line 2-4 Algorithm 2.1).
It also records the number of received packets for all the flows which have their input

interface same as the interface at which the marker M; has arrived (line 5-7 of Algorithm
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Algorithm 2.1: OpenSnap Algorithm for Switch S;

1 Input: Marker Packet M received on Interface I{
2 if M is M; then

3 foreach flow f! € SF; do

4 Record sent(f});

if IN(f!) = I/ then

5
6 Record reco(f!);

7 end

8 end

9 for k < 1tok; do

10 if k # j then

11 Send M; through interface If‘;
12 end

13 end

14 Send M; through interface I{ ;
15 else if M is M, then
16 foreach flow f! € SF; do

17 if IN(f!) = I then
18 Record reco(f!);
19 end

20 end

21 end

2.1). It then forwards marker M; to all other interfaces (line 9-13 of Algorithm 2.1) except
on the interface on which the marker Mj is received and sends M, back through I{ (line
14 of Algorithm 2.1). Once the switch forwards M; on an interface, we expect M, to be
received on that interface, provided the link through this interface is connected to another
switch running OpenSnap algorithm. Once Mj is received on an interface I{/, the switch
records received statistics of all the flows which have input interface same as the interface
at which the marker M, has arrived (line 15-20 of Algorithm 2.1). Since M is never sent
back on the port on which it is received and the network has no loops, the algorithm

always terminates and M arrives on each switch exactly once.

2.3.3 Correctness

To prove the correctness of OpenSnap algorithm in terms of collecting global consistent
statistics, we consider two types of network, (i) OpenFlow based network with FIFO

channels. (ii) OpenFlow based network with Non-FIFO channels.
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2.3.3.1 OpenFlow Based Network With FIFO channels

The default queueing mechanism on nearly all the interfaces of the network nodes is FIFO
[134]. In a given queue the packet transmission is done in FIFO order. Thus, to simulate a
network with FIFO channels, we consider only a single queue on every interface of switch.

We consider an arbitrary flow f, in our network. Let our flow correspond to a path P,
which is an ordered set of switches, {S;,S;.1,...,S Ns}, where 1 < i < N;. Thus, our flow
will be f. Switch S; and Sy, are the source and destination switches respectively for the
flow f. Since a path is an ordered set of switches, the packets of the given flow always

go from S; to S;y1. The consistency condition in Equation 2.2 requires that,

reco(fy,) < sent(ff) (2.3)
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Figure 2.3: Illustrating that OpenSnap gives consistent statistics in all 3 cases ((a) M; incident
on source switch S1 (b) M; incident on destination switch S3 (c) Mj incident on intermediate
switch S;) when the flow is going from switch S; to switch Ss.

We argued earlier that M; will be received on each switch exactly once. Among the
switches which are part of path P, let M; reach to a switch Si first. Depending on the

value of k we can have three cases,
(a) k=1, i.e., source switch.
(b) k = Ng, i.e., destination switch.

(¢) 1 <k < N, i.e., intermediate switch.
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We first demonstrate the three possible cases, that are discussed above, with the help
of an example. Consider three switches, S;, S, and Sz connected in a linear fashion
with FIFO channels as shown in the Figure 2.3. Also assume that the links between the
switches have a delay of 1 sec and a flow f, is going from switch S; to switch S3 with a
constant packet rate of 100 packets/sec. The marker incident on switches S;, Sz, and S,
for the cases (a),(b), and (c) respectively. We observe the state of the network after every
second. As evident from the Figure 2.3(a), (b), and (c) we get consistent results which
satisfy Equation 2.2 for all three cases. We now prove that the consistency condition is
maintained in each of the three cases.

In case (a), marker M; incidents on the source switch S; of flow f,, marker traces the
same path as flow. Thus, except for the source switch, for all other switches, marker M;
incidents on same interface as flow. Thus, received statistics, recv(f;), and sent statistics,
sent( fl-" ), are identical for each switch S; such that 1 < i < N;. Further, since packets are
sent on the link in the order they are received, a packet counted in sent(f) is sent before
marker M; and is counted in recv(f7 ;). Thus, sent(f) = reco(f},;) for each 1 <i < N;.

This implies that,

reco(fy,) = sent(f7) (24)

Equation 2.4, satisfies Equation 2.2.

In case (b), marker M; incidents on the destination switch of flow f,. Marker M;
moves opposite to the packets in the flow. Thus, marker M; moves from switch S;;; to
switch S; where 1 < i < N;. The sent statistics for flow f, sent(f), is recorded when
marker Mj is received on switch S;. Subsequently, switch S; sends marker M, to switch
Sii 1 and marker M; to switch S; 1. When switch S;.; receives marker My, it records
received statistics as reco(f}, ;). In order delivery ensures that,

reco(fiy,) = sent(fj'), 1 <i < N;s (2.5)

When switch S; 1 receives marker Mj, it records sent statistics as sent( i 1) and send

marker M, to switch S;. When marker M, is received on the interface same as input
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interface of flow, switch S; records recv(f;"). Since switch S; receives marker M; before

marker M», we have,

sent(fi') <recv(f]), 1<i< Ns (2.6)

Using equations 2.5 and 2.6 we can say that,

reco(fiy,) < recu(ff'), 1<i<N; (2.7)

Applying equation 2.7 inductively, we get,

reco(fy,) < reco(f;) (2.8)

Using equation 2.5 with i = 1 on equation 2.8 gives,

reco(fy,) < sent(f7) (2.9)

Thus case (b) satisfies equation 2.2.
In case (c), the marker M; is received on an intermediate switch S;. For switch S,

sent(f7) is recorded before recv(f;). Thus

sent(fi) < reco(fy) (2.10)

The path from switch S; to switch Sy is case (b) with switch S; as source and switch S
as destination. The path from switch Sy to switch Sy, is case (a) with switch Sy as source

and switch Sy, as destination. Thus Equations 2.9 and 2.4 give us,

reco(fi) < sent(fy) (2.11)
reco(fy,) = sent(f}) (2.12)

Combining Equations 2.10, 2.11 and 2.12 we get:

reco(fy,) < sent(fi) (2.13)
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which satisfies Equation 2.2. Thus, we have proved that OpenSnap gives consistent statis-

tics when the marker is send to any switch in the network.

2.3.3.2 OpenFlow Based Network With Non-FIFO channels

In a Non-FIFO network, packets can be processed irrespective of their arrival order. In a
Non-FIFO channel packet forwarding is generally implemented using a queueing mech-
anism [135] e.g., WFQ, PQ, custom queueing, linux-htb queueing discipline [136] etc. A
Non-FIFO channel can be seen as a set of FIFO channels (which forward the packets in the
order of their arrival), where each FIFO channel connects the queue g; on source switch
to the queue g; on destination switch. To collect consistent statistics in a Non-FIFO net-
work, we can run OpenSnap algorithm for each queue separately. The assumption is that
every switch has the same number of queues and a flow is forwarded through the same
queue across all the switches. For instance, for a given flow, each packet will be assigned
the same priority and hence be assigned to the same queue in every switch if priority
queueing is used. As already proved in the previous section, OpenSnap gives consistent
statistics for a network with FIFO channels, and so the statistics obtained for all the flows

going through the same queue in a network with Non-FIFO channels will be consistent.

24 Implementation Details

To implement OpenSnap, we have used POX [29] controller and Open vSwitch [54]. Open
vSwitch is an open-source implementation of a distributed virtual multilayer switch which
supports OpenFlow protocol. The marker packets used in our algorithm are recognized
based on their destination MAC address. Marker M; has destination MAC address as
"01:02:03:04:05:06" while marker M, has destination MAC address as "01:02:03:04:05:07".
We have ensured that our test network does not contain any devices with these special
MAC addresses.

To implement Algorithm 2.1, we need to add flow entries on the switch corresponding
to marker M; and marker M. Each OpenFlow enabled switch has a flow table which
has zero or more actions corresponding to each flow entry [18]. These actions dictate

how to handle a packet matched with the given flow entry. Unfortunately, OpenFlow
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Table 2.2: Flow entries corresponding to Marker M; and Marker M,

Match Action List

dl_dst=01:02:03:04:05:06 | send_stats, FLOOD,
mod_dl_dst:01:02:03:04:05:07, IN_PORT
dl_dst=01:02:03:04:05:07 | send_stats

specifications do not have any action to send flow statistics. The OpenFlow specifications
have messages for individual flow statistics and aggregate flow statistics. The controller
sends flow statistics request to the switches and the switches sends the statistics reply back
to the controller. This reply contains the statistics depending on the parameters provided
in the request message. Using these messages as the basis, we have implemented a new
action in Open vSwitch which sends the flow statistics to the controller. We call this action
send_stats. "send_stats" checks if the marker received is M or M. For My, the switch sends
statistics for all the flow entries. For M>, the switch sends statistics for the flows which
have in_port value in the match field same as that of the ingress port of M.

The flow entries corresponding to the markers used in OpenSnap are given in Table
2.2. The first entry corresponds to marker M; and does the following in order; (1) Execute
send_stats (2) Flood marker M; to all ports except the ingress port (3) convert marker
M; to marker M, (4) Send marker M, through the ingress port. The second flow entry

corresponds to marker My, it executes send_stats on receipt of marker My.

b, [l o [

=D

>
e
"

Controller

Figure 2.4: Topology for consistency evaluation.
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2.5 Experimental Setup And Evaluation

We have used Mininet [137] to perform the experiments. Mininet by default has an out-
of-band controller configuration, which means that every switch has a dedicated physical
link with the controller. As this is not a practical behaviour in real networks, we expect
an in-band controller to be running on one of the hosts. To handle this, we implemented
an in-band controller in Mininet [137].

For consistency evaluation experiment, we have used the topology given in Figure 2.4.
All links have a 100 Mbps bandwidth. We have three 3 UDP flows, fi: (ha,hs), f2: (ha,he),
and f3: (hs,h3), in our network corresponding to the source-destination pair (hy,hs),(hy,he),
and (hs,h3) respectively. We use D-ITG [138] to generate the UDP traffic at the rate of 8
Mbps. We are generating 2000 packets every second each of size 512 bytes. The POX
controller is running on host /1 and it sends marker M; to switch S; to initiate statistics
collection. Flow fi: (hy,hs) and fo: (hg, he) trace the same path as marker M;, whereas,
flow f3: (hs,h3) moves opposite to the marker M;. For a given flow, we calculate the
difference between the packets sent from the source switch and the packets received at
the destination switch using the collected statistics. We call this difference “A" and use this
as our consistency measure. As per Equation 2.2 negative value of A implies inconsistent

statistics.

2.5.1 Network With FIFO Channels

We run OpenSnap, OpenNetMon [1], and Simple Polling with the same network configu-
ration and traffic generation as discussed above in Section 2.5. Figure 2.5 (a) demonstrates
the consistency results of OpenSnap and OpenNetMon [1] for each flow (i.e., fi: (h,h5),
f2: (ha,he), and f3: (hs,h3)). Figure 2.5 (b) demonstrates the consistency results of Open-
Snap and Simple Polling for each flow. Clearly, both Simple Polling and OpenNetMon [1]
give inconsistent statistics for flows f1, and f,. Whereas, they provide consistent statistics
for flow f3 because the destination host /3 is connected to switch Sz and the controller is
running on host /11 which is connected to switch S;. So, when the controller initiated the
statistics collection by sending statistics request message to the switches, for flow f3, the

destination switch S5 sends the statistics before the source switch S¢. This is because for
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Figure 2.5: Comparing consistency of statistics (a) OpenSnap and OpenNetMon in FIFO net-
work (b) OpenSnap and Simple Polling in FIFO network (c) OpenSnap and Simple Polling in
Non-FIFO network. A represents the difference between packets sent from the source switch
and packets received at the destination switch. The shaded region represents area with incon-
sistent statistics

flow f3 the source switch is located far from the controller as compared to the destination
switch. So, by the time statistics request reaches source switch S of flow f3, the flow
match counter would have increased. Thus, both Simple Polling and OpenNetMon [1]
provide consistent statistics for flow f3. While the statistics collected by OpenSnap are
consistent for all flows.

We also compare all these solutions in terms of the percentage of consistency achieved.
We define percentage of consistency achieved as the percentage of rounds providing con-
sistent statistics out of the total number of rounds of statistics collection. The percentage

of consistency is measured as follows,

number of rounds providing consistent statistics

100 2.14
total number of rounds of statistics collection i @19

% consistency =

Figure 2.6 (a) shows the percentage of consistency achieved by each mechanism in
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a network with FIFO channels. As evident from Figure 2.6 (a), OpenSnap gives 100%
consistent statistics, whereas, OpenNetMon [1] and Simple Polling mechanisms give only

25.25% and 35.89% consistent statistics respectively.
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Figure 2.6: (a) Percentage of consistency achieved by OpenSnap, OpenNetMon and Simple
Polling in FIFO network. (b) Percentage of consistency achieved by OpenSnap and Simple
Polling in Non-FIFO network.

2.5.2 Network With Non-FIFO Channels

Open vSwitch is a software switch, which uses a Linux kernel module for forwarding. To
enable Non-FIFO packet processing behaviour, we have used linux-htb queueing discipline
[136]. Every Open vSwitch has default queue called g9. We have configured two more
queues, q; and g, on each interface of the switches given in Figure 2.4. We have assigned
50 Mbps and 40 Mbps as minimum rate bandwidth for queue g1 and queue g, respectively
and the remaining 10 Mbps is given to queue gp.

Flows f, and f3 are forwarded through q; and flow f; is forwarded through g,. We
run OpenSnap algorithm for both queues g1 and g,. The controller initiates the OpenSnap
algorithm by sending the marker M; to switch S; in both cases. Figure 2.5 (c) shows the
consistency results of OpenSnap and Simple Polling for each flow. It is evident from the
graph that OpenSnap gives consistent statistics for each flow. Whereas, Simple Polling
provides consistent statistics only for flow f3, because of the same reason explained above
in Section 2.5.1. For flow f3 the source switch is located far from the controller as com-
pared to the destination switch. So, by the time statistics request reaches source switch S¢
of flow f3, the flow match counter would have increased. Thus, Simple Polling provides
consistent statistics only for flow f3. As evident from Figure 2.6 (b), in a network with
Non-FIFO channels, OpenSnap gives 100% consistent statistics whereas Simple Polling

gives only 47.30% consistent statistics.
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2.6 Summary

In this chapter, we discussed how the polling based network statistics collection mech-
anisms currently used in SDN fail to provide globally consistent statistics of a network
and consequently degrade the effectiveness of various QoS provisioning applied to the
network. To address this issue, we proposed OpenSnap, an algorithm to collect globally
consistent statistics in SDN. We theoretically proved the correctness of OpenSnap and ex-
perimentally compared its performance in terms of consistency with existing mechanisms.
The experimental results confirm that the statistics collected by OpenSnap are consistent
and show that the amount of discrepancy in terms of the difference between the number
of packets sent and received over various flows is always lesser than the existing mech-
anisms. In a network with Non-FIFO channels, the proposed solution requires multiple
runs of the algorithm to generate a consistent view of a network. Also, the statistics col-
lection process has to restart in case of an interruption. Thus the solution is not robust. In
the next chapter we propose an efficient and robust solution to collect consistent statistics

of a network.
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