List of Tables

Table 2-1 Formants in Hz for five different vowels. Values in parenthesis of the
first column correspond to bandwidth around each formant (in Hz)27
Table 2-2 The absolute values of the segregation parameter and its
corresponding percent F0 segregation at each vowel level
Table 4-1 Mean values of the pure-tone thresholds (dB HL) for YNH, ONH and
OHI subjects of Chintanpalli et al. (2016)69
Table 4-2 Model parameters used across the three different listening models. SR
parameters are given in spikes/sec73
Table 4-3 F0 benefit (in percent) comparison between concurrent vowel data
(Chintanpalli et al., 2016) and three listening models77

List of Figures

Figure 1-1 The concurrent vowel scores as a function of F0 difference	2
Figure 1-2 Anatomy of the human ear and cochlea	6
Figure 1-3 Cat tuning-curves and rate-level functions	10
Figure 1-4 Period histograms of a fiber at different levels	11
Figure 1-5 Adaptation of and HSR fiber to the onset response	12
Figure 1-6 Frequency spectrum and the rate coding of the vowel /ɛ/	14
Figure 1-7 ALSR of the vowel /ε/ at various sound levels, from 18 to 78 dB	15
Figure 1-8 Synchronized rates in response to vowel /E/ for two cat fibers of	of a
normal and impaired fiber	15
Figure 2-1 Percent identification scores of both the vowels for same F0 (square	es)
and different F0 (triangles) as a function of the vowel level	25
Figure 2-2 The Block diagram of the F0-guided segregation algorithm	29
Figure 2-3 Predicted percent identification scores of both vowels, one vowel,	F0
segregation and F0 benefit	36
Figure 2-4 Similarity scores as a function of vowel level for same and different	ent
F0 conditions.	37
Figure 2-5 Model responses for $/æ/$ (F0 = 100 Hz), $/a/$ (F0 = 100 Hz)/ present	ted
at 25 dB SPL, 65 dB SPL and 85 dB SPL.	39
Figure 2-6 Model responses for $/æ/$ (F0 = 100 Hz), $/a/$ (F0 = 126 Hz)/ present	ted
at 25 dB SPL.	40
Figure 2-7 Model responses for $/æ/$ (F0 = 100 Hz), $/a/$ (F0 = 126 Hz)/ present	ted
at 65 dB SPL.	41
Figure 2-8 Model responses for $/æ/$ (F0 = 100 Hz), $/a/$ (F0 = 126 Hz)/ present	ted
at 85 dB SPL.	42

Figure 3-1 Effect of vowel-pair duration on mean normalized pooled-ACF values
evaluated at the fundamental frequencies
Figure 3-2 Predicted effects of F0 difference on concurrent vowel identification
and segregation for 200 ms duration 53
Figure 3-3 Predicted effects of F0 difference on concurrent vowel identification
and segregation for 50 ms durations
Figure 3-4 Predicted effects of F0 difference on identification scores of one vowel
of the pair for two different vowel durations 56
Figure 4-1 Block diagram illustrating the steps involved in the computational
model to predict the concurrent vowel scores across F0 differences for three
listening groups68
Figure 4-2 Predicted effects of F0 difference on percent concurrent vowel
identification and percent segregation75
Figure 4-3 Effect of F0 difference on one-vowel-correct identification of the pair.
for three listening models78
Figure 4-4 Model responses for /i/ (F0 = 100 Hz), $/æ$ / (F0 = 106 Hz)/ presented
to the YNH model79
Figure 4-5 Model responses for /i/ (F0 = 100 Hz), $/æ$ / (F0 = 106 Hz)/ presented
to the ONH model
Figure 4-6 Model responses for /i/ (F0 = 100 Hz), /æ/ (F0 = 106 Hz)/ presented
to the OHI model81
Figure 4-7 / Model responses for /u/ (F0 = 100 Hz), $\frac{1}{2}$ (F0 = 106 Hz)/ presented
to the YNH model82
Figure 4-8 Model responses for $\frac{u}{F0} = 100 \text{ Hz}$, $\frac{æ}{F0} = 106 \text{ Hz}$ presented
to the ONH model and OHI model83

List of Abbreviations

ACF Autocorrelation Function

AN Auditory-Nerve

ALSR Average localized synchronized rate

BM Basilar Membrane

C1 Component-1

C2 Component-2

CF Characteristic Frequency

CS Cochlear Synaptopathy

DRNL Dual Resonance Non-Linear

DPOAE Distortion product otoacoustic emissions

DR Discharge rate

F0 Fundamental Frequency

F1– F5 Formant 1- Formant 5

HSR High Spontaneous Rate

IHC Inner-Hair-Cell

LSR Low Spontaneous Rate

MSR Medium Spontaneous Rate

NIHL Noise-induced hearing loss

OHC Outer-Hair-Cell

OHI Older adults with Hearing Loss

ONH Older adults with Normal Hearing

PTA Pure-Tone Average

SEM Standard Error Mean

SNHL Sensorineural Hearing Loss

SPL Sound Pressure Level

SR Spontaneous Rate

TRNL Triple- path nonlinear filter bank

YNH Younger adults with Normal Hearing