Chapter 3

Efficient Globally Consistent
Statistics Collection for

Software-Defined Networks

3.1 Introduction

In Chapter 2, we proposed a solution that provides consistent statistics for each flow
in OpenFlow based network with FIFO channels. We extended the solution to provide
consistent statistics in OpenFlow based network with Non-FIFO channels by sending the
marker packet to one queue at a time in each round of statistics collection. However, this
extension would provide consistent statistics only when a given flow in the network goes
through the same output queue ID of all the switches in the path towards its destination,
which may not be possible in every network. Also, in a given round it provides consistent
statistics only for the flows going through the queue from which the marker packet is

sent. This causes a delay in the collection of consistent statistics of all the flows. Thus, it
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3.2 Issues with Marker-based Mechanisms

is inefficient. Also, OpenSnap is not a robust solution as it requires to restart the whole
statistics collection process in case of an interruption (we explain this in more detail in
Section 3.4.4).

In this chapter, we propose, GlobeSnap, a time-efficient, robust, and synchronous
method to collect globally consistent statistics for OpenFlow networks which works for
both FIFO and Non-FIFO channels. In one round OpenSnap can collect consistent statis-
tics for all the flows going through a queue. Thus for a network with switches that have n
queues per port it would take n rounds. Whereas GlobeSnap provides consistent statistics
for all flows in a single round irrespective of the number of queues configured on a given
switch. Thus GlobeSnap is time efficient in comparison to OpenSnap. Additionally, it
does not assume that the data packets of a given flow have to go through the same queue
ID on every switch in the path towards the destination. Moreover, GlobeSnap is a robust
solution as it does not require to restart the whole statistics collection process in case of
an interruption. It resumes the statistics collection process from where it left. GlobeSnap
also provides a near-synchronous snapshot of statistics of the switches traversed by a
given flow. The synchronicity of a snapshot is a measure of how contemporaneously
switches can record their local snapshots. A near-synchronous snapshot of a network is
one in which all switches record their local snapshots almost simultaneously. This is dif-
ficult to achieve in practice in a distributed system and if proper care is not taken packets
may be reported as received but may not be reflected as sent, thus violating consistency.
GlobeSnap, while ensuring consistency, can also provide a near-synchronous snapshot of

a flow.

3.2 Issues with Marker-based Mechanisms

In this section, we show why the marker-based consistent statistics collection method
proposed in OpenSnap [3], which sends the marker through only one queue of the switch,
fails to collect consistent global state in case of OpenFlow [18] networks with Non-FIFO
channels. In marker-based method, the controller initiates the statistics collection process
by sending a marker packet in the network. The switches send the statistics only when

they receive a marker packet [3]. Consider a network of two switches, as shown in Figure
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3.2 Issues with Marker-based Mechanisms

3.1. There are three queues configured on egress port of both the switches. Let there be
three flows fy, f1, and f, being forwarded through queues qo, 41, and g, respectively. Let
the controller send the marker packet to switch S; (1). On receiving the marker packet
switch S sends the statistics corresponding to the flows fo, f1, and f; as x, y, and z
respectively to the controller (2). Note that x, y, and z also contain the packets which are
already scheduled and waiting in their respective queues to be transmitted. This marker
packet is enqueued in one of the queues (say queue gp) behind the packets that are already
present in the queue go (3). Now suppose that the scheduler sends a few packets from
queue go of switch S1, which were already present in the queue g at the time when the
marker packet was enqueued. Let x’ be the number of such packets. Let Ay be the number
of packets arrived in queue q; after the arrival of the marker packet in queue g9. Now
suppose that the scheduler sends i’ + Ay packets on the data channel, where y’ is the
number of packets that were already present in the queue q; when the marker packet was
enqueued in queue go. Note that, the marker packet is still waiting in the queue go. This
can happen because of the Non-FIFO nature of SDN switches.
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Figure 3.1: Illustrating the limitation of OpenSnap for OpenFlow based networks with Non-
FIFO channels.

Let Az be the number of packets that arrived in queue g, after the arrival of the marker
packet in queue go. Now suppose that the scheduler sends z’ + Az packets on data channel
from queue g,, where 2’ is the number of packets that were already present in the queue ¢,
when the marker packet was enqueued in queue go. Now the scheduler sends the marker
packet on the data channel (4). Note that the marker packet will reach switch S, after all
the packets of flows fy, fi, and f, which were scheduled on the data channel before the

marker packet. When the marker packet hits the switch S, it sends the statistics for all
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3.3 GlobeSnap Protocol

three flows fo, f1, and f, as x, y + Ay, and z + Az respectively to the controller (5) and
forwards the marker packet through queue go (6). OpenSnap gives inconsistent statistics
for flows f1 and f,, as sent statistics minus received statistics is - Ay, and -Az respectively.
That is, Ay and Az packets for flows f, and f3 respectively are recorded as received at

destination switch but not recorded as sent at source switch.

3.3 GlobeSnap Protocol

3.3.1 Overview

Our idea is inspired by an algorithm by Lai-Yang [139] proposed for construction of a
global snapshot in distributed systems with Non-FIFO channels. This algorithm uses
a color scheme to overcome the drawbacks of previous approaches. Data packets and
switches are marked as red or white, depending on the following conditions. Initially,
all switches(processes) are in white state and they turn red when they receive a red data
or flow statistics request packet. The packet sent by a white(or red) switch is colored
white(or red).

Though the idea is inspired by Lai Yang [139], there are a few differences conceptually
and in implementation when applied to OpenFlow networks. (i) The original algorithm
assumes that traffic of red packets goes through all the processes in the network. This may
not be true in a network of switches. A flow colored red may not convert all the switches
in the network to red. We adapt the algorithm to take care of this. (ii) The original
algorithm is designed to collect a global snapshot for a single round. We make changes to
the algorithm to collect global snapshots in a continuous manner using multiple colors.
(iii) The original algorithm mandates keeping the history of the messages to compute the
channel state correctly. This is not required when applied to OpenFlow networks as the
statistics are maintained cumulatively in the switches. (iv) The original algorithm depends
on the process turning red atomically when the snapshot is recorded. This is non-trivial
to implement in a network of switches. We make use of flow tables in OpenFlow to
implement this requirement. (v) The original algorithm requires storage space to store
messages received after the snapshot is recorded. OpenFlow switches do not support

user-specified values in-memory or disk storage. We use a combination of flow rule
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priorities, flow rules and metadata to achieve this.

OpenFlow switches support sending flow statistics upon receiving a flow statistics
request from the controller. Our algorithm requires that switches should send the statistics
to the controller on receiving a colored packet different from its own state. But OpenFlow
(as for the current OpenFlow [18] Standard) does not have any action which sends the
flow statistics on the arrival of a particular packet. Thus, to solve this issue, we use
Experimenter action field in OpenFlow to implement a new action, send_stats. On arrival
of the first colored packet at a switch send_stats action is performed, the switch then sends
statistics of all of its flows to the controller. The statistics collection process is over when
the SDN controller receives the statistics from all the switches in the network. This is the
case when the controller is collecting statistics (recording snapshot) for all the flows in
the network. Assuming the network has X number of flows. Let F be the set of flows,
F = {f1, f2, f3,.., fx}. In case the controller wants to poll a subset, F C F, of the flows
then it has to wait for the statistics replies only from the switches processing the flows
in the subset [F. In order to enable statistics collection in multiple rounds, the controller
must use a different color for special control packet differing from the current state of the
switches. This is to differentiate between the packets in-transit and the special control
packet for the next round. To satisfy this requirement the controller needs at least two
colors for special control packet. In the proposed method the controller uses red and
green colors for special control packets alternatively to minimize the cool-down period
between subsequent rounds. Detailed explanation is provided in Section 3.3.4.

We divide the algorithm into two parts, one executing at the data plane or switch
level and the other executing at the control plane or SDN controller level. Data plane is
responsible for taking a copy of flow statistics, sending the statistics to SDN controller,
and changing the state of the switch. At a given time, a switch can be in one of the
three possible states: WHITE, RED, or GREEN. Initially, at the start, all the switches are
considered to be in WHITE state. Any packet going out of the processing pipeline in the
switch is colored with the same color as that of the switch state. Incoming packets on the
ingress ports can be of one of the three colors: white, red, or green. Initially, all packets
are considered to be of white color. When a switch receives a colored packet (special

color packet or data packet) different from its state, it sends the statistics of all the flows
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3.3 GlobeSnap Protocol

to the controller. To start the network-wide statistics collection, the SDN controller sends
a special control packet to one of the switches, with a color different from the color of
the switches in the network. This triggers state changes in the rest of the switches as
the packets move around in the network. Sometimes, packets with the changed color
may not reach certain portions of the network. SDN controller with its global knowledge
of the flows and their paths in the network, can identify the disconnected portions of
the networks, and send a special control packet to one of the switches in each of the

disconnected network portions.
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Figure 3.2: An example to illustrate the working of GlobeSnap on a link between two switches.

3.3.2 An Example to Illustrate GlobeSnap Method

Consider the same example which we used in Section 3.2 to demonstrate the limitation of
marker-based solution. Consider the same set up with two switches as shown in Figure
3.2 (a). There are three queues configured on both the switches. Let there be three flows

fo, f1, and f, being forwarded through queue gy, 1, and g, respectively. Let the controller
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send a special color packet (let’s say red packet) to switch S;, initially in WHITE state,
to initiate the statistics collection process (1). When the red packet hits the switch S, it
sends the statistics of all three flows fy, fi, and f, as x1, y1, and z; respectively to the
controller (2). Once the switch S; sends its statistics to the controller, it changes its state
from WHITE to RED (3). Now, traffic going out of switch S; is colored red (4). Now
suppose the scheduler sends x/1 packets on data channel from queue go9, where x/1 is the
number of packets of flow fj that arrived in the queue gy before sending the statistics of
switch S; to the controller. Let Ay; and Az; be the number of packets of the flows f; and
f2 respectively that arrived in queues g1 and g, respectively after switch S; has sent its
statistics to the controller. Thus, these Ay; and Az; packets are colored red. Now suppose
the scheduler sends y/l + Ay; packets from queue g; on data channel, where y/l is the
number of packets of flow f; that arrived in queue g; before switch Sy sent its statistics to
the controller. Now the scheduler sends z;] + Az; packets from queue g, on data channel,
where z] is the number of packets of flow f; that arrived in the queue g, before switch
S1 sent its statistics to the controller (5). When the first red packet of flow f; (i.e., the
tirst packet of Ay, ) hits switch S, it sends the statistics for all three flows fy, f1, and f>
as x1, y1, and z; — z/1 respectively to the controller (6). After sending the statistics to the
controller, the switch changes its state from WHITE to RED (7). Sent statistics at switch Sy
for flows fp and f; is equal to received statistics of flows fy and f; at switch So. Whereas,
for flow f, the sent statistics is greater than the received statistics (i.e., z; > z1 — z/l). Thus,
it satisfies the consistency condition given in Equation 2.2 and gives consistent statistics
for all three flows.

One round of statistics collection is complete when the controller gets the statistics
from all the switches in the network. In the second round the controller sends a special
color packet of color different from the first round (the reason for this is explained later in
Section 3.3.4). Let's assume that in second round the controller send a special color packet
of green color to switch S to initiate the statistics collection process (1) (as shown in Fig-
ure 3.2 (b)). When the green packet hits the switch Sy, it sends the statistics of all three
flows fo, f1, and f, as x2, y2, and z, respectively to the controller (2). OpenFlow switches
maintain cumulative counters for each flow entry. Thus, switches send cumulative coun-

ters as statistics reply. x; is the total number packets matched to flow entry corresponding
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to flow fo when the green packet hits the switch S;. That is, x; includes x; (the number
packets match to flow entry corresponding to flow fj in first round). Similarly, v, includes
y1 and Ayq, and z; includes z; and Az;.

Once the switch S; sends its statistics to the controller, it changes its state from RED
to GREEN (3). Now, traffic going out of switch S; is colored green (4). Now suppose
the scheduler sends x; packets on data channel from queue gy, where x; is the number
of packets of flow fy that arrived in queue g before switch S; sent its statistics to the
controller. Let Ay, and Az, be the number of packets of flows f; and f, respectively
that arrived in queues g1 and g, respectively after switch S; has sent its statistics to the
controller. Thus, these Ay, and Az, packets are colored green. Now suppose the scheduler
sends y; + Ay, packets from queue g; on data channel, where y; is the number of packets
of flow f; that arrived in the queue g; before switch Sy sent its statistics to the controller.
Now suppose the scheduler sends z/2 + Az; packets from queue g, on data channel where
z, is the number of packets of flow f, that arrived in the queue g, before switch S; sent its
statistics to the controller (5). When the first green packet of flow f; (i.e., the first packet
of Ay, ) hits the switch Sy, it sends the statistics for all three flows fy, f1, and f> as x2, y2,
and zp — 2/2 respectively to the controller (6). After sending the statistics to the controller,
the switch changes its state from RED to GREEN (7). Sent statistics at switch Sy for flows
foand fi is equal to received statistics of flows fy and f; at switch S,. Whereas, for flow f>
the sent statistics is greater than the received statistics (i.e., zo > zp — z;). Thus, it satisfies
the consistency condition given in Equation 2.2 and gives consistent statistics for all three
flows. In every alternate round, the controller sends a special control packet of the same

color to initiate the statistics collection process.

3.3.3 Algorithm at the Controller

We represent the network by a bi-directed graph G=(V,E), where V=s1, s, 53, ..., s is the set
of switches in the network and E is the set of bi-directed edges representing the physical
links between two switches. Let F be the current set of flows in the network. We create a
directed graph FlowG =(VE) corresponding to the set F such that E' is the set of directed

physical links between two switches which carry traffic of at least one flow in the set F.
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Initially all the switches are in WHITE state and the traffic in the network is also white.
In every round of statistics collection, the controller sends the FlowMod command to all
the switches to update the current round color (line 3-5 of Algorithm 3.1). The controller
initiates the statistics collection process by sending a special control packet which is like
any other data packet but colored! with the same color as the round color. Initially the

round color is initialized to red color (line 1 of Algorithm 3.1).

Algorithm 3.1: Controller Side

// RoundColor holds the Color of the current run
round_color < RED;

foreach round do

// N is the total number of switches in the network
3 foreach i in {1,2,...,. N} do

// sends command to a switch to update the current round

N =

color

COMMAND_SET_ROUND_COLOR(S;, round_color);
end
RemainingSet < V(FlowG) ;
while RemainingSet # ¢ do
// Returns a switch with maximum flows fanning out
8 S <~ MAX_OUT_DEGREE_VERTEX(remainingSet);
// Breadth-First-Search routine returns set of all

NS Ul e

vertices reachable from node s
9 ReachableSet < V(BFS(FlowG,s));

// sends a special color packet to the root switch of a

subtree
10 SEND_CONTROL_PACKET(S, round_color);
11 RemainingSet <— RemainingSet — ReachableSet;

12 end

// Round terminates when it receives stats from all
switches

13 foreach i in {1,2,...,. N} do

// receives flow statistics from a switch

14 All_stats[i] = RECEIVE_FLOW_STATS_SWITCH(S;) ;
15 end

16 if round_color == RED then

17 | round_color < GREEN;

18 else

19 | round_color < RED ;

20 end

21 end

The objective of sending a special control packet to a particular switch is that it should

ITo color a packet, ECN field of IP header is used. ECN field has 2 bits, therefore there can be 4 ways of
using it.
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eventually spread to all switches. This may not happen always. There can be two or
more groups of switches where the flow/s in one group does not reach another group.
Therefore, we choose the switch with maximum out-degree in the graph FlowG (line 8
of Algorithm 3.1) and find reachable nodes from it using Breadth First Search (BFS) (line
9 of Algorithm 3.1). This gives us a disconnected tree. We send a special control packet
to the root switch of this tree (line 10 of Algorithm 3.1). Then we remove this tree from
the FlowG (line 11 of Algorithm 3.1) and repeat this process on the remaining graph until
all the switches in the network are covered. The controller waits for statistics from all
N switches (line 13-15 of Algorithm 3.1). Once the controller receives the statistics from
all the switches, it concludes the one round of statistics collection and updates the round

color for next run (line 16-20 of Algorithm 3.1).

3.3.4 Need of Two Colors for Switch State

One round of statistics collection is complete when the controller receives the statistics
from all the switches in the network (line 13-15 of Algorithm 3.1) and thus network be-
comes RED. For the next round, the state of all the switches needs to be reset back to
WHITE. After each round of statistics collection, the controller sends the command to the
switches to reset their state. Only after successful reset of the state of all the switches, the
network comes back again in WHITE state and becomes ready for the next round. But the
above approach has a limitation. By the time a round of statistics collection completes the
whole network has turned RED and all the switches cannot be reset back to WHITE state
simultaneously. In a network with in-band controller configuration, some switches will be
near to the controller and some switches will be some hops away. The switches nearer to
the controller are reset faster compared to those which are far from the controller. Thus,
the switches which are far from the controller and have not been turned back WHITE will
keep on generating red packets. These stray red packets can hit the switches which the
controller has reset for the next round. So, the controller cannot start a new round until
there is a red packet in the network. This increases the delay in statistics collection for the
next round. Thus, to resolve this limitation, we propose use of two different color pack-

ets. Now for the second round of statistics collection, the controller sets the current round
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color different from the first round, say green (line 17 of Algorithm 3.1). The switches will
consider all the packets of color different from current round color as normal packets and
send the statistics for the current round only on reception of a green packet. Thus, the
controller does not need to wait for all the switches to reset back to WHITE state before
starting the next round statistics collection. After the end of second round of statistics
collection the whole network turns GREEN. So, for the third round the controller can use
a special control packet of RED color and so on. Thus, the proposed method requires at

least two special control packets of different colors.

3.3.5 Algorithm at Switch

The switch has multiple forwarding tables. Each table has multiple flow entries. Counters
for each flow entry are maintained in the switch and these counters get updated when a
packet matches the flow entry. The switch sends the value of these counters as statistics
reply to the controller on arrival of a colored packet.

The execution of algorithm on a switch in the data plane depends on three things:
CurrentRoundColor, SwitchState, and input packet. CurrentRoundColor is used for start-
ing a new round and SwitchState is used for making the switch remember whether it has
sent the statistics for the current round or not. CurrentRoundColor is updated by the con-
troller to start a new round and SwitchState is set by the switch itself. It is not straightfor-
ward to implement this in an OpenFlow enabled switches. We provide more details about
this in Section 3.7. The input to Algorithm 3.2 SwitchSidePacketProcessingProcedure() is
a packet. The packet can be a data packet (default color is white) or a special control
packet (red or green) from SDN controller to initiate the statistics collection process or a
command sent by SDN controller to update the current round color. When the switch
receives a command to update the round color it updates the current round color (line
3-4 of Algorithm 3.2). As discussed above, initially all the switches are in WHITE state
and the traffic in the network is also white. The controller initiates the statistics collec-
tion process by sending a red or green special control packet. We call the first round
of statistics collection as bootstrapping round. Packet processing is slightly different for

bootstrapping round when compared to subsequent rounds.
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Algorithm 3.2: SwitchSidePacketProcessingProcedure(Packet P)

CurrentRoundColor < none;

SwitchState <+ WHITE;

if P Type == CoMMANDTOUPDATECOLOR then

// Command from SDN Controller to setup new round
4 CurrentRoundColor < P.RoundColor;

5 else

// Normal data packet

6 if P.Color == CurrentRoundColor then

WON =

// Packets which have seen the current round or Special
Control Packet
7 if SwitchState == CurrentRoundColor then
// Flow Statistics already sent to the controller
8 Forward Packet P;
9 else
// Statistics not sent
10 Send statistics of all the flows to the controller;
11 SwitchState < CurrentRoundColor;
12 Forward Packet P;
13 end
14 else
// Packets which have not seen the current round
15 if SwitchState = CurrentRoundColor then
16 P.Color < CurrentRoundColor;
17 Forward Packet P;
18 else
19 | Forward Packet P;
20 end
21 end
22 end

During bootstrapping round, packet processing at a given switch w.r.t the input packet’s

color and current state of the switch is as follows,

1. Input: red Packet, Switch State: WHITE:- When a WHITE switch receives a red packet,
the switch sends the statistics to the controller, updates its state to RED, and for-

wards the packet (line 9-13 of Algorithm 3.2).

2. Input: red Packet, Switch State: RED:- When a RED switch receives a red packet, it
will not send the statistics to the controller and simply forwards the received packet

(line 7-8 of Algorithm 3.2).

3. Input: white packet, Switch State: RED:- When a RED switch receives a white packet,
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it will not send the statistics to the controller. However, it will color every incoming

white packet as red and forwards it (line 15-17 of Algorithm 3.2).

In subsequent rounds, packet processing at a given switch w.r.t the input packet’s

color and current state of the switch is as follows,

1. Input: Packet of CurrentRoundColor, Switch State: {WHITE, GREEN, RED/ - {Curren-
tRoundColor}:- When the switch state is not CurrentRoundColor and it receives a
packet of same color as CurrentRoundColor, the switch sends the statistics to the

controller, updates its state to CurrentRoundColor, and forwards the packet (line

9-13 of Algorithm 3.2).

2. Input: Packet of CurrentRoundColor, Switch State: CurrentRoundColor:- Once the
switch is in state same as CurrentRoundColor, the switch will not send the statistics

to the controller and simply forwards the received packet (line 7-8 of Algorithm 3.2).

3. Input: Packet of color = {white, green,red} — {CurrentRoundColor}, Switch State: Cur-
rentRoundColors:- Once the switch is in state same as CurrentRoundColor, the switch
will not send the statistics to the controller, it colors every incoming packet with

CurrentRoundColor and forwards the packet (line 15-17 of Algorithm 3.2).

3.4 Characteristics of GlobeSnap

Consider two adjacent switches S; and §; in a connected subgraph of a network. There
are many flows going through these two switches such as forward flows F, reverse flows
R, and orthogonal flows O. A forward flow goes from switch S; to switch S;. A reverse
flow goes from switch §; to switch S;. An orthogonal flow goes either through switch S;

or switch S i but not both.

3.4.1 Consistent Snapshots

A forward flow f¥ when it goes through several switches on its path, at any given instant,
for switches S; and Sj, sent(f¥) > reco( f]k ). This is due to the fact that any packet received

at switch Sj, should have been sent from switch S;. This is known as causal consistency.
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GlobeSnap ensures consistency according to this relation. Let us now understand how it
works.

Casel: Forward Flow Carrying red Packets: In GlobeSnap, once a red packet is received
at switch S;, statistics of all the flows at switch S; are sent to the controller and any further
packet is colored as red. As soon as any of these red packets reach switch §;, statistics of
all the flows of switch S; are sent to the controller. This avoids the possibility of a packet
not recorded in the statistics of switch S; reaching switch S; before switch S; sends its
statistics. This is formally proven in Section 3.6.

When a forward flow carries red packets, statistics recorded at switch S; and switch

k k

S; also contain the statistics of reverse flows. For a reverse flow r*, sent(r;-‘) > reco(r;) is
true. This is because, by the time the first red packet reaches to switch §;, zero or more
packets would have been transmitted from switch S j to switch S; for flow r*. Therefore,
the sent statistics of flow r* at switch S j will be more than or equal to received statistics of
flow ¥ at switch S;. Consider the following example, let at time t; the flow match counter
values of flow f; and ry at switch S; are x; and y4, respectively. Now a red packet arrives
at switch S; and the switch S; sends statistics of both the flows to the controller as sent(fF)
= x1, and reco(rf) = y;. Let after A time a red packet of flow f; from switch S; arrives at
switch S;. This will invoke statistics collection at switch S;. During this A time interval
switch S; may or may not have sent packets to switch S; for flow r¢. Thus, for flow r* the
statistics recorded at switch S; will be greater than or equal to the statistics recorded at
switch S;.

Case2: Orthogonal Flows Carrying red Packets: Consider that two orthogonal flows o;,
0j carry red packets and these red packets reach switch S; and switch S; at T; and Tj,
respectively. Also consider that T; < T; and during the time |T; — T;| no red packet is
exchanged between the switches. At time T; red packet from orthogonal flow o; reaches
switch S; and it sends the statistics of both the flows f; and r; as sent(ff) and reco(rf),
respectively. In | T; — T; | time only the white packets are sent from switch S; to switch §;.
All these white packets would either have reached switch S; or still be in the data channel.
Thus when switch S; receives a red packet of flow o; at time Tj, the recorded statistics of

flow f i.e., reco( f]k ) will be less than or equal to sent statistics from switch S; i.e., sent(fF).

Similarly for the reverse flow r(, during the time | T; — T; | switch S; may or may not have
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sent packets to switch S;. Thus, the recorded statistics for flow 7y at switch S; i.e., sent(r;-‘ )
is greater than or equal to the received statistics at switch S; i.e., reco(rf). Similarly the

consistency condition will also hold when T; > T;.

3.4.2 Near-synchronous Snapshot

Synchronicity of a snapshot is a measure of how contemporaneously switches can record
their local snapshots. A synchronous snapshot of a network is one in which all switches
record their local statistics simultaneously. This is difficult to achieve in practice in a
distributed system because if proper care is not taken packets may be reported as re-
ceived but may not be reflected as sent thus violating consistency. GlobeSnap while en-
suring consistency as described above, provides a near-synchronous snapshot of a flow. If
T1, Ty, ..., Ty are the timestamps at which switches Sy, S», ..., Sy have recorded local statis-
tics of a flow fk then GlobeSnap ensures that Tyax — Tyin < RTT( fk)/ 2 where Tyax is
maximum timestamp and T,,;, is minimum timestamp and RTT(f*) is round trip time
measured from S; to Sy of f¥. This is possible because red packet initiated at S; can reach

Sy in RTT(f*)/2 time.

3.4.3 Efficient and Flexible Recording of Snapshot

In a network, let us assume that it takes tr time for a packet to reach the farthest switch
from the SDN controller and tg time in reverse direction. As already explained in Section
3.2, OpenSnap provides inconsistent statistics for OpenFlow based networks with Non-
FIFO channels. In a given round of statistics collection, OpenSnap sends marker packet
through a queue say ¢;, and can ensure consistency only for the set of flows going through
queue g;. Every round takes tr + tg time, tr time for marker packet to reach the farthest
switch and fg is the time taken by the farthest switch to send the statistics reply to the
controller. In order to cover all flows, marker has to be sent separately through each
queue, each taking a round of its own. If there are Q number of queues supported on
all outgoing interfaces in the network, OpenSnap needs Q * (ff + tg) time to collect the
statistics of all the flows for single snapshot. On the other hand, GlobeSnap collects

statistics of all flows in a single round taking tr + tr time. Therefore, GlobeSnap is more
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efficient than OpenSnap.

In GlobeSnap, tr is the time taken by red packet to reach the farthest switch and fy is
the time taken by the farthest switch to send statistics to the controller. The component
tr can be further reduced, if red packets are introduced in more than one switch in the
connected subgraph. This leads to faster spread of red packets reducing tr time. tr will
be zero in an ideal case where red packets are introduced in all switches at the same time.
Depending on how many special color packets are introduced in the network, to that
degree, tr will be lesser. However, tg cannot be reduced as it is required that the farthest
switch has to send its statistics to the controller. Therefore, GlobeSnap takes a minimum
of tg time and a maximum of tr + fg time to collect consistent statistics in a single round.

Thus, giving the flexibility in adjusting the time required to complete a round.

3.4.4 Robustness

A consistent statistics collection method is robust if it provides consistent statistics in a
given run without restarting the whole statistics collection process in case of a link fail-
ure, switch failure or packet loss event. GlobeSnap method robustly collects consistent
statistics. It initiates the statistics collection separately in each connected subgraph of a
network as shown in Algorithm 3.1. Failure in initiating, i.e., loss of special control packet
or FlowMod packet can be rectified by retransmission, which is inbuilt in TCP. Another
type of failure that may happen is link or switch failure when the process of taking snap-
shot is in progress within a connected subgraph. Snapshot recording is not hindered if
there are multiple paths to reach the adjacent switch. In case there are no redundant paths
and a link fails, snapshot recording resumes when the failed link restores and adjacent
switch sends colored packets. In case of a switch failure, the switch sends the statistics
once it is restored and receives a colored packet. Another type of failure is packet loss.
Packet loss does not hinder snapshot recording since every packet is colored as per the
switch state. As soon as new packets arrive at the switch, they will be colored red/green
and transmitted which will make the next switch to record the snapshot. Whereas, Open-
Snap has to restart the statistics collection again when a link /switch fails or a packet drop

event happens, as this can lead to no marker packet being forwarded from one switch to
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another.

3.4.5 Estimating Network Parameters from Snapshot

A snapshot recorded with Globesnap offers some insights into computing network pa-
rameters. Considering that f* is a forward flow with red packets, 7' is a reverse flow, and
link is symmetric, the following observations can be made: Considering that the first red
packet takes d amount of time to reach from switch S; to switch S;, and during the same
amount of time, all reverse flows in R would have transmitted Zyjl sent(ré) — reco(r!)
number of packets i.e., the sum of the differences between sent and received statistics
of all reverse flows. This fact states that flow rate of any reverse flow 7' can be de-
rived by M If at least one forward flow has its sent() — recv() > 0, then
it means that there were enough packets to utilize link capacity on the link connecting
switch S; to switch Sj. In addition, if the link is symmetric, then it can be stated that
Zyjl sent(f ]l) — reco(f}), i.e., the number of packets transmitted during time d from switch
S; to switch §; is same as the number of packets transmitted from switch S; to switch §;.
Using the relation stated above, the aggregate input traffic rate can be estimated on the

forward link. Also, controller has the timestamps at which the statistics are received from

the switches. From these timestamps, controller can estimate 4.

Si
Qfirstred ————]—___ First red packet scheduled on the data
channel and received by switch S;

q1 " o~

I~ Packets scheduled on data channel and

\ received by switch S; before first red

|_— packet from Gr;rsereq hits the switch S;

4> . \\ —

Packets scheduled on data channel and
received by switch S; after first red
packet from G rgireq hits the switch S;

Figure 3.3: Network parameter estimation

Now let us look at switch S; having multiple queues (as shown in Figure 3.3), each
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queue carrying multiple flows. When a red packet arrives at switch §;, it sends the
statistics of all the flows to the controller and packets coming thereafter are marked red.
The first red packet, depending on which flow it belongs to, is placed in one of the queues.
Similarly, packets of different flows arriving hereafter will be colored red and placed in
different queues. Depending on the packet scheduling at switch S;, the first red packet
in any of the queues may reach switch S;. When the first red packet reaches switch
S;, it sends the statistics of all the flows to the controller. If the first red packet which
reached switch S; is from qyisireq at switch S;, then all the flows in g¢irtreq Will have their
sent() and recv() statistics equal i.e., the number of packets recorded at switch S; and
yet to reach switch S; is zero. For queues other than gy;,seq at switch §;, flows will have
sent() > recv(). In a queue g;, where i # firstred, the ratio of sent() — recv() of flows gives
the ratio of their traffic rates. This is attributed to the distribution of packets of different
flows in the region of a queue between the first red packet of that queue and the point
when the first red packet from qy;greq has reached switch §;.

From the above observations, various parameters can be estimated using the statistics
collected by Globesnap. Traffic rates of flows and links are important statistics in net-
works. Input traffic rate of forward link and reverse link between switch S; and switch
S; are estimated using d and Zyjl sent(rﬁ-) — reco(rl) as explained above. RFC 3272 [140]
defines a bottleneck network element as whose input traffic rate tends to be greater than

its output rate. The input traffic rate on link connecting switch S; to switch S; can be cal-
Rl sent(F1)— !
culated as 2= (fél) recolfi) . This input rate is compared with the transmission rate of the

link and with a suitable threshold the link can be identified as bottleneck link. Flow rates
of reverse flows is estimated using the individual sent() and recv() statistics of each flow.
For forward flows, queue bandwidth is split in the ratio of sent() — recv() of the flows in
a given queue resulting in individual flow rates. For a given flow, across the links, these
flow rates can be compared and the minimum flow rate is taken as the end-to-end flow
rate of the flow. This also lets us identify the bottleneck link for a given flow.

Computing packet loss on a link connecting switch S; to switch §; is achieved by taking
the sum of sent() — recv() of all reverse flows and differencing it from the sum of total
queue capacity and channel capacity. Computing packet loss on forward link connecting

switch S; to switch §; is achieved by taking the sum of sent() — reco() of all reverse flows
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and forward flows and differencing it with the sum of total queue capacity and channel

capacity.

3.5 Overhead

In this section, we discuss the overhead in the network in terms of the number of control
messages required to collect the statistics of the underlying network using CeMon [2],
OpenNetMon [1], OpenSnap [3] and GlobeSnap.

Consider a network of N switches, which has a diameter d and an in-band SDN
controller configuration. Let the average distance (in terms of the number of links) from a
switch to the SDN controller be %l. Therefore, round trip distance from the SDN controller
to a switch is d. In OpenNetMon [1], the controller sends the flow statistics request only to
the edge switches of every flow. Therefore, the number of control packets in the network
will be f *d, where f is the total number of flows in the network. In CeMon [2], instead
of collecting statistics only from the edge switches, it collects the statistics from some
of the switches for each flow. We assume that the number of switches from which the

controller collects the statistics for a flow are % The total number of switches that will be

Nxfxd
2

polled for all flow statistics are . Therefore, the total number of control packets in

the network will be (N*—{*d). In OpenSnap [3], two marker packets per link are required to

collect the statistics from all the switches. As OpenSnap is designed for a spanning tree
protocol (STP) networks, the number of links in the network would be N — 1. Therefore,
the total number of marker packets in the network will be 2-(N"D)d  There will be N

2

statistics replies to the controller. Therefore, the total number of control packets in the

((3%N)—2)
2

network will be *d. This overhead increases in case of a network with Non-FIFO

channels. If each switch has q queues configured on each interface then the overhead to
collect consistent statistics for all the flows is w

In GlobeSnap, there is no marker-like control packet on the data channel. To start the
statistics collection process, the controller sends special control packets to a few switches.
In the worst case, it can be N switches. Since usually, a flow will go through at least

two switches, it can be averaged to % switches. There will be one statistics reply from all

switches. The total number of control packets required to initiate and collect the statistics
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((N/2)+N)xd

5 . However, after the collection of statistics, the

from all the switches will be

controller has to reset the state of the switches. The overhead to reset a switch is %.
Therefore, the overhead to reset all the switches is %l. To update the current round color
the controller has to send a control messages to each switch. This introduces an overhead
of # messages. Thus, the total number of control packet required in GlobeSnap is w

The control message overhead in GlobeSnap is independent of the number of flows in
the network as compared to CeMon and OpenNetMon in which the overhead increases
with the increase in the number of flows. Usually f >> N. The overhead in OpenSnap
with Non-FIFO channels is q times more compared to GlobeSnap, where q is the number

of queues configured on an output interface of a switch.

3.6 Correctness

In this section, we show the correctness of GlobeSnap to collect consistent statistics in
OpenFlow networks with Non-FIFO channels.

Consider the network segment given in Figure 3.4. There are two flows f; and f,, both
are going from switch S; to switch S;. The controller is connected to switch S;. Both
switches have two queues, q; and g, configured on each port. For simplicity, let’s assume
flow f; is forwarded through queue g; and flow f, is forwarded through queue g,. As
shown in Figure 3.4, at time #; the packet count corresponding to the flows f; and f, is X
and X, respectively at switch S;. The count for the flows f; and f> is Y3, Y respectively
at switch S; and the whole network is in WHITE state. Considering X; to be equal to Y;
and X, to be equal to Y>. Now at time t;, the controller initiates the statistics collection
process by sending a red packet to switch S;. On receipt of a red packet, switch S; sends
the statistics to the controller as X;+A1! and Xp+A, for flows f1 and f, respectively. Which

are recorded as sent statistics for both the flows w.r.t to switch Sy, that is,
sent(f}) = X1 + M (3.1)

sent(f?) = Xo + Ay (3.2)

LA, where i=1,2,3...., is the number of packets sent from source switch to destination after time #;
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Figure 3.4: Illustrating the correctness of GlobeSnap for OpenFlow based networks with Non-

FIFO channels.

After sending the statistics to the controller the switch S changes its state from WHITE

to RED. Any further transmission of packets from switch S; are colored red. At time t3,

when the first red packet from switch Sy hits the switch Sy, it triggers the statistics col-

lection at switch S;. This ensures that any packet which is transmitted after the statistics

collection from switch S; will not be recorded in the received statistics at switch S,. At

time t3, there are two possibilities,

1. Casel: First red packet scheduled on data channel is from the queue qq of switch S1. At time
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t3, let queue g1 be scheduled first for packet transmission on the data channel as
shown in Figure 3.4 (a). The packets from queue g, are transmitted in FIFO order.
When the first red packet which is transmitted from switch S; through queue g; hits
the switch S,, switch S, sends the statistics to controller as Y;+As! and Ys+A4 for
flows f; and f, respectively. Which are recorded as received statistics for flows f;

and f, at switch S, that is,

reco(fy) = Y1 + A3 (3.3)
reco(f3) = Yo + Ay (34)

Since the first red packet which triggers the statistics collection at switch S, was
sent through queue g, of switch S;. Thus it belongs to flow f;. Any packet which is
received at switch S, before the red packet was a white packet. If there is no packet

loss on the link which connects switch S; and switch S, then,

Ay = A3 (3.5)

Using Equation 3.1, 3.3 and 3.5

sent(fi) = reco(f;) (3.6)

If there is a packet loss for flow f1 on the link which connects switch S; and switch

S5 then,
A > A3 (3.7)
Using Equation 3.1, 3.3 and 3.7,
sent(fi) > reco(fy) (3.8)
Using Equation 3.6 and 3.8,
sent(f) > reco(f,) (3.9)

1/\1/ where i=1,2,3...., is the number of packets received at the destination switch after time #;
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Thus, it satisfies the consistency condition given in Equation 2.2.

For flow f,, the sent statistics can be greater than or equal to the received statistics.
The sent statistics will be equal to received statistics, if there is no white packet
in queue g2 at switch S; when the first red packet from queue g; at switch S; is
scheduled on data channel and there is no packet loss on the link which connects

switch S and switch S,. That is,

Ay =My (3.10)

Using Equation 3.2, 3.4 and 3.10,

sent(f?) = reco(f3) (3.11)

The sent statistics will be greater than received statistics for flow f, if there is at
least one white packet in queue g, at switch S; when the first red packet from queue
g1 of switch S; is scheduled on data channel or there is a packet loss on the link

which connects switch S; and switch S,. This gives,

Ay > Ay (3.12)
Using Equation 3.2, 3.4 and 3.12
sent(f2) > reco(f3) (3.13)
Using Equation 3.11 and 3.13
sent(f?) > reco(f3) (3.14)

Thus, satisfies the consistency conditions given in Equation 2.2.

. Case2: First red packet scheduled on data channel is from the queue q, of switch S1. At time
t3, let queue g, be scheduled first for the packet transmission on the data channel as

shown in Figure 3.4 (b). The packets from queue g, are transmitted in FIFO order.
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When the first red packet which is transmitted from switch S; through queue g4,
hits the switch Sy, it triggers the statistics collection process. Switch S, sends the
statistics to the controller as Y1+A3 and Y>+A4 for flows f; and f, respectively. Which
are recorded as received statistics for the flows w.r.t to switch S as given in Equation
3.3 and 3.4. The first red packet which hits the switch S, is sent through queue 4,
from switch S1. Any packet received by switch S, before the reception of the red
packet is counted in the sent statistics at switch S;. If there is no packet loss on the
link which connects switch S; and switch Sy, then it results in Equations 3.10 and
3.11. That is, sent and received statistics will be equal for flow f,. If there is a packet
loss on the link which connects switch S; and switch S, then it results in Equation
3.12 and 3.13. That is, the sent statistics will be greater than received statistics for

flow f>. Using Equation 3.10, 3.11, 3.12, and 3.13,

sent(f?) > reco(f3) (3.15)

Thus, it satisfies the consistency condition given in Equation 2.2. For flow f;, the
sent statistics can be greater than or equal to the received statistics. If there is no
white packet in queue g; at switch S;, when the first red packet from queue g, at
switch S; is scheduled on data channel and there is no packet loss on the link which

connects switch S; and switch S, then it results in Equation 3.5 and 3.6.

That is, the sent statistics and received statistics for flow f; are equal. The sent
statistics will be greater than received statistics if there is at least one white packet
in queue ¢q; at switch S; when the first red packet from queue g, at switch S; is
scheduled on data channel or there is a packet loss on the link which connects
switch S and switch Sy. This results in Equation 3.7 and 3.8. Using Equation 3.5,
3.6,3.7,and 3.8,

sent(f1) > reco(f;) (3.16)

Thus, it satisfies the consistency condition given in Equation 2.2.

Correctness of Consistent Statistics for End-to-End Path: We proved that GlobeSnap

provides consistent statistics on a given link. It can be easily seen that GlobeSnap
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would also provide end-to-end consistent statistics using transitive relation between
the switches for the flow. It can also be observed that even if switches are con-
nected in a mesh topology then also GlobeSnap would provide consistent statistics.
This is because every switch has a unique link from which it receives the packets
to be forwarded towards the destination for a particular flow. In GlobeSnap, it is
important to note that explicit marker packets are not required to collect the statis-
tics. Colored packets themselves act as markers and triggers the statistics collection
process. GlobeSnap always provides consistent statistics for all flows because, on a
given link all the packets that arrived at source switch after it has sent the statistics
to the controller will be colored red before transmission on the data channel. The
destination switch of a link sends statistics to the controller only when the first red
packet arrives at it. All the packets received at the destination switch before the
arrival of the first red packet are white and were recorded in the sent statistics at
source switch. Thus, the sent statistics will always be greater than or equal to the

received statistics for a given flow on a given link.

3.7 Implementation Details

We use Mininet [137] to emulate a network of Open vSwitch [54] switches and Ryu [25]
controller to communicate with Open vSwitch switches using OpenFlow 1.3 [18]. In
Mininet, the default configuration of controller is out-of-band, which is not practical as it
requires a dedicated link from every switch to the controller. We implemented an in-band

configuration of controller for our experiments.

3.7.1 Overview of OpenFlow Features

In this section, we give an overview of OpenFlow features and its extensions that we use
to implement GlobeSnap.

3.7.1.1 Registers

Open vSwitch has multiple 32-bit registers that retain their state until a packet is being

processed in the switch processing pipeline. These registers act like variables, they pro-
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vide space to Open vSwitch for temporary storage while packet is being processed. We
use the Nicira extension [141] for OpenFlow 1.3 that supports setting and matching of

these registers.

3.7.1.2 Multiple Forwarding Tables Pipeline

OpenFlow switches can have multiple forwarding tables and each forwarding table can
contain multiple flow entries to forward the network traffic. When a packet comes to an
OpenFlow switch, the packet can match against a flow entry in any of the forwarding
tables. Once we find a match, the packet can be forwarded to another forwarding table/s
using “Goto Instruction”, where the same process will be repeated. A given flow entry
can only forward the packets to another forwarding table with a greater table number
than its own table number. That is, the packet processing pipeline always goes in the
forward direction not in backward. The processing pipeline stops when the packet cannot
be forwarded to any further forwarding table. At the end of the processing pipeline
the associated actions are performed. If a packet does not match any flow entry in the

forwarding table, the table miss actions are performed [32].

3.7.2 Implementing GlobeSnap in OpenFlow

In this section, we explain how we use registers, multiple forwarding table and multiple

pipelines to maintain the states in OpenFlow switches and thus implement GlobeSnap.

Table_id = 0 Table_id =2 Table_id = 3

Packet Inl PREPROCESSING ]_ LOGIC FORWARDING |Packet Out
Table Table Table
STATE
Table

Table_id = 1

Figure 3.5: Processing of incoming packets using multiple flow tables in an OpenFlow switch.

Figure 3.5, shows the processing of the incoming packet in GlobeSnap in a given run.
We use four tables in each switch namely, PREPROCESSING table, STATE table, LOGIC
table, and FORWARDING table to perform conditional forwarding w.r.t to a given color.
The PREPROCESSING table identifies the incoming packet’s color as current round color
or other color and forwards it to the STATE table and LOGIC table. The STATE table
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is responsible for maintaining the state of the switch as RED, GREEN, or WHITE that it
does with the help of a 32-bit register provided by Open vSwitch [54] as part of Nicira
Extensions register. Note that, the register alone cannot store the state of the switch as
the registers are always initialized to ‘0" and their values cannot persist from one packet
processing to another. This is the reason for using STATE table. The STATE table has the
flow entries to set the value of the register which can then be accessed in the subsequent
flow tables. This is how state of a switch is maintained. LOGIC table implements the

main logic of the algorithm by accessing the register value.
1. If Register_value = 0, then it forwards the packet to the FORWARDING table.
2. If Register_value = 1, then it does the following,

(a) Send the statistics to the controller.
(b) Color the packet with current round color.

(c) Add a new flow entry in STATE table with higher priority, which sets the

register value to 2.

(d) Forward the packet to the FORWARDING table.

3. If Register_value = 2, then it colors every incoming packet with the current round

color and forwards the packet to the FORWARDING table.

The register values 1 and 2 are used to distinguish between the first red/green packet
and the packets received after the first red/green packet. FORWARDING table processes
the packet based on the flow entries added by the controller.

Once the switch has sent the statistics to the controller, the STATE table of a given
pipeline updates the register value to 2 to denote the RED state of a switch. Resetting of
switch state requires deletion of the flow entries, from the STATE table, which correspond
to the RED state of the switch. After each run of statistics collection, the controller sends a
command to the switches to delete the flow entries from their STATE tables. On successful
removal of the flow entries from STATE tables of all the switches, the network comes back
again in WHITE state for the next run. As already discussed in Section 3.3.4, due to stray
red packets, it would be difficult to simultaneously delete the flow entries from STATE

tables of all the switches. So, we need a separate processing pipeline for green color.
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Figure 3.6: Processing of packets in GlobeSnap using two pipelines.

If we consider the processing of packets as shown in Figure 3.5 as a single pipeline
which processes the packets for a given round of statistics collection (let us say for red
color), then to process the packets for next round of statistics collection (i.e., green color)
we use another pipeline, as shown in Figure 3.6. Pipelinel and pipeline2 correspond to
red and green color respectively. Both the pipelines consist of separate PREPROCESSING,
STATE, and LOGIC tables with different table numbers, for example, table_id 1, 2, and
3 correspond to PREPROCESSING table, STATE table, and LOGIC table respectively of
Pipelinel and table_id 4, 5, and 6 correspond to PREPROCESSING table, STATE table, and
LOGIC table respectively of pipeline2. The decision to which pipeline the packet needs to
be forwarded is taken by the CHANNEL table (i.e., table_id = 0) given in Figure 3.6. Once
the pipeline is decided for packet forwarding, all the packets are processed through the
selected pipeline for the given round of statistics collection and the other pipeline is being
reset for the next round of statistics collection. In every alternate round, the controller

uses the same pipeline for statistics collection.

3.8 Experimental Evaluation

In this section, we evaluate the performance of GlobeSnap w.r.t to collection of consistent
statistics and compare the results with Simple Polling, CeMon [2], OpenNetMon [1], and
OpenSnap [3] with FIFO and Non-FIFO channels. All experiments are performed on the
same network topology as given in Figure 3.7 and configurations as given in Table 3.1.
The controller is running on host h;. Flow f; traces the same path as statistics request
messages, flow f, traces the opposite path to the statistics request messages and flow f3

is not following any strict direction w.r.t statistics messages.
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Figure 3.7: Topology used for consistency evaluation.

Table 3.1: Network configurations for consistency evaluation experiments.

Topology Given in Figure 3.7

No. of Queues per port 3, namely qo, 41, and g

Bandwidth of link 100 Mbps

Queue bandwidth 50 Mbps for queue g1, 40 Mbps for queue g,
and remaining 10 Mbps for qo.

Number of flows 3 (f1 : hz — hé, fz : h7 — hz, and f3 : h3 — h5)

Traffic generator D-ITG [138] (4 Mbps per flow)

Controller configuration | in-band

3.8.1 Consistency Evaluation

For the experiments, we have configured three queues o, 41, and g2 on each port of the
switches. Flows f; and f3 are forwarded through queue g1, and flow f, is forwarded
through queue g2. For a particular flow f,, we calculate A = sent(f{") —recv(f]') as a
measure to compare the consistency achieved by different methods, where i is the switch
connected to the source host and j is the switch connected to the destination host of flow
fu.

For OpenNetMon [1] the controller polls the source and destination switches of all
the flows. Simple polling and OpenNetMon [1] provide inconsistent statistics for flows
f1 and f3 (as shown in Figure 3.8 (a), (c), (d) and (f) respectively). Whereas, they provide
consistent statistics for flow f, (as shown in Figure 3.8 (b), and (e) respectively) because
the controller is running on host /; which is connected to switch S; and the destination
host hy of flow f; is also connected to switch S;. Thus, when the controller initiates the
statistics collection process by sending the statistics request messages to the switches, for
flow f, the destination switch S; sends the statistics before the source switch S4. This is

because for flow f, the source switch is located far from the controller as compared to the
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Figure 3.8: Comparison of GlobeSnap with simple polling, and OpenNetMon [1] with Non-
FIFO channels. The shaded area represents the inconsistent statistics.

destination switch. So, by the time statistics request reaches source switch S4 of flow f,
its flow match counter would have increased. Thus, it gives consistent statistics as sent
statistics of flow f; is greater than its received statistics.

CeMon [2] proposes an algorithm to calculate the polling frequency for each flow on
a given switch. We run this algorithm for all three flows fi, f>, and f3 and the controller
polls the source and destination switches at the calculated frequency. As shown in Figure
3.9 (a), (b), and (c), CeMon gives inconsistent statistics for all three flows, fi, f», and f.
Whereas, GlobeSnap provides consistent statistics for all three flows.

In OpenSnap with FIFO channels, the statistics are consistent for all three flows as
shown in Figure 3.10 (a, b, and c). Whereas, the statistics for flows f; and f3 are inconsis-
tent in case of OpenSnap with Non-FIFO channels as shown in Figure 3.9 (d) and (f). It

provides consistent statistics for flow f>, as shown in Figure 3.9 (e) because the controller
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Figure 3.9: Comparison of GlobeSnap with CeMon [2], and OpenSnap [3] with Non-FIFO
channels for consistency. The shaded area represents the inconsistent statistics.

is running on host h; which is connected to switch S; and the destination host h; of the
flow f, is also connected to the switch S;. Thus, when the controller initiates the statistics
collection process, switch S; sends the received statistics of flow f, to the controller and
forwards the marker packet to all the adjacent switches. So, by the time marker packet
reaches source switch Sy of flow f its flow match counter would have increased. Thus, it
gives consistent statistics as sent statistics of flow f, is greater than its received statistics.
Whereas, GlobeSnap provides consistent statistics for all three flows in both, network with
FIFO channels and network with Non-FIFO channels.

We also compare all these solutions in terms of the percentage of consistency achieved.
We define percentage of consistency achieved as the percentage of rounds providing con-

sistent statistics out of the total number of rounds of statistics collection. The percentage
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Figure 3.10: (a), (b), and (c) show the comparison of GlobeSnap with OpenSnap [3] with FIFO
channels for consistency. The shaded area represents the inconsistent statistics. (d) shows the
percentage of consistency achieved by each method

of consistency is measured as follows,

number of rounds providing consistent statistics

100 3.17
total number of rounds of statistics collection i (317)

% consistency =

Figure 3.10 (d), shows the percentage of consistency achieved by each solution. Open-
Snap [3] with Non-FIFO channels provides least consistency whereas, simple polling,
CeMon [2], and OpenNetMon [1] provides 59.89%, 52.25%, and 43.19% consistent statis-
tics respectively. Both OpenSnap with FIFO channels [3] and GlobeSnap provides 100%
of consistent statistics. As already explained in Section 3.1 and 3.2, OpenSnap is not an

efficient solution for OpenFlow based networks with Non-FIFO channels.

3.8.2 Synchronicity

As discussed in Section 3.4, synchronicity is measured as the difference between highest
timestamp and lowest timestamp in a snapshot. Globesnap method ensures that the syn-
chronicity of a snapshot of a given flow does not exceed half of its RTT. This is supported
by experimental results as shown in Figure 3.11. Maximum RTT of flow f; is 1.35 and half

of it is 0.67. The synchronicity of snapshot recorded for flow f; is always below 0.67.
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Figure 3.11: Synchronicity of GlobeSnap.

3.8.3 Use Cases of GlobeSnap

As already discussed in Section 3.3.2, the controller can use the collected consistent statis-
tics to identify the bottleneck link and to estimate the packet loss in a given queue and
link. In this section, we present the results for the use-cases of GlobeSnap. The existing
works OpenNetMon [1], CeMon [2], Simple polling does not provide consistent statistics.
Thus, they cannot be used to identify the bottleneck link and packet losses. As shown
in the previous section OpenSnap provides consistent statistics for FIFO networks only.
Thus, it cannot identify the bottleneck links in Non-FIFO networks. For the experiments,

we have used the topology as shown in Figure 3.12 and network configurations as given

in Table 3.2.
h, [l hs [l
It I
Controller AL
] = S

Ol s, /4\"

h3 h4 h6 h7 2
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Figure 3.12: Topology for bottleneck link and packet loss evaluations.

73



3.8 Experimental Evaluation

Table 3.2: Network configurations for experiments to identify the bottleneck link and number
of packets lost on a link.

Topology Given in Figure 3.12

No. of Queues per port 3, namely qo, 41, and >

Bandwidth of link 25 Mbps

Queue bandwidth 10 Mbps for queue g1, 12 Mbps for queue g2
and remaining 3 Mbps for go.

Number of flows 6 (f1 : hg — hz, fz : hlz — h4, f3 : hg — h3,
f4 2 hig — he, f5 : hi3 — hs, and f6 thip — h7)

Traffic generator D-ITG [138] (4 Mbps per flow)

Controller configuration in-band

Initially, there are only two flows in the network f; and f,. Flow f; is forwarded
through queue qo, whereas flow f, is forwarded through queue q;. After 120 seconds,
two more flows (f3 and fy) are admitted in the network, where the flow f3 is forwarded
through queue g, and flow f; is forwarded through queue g;. After next 120 seconds,
one more flow (i.e., f5) is admitted to the network, which is forwarded through queue g5.
After 60 seconds flow fg is admitted in the network, which is forwarded through queue
g1. There are six flows in the network, and all six flows go through link L, : S3 — S,.

Whereas, only three flows go through link L; : S, — Sy and L3 : S4 — S3.

3.8.3.1 Identifying Bottleneck Links

The statistics collected using GlobeSnap can be used to identify the bottleneck links cor-
rectly. We consider a link to be a bottleneck link when it runs at more than 70% of its
capacity. We estimate the arrival rate of a link by taking the difference of the number of
bytes sent from source switch and the number of bytes received at the destination switch
of a link for all the flows going through the link and divide it by the link delay.

As shown in Figure 3.13 (a) and 3.13 (c), links L1 : S — Sy, and L3 : S4 — S3 are
not bottleneck links. As all six flows are going through link L; : S3 — S5, the arrival rate
increases every time when a new flow joins the link. Between 264" and 268" second the
traffic arrival rate increases which results in 70% link utilization as shown in Figure 3.13
(b). Thus, L, link is identified as a bottleneck link. Between 271" and 274" second the

link state of L, goes above the link capacity.
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Figure 3.13: Bottleneck link identification in the network using GlobeSnap.

3.8.3.2 Computing Packet Loss

For packet loss evaluation, we have considered the same topology as shown in Figure 3.12
and network configurations as given in Table 3.2. We compare the packet loss results of
GlobeSnap with the actual number of packet loss provided by Open vSwitch (OVS) queue

statistics (i.e., NetEm [142] statistics).
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Figure 3.14: Packet loss measurements on each link of the network by GlobeSnap and actual
packet loss provided by queues statistics.

Figure 3.14 (a), and 3.14 (c) show that the results of GlobeSnap for packet loss through
individual queues and for total packet loss on the links L1 : S, — 51, and L3 : S4 — S3
are overlapping with the results given by OVS and the packet loss on both the links is 0.
All six flows are going through link L, : S3 — Sy, Figure 3.14 (b) shows that packets start
dropping at 274" second on queue g, and 330" second on queue g; of link L, : S3 — S,
when fifth and sixth flows joined the link respectively. The total packet loss on the link is
sum of packet loss on both the queues. The results of GlobeSnap for packet loss through

individual queues and total packet loss on the link are overlapping with the results given
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by OVS.

3.9 Summary

In this chapter, we proposed an efficient and robust method, GlobeSnap, to collect glob-
ally consistent statistics in OpenFlow based SDN networks. GlobeSnap uses a color-
ing mechanism to collect consistent statistics. GlobeSnap outperforms the state-of-the-
art approach OpenSnap [3] and other polling-based methods in consistency evaluation.
GlobeSnap achieves 100% consistency in both the networks with FIFO channels and Non-
FIFO channels. Whereas OpenSnap provides 100% and 40.33% consistency in a network
with FIFO channels and Non-FIFO channels, respectively. Other existing solutions could
only achieve a maximum of 59.89% consistency. Also, in CeMon [2] and OpenNetMon
[1], the overhead of the number of control packets increases if the number of flows in the
network increases. Whereas the control packet overhead in GlobeSnap is independent of
the number of flows in the network. We also demonstrated that consistent statistics can
be used to identify bottleneck links accurately and to estimate the number of packet loss

in the links.

76



