LIST OF FIGURES / SCHEMES

Figure 1.1:	Analogy between molecular and supramolecular chemistry 1
Figure 1.2:	Categorization of non-covalent interactions 3
Figure 1.3:	Comparison between IUPAC definition and basic definition 4
Figure 1.4:	Strength of various interactions 5
Figure 1.5:	(a) Three conformers of benzene dimer for different π - π stackings, (b) Quadrupole moment of benzene 6
Figure 1.6:	(a) $\pi^{\bullet\bullet\bullet\pi}$ interaction in adjacent pyrene moiety in 1D CP (CCDC No. 1536824), (b) 2D network extending to 3D network through $\pi^{\bullet\bullet\bullet\pi}$ interaction in a MOF of a pyrazole ligand (CCDC No. 925250) 6
Figure 1.7:	Coordination bond interaction: CPs and MOFs 7
Figure 1.8:	(a) Schematic representation of first-generation porous network MOFs, (b) third-generation porous network MOFs 9
Figure 1.9:	Different architecture of 1D CPs/MOFs (Paddle-wheel: CCDC No. 1850472) 10
Figure 1.10:	Overview of different types of geometries in 1D, 2D, and 3D networks 12
Figure 1.11:	(a) 1D Linear chain CP (CCDC No. 1108424), (b) 1D Linear chain CP with hugging helical type conformation (CCDC No. 163024), (c) Crisscross pattern in 1D Linear chain CP (CCDC No. 179774) 13
Figure 1.12:	(a) 1D Zigzag CP (CCDC No. 629972), (b) 1D Zigzag CP with 2 Over and 2 Under type packing (CCDC No. 207401), (c) 1D Molecular Ladder CP (CCDC No. 1248145) 14
Figure 1.13:	(a) Represents the sidewise extension of 1D molecular railroad (CCDC No. 1222031), (b) Pink color single chain represents 1D molecular antenna; where red dotted lines are shown noncovalent interaction (CCDC No. 836453) 16
Figure 1.14:	(a) and (b) two different geometrical with (6,3) representation in 2D infinite nets, (c) (4,4) representation in 2D infinite nets 16
Figure 1.15:	2D Rectangular grid network by 4,4'-bpy and its analogue where the cavities are encapsulated with benzene molecules (represented in space-fill model) (CCDC No. 156766) 17
Figure 1.16:	The net view of a 2D molecular bilayer of $[Co(NO_3)(L)_{1.5}]_n$, (CCDC No. 120532) 18
Figure 1.17:	2D herringbone network from mixed ligand (CCDC No. 614666) 19
Figure 1.18:	2D honeycomb network from (a) pyrazine (CCDC No. 1206001), and (b) 4,4'- bpy (CCDC No. 1302600) ligands 19

Figure 1.19:	(a) Three -connected T-shaped geometry, (b) 3D Lincoln Log networks Zaworotko group (CCDC No. 1321203), (c) Three-connected Cu(II) center w 4,4'-bpy, (d) Rectangular shape of three different size channels in 3D networks with nitrate anions (CCDC No. 1311992), (e) Adamantanoid cage of 4,4'-W with Ag(I) by Ciani group (CCDC No. 1302198)	vith orks
Figure 1.20:	Classification of interpenetration in CPs/MOFs networks	21
Figure 1.21:	Bis(pyridyl)-mono-imine directed zigzag and helical chain (Hgl ₂ CCDC 835329 and HgCl ₂ CCDC No. 835327)	No. 23
Figure 1.22:	Different geometry in CPs (T-shaped Cd CP: CCDC No. 154668, distorted shaped Cd CP: CCDC No. 154667, F-joint: CCDC No. 154667, Propel shape: CCDC No. 166629)	
Scheme 1.1:	Different hydrogen bonding motifs	26
Scheme 1.2:	Different bis(pyridyl) moieties with amide spacer and their conformation	27
Figure 1.23:	Left-/right handed helical CPs by bis(pyridyl)-diamide as co-ligand (CCDC 954315)	No. <mark>28</mark>
Figure 1.24:	Two types of SBUs from the same ligand with β sheet recognition (CCDC 253152 and 253151)	No. <mark>29</mark>
Figure 1.25:	Possible types of PSM	30
Figure 1.26:	SC-SC leads the 2D to 3D transformation by removable of I_2 molecules	31
Figure 1.27:	Representation of two different routes of transmetalation	31
Figure 1.28:	Insertion of naphthalene guest molecules (CCDC No. 630422)	32
Figure 1.29:	Application of MOFs by using their properties with few examples	33
Figure 1.30:	Jablonski diagram	35

Figure 2.1:	Purchased chemicals which were used as precursors for the synthesis of o ligands	rganic 48
Scheme 2.1:	Aryl based imine spacer ligands	50
Scheme 2.2:	Pyrene based imine spacer ligands	51
Scheme 2.3:	Synthesis of ligands-based on amide spacers	51
Scheme 2.4:	Synthesis of ligands based on sulfonamide spacers	52
Figure 2.2:	Synthesis of CPs in crystalline form through slow diffusion	52
Figure 2.3:	High pressure autoclave reactor for solvothermal synthesis of MOFs	53
Figure 2.4:	Yoe-Jones Method	57
Figure 2.5:	Mathematical calculation for Yoe-Jones Method	57
Figure 2.6:	Schematic representation of instrumentation part of spectrofluorometer	58

CHAPTER 3A

Figure 3A.1:	Energy diagram for H- and J-aggregates based on Kasha's excitation theory model 64
Figure 3A.2:	Three types of molecule array in face-to-face stacking in L1d 66
Scheme 3A.1	Bis(aryl)-di-imine ligands with (CH ₂) _n spacer backbone 66
Figure 3A.3:	C-H•••N interactions of butylene spacer resulted in corrugated layers of head- to-tail interaction 66
Figure 3A.4:	Illustration of crystal structure of L1a : (a) Asymmetric unit of L1a ; (b) Arrangement of adjacent molecules; (c) Packing of the molecules (figures were generated from the data obtained from CCDC No. 1118104) 71
Figure 3A.5:	Illustration of crystal structure of L1b : (a) Asymmetric unit of L1b showing the non-planar geometry of the molecule; (b) Centroid-to-centroid distance between the adjacent aromatic rings; (c) Packing of the molecules (figures were generated from the data obtained from CCDC No. 1207284) 71
Figure 3A.6:	Illustration of crystal structure of L1d : (a) Packing of the molecules (hydrogen atoms are removed for clarity); (b) Three types of molecules of L1d are present in the asymmetric unit, which is shown in different colours. (figures were generated from the data obtained from CCDC No. 963345) 72
Figure 3A.7:	Illustration of crystal structure of L2b : (a) Asymmetric unit; (b) 1D arrangement of the molecules: notice that the aromatic centroid-to-centroid distance is more than 5 Å; (c) Herringbone arrangement of L2b molecules in crystal packing (figures were generated from the data obtained from CCDC No. 608471) 72
Figure 3A.8:	Illustration of crystal structure of L2d : (a) Asymmetric unit; (b) Offset arrangement of the molecules to form a 1D network; (c) Herringbone arrangement of the molecules of L2d (hydrogen atoms were removed for clarity) (figures were generated from the data obtained from CCDC No. 962823) 73
Figure 3A.9:	Illustration of crystal structure of L2c and L3c : (a) Asymmetric unit in L2c ; (b) Packing of the molecules of L2c via C-H•••N interactions to form non-covalent macrocyclic moiety; (c) Asymmetric unit in L3c ; (d) Non-covalent "macrocyclic" moiety in L3c ; (e) Offset packing of the corrugated layers in L3c

Figure 3A.10: (a) Calculated PXRD of L1a; generated from crystal data CCDC No. 1118104;
(b) Experimental PXRD of L1a; (c) Calculated PXRD of L1b; generated from crystal data CCDC No. 1207284; (d) Experimental PXRD of L1b; (e) Calculated PXRD of L2b; generated from crystal data CCDC No. 608471; (f) Experimental PXRD of L2b

obtained from CCDC No. 721559 (L2c) and 930055(L3c)

(hydrogen atoms are removed for clarity) (figures were generated from the data

74

Figure 3A.11: UV-Visible absorption spectra of (a) L1a, (b) L1b, (c) L2a, (d) L2b, (e) L3a,(f) L3b, (g) L4a, (h) L4b in solid-state and in 1×10^{-4} M solution76
Figure 3A.12: PL spectra of L2a (a) $\lambda_{ex} = 300$ nm, (b) $\lambda_{ex} = 450$ nm and L2b (c) $\lambda_{ex} = 300$ nm, (d) $\lambda_{ex} = 420$ nm at different concentrations77
Figure 3A.13: PL spectra of L3a (a) $\lambda_{ex} = 320$ nm, (b) $\lambda_{ex} = 440$ nm and L3b (c) $\lambda_{ex} = 300$ nm,(d) $\lambda_{ex} = 420$ nm at different concentrations78
Figure 3A.14: PL spectra of L4a (a) $\lambda_{ex} = 280$ nm, (b) $\lambda_{ex} = 450$ nm and L4b (c) $\lambda_{ex} = 320$ nm, (d) $\lambda_{ex} = 420$ nm at different concentrations79
Figure 3A.15: Solid-state PL spectra of (a) L2b, (b) L2a, (c) L3b, (d) L3a, (e) L4b and (f) L4a 80
Figure 3A.16: Normalized absorption and emission spectra (at excitation λ = 300 nm) of (a)L2a and (b) L2b81
Figure 3A.17: TCSPC decay profiles of L2b in different concentration in MeOH with excitation at 375 nm81
 Scheme 3A.2: Arrangement of the molecules of L1a, L1b and L1d in the solid state; notice the face-to-face stacking of the molecules. Although it is inclined in the case of L1a and L1b, no fluorescence is observed in solid-state
Scheme 3A.3: The face-to-face stacking arrangement of L2b molecules 84
Scheme 3A.4: Arrangement of the molecules of L2d and L3d in the solid state; Notice the offset stacking of molecules 84
Scheme 3A.5: Arrangement of the molecules of L2c and L3c in the solid-state; notice the formation of new "chromophore" on aggregation and in the solid-state85
Figure 3A.18:1H NMR spectra of L1a at different concentrations taken in CDCI385
Figure 3A.19 : ¹ H NMR spectra of L3b at different concentrations taken in CDCI ₃ 86
Scheme 3A.6: Arrangement of the molecules in L2b and L3b resulted in deshielded aromaticproton and shielded methyl protons87
Figure 3A.20 : ¹ H NMR spectra of L2d at different concentrations taken in CDCI ₃ 87
Figure 3A.21: NOESY of L2b in CDCI3 at a concentration of 2 M88

CHAPTER 3B

Scheme 3B.1	: Approaches to remove thorny ACQ effect of pyrene 92
Figure 3B.1:	Effective substitution positions in pyrene which may prevent ACQ. The redcircles represent the more active position on the periphery of pyrene93
Figure 3B.2:	Illustrations of crystal structure of L5a : (a) Molecular geometry of L5a ; (b) Non-covalent interactions present between the molecules of L5a ; (c) Benzene C-H••• π interactions between two L5a molecules; (d) Pyrene C-H••• π interactions between two L5a molecules 99

- Figure 3B.3: Illustrations of crystal structure of L5a: Packing of L5a molecules in three dimensions 100
- Figure 3B.4: UV-Visible spectra in DMF and solid-state (in BaSO4): (a) L5a; (b) L6a; (c) L7a; (d) L8a; (e) L9a 101
- Figure 3B.5: PL spectra of (a) L5a (excitation wavelength 420 nm) and (b) L6a (excitation wavelength 370 nm) in DMF at different concentrations (slit width 10 nm) 102
- Figure 3B.6: PL spectra of (a) L7a (excitation wavelength 420 nm), (b) L8a (excitation wavelength 400 nm) and (c) L9a (excitation wavelength 420 nm) in DMF at different concentrations and in solid state 103
- Scheme 3B.2: Length of alkyl spacer and its effect on aggregate concentration for maximum AIE 104
- Figure 3B.7:Aggregation induced emission in THF: Water104
- Scheme 3B.3: (a) ACQ observed on L6a due to stacking of aromatic rings; (b) AIE observed in L7a-L9a due to the presence of flexible alkyl chain in the spacer 105

CHAPTER 3C

Scheme 3C.1	: Various types of H-bonding synthon of amide 11
Figure 3C.1:	Sulfonamide featuring as anion receptors11
Scheme 3C.2	Schematic correlation between the non-covalent interactions and emissic properties 11
Figure 3C.2:	Benzenesulfonamides tuned with various substituents to extract photophysical properties 11
Scheme 3C.3	Bis(pyridyl)-disulfonamides and their amidic counter parts 11
Figure 3C.3:	ORTEP (showing thermal ellipsoid at 50% probability) of asymmetric unit of L10b
Figure 3C.4:	Illustrations of crystal structure of L10b : (a) Geometry of a molecule of L10 (b) N-H•••N hydrogen bonded interactions resulting in 1D hydrogen bonded chains; (c) packing of the molecules via various non-covalent interactions 11
Figure 3C.5:	ORTEP (showing thermal ellipsoid at 50% probability) of asymmetric unit of L11b
Figure 3C.6:	Illustrations of crystal structure of L11b : (a) Geometry of a molecule of L11b (b) N-H•••N hydrogen bonded interactions resulting packing of L11b ; (c) N H•••N hydrogen bonded interactions between the L11b molecules
Figure 3C.7:	(a) Experimental and simulated powder XRD of L10b ; (b) Experimental and simulated powder XRD of L11b 12
Scheme 3C.4	(a) Arrangement of the molecules of L16b ; notice the prevention of self complimentary amide to amide hydrogen bonds, (b) arrangement of the molecules of L11b ; notice the formation of N-H-N hydrogen bond due to tetrahedral sulfur centre 12

- Figure 3C.8:Illustrations of crystal structure of L16b: (a) Molecular geometry (b) packing of
molecules via N-H•••N hydrogen bond interactions to form 1D network;
Structures are generated from CCDC no. 259256122
- Figure 3C.9:Illustrations of crystal structure of L15b: (a) Molecular geometry (b) packing of
molecules via N-H•••N hydrogen bond interactions to form 2D network;
Structures are generated from CCDC no. 694503122
- Figure 3C.10:UV-Visible spectra of L10b-L12b in methanol and solid state: (a) L10b (b) L11b and (c) L12b 123
- Figure 3C.11: Concentration dependent emission spectra: (a) L10b; (b) L11b and (c) L12b 124
- Scheme 3C.5: Arrangement of the molecules of L10b in solid state and in solution state (a) & (b); observe face to face stacking in solid state (a); notice the prevention of ACQ in lower concentration (b), no fluorescence observe in solid state due to non-planarity (c); non-planarity of L11b diminished in solution state (d) 126

CHAPTER 4A

Figure 4A.1:	Classification of metal ion detection techniques	128
Scheme 4A.1	Metal ion sensing property of L3c	131
Figure 4A.2:	(a) UV-Visible absorption spectra of L3c with different metal salts in 1:1 ra IR spectrum of (a) L3c , (b) 1: 1 (L3c : Ni ⁺²), (c) 1: 1 (L3c : Cd ⁺²)	itio, 135
Figure 4A.3:	(a) UV-Visible absorption spectra of 1 mL of 0.5×10^{-4} M L3c on add different volume of 10^{-3} M of Ni(II) solution (Total solution volume = 2 m (b) Absorbance (of n $\rightarrow \pi^*$ peak) vs. Volume of Ni(II) solution in overall volu of 2 mL solution	nL),
Figure 4A.4:	(a) UV-Visible absorption spectra of 1 mL of 0.5×10^{-4} M L3c on add different volume of 10^{-3} M of Cd(II) solution (Total solution volume = 2 m (b) Absorbance (of n $\rightarrow \pi^*$ peak) vs. Volume of Cd(II) solution in ove volume of 2 mL solution	nL),
Figure 4A.6:	Binding constant calculation of Ni(II)-L3c complex	138
Figure 4A.5:	(a) Determination of binding constant of Ni ⁺² with L3c from Yoe Jones method using non-linear least square fit analysis method at 281 nm	hod 138
Figure 4A.7:	Linear fit of Absorbance (~281nm) vs. Concentration of Ni(II) in 1×10^{-5} M L3c	1 of 139
Figure 4A.8:	Selectivity of L3c towards Ni(II) and Cd(II): (a) Absorbance (281 nm) pro of L3c and Ni(II) in presence of four equivalents of interfering M^{+2} ; Absorbance (280 nm) profile of L3c and Cd(II) in presence of four equivalent of interfering M^{+2} .	(b)
Figure 4A.9:	UV-Visible absorption spectra of L2'c and L4c with different metal ions	141
Figure 4A.10	: Schematically diagram of possible structure of different di-imines	141

- Figure 4A.11: (a) The pH study of Ni(II)-L3c complex at 281 nm and inside image represents their corresponding spectra (b) Stability of Ni(II)-L3c complex with various anions at 281 nm and their absorbance profile 142
- Figure 4A.12: PXRD of Ni(II)-L3c complex; Simulated PXRD generated from crystal data CCDC no. 1043600 (blue line); Experimental PXRD of synthesized L3c-Ni(II) complex (red line) 142
- Figure 4A.13:¹H NMR spectra (a) L3c, (b) 1:1 (L3c:Cd(II)), (c) at t = 0 h, 1:2 (L3c: Cd(II)) and (d) at t = 24 h, (L3c:Cd) 143
- Figure 4A.14: (a) Illustration of crystal structure of L3c; Notice the gauche-anti-gauche conformation of butyl chain and C–H•••N interactions to form non-covalent chromophore moiety; Figures were generated from the data obtained from CCDC no. 930055 (b): Illustration of crystal structure of L3c-Ni(II): (p) Asymmetric unit; (q) O-H•••Cl- and N=C-H•••Cl- hydrogen bond interactions between the L3c-Ni(II) molecules; (r) 3D packing of the molecules; Notice the arrangement of the aromatic rings; Figures were generated from CCDC no. 1043600
- Figure 4A.15: SEM analysis of (a) Ni(II)-L3c, (b) L3c and (d) Cd(II)-L3c and (c) EDS analysis of Cd(II)-L3c 145
- Figure 4A.16: Some other Imine and Azo based Ni²⁺ sensor with their detection limit reported in literature 146

CHAPTER 4B

- Figure 4B.1: Different Schiff base moieties used for complexation through DFT calculation 152
- Scheme 4B.1: (Proposed) Metal ion sensing property of L2c 153
- Figure 4B.2: UV-Visible absorption spectra of L2c with different metal salts in 1:2 ratio 154
- Figure 4B.3: (a and b) PL spectra of L2c with different metal ions at two different excitation wavelengths. (c) Under UV-visible light (365 nm) and (d) Visible light 155
- **Figure 4B.4**: (a) UV-Visible absorption spectra for titration of L2c (1 mL; 0.5×10^{-4} M) with of Fe(II) solution of solution (1 x 10^{-3} M) in 10 µL steps (Total volume of solution = 2mL), (b) Piece wise linear fit plot of Absorbance (at 595 nm peak) vs. Volume of Fe(II) solution plot 156
- Figure 4B.5: Determination of binding constant of Fe(II) with L2c from Yoe Jones method using non-linear least square fit analysis method at 595 nm 156
- Figure 4B.6: Variation of absorbance at wavelength 278 nm by adding different metal ions 157
- **Figure 4B.7**: (a) The UV-visible spectra and the bar diagram represents the Reversibility of Fe(II)-**L2c** towards anions at 595 nm (b) Absorbance (at 595 nm) for probe-Fe⁺² complex solution at different pH values taken in the MeOH/ aqueous HEPES buffer solution (1:1, v/v, 1 mM, pH = 7.3) 158

Figure 4B.8:	NMR spectra of Fe(II)-L2c complex and L2c receptor	159
Figure 4B.9:	(a) Crystal structure of L2c and (b) Optimized structure of L2c	159

- Figure 4B.10: (a) Optimized geometry of Fe(II)-L2c complex (b) Two Fe(II) are lying in two different planes 161
- Figure 4B.11: Contour molecular orbitals of receptor and Fe(II)-L2c with HOMO-LUMO gap 162
- Figure 4B.12: (a) Theoretical UV-visible spectra of receptor L2c and (b) Fe(II)-L2c complex 162
- Figure 4B.13: The UV-visible spectra represents the determination of spike Fe(II) ion in river water sample by L2c 163

- Scheme 5.1: Pyridyl based exo-bidentate ligands equipped with groups for coordinate bond as well as hydrogen bond interactions 166
- Scheme 5.2: Synthesis of CP1 and CP2: Analysis of adsorption-desorption of iodine, solvochromism, photocatalytic dye degradation and impedance measurement 174
- Figure 5.1:Transmetalation reaction of CP1 with Cu(II): (a) Reaction kinetics monitored
by EDX and (b) Images of single crystal to single crystal transformation of CP1
to CP2176
- Figure 5.2:Illustration for crystal structure of CP1: (a) 1D looped chain in CP1176
- Figure 5.3:Illustration for crystal structure of CP1: (a) Geometry of L15b in CP1, (b)Hydrogen bond interaction of N-H groups in CP1 with the DMF molecules
(Hydrogen atoms are removed for clarity), (c) Offset packing of the 1D chains
(Chains are shown in different colours for clarity)
- Figure 5.4: Illustration for crystal structure of CP2: (a) Asymmetric unit in CP2, (b) Geometry of two types of L15b in CP2, (c) 1D looped chain, (d) Hydrogen bond interaction of N-H groups in CP2 with the DMF molecules (Hydrogen atoms are removed for clarity), (e) Offset packing of the 1D chains (Chains are shown in different colours for clarity) 179
- Figure 5.5:Temperature dependence molar magnetic susceptibility of CP1 per formula
unit: $\chi_m T$ vs T plot of CP1 fits the Curie-Weiss law180
- Figure 5.6: TGA derivative plot of weight% of (a) (CP1 and CP1*) and (b) (CP2 and CP2*) 181
- Figure 5.7:Solid state UV-visible spectrum of L15b181
- Figure 5.8: Solid state UV-visible spectra of (a) (CP1 and CP1*) and (b) (CP2 and CP2*)
 182
- Figure 5.9:Tauc plot for band gap determination in CP1 and CP2182
- Figure 5.10:Dye degradation studies of CP2 under UV light183

- Figure 5.11:(a) % dye degradation by CP1 and CP2 under UV and CFL light (b) (i) ¹H NMR
spectrum of MB in D2O and (ii) ¹H NMR spectrum of MB after degradation by
CP2 under UV light184
- Figure 5.12: Schematic representation of charge transfer for photocatalytic degradation in CPs 184
- Figure 5.13:Microscope Images of Iodine adsorption in CP1 over time185
- Figure 5.14:Adsorption of iodine by CP1, (b) Desorption of iodine from CP1, (c)Adsorption of iodine by CP2, (d) Desorption of iodine from CP2186
- Figure 5.15: (a) Nyquist plot, (b) Conductivities vs. frequency plot, (c) Modulus vs. frequency plot, (d) Dielectric vs. frequency plot 187

CHAPTER 6

Figure 6.1:	(a) ORTEP of asymmetric unit of Zn(II)-MOF showing thermal ellipsoids at 50% probability level; (b) Coordination environment of Zn(II) center and the resultant secondary building unit (SBU) 196
Figure 6.2:	Illustrations of crystal structure of Zn(II)-MOF : (a) A triangle-tessellated hexagonal net; (b) Interpenetrated 3 hexagonal net; (c) Showing different topologies in one complete pinwheel hex net with pillar; (d) Side view of interpenetrated network in ac plane 197
Figure 6.3:	Extended the core moiety of Zn(II)-MOF 197
Figure 6.4:	Thermogravimetric analysis of the Zn-MOF198
Figure 6.5:	(a) Phase purity comparison between calculated PXRD and experimental PXRD of Zn-MOF ; (b) Represents changing crystallinity after water wash of Zn-MOF 198
Scheme 6.1:	Zn(II)-MOF catalysed Knoevenagel condensation between active methylene and aldehyde substrate 199
Figure 6.6:	Stacked IR spectra compared structural integrity of Zn(II)-MOF catalyst (before catalysis) (a) & after catalysis; first cycle (b) second cycle; (c) third cycle 200
Figure 6.7:	Recyclability of Zn(II)-MOF catalyst200
Figure 6.8:	Proposed mechanism of Knoevenagel condensation from the catalyst viewpoint 201
Figure 6.9:	Representation of the pores in Zn-MOF201
Figure 6.10:	SEM results proposed the structural integrity and pore diameter (a), (b) and (c), BET-plot (d) 202

Figure 7.1:	Packing of molecules in L1a and L2b	205
igui c 7.1.		203

Figure 7.2:	$\pi \bullet \bullet \bullet \pi$ interactions with head to tail arrangement in L5a	206
Figure 7.3:	Macrocyclic chromophore species in L10b	206
Figure 7.4:	Channels in a 1D looped chain of CP1	207
Figure 7.5:	Bifunctional acid base centre in Zn-MOF	208
Scheme 7.1:	Possible CPs from L11b	209
Figure 7.6:	Pinwheel structure of Zn(II)-MOF	209

LIST OF TABLES

Table 2.1:	Instrumentation details	47
Table 2.2:	List of synthesised organic ligands	50
Table 3A.1:	UV-Visible absorption maxima for compounds L1a, L1b, L2a, L2b, L3a, L L4a and L4b	.3b , 76
Table 3A.2:	λ_{max} in the PL spectra of the compounds (Figure A-26)	79
Table 3A.3:	Molar extinction coefficient of UV-visible spectra of $\ensuremath{\text{L2a}}$ in wavelengths near nm	300 <mark>80</mark>
Table 3A.4:	Fluorescence lifetime data for L2a, L2b, L3a, L3b, L4a and L4b	82
Table 3A.5:	Absolute quantum yields in solution and solid states	83
Table 3B.1:	Crystallographic data of L5a	97
Table 3C.1:	Crystallographic data of L10b , and L11b	118
Table 3C.2:	Comparison of λ_{max} values of solution and solid state spectra	123
Table 4A.1:	Determination of Ni ⁺² ion	146
Table 4B.1:	DFT calculation table for receptor and Fe(II)-L2c complexes	160
Table 4B.2:	The bond lengths and bond angles of Fe(II)-L2c12	161
Table 4B.3:	Spike Fe(II) ion determination in river water	163
Table 5.1 :	Crystal structure data and refinement parameters for CP1 and CP2	175
Table 5.2 :	Orientations of aromatic planes of L15b in CP1 & CP2 [Planes are labelled Figure 5.3a]	d in 178
Table 6.1:	Crystal data of Zn(II)-MOF	195
Table 6.2:	Knoevenagel condensation of benzaldehydes and malononitrile	199

Abbreviation/Symbol Description % percentage 0 degree angle \angle Å angstrom alpha α beta β chi χ delta δ epsilon 3 gamma γ phi φ λ lambda mu μ nu ν theta θ rho ρ sigma σ tau τ omega ω 1D one dimensional 2D two dimensional 3D three dimensional Atomic Absorption Spectroscopy AAS ACN/MeCN acetonitrile ATR Attenuated Total Reflection bipy 4,4'-bipyridine Christian-Albrechts-University CAU

LIST OF ABBREVIATIONS / SYMBOLS

°C	degree centigrade
Calcd	Calculated
cm	centimetre
conc.	concentrated
CDCI ₃	deuterated chloroform
CPs	Coordination Polymers
COF	Covalent Organic Framework
d	doublet
DCM	dichloromethane
DMF	N,N-dimethylformamide
dil.	diluted
DMSO	dimethylsulfoxide
DMSO- <i>d</i> ₆	deuterated dimethylsulfoxide
DTA	Differential Thermal Analysis
3	molar extinction coefficient
EDX	Energy Dispersive X-Ray
EtOH	ethanol
ESI-MS	Electron Spray Ionization Mass Spectrometry
FID	Flame Ionisation Detector
FTIR	Fourier Transform Infrared
FWHM	Full width at half maximum
GC	Gas Chromatography
h	hour
HPRA	High Pressure Reactor Autoclave
HRMS	High Resolution Mass Spectrometry
HKUST	Hong Kong University of Science and Technology
ISO	International Organisation for Standardisation
IRMOF	Isoreticular Metal-Organic-Framework
J	coupling constant
L	ligand
MB	methylene blue
MeOH	methanol
т	multiplet

mgmilligramMHzMega HertzMGmalachite greenMOFsMetal-Organic-FrameworksMOmethyl orangeminminutemLmillilitermmolmillimoleMILMaterials of Institute LavoisierNMRNuclear Magnetic ResonanceORTEPOak Ridge Thermal Ellipsoid Plotppmparts per millionPSDPost-synthetic ModificationPSDPost-synthetic deprotectionRBRhodamine BSCSCsingle crystal to single crystalSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron MicroscopettritipletHButhremo Gravimetric AnalysisTEAThermo Gravimetric AnalysisTHFtetranydorfuranTLCTin Layer ChromatographyTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffractionµMmicromolar	mp	melting point
MGmalachite greenMOFsMetal-Organic-FrameworksMOmethyl orangeminminutemLmillilltermmolmillimoleMILMaterials of Institute LavoisierNMRNuclear Magnetic ResonanceORTEPOak Ridge Thermal Ellipsoid Plotppmparts per millionPSDPost-synthetic deprotectionRBRhodamine BSCSCsingletSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron MicroscopettriplettButertiary butylTEAThermo Gravimetric AnalysisTHFtertahydrofuranTLCThin Layer ChromatographyTCSPCTime Correlated Single Photon CountTMStertamethylsilaneTMUUtraVioletUVUtraVioletUiOUniversity of OsloXRDX-ray diffraction	mg	milligram
MOFs Metal-Organic-Frameworks MO methyl orange min minute mL milliliter mmol millimole MIL Materials of Institute Lavoisier NMR Nuclear Magnetic Resonance ORTEP Oak Ridge Thermal Ellipsoid Plot ppm parts per million PSM Post-synthetic deprotection RB Rhodamine B SCSC singlet SQUID Superconducting Quantum Interference Device SEM Scanning Electron Microscope t triplet tBu tertiary butyl TEA Thermo Gravimetric Analysis THF tertandydrofuran TLC Thin Layer Chromatography TMU Tarbiat Modares University UV UtraViolet UiO University of Oslo	MHz	Mega Hertz
MO methyl orange min minute mL milliliter mmol millimole MIL Materials of Institute Lavoisier MMR Nuclear Magnetic Resonance ORTEP Oak Ridge Thermal Ellipsoid Plot ppm parts per million PSM Post-synthetic Modification PSD Post-synthetic deprotection RB Rhodamine B SCSC singlet SQUID Superconducting Quantum Interference Device SEM Scanning Electron Microscope t triplet /Bu tertiary butyl TEA Thermo Gravimetric Analysis THF tetrahydrofuran TLC Thin Layer Chromatography TMU Tarbiat Modares University UV UltraViolet UiO university of Oslo XRD X-ray diffraction	MG	malachite green
minminutemLmillilitermmolmillimoleMILMaterials of Institute LavoisierNMRNuclear Magnetic ResonanceORTEPOak Ridge Thermal Ellipsoid Plotppmparts per millionPSMPost-synthetic ModificationPSDPost-synthetic deprotectionRBRhodamine BSCSCsinglet crystal to single crystalSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron Microscopettriplett-ButriethylamineTGAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	MOFs	Metal-Organic-Frameworks
mLmillitermmolmillimoleMILMaterials of Institute LavoisierMIRNuclear Magnetic ResonanceORTEPOak Ridge Thermal Ellipsoid Plotppmparts per millionPSMPost-synthetic ModificationPSDPost-synthetic deprotectionRBRhodamine BSCSCsingle crystal to single crystalSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron Microscopettriplett-ButriethylamineTGAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTMUTarbiat Modares UniversityUVUltraVioletUIOUniversity of OsloXRDX-ray diffraction	MO	methyl orange
mmolmillimoleMILMaterials of Institute LavoisierMMRNuclear Magnetic ResonanceORTEPOak Ridge Thermal Ellipsoid Plotppmparts per millionPSMPost-synthetic ModificationPSDPost-synthetic deprotectionRBRhodamine BSCSCsingle crystal to single crystalSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron MicroscopettripletrBatertiary butylTEAThermo Gravimetric AnalysisTHFtertanydrofuranTLCThin Layer ChromatographyTMUTarbiat Modares UniversityUVUltraVioletUIOUniversity of OsloXRDX-ray diffraction	min	minute
MILMaterials of Institute LavoisierNMRNuclear Magnetic ResonanceORTEPOak Ridge Thermal Ellipsoid Plotppmparts per millionPSMPost-synthetic ModificationPSDPost-synthetic deprotectionRBRhodamine BSCSCsingle crystal to single crystalSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron MicroscopettripletrBatripletrEAThermo Gravimetric AnalysisTILCThin Layer ChromatographyTKStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUIOUniversity of OsloXRDX-ray diffraction	mL	milliliter
NMRNuclear Magnetic ResonanceORTEPOak Ridge Thermal Ellipsoid Plotppmparts per millionPSMPost-synthetic ModificationPSDPost-synthetic deprotectionRBRhodamine BSCSCsingle crystal to single crystalSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron Microscopettriplett-Butritity butylTEAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	mmol	millimole
ORTEPOak Ridge Thermal Ellipsoid Plotppmparts per millionPSMPost-synthetic ModificationPSDPost-synthetic deprotectionRBRhodamine BSCSCsingle crystal to single crystalssingletSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron Microscopettriplett-Butertiary butylTEAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTCSPCTime Correlated Single Photon CountTMUUltraVioletUVUltraVioletUIOX-ray diffraction	MIL	Materials of Institute Lavoisier
prmparts per millionPSMPost-synthetic ModificationPSDPost-synthetic deprotectionRBRhodamine BSCSCsingle crystal to single crystalssingletSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron Microscopettriplett-Butertiary butylTEAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTCSPCTime Correlated Single Photon CountTMStetramethylsilaneTMUUltraVioletUVUltraVioletUiOX-ray diffraction	NMR	Nuclear Magnetic Resonance
PSMPost-synthetic ModificationPSDPost-synthetic deprotectionRBRhodamine BSCSCsingle crystal to single crystalssingletSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron Microscopettriplett-Butertiary butylTEAtriethylamineTGAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	ORTEP	Oak Ridge Thermal Ellipsoid Plot
PSDPost-synthetic deprotectionRBRhodamine BSCSCsingle crystal to single crystalssingletSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron Microscopettriplett-Butertiary butylTEAtriethylamineTGAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	ppm	parts per million
RBRhodamine BSCSCsingle crystal to single crystalssingletSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron Microscopettriplett-Butertiary butylTEAtriethylamineTGAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCTime Correlated Single Photon CountTMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUiOX-ray diffraction	PSM	Post-synthetic Modification
SCSCsingle crystal to single crystalssingletSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron Microscopettriplett-Butertiary butylTEAtriethylamineTGAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUiOX-ray diffraction	PSD	Post-synthetic deprotection
ssingletSQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron Microscopettriplett-Butertiary butylTEAtertiary butylTGAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTCSPCTime Correlated Single Photon CountTMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	RB	Rhodamine B
SQUIDSuperconducting Quantum Interference DeviceSEMScanning Electron Microscopettriplett-Butertiary butylTEAtriethylamineTGAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTCSPCTime Correlated Single Photon CountTMStetramethylsilaneTMUJarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	SCSC	single crystal to single crystal
SEMScanning Electron Microscopettriplett-Butertiary butylTEAtertiary butylTGAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTCSPCTime Correlated Single Photon CountTMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	S	singlet
ttriplett-Butertiary butylTEAtertiary butylTEAtriethylamineTGAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTCSPCTime Correlated Single Photon CountTMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	SQUID	Superconducting Quantum Interference Device
t-Butertiary butylTEAtriethylamineTGAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTCSPCTime Correlated Single Photon CountTMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUIOUniversity of OsloXRDX-ray diffraction	SEM	Scanning Electron Microscope
TEAtriethylamineTGAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTCSPCTime Correlated Single Photon CountTMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	t	triplet
TGAThermo Gravimetric AnalysisTHFtetrahydrofuranTLCThin Layer ChromatographyTCSPCTime Correlated Single Photon CountTMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	<i>t-</i> Bu	tertiary butyl
THFtetrahydrofuranTLCThin Layer ChromatographyTCSPCTime Correlated Single Photon CountTMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	TEA	triethylamine
TLCThin Layer ChromatographyTCSPCTime Correlated Single Photon CountTMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	TGA	Thermo Gravimetric Analysis
TCSPCTime Correlated Single Photon CountTMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	THF	tetrahydrofuran
TMStetramethylsilaneTMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	TLC	Thin Layer Chromatography
TMUTarbiat Modares UniversityUVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	TCSPC	Time Correlated Single Photon Count
UVUltraVioletUiOUniversity of OsloXRDX-ray diffraction	TMS	tetramethylsilane
UiOUniversity of OsloXRDX-ray diffraction	TMU	Tarbiat Modares University
XRD X-ray diffraction	UV	UltraViolet
-	UiO	University of Oslo
μM micromolar	XRD	X-ray diffraction
	μΜ	micromolar

δ	delta
0-	ortho
т-	meta
<i>p</i> -	para
br	broad
q	quartet