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2 Modeling the level-dependent changes of concurrent vowel 

scores1,2 

2.1 Introduction 

Younger adults with normal hearing (YNH) have a remarkable ability to 

segregate two or more simultaneous speech sounds, when presented at varying 

sound levels. They utilize many cues to identify the speech during this multi-

talker scenario. Some of these cues are the differences in onset and offset timing 

of the speech sounds, differences in speech characteristics (e.g., formant 

differences), and differences in F0 between the speakers (e.g., Bregman, 1990; 

Brokx and Nooteboom, 1982; Cherry, 1953; Zwicker, 1984). Among these, F0 

difference is widely studied as an important cue for segregating multiple speech 

signals. Concurrent vowel identification is often studied to understand how F0 

difference helps to identify two simultaneously presented vowels. In this 

experimental paradigm, two vowels with equal duration and level are presented 

simultaneously to one ear of a human listener. The task of the listener is to 

identify both vowels, and performance is measured as a function of F0 difference 

between the two vowels. For YNH listeners, identification scores for both vowels 

improve as F0 difference increases between the two vowels, and then 

asymptotes usually at ~3-Hz F0 difference or higher (Assmann and Summerfield, 

1990; Summerfield and Assmann, 1991; Culling and Darwin, 1993; Arehart et 

al., 1997, 2005; Summers and Leek, 1998; Vongpaisal and Pichora-Fuller, 2007; 

                                            
1 This work was published in the Journal of the Acoustical Society of America, vol. 143(1), 440  
449, 2018. doi:10.1121/1.5021330 
2 The preliminary portion of this work was published in the 40 th meeting of Association of 
Research in Otolaryngology in Baltimore, USA, 2017. 
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Chintanpalli and Heinz, 2013; Chintanpalli et al., 2016). However, these studies 

have been typically conducted at a single vowel level. 

To understand how the ability to utilize the F0 difference cue varies across 

sound levels, Chintanpalli et al. (2014) collected concurrent-vowel data for 0 and 

26-Hz F0 difference conditions (i.e., same and different F0, respectively) in YNH 

listeners (generally between 20 and 26 years). Figure 2-1 shows the percent 

correct identification scores as a function of vowel level for same and different 

F0 conditions (Chintanpalli et al., 2014). Their subjects showed an improvement 

in percent identification score as vowel level was increased from low-to-medium 

(25 - 50 dB SPL) and then a decline was observed at higher levels (65  85 dB 

SPL). The F0 benefit is defined as the difference in percent correct identification 

scores between the different and same F0 conditions, and is commonly used in 

the concurrent-vowel literature (Arehart et al., 2005; Assmann and Summerfield, 

1990; Chintanpalli et al., 2014, 2016; Summers and Leek, 1998; Vongpaisal and 

Pichora-Fuller, 2007). The mean percent of F0 benefit increased from 25 to 50 

dB SPL and then remained fairly constant from 50 to 85 dB SPL.  

In order to understand the neural mechanisms underlying these level-

dependent identification scores, Chintanpalli et al. (2014) further performed 

computational modeling by quantifying the phase-locking of AN fibers to vowel 

formants and F0s using the ALSR (section 1.1.3.2) (Young and Sachs, 1979) 

and template contrast (Larsen et al., 2008), respectively. These two neural 

coding schemes were computed from the responses of a well-established AN 

model (Zilany et al., 2009). It was inferred that the F0-difference cue was 

degraded at 25 dB SPL because this level had the lowest F0 benefit, which could  
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be attributed to poor phase- locking (or rate place coding) of AN fibers to F0s. 

Furthermore, the reduced scores at higher levels were attributed to poor phase-

locking to formants (particularly the second formant), resulting from broader 

auditory filters at higher SPLs. It was assumed that the phase-locking of AN 

fibers to formants and to F0s contribute separately to vowel identification. 

However, previous modeling studies (Chintanpalli and Heinz, 2013; Meddis and 

Hewitt, 1992) suggest that listeners first try to segregate the vowel pair (based 

on the available cues), and then identify them individually. This suggests that 

vowel segregation precedes identification, and thus one needs to incorporate the 

interactions between formant and F0-difference cues for identification. However, 

the separate analyses of phase-locking to formants and F0s limits the direct 

conclusions that can be made from the modeling work of Chintanpalli et al. 

(2014) in terms of the level-dependent changes in identification scores of both 

vowels. Additionally, their conclusions were based on two concurrent-vowel pairs 

(/ overall identification scores . Hence, this 

Figure 2-1 Percent identification scores of both the vowels for same F0 (squares) and different 
F0 (triangles) as a function of the vowel level. Note that the figure shown is the percent 
identification scores rather than the rationalized arcsine transformed scores, modified from 
Chintanpalli et al., (2014). Error bar denotes ± 1 Standard Error Mean (SEM). The F0 benefit is 
indicated by an arrow. 
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limited modeling approach only allowed inferences to be made that the level-

dependent changes in neural coding schemes (i.e., ALSR and template contrast) 

may have sufficient information to predict the pattern of concurrent-vowel scores 

for YNH subjects. These conclusions would have been stronger had this study 

computed the overall identification scores.  

The aim of the first objective in this dissertation is to significantly extend 

the modeling work done in Chintanpalli et al. (2014) to test explicitly their 

conclusions, which were based on neural coding schemes. Here, we compute 

the identification scores using an improved version of the AN model (Zilany et 

al., 2014) and a well-established F0-guided segregation algorithm (Meddis and 

Hewitt, 1992). This segregation algorithm takes into account the interactions 

between formant and F0 difference cues and computes the identification scores 

for concurrent vowels. A similar type of modeling framework has also been used 

in previous studies to successfully capture (at least qualitatively) the effect of F0 

difference on vowel identification for a given level (Chintanpalli and Heinz, 2013; 

Meddis and Hewitt, 1992). The aim of the present study was to examine whether 

this modeling framework can successfully predict the level-dependent changes 

in identification scores of both vowels across various sound levels and for same- 

and different-F0 conditions. 

2.2 Methods 

2.2.1 Stimuli 

The stimulus generation for the current study was similar to those reported 

in Chintanpalli et al. (2014). A set of five different vowels (/i/, /u/, /

were generated using a MATLAB implementation of a cascade formant 
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synthesizer (Klatt, 1980). The duration of each vowel was 400 ms, including 15-

ms raised-cosine rise and fall ramps. The formant frequencies and the bandwidth 

of each vowel are shown in Table 2-1, which is similar to the earlier studies on 

concurrent vowel identification (e.g., Assmann and Summerfield, 1994; 

Summers and Leek, 1998; Chintanpalli and Heinz, 2013; Chintanpalli et al., 

2014; Chintanpalli et al., 2016).  

A concurrent vowel was obtained by adding any two individual vowels. To 

form a vowel pair for different 26-Hz F0 difference condition (different F0), one 

vowel had a constant F0 = 100 Hz, whereas another vowel had F0 = 126 Hz. 

These five vowels were arranged in different combinations to obtain 25 

concurrent vowels. To maintain equivalent numbers of vowel pairs, 0-Hz F0 

difference condition also included 25 vowel pairs (five identical-vowel pairs and 

ten different-vowel pairs, but the latter was presented twice, where F0 was 100 

Hz for both vowels in the pair). A total of 50 concurrent vowels (25 vowel pairs x 

two F0 conditions) were used at each level. The individual vowel levels are 25, 

35, 50, 65, 75, and 85 dB SPL, respectively. At each level, the vowel pairs either 

had same (100 Hz) or different F0s (100 and 126 Hz). Overall, 300 vowel pairs 

were generated (25 vowel pairs x 2 F0 conditions x 6 levels). 

Table 2-1 Formants in Hz for five different vowels. Values in parenthesis of the first column 
correspond to bandwidth around each formant (in Hz).  

Vowel /i/ /  /u/ /æ/ / / 

F1 (90) 250 750 250 750 450 

F2 (110) 2250 1050 850 1450 1150 

F3 (170) 3050 2950 2250 2450 1250 

F4 (250) 3350 3350 3350 3350 3350 

F5 (300) 3850 3850 3850 3850 3850 
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2.2.2 Computational Modeling: Predicting identification scores across 

sound level and F0-difference conditions 

To understand the level-dependent changes underlying the peripheral 

processing associated with the identification scores of both vowels (Fig. 2-1), the 

first objective utilizes the computational model (Fig. 2-2) by cascading the AN 

model (Zilany et al., 2014) with the modified version of F0-guided segregation 

algorithm (Meddis and Hewitt, 1992). The Meddis and Hewitt (1992) F0-guided 

segregation algorithm is the only algorithm that has successfully captured (at 

least qualitatively) the effect of F0 difference on concurrent vowel identification. 

2.2.2.1 Auditory-nerve model 

 The AN model developed by Zilany et al. (2014) was used to predict the 

AN responses to concurrent vowels. It is an extension of several previous 

versions of the model, which have been tested extensively against 

neurophysiological responses from cats to pure tones, two-tone complexes, 

broadband noise and vowels (Carney, 1993; Zhang et al., 2001; Heinz et al., 

2001; Bruce et al., 2003; Tan and Carney, 2003; Zilany and Bruce, 2006, 2007, 

Zilany et al., 2009). Relevant to the current objective, this model captures (1) the 

level-dependent changes in cochlear nonlinearities (e.g., compression, 

suppression, broadened tuning and best-frequency shifts with increase in sound 

levels, Ruggero et al., 1997) and (2) the level-dependent changes in phase 

locking ability of AN fibers to vowel formants (Chintanpalli et al., 2014; Miller et 

al., 1997; Zilany and Bruce, 2006, 2007) and F0 coding (Chintanpalli et al., 2014). 
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Figure 2-2 The Block diagram illustrating the steps involved in computational modeling for 
predicting the level-dependent changes in concurrent vowel scores for same and different F0 
conditions. 
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The input to the AN model was a concurrent vowel and the output was a 

time varying DR of a single AN fiber for a particular CF. The AN responses were 

computed from 100 different logarithmically spaced CFs, ranging from 125 Hz  

4000 Hz, for each of the three fiber types (step 1 of Fig. 2-2). The overall DR at 

each CF was the weighted sum of the DRs as per the distribution of the 

spontaneous rates (HSR = 0.61, MSR = 0.23 and LSR =0.16; Liberman, 1978; 

step 1 of Fig. 2-2), which is relevant for modeling the level effects for concurrent 

vowels since AN-fiber threshold is inversely related to SR.  

2.2.2.2 F0-guided segregation algorithm for concurrent-vowel 

identification 

To understand the changes in identification score of both vowels across 

F0 difference (Fig. 1-1), there have been many attempts to develop 

physiologically inspired computational models that could validate the effect of F0 

difference on the identification scores of both the vowels (Assmann and 

Summerfield, 1990; Chintanpalli and Heinz, 2013; Meddis and Hewitt, 1992). 

The Meddis and Hewitt (1992) model was the first to successfully capture the 

effect of F0 difference on concurrent-vowel identification. They showed that the 

identification scores of both vowels improved with increasing F0 difference and 

asymptoted at higher F0 differences, qualitatively. The model predictions were 

obtained using two stages: 1) a peripheral model, and 2) an F0-guided 

segregation algorithm. Subsequently, Chintanpalli and Heinz (2013) replicated 

this effect using the same F0-guided segregation algorithm of Meddis and Hewitt 

(1992) but with a more recent AN model (Zilany and Bruce, 2007). However, the 

parameter values of this segregation algorithm were different in each study 

because of the different peripheral models that were used.  
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In the Meddis and Hewitt (1992) F0-guided segregation algorithm, an 

autocorrelation function (ACF) was computed for each of the weighted sum of 

time-varying DR of AN fibers at each CF (step 2a of Fig. 2-2). Each ACF was 

multiplied by a single exponential delaying function with the time constant ( ) 

= 10 ms. Equation 2-1 specifies the ACF computation, where  is a time-

varying DR of AN fiber from the  channel,  is the autocorrelation lag,  is the 

time at which ACF is sampled, and  is the time constant of the exponential 

function. A pooled-ACF (PAC

from different fibers (step 2b of Fig. 2-2 and Equation 2-2, where  is the number 

of channels).  
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The dominant F0 for each vowel pair was estimated by computing the 

inverse delay of the largest peak in the pitch region (4.5  12.5 ms) of the pooled-

ACF (step 2b of Fig. 2-2). It specifies for which F0 the ACFs across CFs are 

primarily responding. Furthermore, the computation of dominant F0 is required 

for deciding whether F0-guided vowel segregation can be allowed prior to the 

identification of individual vowels. If the number of ACF channels that showed a 

peak at the dominant F0 was greater than a user-defined segregation parameter, 

then the model decided that there was only one F0 present (i.e., no-F0 

difference); otherwise, the model decided two F0s were present and proceeded 

with the F0-guided vowel segregation (step 2b of Fig. 2-2). If the identified 
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channels were greater than the user-defined segregation parameter, then the 

algorithm decided there was one F0; otherwise two F0s were present (step 2b of 

Fig. 2-2). In the latter case, all the individual ACF channels that showed a peak 

at the dominant F0 were summed together to obtain a pooled-ACF of one vowel 

of the pair (PACF1). The residual ACF channels were summed together to obtain 

a pooled-ACF of the other vowel (PACF2). The inverse Euclidean distance metric 

was then used between the timbre region (0.1  4.5 ms, formant frequency 

region) (Meddis and Hewitt, 1992) of the segregated pooled-ACF (PACF1 or 

PACF2) and the timbre regions of previously-stored pooled-ACF templates of 

single vowels. The model predicted the vowel with the maximum inverse distance 

from each segregated PACF (step 2d of Fig. 2-2). The single vowel template was 

obtained by averaging the timbre regions of the PACFs across 6 F0 conditions 

(i.e., 100, 101.5, 103, 106, 112 and 126 Hz). If the model predicted a single F0 

(i.e., unsegregated), then the timbre regions of the PACF and five single vowels 

were compared using the distance metric. The model predicted a single vowel 

(presented twice, e.g., /æ/, /æ/) if the ratio of the best (m1) and second-best 

match (m2) was greater than the user-defined identification parameter; 

otherwise, two different vowels (e.g., /æ/, / /) were predicted (step 2c of Fig. 2-

2). The percent model score at each F0 difference was computed as the 

proportion of vowel pairs (out of 25) in which both vowels were correctly identified 

in each pair. The user-defined parameter values of the segregation algorithm 

(i.e., ACF time constant, F0-segregation criterion, m1/m2 criterion) were varied 

of both vowels across F0 differences were 

successful in capturing the pattern of concurrent-vowel data (Assmann and 

Summerfield 1990).  
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A modified version of the Meddis and Hewitt (1992) segregation algorithm 

was used in the current study with the following changes. Firstly, CF-dependent 

time constant was used for computing the ACFs across CFs (Cariani, 2004; 

Bernstein and Oxenham, 2005; Chintanpalli et al., 2014). This might account for 

the effect of peripheral filtering on pitch perception. More specifically, smaller-

bandwidth peripheral filters (i.e., at lower CFs) result in longer-duration impulse 

responses and thus require slower time constants. Higher-bandwidth peripheral 

filters (i.e., at higher CFs) result in shorter-duration impulse responses and thus 

require faster time constants. The value of  was varied per CF (  = 50 ms 

for 100  CF  440 Hz;  = 36 ms for 440 CF 880 Hz;  = 30 ms for 

880 CF 1320 Hz; = 29 ms for CF 1320 Hz). These CF distributions 

were from Cariani (2004) and the  values were varied systematically to fit the 

level-dependent changes across F0 differences. Secondly, to be consistent with 

Meddis and Hewitt (1992), a single-

was obtained by averaging the timbre regions of the PACFs for 100 and 126 Hz. 

The rationale for using a separate template for each sound level was mainly 

derived from the level-dependent changes due to cochlear nonlinearities.  

2.3 Results 

In concurrent-vowel data (Fig. 2-1), the F0 benefit increased with 

increasing vowel level (25-50 dB SPL) and then remained fairly constant from 50 

dB SPL onwards. This suggests that the ability to segregate vowels using F0 

difference cue, also increases up to 50 dB SPL. Thus, this criterion was used in 

the current modeling to constrain the user-defined segregation parameter of the 

Meddis and Hewitt (1992) algorithm across sound level. More specifically, this 
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parameter was selected such that 1) percent segregation ability in the two-F0 

condition, computed across 25 vowel pairs, remained almost constant from 50 

dB SPL onwards, and 2) percent segregation is zero for same-F0 condition at 

each level. Table 2-2 shows the absolute values of the segregation parameter 

and its corresponding F0 segregation across at each level. 

To further constraint the model, m1/m2 identification parameter was fixed 

to 2.5 across vowel levels. Figure 2-3(A) shows the model scores for both vowels 

as a function of vowel level for same (squares) and different F0 (triangles) 

conditions. The identification score improved as vowel level increased from low-

to mid-levels and declined at higher levels for both F0 conditions. These patterns 

of identification scores are qualitatively similar, to that of concurrent vowel data 

collected from YNH subjects (Fig. 2-1).  

Table 2-2 The absolute values of the segregation parameter and its corresponding percent F0 
segregation at each vowel level. 

Level 
(dB SPL) 

User defined 
segregation 
parameter 

Percentage of 
F0 segregation 

25 36 48 
35 43 56 
50 60 84 
65 52 76 
75 52 76 
85 56 80 

Figure 2-3(B) shows the model  percent vowel segregation, computed 

across pairs, as a function of vowel level for same (squares) and different-F0 

(triangles) conditions. As expected, the percent segregation was zero for same-

F0 condition across all levels [squares in Fig. 2-3(B)]. This indicates that the 

level-dependent changes in identification scores for same F0 could be affected 

by formant-difference cues, which may be influenced largely by changes in 
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cochlear nonlinearities. The percent segregation increased for different F0 

[triangles in Fig. 2-3(B)] until 50 dB SPL, in order to match the F0 benefit of the 

concurrent-vowel data, at least qualitatively. 

Figure 2-3(C) shows the model scores for percent correct identification of 

one vowel of the pair as a function of vowel level (solid line). The identification 

score was 100% and was independent of F0-difference and vowel-level 

conditions. For comparison, this figure also shows the actual percent correct 

identification score of one vowel as a function of vowel level, calculated from the 

concurrent-vowel data (dashed line). The model score was successful in 

capturing the identification score of one vowel, quantitatively. These findings 

suggest that F0 difference and vowel level are vital for identifying the both vowels 

of the pair [compare Figs. 2-3(A) vs. 2-3(C) or Figs 2-1 vs. 2-3(C), dashed line]. 

Additionally, it may suggest that the level-dependent changes in identification 

scores of both vowels [Fig. 2-1 for data or Fig. 2-3(A) for model response] are 

largely influenced by the level-dependent changes in phase-locking of AN fibers 

to second-vowel characteristics (i.e., either formants or F0, or may be both). 

Figure 2-3(D) shows the actual (dashed line) and predicted F0 benefit (solid line) 

the model could successfully capture the pattern of variation in actual F0 benefit 

with vowel level, qualitatively. The lowest F0 benefit at 25 dB SPL in the model 

[Fig. 2-3(D)] or in the data (Fig. 2-1) could be associated with the limited F0-

guided segregation [Fig. 2-3(B)] and thus confirms one of the suggestions from 

Chintanpalli et al. (2014). 



36 
 

response variability that was not captured in the current modeling. To 

compensate this effect to some extent, the similarity scores were used to 

confusion. This metric was also used by Chintanpalli and Heinz (2013) to 

evaluate their mo

vowel level but here the current study further extends across vowel levels. As 

Figure 2-3 Effect of level on concurrent-vowel identification for same- and different-F0 
conditions. (A) Percent identification score of both vowels, (B) Percent vowel segregation, (C) 
Percent identification of one vowel of the pair, and (D) F0 benefit comparison between data 
and model scores. Note that the legend mentioned in panel (A) also applies to panel (B) and 
the legend mentioned in panel (C) also applies to panel (D). The data (dashed line) 
corresponds to the Chintanpalli et al. (2014) behavioral data. 
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per this metric, for a given concurrent vowel, the model was given 1 point if it 

predicted the correct answer, 0.5 point if it predicted the first major confusion, 

0.25 point if it predicted the second confusion and 0 point if it predicted the 

2-4 shows the 

percent similarity score, across all pairs, as a function of vowel level for both 

same- (squares) and different-F0 (triangles) conditions. For the same-F0 

condition, similarity scores were lower across levels. This suggests the model 

 was no 

F0 guided vowel segregation. The modified version of Meddis and Hewitt (1992) 

segregation algorithm can account for the level-dependent changes in percent 

correct identification scores for same- and different-F0 conditions [Fig. 2-3(A)], 

but it does not fully account for concurrent-vowel identification data by listeners 

when specific confusions are considered. 

 

Figure 2-4 Similarity scores as a function of vowel level for same and different F0 conditions to 
 

To understand the availabilities of formant and F0 difference cues 

underlying the level-dependent changes in concurrent vowel identification, a 
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specific vowel pair /æ, / was analyzed for an illustration purposes. Both of these 

vowels have same F1 (= 750 Hz) and they differ with each other in terms of F2 

and F3 (Table 2-1). Figure 2-5 shows the model response for /æ/ (F0 = 100 Hz), 

/ / (F0 = 100 Hz) presented at 25 dB SPL, 65 dB SPL and 85 dB SPL (individual 

columns). As expected, there was no F0 based segregation at each level and 

hence the model response was made from a single PACF using the m1/m2 

criterion (step 2 of Fig. 2-2). Figures 2-5(A-C) shows the individual ACF channels 

with CFs, logarithmically spaced between 125 Hz and 4000 Hz, for 25 dB SPL, 

65 dB SPL and 85 dB SPL, respectively. The estimated F0 was correctly 

identified as 100 Hz, which was indicated by an arrow in PACF at each level [Fig. 

2-5(D-F)]. For vowel identification at each level, the timbre region of the PACF 

was compared with the previously stored templates of five different single 

vowels. For 25 dB SPL, the model response was /æ, æ/, which was the second 

confusion (identified as 12%

identified as 44%. The same confusion was predicted by the model for 65 dB 

SPL; however, it was reduced to 7% and the correct identification score was 

increased to 56%. The model response was correct for 85 dB SPL but it was 

identified as only 28% 

was /æ/, /æ/ (identified as 29%) in the concurrent-vowel data and the model can 

successfully predict this confusion as well if the model was forced to pick only 

the identical vowels by increasing the m1/m2 value. With m1/m2 being fixed 

across levels, the model responses were successful in either predicting the 

confusion or correct answer across levels. However, only for 65 dB SPL, if 

m1/m2 was changed to 2.505, then the model response was correct. If the model 

response had to be correct only for 25 dB SPL, then m1/m2 should be very high 
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(>= 5.9). All these findings suggest that the model responses may be influenced 

by the level-dependent changes in cochlear non-linearities and m1/m2 ratio of 

the Meddis and Hewitt (1992) F0-guided segregation algorithm. 

Figure 2-6 shows the model responses for /æ/ (F0 = 100 Hz), / / (F0 = 

126 Hz) presented at 25 dB SPL. The peak in the PACF occurred at 10 ms, which 

corresponds to correct F0 estimation (= 100 Hz), as indicated by an arrow in 

PACF [Fig. 2-6(B)]. The percent ACF channels that showed a peak at 10 ms was 

44%, which was marginally higher than the user-defined segregation parameter 

(43%). Thus, the model identification is based only using the m1/m2 criterion. 

The model response was /æ/, /æ/, which was the first confusion (identified as 

Figure 2-5 Model responses for /æ/ (F0 = 100 Hz), / / (F0 = 100 Hz) presented at 25 dB SPL 
(first column), 65 dB SPL (second column) and 85 dB SPL (third column). For panels (A to C), 
the individual ACF channels are computed from 100 different AN fibers, ranged logarithmically 
between 125 Hz to 4000 Hz. These channels are added together to obtain the pooled ACF 
(bottom panels; D, E and F). The estimated F0 is 100 Hz, as indicated by the arrow. The model 
responses are shown in the bottom panels. The timbre regions of the /æ/ (solid line) are shown 
in the bottom panels and /  (dotted line) is shown only in panel F. Note that these 
templates are shown with an arbitrary vertical and horizontal offsets for clarity. For visualization 
purposes, only 50% channels are shown in the ACF plots. 
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31% m1/m2 ratio was changed to 2.56, 

then the model was successful in predicting the correct answer. 

Figure 2-7 shows the model responses for /æ/ (F0 = 100 Hz), / / (F0 =126 

Hz) presented at 65 dB SPL. There was a peak at 10 ms in the pitch region of 

the PACF [Fig. 2-7(D)] and thus the dominant F0 = 100 Hz was estimated 

correctly. The model does F0 segregation as 50% of the ACF channels showed 

a peak at 10 ms, which was less than the segregation parameter (52%). The 

ACF channels, that had a peak at 10 ms, were grouped together [Fig. 2-7(B)] 

whereas the remaining channels were grouped separately [Fig. 2-7(C)]. Two  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6 Model responses for /æ/ (F0 = 100 Hz), / / (F0 = 126 Hz) presented at 25 dB SPL. 
The caption is similar to one of the columns in Figure 2-5. 



41 
 

 

segregated PACFs were computed from these groups. For vowel identification, 

the timbre region of the segregated PACF was compared with the previously 

stored templates of five different single vowels. The model identified /æ/ and / / 

correctly [Figs. 2-7(E) and 2-7(F)]. The respective F0 of the vowel was correctly 

identified only in one case [i.e., F0 = 100 Hz, Fig. 2-7(E)] but in another case, the 

PACF indicated that there were two prominent peaks at 100 Hz, PACF amplitude 

= 1.74, and 126 Hz, with PACF amplitude = 1.49 [Fig. 2-7(F)]. Since only one of 

the F0s needs to be estimated correctly for vowel segregation using F0 

difference (Meddis and Hewitt, 1992), the model was successful in identifying 

both the vowels.  

Figure 2-7 Model responses for /æ/ (F0 = 100 Hz), / / (F0 = 126 Hz) presented at 65 dB SPL. 
The first column corresponds to the individual ACF channels from 100 different AN fibers. These 
channels are added together to obtain the pooled ACF (panel D). The two fundamental 
frequencies in the panel D, are denoted by F01 and F02. The estimated F0 is F01 (= 100 Hz). The 
second column shows only ACF channels that have peak at 10 ms (panel B) and the remaining 
channels are placed in the third column as shown in panel (C). The model responses are correct 
as shown in panels (E) and (F). Note that the timbre regions of the templates /æ/ and / (solid 
lines) are shown in panels (E) and (F) with an arbitrary vertical and horizontal offsets for clarity. 
For visualization purposes, only 50% channels are shown in the ACF plots. 
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Figure 2-8 shows the model responses for /æ/ (F0 = 100 Hz), / / (F0 = 

126 Hz) presented at 85 dB SPL. The dominant F0 was estimated correctly, as 

there was a peak at 7.9 ms (marginally higher than 10 ms) in the pitch region of 

the PACF [Fig. 2-8(D)]. Since only 24% of the ACF channels had a peak at 7.9 

ms, F0 based vowel segregation was allowed prior to its identification. The model 

identified / / with F0 = 126 Hz [Fig. 2-8(E)] correctly but incorrectly responded to 

/ / with F0 = 100 Hz [Fig. 8(F); note that the second peak in the PACF 

corresponds to 126 Hz]. The response of the model was / , /, which was the 

second confusion (identified as 11%) and the correct identification score was 

55%  At 85 dB SPL due to improper vowel 

segregation, the model failed to obtain the correct answer. 

Figure 2-8 Model responses for /æ/ (F0 = 100 Hz), / / (F0 = 126 Hz) presented at 85 dB SPL. 
The figure caption is similar to Figure 2-7. The estimated F01 = 126 Hz. The second column 
shows only ACF channels that have peak at 7.9 ms (panel B) and the remaining channels are 
placed in the third column as shown in panel (C). The model responses are shown in panels (E) 
and (F). The model response is correct for panel (E) but incorrect for panel (F). The timbre region 
of the template /  
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2.4 Discussion 

2.4.1 Sensitivity of predicted concurrent-vowel identification scores to 

AN-model parameters 

 One recurrent question that arises in studies that use AN models (largely 

derived from animal studies) to predict human performance is whether the exact 

parameters used for cochlear frequency selectivity and spontaneous-rate 

distributions are appropriate for humans. Thus, this section investigates how 

changes in the AN-model parameters (e.g., tuning and SR) affect identification 

score for both vowels. There is a strong evidence that human tuning is sharper 

than animals (e.g., Joris et al., 2011; Shera et al., 2002), and thus we have 

directly altered the auditory-filter bandwidth at each CF to simulate an increase 

in tuning sharpness in the cat AN model (Zilany et al., 2014). To address the 

sensitivity issue associated with changes in SR, the default values for high, 

medium and low-SR fibers (i.e., 100, 4 and 0.1 spikes/sec) of the AN model 

(Zilany et al., 2014) were altered to 20, 2 and 0.01 spikes/sec, respectively. For 

both conditions (i.e., changes in tuning and SRs), it was found that the model 

scores can successfully capture the qualitative level-dependent effects for the 

same- and different-F0 conditions. The main requirement was that the pattern of 

level-dependent changes in vowel segregation for the different-F0 condition was 

preserved and also that the vowel segregation was zero at each level for the 

same-F0 condition [Fig. 2-3(B)].  More specifically, the pattern of vowel 

segregation with increasing level for the different-F0 condition has to be similar, 

although the absolute values could differ. Thus, the overall conclusions of this 

modeling study do not appear to be dependent on the specific parameter choices 

related frequency tuning and spontaneous-rate distributions. It is possible that a 
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better quantitative fit to the concurrent-vowel data could be obtained by altering 

the m1/m2 value slightly.         

2.4.2 Effect of m1/m2 on identification of identical vs. different vowels 

 The selection of m1/m2 will influence the model response (either identical 

or different vowels; Fig. 2-2) under the no-F0-segregation condition and will 

greatly affect the percent correct identification. Thus, in the current objective, 

m1/m2 value was varied from 1.25 to 3, with increments of 0.25. It was found 

that m1/m2 = 2.5 was successful in predicting the identification scores of both 

vowels [Fig. 2-3(A)] and F0 benefit [Fig. 2-3(D)] at least qualitatively, and one-

vowel identification quantitatively [Fig. 2-3(C)]. Additionally, when averaged 

across vowel pairs and levels for the same-F0 condition, the percentage of model 

responses that were either correct or were a confusion observed in the data was 

78%. For the different-F0 conditions, the model had only 45 vowel pairs (out of 

150) across levels that went to a no-F0-segregation condition and the percent 

model response either for correct answer or observed confusion was 82%. 

2.4.3 Selection of single-vowel templates for identification 

The optimal single-vowel templates at each level (i.e., 5 vowel templates 

per level) were used for identifying the vowels. The model response could be 

influenced by the manner in which the single-vowel templates are generated. For 

example, when a single template for each vowel was generated regardless of 

level (i.e., only 5 vowel templates), it was found that model scores did not capture 

the patterns of level-dependent changes in identification scores for the same- 

and different-F0 conditions. Thus, this analysis further suggests that the 
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templates have to be different for each level due to the level-dependent changes 

in cochlear non-linearities (Ruggero et al., 1997).   

2.4.4 Possible physiological mechanisms underlying the level-dependent 

changes in identification scores of concurrent vowels 

 The model scores of concurrent-vowel identification suggest that the 

level-dependent changes in phase-locking of AN fibers to vowel formants and 

F0s can account for trends in segregation and identification of concurrent vowels 

across levels and F0 conditions. Thus, the present predictions provide 

quantitative support for the qualitative suggestions from Chintanpalli et al. 

(2014). However, the model responses were lower across levels and F0 

difference, as compared to identification data [compare Fig. 2-3(A) vs. Fig. 2-1], 

suggesting that other cues, apart from phase locking, could also be contributing. 

Rate-place cues could further improve the scores for low-to-mid levels, as it has 

s (Sachs and Young, 1979) and F0s 

(Keilson et al., 1997). Other central auditory cues (e.g., cognition, attention) can 

also interact with these identification scores of both vowels. However, the 

modeling adopted in this study did not take into account the rate-place of the 

periphery and central auditory cues. 

2.4.5 Conclusion 

The present computational modeling study predicted the level-dependent 

changes in identification scores of both vowels for the cases with and without F0 

difference between the vowels being presented. The model was developed by 

cascading the physiologically realistic AN model with a modified version of 

Meddis and Hewitt F0 based segregation algorithm (for complete block diagram, 
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Fig. 2-2). The model was tested against the identification score of both vowels 

and identification score of one vowel of the pair as a function of level for same- 

and different-F0 conditions. The segregation parameter of Meddis and Hewitt 

(1992) modeling was controlled by the actual F0 benefit across levels. The 

results from the modeling revealed that vowel segregation (either using the F0 

difference or formant difference) based on the temporal coding cues of AN fibers 

can qualitatively explain the level-dependent changes in identification scores of 

both vowels with and without F0 difference [Fig. 2-3(A)]. Additionally, the model 

was successful in capturing the identification of one vowel quantitatively [Fig. 2-

3(C)] and F0 benefit qualitatively [Fig. 2-3(D)].  
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